
NTNU

Bachelor Thesis
GUI 4 deep-doLCE

Authors

Runar Astvaldur Hedin

Aleksander Kokowski

Qeis Khaled Qeis

Bachelor of Science in Engineering - Computer Science

BIDAT

Department of Computer Science

20.05.2022

Supervisors Sony George

 Steven Yves Le Moan

 i

SAMMENDRAG

Tittel: GUI 4 deep-doLCE Dato: 20.05.2022

Deltaker(e): Runar Astvaldur Hedin

 Aleksander Kokowski

 Qeis Khaled Qeis

Veileder(e): Sony George

 Steven Yves Le Moan

Evt. Dr. Giorgio Trumpy

oppdragsgiver:

Stikkord/nøkkel GUI, Linseformede filmer, Dyp læring, fargerekonstruksjon.

ord (3-5 stk):

Antall sider: 41 Antall vedlegg: 3 Publiseringsavtale inngått: Åpen

Sammendrag: Hensikten med dette prosjekter er å utvikle GUI for en dyp lærings

 film og bilde fargerekonstruksjon programvare kalt deep-doLCE.

 Vår programvare må være forståelig og brukbare for alle med som

 har skannet linseformede filmer, uansett filmarkiverings kunnskap.

 Vi undersøker en enkel og intuitiv GUI som leder brukeren til neste

 knapp ved å skjule og vise knappene brukeren skal trykke på.

 ii

ABSTRACT

Title: GUI 4 deep-doLCE Date: 20.05.2022

Participants: Runar Astvaldur Hedin

 Aleksander Kokowski

 Qeis Khaled Qeis

Supervisor(s): Sony George

 Steven Yves Le Moan

Employer: Dr. Giorgio Trumpy

Keywords: GUI, Lenticular films, Deep learning, Colour reconstruction.

(3-5)

Number of pages: 41 Number of appendixes: 3 Availability: Open

Abstract: The purpose of the project is to develop a Graphical User Interface for a

 deep learning film and image color reconstruction software called

 deep-doLCE. The application needs to be understandable and usable by

 anyone with a scanned lenticular film, regardless of any film archiving

 knowledge or not. We propose a simple and intuitive GUI that guides the

 user to their next appropriate action by hiding and showing the buttons

 they should press next.

 iii

1 Contents
Terms and abbreviations ………..1

2 Introduction and relevance ... 2

2.1 Tasks .. 2

2.2 Our contribution to the task ... 2

2.3 Limitations... 3

2.4 Earlier experience ... 3

2.5 What we had to learn ... 3

2.6 Thesis structure ... 3

3 Project fundamentals .. 5

3.1 Background ... 5

3.1.1 Lenticular films .. 5

3.1.2 Deep-doLCE ... 7

3.2 Detailed GUI objective and requirements .. 9

3.3 Why we chose this task ... 9

4 Development Process .. 10

4.1 System development model ... 10

4.2 Project characteristics ... 10

4.3 Choice of system development models .. 10

4.4 Process execution ... 10

4.4.1 Purpose of each sprint .. 11

4.4.2 Scrum board .. 12

4.5 Project time usage .. 13

5 Choice of technologies and methods .. 14

5.1 Technology .. 14

5.1.1 Framework .. 14

5.1.2 Excel .. 14

5.1.3 Communication programs .. 14

5.2 Methods .. 14

5.2.1 Wireframing .. 14

5.2.2 GitHub ... 14

5.2.3 Scrum .. 15

5.2.4 Kanban .. 15

6 Design and implementation .. 16

6.1 Wireframing .. 16

 iv

6.2 Programming the first prototype design .. 20

6.3 Choice of Colour .. 20

6.4 Layout .. 21

6.4.1 Header ... 21

6.4.2 Side menu .. 21

6.4.3 Main content ... 21

6.5 Pages ... 22

6.5.1 Main Page .. 22

6.5.2 Help Page .. 23

6.5.3 Upload Media page ... 24

6.5.4 Crop page .. 25

6.5.5 Test page ... 26

6.5.6 Run page ... 27

6.6 Programming the functionalities and backend of buttons ... 28

6.6.1 Help Button ... 28

6.6.2 Upload Media File ... 28

6.6.3 Crop ... 28

6.6.4 Test .. 29

6.6.5 Run! ... 29

6.7 Scrapped/Dropped ideas .. 30

6.7.1 Banner ... 30

6.7.2 Day & night theme and increased font size .. 30

6.7.3 Rate Button ... 30

7 Choice of the development environments ... 31

7.1 IDE ... 31

7.2 Git .. 31

8 Code Quality .. 32

8.1 Code review .. 32

8.2 Code comments .. 32

9 Testing ... 33

9.1 OS compatibility .. 33

9.2 Acceptance tests ... 33

9.3 Usability Tests ... 33

10 Discussion .. 34

10.1 Results ... 34

10.1.1 Speed of colour reconstruction .. 34

 v

10.1.2 Converting an image from 16-bits into 8-bits ... 34

10.1.3 Flipping the image and choosing another frame .. 34

10.1.4 From Select ROI to Crop .. 34

10.1.5 Failed colour reconstruction ... 35

10.1.6 Failed video conversion .. 35

10.2 Alternative solutions from usability testing ... 36

10.2.1 Bullet points from usability testing ... 36

10.2.2 Feedback discussion .. 36

11 Conclusion ... 38

11.1 Summary of the work done ... 38

11.2 Future Work .. 38

11.3 Learning Outcomes and Concluding Remarks ... 39

Bibliography ……40

Appendix A. Project Plan ………..41

Appendix B. Project Agreement .. 51

Appendix C. Client and supervisor meetings ………………………………………………………………………………..64

 vi

List of Figures

Figure 2-1 Most common camera lenses ... 5
Figure 2-2 Lenticular film lens .. 6
Figure 2-3 RGB filter on the left and detail of a diagonal edge on a scanned lenticular film to the right
 .. 6
Figure 2-4 Example of a scanned lenticular film(top), doLCE (center) and deep-doLCE(bottom) 8
Figure 2-5 Overall pipeline of the proposed method. .. 8
Figure 3-1 Scrum board in Trello... 12
Figure 3-2 Working hours spent on different activities .. 13
Figure 5-1 Wireframe front page .. 17
Figure 5-2 Wireframe categories page ... 18
Figure 5-3 Wireframe image page .. 19
Figure 5-4 First programmed design ... 20
Figure 5-5 Theme colour inspiration ... 20
Figure 5-6 Main page .. 22
Figure 5-7 Help page ... 23
Figure 5-8 Upload media page .. 24
Figure 5-9 Upload media page .. 24
Figure 5-10 Crop page ... 25
Figure 5-11 Main page after pressing test button .. 26
Figure 5-12 Run page .. 27
Figure 5-13 Rate button page ... 30

 vii

Preface

This thesis was written by a team of three computer science students at the Norwegian University of
Science and Technology. We chose this assignment because of our interest in deep learning. We
were confident that our knowledge and skillset developed during our education all met the
requirements of the task given by the client Giorgio Trumpy.

We would like to thank our client Dr. Giorgio Trumpy for allowing us to take on this interesting and
challenging task. We would also like to thank him and his colleagues for all they taught us during the
project.

We would also like to thank our supervisors Sony George and Steven Yves Le Moan for their valuable
advice, feedback and insight during our work.

 1

Terms and abbreviations

GUI – Graphical User Interface. Displays objects that convey information and represent actions that
can be taken by the user.

Lenticules - any of the minute lenses on the base side of a film used in stereoscopic or color
photography.

doLCE – A method that detects lenticules and colorizes that image.

ROI – Region-Of-Interest. Samples within a data set identified for a particular purpose. A chosen area
within an image chosen to colorize.

RGB – Red Green Blue. The three hues of light used in imagine and by technology to create colours.

Miro - Online whiteboard for team collaboration. Miro’s whiteboard app for tablet and mobile gives
you the tools to collaborate with boards that put projects and context all in one place.

CPU - central processing unit. The electronic circuitry that executes instructions comprising a
computer program.

GPU - graphics processing unit. A specialized electronic circuit designed to rapidly manipulate and
alter memory to accelerate the creation of images in a frame buffer intended for output to a display
device.

IDE - An integrated development environment. Software for building applications that combines
common developer tools into a single graphical user interface (GUI).

Frontend – What the user interacts with for a more user-friendly and simple experience. Also
referred to as front end or front-end.

Backend – What happens behind the scenes without the user seeing it. Also referred to as back end
or back-end.

OS – Operating system. system software that manages computer hardware, software resources, and
provides common services for computer programs.

Framework - Resources and tools used to build and manage applications.

NumPy – A Python library used for working with arrays. It also has functions for working in domain of
linear algebra, fourier transform, and matrices.

