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Abstract

In this thesis, multiple approaches for electroencephalographic (EEG) source

reconstruction using low-density electrode counts are introduced. Source

reconstruction provides valuable information about the location and time-courses

of the source activity in the brain cortical areas. For such estimation, the use

of a high number of electrodes has been proven to provide the most accurate

estimation of the underlying brain activity. However, high-density EEG (hdEEG)

is not generalized for most EEG applications, thus neither is the use of the

source estimated activity. Although source reconstruction can provide spatially

segregated time courses and relevant information about the dynamical interaction

of brain regions, most EEG applications still rely on analysis and feature extraction

from the electrode space.

This thesis provides a link between source reconstruction and low-density

EEG (ldEEG) systems. It presents a set of rigorous methodologies designed to

identify EEG electrodes according to their contribution to localization accuracy

and minimizes their numbers through optimization routines. hdEEG is taken

as the reference for source imaging when mapping a particular brain activity

or the activity of a region of interest (ROI). Previous works have studied the

influence of the spatial sampling (number of electrodes) in brain generalized

source reconstruction, where the positions of the electrodes were selected to

attempt covering the entire head/scalp. In contrast, this work presents approaches

to identify and select electrode locations based on their relevance to capture the

underlying activity or their contribution to obtain accurate reconstructions of the

activity of interest, while using the lowest number of electrodes possible.

Simplifying the number of electrodes while obtaining detailed information of

the source activity can be beneficial for multiple EEG applications. It can serve to

i
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improve portability, enabling recordings to be taken in more natural environments

outside the lab; to design easy-to-use devices that can monitor the source activity

for different neuroparadigms/applications; to reduce the accessibility boundaries to

non-traditional EEG users; and to expand the research scope of EEG based source

activity reconstruction. For these purposes, three methodologies are introduced

in this work. The first study consists of constraining the estimation to a set

of frequency modes extracted in the electrode space prior to source activity

reconstruction. The method of Multivariate Empirical Mode Decomposition

(MEMD) was applied to extract the frequency modes of the underlying source

activity in ldEEG electrode configuration.

A second study consists of the use of spatial constraints, in which the

estimation is conferred to a section of the brain, using a priori knowledge of

the general location of the source activity. For this, a technique based on partial

models of the brain is combined with relevance-based electrode selection using a

Q-alpha (𝑄 − 𝛼) method for relevance feature selection, in order to determine the

most relevant electrode positions that can be used to map a region of interest. In

addition, when considering the full brain model, relevance selection is compared

in multiple electrode scenarios to compare the accuracy of the reduced number

of electrodes with denser systems. A third study consists of electrode selection

based on its contribution to localization accuracy, and a methodology combining

evolutionary optimization and source reconstruction is introduced. The non-

dominated sorting genetic algorithm II (NSGA-II) is applied to identify optimal

combinations of electrodes that offer the best source reconstruction accuracy.

The results show the feasibility of identifying reduced electrode counts that

offer an equal or better reconstruction quality. In most cases, electrode counts

between 6 and 12 electrodes are found to maintain the hdEEG accuracy of electrode

counts with 128 electrodes. This represents an important reduction in the number

of electrodes while maintaining high accuracy; demonstrating that a set of a few

electrodes can be used to estimate the source activity in a particular scenario.

The frameworks established here can serve to evaluate to what extent current

systems with reduced electrode counts can be used for source reconstruction,

and to identify the optimal electrode positions for different neuro-paradigms and

applications.
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Chapter 1

Introduction

This thesis presents multiple approaches for electroencephalographic (EEG) source

reconstruction using low-density electrode counts. The objectives are to identify

low-density EEG (ldEEG) subsets that can retain the reconstruction accuracy of high-

density EEG (hdEEG) systems and validate the feasibility of using ldEEG source

reconstruction to retrieve the source activity information in particular brain activities.

Achieving these objectives paves the way for EEG systems based on a minimum

number of electrodes with source reconstruction capabilities. This can contribute to

the development of low-cost and portable systems that can extract and monitor the

underlying activity for current applications, and to expand the research use of EEG

source reconstruction in new applications.

This research work is part of the project David and Goliath: single-channel
EEG unravels its power through adaptive signal analysis-FlexEEG, which
aims to identify an optimal minimum EEG electrode count for wearable EEG

solutions for universal applications. This thesis contributes to this goal by achieving

optimization-based electrode reduction for EEG source reconstruction.

This chapter presents a brief background to put into context the motivations and

knowledge gaps this work aims to address. The scope and research questions present

the fundamental hypotheses that are the basis and set the direction for the research.

This chapter continues by presenting the list of publications directly related to the

thesis contributions based on their category: journal articles, conference papers, and

conference abstracts. The publications non-directly related to the thesis but which

1
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were written during the Ph.D are also presented according to their category. Finally,

the outline of the rest of the thesis is presented.

1.1 Background and Motivations

Electroencephalography (EEG) is a non-invasive technique that allows for

measurements of electrical brain activity. It is characterized by its high temporal

resolution (milliseconds) compared with other techniques, like functional magnetic

resonance imaging (fMRI), computed tomography scan (CT), and positron emission

tomography (PET), which offer a lower temporal resolution (seconds). In

contrast, EEG is characterized by its lower spatial resolution (centimeters) in

comparison with the aforementioned techniques (millimeters). Similar to EEG,

magnetoencephalography (MEG) is a non-invasive technique that measures the

electrical brain activity from sensors close to scalp. Both EEG andMEG are indirect

measurements of the current sources in cortical areas produced by postsynaptic

activity. Particularly, EEG registers the voltage difference between electrodes at

the scalp that result from the electrical field propagated from the cortical sources

to the scalp, while MEG measures the magnetic field produced by such current

sources. Although both have a millisecond temporal resolution, EEG has been

more broadly adopted than MEG, due to its lower cost of equipment and setup.

Since the first report of measurements of human brain electrical activity was

presented by Hans Berger in 1929 [1], the EEG technique has become an important

tool to study the different dynamics of brain activity and the multiple processes

that take place in this astonishing and complex organ. Among them, cognitive

processes like memory, perception, attention [2–5]; brain diseases like epilepsy,

Alzheimer’s, and other neuro-degenerative diseases [6–8]; and the development

of brain-computer-interfaces [9, 10].

As EEG provides important information about the neural activity, it can be used

as a neuroimaging tool to estimate the properties of the underlying activity inside

the brain. This process is often referred to as EEG source reconstruction, as well as

EEG brain imaging or EEG source imaging [11]. EEG source reconstruction is the

estimation of the properties of the current sources that originated the potentials

recorded at the scalp. Generally, the properties to estimate are localization and

time courses [12, 13]. However, the estimation is not a straightforward process.
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The source activity is mixed in the brain before reaching the scalp. This is known

as the volume conductor effect [14, 15]. The electrical field can be propagated from

the current sources to the whole brain in a highly conductive medium (brain soft

tissues), and must pass through a highly resistive medium (skull), before reaching

the scalp to be measured by the electrodes [16, 17]. This results in non-linear,

not-stationary, and debilitated brain signals that are hidden in surrounding noise,

where pre-processing techniques are often required to attenuate the noise and

enhance the underlying signals [18].

To provide an accurate estimation, it is required to solve the so-called forward

and inverse problems. Briefly, the forward problem solution consists of modeling

the interaction between a large population of neurons at the brain cortex and

the electrical potential at scalp. Multiple methods, like Finite Element Modeling

(FEM) and Boundary Element Modeling (BEM) based on Magnetic resonance

imaging (MRI) head images, allow to obtain realistic representations of the brain

and provide an accurate modeling of the source-electrode relationship [19]. This

allows to alleviate the influence of the volume conduction problem. In contrast, the

inverse problem solution makes use of the forward modeling and the registered

EEG activity to estimate the properties of the current sources [13].

The inverse problem is characterized to be mathematically ill-posed and ill-

conditioned [12, 20], which in practical terms means that infinite configurations

of the source activity can lead to the same scalp recordings, and that the solution

is highly sensitive to noise in the recordings. This is due to the number of sources,

which are unknowns to estimate, being much higher than the number of electrodes

or knowns of the problem. Generally, the sources are in the order of thousands,

while the number of electrodes is in the order of a few hundreds [21]. To attenuate

the effect of this characteristic and to mitigate against the lack of spatial resolution

of the EEG, source reconstruction is typically done by using a high number of

electrodes.

It is widely known that hdEEG offers the best accurate reconstruction and

it is the standard for estimating the source activity [22–26]. EEG is considered

hdEEG when the number of electrodes is around 60 or more, with common choice

configurations being 64, 128 and 256 electrodes. However, hdEEG is not the

standard nor required in all EEG applications. Clinically EEG is traditionally done
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with 21 electrodes and majority of BCI systems and leisure applications are based

on ldEEG systems, in which the the number of electrodes can be much lower.

Unfortunately, hdEEG systems are still costly, and have reduced portability, and

those disadvantages have made difficult for the hdEEG technique to be broadly

adopted. In addition, inherent to an increase in the number of electrodes, the

volume of information to store, process and analyze from the data also increases,

posing challenges for online applications, while demandingmore computing power.

Moreover, the preparation time for recording increases, and in particular this time

can be much higher compared to wearable EEG devices that have proliferated

over the last few decades.

Currently, as hdEEG systems are typically found in research with few clinical

applications, source reconstruction has been mostly applied in these environments.

The source space resulting from source reconstruction analysis can offer useful

information of the activation and interaction between regions, with a better

region discrimination resolution than electrode space analysis [27], particularly

for determining functional connectivity, identification of neural biomarkers, and

determining the active brain regions [11, 27–30]. However, it is still unclear

to what degree source reconstruction can be applied in low-density settings,

and alternatives to alleviate the ill-posed and ill-conditioned characteristics of

the inverse problem have been poorly explored. In that direction, the following

knowledge gaps have been identified and serve as the principal motivations behind

the research work of this thesis:

• Knowledge gap 1: Due to the non-linearity and non-stationary properties

of the EEG signals, pre-processing is often required to extract the underlying

brain activity and separate it from the noise. Frequency decomposition-

based methods have been evaluated in the context of feature extraction in

order to identify biomarkers that can represent a particular activity/disease

of interest. However, very few studies have reported the application of

such methods in the context of source reconstruction. Particularly, the use

of frequency decomposition-based methods for source reconstruction in

low-density settings is not currently available.

• Knowledge gap 2: A high number of electrodes are required in order
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to improve the spatial resolution of EEG and alleviate the ill-posedness

of the inverse problem. Often the electrodes are positioned to be equally

distributed over the scalp to cover the whole brain. This has been proven

effective to reconstruct the source activity of the entire brain, however, in

some cases, it is required to identify the activation of a particular region

rather than the whole brain. In that direction, solutions based on limiting

the region to reconstruct and reduce the number of unknowns in the inverse

problem have been scarcely reported.

• Knowledge gap 3: Multiple studies have compared hdEEG and ldEEG

for source reconstruction, demonstrating how the number of electrodes

influences the quality of the reconstruction. In those studies, the denser

count of electrodes has been obtained by over-sampling standard electrode

positioning systems by placing electrodes in intermediate positions; and

the sparser electrode count by down-sampling the number of electrodes,

omitting electrodes symmetrically from standard electrode positioning

systems. Therefore, those combinations of electrodes were selected

considering a coverage basis, thus, an approach to select subsets of electrodes

according to their contribution to source reconstruction accuracy has not

been analyzed.

These knowledge gaps are explained in more detail in the literature review

and the state-of-the-art presented in the introductions of chapters 4, 5, and 6.

1.2 Scope and Research Questions
This thesis explores and presents alternatives to perform source reconstruction

in ldEEG settings with the objective to identify and develop methodologies

(algorithms and tools) to allow ldEEG electrode counts to maintain hdEEG source

reconstruction accuracy, and to validate those tools, in particular source activity

reconstruction tasks. Considering the knowledge gaps presented, the scope of this

thesis is based on answering the following research questions:

• Research Question 1: Frequency decomposition for extracting
underlying source activity. Can the extraction of the underlying source

activity captured using ldEEG based on frequency decomposition improve
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the accuracy of the inverse solution by attenuating the ill-condition of the

source reconstruction?

• Research Question 2: Include a priori information to reduce the
number of unknowns in source reconstruction. Can the number of

unknowns be reduced by involving a priori information of the active brain

regions of a particular task and constraining the source reconstruction to

a brain region of interest (ROI)? Can the source activity of a Brain-ROI be

accurately reconstructed using ldEEG electrode counts?

• Research Question 3: Selection of EEG electrodes based on
reconstruction accuracy. Is it possible to identify a subset of ldEEG

electrodes that canmaintain the hdEEG reconstruction accuracy by selecting

the electrodes by their contribution for reconstructing the source activity

during a particular brain activity or task?

1.3 Thesis Contributions
This thesis investigates multiple approaches to perform source reconstruction

using ldEEG electrode counts and provides understandable frameworks and

methodologies to approach brain imaging under low-density electrode settings. A

diagram summarizing the contributions of the thesis is presented in figure 1.1.

A first contribution is the inclusion of frequency decomposition using

Multivariate Empirical Mode Decomposition (MEMD) to constrain the estimation

to a set of frequency modes. The proposed methodology establishes a pipeline

to extract the underlying frequency activity and the selection of the frequency

modes in the electrode space prior to source activity reconstruction. This was

validated using the ground-truth activity from synthetic EEG signals and EEG

recordings from visual stimulation.

Another contribution of this thesis is the use of partial brain models (PBM)

to constrain the inverse solution to a prior region of interest and alleviate the ill-

posedness of the inverse problems. The theoretical formulation for this approach

is presented and the methodology to involve a priori knowledge of the general

location of the source activity is described. The selection of electrodes based on

relevance was applied to identify subsets of electrodes based on their relevance
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Figure 1.1: Summary of the thesis contributions
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for capturing a particular brain activity. The methodology to include PBM and

relevance-based electrode selection is described and evaluated under different

electrode counts, and different electrode selection criteria.

Another important contributions of this thesis is to establish a methodology

to identify reduced electrode counts that can offer an equal or better

reconstruction accuracy than hdEEG while reconstructing a particular brain

activity. Multiple source reconstruction algorithms were combined with a multi-

objective optimization algorithm and, independently of the inverse estimation

algorithm, it was possible to identify low-density subsets that retain the accuracy

of high-density systems. To the best of the author’s knowledge, this is the first

work that investigates the electrode selection according to their contribution

to reconstruction accuracy and minimizes their numbers through optimization

routines. The non-dominated sorting genetic algorithm II (NSGA-II) was

applied to identify optimal combinations of electrodes that offer the best source

reconstruction accuracy.

Figure 1.2: Contribution of publications to each research question.

Finally, this thesis offers multiple comparisons between high-density and low-

density electrode counts, where the ldEEG electrodes were selected in a different

manner to the traditional coverage criteria. When the electrodes are selected
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based on their relevance to capture the underlying activity and their contribution

accuracy, low-density subsets can be identified and are able to retain high accuracy.

Figure 1.2 presents a flowchart of the relationship between the research questions

and the contribution from the publications.

The following journal articles, conference papers and abstracts were published

during the Ph.D. and are directly related to the thesis’ contribution:

Journal Articles

1. Andres Soler, Luis Alfredo Moctezuma, Eduardo Giraldo, and Marta

Molinas. "Automated methodology for optimal selection of the minimum

electrode subset for accurate EEG source estimation based on Genetic

Algorithm optimization". Scientific Reports [Under Review], 2022. DOI:

10.1101/2021.11.24.469917

2. Andres Soler, Pablo A. Muñoz-Gutiérrez, Maximiliano Bueno-López,

Eduardo Giraldo, and Marta Molinas. “Low-Density EEG for Neural

Activity Reconstruction Using Multivariate Empirical Mode Decomposition”.

Frontiers in Neuroscience, 2020. DOI:10.3389/fnins.2020.00175/full

Peer-reviewed Conferences

3. Andres Soler, Eduardo Giraldo, Lars Lundheim, and Marta Molinas.

"Relevance-based Channel Selection for EEG Source Reconstruction: An

Approach to Identify Low-density Channel Subsets”. The 15
th
International

Joint Conference on Biomedical Engineering Systems and Technologies,

2022.

4. Andres Soler, Eduardo Giraldo, and Marta Molinas. "Low-Density EEG

for Source Activity Reconstruction using Partial Brain Models”. The 13
th

International Joint Conference on Biomedical Engineering Systems and

Technologies, 2020. DOI:10.5220/0008972500540063

5. Andres Soler, Eduardo Giraldo, and Marta Molinas. "Partial brain

model for real-time classification of RGB visual stimuli: A brain mapping

approach to BCI”. The 8
th
Graz Brain Computer Interface Conference, 2019.

DOI:10.3217/978-3-85125-682-6-54

http://dx.doi.org/10.1101/2021.11.24.469917
https://doi.org/10.3389/fnins.2020.00175
https://doi.org/10.5220/0008972500540063
https://doi.org/10.3217/978-3-85125-682-6-54


10 10

Peer-reviewed Abstracts

6. Andres Soler, Luis Alfredo Moctezuma, Eduardo Giraldo, and Marta

Molinas. “EEG channel-selection method based on NSGA-II for source

localization”. The 4
th
HBP Student Conference on Interdisciplinary Brain

Research, 2020.

7. Luis Alfredo Moctezuma, Andres Soler, Erwin H. T.Shad, Marta Molinas,

and Alejandro A. Torres-Garcia. “David versus Goliath: Low-density EEG

unravels its power through adaptive signal analysis - FlexEEG”. The 4
th
HBP

Student Conference on Interdisciplinary Brain Research, 2020.

Other Contributions

The following conference papers and abstracts were published during the Ph.D.

but are not directly related to the thesis’ contribution.

Peer-reviewed Conferences

8. Sara L. Ludvigsen, Emma H. Buoen, Andres Soler, and Marta Molinas.

"Searching for Unique Neural Descriptors of Primary Colours in EEG

Signals: A Classification Study”. The 14
th

International Conference on

Brain Informatics, 2021. DOI:10.1007/978-3-030-86993-9_26

9. Andres Soler, Ole Drange, Junya Furuki, Takashi Abe and Marta

Molinas."Automatic Onset Detection of Rapid Eye Movements in REM Sleep

EEG Data”. The 11
th
IFAC Symposium on Biological and Medical Systems

BMS, 2021. DOI:10.1016/j.ifacol.2021.10.265

10. Andres Soler, Eduardo Giraldo, and Marta Molinas. "DYNLO: Enhancing

non-linear regularized state observer brain mapping technique by

parameter estimation with extended kalman filter”. The 7
th
International

Work-Conference on Bioinformatics and Biomedical Engineering, 2019.

DOI:10.1007/978-3-030-17935-9_36

Peer-reviewed Abstracts

11. Junya Furuki, Ole Drange, Andres Soler, Marta Molinas, and Takashi

Abe."Estimating the source of the negative potential that occurs before

rapid eye movement during REM sleep: Analysis of recordings using a

https://doi.org/10.1007/978-3-030-86993-9_26
https://doi.org/10.1016/j.ifacol.2021.10.265
https://doi.org/10.1007/978-3-030-17935-9_36
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high-density electroencephalography (EEG)”. The 39
th
Annual Meeting of

the Japanese Society for Physiological Psychology and Psychophysiology

(JSPP), 2021. DOI:10.13140/RG.2.2.28938.80323

12. Junya Furuki, Ole Drange, Andres Soler, Yoko Suzuki, Marta Molinas,

and Takashi Abe. "Current sources of brain potentials before

rapid eye movements during human REM sleep: A high-density

electroencephalography study”. Tsukuba Conference, 2021.