8-bit image – An 8-bit image has a 28, or 256 levels of colours and tones that can be manipulated.

16-bit image – A 16-bit image has 216, or 65.536 levels of colours and tones, resulting in 256 times
more levels and a far greater detail of the image.

 2

2 Introduction and relevance

Lenticular films were some of the earliest technologies that permitted to capture full colour
information in motion. These films however were only used between the 1920s and 1940s. This
encoded colour information can be processed today to give the greyscale images colour. The deep-
doLCE project proposes the first accurate digitization and colour reconstruction process for lenticular
films that is robust to artifacts. Thus, the goal for our project is to create a GUI for deep-doLCE. The
client wanted the GUI to be clean and simple with the hopes that anyone can use it and hopefully
this should lead to archiving more of these rare historical films.

The client stated that the GUI will connect to deep-doLCE's backend and should have four
main buttons that are intuitive to use. Some of these buttons required additional work in order to be
compatible with the backend, such as the standard 16-bit films into 8-bits because deep-doLCE only
accepts 8-bit films. Another part was to improve the speed of colour reconstruction by making the
software run on the GPU rather than the CPU. Images of the first concept, early and final versions of
the GUI can be found later in the thesis.

2.1 Tasks
The goal of the thesis is to design and test a graphical user interface for deep-doLCE. The GUI must
allow the user to upload the input image-sequence or video file (handling different file formats),
select a region of interest, launch the colour reconstruction process, and monitor its progress. We
must also not edit the backend source code provided by the client in any way (as the client
requested).

2.2 Our contribution to the task
Since deep-doLCE does not have a user interface it limits its usability to programmers, excluding
most people from using it. In addition to that, deep-doLCE accepts only one image at a time with a
specific format (8bit grayscale PNG images), which means the software does not process videos and
limits the file formats accepted by software and image sequels should be processed one at a time.

Our task is to create a GUI using python (as stated by the client because that’s the language deep-
doLCE was developed in) that allows the users with no basic programming skills whatsoever to use
deep-doLCE easily and select any uncompressed lenticular image or video format they want, in
addition to the possibility of selecting multiple images or image sequences and the opportunity to
select the region of interest.

In addition to our main task, we decided to create a test button that saves the user's time by
selecting random frames out of the image sequence after colorization and letting the user check and
make sure if it was colorized correctly. This can save a lot of time because we run a single frame and
check results, rather than all of the hundreds or thousands frames before seeing the results. Lastly
we allow the user to select different types of output format.

 3

2.3 Limitations
Speed of colour reconstruction is the biggest limitation we faced because deep-doLCE has a runtime
of 3 to 5 minutes per frame. When programming or editing the program, we must test that all
aspects of the program are running successfully and that takes a large amount of time due to the
process time of the deep-doLCE code provided to us by the client. A side limitation was also our own
computers since the colorization speed relies on computational power.

2.4 Earlier experience
Through our studies, we have acquired knowledge about the whole development process, in
particular front-end programming and image processing. We also got experience in project planning.
This is all something we know will be relevant and useful for this project. Besides this, the group has
also had previous experience with working in teams during a diversity of projects during our studies.
We have learned a lot about the tools necessary for working with such a project and were both
excited and confident to use our knowledge with this real-life task.

2.5 What we had to learn
Although we all have previous relevant experience through our studies, there was still something to
be learned before, and during, the project. Specifically, the group lacked important knowledge about
the GUI tools in python. Our learning experience are mentioned throughout the whole report.

We also had to learn about lenticular films and films archiving in general so we could understand
what and why we had to include some features such as flipping an image.

2.6 Thesis structure
The thesis is structured into the following 10 chapters:

1 Introduction The reader is introduced to the group and the project.

2 Project fundamentals In-depth details on lenticular films and deep-doLCE, and why we chose this
project.

3 Development Process When and how the various parts of the project were developed and what
development model we followed to reach the goal of the project.

4 Technologies Here the reader can get more information about what tools were used by the team
to solve the various problems and tasks that we faced.

5 Design and implementation The explanation for certain design choices, why, what, and how things
were done in a certain way to the make the application as easy as possible to use, while also
enhancing the user experience.

6 Choice of the development environments The developer tools we used to develop the software.

 4

7 Code quality Summary of our standards for the quality of the code, which helped us understand
each other’s code, as well as hopefully all future developers after our work has been turned in.

8 Testing The different types of testing we did.

9 Discussion The result of the work we did, and discussion based on the feedback from the usability
tests.

10 Conclusion Here the reader can get more details about the group’s thoughts and our experience
at the end of the project, as well as a summary of the entire project. The results were discussed by
the group.

 5

3 Project fundamentals
This chapter will go into more detail of what the software does, how it does it and why we were
interested in taking on this challenge.

3.1 Background
In order to understand how our software works we must first understand what lenticular films and
deep-doLCE are. This sub-chapter focuses on informing the reader about lenticular films and deep-
doLCE.

3.1.1 Lenticular films
Lenticular films are rare films that were only shot between 1920s and 1940s that contain encoded
colour data. Lenticular films work just like any film or image where it takes in lights rays that get
redirected to a single point to create a sharp image. Where lenticular films are different lies in the
lens. Most images are taken with stacked concave and convex lenses that work similar to an eye,
lenticular films instead characterized by a vertical array of hundreds of cylindrical lenses. According
to deep-doLCE: A New Machine Learning Approach for the Color Reconstruction of Digitized
Lenticular Film: “consisted of a black-and-white film embossed with vertical cylinders, called
lenticules, and an RGB filter placed in front of the camera lens. This combination allowed to encode
the color information as silver densities in the horizontal spatial dimension within each lenticule.
After being exposed in the camera, the film underwent reversal processing. Its visualization was
done with a dedicated projection device that reversed the recording process, using an RGB filter in
front of the lens to create color images from the black-and-white film.”1. Comparison images in
figures 2-1 and 2-2.

Figure 3-1 Most common camera lenses 2

1 deep-doLCE: A New Machine Learning Approach for the Color Reconstruction of Digitized Lenticular Film
2 UNDERSTANDING CAMERA LENSES

 6

Figure 3-2 Lenticular film lens 3

As the reader can see on figure 2-2 the lenticular film will use the RGB filter and the tiny cylinders to
focus the light colour information on different parts of the emulsion, resulting in the colour
information being encoded on the image. This will result in thin vertical streaks in the film which,
when overlayed with the RGB filter to process the image, will allow a special projection device to
reconstruct the colours. Example of the streak and filter below in image 2-3.

Figure 3-3 RGB filter on the left and detail of a diagonal edge on a scanned lenticular film to the right 3

As of 2022, lenticular lenses remain used to this day, through 3D effects in images and by making
images appear to move if seen from different angles, or even combining two images where you see

3 A Deep Learning Approach for Digital Color Reconstruction of Lenticular Films

 7

different ones depending on the angle. These lenses also had a short life in 3D television as of 2010,
with only a few continuing to manufacture them.

3.1.2 Deep-doLCE
Reconstructing the rare lenticular films requires a special, obsolete projection device and is a time-
consuming process to boot. Deep-doLCE aims to bring this colorization into the modern world via
deep learning, potentially both removing the projection device requirement as well as speeding up
the process, and possibly enhancing the results.

“Some of the earliest home videos were shot on 16mm lenticular film between the 1920s and 1940s.
This incredibly special film is embossed with a vertical array of hundreds of tiny cylindrical lenses
used to capture scenes in colour on a black and white silver emulsion. The most efficient approach
to obtaining digital colour images of these historic films is to scan the silver emulsion at high
resolution and have software extract the encoded colour data. While most software works
 on the localization of the lenticular screen, this is the first and most complicated step in colour
reconstruction. In some cases, a "classic" signal processing method has proven its worth and
delivered successful results, but often adverse factors (damaged or warped film, scanning problems)
make it difficult to get successful results.

Deep-doLCE is explores a more advanced and robust method that uses a large dataset of digitized
lenticular films to train new deep learning software. The aim is to create an easy-to-use software
that will revive awareness of lenticular colour processes and thus make these valuable historical
colour films accessible to the public again and secure them for posterity.”

The reader can find an image of deep-doLCE’s results and process below, courtesy of our client
Giorgio and his fellow colleagues’ research.

 8

Figure 3-4 Example of a scanned lenticular film(top), doLCE (center) and deep-doLCE(bottom)3

Figure 3-5 Overall pipeline of the proposed method.4

4 A Deep Learning Approach for Digital Color Reconstruction of Lenticular Films

 9

3.2 Detailed GUI objective and requirements
As mentioned in the introduction, our project is to create a GUI for deep-doLCE that is easily usable
by not just experienced archivists but anyone that has a scanned lenticular film. This software must
also run on both Windows and MacOS but has no requirement for other OS.