13. Junya Furuki, Ole Drange, Andres Soler, Yoko Suzuki, Marta Molinas, and

Takashi Abe. "Decision making in uncertain situations: Effects on brain

activity during REM sleep”. The 82
nd

Annual Meeting of the Japan Society

of Physiological Anthropology, 2021.

1.4 Thesis Outline
The rest of this thesis is organized in the following order:

Chapter 2 introduces the theoretical and fundamental knowledge of EEG brain

imaging that serves as the basis for this thesis. The chapter starts by presenting

the basics of brain anatomy and brain physiology, and includes an explanation

of the generation of EEG potentials and where they come from. This is followed

by a description of the generalities of EEG signals and its recording process. The

chapter continues by presenting the electrode placement system, and offers a

brief history of standard montage systems and other derivations. Finally, source

reconstruction is introduced. This includes an explanation of the forwardmodeling

and inverse problem, the general pipeline for brain imaging, and a review of how

the spatial sampling is influential for this task. The chapter concludes with a

comparison between EEG and other brain imaging techniques.

Chapter 3 focuses on the key material and methods to perform source

reconstruction, and the methods to analyze and extract underlying activity from

EEG signals. It starts by presenting the algorithms for solving the inverse problem

that are used in the thesis, as well as the measurements of performance. The

chapter continues by introducing a simulation framework for source activity and

EEG signals, and presents the typical pipeline from raw EEG signals to event-

related potentials. Then, a description of relevant frequency decomposition

methods based on the Hilbert-Huang Transform (HHT) is presented, which

https://doi.org/10.13140/RG.2.2.28938.80323
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includes the empirical mode decomposition (EMD) method and its multivariate

version MEMD, which are the basis for chapter 4. It continues with a description

of relevance analysis and its computation algorithm that is used for the analysis

in chapter 5. Then, the concept of multi-objective optimization is presented

and the description of the algorithm to perform it is described. This is the

basis for the contribution in chapter 6. Subsequently, the EEG datasets used for

source reconstruction evaluations and the description of the ground-truth activity

for further comparisons are provided. The chapter concludes by mentioning

the software and hardware used for signal analysis, processing and source

reconstruction.

Chapter 4 presents a proposed methodology for applying frequency

decomposition and constraint the source reconstruction to a set of frequency

modes. In particular, the implementation of MEMD to extract the underlying brain

activity, and the influence on the source reconstruction accuracy in the context of

low-density electrode counts, are detailed.

Chapter 5 introduces the concept of PBM as a method to constrain the spatial

solution involving a priori knowledge of the regions activated during a particular

brain activity. Subsequently, it presents the first approach for electrode selection

based on their relevance, and proposes methodologies to use relevance analysis

for selection and the pipeline to combine PBM and relevance-based electrode

selection. The chapter concludes by presenting multiple comparisons of hdEEG

coverage-based electrode counts and ldEEG relevance-based selected electrode

counts.

Chapter 6 introduces and describes the process to identify the minimum

number of electrode counts while maintaining hdEEG accuracy. A methodology

for electrode selection based on their contribution to accurate source localization

is introduced, where multiple source reconstruction algorithms are combined with

a multi-objective optimization process based on the NSGA-II algorithm.

In Chapter 7 the findings and contributions of the thesis are summarized.

Finally, the conclusions of the investigation and the opportunities for future work

are presented.



Chapter 2

Fundamentals of EEG Brain
Imaging

This chapter reviews the fundamental aspects of EEG as a technique for neuroimaging,

starting from the brain structure and generation of EEG signals, and finishing with

the typical steps taken to perform source reconstruction and generate brain activation

images or maps. Important principles and elements of the EEG signals and source

reconstruction are presented in this chapter: how the EEG signals are recorded and

what the different noise artifacts are; the effect of the volume conduction from the EEG

generators to the electrodes in the scalp; the brain rhythms and their frequencies; the

electrode placement and the evolution of the number of electrodes; realistic modeling of

brain structures; the mathematical framework of source reconstruction; the influence

of the electrode number or spatial sampling in source reconstruction accuracy; and a

comparison with other brain imaging methods.

2.1 Brain Anatomy and Physiology

2.1.1 Brain Anatomy

The brain is considered to be the most complex organ of the human body. It is the

largest part of the central nervous systems (CNS), and it is in charge of multiple

functionalities of the human being. The major parts of the brain are the brain stem,

the cerebellum and the cerebrum. The brain stem is the structure that connects

the two hemispheres of the cerebrum and the cerebellum. It has fibers and cells

13
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and serves as an information bridge from the cerebrum to the spinal cord and

cerebellum, and vice versa. The brain stem is vital for human beings: it regulates

breathing, heart rate, consciousness, the control of body temperature and other

autonomic processes that are independent of conscious brain functions [31]. The

cerebellum is located behind the cerebrum and even though it is small compared to

the cerebrum, it contains just as many neurons. The cerebellum is the movement

control center and is responsible for the coordination of movement, balance and

posture of the body. Figure 2.1 shows the three main structures of the human

brain.

Figure 2.1: CNS structure: cerebellum, cerebrum and brain stem. (Based on the

content of [31]).

The cerebrum is made of soft tissue, gray and white matter; those tissues

contain the nerve cells and non-neuronal cells. The gray matter is the outer most

layer of the brain and contains a large number of neuronal cell bodies. It is the

reason behind its gray tone. The gray matter that surrounds the cerebrum is know

as the brain cortex. Due to the high concentration of neurons bodies, most of

the brain information processing takes place in this layer, and it is transmitted

through the neuron axons that form the white matter [32]. The cerebral cortex is

heavily folded, which increases the surface area. The complex patters of ridges,

convolutions or gyri and grooves or sulci can vary between individuals, however
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all brains have basic similarities [33].

Figure 2.2: Hemisphere distribution. (Based on the content of [31, 33]).

The cerebrum is split into two hemispheres by the sagittal fissure, the right

and left hemispheres. In general, the somatosensory and motor control functions

are coordinated by the contralateral hemisphere of the brain. The functions of

the left side of the body are coordinated by the right hemisphere and the right

functions of the body by the left hemisphere [31]. Each hemisphere consist of four

lobes: frontal lobe, parietal lobe, temporal lobe, and occipital lobe. Their location

(depicted in figure 2.2) and general functions are described as follows:

• Frontal lobe: It is located in front of the central sulcus and above the lateral

fissure (also called Sylvian fissure) and represents about a quarter of the

entire cerebral cortex in the human brain. The frontal lobe is considered

responsible for motor planning and execution. It controls many aspects of

the personality and mental faculties.
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• Temporal lobe: The temporal lobe is located below the Silvian fissure. It

houses receiving ares for the auditory and olfactory systems. It is responsible

for processing auditory information and is essential for the comprehension

of spoken language. It serves as gateways for information from the neocortex

areas. e.g., the amygdala and hippocampus. Therefore, it plays an important

role in memory and learning.

• Parietal lobe: It is located between the central sulcus and the parieto-

occipital sulcus, and over the temporal lobe. It integrates multiple sensory

information and contains the largest regions of reception and processing of

somatosensory impulses. It also houses important pathways of the visual

system.

• Occipital lobe: The occipital lobe is the smallest lobe of the cerebral cortex

and is located in the posterior part of the brain, below the parieto-occipital

sulcus and next to the temporal lobe. It is primarily related to visual function

and the processing of visual information.

2.1.2 Generation of Electroencephalographic signals

The cerebral cortex is the most relevant tissue for EEG and MEG recordings. The

interactions (synapses) between pyramidal neurons in the cerebral cortex are

responsible for producing the currents that generate a magnetic field measurable

by MEG systems and a secondary electrical field that propagates until the scalp

where it can be measured by EEG electrodes [18]

The cerebral cortex contains between 21-26 billion neurons [34, 35]. The

neurons are the basic units of the CNS. Each nerve cell is formed by cell bodies,

dendrites and axons, and its structure is presented in figure 2.3. The axons are long

cylinders and transmit the electrical impulses from the cell body. Dendrites are

connected to axons and dendrites of other neurons and receive the impulses from

them. The junctions between dendrites or dendrites-axons are called synapses.

In a rest state, the neuron membrane has a negative potential of 60-70 mV,

however it changes due to the impulses that the neuron receive. The synapses can

increase (polarize) or decrease (depolarize) the membrane potential. If the neuron

receives an impulse through an excitatory synapse, a depolarization process of
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Figure 2.3: Structure of a neuron. (Adapted from [18]).

the membrane will take place, this is known as excitatory postsynaptic potential

(EPSP). In contrast, if the impulse is received through an inhibitory synapse,

hyperpolarization will occur, this is known as inhibitory postsynaptic potential

(IPSP). These changes in the potential of the membrane produce a primary current

that flows along the intra-cellular space. However, part of the intra-cellular

primary current leaks continuously out of the cell to the extracellular space, and

as consequence of this current, the field potentials are generated. The extracellular

field potentials are called EEGs and usually have less than 100 Hz frequency

[16, 18].

In the brain, all neurons can contribute to the local field potential (LFP), but

their contribution can depend on the cell shape and organization. In the cerebral

cortex the most populous neurons are the pyramidal cells. The dendrites of this

cells lie parallel to each other and perpendicular to the cortex surface (see figure

2.4). This organization plays a key role in generating a strong extracellular field.

This geometry allows for the superposition of synchronously active dipoles, which

potential can be registered by electrodes at scalp. Pyramidal cells have long and

thicker dendrites and they can generate strong currents. Such dipoles generate

an open field, as there is considerable spatial separation of the active sink from

the return currents. Thus, as the pyramidal cells generate open fields they can
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Figure 2.4: (A) Pyramidal neuron, (B) Parallel organization of the pyramidal

neurons in the cerebral cortex, (C) Closed field due to spherical organization, (D)
Open field due to parallel organization. ((A) and (B) are based on the content of

[36], (C) and (D) were adapted from [16]).

contribute to the extracellular field [16, 36]. In contrast, spherically symmetric

neurons, e.g. thalamocortical cells, emanate dendrites in multiple directions. This

can lead to a closed field. Only if all dendrites receive impulses at the same timewill

a strictly closed field be generated, but when a single or few number of dendrites

are activated, this can produce a small dipole that is difficult to measure from

distance [37]. An example of an open field and a closed field is shown in figure 2.4.
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Action Potentials

The action potentials (AP) are pulses that are transmitted along the axons. These

are generated by the exchange of ions across the neuron membrane. This

temporary pulse in the membrane potential is initiated in the cell body and travels

in one direction. An AP is initiated when the neuron receives an excitatory impulse

from other neurons, which will open the 𝑁𝑎+ channels. The neuron will continue

receiving excitatory impulses and opening the 𝑁𝑎+ channels until the voltage of

the membrane changes from -70 mV to -55 mV. At this point additional channels

of 𝑁𝑎+ open, and the depolarization continues until it reaches levels around +30

mV, then the 𝑁𝑎+ channels close and the 𝐾+ channels open. The cell host 𝑁𝑎+

and 𝐾+ during a short period, and having the 𝐾+ channels open will repolarize the

cell back to the rest potential. However, this repolarization typically overshoots

the rest potential, usually to -90 mV. This effect is called hyperpolarization and

prevents the neuron from triggering another AP in the opposite direction. After

hyperpolarization the membrane will come back to the resting potential. An AP

lasts for around 1 to 2 ms and the neuron requires approximately 2 ms before

another stimulus is presented [16, 18]. The phases of polarization, depolarization

and hyperpolarization are presented over the action potential behavior in figure

2.5.

Postsynaptic Potentials

The arrival of an action potential via synapses triggers the transmission of the

signal to a postsynaptic cell, leading to postsynaptic potentials (PSP) that can be

either EPSP or IPSP. The PSP are considered the main generators of the source

currents. The electrical field and magnetic field associated with those currents are

the phenomena that can be measured from outside the head using EEG and MEG

techniques, respectively. In the case of the EEG technique by electrodes at scalp;

and for the MEG technique by magnetometers and gradiometers close to the scalp.

[38].

2.1.3 EEG Volume Conduction Problem

The term volume conduction problem refers to the multiple effects that arise

when measuring electrical potentials a distance from their generation [39], in this

particular case the volume conduction problem in EEG technique is introduced.
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Figure 2.5: An action potential. (Adapted from [18]).

The postsynaptic activity and its associated electrical field takes place in the cortical

areas of the brain. From there, the electrical field can theoretically propagate to

all directions due to the high conductivity of the soft brain tissue. The human

body acts as a passive volume conductor due to its high content of salt water. This

explains the reason electrocardiograph (ECG) activity can be recorded not just

from electrodes on the chest but also from distant locations like hands or even

scalp.

The human head has several layers, including, brain matter (gray and white),

skull, scalp, cerebrospinal fluid (CSF) and other thin layers in between. Therefore,

the field must pass through the different head layers before reaching the scalp

where the electrodes are placed. Those layers vary in thickness and conductivity

levels. The cortex is a layer between 1 to 3 mm and posses a conductivity around

0.33 S/m. The skull has a thickness between 3 to 7 mm and a conductivity of 0.012

S/m. It possesses a much lower conductivity when compared with the cortex and
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Figure 2.6: Head Layers, the path of EEG from gray matter to scalp. (Based on the

content of [40]).

scalp. The scalp has a conductivity of 0.33 S/m and a thickness of approximately

2 to 5 mm. The CFS thickness varies, but its conductivity level is much higher

than the scalp with a level around 1.79 S/m [18, 41]. The different layers of the

head are displayed in figure 2.6. In general, any electrical field is attenuated when

the current travels through a resistive medium. This attenuation is a function

of the conductivity and the distance where it is measured from. In the case of

EEG signals, the low conductivity of the skull has a significant impact as it can

attenuate the signals approximately a hundred times more than the soft tissue. The

EEG signals are considered a nonlinear sum of brain sources because the layers

have different electrical properties. Another effect of the volume conduction is

that the EEG signals can be easily hidden in noise from EEG systems and other

electrical signals from the body, e.g. the EEG signals registered at scalp are smaller

in amplitude when compared with the electromyography (EMG) muscular signals.

Those signals different to EEG are considered artifacts. Finally, because of volume

conduction, only a large population of active neurons firing synchronously can

generate enough potential to pass through head layers and be detected at the

scalp.[42]

2.1.4 Brain Rhythms

In the EEG it is possible to identify rhythmic activity. The brain rhythms, also

known as brain waves, are a consequence of neural oscillations, which are
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fluctuations in the excitability of neuron groups [43]. The EEG signals can contain

simultaneously multiple brain rhythms and as consequence multiple frequencies

that can vary in power level. The general brain rhythms are classified in five

categories and they can be found during different neural functions, brain processes

and states. The categories are described as follows:

Figure 2.7: EEG brain rhythms. (Adapted from [44]).

• Delta (𝛿): Delta waves are the slowest brain frequencies (see figure 2.7,

where an example of the brain rhythms is depicted). Its frequency range

lies between 0.5 and 4 Hz. They are associated with deep and healing sleep.

Delta can be seen in brain injuries and in people with learning disabilities

during awake state [44].

• Theta (𝜃 ): Theta waves represent consciousness toward drowsiness. They

are also associated with deep meditation, intuition, and relaxation. They

are known to be the creative brain rhythm because of their association with

creative inspiration. This frequency band can also be seen during sleep. The

suppression of theta waves can lead to anxiety, stress and depression. The

theta wave plays an important role in infancy and childhood [2]. Its range

of frequency is from 4 to 8 Hz.

• Alpha (𝛼): This brain wave lies in the range between 8 to 13 Hz. In awake

state, it is related to a relaxed state with consciousness. In sleep, it is related
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with drowsiness associated with sleep onset [2, 45]. Its origin is mainly

established in the occipital lobe, and it can be enhanced when a subject

closes their eyes and it can be attenuated by attention processes and mental

concentration. This brain rhythm was first observed and reported by Hans

Berger, who also observed the beta rhythm. [1, 46].

• Beta (𝛽): Its range of frequency is between 14 to 30 Hz. This rhythm

is usually presented in low-amplitude (usually less than 20 𝜇𝑉 ) and is

commonly observed in awake state. It is involved in logical thinking, active

attention, and concentration. It can be found in several locations of the brain,

but frontal and central regions are the most common areas [47]. The frontal

beta rhythm is a consistent pattern in a healthy subject. Sub classifications

of beta rhythms are presented ambiguously in the literature, while the most

common classification is into two sub bands, low beta (13–21 Hz) and high

beta (21–30 Hz) [48, 49]. Low beta is associated with concentration, focus,

increased energy and performance, while high beta is associated with high

arousal and high energy states, as well with high levels of stress and anxiety.

• Gamma (𝛾): The EEG signals with a frequency greater than 30 Hz are

considered to lie in the gamma frequency band. As a continuous rhythm

its occurrence is rare, however induced oscillations have been found in the

frequency band around 40 Hz, related to visual stimulation and movement

tasks. It is considered that they are related to the binding of sensory

information and sensorimotor integration [50]. On the other hand, the

gamma frequency band is also associated with brain diseases, particularly

related to epilepsy [51].

A summary of the main brain rhythms is presented in table 2.1. Other rhythms

like the mu rhythm (8-12 Hz) and the beta Rolandic (20 Hz) rhythm are found to

be relevant and are associated with processing somatosensory information, and

for motion planning and control, respectively. [48, 52]

2.2 EEG Generalities
EEG is an electrophysiological measurement of the electrical activity produced by

current sources at the cerebral cortex. Richard Caton was the first to register brain
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Wave Frequency Brain States

Delta (𝛿) 0.5-4 Hz Sleep

Theta (𝜃 ) 4-8 Hz Deeply relaxed, creativity

Alpha (𝛼) 8-13 Hz Very relaxed, passive attention

Beta (𝛽) 14-30 Hz Active, external attention

Gamma (𝛾 ) >30 Hz Concentration

Table 2.1: Frequency bands and brain states of brain waves. (Adapted from [44]).

activity using intracranial electrodes in animals, and reported his findings in 1875

[53]. The first EEG activity was registered using galvanometers that used a mirror

to project the signals onto a wall. Later on, the string galvanometer was introduced

and signals were registered on photographic paper [18]. Human EEG was first

recorded by Hans Berger in the 1920s, using Siemens’ double coil galvanometer.

He reported a series of 14 reports [54], from which can be highlighted information

about the alpha rhythm and how it was affected when opening the eyes and

through mental effort. The EEG kept evolving and an important step was done by

the introduction of multi-channels systems that used a set of differential amplifiers

and pen type registers plotted on plain paper or paper with a grid. Soon, the

need of having the recordings in digital form was identified, particularly after

the introduction of the first computers in the 1960s. By the 1980s the paperless

systems became common and new amplifiers were developed to be more sensitive

and to work with high input impedance [16, 18].

2.2.1 EEG Measurement and Recording

EEG technique is the measurement of brain electrical activity from electrodes

on the scalp. There are other techniques that also measure the electrical brain

activity like electrocorticography (ECoG) by placing electrodes directly over the

cortical sheet [55, 56], and LFP technique that measures the LFPs and spikes of a

few hundred to a few thousand neurons by using microelectrodes that penetrate

the brain cortex [56, 57]. A comparison of these techniques and their recording

location, signal amplitude, and frequency is presented in figure 2.8.

In general, a basic digital EEG system consists roughly of electrodes, amplifiers,

filters, Analog-to-digital converters (ADC) and a signal storage system (usually a
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Figure 2.8: Recording location for EEG, ECoG and LFP, and their signal amplitude

and frequency. (Adapted from [56]).

computer). Other elements for stimulation and to record inputs for participants

are also common.

In general the electrodes can be categorized into two big categories, wet and

dry electrodes, and between them there are multiple variations, in size, materials,

disposition, and method of capturing the signals. The most used electrodes are the

wet electrodes. They are characterized to use conductive gel or saline solutions to

decrease the scalp impedance [58]. Usually, they are not in direct contact with the

scalp skin, rather they use the gel or saline medium to capture the EEG signals.

Although wet electrodes exhibit the best signal-to-noise ratio (SNR), they present

some disadvantages. The conductive medium dries over time resulting in a signal

quality decrease, therefore they are not recommended to be used over prolonged

periods of time. In addition, the setup is relative long, particularly with gel-based

electrodes, where a system with 60 electrodes can take between 30-60 min to be

properly adjusted. On other hand, the dry electrodes are usually in contact with

the scalp and do not require conductive gels. This represents an advantage because

they can be used for prolonged recordings and do not require skin preparation,

however, they have a series of disadvantages that have delayed its broad use as an
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alternative to wet electrodes. In terms of signal quality, they exhibit lower SNR and

high sensibility to environment noise. Moreover, they have a rapid deterioration

of electrode impedance with use, and continuous contact with the scalp and skin

sweat deteriorates its properties. Another disadvantage is related with the conform.

As it pressures the scalp, it can lead to prickling and uncomfortable sensations [59].

Despite these issues, dry electrodes are a potential alternative to wet electrodes

that can favor portability and the development of more wearable systems, yet

they have not been broadly adopted. A recent study suggests that there is a small

difference in signal quality and comfort between new dry-based EEG systems and

wet, confirming their usefulness in mobile applications [60].

EEG systems use differential amplifiers. They measure the electrical activity

of one electrode relative to another, therefore, at least two electrodes are required.

The differential amplifiers allow for the removal of the common activity between

a pair of electrodes. This is known as common mode rejection. EEG can use two

techniques of recordings, monopolar and bipolar. Their central difference is the

location of the electrodes. In the case of monopolar recordings, one electrode is

located on the scalp or area of interest to register, and the second on a "neutral"

area, serving as reference for the scalp electrode. In bipolar recordings, both

electrodes are located on the scalp and can capture brain EEG activity. This

can lead to a potential attenuation of the general brain activity assuming that

both electrodes can potentially register similar activity due to volume conduction.

However, it will depend on the areas and distance between the electrodes. In some

cases, bipolar are preferred, in order to attenuate the general brain activity and

to enhance small potentials that come from a particular area, e.g. Steady State

Visual Evoked Potential (SSVEP) [61]. The monopolar is the most common choice,

although the reference position can affect the distribution of the potential. In

the monopolar case, it is possible to change the reference with simple arithmetic

operations, therefore it can be done easily offline, and set up to multiple references

[62, 63].

2.2.2 EEG Artifacts

It would be ideal if EEG electrodes record only EEG signals at scalp, however, in

practice this is not possible. There are several signals that are generally registered

by the electrodes and do not concern EEG signals from the cortex. They are
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called artifacts. The undesirable potentials that contaminate the EEG can come

from non-physiological sources, external to the participant, and physiological

sources, from other physiological activities of the person being recorded. The

most common artifacts from external sources are power line noise and changes

in the electrodes’ impedance, i.e. due to conductive gels that become dry during

recordings. The noise related to the power line is easy identifiable because it is

always present in frequencies around 50Hz or 60Hz, and their harmonics at 100

or 120 Hz. This noise is often attenuated by notch filtering and their influence has

not been found to be significant [62, 64].

Figure 2.9: Physiological artifacts in EEG signals. (Adapted from [43]).

Physiological artifacts are the main concern during EEG recordings, as it might

be difficult to correct and attenuate its effects. The most common sources are

skin potentials, eye movements, muscular activity and heart activity. Figure 2.9
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presents the effects of physiological artifacts over EEG signals. The skin potentials

are slow drifts in the signals, that are produced because of changes of impedance

in the skin due to sweating. The eye movements potentials Electrooculogram

(EOG) during blinks and saccades produce an important disturbance in the signal

and they are always present in the recordings. The eye blink produces a strong

deflection, while the saccades effect is similar to a step function that lasts for a few

hundred milliseconds. EMG activity is produced for muscular activity. The most

typical found in EEG are from face muscles due to changes in facial expressions,

chewing and swallowing, and from the neck due to head movements. The EMGs

are usually bursts of high frequency activity presented in the EEG. In some cases,

strong head movement can lead to a loss of electrode contact, thus, it is usual to

ask the participants to remain still during recordings. The ECG artifacts are small

positive and negative deflections that are presented periodically with a similar

pattern on heart activity.

2.2.3 Event Related Potentials

The event related potentials (ERP) are the brain responses related to specific events,

usually due to a stimulus exposure, but also due to internal events. They are small

electrical potentials that are time-locked to an event. The have been extensively

used to study responses associated with cognitive, sensory and motor events

[65–69]. These valuable and tiny brain potentials are hidden in noise, and in order

to obtain them a process of averaging is often performed. As the responses are

time-locked, averaging multiple trials of the same event improves the SNR and

allows to enhance the time-locked brain activity while attenuating the noise and

background brain activity or non time-locked activity. The ERPs are differentiated

by components based on their peak latency and positive or negative amplitude.

These peaks have been named according to their occurrence after the stimuli.

e.g. the first positive peak is P1; or according to their latency, e.g, negative peak

around 170 ms is N170. Figure 2.10 shows an example of ERP components labeled

by their appearance order.

The interpretation of the ERP cannot be generalized, it will depend on the

stimuli attributes, e.g. intensity, modality, presentation rate, and the brain activity

it is intend to trigger, e.g. visual, auditory, memory. In a visual activity context,

these components can represent different processes: C1 can be either a positive or
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Figure 2.10: Example of idealized ERP components of a visual study. (Adapted

from [62]).

a negative peak around 50-70 ms, representing sensory processing. P1 is the first

positive peak after C1, with a latency of 90-100 ms. It is found to represent sensory

and perceptual processing. N1 is the first negative peak around 170-200 ms, and

is often related to visual discrimination and expert recognition. e.g. humans are

experts in face recognition [3, 70]. P2 is not well understood and is often difficult

to distinguish from the overlapping between N1 and N2. N2 has a latency around

225-250 ms and is related to object recognition, categorization and detection of

novelty [71]. P3 after 300 ms is related to stimulus evaluation, working memory,

cognitive load and categorization [72, 73].

2.3 Electrode Placement Systems

The first EEG studies presented findings based on few number of electrodes.

After the first report from Hans Berger, other researchers followed by studying

electrical brain signals and presented their findings. Laboratories and hospitals

developed their own systems of electrode placement, and during the first congress

of the International Federation of Societies for Electroencephalography and

Clinical Neurophysiology in 1947, the need was identified for the establishment

of a standard placement of electrodes to standardize EEG measurements and to

facilitate comparisons of findings and communications of results in the literature

[74]. Four principles were the basis for establishing an international standard.
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These principles are quoted from [74]:

1. Position of electrodes should be determined by measurements from standard

landmarks on the skull. Measurements should be proportional to skull size and

shape, insofar as possible.

2. Adequate coverage of all parts of the head should be provided with standard

designated positions even though all would not be used in a given examination.

3. Designations of positions should be in terms of brain areas (Frontal, Parietal,

etc.) rather than only in numbers so that communications would become more

meaningful to the non-specialist.

4. Anatomical studies should be carried out to determine the cortical areas most

likely to be found beneath each of the standard electrode positions in the

average subject.

Dr. Jasper was designated to perform a study of the current systems and

established recommendations based on those principles that, years later, resulted

in the first standard electrode placement system, denominated "The Ten Twenty

Electrode System" [75, 76].

2.3.1 Standard Placement Systems

There are two standard systems that have been broadly adopted: the international

10-20 and 10-10 electrode systems. They were accepted as standards by the

International Federation of Clinical Neurophysiology (IFCN) and the American

Electroencephalographic Society (ACNS) [77, 78].

The 10-20 system, presented by Jasper in 1958, established a distribution of

the electrodes on the scalp based on percentages of the distance between head

landmarks nasion and inion (A-P line), and the naming nomenclature. Figure 2.11

presents a lateral, frontal and top view of the 10-20 system. First frontal (Fp) and

occipital (O) electrodes, were located at 10% of the A-P distance, above the nasion

and inion, respectively. In between three more electrodes were placed with a 20%

distance: Frontal (F), Central (C), and Parietal (P). A central line was established

between the left and right pre-auricular points where electrodes were distributed

at 10% over the landmarks located over the temporal lobes (T), and other central
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Figure 2.11: (A) Frontal, (B) Lateral, and (C) Top view of the distribution of the

electrodes over the scalp according to the 10% and 20% of the A-P line. (Adapted

from [76]).

electrodes each at 20% in between. Finally, using the A-P line between Fp and O

electrodes, two electrodes at each direction were distributed at 10% of the distance

and more electrodes in between at 20% of the distance. In order to differentiate the

electrodes at right and left hemisphere, a number next to the letter was included.

The electrodes at the left hemisphere use even numbers, and odd numbers are

used for the right hemisphere. This resulted in a set 21 standard electrodes. Their

names and locations are presented in figure 2.12.

The 10-10 (previously called 10% electrode position) presented in 1985 [79]

introduced 60 auxiliary electrodes using a 10% distribution: four were placed over

regions close to the cerebellum, four more on the face to measure eye activity,

and two on the mastoids (to provide alternatives to the earlobe leads of the 10-20

system). The initial nomenclature of the new electrodes used prime and double

prime to designate the electrodes in intermediate positions of the original 10-
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Figure 2.12: Original 10-20 electrode positioning system and names by Jasper in

1958. (Adapted from [75]).

20. e.g. (F’) or (F”). Just a year after its introduction it was strongly criticized

and the nomenclature was considered confusing [80], resulting in an improved

nomenclature [81]. It was again modified to the nomenclature used nowadays by

the ACNS [78] and confirmed as standard by the IFCN [77]. The ACNS modified

the terminology inconsistencies and adopted two letters for the intermediate

electrodes between brain areas, frontotemporal (FT), frontocentral (FC), temporal-

posterior (TP), centroparietal (CP), parieto-occipital (PO) and anterior frontal

(AF), and presented a set of 75 electrodes in its guidelines [78]. Years later

IFNC confirmed this as a standard and established procedures for recording and

documenting the recordings. In its guidelines a set of 64 electrodes was presented

[77]. The electrode distribution in these two guidelines are presented in figure

2.13.

The main motivation of those standard systems were to facilitate the

communications and exchange of findings in the literature, creating a positioning

electrode framework for ERP studies to be used in laboratories around the world.

The extension to the 10% system added more electrodes with the objective of
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Figure 2.13: (A) ACNS [78], (B) IFCN [77], Standards 10-10 system made from

the original 10-20 system and its 10% extension. Red circles denote the electrode

positions that change names between the ACNS and IFCN standards. (Adapted

from [77, 78]).

providing full coverage of the head to be used in topographic studies. Here is

a quote from [79] about the 10% system: "The l0% electrode system described in

this paper provides full coverage of the head by closely and evenly spaced electrodes

applied in readily measurable standardized locations. Although as many as 81

electrode positions are provided by this method, certain studies may require the use

of only some of these leads such as those placed on the left, the right. the anterior

or the posterior halves of the head or over even more limited areas of the scalp. The

utilization of this system in topographic studies of spontaneous and evoked EEG

activities is advocated to facilitate communications among laboratories by promoting

standardization."

The 10-20 system is considered the standard in clinical practice. To improve

coverage of the temporal lobe, the IFCN presented and a new standard electrode

array of 25 electrodes as the minimum number for standardized recordings in

clinical practice [82]. This is presented in figure 2.14
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Figure 2.14: The IFCN array for EEG measurements. (Adapted from [82]).

2.3.2 Derivations from Standard Montage Systems

The five percent electrode system, or 10-5, was proposed to extend the international

10-20 and 10-10 systems up to 345 electrode locations, for studies on ERP

topography and source analysis of EEG signals, and to promote standardization

in hdEEG studies [83]. Similarly to the first extension of the 10-20 system to the

10-10 system; the 10-5 system included a more dense cover of the head, up to 345

positions, by adding electrodes in the intermediate areas of the 10-10 standard,

and introducing the designation of those new position. A subset of 128 electrodes

was recommended for high-density studies and development of EEG caps.

2.3.3 Other Montage Systems

Other montage systems provide high-density recordings up to 256 electrode

positions, however the use of different electrode distributions are mostly associated

to certain companies that produce them. Three examples of distributions that

can reach such a number of electrodes are presented here: geodesic distribution,

electrode distribution over a curve space (Electrical Geodesics, Inc; Oregon, USA)

with a designation based on number. This distributes the electrodes over the head,
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and includes electrodes on the lower part of the brain and face [84]. Equidistant

ANT/DUKE layout in which all electrodes have the same distance with their

neighbors, uses designations starting with letters standing up for left (L), right

(R) and central (Z) and numbers to aside (ANT Neuro, Inc; Hengelo, Netherlands).

A circular distribution considering the head as concentric circles, labels the

electrodes using a combination of letter and numbers (BioSemi, Inc; Amsterdam,

Netherlands).

2.4 EEG Source Reconstruction

Source reconstruction is the estimation of source activity from the information

registered by electrodes at the scalp. In this process, the parameters of the current

sources or dipoles are estimated. In the static case, when a single time sample

or the averaged time courses of EEG activity are considered, the parameters to

estimate are location, orientation, and intensity (amplitude) and where all the

parameters can be described with three components (x,y,z), referring to a 3D space.

When considering the dynamic case, a time series of EEG is the input, therefore,

the intensity can vary over time. Therefore the time-courses of the source activity

can also be estimated.

EEG Source reconstruction is often called EEG source imaging (ESI) in

the literature, and less often brain mapping. In this work, the term source

reconstruction is referred to as the estimation using EEG as the recording technique

and input for the estimation process. Source reconstruction is a broad and

extensively studied neuroimaging technique. Multiple approaches and methods

have been proposed to estimate current source activity and there are multiple

elements that are involved in this estimation. In this section, some generalities

and elements required for source reconstruction are introduced.

The applications of source reconstruction are diverse, with localization of

epileptic foci one of the most widely known and researched applications. In this

clinical application, source reconstruction serves as pre-surgical tool, with the

objective of identifying and locating the epileptic zone in drug-resistant focal

epilepsy [23, 85–88]. In addition to its clinical significance in epilepsy, it has

been an important tool for cognitive neuroscience in order to identify neural

markers within source activity [89–91]. Source reconstruction allows researchers

https://www.ant-neuro.com/products/waveguard/electrode-layouts
https://www.biosemi.com/pics/cap_256_layout_medium.jpg
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to create activity maps that can be used to identify active regions and patterns in

the cortical sheet. This has been demonstrated in experimental studies involving

motor, sensory, and cognitive functions [92–96], in which source reconstructions

have been applied. Due to the high temporal resolution, the reconstructed source

space can serve to decode dynamics and interactions of brain regions in functional

connectivity studies [97–100]. It has been applied to identify networks in healthy

brain activity and during diseases [27], and to monitor cognitive states [101],

using connectivity in the source space. The source activity maps offer a better

discrimination between brain regions, resulting in a higher discrimination and

interpretability of connectivity networks, while connectivity at electrode space is

considered difficult to interpret due to the volume conduction problem [28, 102].

Other applications involve the use of cortical space for BCI systems for motor

imagery classification and biomarker identification [103–108].

The source reconstruction technique can be summarized intro three closely

related elements: source activity, volume conductor and scalp recordings.

Modeling the relationship from source activity to electrode recordings is called

forward modeling, while using the electrode space to estimate the source activity is

called inverse modeling. While the forward model estimates the module conductor,

the inverse modeling estimates the source activity that produces the recordings at

scalp. Figure 2.15 shows the three elements involved in source reconstruction and

their relation with forward and inverse modeling.

The relationship between the current sources and electrodes can be represented

using the following equation, called the forward equation:

y = Mx + 𝜀 (2.1)

The data matrix y represents the EEG signals registered at scalp. x represents

the amplitude time courses of the current source activity, which is unknown. M

is the volume conductor model, also called the lead field matrix, that contains the

linear relationship between the cortical current sources and the registered signals

by electrodes; and 𝜀 is the noise matrix. The data matrix y ∈ R𝑁𝑐ℎ×𝑁𝑡
where

its rows are formed with elements 𝑦𝑖𝑡 , being 𝑖 = 1, 2, ..., 𝑁𝑐ℎ and 𝑡 = 1, 2, ..., 𝑁𝑡 ,

in other words, the signal recorded by the 𝑖th sensor at time 𝑡 . The matrix of

the current source activity x ∈ R𝑁𝑠×𝑁𝑡
contains the source time courses of the
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Figure 2.15: Elements of source reconstruction: source activity, volume conductor

and scalp recordings. The red arrows point to the elements that each modeling

estimates.

sources 𝑥𝑠𝑡 produced by sources 𝑠 = 1, 2, ..., 𝑁𝑠 at the time 𝑡 . The lead field matrix

M ∈ R𝑁𝑐ℎ×𝑁𝑠
establishes how is the potential for each electrode due to the

sources, particularly, the element 𝑀𝑖𝑠 of M relates the 𝑖th sensor with the 𝑠th

source. Therefore, each electrode registered potential 𝑦𝑖𝑡 is a weighted sum of the

electrical fields due to the source activity, represented as follows:

𝑦𝑖 (𝑡) = 𝑀𝑖1𝑥1(𝑡) +𝑀𝑖2𝑥2(𝑡) + ... +𝑀𝑖𝑁𝑠
𝑥𝑁𝑠
(𝑡) + 𝜀𝑖 (𝑡) (2.2)

expressed in matrix form in the forward equation (2.1).

In forwardmodeling the problem is centered on computing the lead fieldmatrix

M , as it represents how the potentials are distributed in the scalp due to current

sources in the cerebral cortex; while in the inverse modeling (solving the inverse

problem), the problem is centered on estimating the amplitude time-courses of

the unknown source activity x

2.4.1 Forward Modeling

Forward modeling aims to identify the relationship of the current source activity

with the electrodes at scalp. In summary, computing the lead field matrix 𝑀 .

The volume conductor model M is essential for solving the inverse problem
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and estimating source activity, where the accuracy of the model can influence

the quality of the estimation [109–111]. There are several methods to compute

this model that can vary in complexity and accuracy to represent the complex

cortex-electrodes relationship. To describe this, the forward model considers

the conductivity properties of the different tissues that the electrical field passes

through before arriving to the electrodes. Generally, the tissues considered are:

scalp, skull, and gray matter (brain cortex). However, more complex models can

include some additional tissues like the CSF, white matter, and air cavities. The

CSF is key in the volume conduction problem and its influence in modeling has

been found significant to perform source reconstruction accurately [110, 112].