The GUI will need four buttons, Upload media file, Select ROI (which was renamed to Crop
later into the project), Test, and Run. In addition to this we added the Help button to hopefully clear
up any confusion.

The ‘Upload media file’ button opens your file explorer like any standard file upload button except it
limits the file types to only the ones the deep-doLCE backend can process. We need to deconstruct a
film file into individual frames so that we can run the code on that file. The button should also let
you select one or more image to be processed. The image then also needs to be converted from 16-
bits to 8-bits.

The ‘Select ROI’ button should let the user select a specific area or areas they would like colourized.

The ‘Test’ button should run a quick preview of the uploaded image or film and let the user confirm
whether the flipped or un-flipped image has been colourized correctly. The reason why we need to
display these flipped or un-flipped images is because of the RGB filter used in the lenticular film as
mentioned in the previous chapter. A scanned image might already have been flipped or not which
can result in the filter switching the colours from RGB to BGR which will result in a very off-colour
image. If neither of the images are correct, then the user can choose to run another random frame
from the image sequence. There are multiple reasons why an image can fail to colourize correctly,
like smeared image, not actually a lenticular film, or the resolution is too low. However, the most
common reason is that the image is flipped and so the RGB ends up being flipped. We circumvent
this issue by always processing a frame twice, one regular frame and one flipped. The user then
confirms which frame is colourized correctly which will then run the colour reconstruction function
on every single image in the image sequence.

The ‘Run’ button starts the colour reconstruction of the image sequence and should allow you to
save the resulting image sequence into the file type of your own choice.

An additional task if we have time is to improve the speed of colour reconstruction.

3.3 Why we chose this task
The group wanted an exciting and challenging project, that would give us the opportunity of
developing experience that could later help us as an advantage when entering the job market. The
group agreed that the deep-doLCE project fulfilled these wishes, so it was immediately put into a list
of possible bachelor project. After reviewing the project description and discussing it, we acquired a
big interest in it, and we thought that it would be a perfect project to have as our bachelor thesis.
The deep-doLCE project is a front-end development project, which is something that we found very
intriguing, and we thought that we could obtain a lot of learning experience from.

 10

4 Development Process

4.1 System development model
Using system development models during development helps in successfully being able to develop
projects that meet certain requirements and premises. It helps organize and structure work and
allows you to easily track what tasks are being performed, as well as when and how the
development process should be carried out. There weren't many constraints and wishes on how the
development process should be carried out by the client for this project, but we still had some
criteria that we had to adhere to.

4.2 Project characteristics
The characteristics of the project that were considered when choosing the development model are
listed below.

1. Set a delivery deadline
2. Small development team of three
3. Frequent meetings with the client to receive continuous feedback on the development and

get innovative ideas or room for improvement.
4. Requirements and functionality of the project is mostly figured out but there were still room

for improvements and innovative ideas by both the group and client.

4.3 Choice of system development models
Initially, the customer had submitted some core requirements/functionality, but it was expected
that further requirements for the project would arise as the initial requirements were not fully
detailed. This meant that choosing an incremental development model was not a viable solution. An
agile development model would instead allow us to continually receive suggestions & feedback and
make fundamental changes to ongoing functionality. The group leaned strongly towards Scrum, a
well-known practice we used in the past. Combined with Scrum, we adopted the Kanban practice of
keeping track of backlog elements and their status on a Kanban board.

4.4 Process execution
The project was divided into eight sprints, each sprint has a time frame, to keep track of the process
and each sprint has a specific task.

 11

4.4.1 Purpose of each sprint
The eight sprints were distributed evenly over the period February 1. - April 20 as seen in Appendix
A, figure 6.2. In the planning phase the group discussed and set up each sprint and decided to give
each sprint a specific purpose and set an incredibly detailed plan for each one, to make sure the
process is going smoothly, and the project is finished on time, due to one of our members needing a
surgical operation then catching COVID-19 at the hospital we got a bit behind schedule but we
managed to finish our project on time.

Sprint 1: Identify the most suitable tool and start designing the interface.

Sprint 2: Include the buttons that let navigate the file system and select input files and destination
folder.

Sprint 3: Improve compatibility of deep-doLCE with the most common file formats used by film
scanners.

Sprint 4: Offer to the user the possibility to select a Regio-Of-Interest (ROI).

Sprint 5: Let the user choose the file format for the output, including a down sample option.

Sprint 6: Run a test reconstruction on a single frame (a pre-flip left-right could be necessary).

Sprint 7: Create the RUN button that start the reconstruction of the whole movie.

Sprint 8: Give the user feedback on the status of the process (i.e., output image, ETC, etc.)

 12

4.4.2 Scrum board
The Kanban board (Figure 3-1) has been a very important tool during the process of the project, and
we used the Kanban-style list-making application Trello for this. The main reason for using Trello is to
keep track of what needs to be done and to put a time limit for every task. That helps prevent us
from falling behind.

Figure 4-1 Scrum board in Trello

 13

4.5 Project time usage
The successful implementation of a bachelor thesis project requires a good amount of time. In order
to achieve our goals within the project, we decided as a group to set ourselves the goal of working
on the project at least 30 hours a week or 6 hours a day. This amount was estimated as the
necessary workload for a subject worth 30 study credits. The team used Toggle and Excel to track
time spent, and tag it with different types of activities. The time usage per activity is shown in Figure
3-2.

Figure 4-2 Working hours spent on different activities

 14

5 Choice of technologies and methods
In this chapter we will go over the technologies and methods we used for our project.

5.1 Technology
We needed to use a python GUI framework to make the GUI since that is the language deep-doLCE
was developed in. This was the only requirement in terms of tools made by the client since we only
had to develop the frontend. In this chapter we will discuss which framework we chose, and why we
chose it, among other useful tools.

5.1.1 Framework
After spending some time researching different GUI frameworks, we narrowed our choices down to
Kivy or Tkinter. We chose the former initially, but one team member ran into issues during
installation, which forced us to use Tkinter in the end instead. Tkinter was easy to set up and learn in
addition to a lot of additional resources through Stack Overflow etc.

5.1.2 Excel
We used Microsoft’s Excel to note down the start and end time of our meetings, as well as to write
short summaries of each meeting. The longer, in detail notes were posted on our discord channel
instead. Excel is a simple but powerful tool for this because it allows you to easily calculate total
hours and minutes spent on meetings and lets you categorise in whatever way you choose.

5.1.3 Communication programs
Most of our communication and meetings were held online, so when we were not meeting
physically, we had to use apps to communicate. We chose Discord for our internal group chat,
Microsoft Teams for weekly meetings with the supervisors, and either Microsoft Teams or Zoom to
talk to our client.

5.2 Methods
5.2.1 Wireframing
Considering that all our development is the GUI, it becomes vital to design a good, simple, yet user-
friendly GUI and so having a basic wireframe idea is very important. Wireframing is a time-cheap
option for creating mock versions of product. This helps us both recognize as many of the constraints
as possible, and to understand the product itself. Together as a team and with the input of the
client, we can figure out what works and what doesn’t, ensuring the product is of higher quality, as
well as ensuring that we’re creating a product that the client is both happy with and wants.

The tool we chose for wireframing in this project is the free, interactive, and collaborative online
whiteboard Miro. Not only does it offer real-time collaboration but also multiple free templates. 5

5.2.2 GitHub
As our tools for version-control, we used GitHub. GitHub is a version-control service where we can
work on different version of the same project locally on our own computers. This is incredibly useful
to us when we’re not in physical meetings and when we’re working on different GUI element. When
we need to synchronize our local work with the work of others, we can push our code to GitHub,
which then handles the merging of our code into a single unified source-code.

5 The online whiteboard for easy collaboration

 15

5.2.3 Scrum
After discussing agile and plan driven development models, both within the group and with our
client, we concluded that agile development is the best fit for our project. We had expected that we
might have new ideas or new skill sets through the project and might then want to implement those
ideas, which is the opposite of what the waterfall, incremental model or any of the plan-driven
development models are.

We chose scrum due to previous experience with it on other projects and thesis while
attending University. Scrum is a fantastic framework for our project since it’s a great fit for a small
dev team, because it splits goals into time-based segments called sprints, as well as helping us
organize our current and future planning through the backlogs and sprint-logs. The use of backlogs
and sprint-logs worked perfectly with our project since we were always only working on one button
at a time, and because we were working within a short timeframe. Scrum can be hard to work with if
you're working on a large project due to time estimation and workload. We used a Gantt-schema to
help us both visualise the timeframe of each sprint, and to more clearly see the milestones and
deadlines we had previously set up. This schema became especially useful whenever we were
behind or ahead of schedule.

5.2.4 Kanban
Kanban is great for visualising and managing our workflow. Having the Kanban board up during the
sprint meetings helped us see what tasks are finished or are still ongoing and was a great help in
minimizing the amount of WIP (work in progress) we had. Each task’s duration is tracked on the
board through either an “in progress” or “ready” state. This also helped us improve our time
estimation for future tasks.

 16

6 Design and implementation
In this chapter we will be presenting the ways we implemented certain functionality and go in-depth
in both the code and structure. The reader should obtain a clear understanding of how all the parts
of the system work together, as well as how the functions responsible for a functionality works to
deliver the expected result.

6.1 Wireframing
As mentioned in the previous chapter, during the first week we made a wireframe of our app on the
website Miro. Miro has several templates for designing various things, including the application
framework. The application framework was the base of our prototype, but we did not use most of
the ideas in the framework for various reasons, such as: looking too much like a website, Tkinter
limitations, being too complex compared to our client’s wishes, among other issues. The reader will
find screenshots of the wireframe we based out application from, and below that we will continue to
show the finished GUI.

 17

Figure 6-1 Wireframe front page

 18

Figure 6-2 Wireframe categories page

 19

Figure 6-3 Wireframe image page

 20

6.2 Programming the first prototype design
After choosing Tkinter as our GUI programming tool, we began to slowly program a design, we
started with a random colour background, chose our logos, we did not like the button shapes that
are available from Tkinter, because they looked dry and, so we found some images and edited them
to program them into buttons, just so we could have an initial design we can work on upgrading with
time.

Figure 6-4 First programmed design

6.3 Choice of Colour

Choosing a colour was more difficult than we initially thought due to Tkinter limitations, which
forced us to use a more minimalistic style. We found a colour online that we thought can fit into the
designed theme and attract the user [3]. Picture underneath this text.

Figure 6-5 Theme colour inspiration6

6 50 Gorgeous Color Schemes From Award-Winning Websites

 21

6.4 Layout
Our final layout was a simple GUI with every button displayed on the side menu and header. The
only change between buttons happens on the main content box, towards the left and centre of the
screen.

6.4.1 Header
The header only contains the small logo of Deep-doLCE to the left, and a help button towards the
right side. Pressing the help button brings up a brief explanation of what the application does, and
the function of each button.

6.4.2 Side menu
The side menu contains the four buttons that are the main function of the application. These
buttons are: The upload button, run, test, and select ROI. While most of these buttons are self-
explanatory, we will still briefly explain their functions.

The upload media file button lets you upload the greyscale photo that is to be colourized. It possible
to upload one image, a series of images or a video in any image or video formats.

The select ROI button allows you to select a region-of-interest to be colourized. You can select one
area or multiple if you so choose.

The test button runs a quick test on the film to see that it gets the correct colours before you start
the colouring process.

The run button confirms and starts the deep-doLCE code that colourizes the image(s).

6.4.3 Main content
The main content is the biggest section of the screen, taking up approximately 60% of the space.
This section is where you will see the content pop up when you press a button. The press of a button
removes a canvas and puts another one up instead with the desired action.

 22

6.5 Pages
Below the reader will find screenshots of all the pages with a detailed explanation, ordered by the
order of buttons in which they appear from top to bottom.

6.5.1 Main Page
The main page pops up when program is started and it includes the program logo on the top left,
side menu buttons on the left that appear once needed, the middle area is an image of the program
icon which changes depending on which buttons in the program are pressed. Three extra buttons
appear when pressing the test button and disappears after testing is finished.

Figure 6-6 Main page

 23

6.5.2 Help Page
The help page pops up when program is started and it includes the program logo on the top left,
information about the program and instructions in the body and a “Back to main page” button.

Figure 6-7 Help page

 24

6.5.3 Upload Media page
The first frame of the uploaded files would be shown after uploading the image, as shown in the
figure below.

Figure 6-8 Upload media page

Figure 6-9 Upload media page

 25

6.5.4 Crop page
The crop page pops up after pressing the “select ROI” button, it has a helpful tool bar in the top an
image or a frame to select the region of interest from in the body.

Figure 6-10 Crop page

 26

6.5.5 Test page
Shows a random colorized frame both original and another flipped before colorization, and it allows
the user to pick which picture looks better to colorize all frames the same way, also allows the
opportunity to test another frame.

Figure 6-11 Main page after pressing test button

 27

6.5.6 Run page
It allows the user to select master image series format and proxy video format, in addition to frame
per second option for the video output.

Figure 6-12 Run page

 28

6.6 Programming the functionalities and backend of buttons

6.6.1 Help Button
The functionality behind this button is simple, we had to program a new window to pop up when
pressed with the same colour and logo location as the main page with the help text in the body read
from a text file and a back to main page button

6.6.2 Upload Media File
The functionalities we had to program behind the “Upload Media File” are three:

- Uploading multiple files:

We had to program the upload of multiple files to allow the user the ability to upload a series of
images at once, using Tkinter’s * filedialog.askopenfilenames * function.

- Turning videos into image frames

Since the deep-DOLCE backend that was provided to us only accepts images not videos, each
uploaded video must be turned into image frames, we did that through OpenCV.

- Turning images into 8-bit grayscale PNG

The deep-DOLCE backend that was provided to us only accepts 8-bit grayscale PNG so all video
frames and images must be converted to that format. At first, we programmed that function by
changing the 16-bit image, bit by bit but it took a lot of time to run, so we found NumPy code on
stack overflow to turn 8-bit images to 16-bit images, so we reverse engineered it and it worked
faster.

6.6.3 Crop
We programmed a select region of interest function using OpenCV, it takes the region of interest
from one frame and crops all frames accordingly.

 29

6.6.4 Test
The way test button functions is as follows:

 Chooses random frame from the folder

Given that lenticular films tend to have damaged or irrelevant frames at the beginning and end of
the movie. Program chooses random frame in the middle of the movie by disregarding the first and
the last 25% of the frames in the movie.

 Colorizes the frame and displays it

Lenticular films can format colour in RGB or BGR depending on which way you view the frame.
Therefore, the test frame must be colorized and displayed in original and inverted form.

 Gives user ability to decide how to colorize the rest of the frames.

Some frames can lead to uncertainties as to which colour format is correct and if that’s the case user
can choose to run a test on different frame. If that’s not the case user can choose which colour
format is correct and whether it should be saved in original orientation or inverted.

6.6.5 Run!
The run button does the following:

 Gives user ability to choose output formats and where to save them

User can decide what image and video format to save colorized files as, as well as decide where to
save them. After submitting the values, it runs through all the frames in the folder, colorizing as well
as displaying them on the screen. Bar underneath the picture shows how much progress has been
made with colorizing the entire folder.

 30

6.7 Scrapped/Dropped ideas
This sub-chapter will mention the ideas we had from the beginning and the reason why we ended up
not going with them. Some of these ideas never made it past the drawing board while others were
worked on for several hours in coding and/or research.

6.7.1 Banner
One of the ideas we had while making the wireframe was to have a quick preview of the before and
after of two images in the banner. Upon diving into Tkinter we found out that having an invisible
background for images and canvases was not possible for both Windows and macOS7, and so we
would have to have separate versions for each, which we ultimately deemed unnecessary since: the
client did not ask for it, the banner does not actually serve a purpose, and most importantly it might
go against the main function of the app as a machine learning colour reconstruction tool. This would
have been possible though through buttons with different backgrounds that end up displaying what
looks like a one single banner. This would have looked like a normal banner but would cause bloat in
the code and needlessly increased the folder size.

6.7.2 Day & night theme and increased font size
The issue here was that every code we found for real time updating of background colour and font
size & colour did not work. We could instead have treated the GUI like two different pages and had
the click of the button close the default GUI page and loaded in the day theme version, but this
would cause problems if someone would change the theme while the colour reconstruction was
underway. Another issue was that the user could only change the theme three times before the app
closed itself. Ultimately, again, this was not something the client requested and could cause issues
down the road if someone were to continue to work on the GUI in the future.

6.7.3 Rate Button
Lastly was the rate button. The client had (as far as we could figure) talked about having a rating or
evaluation by his peers and the team mistook that as a button to design. This was a simple
misunderstanding between the team and the client which led to the scrapping of the button as soon
as we brought it up again with the client. Below is a screenshot of the small progress we had before
scrapping the button.

Figure 6-13 Rate button page

7 Transparent background in a Tkinter window

 31

7 Choice of the development environments
In this chapter we will go over the environments and tools we used during the development of our
application. The chapter is short and split into two since we were only developing a front end, the
IDEs’ and repository.