The most widely used methods to compute the volume conductor are the

spherical head model, the boundary element method (BEM), and the finite element

method (FEM). Listed below are the generalities of each method:

• The spherical head model is a simplified representation of the brain. It uses

concentric spheres to represent the conductivity effects of different tissues.

Each sphere is related to the tissues to model, and the most common models

involve 3 tissues (3-shell head model) and 4 tissues. Often brain, skull,

scalp are modeled, with CSF in the 4-shell head model. This representation

considers the different conductivities of each tissue, and also considers each

tissue as an homogeneous medium and thus, the scalp voltage distribution is

a result of series of source distributions in the homogeneous spheres [113].

• Similar to the spherical head models, BEM head models approximate each of

the different tissues of the volume conductor as a isotropic and homogeneous

conductive medium, but instead of using spheres it uses realistic shaped

compartments [114]. The realistic shapes are derived from MRI segmented

images that allow researchers to differentiate the tissues. The different layers

(associated with each tissue) in BEM are represented by a triangle mesh in

their boundaries with another tissue; and in each layer, the conductivity

is considered homogeneous. Skull, scalp and brain are modeled in 3-layer

models, while, CSF and white matter can be modeled in 4- and 5-layer

models, respectively. Regarding its complexity, it is more complex than a

spherical model, as the BEM layers calculation depends on segmented MRI
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images. It requires more computing power. Years back this could take days,

but nowadays a couple of hours are required.

• The FEMmethod uses polyhedrons (in general tetrahedrons or hexahedrons)

to represent each one of the different head layers. As BEM, the FEM

layers are also derived from MRI-segmented images, however FEM has

the particularity that each polyhedron can have a different conductivity. It

allows to model each tissue as an anisotropic and non-homogeneous tissue,

approaching the forward model to a more realistic scenario, not only on

shape, but also in conductivity modeling [111, 115, 116]. In particular, the

influence of the skull anisotropy has been found relevant for the inverse

solution [117].

It has been shown that, by using a realistic head model based on BEM or

FEM, it is possible to achieve a better spatial discrimination of cortical sources

in comparison with the spherical models [118]. The use of a spherical model

instead of a realistic model can lead to larger errors in reconstruction of around

a few centimeters [112, 119]. Additionally, BEM and FEM models rely on MRI

images and its processing to segment the different tissues in the head, therefore a

more realistic and accurate representation of the brain can be achieved, including

its sulci and gyri structures [19]. The most commonly used model is the BEM

head model, primarily due to its low computational requirements. However BEM

models cannot represent inhomogeneities, e.g. skull holes, while FEM models can

deal with such inhomogeneities and mediums that have anisotropic conductivity.

FEM implementation is more complex than BEM due to the volume of meshes

required in the FEM modeling, while BEM uses meshes of boundaries that are

more simple [117].

During forward modeling using realistic brain representations, the center of

the current dipoles or sources are fixed a priori by sampling the cerebral cortex.

Usually a number higher than 3000 source centers are selected to constitute the

source space. They are distributed to cover all the gray matter, usually maintaining

the same amount between hemispheres, and trying to represent the whole gray

matter without missing points in the thinner parts[13]. The number of sources

𝑁𝑠 influences the spatial resolution of the cortex: a higher number of sources
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represents the cortex better andmight yield more spatial accuracy, while to process

higher numbers involves the use of larger matrices, which can lead to numerical

precision issues, the use of more computing complexity andmemory for processing

and displaying. The number of sources also influences the size of the lead field

matrixM , that lately influence the inverse modeling. In contrast, a lower number

of sources can lead to less spatial sampling resolution and less spatial accuracy,

while faster computations due to the smaller size of the matrices. Therefore, a

balance of a number of sources is required; typically models contain between 3000

to 6000 sources [13]. Figure 2.16 presents the cortical sheet represented by 5000

sources.

Figure 2.16: 3D view of the distributed sources representing the cortical sheet with

5000 sources. The centers of the distributed sources are represented by the blue

points.

Before calculating the lead field matrix, the electrode positions must be co-

registered with the MRI head [120]. The electrode positions can have a important

impact on source reconstruction [121], and it is important that they correspond to

reality; at the end of the process, the lead field matrix is a representation of how

the electrodes capture source activity at that specific location.

Individual models to be used during source reconstruction offer better accuracy

and enhance the reconstruction quality [122], therefore it is always recommended

to use an individual MRI and co-register it with electrode positions. In the cases

where an individual model is not available or not possible to obtain, template



2.4. EEG Source Reconstruction 41

models based on multiple subjects averaged MRIs can be used, however, they

should be warped using multiple head points and co-registering of electrode

positions must be performed [111].

2.4.2 Inverse Modeling

Inverse modeling is the estimation of source activity, as referred in this thesis as

source reconstruction. Since the 1960s, the concept of estimating source activity

using the information registered by the electrodes began to be developed. The

first approaches involved the use of spherical models to attempt to explain the

relationship between sources and scalp potentials [123, 124].

In general, two approaches can be used to estimate the source activity, using

equivalent current dipoles (ECD) or distributed dipoles [12]. Both methods are

based on the plausible concept that the current source activity is produced at the

cerebral cortex by a large population of pyramidal neurons that fire in temporal

synchrony 2.1.2.

The ECD approach works under the assumption that the registered electrical

activity is the consequence of a few equivalent dipoles. This assumption is fairly

realistic, as populations of neurons and their vicinities are expected to have a

strong coherence in time. Therefore, the process is centered around estimating

the location and orientation of a few dipoles that can represent each one of those

closed neuronal populations [125]. This is done under a process called dipole

fitting, where a pre-established number of dipoles is assumed to be active, then

the dipoles are moved and rotated around the cortical areas and placed into

positions that fit best with the EEG data. This approach uses multiple linear and

non-linear methods to determine the positions of the dipoles, their orientation

and magnitude, where the solution is accepted if the dipole locations lie in the

whole volume within a certain radius of the sphere model [126]. Determining the

number of dipoles to locate is not a straightforward process, a priori knowledge

of the number and locations is required as inputs for the process [127]. The ECD

approach can estimate the location center of the source activity, but it cannot

describe the volume of cortex involved in the activity [125], therefore, general

conclusions that a particular brain area or region is involved in the activity of

interest can be made [128].

The distributed approach consists of estimating the amplitude of a predefined
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number of sources; independently of the method for forward modeling, for

distributed models the center of the current sources are fixed a priori, and

depending on the inverse solution method, the orientation can also be fixed,

e.g. using the plausible assumption that the currents flow perpendicularly

to the cortex surface (see section 2.1.2), therefore the orientations can be set

orthogonal to the cortex surface. The distributed approach estimates of the current

density distribution, the amplitude of each source, can be found using the linear

relationship electrodes-sources established by the lead field matrix. However,

as the inverse solution focuses on estimating the moments of all the sources,

the number of undermined elements of variables increases [125, 129]. Then, the

inverse problem of estimating the amplitude of the 𝑁𝑠 number of sources using

the voltage recorded by 𝑁𝑐ℎ number of channels is ill-posed and ill-conditioned,

since 𝑁𝑠 >> 𝑁𝑐ℎ the solution is non-unique and unstable. Infinite amplitude

configuration in the sources can lead to the same electrode recordings; in addition,

the solution becomes unstable, where the estimation is highly sensible to small

changes in the EEG data [12].

To overcome such characteristics of inverse modeling, multiple algorithms

have been proposed. The literature is vast in that sense. In attempts to

summarize the algorithms and their properties, multiple comparisons and reviews

in distributed source reconstruction have been written [130–135]. In multiple cases

the algorithms have similarities, or are based on the same principles, and in other

cases the algorithms are a hybrid between traditional algorithms. In the context of

this thesis three types of algorithms are considered using a similar categorization

as proposed in [129]: algorithms based on minimum norm, algorithms based on a

Bayesian framework, and algorithms based on scanning methods.

• Based on Minimum norm: This family of algorithms offers a solution to

the distributed inverse modeling by combining regularization with the least

square (LS) problem solution. The inverse solution can be approached as a

minimization problem as follows:

J = 𝑎𝑟𝑔𝑚𝑖𝑛 (x) {| |Mx − y𝑘 | |22} (2.3)

To estimate the source activity distribution x using the LS approach, the
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solution can be found by finding the derivative of the function J respect to

x and making it equal to zero, resulting in the LS formula for x:

x̂ = (M𝑇M )−1M𝑇y (2.4)

where the terms M𝑇
refers to the transpose of the lead field matrix M .

From (2.4) the term (M𝑇M )−1M𝑇
is known as 𝑀† the Moore-Penrose

pseudoinverse of M [136]. However, due to the ill-posedness and ill-

conditioned characteristics of the inverse modeling, infinite solutions for the

source activity x can be found to minimize J and fit with the EEG data y,

thus a solution that considers the noise is required. Using Tikhonov-Phillips

regularization [137, 138], the optimization problem in equation 2.3 can be

rewritten as:

J = 𝑎𝑟𝑔𝑚𝑖𝑛 (x,𝜆) {| |Mx − y | |2
2
+ 𝜆2 | |x| |2

2
} (2.5)

where 𝜆 is a regularization parameter that weights the norm of the estimated

solution. Adding regularization to the minimization problem forces the

estimation x to have the minimum norm and still fit the data. The solution

to the optimization problem can be estimated as follows:

x̂ = (M𝑇M + 𝜆I)−1M𝑇y (2.6)

where 𝐼 is an identity matrix 𝑖𝑛R𝑁𝑠×𝑁𝑠
. The method minimum norm

estimation (MNE) uses this approach to estimate the current source activity

[12, 139]. The MNE solution concentrates the active sources in the cortical

surface closer to the scalp. It considers that small currents near to the

the scalp can produce electric fields with a similar amplitude than higher

currents in deep zones, therefore, the MNE solution biases the solution

to superficial sources, and is therefore not appropriate for deep source

reconstruction [140].

Variants of MNE, such as weighted minimum norm estimation (wMNE

or WMN), introduces a weighting matrix in the regularization term in
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order to attenuate the bias effect and compensate deep source activity [140,

141]. Another variation is the low-resolution electromagnetic tomography

(LORETA), which introduces a Laplacian matrix in the MNE regularization

term to ensure spatial coherence, assuming that the neighboring sources

are simultaneously and synchronously activated. This results in an

improvement of the spatial accuracy of source reconstruction [142]. The

Dynamical Statistical Parametric Mapping (dSPM) [143] is also a variation of

the minimum norm that imposes a normalization of the rows of the inverse

operator using the covariance matrix of the noise [144]. Another variation is

the standardized LORETA (sLORETA). It imposes a nonlinear normalization

of the variance of the inverse estimation, this allows to guarantee zero errors

in localizing the source activity in the absence of noise [142].

Theminimumnorm approach and the aforementioned variations are some of

the most known and used algorithms for source estimation. However, their

solutions are recognized to be smooth, extended over a high cortical area.

Methods less recognized, like generalized MNE (GMNE) [145] and penalized

LS [146], implement the use of the L1-norm in the regularization to obtain

more focalized solutions. Other methods like Classical LORETA Analysis

Recursively Applied (CLARA) [147] implements iterations of LORETA while

reducing the source space in order to separate closely neighboring sources.

• Based on a Bayesian framework: This technique consists of estimating

the prior probability of the source activity 𝑝 (x), and correcting it using

the probability of the given measurements 𝑝 (y |x) to estimate the posterior

source activity distribution 𝑝 (x|y) recorded by the electrodes [148]. In that

sense, the posterior source activity 𝑝 (x|y) can be expressed using the Bayes’
theorem as:

𝑝 (x|y) = 𝑝 (y |x)𝑝 (x)
𝑝 (y) (2.7)

where the noise 𝑝 (𝜀) is assumed as a Gaussian process with zero mean

and covariance 𝐶𝜀 ; and the probability of the measurements 𝑝 (y) in the

denominator of 2.7 is considered 1 as the recordings do not vary. Based
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on these considerations and applying the expectation operator, the source

activity x̂ is the expected value of 𝑝 (x|y), and can be expressed as:

x̂ = 𝐸 [𝑝 (x|y)] (2.8)

when the source activity x is assumed to follow a Gaussian distribution

with covariance C𝑥 and zero mean, the estimation can be described as:

x̂ = 𝐶𝑥𝑀
𝑇 (𝐶𝜀 +𝑀𝐶𝑥𝑀𝑇 )−1𝑌 (2.9)

Then the reconstruction quality depends on the estimation of the covariance

matrices𝐶𝜀 and𝐶𝑥 . Several methods uses this Bayesian framework as a basis

and have established approaches to estimation of the covariance matrices

e.g using informative priors. The methods multiple sparse priors (MSP) and

Bayesian model averaging (BMA) are based on this framework. In the case

of the first method MSP, it involves a set of spatial distributed priors called

patches, and a minimization of a free energy cost function to estimate the

parameters of the source covariance 𝐶𝑥 and noise covariance 𝐶𝜀 [149–151].

In the case of the BMA method, a set of anatomical constraints can be

included assuming that a particular functional space was the generator of

the EEG recordings [152].

• Based on Scanning methods: These methods are focused on source

localization instead of providing the source activity estimation for the

cortical grid. This methods performs a scanning source by source, evaluating

their possible contribution to the registered EEG activity. In this approach

each source is evaluated and classified into two subspaces, noise subspace or

signal subspace, assuming that both subspaces are orthogonal to each other.

The multiple signal classification (MUSIC) and its variation Recursively

Applied and Projected (RAP-MUSIC) and truncated RAP-MUSIC (TRAP-

MUSIC) can be applied for estimating the number of sources and their

location [38, 153, 154].
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2.4.3 A General EEG Source Reconstruction Pipeline

The general steps for performing source reconstruction are summarized here. An

overview of the steps is shown in figure 2.17, which presents an example of the

typical source reconstruction pipeline. Accurate source reconstruction requires

several processing steps that are based on two main elements: EEG recordings and

structural MRI. Both EEG and MRI require pre-processing before being used as

inputs for the source reconstruction algorithms. The MRI is the basis of the head

model, and its processing consists of volume segmentation and the creation of 3D

meshes to represent the tissues in the model, usually, scalp, skull, CSF, gray matter

and white matter. As forward modeling establishes the relationship between

sources and electrodes at scalp, the location of the 3D electrodes is required. A co-

registration process using the fiducials (nasion and pre-auricular points) marked

in the MRI and the fiducials registered with the electrode positions is applied to

establish the correct electrode positions in the 3D volume[13]. The output of the

forward model is then the lead field matrix M and a 3D mesh of the gray matter,

including the position of the distributed sources.

Before starting the EEG recording, the electrode positions and the fiducial

points are usually registered to be used for theMRI co-registration. After recording,

the raw data needs to be processed in order to extract the brain activity of

interest and reduce the noise level. Some common steps in pre-processing are

filtering, artifact correction and rejection, electrode re-referencing, epoching

and down-sampling. These pre-processing steps are reviewed in more detail in

section 3.3.3. After pre-processing an averaging process of trials of the same

condition is performed to obtain ERP responses. This constitutes the y signal to

be reconstructed.

With the known values ofM and y, the inverse methods can be applied to

estimate the source activity x. A detailed description of the estimation algorithms

used in this thesis is presented in section 3.1. Finally, by using the reconstructed

source activity x̂ and the 3D mesh of the gray matter, brain activation maps can

be generated and analyzed.
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Figure 2.17: Typical Source reconstruction pipeline.

2.4.4 Influence of spatial sampling

The spatial sampling, number of electrodes on the scalp, has evolved since the first

recording of Hans Berger with two electrodes[1]. It has gradually evolved towards
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hdEEG. The introduction of the 10-20 system [75] established 21 electrodes that are

still common practice in clinical settings, although the IFCN recently recommended

a modified set of 25 electrodes that allow for a better covering of the temporal

lobe [82]. The 10-10 system [81] expanded to 71 electrodes to cover the scalp;

then, with the introduction of the geodesic electrode distribution, the number of

electrodes was increased up to 256 electrodes [155], and with the introduction

of the 10-5 system [83] the number of EEG electrode positions was set to 345

locations for scalp coverage, being the maximum number presented. Multiple

ldEEG wearable devices have been developed in the last two decades, devices like

Emotiv Epoch, OpenBCI, gNautilus (g.tec medical engineering GmbH, Austria)

have been mostly used for BCI applications and cognitive neuroscience research

while, NeuroSky and Muse have been used for neurofeedback and leisure activities

[156]. As they are ldEEG its use is not intended for source reconstruction. A

summary of the electrode number evolution is presented in figure 2.18. It includes

an overview of the ldEEG wearables developed in the last two decades.

Accurate source reconstruction depends on multiple elements. Among them,

the number of electrodes and their locations represent an important element

[11, 13]. It is generally accepted that a higher number of electrodes yields higher

source reconstruction accuracy [22, 23, 25]. Since the first studies on source

reconstruction in the 1970s, it has been recognized that there is a need to use

multiple electrodes covering the whole brain to extend the estimation to all sources

in the brain [124]. Also, in [157], it was recognized that hdEEG with 128 electrodes

appears to be sufficient to characterize the electrical potentials at scalp surface.

Currently, systems with 128 and 256 electrodes are common commercial options.

The IFCN recommends the use of hdEEG in brain imaging studies as it allows

source reconstruction with sub-lobar precision [82], establishing that at least 64

channels of EEG should be used for source reconstruction. However, some hdEEG

systems include a higher number of electrodes by adding electrodes to the scalp,

but also locating some of them over the face, neck and cheeks. The effect of those

electrodes away from the scalp have been found to be negative, and removing

those electrodes allows to obtain a more accurate source reconstruction [158].

Therefore not only the number, but also the location of the electrodes, is relevant

for spatial accuracy.



2.4. EEG Source Reconstruction 49

Figure 2.18: Evolution of the number of electrodes and comparison with recent

developed ldEEG wearables.

Keeping adding electrodes does not represent a significant improvement of

spatial accuracy. Plateaus in the localization error were found when increasing

the electrode number from 96 to 128, when localizing epileptic sources in pediatric

patients [24]; there is not a linear relationship between accuracy and the number

of electrodes. Plateaus were also found when using more than 100 electrodes [127].

Recent studies have evaluated the use of ldEEG in epilepsy spikes localization,

where non-significant differences were found when comparing source localization
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using ldEEG with 25-40 with hdEEG with 204-257 electrodes [159]. In a similar

line, the 25 electrodes recommended by the IFCN were used in 41 patients’ EEG

recordings, where the epilepsy foci localization was attempted. The results shows

a satisfactory accuracy of 79% when compared with surgery outcomes [160].

Considering this, there is not a definitive consensus that only high-density can

achieve high source reconstruction accuracy. In particular conditions low-density

electrode configurations can obtain similar performances. In addition, electrode

positioning has been found to be relevant. e.g. the recommended IFCN electrode

array, by adding 4 electrodes to the 10-20 system, has had a important impact on

epilepsy diagnosis and source reconstruction [159, 160].