7.1 IDE
Our choice of IDE came down to each individual team member since we would mostly be coding in
separate locations. Everyone used the IDE they were most experienced and comfortable with. The
IDEs’ chosen were Visual Studio Code and PyCharm.

Visual Studio Code, or VS Code, is a source-code editor developed by Microsoft for Windows, Linux
and macOS. It lets you easily install multitude of extensions/plugins you want or need to speed up
the development process.

PyCharm is an easy-to-use python specialized IDE with many python tools and packages that are
easy to use and the option to choose python interpreter that would come in handy with making the
program work on GPU instead of CPU.

7.2 Git
In order to share the code, we chose Git to both easily pull and push our code to our central
repository on the cloud service GitLab. This helps keep our code consistent and prevents any errors
due to changes made before merging the code. This is accomplished by first pulling the source code
on GitLab and merging it with the code you have written and are attempting to push/upload. You
then resolve any merging conflicts and then Git lets you, most likely, successfully push/upload the
code into the chosen branch, where it becomes the new source code. GitLab also allows you to roll
back any changes if you so choose, through its archived history system.

 32

8 Code Quality
Code quality is not only extremely important to us as developers but also for any future
development process of the application. This means that our code had to be readable and
understandable by anyone with even very little coding experience and we set out to do just that.

8.1 Code review
Since most of the time spent developing was through separate, individual work, it was important
that we could all understand each other’s code.

8.2 Code comments
Comments are crucial so other developers can continue working on advancing this project both
frontend and backend, so we made sure that comments were added and that our code is easy to
read.

 33

9 Testing
In this chapter we will talk about the testing we did and the improvements it led to.

9.1 OS compatibility
As mentioned in the previous chapter, it was extremely important that the application would run on
both Windows and MacOS. Since we developed the GUI with that in mind the entire time, when it
came down to testing it on both OS, we found that it worked perfectly on both. However, we did not
test the application on mobile devices since the client did not ask for it, and because of the
computational requirements being presumably too high, which could damage the device.

9.2 Acceptance tests
One of the most important and last tests for applications is the acceptance tests. Our application
runs almost exclusively using buttons, with the only exception being the Upload Media button. This
means that when the testing week came, testing the whole application was quick.

9.3 Usability Tests
Usability testing is the practice of testing how easy a design is to use with a group of representative
users. This type of testing is one of the most important parts of the project for us because it allows
us to see how the average future application user interacts with the software and what they think
should work differently. These tests consist of different use-case scenarios that the users will
complete while the observers observe and take notes. It can be important that the user-group has a
wide range of knowledge and experience with similar systems.

There are many different types of usability tests, and we chose remote unmoderated
assessment testing through Zoom & Team Viewer, where the users would remotely access a
computer at NTNU that had a good GPU. Users would then commence testing of colour
reconstruction with minimal input from the observers, but the observers were always there for any
questions and/or explanations.

While the software is designed for everyone, both those experienced with lenticular films and not,
the user-group we had chosen with the client from the beginning was a group of highly experienced
film archivists. However, they would also try as best they could to act like they knew nothing about
lenticular films or images and films in general.

 34

10 Discussion
This chapter will talk about the end results of our software and alternative solutions we had after
talking to experienced film archivists during the usability testing.

10.1 Results
10.1.1 Speed of colour reconstruction
We have managed to make the backend provided to us work faster, by making it run on GPU instead
of CPU, by installing anaconda and using Conda Python environment, we faced many problems doing
so, like problems with attempting to install some Conda packages that were not compatible with the
python version used, as stated in their developer logs. Another problem we faced is that we needed
a stronger GPU than the ones we had on our laptops, so we had to find a workstation with a strong
GPU with an 8GB memory to conduct our usability tests. Other specs of the pc were not given to us
as we had also neglected to ask. Normally while running the program on CPU, it takes a minute to
colorize a frame, on the other hand using GPU it takes around 12 seconds to colorize a frame.

10.1.2 Converting an image from 16-bits into 8-bits
One of challenges we faced was to turn a 16-bit image into an 8-bit image. The reason why we had
to convert the images was so that we could process the images in Giorgio’s code, as it only accepts
8-bit images. All the code we found online that did the conversion would do it by going over small
sections at a time and individually turning them into 8-bits, resulting in slow conversion speeds.
Giorgio got us in contact with someone that knew the ins and outs of NumPy that helped guide us to
a code that efficiently turned 8-bit images into 16-bit. We reverse engineered that code to do the
opposite, resulting in much faster conversion time.

10.1.3 Flipping the image and choosing another frame
The test page has three important buttons after the user has colourized the random frame as
previously mentioned in sub chapter 5.6.4. The client and the team had a discussion about
automatically saving the final image or image sequence in its original non-flipped rotation. However,
the client brought up the point of inverted text, where the user would have to then use another
application to flip their new film so the text can be in the right orientation. Instead, we let the user
decide for themselves. An example of this can be seen in image 5-11.

10.1.4 From Select ROI to Crop
One of the task requirements was to create a button that selects the region-of-interest or ROI for
short. While we, the team members and client, are all familiar with the term it’s likely that others
are not, especially if they’re not fluent English speakers. We decided to therefore change the name
of the button to Crop as we all agreed that it was a more common term.

 35

10.1.5 Failed colour reconstruction
Since image reconstruction of a lenticular film is a precise process there are a lot of factors that can
result in a failed reconstruction. An image can fail to be colour reconstructed for multiple reasons
that are given below.

Image is misaligned. Deep-doLCE has observed a maximum of rotation of about 1° 8, meaning that
the scanned image needs to be almost perfectly aligned because of the way the RGB filters are
overlayed on the image.

The image is not a lenticular film. Our application is designed for everyone to use regardless of film
archiving experience. Lenticular films are rare and requires an expert eye to identify whether the
film is a lenticular film or not. A potential user might have found an old film and wonders if this
might be a lenticular film and attempts to use our software since they’re unable to see the
difference between lenticular films and other greyscale films. The user can then attempt the
colourization on our software.

Smeared or damaged parts on the image. A smeared or image will lead to issues with the visibility
of the diagonal edges of the film. If this is an issue with only a handful of the films frames then our
software will likely circumvent the issue by, as mentioned in testing chapter 5.6.4, testing random
frames between the first 25% and the last 25% of frames.

Low resolution. A scanned image needs to be scanned in a high resolution (at least 4k) for the
diagonal edges of the film to be clear enough for colourization.

Most of the above issues stem from the physical frames being damaged or issues with scanning,
which are out of our control. It is therefore important for us to convey this information to the user
without being condescending and putting the blame entirely on the user because there are of course
issues that are on our end. This should be a pop-up box that appears after around half a dozen “test
another frame” button clicks, preventing the user from wasting their time on attempting to colourize
something that is impossible. Further testing of the product should help us iron out the issues
caused by our software as they appear.

10.1.6 Failed video conversion
Library used for video conversion is a Python FFMPEG wrapper in OpenCV. It takes the frames and
loads them into the video files one by one. During the conversion process some frames may be
skipped for variety of reasons, for example:

 Complex codecs with not enough computing power can lead to PC not having enough time
to write images into the video.

 Rounding errors when choosing FPS.

Choosing the output format can be hard if required codec is not available, especially when
documentation for codecs is lacking. For instance, in FFPMEG following codecs are not available;
H.264, H.265 or H.266. Yet without going deep into comments you would think H.264 is possible.

Lastly there are times when FFPMEG will throw errors on certain codecs even though it run just fine
before.

8 A Deep Learning Approach for Digital Color Reconstruction of Lenticular Films

 36

10.2 Alternative solutions from usability testing
Below the reader will find the major bullet points we got from the two usability tests we did, which
also mention which ones are already fixed or not. We will also discuss some of the bullet points in
the following sub chapter.

10.2.1 Bullet points from usability testing
- Change location of buttons from left to right and put them as close to under the image as

possible instead of far away. (User preference)
- Test another image button should be further away. Perhaps make the images themselves a

button that you click instead of a button.
- Gray out or disable buttons if uploaded aa file was not uploaded already. (fixed)
- Buttons while testing should be disabled during the colour reconstruction. Selecting the ROI

while image processing was ongoing crashed the program. (fixed)
- Limit selection of frames per second options to 24, 16, or 1 and nothing more. Mention in

the application that standard speed for films at the time was 16 fps. (fixed)
- Area of image can be bigger upon uploading.
- While uploading files, if you do not click an image inside a folder then all images inside that

folder get selected for image sequencing.
- Should we restrict the file formats further, MP4 and similar formats might have heavily

compressed files that might not get processed. (fixed)
- General input: straightforward. For professional use, wouldn’t bother with video outputs

and would prefer proper DPX format so he can do whatever he wants with it. Would
personally just use .tif, and H.264 .mp4. Archives would not want .jpg, .mov, or .avi.

- If the user picks a different frame during the “test” process of an image sequence several
times (4-5 times) a window should pop up asking “are you sure the requirement of the scan
is met?”

- Upload media button size for images is small due to being a dynamic sized window. (fixed)
- Output files should have the same names as the original but with underscore and coloured

or some other variant (colour_img001.tif etc.)
- Instead of cropping the image, keep it as a region of interest and run the colour

reconstruction process only inside that region, while leaving the rest of the image untouched
but keeping that as part of the image (don’t throw away the black & white edges/frame).

- The video file is what’s called proxy. Proxy means a low weight file for visualization purposes
only and the image sequence will be called master image sequence. Master means good for
further processing and to have the best quality necessary. This will have to be somehow
clear in the run page

10.2.2 Feedback discussion
The usability testing taught us a lot about film archiving and showed us how important it is to get
feedback from professionals. Below are some of the noteworthy issues and discussion points that
came from the feedback.

Our application before the feedback had the image sequencing frame rate options of 1, 24, 30 and
60. It was brought to our attention that the frame rate at the time was most commonly 16 and film
archivists will most likely only ever want to pick 16 fps, or the standard 24 fps used in film making.
We also chose to include 1 fps in case of a smaller image sequence or if the user simply wants a

 37

lower frame rate for their file. Without the feedback we would never have known about the 16 fps,
and we would have included frame rates that no one would want to use because it would result in
unnatural movement.

One of the general potential issues that were discussed was our choice of allowing the user
to save their colourized image in any of the common formats currently possible. This issue is multi-
layered with clear pros and cons. The film archivists argued that .jpg, .mov, and .avi will never be
used by film archivists and could even lead to other archivists scoffing at the software and not using
it because including those formats is unprofessional in the world of archivists. On the other hand,
the average person might recognise .jpg and .mov the most and might get confused by only the
choice of .tif and .mp4 files. The question then was yet again, who exactly will be expected to use
this application the most? We currently settled for including the option of the “unprofessional” file
formats since it might be better to include options rather than remove them. This could be changed
in the future, especially with some user data.

Sometimes both the flipped and pre-flipped images will turn out bad or uncoloured. When this
happens during an image sequence the user can choose to test another frame of the sequence. The
suggestion given by Giorgio was to have a window pop up that asks the user: “are you sure the
requirement of the scan is met?”, in order to make sure the user does not waste their time on
something that will simply not work. A failed colour reconstruction can happen for multiple reasons,
for example because; image not aligned correctly, the image is not a lenticular film, the film has
some damage, or because of a low resolution.

One of the film archivists suggested an improvement for the final result image that could be highly
desirable for archivists. Archivers would prefer to keep all image information since sometimes
there’s interesting information on the edges that helps film archivists. This suggestion was then to
run the colour reconstruction on only the cropped part of the image, yet keeping the whole image
intact, resulting in a coloured image in the chosen region-of-interest with black & white
edges/frames. Archivists might be very interested in this function because it might help them, while
the average user might be interested in this function for its artistic aspect.

 38

11 Conclusion
This chapter discusses the work we did, feedback from the client, the future of the project and what
the project taught us.

11.1 Summary of the work done
The goal of this project was to create a GUI for deep-doLCE that is usable by not only people with
experience in film archiving, but by anyone who might have stumbled upon a black & white image or
film and wants to check if this is perhaps a lenticular film. In order to meet these criteria, it was
important to have a simple and intuitive GUI that anyone, regardless of age or experience, could use.

This led us to design a system that would only display two buttons upon starting the software, the
“Help” and “Upload Media File” buttons. After pressing the “Upload Media File” button two other
buttons, Crop and Test, will show up and hopefully it is clear to anyone what those buttons do. After
testing the image or image sequence and confirming which image got colourized correctly, the run
button appears, which lets you choose the format you would like your new colour reconstructed
image or image sequence to be in.

When it came to the colour scheme of the application, we chose a clean design based on the colour
theory. In the beginning of the project, we had a grand idea of a banner displaying some previews of
colour reconstructed images and a more colourful background, but due to Tkinter limitations this
idea was not realized. Yet we were happy with the results and even praised during the usability tests
for a clean and simple GUI.

The GUI had to connect to the backend given to us by the client, Giorgio. Our group had to
use a python GUI framework to develop the GUI since that was the language the deep-doLCE project
was developed in. The framework we chose was Tkinter since it was it is one of the most popular
GUI frameworks and was easier to install than our other top option, Kivy. With Giorgio’s help were
we then able to find which functions inside the backend we would be using.

Deep-doLCE currently only accepts 8-bit images, which meant that we had to turn 16-bit images into
8-bit images. We found NumPy code on stack overflow that turns 8-bit images to 16-bit images, so
we reverse engineered it to turn 16-bit images into 8-bit images which worked perfectly on all the
images provided by Giorgio but also random images we found online. This code will be obsolete in
the near future when deep-doLCE will be changed to accept 16-bit images by default which will
improve the image quality.

One of the biggest contributions we made was by making the backend run on the GPU
rather than the CPU, which sped up the colourization process immensely. This was one of the most
time-consuming parts of the project and posed great challenges and required a lot better GPU than
our laptops have.

Essentially what we have done is to create five main buttons, ‘Upload Media File’, ‘Crop’, ‘Test’,
‘Run!’, and ‘Help’. Behind the scenes we have also turned any 16-bit image into an 8-bit image so the
deep-doLCE backend code can colourize it, and then ran that backend code on a computer’s GPU
rather than CPU.

11.2 Future Work
While we did everything the client requested and more, this software will see a lot of improvements
in the future by the client and his team. Some of these will be made because of improvements in the
backend, while some are from ideas that were had later into the project that the team did not have
time to implement, and some ideas that were not had in any of our meetings. The client mentioned

 39

plans to have an intern change the backend to process images in 16-bits, which will mean that our
code to change an image to 8-bits before colourization will need to be changed.

As mentioned in the previous chapter there are already many ideas for improvements such as
unique features that only run the colour reconstruction on a select part of the image but leaving the
rest untouched, or QoL changes like the automatic file name, not selecting any image in a folder
should select all images by default, and a feature that turns the resulting images during the test
process into buttons.

It is worth noting that the time it takes to reconstruct the colouration of the films will continue to
drop as technology improves. It might even be possible for phones in the future to run this software,
but changes will have to be made to the code so that Android or iOS can run it.

11.3 Learning Outcomes and Concluding Remarks
Prior to this project only one person had previous experience with making GUIs with python, but we
can confidently say that everyone learned a lot about it during the past four months of work. We
learned relatively simple things such as creating texts and buttons and attaching functions to them.
We learned how to connect the buttons to the backend. We learned how to efficiently turn a 16-bit
image into an 8-bit image as well as turning a video into image frames. We learned how to make a
software run on a GPU instead of the CPU.

The project not only taught us a lot about designing a GUI through a python framework, but
also about the existence of lenticular films and how they work, as well as image and film archiving in
general. Overall, we come out of this project with a lot of useful experience for our future careers as
well as just interesting new knowledge about the world of film archiving.

 40

Bibliography
[1] Dr. Giorgio Trumpy, and Dr. David Pfluger, “deep-doLCE: A New Machine Learning Approach for the Color
Reconstruction of Digitized Lenticular Film” University of Zurich, 27 May 2021,
https://www.film.uzh.ch/en/research/projects/verbund/deep-doLCE.html Accessed February 1, 2022.

[2] Cambridge in Colour, “UNDERSTANDING CAMERA LENSES” Cambridge in Colour [website], [no date].
https://www.cambridgeincolour.com/tutorials/camera-lenses.htm Accessed May 19, 2022.

[3] Stefano D’Aronco, Giorgio Trumpy, David Pluger, and Jan Dirk Wegner, “A Deep Learning Approach for
Digital Color Reconstruction of Lenticular Films” Researchgate, 10 February 2022,
https://www.researchgate.net/publication/358579081_A_Deep_Learning_Approach_for_Digital_ColorReconst
ruction_of_Lenticular_Films Accessed May 16, 2022.

[4] Miro, “The online whiteboard for easy collaboration” Miro [website], [no date]. https://miro.com/online-
whiteboard/. Accessed February 3, 2022.

[5] N. Chibana, “50 Gorgeous Color Schemes From Award-Winning Websites” Visual Learning Center [website],
September 4, 2016. https://visme.co/blog/website-color-schemes/. Accessed February 8, 2022.

[6] forumfresser, “Transparent background in a Tkinter window” Stackoverflow [website], September 29, 2013.
https://stackoverflow.com/questions/19080499/transparent-background-in-a-tkinter-window Accessed March
28, 2022.