2.4.5 Comparison of EEGwith other Techniques for Brain Imaging

EEG and MEG are characterized by their high temporal resolution. As they

measure the electrical and magnetic fields due to activity at the cerebral cortex,

they are able to capture the complex dynamics of the brain regions’ interactions

with millisecond sampling, typically between 0.5 to 5 ms (2000 to 200 Hz frequency

sampling). This is higher compared to other brain imaging techniques like fMRI,

PET and CT, that obtain 1 or 2 samples per second. However, EEG and MEG

have a poorer spatial resolution, EEG 7-10 mm and MEG 2-3 mm [161], when

compared to fMRI, PET and CT. In particular, fMRI can determine the position

of hemodynamic responses with millimeter resolution of 1 mm, and 0.5 mm in

high-field fMRI [162]. It is important to consider that this techniques do not

measure the electrical activity of the brain, they measure changes in metabolism,

blood flow, regional chemical composition, and absorption. Thus, measuring these

changes do not require sub sub-millisecond resolution: sampling once or twice

per second is enough to capture this activity.

EEG and MEG are complementary measurements of the brain’s electrical

activity. The MEG technique is considered to offer a better spatial accuracy than

EEG, due to the high number of sensors used in recordings and the fact that the

brain’s magnetic fields are not attenuated, neither are they mixed due to volume

conduction. However, the brain’s magnetic fields are very small: the evoked brain

responses are in the order of 100 fT (10
−15

T), while the steady earth magnetic field

is in the order of 50 𝜇T (10
−6
T), making the brain’s responses 5𝑥10−8 times smaller

than the earth’s magnetic field [16]; therefore, the MEG recordings are performed
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in a magnetically shielded room to isolate the brain signals from the magnetic

noise around [16, 38]. As a consequence, MEG is a non-portable technique due to

this special infrastructure. The same applies to fMRI, PET, and CT scans, due the

volume of the systems and the infrastructure required. In the case of EEG, many

measurement systems are still non-portable, however, recent advances in electrode

types and wireless communication technologies have allowed for EEG recordings

of 64 electrodes with portable devices that can be used for source reconstruction

[101].
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Chapter 3

Materials and Methods

This chapter presents the methods that are applied in the proposed methodologies. It

describes in detail the source algorithms used for source reconstruction and evaluation

of performance. It presents the EEG datasets that were used in multiple evaluations

during the thesis, and introduces the simulation framework to generate ground-truth

EEG source activity.

3.1 Algorithms for Source Reconstruction

Source reconstruction is one of the key elements of this work and has been

briefly introduced in section 2.4. This section presents a more detailed approach

of the algorithms that have been used in chapters 4, 5, and 6, to estimate

the source activity and measure performance. As mentioned in section 2.4,

multiple algorithms have been developed to solve the inverse problem, Here,

only the algorithms applied in this work are detailed using the same algorithm

categorization previously introduced: Based on minimum norm, based on a

Bayesian framework, and based on scanning methods.

3.1.1 Based on Minimum Norm

MNE is one of the oldest algorithms for source reconstruction in distributedmodels.

It was introduced in 1983 [139, 163, 164] and allows to estimate the current density

distribution by using equation 2.6.

53
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Figure 3.1: Deep source and superficial source with equal recorded potential but

different strength.

This algorithm is known to produce current density distributions in the cortical

areas close to the scalp. The electrical field produced close to the scalp can be

similar to the one produced by a strong activation in a deeper area that is attenuated

by volume conduction. To exemplify this effect, let’s consider two independent

sources in the brain 𝑠1 and 𝑠2 at different times. Source 𝑠1 is a superficial source

close to the scalp, and 𝑠2 is a source in the cerebral cortex but located in a deep

brain structure. Figure 3.1 presents a summary of the present example. Let’s

assume that electrode position measuring the scalp voltage produced by each

source at Cz captures the same potential. The true current distribution in the

deep source 𝑠2 has to be higher to be recorded at scalp with the same potential

than the superficial source 𝑠1. Therefore, ∥x𝑠2∥22> ∥x𝑠1∥22, the norm of the source

activity due to the deep source x𝑠2 is larger than the norm of the activity due to

the superficial source x𝑠1, as the inverse problem includes the minimization of

source activity distribution (see equation 2.3), the source activity distribution due

to source x𝑠1 is preferred as it has a lower norm. To improve the MNE solution, a

weighting matrixW can be included with the purpose to increase the accuracy of

themethod by compensating the deep sources effect on the scalp potentials. Several

methods maintain the minimum norm structure while changing the calculation

and structure of the weighting matrix, making this the main difference between

them. Two of the most known and applied algorithms based on this structure are

LORETA and wMNE [165–167].
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3.1.1.1 wMNE

wMNE implements a weighting matrix W based on the topography, or

contribution of each source to scalp voltage distribution. The inverse problem in

wMNE can be rewritten as follows:

J = 𝑎𝑟𝑔𝑚𝑖𝑛 (x,𝜆) {∥Mx − y∥2
2
+𝜆2∥Wx∥2

2
} (3.1)

and the estimation of the source activity can be computed using the following

equation:

X̂ = W −1M𝑇 (MW −1M𝑇 + 𝜆𝐼 )−1y (3.2)

Figure 3.2: Deep source and superficial source with equal strength but different

recorded potential.

Now consider the same two sources 𝑠1 and 𝑠2 with the same location as the

previous example, but in this case, consider the sources with the same amplitude

and producing the same source distribution∥x𝑠2∥22= ∥x𝑠1∥22 (see figure 3.2), and
consider the structure of the lead field matrix as M = [𝑙1, ..., 𝑙𝑠], where the vector
𝑙𝑠 is the contribution of the source 𝑠 to the scalp voltage distribution. Thus, the

contribution of the deeper source 𝑙𝑠2 is smaller than the contribution of the source

𝑙𝑠1 due to volume conduction. Considering this, wMNE uses the inverse of the

norm of the topography ∥𝑙𝑠 ∥2 to weight each source; where the deeper sources

have a higher weight than the superficial sources. The weighting matrix can be
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computed from the lead field matrixM as follows:

W −1 = 𝑑𝑖𝑎𝑔

[
1

∥𝑙1∥2
,

1

∥𝑙2∥2
, ...,

1

∥𝑙𝑠 ∥2

]
(3.3)

whereW is a diagonal matrix, and ∥𝑙𝑠 ∥2 the Euclidean norm of the s-th column

of M . The weighting matrix works by influencing the deep sources to have a

higher weight. This results in an improved localization of the source activity for

deeper sources [140].

3.1.1.2 LORETA

LORETA is characterized by its low-resolution, as its estimations are blurry and

widespread over large areas [142, 168]. Despite this undesired property, LORETA

is one of the source reconstruction algorithms that performs better for source

localization [130]. LORETA weights the source activity by using a Laplacian

operator L, where the weighing matrix can be defined as W = LL2
. Through L,

the neighbor space of the active sources is weighted, considering the synchrony

between close neuron populations. The selection of this operator directly affects

the smoothness of the estimated source activity. In LORETA, the Laplacian

operator is defined as follows:

L𝑖𝑖 = −1 𝑎𝑛𝑑 L𝑖 𝑗 = (6/𝑁𝑖)/(12𝑁𝑖) (3.4)

where L ∈ R𝑁𝑠×𝑁𝑠
is a matrix with values of -1 in its main diagonal 𝑖𝑖 , and

values regarding the neighborhood in the 𝑖 𝑗-th locations. 𝑁𝑖 is the number of direct

neighbors of the source 𝑖 , and it can be a maximum of six [140]. The estimation of

the source activity in terms of the Laplacian can be expressed as:

X̂ = (L𝑇L)−1M𝑇 (M (L𝑇L)−1M𝑇 + 𝜆2I)−1y (3.5)

3.1.1.3 sLORETA

sLORETA is a well-known method recognized by its zero localization errors in

the absence of noise. This method is based on minimum norm, and improves the

solution by applying a non-linear standardizing to the solution using the variance

of the estimated activity [169]. This variance S𝑥 is defined by:
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S𝑥 = M𝑇 (MM𝑇 + 𝜆𝐼 )−1M (3.6)

then, S𝑥 is used to estimate the source activity as follows:

X̂ =

√︂
1

[S𝑥 ]𝑖𝑖
M𝑇 (MM𝑇 + 𝜆𝐼 )−1y (3.7)

where [S𝑥 ]𝑖𝑖 represents the main diagonal of the variance. The solution of

sLORETA is smooth as it is based on minimum norm, but its property of zero error

localization is preferable for localizing the center of the source activity, where its

position can be selected from the estimated source space by identifying the source

with the highest power value.

3.1.2 Based on a Bayesian framework

The estimation of the source activity based on the Bayesian framework is given

by:

x̂ = 𝐶𝑥𝑀
𝑇 (𝐶𝜀 +𝑀𝐶𝑥𝑀𝑇 )−1𝑌 (3.8)

where the focus of the methods is the estimation of the prior source covariance

matrix 𝐶𝑥 and the noise of the covariance matrix 𝐶𝜀 .

3.1.2.1 MSP

Using Empirical Bayes the source covariance 𝐶𝑥 can be considered as a weighted

sum of a number 𝑁𝑝 of prior components 𝐶 = 𝐶1,𝐶1, ...,𝐶𝑁𝑝
[150]:

𝐶𝑥 =

𝑁𝑝∑︁
𝑖=1

ℎ𝑖𝐶𝑖 (3.9)

where ℎ𝑖 = ℎ1, ℎ2, ..., ℎ𝑁𝑝
are the hyperparamters (weights) of the prior

components. MSP first establishes a set of distributed spatial priors or patches,

where each one encodes the activity of a small brain region 𝐶𝑖 ∈ R𝑁𝑠×𝑁𝑠
, and in a

posterior process MSP optimize the hyperparamters using a cost function based

on free energy.
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The patches or spatial priors are formed from a column of a Green’s function

matrix 𝑄𝐺 ∈ R𝑁𝑠×𝑁𝑠
that considers the inter-voxel distance and its connections.

This matrix is defined by:

𝑄𝐺 = 𝑒𝜎𝐺𝐿
(3.10)

in which 𝐺𝐿 ∈ R𝑁𝑠×𝑁𝑠
is a graph Laplacian that represents the inter-source

connectivity information [170]; and 𝜎 is a positive value that determines the size of

the patches. Therefore, each component forms a bell centered in the corresponding

source. Ideally a component per each source should be considered, however due

to the further optimizations to estimate the hyperparamters, in practical terms,

the number of priors 𝑁𝑝 is much less than the number of 𝑁𝑠 .

A model based on the sample covariance matrix Σ𝑀 can be written considering

the lead field matrix:

Σ𝑀 = 𝐶𝜀 +𝑀𝐶𝑥𝑀𝑇
(3.11)

and considering the covariance matrices as a set of weighted sum of

hyperparameters, this model covariance matrix Σ𝑀 can be rewritten as:

Σ𝑀 = 𝑒𝜆0𝐶𝜀 +
𝑁𝑝∑︁
𝑖=1

𝑒𝜆𝑖𝑀𝐶𝑖𝑀
𝑇

(3.12)

where the change of variable ℎ𝑖 = 𝑒
𝜆𝑖
guarantees positive values and to apply

Gaussian assumptions to the hyperparameters. MSP uses the negative variational

free energy[171] as cost function for estimating the hyperparameters 𝜆𝑖 for the

prior source covariance 𝐶𝑥 and the hyperparameter 𝜆0 for the noise covariance

matrix 𝐶𝜀 . Particularly, this hyperparameter 𝜆0 is considered as a regularization

parameter, and MSP includes this in the hyperparameters’ optimization. The free

energy is used to fit the covariance of the sources to the covariance of the recorded

data 𝐶𝑦 = 1

𝑁𝑡
Y Y 𝑇

, where the variational free energy cost function is defined as:
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F = −𝑁𝑡
2

𝑡𝑟 (𝐶𝑦Σ−1𝑀 ) −
𝑁𝑡

2

𝑙𝑜𝑔 |Σ𝑀 | −
𝑁𝑡𝑁𝑐ℎ

2

𝑙𝑜𝑔2𝜋

−1
2

( ˆ𝜆 − 𝑣)𝑇Π( ˆ𝜆 − 𝑣) + 1

2

𝑙𝑜𝑔 |Σ𝜆Π |
(3.13)

where the | · | represents the matrix determinant operator. 𝑞(𝜆) is the

prior hyperparameters and 𝑝 (𝜆) the approximate posterior. Both are considered

Gaussian processes: 𝑞(𝜆) = N(𝜆; 𝑣,Π−1) and 𝑝 (𝜆) = N(𝜆; ˆ𝜆, Σ𝜆). The meaning of

each of the terms of the free energy equation 3.13 is expressed in words in table

3.1.

Free Energy Term Meaning

−𝑁𝑡

2
𝑡𝑟 (𝐶𝑦Σ−1𝑀 ) Model error

−𝑁𝑡

2
𝑙𝑜𝑔|Σ𝑀 | Size of model covariance

−𝑁𝑡𝑁𝑐ℎ

2
𝑙𝑜𝑔2𝜋 Number of data samples

− 1

2
( ˆ𝜆 − 𝑣)𝑇Π( ˆ𝜆 − 𝑣) Error in hyperparameters

1

2
𝑙𝑜𝑔|Σ𝜆Π | Error in covariance of hyperparamters

Table 3.1: Explanation of the variational free energy equation terms [150]

The hyperparameter optimization is performed using variational Laplace, in

which the objective is to identify the hyperparameters 𝜆 that maximize the free

energy cost function [150]. Once the hyperparamters are found, the equation 3.8

can be solved to estimate the distributed source activity.

3.1.3 Based on Scanning Methods

MUSIC [153] algorithm is a source localization algorithm. It can estimate the

localization of a source by projecting the contribution of each source to the sensor

space, and evaluating whether its projection (topography) belongs to a signal-

subspace or noise-subspace. This particular algorithm is useful to identify the

number of active sources and locate them. However, the contribution is calculated

using a localizer function, and it is often difficult to identify the true active sources

due to the fact that neighbor sources of the true source can lead to a similar

topography and similar value in the localizer function. Therefore, to avoid this

problem the topography is out-projected and the sources can be calculated one
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by one in the version RAP-MUSIC. However, the RAP version has an undesired

property of leaving large values in the localizer function in the vicinity of already

located sources, which produces an overestimation of the number of sources due to

some false positive sources. This weakness was improved by applying a sequential

dimension reduction of the estimated remaining signal space at each recursion

step in TRAP-MUSIC [17, 154].

3.1.3.1 MUSIC

The objective of the algorithm is to estimate the location of the 𝑠 true sources

p1, ...,p𝑠 from the noisy EEG with the aid of spatial/physical information of the

lead field matrixM and the temporal information of the measured signals y.

The algorithm is based on the separation of data space 𝑠𝑝𝑎𝑛(y) into two

mutually orthogonal subspaces, the signal space 𝑠𝑝𝑎𝑛(M ) and the noisy space

𝑠𝑝𝑎𝑛(M )⊥ [17, 153].

Let P𝑠𝑔 = MM⊺
be the orthogonal projection from R𝑚 data space onto

𝑠𝑝𝑎𝑛(M ), it is the projection to the signal space. Let’s consider the structure of

the volume conductor matrix as M = [𝑙1, ..., 𝑙𝑠], where 𝑙𝑠 is the topography of

the source 𝑠 , and stores the weights to calculate the value of each sensor due to a

possible activation of the source 𝑠 .

The algorithm is based on the following property of the signal projection: for

anyp, the norm ∥P𝑠𝑔𝑙 (p)∥ = ∥𝑙 (p)∥ if 𝑙 (p) is one of the actual source topographies
that contributed to the signal space. On the contrary, if ∥P𝑠𝑔𝑙 (p)∥ < ∥𝑙 (p)∥ this
is because 𝑙 (p) did not contribute. The localizer function µ(p) can be computed

as follows:

µ(p) =
∥P𝑠𝑔𝑙 (p)∥2

∥𝑙 (p)∥


= 1, if p ∈ {p1, ...,p𝑠 }

< 1, otherwise

(3.14)

To separate the signal and noise the eigenvalue decomposition of the

covariance matrix C of the measurements is used, where the covariance is

C = yy𝑇 and is assumed to have the following structure:

C = C0 + 𝜎2I = U𝑑𝑖𝑎𝑔(d1 + 𝜎2, ...,dk + 𝜎2, 𝜎2, ..., 𝜎2)U𝑇
(3.15)

Where C0 = UDU𝑇
is the covariance matrix of the noiseless data. Where
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d1, ...,d𝒔̃ are the eigenvalues related to the 𝑠 sources, and 𝜎2 the noise level.

Then, the projection to the signal space P𝑠𝑔 can be calculated using the first 𝑠

eigenvectors, by:

P𝑠𝑔 = U (:, 1 : 𝑠)U (:, 1 : 𝑠)𝑇 (3.16)

In practice, the number of true sources 𝑠 is not known. In theory it can be

estimated from the eigenvalue decomposition of data covariance matrix C , by

determining the index 𝑗 after which the eigenvalues d𝑗 drop and stay flat. Figure

3.3 shows an example of the estimation of the number of sources using this

approach. Another option is to use a priori knowledge of the number of sources

based on the type of activity to analyze. However, this method can be prone to

error, as the number of sources can be wrongly set, and the algorithm can estimate

the locations of ghost sources, resulting from the volume conduction.

Figure 3.3: Estimation of the number of sources based on the eigenvalue

decomposition of an EEG with four underlying sources.

In practice, due to the noise, the value of the localizer µ(p) ≈ 1 if p is one

of the true sources p1, ...,p𝑠 , and µ(p) < 1 if there is no source (or near) at the

position p. In the MUSIC algorithm, the 𝑠 true source positions are estimated by

selecting the 𝑠 highest values of the localizer function.
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3.1.3.2 RAP-MUSIC

In RAP-MUSIC, instead of finding 𝑠 local maximums of the localizer in one round,

the algorithm finds a global maximum of the localizer in each sequential round.

The RAP-MUSIC algorithm starts the first iteration with a plain MUSIC step in

which the first location of p1 is estimated from the global maximum point of the

localizer µ(p) [17, 154].
To findp𝑘 and 𝑙𝑘 (p𝑘 )with𝑘 = 2, ..., 𝑠 . The process starts forming an orthogonal

projection called the out-projector asQ𝑘 = I −B𝑘B
𝑇
𝑘
.