Appendix A. Project Plan

NTNU

Bachelor Thesis

GUI 4 deep-doLCE

__

Project plan

__

Runar Astvaldur Hedin, Aleksander Kokowski, Qeis Khaled Qeis

January 2022

 1

 2

1 Goals and frames
1.1 Background
“Some of the first home movies in color were shot on 16 mm lenticular film during the 1920s to
1940s. This very special film is embossed with a vertical array of hundreds of tiny cylindrical lenses
that allowed to record color scenes on a black&white silver emulsion. The most efficient approach to
obtain digital color images from these historical motion pictures is to scan the silver emulsion in
high-resolution and let a software extract the encoded color information. The localization of the
lenticular screen is the first and most complicated step of this process. A 'classic' signal processing
method proved to deliver successful results in some cases, but more often adverse factors—
damaged or warped film, scanning problems—hinder the successful localization of the lenticular
screen.

The deep-doLCE project explores a more advanced and robust method, using an already
available big dataset of digitized lenticular films to train a new deep learning software. The aim is to
create an easy-to-use software that revives awareness of the lenticular color processes thus making
these precious historical color movies available again to a public and securing them for posterity.”
[1]

Image 1, Trumpy & Pfluger [1]

1.2 Project Goals
The goal of the thesis is to design and test a user-friendly Graphical User Interface for deep-doLCE.
1.2.1 Result goals:
Outcome goals are the goals describing the wanted result from the project

 Design a GUI for the deep-doLCE project.
 The application should allow you to select an image or movie from the database,
that the deep-doLCE project code then processes and colorizes.
 The application should offer the user the possibility of selecting a Region-Of-Interest
(ROI).
 Should be able to launch the color reconstruction process and monitor its progress.
 The application should be easy to use, with a clean and simple design.

1.2.2 Effect goals:
 Easier to select images and movies to colorize.
 Improve compatibility of deep-doLCE with the most common file formats used by
film scanners.

1.2.3 Learning objectives
Learning objectives is the knowledge and experience we hope to gain during the project.

 Gain experience on frontend development.
 Gain experience on backend development.
 Gain knowledge and experience with various file formats.
 Gain more experience with database/s.

 3

1.3 Project frames
The bachelor thesis has a specific timeframe. The project starts 11. January 2022, with a due date of
20. May 2022. The software should preferably be finished by 20. April and will be handed in, along
with the thesis, by 20. May. Deep-doLCE is written in Python, so the GUI must be written in PyQt or
other available tools for Python, such as Tkinter, wxPython or JPython.

2 Scope
2.1 Problem area
As Deep-doLCE application code exists, the application lacks a graphical user interface (GUI) that
simplifies and makes using the application simpler. The GUI should offer the user the possibility to
select a Region-Of-Interest (ROI). The existent Deep-doLCE application code should be improved to
support more input and output format options.
2.2 Task description
In order to add a functional GUI, that offers the possibility to select a (ROI) to an improved Deep-
doLCE application code that supports more input and output format options, the following steps
should be achieved:

1. Identify the most suitable tool and start designing the interface
1. Include the buttons that let navigate the file system and select input files and destination
folder
1. Improve compatibility of deep-doLCE with the most common file formats used by film
scanners
1. Offer to the user the possibility to select a Regio-Of-Interest (ROI)
1. Let the user choose the file format for the output, including a down sample option.
1. Run a test reconstruction on a single frame (a pre-flip left-right could be necessary)
1. Create the RUN button that start the reconstruction of the whole movie
1. Give the user feedback on the status of the process (i.e., output image, ETC, etc.)

Additional tasks:
 Expand the data augmentation with more transformations (e.g., blur, barrel/pincushion
distortions)
 Allow for small curvature in the vectorization of the network’s output
 Create a user guide to the application
 Add an option to review the software and give feedback.

3 Project organization
3.1 Responsibilities and roles
The team chose Qeis Khaled Qeis as the project leader. The project leader is responsible for
organizing meetings, contacting the client and the university staff, and monitoring the group
progress so the schedule is followed.

The team also chose Runar Astvaldur Hedin as the project recordkeeper, which has the
responsibility of taking backups of documents, writing minutes of meetings and document important
decisions.

Proofreads and submits each document/thesis (quality assurance for the code will be a
shared responsibility for the entire group). Aleksander Kokowski will be responsible for that role.
3.2 Routines
Every group member is expected to work as hard as possible to stay a week ahead the project plan
(around 30 hours weekly). The group has scheduled weekly meetings with both the university
supervisor staff every Monday 10:00-11:00 (extra meetings can be arranged when needed),
meetings between members and the client can be arranged when there is need for them or to show

 4

progress (at least once every two weeks). Meetings should be scheduled in advance at a time that
everyone agrees on and fits everyone's schedule. Due to the COVID19 pandemic and work
schedules, these meetings will be held online as much as possible.

3.3 group rules
To ensure the groups efficiency and effectiveness is kept, we decided to implement group rules
applying to every member.
Absence
Every member should and is expected to attend all meetings. If this is not possible the group
member should let the other group members know a minimum of 2 hours before the meeting, with
an exception for emergencies.
Effort
Every group member is expected to work as hard as possible to stay a week ahead the project plan
(around 30 hours weekly including meetings and collective work). Work hours will be documented
using Toggl.
Conflicts
In the case of an internal conflict where two or more group members disagree on an issue, the
whole group should discuss this and come to a solution by discussion. A vote should take place if no
mutual solution can be found.
 Consequences of breaking the rules
In the case of a member does not show up regularly in meetings, breaks the team rules, or fails to do
their tasks, then that member will be given a written warning and the group will collectively try to
solve the issue. If the problem persists then the university project supervisors might be contacted.

 5

4 Planning, follow up and reporting
4.1 Choice of system development models
After discussing agile and plan driven development models, both within the group and with our
client, we have concluded that agile development is the best fit for our project. This is due to the
project not only including the main goal, but also extra tasks if we have the time and/or picked up
the skill set required to implement the clients extra task wishes. The finished product will likely be
far more than creating a GUI. This is the opposite of what the waterfall, incremental model or any of
the plan-driven development models are.

Out of all the agile development models we have chosen to go with a combination of SCRUM
and Kanban. SCRUM is a fantastic framework for our project since it’s both a great fit for a small dev
team, and because it splits goals into time-based segments called sprints. We plan to have several
weeklong sprints and 2 two weeklong sprints, with SCRUM meetings at least three days a week. One
of these days will usually be used for the sprint planning, a short meeting at the start of each sprint,
detailing what needs to be done before that sprint is finished. We will also have another sprint
meeting at the end of each sprint for a sprint review and retrospective.

Kanban will be great for visualising and managing our workflow. Having the Kanban board up
during the sprint meetings will help us see what tasks are finished or are still ongoing and is a great
help in minimizing the amount of WIP (work in progress) we have. Each task’s duration is tracked on
the board through either an “in progress” or “ready” state. This could also help us improve our time
estimation for future tasks.
4.2 Main division of the project
The project will begin with us getting familiar with the deep-doLCE code. We will need to get an idea
of how the program works and which parts of the code we will need to run/interact with.

Our project will begin with developing a use case diagram, wireframes, and a high-fidelity
prototype for the front end of our application. We will have to develop a database, but at this time
we are unsure of how much this will end up being since we are working with a previously developed
project. Lastly, we shall write the report, which will be based on everything we have worked on for
the project itself and will contain our documentation of everything we did and learned during the
project.
4.3 Plan for status meetings and decisions in the period
We will have a weekly meeting with our supervisors to discuss our progress, our problems, feedback,
and to help us in case we need it and if possible. We always plan to finish each weeklong sprint
before the meeting, even though each sprint should be finished the day after. The two weeklong
sprints will have the option of getting feedback while the sprint is ongoing. We will also have a bi-
weekly meeting with our client to discuss our progress.

 6

5 Quality assurance
5.1 Standard tools
For the project, we have a large toolbox that we will be used to keep us as efficient and organized as
much as possible. Some of the tools that we will be using are:

 Overleaf: is used for drafting the report and project plan with precise structure and
layout.
 Teams: is used for meetings and a place for sharing documents.
 Mira: is used for designing wireframes.
 GitHub: is used to share the code between group members.
 Trello: is used to have an oversight over what tasks need to be done and their
deadlines.
 Toggl: is used to selectively log time spent working on a single task.