Where B𝑘 = [𝑙1, ..., 𝑙𝑘−1] contains the topographies of the previously found

sources

Now the transformed (approximated) signal space is 𝑠𝑝𝑎𝑛(QkUs), with
Us = 𝑈 (:, 1 : 𝑠). Its space can be decomposed as Q𝑘U𝑠 = U𝑘D𝑘U

𝑇
𝑘
, where

the new orthogonal projection P𝑘 can be computed onto the transformed signal

space 𝑠𝑝𝑎𝑛(Q𝑘U𝑠) as follows:

P𝑘 = U𝑘 (:, 1 : 𝑠)U𝑘 (:, 1 : 𝑠)𝑇 (3.17)

In the 𝑘 − 𝑡ℎ iteration, the location of p𝑘 is now the global maximum point of

the new localizer function µ𝑘 calculated as follows:

µ𝑘 (p) =
∥P𝑘Q𝑘𝑙 (p)∥2
∥Q𝑘𝑙 (p)∥

(3.18)

RAP-MUSIC at each recursive step performs the same operation as the

conventional MUSIC but applied to the transformed equation:

Q𝑘y = Q𝑘Mx +Q𝑘𝜀 (3.19)

Which has the same form as the forward equation in 2.1, with the additional

out-projectorQ𝑘 applied at both sides. RAP-MUSIC has the unwanted property

in the recursive process, in which the algorithm leaves large residual values of

the localizer µ𝑘 in the vicinity of already found sources, which may lead to a

wrong choice of p𝑘 , this effect is known as the RAP-dilemma, and it prevents the

algorithm from cleaning out the source information of previous recursion steps.
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3.1.3.3 TRAP-MUSIC

To avoid the RAP-dilemma and attenuate the effect of the vicinity in the localizer

function µ𝑘 , a sequential dimension reduction of the estimated remaining signal

space is calculated at each recursion step [17, 154]. The procedure is the same as

in RAP-MUSIC, however, in TRAP-MUSIC at each recursion, one source is found

and projected out, and hence in the following step there is one source less in the

remaining signal space. This is done by calculating the out-projector p𝑘 in the

following way:

P𝑘 (𝑇𝑅𝐴𝑃 ) = U𝑘 (:, 1 : 𝑠 − 𝑘 + 1)U𝑘 (:, 1 : 𝑠 − 𝑘 + 1)𝑇 (3.20)

When the localization of the source is estimated by a MUSIC-based algorithm,

the source time-course can be estimated using Tikhonov regularization or MNE

method, by constraining the solution to the previous estimated locations.

3.1.4 Measurements of Performance

Several measurements of performance have been proposed in the literature over

the years. They serve to quantify and compare the accuracy and performance of

the source reconstruction algorithms. Some of the measurements of performance

are meant to evaluate the spatial accuracy, which is particularly relevant for source

localization and its applications e.g. localization of epileptic foci [12]. However,

this is not the only source parameter that can be compared. The estimation of

the source time courses is also relevant to determine the dynamics of a particular

region or the dynamics of the brain networks in connectivity processes. Here,

the performance measurements considered in this thesis are presented, some of

which are relevant for localization, and others for time-course comparison.

The MUSIC-based methods provide a direct estimation of the source location

𝑃𝑥 , and if the time course is required at this position, it can be computed usingMNE

constrained to the estimated location. To compute the time course associated to 𝑃𝑥

the MNE solution considers the column of the lead field matrix 𝑙𝑃𝑥̂ and estimates

the time course as follows:

x̂ = 𝑙𝑃𝑥̂ (𝑙𝑇𝑃𝑥̂ 𝑙𝑃𝑥̂ + 𝜆I)
−1𝑙𝑇𝑃𝑥̂y (3.21)
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In the case of MSP, sLORETA, and wMNE, the estimation x̂ is a distributed map

with time-courses known. The location of the source is extracted by identifying

the source with the highest power in a given sample or by averaging the power

distributed map during a time of interest.

3.1.4.1 Localization Error

The localization error is computed using the euclidean distance between the

position of the ground-truth source 𝑃𝑥 and the estimated source position 𝑃𝑥 using

the following equation:

𝐿𝑜𝑐𝐸 = ∥𝑃𝑥 − 𝑃𝑥 ∥2 (3.22)

As the source space is represented in a 3D coordinated space, the euclidean

distance is a direct measurement of the accuracy of the source localization.

3.1.4.2 Relative Error

The relative error, also known as a reconstruction error, is a measure that can be

used for comparing both spatial and temporal accuracy.

𝑅𝑒𝑙𝐸 =
∥x − x̂∥2
∥x∥2

(3.23)

When comparing the full matrix of the estimated source activity x̂ and the

ground-truth x, both time-courses and their locations are considered. The relative

error can also be used for estimating the time-course fit between a pair-wise

reconstructions computed from different numbers of electrodes. Consider the

reconstruction x𝐴 in which the position of the main source was found at 𝑃𝑖 and

its time-course x𝐴𝑖 and the reconstruction x𝐵 with the main source at 𝑃 𝑗 and

time course x𝐵𝑖 . The relative error between the pair-wise of time-courses can be

computed as:

𝑅𝑒𝑙𝐸 (𝑝𝑎𝑖𝑟 −𝑤𝑖𝑠𝑒) =
∥x𝐴𝑖 − x𝐵𝑗 ∥2
∥x𝐴𝑖 ∥2

(3.24)

where x𝐴 is considered the reconstruction with the highest number

of electrodes, or the reconstruction assumed to have better time-course

reconstruction accuracy.
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3.1.4.3 Pearson Correlation Coefficient

This performance metric measures the pair-wise correlation of the time courses

of two reconstructions. Consider the same two time courses x𝐴𝑖 and x𝐵𝑖 from

different reconstructions as in the pair-wise relative error. Then, the Pearson

correlation coefficient 𝑟 can be computed using the following expression:

𝑟 =

∑(x𝐴𝑖 − x𝐴𝑖) (x𝐵𝑗 − x𝐵𝑗 )√︁∑(x𝐴𝑖 − x𝐴𝑖)2∑(x𝐵𝑗 − x𝐵𝑗 )2 (3.25)

where x𝐴𝑖 represents the mean of the time course.

3.1.4.4 Wasserstein Metric

The Wasserstein Metric (WM), also known as earth mover’s distance [172, 173],

was proposed as a measurement of dissimilarity between two image histograms.

In this case it can be used to evaluate the dissimilarity between an estimated

reconstruction and a ground-truth [174, 175]. It measures the work required to

transform the estimated power distribution of sources into the ground-truth power

distribution by “transporting” the probability of mass [176].

To understand this measurement, the following example is introduced.

Consider the two source distributions used previously, x𝐴 and x𝐵 . The power

of each one of the source distributions can be divided into small units with a

fixed amplitude. Both distributions are divided in the same number of units. To

transform the power distribution of sources x𝐴 into x𝐵 , consider the power source

distribution units of x𝐴 as amounts of earth, and the power source distribution

of units of x𝐵 as an amount of holes. If the power distributions are equal

x𝐴 = x𝐵 the units of earth can directly fit in the holes. But when they are

different, it will be necessary to move the earth in other directions to fill the

holes. The average distance (work) between all units minimized over all possible

transformations represents the WM. Considering this, a distribution of different

types of distribution can be compared. e.g. the distribution resulting of a fMRI

analysis can be compared with an EEG power source distribution in a meaningful

way [174, 177]. This index provides a spatial comparison between the ground-

truth and an estimated source activity, where a lower WM value represents a

better spatial accuracy of the source reconstruction.
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3.2 Simulation framework for source activity and EEG
trials

The evaluation of source reconstruction methods requires a comparison with

a ground-truth that accurately describes brain activity. The lack of ground-

truth poses one major difficulty when evaluating the performance of source

reconstruction algorithms and developing analysis methods. This problem arises

when using scalp recorded EEG activity. Often there is no reference of the actual

underlying source activity, only in some specific applications can ground-truth be

available, e.g. epilepsy foci localization.

In this work, a technique based on sinusoidal Gaussian windowed activity

has been applied to simulate the activation of a particular source. The simulation

framework presented here has been used to generate EEG trials, including noise

in the measurements to be of further use in evaluating the performance of source

reconstruction algorithms.

The simulation framework starts with the simulation of a single or multiple

source activity. By using the equation of a sinusoidal Gaussian windowed activity

a source time-course 𝑠𝑖 can be computed:

𝑠𝑖 (𝑡) = 𝑎𝑖𝑒−
1

2
( 𝑡−𝑐𝑖

𝜎
)2𝑠𝑖𝑛(2𝜋 𝑓𝑖𝑡) (3.26)

where 𝑖 represents the source index and this source time-course 𝑠𝑖 has several

parameters associated with it: The window center 𝑐𝑖 represents the time (s) in

which the windowed source activity is centered. 𝑓𝑖 determines the frequency (Hz)

of the sinusoidal time-course source activity, and 𝜎𝑖 determines the shape of the

Gaussian window by adjusting its width. An example of three source activities

varying in center, frequency and width are presented in figure 3.4. The parameter

𝑎𝑖 can be used to adjust the amplitude of the time-course, with a value of 𝑎𝑖 = 1 the

resulting maximum amplitude will be between -1 to 1, as the currents in source

dipoles are defined in Amperes per area [16], typical values are in the order of

𝜇𝐴/𝑚𝑚2
or 𝑛𝐴/𝑚𝑚2

, the parameter 𝑎𝑖 can be adjusted to reach such levels. This

simulation of source time-courses using sinusoidal Gaussian windowed activity

has been applied in multiple studies to generate underlying source activity with

similarities of ERP components [178].
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Figure 3.4: Source activity of three sources with different parameters.

The lead field matrix𝑀 has 𝑁𝑠 columns, related to the 𝑁𝑠 sources. Each one

of the sources has an associated 3D location in the cortical sheet. After the source

time-courses are simulated, a location parameter 𝑙𝑜𝑐𝑠𝑖 related with the column

of the lead field matrix is assigned, where 𝑙𝑜𝑐𝑠𝑖 is the column index in which the

source 𝑠𝑖 is located. To include the neighboring synchronization, the Green’s

function matrix 𝑄𝐺 is used (equation 3.10. The time-course 𝑠𝑖 vector is multiplied

by each one of the elements of column 𝑙𝑜𝑐𝑠𝑖 of the 𝑄𝐺 matrix, producing a bell

centered at 𝑙𝑜𝑐𝑠𝑖 source activity map 𝑥𝑠𝑖 .

𝑥𝑠𝑖 = 𝑠𝑖 ·𝑄𝐺 (𝑙𝑜𝑐𝑠𝑖 ) (3.27)

where · is the dot product, and 𝑄𝐺 (𝑙𝑜𝑐𝑠𝑖 ) the 𝑙𝑜𝑐𝑠𝑖 -th column of 𝑄𝐺 . Figure

3.5 shows the time-course of a single source, and the power density map at three

times with and without the neighbor synchronization included.

A number 𝑛 sources can be simulated, and the current source activity matrixx

can be computed as a weighted sum of the 𝑛 number of 𝑥𝑠𝑖 current source maps,

as follows:

x =

𝑛∑︁
𝑖=1

𝑘𝑖𝑥𝑠𝑖 (3.28)

where 𝑘𝑖 is a positive scalar factor that can be used to modulate the amplitude
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Figure 3.5: Time-course of a single source and its power density maps at three

times with and without the neighbor synchronization included.

of the current source m 𝑘𝑖 . In a multiple source case, this can be done to make a

source dominant over other sources, and to set smaller sources in the background.

After the distributed source activity x is obtained, the EEG forward equation

(equation 2.2) can be used to simulate the EEG trial y, the noise 𝜀 can be added

to include measurement noise, or ignored for noise-free EEG. The measurement
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noise 𝜀 can be added by computing the power of each EEG channel, and using its

value as reference to generate random or Gaussian noise to add it to the signal.

The power of the noise will determine the SNR of the measurements, the SNR

ratio in dB can be computed from the following expression:

𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10(
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) (3.29)

To summarize the simulation framework figure 3.6 presents a multi-source

case with two simulated sources, where their power source map and time-courses

are shown. The two sources were simulated using different parameters.In addition,

the simulated EEG is presented with a SNR of 0dB, and noise-free.

3.3 From Raw EEG Signals to ERPs
The ill-posed characteristic of the inverse problem makes it sensible to input noise,

where small changes in the input can largely affect the source distribution map.

To attenuate this effect the input should have the best SNR possible. This allows

to avoid source disturbances caused by the artifacts presented in the data. Source

reconstruction typically uses averaged ERP responses due to the noise reduction

during the averaging process. Although single-trial source reconstruction has

been previously attempted, it is scarcely reported [179].

This work considers two kinds of inputs for the source reconstruction

algorithms: the ERPs of measured data or the synthetic trials generated by using

the simulation framework (see section 3.2). Here, the typical pipeline for extracting

ERP responses is introduced. First, by introducing the artifact rejection and artifact

correction concepts and methods, and second, by presenting the pre-processing

steps of the pipeline.

3.3.1 Artifact Correction

Artifact correction refers to the procedures applied to the EEG signals in order to

estimate the contributions of the artifacts and subtract them from the signal [62].

Procedures that lie in this category are: filtering and blind source separation (BSS)

methods.

• Filtering: This is a common pre-processing step in signal-analysis. For EEG

signals several configuration of filters can be applied; low-pass, high-pass,



70 70

Figure 3.6: Time-courses and power source map of two sources with different

weights, simulated EEG noise free and with SNR of 0 db.
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band-pass, and notch filters are commonly applied. The filters to apply can

be dependent on data, participant, and measurement conditions.

A high-pass filter is used to attenuate the effects of slow drifts produced

by the skin potentials. Authors often differ in the value cutoff frequency of

the filter. In addition the kind of electrodes used at scalp can influence the

selection of this frequency, usually a 0.1 Hz is used when recording with wet

electrodes and low-input impedance amplifiers, while higher values might

be used with dry electrodes and high-input impedance amplifiers. However,

filters above 0.1 Hz can severely distort the ERP waveforms, while filters

above 0.5 Hz have been found significant in affecting ERP responses [64].

Low-pass filtering can be applied to the data to attenuate the effect of EMG

activity (primarily above 100 Hz). Often the frequency of interest for brain

activity is below 40 Hz [43]. However, the application of this filter can be

optional and might depend on the data and participants’ behavior. e.g, data

from participants that move, chew or swallow constantly might require the

use of a high-pass filter. Band-pass filtering is equivalent to the combination

of a low-pass and a high-pass filter.

Notch filters reject a narrow band of frequencies around a specific cutoff

frequency. It is usually applied to remove the power line noise which is well

known to appear at 50/60 Hz depending on the network frequency of the

recording location.

• BSSMethods: Thesemethods approach the artifact correction by separating

the data into components that can be related to the brain responses

and artifacts, and then reconstruct the data excluding those artifact-

related components. Principal component analysis (PCA) and independent

component analysis (ICA) are common methods for BSS. In particular, ICA

technique has been adopted and used to remove the contribution mostly

of EOG artifacts, but also for ECG and power line. Its analysis is based

on the scalp voltage distribution (topography) in which the components

that have a similar scalp distribution can be separated. The components are

assumed to be independent and come from different sources (note that in this

context, source is not the current source from neuron populations) therefore
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a linear transformation matrix can be estimated to separate the data into

components. The components are evaluated (usually by visual inspection)

and the data is reconstructed only with the components associated with

brain activity, while the components associated with artifacts are rejected.

Artifacts with variable topography e.g. specific movement artifacts, and

skin potentials, are not clearly separable by ICA [62, 180–182].

Despite its efficacy to remove artifacts, this method should be applied

carefully. The use of ICA can introduce error patterns in ERPs [183]

and therefore, can affect the results of source localization [184]. It has

been found that it can also distort the phase of the waveforms and their

spectral properties [185], an important drawback to consider for connectivity

analysis. Another drawback of this method is that the selection of the

components can be problematic and time consuming. It requires an expert

operator or analyst to decide on the components to retain and discard, which

is done by analyzing the topography, power spectrum density (PSD) and

patterns in the appearance. However, the components vary from participant

to participant, and therefore it is often difficult to objectively remove the

same kind of components from all participants, which may result in biased

conclusions [62].

3.3.2 Artifact Rejection

Artifact rejection refers to the removal of data that contains artifacts and can be

done in several ways; by identifying and removing bad channels e.g. channels

that contain multiple artifacts, channels that were not properly connected and

mostly captured noise. Another common artifact rejection practice is to identify

segments of the data that contain large artifacts due to movements and remove

them. This is often done by visual inspection.

The use of a threshold is typically applied to identify and reject epochs that

contain EOG activity, where the typical value is ±75𝜇𝑉 to ±100𝜇𝑉 [62].

3.3.3 The typical ERP pipeline

The pipeline is presented in figure 3.7, where the steps related to artifact correction

are marked in light blue, and the steps related to artifact rejection in light green.
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The steps have not been covered in the artifact correction and artifact rejection

sections and are explained as follows:

• Down-sampling: This is an optional step usually done to reduce the

memory requirements for subsequent steps. Here, it is important to consider

the Nyquist theorem and to avoid down-sampling to lower values than the

double of the higher frequency of interest.

• Epoching: The epochs are segments of the EEG that are related to a

particular event. They define the time ROI of the ERPs. A baseline correction

is recommended. This is done by taking the average of a baseline period

and subtracting it to the whole window. Usually a period of 200 ms before

the stimuli is used as baseline, which minimizes the effects of changes in

voltage offset across time periods and drifts [62].

• Averaging: This is the last step of the pipeline that results in the ERP

components. This step consists of computing the average between all the

epochs aligned with respect to the time-locking event or stimuli. This

simple step has a significant effect on the noise level. The single trials

record the background activity of the brain that is assumed to be random

with positive and negative peaks, and the evoked activity, that is assumed

to be time-locked to the event. In the average process all the random

background activity is attenuated, while all the time-locked responses are

enhanced, resulting in the distinguishable ERPs. Often, a high number of

epochs is recommended to obtain clear and distinguishable ERPs. The use

of low numbers may affect the noise reduction and therefore the source

reconstruction accuracy [62, 72, 186].

3.4 Frequency Decomposition Algorithms
The EEG data contains a mix of signals from the brain and its surroundings, such

as eyes, muscles, heart, etc. It is well known that different body processes are

presented in the EEG signals with different frequencies, and the activity of the

brain itself can also be found in several frequency bands related to a variety of

underlying brain processes. Thus, it seems natural to use frequency decomposition
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Figure 3.7: Typical pipeline for ERP calculation.

methods to decompose the EEG signals in frequency bands to analyze its content.

However, the EEG signals are non-linear and non-stationary signals [18], and

methods that can deal with those properties are preferred to decompose the EEG

signals in frequency. Empirical mode decomposition (EMD) and its variations have

been applied in multiple applications involving EEG signal analysis [187–191] and

EEG source reconstruction [178, 192, 193] due to its ability to deal with non-linear

and non-stationary signals to decompose the signal in intrinsic mode functions

(IMF). This section presents the decomposition methods EMD and the multivariate

version MEMD. These methods are further related with chapter 4.
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3.4.1 Empirical Mode Decomposition

EMD is an adaptive and data-driven method for analyzing non-stationary and non-

linear processes [194, 195]. It decomposes the signals in a set of oscillatory modes

or IMFs time series using a sifting process. Briefly, this consists of identifying the

local minima andmaxima of a time series, creating new time series by interpolating

across the local minima and maxima, and subtracting the mean from the original

signal. Each IMF must comply with the following definition:

• The numbers of zero-crossing and extrema that are either equal or differ at

most by one.

• At any point, there is a symmetry of the upper/lower envelopes with zero

mean.

The process of extracting the IMFs from a time-series signal is called sifting.

This is a data-driven method that does not involve any a priori assumption of the

signal and its properties. To exemplify the process and put it into context with

EEG data, let’s consider the EEG from a single channel y(𝑡) to be decomposed.

EMD decomposes the time series of the channel y(𝑡) into a set of 𝑘 IMFs 𝛾𝑖 (𝑡)
and a residue 𝑟 (𝑡):

y(𝑡) =
𝑘∑︁
𝑖=1

𝑦𝑖 (𝑡) + 𝑟 (𝑡) (3.30)

The sifting process consists of the following steps:

1. Identify all extrema (upper and lower) in 𝑣𝑒𝑦 (𝑡)

2. Generate envelopes, lower envelope 𝑒𝑙 (𝑡) and upper envelope 𝑒𝑢 (𝑡) by
interpolating between minima and maxima.

3. Compute the mean envelope𝑚(𝑡) = 𝑒𝑙 (𝑡 )+𝑒𝑢 (𝑡 )
2

.

4. Compute the residue by extracting the mean envelope to the signal 𝑟 (𝑡) =
y(𝑡) −𝑚(𝑡)

5. Evaluate if 𝑟 (𝑡) fulfills the IMF definition. If so, 𝛾𝑖 (𝑡) = 𝑟 (𝑡), if not, repeat
steps 1 to 4.
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An example of a decomposed EEG signal using EMD is presented in figure 3.8.

The main drawback of EMD is the mode mixing problem, which represents

the fact that oscillatory modes of several close frequencies appear in the same IMF,

resulting in an unclear separation. This problem appears mainly when EMD is

applied over signals with intermittent behavior and have components with close

frequencies [196]. Several variants of EMD have been proposed to attenuate this

effect, e.g. ensemble EMD (EEMD) and complete ensemble (CEEMD) methods have

been designed to separate components in the presence of intermittency signal

properties [197, 198]. Another drawback arises when applying the standard EMD

and its variations in multivariate data. Usually, the number of IMF differs across

channels and the information of a similar event recorded from different channels

can be found in different IMF numbers for each channel (IMF misalignment).

Therefore selection of IMF is required in order to extract similar frequency

information in multivariate data. To attenuate the mode mixing, and improve

the IMF misalignment in multivariate data, the multivariate version MEMD was

proposed [199].

3.4.2 Multivariate Empirical Mode Decomposition

The MEMD method aims to address the following standard EMD limitations[200]:

1. Non-uniform signals: standard EMD can not always guarantee the same

number of IMFs for each channel.

2. Scale alignment: it is not possible to guarantee that the corresponding scales

have the same modes.

3. Constraining the number of IMFs for every channel could compromise

time-frequency estimation; it is the nature of IMFs to vary in number.

In addition, univariate EMD can be applied channel-wise if the channels are

not strongly coupled. Furthermore it is known that the EEG channels are strongly

coupled, in part due to volume conduction problem, and trying to select the

same number of IMFs that represent the same event information from different

channels can lead to the rejection of valuable data [200]. Multivariate data are

characterized by generalized oscillations (joint rotational modes), which must be
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Figure 3.8: EEG signal and the IMFs and residue obtained by EMD.



78 78

treated consistently to reach a meaningful estimation of time-frequency properties

([199]).

The signal in EMD is the sum between a slow and a fast oscillation, whereas

the signal in the MEMD method is the result of the sum of a slow rotation and

fast rotation. In that sense, MEMD can decompose multivariate signals (𝑝-variate)

𝑣 (𝑡) in 𝑝-variate IMFs 𝛾𝑖 and a residue 𝑟 (𝑡):

y(𝑡) =
𝑝∑︁
𝑖=1

𝛾𝑖 (𝑡) + 𝑟 (𝑡) (3.31)

where 𝑐𝑖 represents the joint rotational modes.

EMD computes the local mean by interpolating among local minima and

maxima to calculate the mean of the upper and lower envelopes. In contrast,

the solution with MEMD proposes a method to generate multiple n-dimensional

envelopes, which are computed using the projections of the signal over different

directions in n-dimensional space. These projections are then averaged to

calculate the local mean [199]. Consider the multivariate data y(𝑡) = 𝑦1, 𝑦2, ..., 𝑦𝑝
as a 𝑝 vector, representing the multivariate signal with 𝑝 components, and

d = 𝑑𝜃1, 𝑑𝜃2, ..., 𝑑𝜃𝑝 denoting a set of direction vectors along the direction given by

the angles of θ = 𝜃1, 𝜃2, ..., 𝜃 (𝑝−1) on a (𝑝 − 1) dimensional sphere. Then the steps

of the MEMD algorithm are presented as follows:

1. A p-point Hammersley sequence is generated for uniformly sampling a

𝑝 − 1-dimensional sphere.

2. Calculate a set of the projections P𝑖 using each one of the vectors of the

signal 𝑦𝑖 along all the directions of d.

3. Identify the time instants 𝑡𝑖𝜃𝑖 that correspond to the maxima of the set of

projections P𝑖 of the signals.

4. Interpolate [𝑡𝑖𝜃𝑖 , y(𝑡𝑖𝜃𝑣 )] to obtain the envelope curves 𝑒𝜃𝑖 (𝑡).

5. the mean of the 𝑝 multidimensional envelopes is calculated using:

m(𝑡) = 1

𝑝

𝑝∑︁
𝑖=1

e𝜃𝑖 (𝑡) (3.32)
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6. Extract the "detail" 𝑑 (𝑡) = y(𝑡) −𝑚(𝑡). If 𝑑 (𝑡) fulfills the stoppage criterion
for a multivariate IMF, apply the above procedure to y(𝑡) −𝑑 (𝑡). Otherwise
repeat for 𝑑 (𝑡).

MEMD has several advantages over EMD. One of the most relevant is the

alignment of the modes in the same IMFs for each channel (mode alignment).

This property favors making use of similar scales in the different channels and

by that offering the possibility of direct multi-channel data analysis preserving

the common channel properties. Also, the data channels have the same number

of scale-aligned IMFs and although mode mixing remains, its impact is reduced.

Another important benefit ofMEMD is the noise reduction, where it has been found

that noise reduction withMEMD is significant against the standard EMD [201, 202],

where noise reduction allows for identification of instantaneous frequency at a

more accurate level.

After a decomposition of an EEG signal in IMFs, the signals can be easily

retrieved by a direct sum of all the components, as the number of samples is

preserved. EMD-based methods have this property, in which no time resolution is

reduced when decomposing the signal. EMD and MEMD can be used for denoising

by removing the IMFs related to noise and reconstructing the signals from the

components related to the activity of interest. However, this requires careful

selection of the IMFs.

3.5 Relevance Analysis

Relevance analysis is a measure to evaluate the clustering quality of a subset

of features based on energy or spectral properties [203, 204]. This concept has

been proposed for feature selection in supervised and unsupervised inference

problems [203]. In the context of EEG source reconstruction, it has been applied to

weight the channels data, giving a higher influence to the most relevant channels

and attenuating the influence of the less relevant ones [205]. In this work, the

algorithm Power Embedded Q-Alpha Algorithm (Q-𝛼) is applied to compute a

weight 𝛼 for each channel and select a group of 𝑁𝛼 relevant channels to perform

source reconstruction. The details are presented in chapter 5.
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3.5.1 Power Embedded Q-Alpha Algorithm

The objective of this algorithm is to compute a weight 𝛼 to weight a set of features

according to the clustering quality of the data points using the power properties. In

the context of EEG signals, to estimate a weight 𝛼 related to the clustering quality

of EEG channels. Consider the EEG data y from 𝑁𝑐ℎ , where each one of its rows

corresponds to a channel 𝑣𝑒𝑦 = [𝑦𝑇
1
, 𝑦𝑇

2
, ...,y𝑇

𝑁𝑐ℎ
]. The rows are then pre-processed

such that each row is centered around zero and its L2 norm | |y𝑖 | | = 1. Consider

A𝛼 to be the affinity matrix of the inner product between data points weighted

by 𝛼 as:

A𝛼 =

𝑛∑︁
𝑖=1

𝛼𝑖𝑦𝑖𝑦
𝑇
𝑖 (3.33)

Also consider Q ∈ R𝑁𝑡×𝑘𝐾
as an orthonormal matrix, whose columns are the

𝑘 eigenvectors of A associated with the highest eigenvalues. To compute the

channel relevance, the weight 𝛼 can be calculated by solving the optimization

problem presented below:

max𝑡𝑟𝑎𝑐𝑒
Q,𝛼

(Q𝑇A𝑇
𝛼A𝛼Q)

subject to 𝛼𝑇𝛼 = 1

(3.34)

This optimization can be solved by applying the Power-Embedded Q-𝛼

algorithm adapted for EEG channel relevance. It is presented in algorithm 1,

where 𝑟 represents the number of iterations for convergence of the algorithm.

This value is often set to 𝑟 = 10 according to the number of iterations suggested

in [203].

3.6 Multi-objective Optimization Algorithms

A single-objective optimization refers to the optimization of a cost function 𝑓 (𝑥) in
which the parameters of 𝑥 are identified, generally to find the global maximum or

minimum, which depends if the optimization problem is to minimize or maximize

the cost function 𝑓 (𝑥). In the case of multi-objective optimization problems

(MOOP), several cost functions 𝑓𝑚 (𝑥) with 𝑖 = 1, 2, . . . , 𝑀 are considered as

objectives to minimize or maximize, and there may not exist an unique solution
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Algorithm 1 Power-Embedded Q-𝛼 algorithm

1: procedure Q-𝛼(𝑦)

2: 𝑄0 ← random orthonormal matrix

3: 𝑟 ← 1

4: while 𝑟 ≤ 10 do
5: 𝐺𝑖, 𝑗 ← (𝑦𝑇𝑖 𝑦 𝑗 )𝑦𝑇𝑖 Q𝑟−1Q𝑇

𝑟−1𝑦 𝑗
6: 𝛼 ← the largest eigenvector of 𝐺

7: A𝛼 ←
∑𝑁𝑐ℎ

𝑖=1
𝛼𝑖𝑦𝑖𝑦

𝑇
𝑖

8: 𝑍 ← A𝛼Q𝑟−1
9: Q𝑟𝑅 ← QR decomposition of 𝑍

10: 𝑟 ← 𝑟 + 1
11: end while
12: return 𝛼
13: end procedure

that is the best with respect to all the objectives. Typically, there exist a set of

solutions that can be superior to the most of the solutions of the search space,

this solutions are considered non-dominated solutions and form the well known

Pareto-optimal [206].

A generalized mathematical framework for a MOOP problem can be written

as [207]:

Minimize/Maximize 𝑓𝑚 (𝑥), 𝑚 = 1, 2, ...., 𝑀

subject to

𝑔 𝑗 (𝑥) ≥ 0, 𝑗 = 1, 2, ...., 𝐽

ℎ𝑘 (𝑥) = 0, 𝑘 = 1, 2, ...., 𝐾

𝑥
(𝐿)
𝑖
≤ 𝑥𝑖 ≤ 𝑥 (𝑈 )𝑖

, 𝑖 = 1, 2, ...., 𝑛

(3.35)

where 𝑔 𝑗 (𝑥) and ℎ𝑘 (𝑥) are restriction functions. 𝑥 ∈ R𝑛 is a solution

vector with n decision variables, x = 𝑥1, 𝑥2, ..., 𝑥𝑛
𝑇
. The last set of constraints

𝑥
(𝐿)
𝑖
≤ 𝑥𝑖 ≤ 𝑥 (𝑈 )𝑖

establishes a lower 𝑥
(𝐿)
𝑖

and upper 𝑥
(𝑈 )
𝑖

bound for the decision

variable 𝑥𝑖 . The solution in these bounds forms the decision space D [207].

However a MOOP can be formulated with more restrictions or without any. The

optimization process consists then in identifying and evaluating multiple feasible
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values for 𝑥𝑖 to identify the best parameters that minimize/maximize the objective

functions; being a feasible solution 𝑥𝑖 ∈ D.

Evolutionary algorithms, in particular genetic algorithms (GA), have been

extensively used for searching and optimizing the decision variables in multiple

engineering applications [208–210]. In this work, the non-dominated sorting

genetic algorithm NSGA-II [211] has been proposed for channel selection in source

reconstruction problems. This is explained in detail in chapter 6.

3.6.1 The Non-dominated Sorting Genetic Algorithm II

The core of NSGA-II consists of several stages: Population initialization, Fitness

calculation, Crossover, Mutation, Survivor selection, and Termination criteria to

return the best solutions 𝑥𝑖 . The population 𝑃 consists of a set of solutions 𝑥𝑖 ,

which are possible solutions to the problem, and each chromosome can have as

many genes as variables in the problem.

The NSGA algorithms use a non-dominated sorting ranking selection method

to identify and evolve the best candidates to maintain stable populations of good

and feasible solutions to conform a Pareto-front [206]. NSGA-II includes an elitist

approach to compare the current and previous populations that allows to identify

the best non-dominated solutions and improve the original version of NSGA [211].

NSGA-II is used to solve certain problems related to computational complexity, as

it aims to reduce the computational cost from 𝑂 (𝑀𝑁 3) to 𝑂 (𝑀𝑁 2), where 𝑁 is

the size of the population, and𝑀 the number of objectives to optimize.

In NSGA-II the performance of the solutions are ranked based on a non-

dominated sorting: the half of the population with better performance is used

to create the next generations using crossover and mutation procedures. The

actual generation finishes when the new population is created and the process is

repeated with the next generation until the termination criteria is reached. Figure

3.9 presents an example of the NSGA-II procedure of ranking and rejecting the

possible solutions of a population.

3.7 EEG Datasets
Several datasets are analyzed in this work. They are presented and described here:

A synthetic multi-source EEG dataset computed using the simulation framework

explained in section 3.2, the Multi-modal Faces dataset [212], and the Localize-
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Figure 3.9: Typical ranking NSGA-II procedure. (Adapted from [211]).

MI dataset [213]. They were used in several tests and evaluations presented in

chapters 4, 5, and 6.

3.7.1 Synthetic Multi-Source EEG Dataset

A synthetic dataset using the simulation framework in section 3.2 was created in

order to provide a ground-truth for source reconstruction accuracy measurements.

The multi-source EEG dataset consists of 150 trials of EEG activity that contains

six simulated sources with temporal mixing distributed over three brain areas;

frontal lobe, sensory-motor cortex, and occipital lobe. This dataset is used in

evaluations presented in chapters 5 and 6. Segments of the dataset descriptions

are taken from [214, 215].

The sources were time distributed every half second from 0.5 s to 3 s, and the

shape of the parameter 𝜎𝑖 in equation 3.26 was set at 𝜎 = 0.12 for all the sources.

The time location of the sources and the adjustment of 𝜎 allow to have temporal

mixing of around 40% in the transitions between source waveforms. In the case

of the first and sixth source, the temporal mixing is the half and it occurs only

at the second half of the waveform and first half of the waveform, respectively.

The parameters for computing the time-courses are presented in table 3.2. An

example of the six sources time-courses computed with the parameters of table

3.2 is presented in figure 3.10. For displaying purposes the parameter 𝑎𝑖 = 1 was

used for the figure realization. In the dataset, this parameter is used to produce

source-time courses in the range of 𝜇𝐴/𝑚𝑚2
and is computed using the following
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equation:

𝑎𝑖 =
𝑙𝑏 + (𝑢𝑏 − 𝑙𝑏) ∗ 𝑟1

𝑟2
(3.36)

where 𝑢𝑏 = 1 is an upper boundary, 𝑙𝑏 = 0.7 a lower boundary, 𝑟1 = 𝑟𝑎𝑛𝑑 (0, 1)
is a random value between 0 and 1, and 𝑟2 = 10000 is a predefined value to

approach the units to 𝜇𝐴/𝑚𝑚2
.

s_i i=1 i=2 i=3 i=4 i=5 i=6

f_i (Hz) 19 10 7 21 12 8

c_i (s) 0.5 1.0 1.5 2 2.5 3.0

sigma_i 0.12

loc_i Occipital

Sensory-

motor

Frontal Occipital

Sensory-

motor

Frontal

a_i Equation 3.36

Table 3.2: Simulation Parameters for the Multi-Source EEG Dataset

Figure 3.10: Example of a set of six sources time-courses with temporal mixing.

The temporal mixing is represented with the lightgray in the boundaries of the

sources time-courses. They were computed using the parameters of table 3.2,

except for the amplitude factor parameter 𝑎𝑖 that was set to 𝑎𝑖 = 1 for displaying

equal amplitude time-courses

The sources were distributed over the brain in three main areas: occipital lobe,

sensory-motor cortex, and frontal lobe. Per each area, a set of twelve positions (six
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per hemisphere) was predefined, and during the simulation procedure the position

was randomly selected from the pre-defined sets. This allowed for the creation of

trials with different combinations of sources. Figure 3.11 shows the locations of

the pre-defined sources (represented by the blue circles), and the number of times

they were selected in the dataset (represented by the diameter of the circles).

Figure 3.11: Repetition by source position. Blue circles represent where the

simulated activity was placed, and their diameter represents the number of

times the position was selected in the 150 EEG trials. It can be seen that each

area, occipital lobe, sensory-motor cortex, and frontal lobe, has six locations by

hemisphere [214].

After computing the source-time courses and the source activity matrix x, the

equation 2.2 was used to compute the synthetic EEGy. The lead-fieldmatrixM for

solving the forward equation was based on a FEM forward model called the "New

York" head model [216]. It is available at https://www.parralab.org/nyhead/.

The lead field matrix of the New York head model was computed using FEM

considering the segmentation of six tissues: scalp, skull, air cavities, CSF, gray

matter, and white matter. The New York head model was proposed as a standard

model to be used in EEG studies, and it is based on a non-linear average of the MRI

of 152 adult human brains. The forward model includes a high-resolution lead

field matrix relating 75000 sources with 231 channels. It also includes additional

https://www.parralab.org/nyhead/
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versions with a reduced number of sources of 10000, 5000 and 2000 sources. The

model considers 231 electrodes, from which 161 are located on the scalp (based on

the 10-10 and 10-5 systems), 2 on the left/right pre auricular point (LPA/RPA), 4

on the neck, and 64 distributed around the face and on the back of the head below

Iz channel [216]. Figure 3.12 presents a lateral and top view of the channel and

source locations using the model with 10000 sources.

Figure 3.12: New York head model[216] with 10000 sources and 231 channels.

Lateral view (left), and top view (right). The blue circles represent the location of

the channels over the scalp, face, and neck, while the red circles, the location of

the distributed sources on the brain’s cortical areas [214].

The model of 10000 sources was used for forward computations to generate

the EEG signals and the model of 5000 sources to calculate the inverse solutions.

This allows to avoid the effects of the so-called inverse crime [217]. The use of the

New York head model[216] was preferred due to the realistic representation using

six tissues. In FEM models the influence of including the CSF and the white matter

during modeling have been found significant for solving the inverse problem

[110]. Using a more detailed model can allow to achieve more accurate source

reconstruction results.
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After calculating the EEG using equation 2.2, the signals of the channels

were corrupted with noise with a SNR of 0𝑑𝐵 (signal and noise with the same

power). Each trial has a duration of 3.5𝑠 , with a sampling frequency of 200𝐻𝑧.

The dataset with the 150 trials and ground-truth information is freely available at

https://github.com/anfesogu/Ground-Truth-EEG-Dataset, and can be used

in future studies where a ground-truth for source localization is required.