5.2 Risk analysis
Below is a table showing the project risks and their likelihood and the possible consequences they
have. The probability is divided into 4 cases: low, moderate, high, and very high. Consequences and
risks are divided into insignificant, tolerable, serious, and catastrophic.
Number Risk Probability Consequence
1 Project is not completed before

deadline
Moderate Catastrophic

2 One team member gets sick and is
absent an extended amount of time.

Low Tolerable

3 Loss of data, code, or report. Low Catastrophic
4 Supervisor is not available as needed. Moderate Serious
5 Client is not available as needed. Moderate Tolerable
6 Lack of documentation High Serious

5.3 Contingency measures
These are the contingency measures that are planned to decrease the probability of the risk
happening, as well as lowering the aftermath of risks after they happen.
Number contingency measures
1 Have a realistic project plan that is possible to follow and use tools like Trello and Toggl

to follow up on time used on every task. Inform the product owner If a delay should
happen and discuss if removing some planned functionality is an option.

2 Being careful as much as possible and avoid unnecessary physical interaction due to the
covid-19 pandemic, reviewing each other's work to keep up to date and be able to take
another member's tasks in case of illness.

3 The code will be in a Git repository and downloaded to keep backups. The report will be
written on overleaf and saved online on teams, the project leader is responsible to
download copies of the report for back up.

4 Weekly meetings with the university supervisors are planned. If the supervisors were
unable to attend these meetings, contact them and ask for new meetings or have a
meeting with the one available supervisor. If both supervisors do not attend any
meetings, NTNU would be contacted.

5 A meeting with the client should be arranged once every two weeks, but if meetings
cannot be scheduled with the client, then contact can be made temporarily by e-mail. If
the client does not attend these meetings and are not able to reschedule nor able to
answer our e-mails, the project members will make assumptions about the product and
the client's preferences.

 7

6 A reminder of documentation tasks will be created, as it is important to get proper
documentation on the project.

6 Plan for execution
6.1 Activities
The Gantt schema is divided in to three main parts: Planning, Project Development and Thesis
writing.

The first part, Planning, is dedicated to writing and signing the appropriate contracts, and
creating the project plan.

The second part is divided into eight sprints of variable lengths estimated by the group,
based on what Dr. Giorgio Trumpy had requested, and with a test phase of the application at the
end. The list will be found at the bottom of this page.

The final part revolves around the actual Thesis and is split into 2 due dates. The thesis will
be written slowly along with the project itself and we have been recommended to have the first
draft ready a month before the due date i.e., 20. April, and be finished by 20. May. The second part
of the thesis writing is preparation and performance of the presentation.

Essential tasks:

1. Identify the most suitable tool and start designing the interface
1. Include the buttons that let navigate the file system and select input files and destination
folder
1. Improve compatibility of deep-doLCE with the most common file formats used by film
scanners
1. Offer to the user the possibility to select a Regio-Of-Interest (ROI)
1. Let the user choose the file format for the output, including a down sample option.
1. Run a test reconstruction on a single frame (a pre-flip left-right could be necessary)
1. Create the RUN button that start the reconstruction of the whole movie
1. Give the user feedback on the status of the process (i.e., output image, ETC, etc.)

Additional tasks:
 Expand the data augmentation with more transformations (e.g., blur, barrel/pincushion
distortions)
 Allow for small curvature in the vectorization of the network’s output
 Create a user guide to the application
 Add an option to review the software and give feedback.

 8

6.2 Gantt schema

 9

References
[1] Dr. Giorgio Trumpy, and Dr. David Pfluger. “deep-doLCE: A New Machine Learning Approach for
the Color Reconstruction of Digitized Lenticular Film” University of Zurich, 27 May 2021,
https://www.film.uzh.ch/en/research/projects/verbund/deep-doLCE.html
[2] D’Aronco, Stefano, Giorgio Trumpy, David Pfluger, and Jan D. Wegner. “A Deep Learning
Approach for Digital Color Reconstruction of Lenticular Films.” Transactions on Image Processing, no.
under revision (n.d.).

 1

Appendix B. Project Agreement

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 1

Appendix C. Client and supervisor meetings

Participants Date Start
Tim

End
time

Hours Minutes Notes

Giorgio 02.12.2022 11:00 11:20 0 20
Introductions and getting an idea of what the
project/thesis is about

Supervisors 10.01.2022 10:00 10:15 0 15 Introductions
Giorgio 10.01.2022 11:00 11:10 0 10 Update on what we've done so far etc

Giorgio 11.01.2022 13:30 14:20 0 50

Detailed information about what Giorgio and
his team's code does. Getting an idea of the
tasks we need to do for out part.

Supervisors 17.01.2022 09:30 09:45 0 15

Update on what we've done so far and
getting ideas about what we're supposed to
do regarding the contract and plan.

Group 23.01.2022 12:55 14:15 1 20
Finished the first draft of both the contracts
and plan.

Supervisors 24.01.2022 10:00 10:15 0 15 Got Sony's input on our contract and plan

Group 25.01.2022 12:00 13:10 1 10
Worked on the plan and found the right
contract to sign together with the company

Supervisors 27.01.2022 14:15 14:45 0 30
Got Sony's feedback on the plan so far and
where to go from there

Giorgio 28.01.2022 12:00 12:50 0 50
Questions and feedback regarding the
planning. Went over contracts as well.

Supervisors 31.01.2022 10:00 10:15 0 15

Steven checked out the finished draft of the
plan contracts and we got the go-ahead to
deliver.

Group 02.02.2022 11:00 11:20 0 20

Sprint1 meeting, got every program we'd
need for this sprint up and running and
officially started the project

Supervisors 07.02.2022 10:00 10:05 0 5

Discussed what we did the previous week,
which was to create a wireframe, make
accounts on the different tools we're
planning on using, and read up & chose the
python GUI tool kivy

Supervisors 14.02.2022 10:00 10:10 0 10 Weekly status update

Supervisors 21.02.2022 10:00 10:15 0 15
Showed discussed the GUI we've made so far
and got some feedback from that.

Giorgio 21.02.2022 11:00 11:35 0 35

Discussed input and output format of
deepdoLCE. Talked a bit about the displayed
preview images of a movie, image flipping
and a popup window to flip those preview
images before continuing with the render.

 2

supervisors 28.02.2022 10:00 10:25 0 25

Feedback on buttons and implimentation of
buttons that run the deep-doLCE code. We
need to optimize the code on our end to
make the program run faster since currently
it takes roughly 10 seconds to colorize a
30MB image file.

Supervisors 07.03.2022 13:00 13:15

0 15

Weekly status update. Discussed issues with
last weeks implimentation ideas, more
specifically about using a python plugin to
process images faster and the need to
properly understand that plugin.

Supervisors 14.03.2022 10:00 10:05

0 5

Weekly status meeting. ROI button
implementation, and other button
functionality.

Supervisors 21.03.2022 10:00 10:05

0 5

Weekly status meeting. Help button, flip
button and running the software on the GPU
rather than CPU amongst other things.

Giorgio 25.03.2022 15:00 15:30

0 30

Got information about where we can find
the specific functions in their code and also
talked and confirmed the buttons he
wanted.

Supervisors 28.03.2022 10:00 10:10

0 10

Weekly status meeting. Talked about being
finished with the project relatively early and
concerns the supervisors had with that.

Giorgio 01.04.2022 09:15 10:20

1 5
Clarification on deep-doLCE code and got
some help with optimizing code.

Supervisors 04.04.2022 10:00 10:20

0 20

Discussed our individual contributions to the
project so far and started laying out our plan
for the next couple of weeks. Discussed how
we're going to achieve our desired grade as
well.

Giorgio 07.04.2022 11:30 12:10

0 40

Showed Giorgio the current progress.
Worked with him to optimize the way
films/images are temporarily stored while
they're being processed (ram vs disk
storage).

Supervisors 11.04.2022 10:00 10:05

0 5
Short meeting regarding last week and our
plans for continued work this week.

Giorgio 19.04.2022 10:00 10:30

0 30
Met with Giorgio for feedback and help with
the backend coding

Giorgio 22.04.2022 14:30 15:30

1 0
Met with Giorgio for feedback and help with
the backend coding

Supervisors 25.04.2022 10:00 10:20

0 20
Showed the supervisors our running GUI and
briefly our thesis so far.

 3

Supervisors+Giorgio 03.05.2022 13:00 14:15

1 15

Went through the whole app in detail in a
physical meeting with the supervisors and
Giorgio. Got feedback from them as well.

Supervisors 09.05.2022 10:00 10:30

0 30

Went through the app again with the
supervisors and showed them our final
results.

Usability tests 10.05.2022 10:30 12:15 1 45 Got user feedback from two film archivists.

Usability tests 10.05.2022 17:30 18:30 1 0 Got user feedback from film archivist.

Supervisors 16.05.2022 10:00 10:15

0 15
Discussed the next couple of days and got a
few tips regarding the thesis

Total: /////////////// ////////// ///////// / 14 50 14:50 total