3.7.2 Multi-modal Faces Dataset

The multi-modal faces is a dataset acquired with multiple modalities: EEG, MEG,

and fMRI data, during visual stimulation. The dataset includes 16 participants for

whom the stimuli consisted of images projected onto a screen [212]. Three types

of stimuli were tested: familiar faces (famous), unfamiliar faces (non-famous), and

scrambled faces. This paradigm and dataset has been used in several studies for

source reconstruction of evoked responses and multi-modal integration [70, 218–

222]

The participants’ data were recorded in two separate sessions, one for

simultaneous MEG/EEG recording, and one for fMRI with three months between

first and second visit. Six runs (sessions) of approximately 10 mins were acquired

for each participant, where approximately 300 events were recorded per each

face condition. The MRI data were acquired on a 3T system (Siemens 3T TIM

TRIO, Siemens, Erlangen, Germany) including T1 weighted structural MRI, and

T2 weighted fMRIm where the echo-planar imaging (EPI) volumes were acquired

during 9 runs of the same task. The faces sets were different for each participant

between the first and second sessions.

The MEG/EEG data were recorded in a light magnetically shielded room using

306 MEG sensors (Elekta Neuromag Vectorview, Helsinki, FI) and a 70 electrode

EEG cap (Easycap) with 10-10 system layout. The EEG electrode and MEG sensor

locations were digitized to allow for co-registration with MRI data.

The study was conducted in accordance with the Declaration of Helsinki,

and approved by the Cambridge University Psychological Ethics Committee.

Participants signed an informed consent form and gave separate written consent

for their anonymized data to be freely available on the internet [212]. The dataset

is available at https://openneuro.org/datasets/ds000117 in brain imaging

data structure (BIDS) [223–225], and non-BIDS structure at ftp://ftp.mrc-cbu.

https://github.com/anfesogu/Ground-Truth-EEG-Dataset
https://openneuro.org/datasets/ds000117
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn
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cam.ac.uk/personal/rik.henson/wakemandg_hensonrn.

The multi-modal faces dataset is not a ground-truth as the information of the

source activity is not directly recorded, however, a multi-modal integration of

fMRI+MEG+EEG procedure[193] can be applied to compute source reconstruction

maps that can serve as a ground-truth.

3.7.2.1 Multi-modal Ground-Truth

The multi-modal solution and estimation of the source activity is not provided

directly, however, the procedures for the multi-modal integration and scripts are

explained in detail in [226]. This allows for the computation of the ground-truth

for the dataset to be performed. For this thesis, a ground-truth of the evoked

activity was computed for the 16 participants’ data, including fMRI, MEG and

EEG modalities. In addition a three-layer BEM model was used to compute the

multi-modal ground-truth. All the procedures were done using the statistical

parametric mapping (SPM) 12 toolbox.

The followed steps for multi-modal integration are briefly summarized here.

The procedure started by applying a standard ERP pipeline similar to figure 3.7 to

the MEG/EEG data. The data were filtered using a high-band of 0.1Hz, the bad

channels were identified and removed from the data. The EEG was re-referenced

to the average across channels. The epochs were established between -100 ms

to 800 ms related to the stimuli onset, and baseline correction applied using the

100 ms before the stimuli onset. A threshold of ±100𝜇𝑉 was applied to reject the

epochs containing large EOG or EMG activity. Finally the trials were averaged to

obtain the ERP responses. An example of the ERP for a participant 3 is shown in

figure 3.13

The fMRI processing steps to estimate the blood oxygenation level dependent

(BOLD) responses versus the inter-stimulus baseline are summarized as follows:

The EPI images were realigned for correcting movement. A normalization and

segmentation of the T1 images was performed prior to the co-registration of mean

EPI and structural MRI to obtain a set of normalization parameters or warps.

In a subsequent step the warps are applied to each one of the EPI volumes to

produce new re-sliced images. The images were smoothed using an 8mm isotropic

Gaussian kernel. Then a general linear model approach was used to separate

stimulus-induced signals from noise. Then the images were contrasted using a F-

ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn
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Figure 3.13: ERP average of familiar, unfamiliar and scrambled faces at EEG

channel O2 for the subject 3 of the multi-modal faces dataset[212].

contrast, and a set of images with the responses for each participant and condition

were retrieved. Finally a group statistics was performed using repeated-measures

ANOVA to identify the significant clusters per each condition that served as priors

for the source reconstruction using MEG/EEG data.

A headmodel was created for each participant, theMRI imageswere segmented

and co-registered with the MEG/EEG sensors’/electrodes’ locations, and a three-

layer BEM model was used to estimate distributed solution space using 4098

sources per hemisphere. For estimating the inverse responses, the MSP algorithm

was used, and the significant clusters from fMRI were used as priors, assuming

the same set of source priors across subjects. The head model, ERP data, and

multi-modal estimation were stored. This ground-truth was used in chapter 4 to

perform source reconstruction evaluations.

3.7.3 Localize-MI Dataset

Localize-MI is a dataset of simultaneous human intracerebral stimulation and

hdEEG. The dataset is freely available at https://doi.gin.g-node.org/10.

12751/g-node.1cc1ae/. This dataset is intended to serve as ground-truth to

validate forward modeling and inverse modeling techniques for EEG data. The

https://doi.gin.g-node.org/10.12751/g-node.1cc1ae/
https://doi.gin.g-node.org/10.12751/g-node.1cc1ae/
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dataset consists of electrophysiological and structural data from patients with drug-

resistant epilepsy. They were monitored for several days for seizure recording

using stereo-electroencephalography (sEEG). sEEG refers to the implantation

of electrodes to detect and localize the seizure onset zone during a minimally

invasive procedure, typically, multiple multi-contact electrodes of 0.8 mm are

stereotactically implanted through small skull holes of around 2.5 mm [227]. This

dataset is used in evaluations presented in chapter 6.

During the patient monitoring, it is habitual to use intracortical stimulation

to induce seizures and to provide a map of the physiological functions of the

implanted sites. This is done by injecting a current pulse between two adjacent

electrode leads [213]. This stimulation combined with hdEEG recordings have

been use to generate real scalp recordings from currents originating inside the

brain, where the locations of the stimulation sides are known. This offers the

possibility of using the dataset for benchmarking and validation of forward and

inverse solutions. However, in this thesis the dataset is used only for source

reconstruction evaluations in chapter 6.

The dataset consists of hdEEG recordings and anonymized MRI of seven

participants, with a total of 61 stimulation sessions. All of the participants signed an

informed consent form, and the studywas approved by the local Ethical Committee

of Niguarda Hospital (Milan, Italy). All the studies and evaluations were carried

out in accordance with the declaration of Helsinki [213]. The electrical currents for

stimulation consisted of single-pulse biphasic currents lasting 0.5 ms with a range

between 0.1 to 5 mA. The frequency of the current was 0.5Hz for stimulation with

1 and 5 mA currents, and 1 Hz for other current stimulation. The EEG signals were

recorded with a 256 electrode net in a geodesic distribution (Electrical Geodesics,

Inc; Oregon, USA) at a 8000 Hz sampling rate. The electrodes’ locations and

fiducial points were digitized to allow for co-registration with a pre-implant MRI

(Achieva 1.5 T, Philips Healthcare).

The dataset was already pre-processed and available in BIDS structure. The

data were divided in epochs from -300 to 50 ms related to the onset of the

stimulation artifact. They were filtered with a high-pass filter at 0.1 Hz, and notch

filter at 50,100,150, and 200 Hz (only for subjects 5 and 7). Baseline correction was

applied between -300 to -50 ms. Finally the epochs were averaged and the artifact
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ERPs cropped 20 ms around the stimulation event. An example of the artifact ERP

and its topography is presented in figure 3.14.

Figure 3.14: Bi-phasic stimulation current ERPs from 236 EEG channels. Subject 1,

session 7 of the Localize-Mi dataset[213].

Regarding forward modeling, a head model of each participant was created to

be used during source reconstruction. The models were created by processing the

individual MRI using Freesurfer[228] for tissue segmentation [229, 230] and MNE-

python[231]. The number of sources was defined as 4098 per hemisphere, and

the lead field matrix was computed using BEM, considering the conductivities of

scalp, skull, and brain as 0.3, 0.006 and 0.3𝑆/𝑚 respectively (MNE-python default

values).

3.8 Software and Hardware

Multiple software and hardware tools have been used for evaluating the algorithms

and methodologies proposed in this work.

In terms of software, several toolbox and functions used for this work were

implemented mainly in two software packages: Matlab (The MathWorks, Inc.)

version 2016, and python using version 3 [232].

Several toolboxes were used in this work: MNE, which is an open-source

python package for analyzing human neurophysiological data [231]. More

information about MNE is available at https://mne.tools/stable/index.

html. SPM is a free Matlab package for the analysis of brain imaging data

https://mne.tools/stable/index.html
https://mne.tools/stable/index.html
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sequences [233]. More information about SPM is available at https://www.

fil.ion.ucl.ac.uk/spm/. Freesurfer is a software package for the analysis

and visualization of structural and functional neuroimaging [228–230]. More

information about Freesurfer is available at https://surfer.nmr.mgh.harvard.

edu/fswiki/FreeSurferWiki. The source reconstruction algorithms wMNE,

sLORETA, MUSIC, RAP-MUSIC and TRAP-MUSIC were implemented as custom

functions in Matlab. For the MSP algorithm, SPM version 12 was used to estimate

the source activity. Freesurfer was used to process brain structural data of the

Localize-MI dataset, while MNE was used to process the Localize-MI EEG dataset.

SPM was used to process fMRI, MRI and EEG data from the Multi-modal Faces

dataset.

The NGPM software is available at NGPM mathworks [234] and was used

for multi-objective optimization with NSGA-II. It was adapted to include source

reconstruction. All the tests involving optimization with NSGA-II were carried

out on the NTNU IDUN computing cluster [235].

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki
https://se.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4?s_tid=srchtitle


Chapter 4

Low-density EEG Source
Reconstruction Based on
Frequency Decomposition

This chapter introduces a methodology for extracting the underlying source activity

based on frequency decomposition, and outlines the procedure to use it for constraining

the source reconstruction algorithms to selected frequency modes. Here, a multiple-

channel analysis is performed using MEMD to reduce the mode mixing and provide

useful a priori time-frequency information for the reconstruction of neuronal activity

using several low-density EEG electrode montages.

This chapter is based on the journal article [177] and mainly addresses the 1st

research question.

4.1 Introduction

EEG is an indicator of neural activity and is used to study complex brain dynamic

processes. The analysis of EEG signals is challenging in both time and frequency

domains, due to the non-linearity introduced by the volume conduction and their

non-stationary nature. In addition, the interest information or responses can

be hidden in environmental noise and background brain activity. This hidden

information can be extracted for the early detection of different disorders using

advanced signal processing and analysis techniques [236]. A highly effective

93
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technique to extract the underlying information is the computation of ERPs, in

which the average of multiple evoked responses related to the same event is

typically applied to obtain clear responses. This analysis is performed in time

domain, however, the ERPs can also be decomposed in frequencies to analyze its

content [43].

The EEG data, in particular ERPs, are generally used as inputs for computing

the source activity, however, the inverse problem associated with the estimation

is ill-conditioned [12, 142, 163], therefore, it is highly sensible to input noise, and

small variations can generate a large impact in the source estimation. From this, it

can be hypothesized that clearer information (less noisy) can attenuate the effect

of the ill-condition of the inverse problem and produce more accurate results.

To evaluate this hypothesis, frequency-based decomposition methods could be

applied to ERP signals to separate them in frequency modes and constraining the

estimation to the frequencies they represent.

In recent years, the HHT has been increasingly used for the analysis of EEG

signals [237]. Methods based on EMD frequency decomposition are preferred

over other frequency decomposition techniques. e.g. wavelet decomposition and

linear filters. This is due to its ability to deal with non-linear and non-stationary

signals, to maintain the time resolution and preserve the signals’ phase. However,

the extraction of information for certain applications can be hampered by the

mode-mixing problem that appears in the EMD decomposition when frequency

components are relatively close or exhibit intermittency. This effect can disturb

the physical interpretation of the process, which is normally described by the

individual IMFs [197, 198]. Therefore, variations of EMD have been proposed to

attenuate this effect and extrapolate this method for the analysis of multivariate

signals. MEMD is a method that reduces the mode-mixing problem while allowing

for multichannel data analysis [199], and provides several advantages over the

standard EMD (Section 3.4.2).

EMD has been applied in multiple applications involving EEG signal analysis.

e.g. muscular artifact removal [189], feature extraction for emotion recognition

[188], epilepsy detection [190, 191], and subject identification [238, 239] among

others. The use of MEMD has been evaluated in multiple EEG signal analysis

studies. In [240], the authors presented a method for data analysis based onMEMD
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in which they applied a pre-processing step with ICA to calculate and evaluate the

energy presented in an EEG recording from quasi-brain-deaths and evaluate their

brain activity. [241] proposed a data-driven method for classifying ictal (epileptic

activity) and non-ictal EEG signals using the MEMD algorithm. They extracted

and selected suitable feature sets to classify neural activity based on a multiscale

time-frequency representation of the EEG signals by applying MEMD.

In the context of source reconstruction, MEMD was applied for unmixing

the estimated source activity in brain-ROIs [193]. The source estimation was

performed using LORETA, and then MEMD was applied over the source time-

courses to disentangle the source activity within a brain-ROI. A fusion between

MEMD, source reconstruction algorithms, and an unsupervised wavelet eye blink

artifact remover was introduced in [242]. The fusion of those methods was

applied for the accurate localization of epileptogenic sources in five subjects, the

results of which suggest than MEMD can improve source localization when the

sLORETA inverse method is applied. However, they did not evaluate the influence

of reducing the number of electrodes, and the information about the selection

of the MEMD intrinsic mode functions was not provided. In [192] a comparison

between EMD and wavelet decomposition was performed, where EMD-based

source reconstruction obtained a lower reconstruction error. Multiple variations

of EMD (including MEMD) were evaluated in [178] for reconstructing source

activity, where the results over a single trial of three simulated sources case and

one-subject ERP in hdEEG, resulted in a promising MEMD source reconstruction

accuracy.

In this chapter, the application of multivariate time-frequency EEG signal

analysis for source reconstruction is presented. MEMD method was applied

to decompose the ERPs and to separate the source activity in IMFs. An IMF

selection based on entropy was applied to remove the noisier components.

MEMD decomposes the signal into several IMFs, in which the information of

the underlying brain activity can be separated into frequency bands. MEMD

reduces the mode-mixing problem, due to the relation between the information in

each channel, making it possible to understand the effect of a stimulus on different

regions of the brain. Next, the selected IMFs were used to perform source activity

reconstruction. A lower number of electrodes can, in principle, extract and provide
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such underlying time-frequency information due to the properties of MEMD and

the redundancy of high-density EEG in a given neuro-paradigm. This hypothesis

was tested using simulated EEG data and real EEG signals from the multi-modal

faces dataset.

4.2 Methodology for Source Reconstruction Based on
Frequency Decomposition

A summary of the proposed methodology for frequency decomposition is

presented in figure 4.1. The process starts with data pre-processing to obtain

the ERP (a typical ERP pipeline is presented in section 3.3.3). Then, a spatial

down-sampling by reducing the number of channels can be performed to reduce

the computational time for calculating the frequency decomposition with MEMD.

However, this step is optional. In the case that spatial down-sampling is applied,

it is recommended to down-sample the channels maintaining coverage over the

scalp and a symmetry between hemispheres. The effects of using only channels

close to the particular region to map have been found to be counterproductive

for estimating the source activity of the region [127]. In [127], an evaluation

over several channel down-sampling approaches was performed by several sets of

electrodes over the occipital lobe to estimate the source activity in that area. It was

found that such channel distributions produce distortions in the reconstructed

source map.

The data were then decomposed using MEMD. One of the most relevant

advantages of using this algorithm is the mode alignment in the channels, which

represents that all the channels have the same number of IMFs and the same

frequencies can be found in the same IMF indexes for each channel. The mode

alignment property helps to make use of similar scales in the different channels and

by that also offers the possibility of direct multi-channel data analysis preserving

the common channel properties. Another important benefit of MEMD is the

significant noise reduction, compared to the standard EMD [201, 202].

After the signals were decomposed in IMFs, their selection was performed.

An approach to select the IMFs is to use the entropy of each IMF and to select the

𝑛 IMFs with lower entropy value among the 𝑘 number of IMFs [192]. To calculate

the entropy of the IMF 𝛾𝑖 the following equation can be applied:
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Figure 4.1: Methodology for source reconstruction based on frequency

decomposition using MEMD. The dashed squares denote the inputs of the process.

𝑒𝑖 = −∥𝛾𝑖 ∥22 log(∥𝛾𝑖 ∥22) (4.1)

where 𝑒𝑖 represents the entropy of each IMF, being the entropy e = [𝑒1 . . . 𝑒𝑘 ].
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A subset 𝑂 can be created with the 𝑛 selected IMFs, rejecting the 𝑘 − 𝑛 IMFs that

do not contain the activity of interest or are related to noise. The subset 𝑂 can be

used to estimate a denoised signal ỹ by:

ỹ =
∑︁
𝑖∈𝑂

𝛾𝑖 (4.2)

The reconstructed signal ỹ using a few IMFs can be used e.g. for feature

extraction [191, 243]. In this methodology, the application of MEMD is used to

constrain the source reconstruction to the frequencies of selected IMFs that contain

information of the underlying source activity. In addition, the IMFs with high

levels of noise can be rejected, improving the SNR of the data and favoring more

accurate source estimations.

The final step is to apply an inverse algorithm using the reconstructed and

denoised EEG from the selected IMFs as inputs. Here, theMSPmethodwas selected

to perform source reconstruction, as it maximizes the free energy, resulting in

more focal solutions than other reconstruction methods [149, 150]. In addition,

previous evaluations performed on ldEEG electrode counts in [244] suggest that

MSP performed better than other reconstruction algorithms while using a reduced

set of seven electrodes.

4.3 Experimental Framework - Synthetic EEG Signals

To evaluate the methodology proposed, a set of single- and multi-source scenarios

were simulated, in which the brain activity ground-truth is known, and which

allows for evaluation and comparison with the estimated activity.

The head model used to generate the synthetic EEG signals can be found in at

http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/ of SPM software. This

is a single-subject dataset obtained using the same paradigm reported in [3] and

contains EEG, MEG, and fMRI data for one subject. It contains a cortical mesh

with 8196 distributed sources, and a lead field matrixM with 128 channels. It was

computed using a three-layer BEM, using gray matter, skull, and scalp. To perform

multiple evaluations in ldEEG, the number of channels were down-sampled to

32, 16, and 8, trying to maintain an equal distribution and coverage of the brain.

This reduction was carried out to analyze the quality of the reconstruction against

http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/
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the number of measurements. Figure 4.2 presents the distributed sources over the

cortical sheet and the position of the down-sampled electrode subsets.

Figure 4.2: Head model and electrode subsets positions for EEG simulation [177].

Multiple EEG signal configurations were evaluated that varies in number of

sources, number of channels, and level of noise. Three different numbers of active

sources were considered: one, three, and five. For each number of active sources,

the synthetic EEG was computed for the 128 channels, and down-sampled to 8,

16 or 32 channel subsets. Two levels of SNR of 10 db and -5 dB were used when

including noise in the measurements. The source activity for the single, three,

and five active sources cases was simulated at various frequencies and in various

instances of time. The source activity was simulated for the time-courses of the

active current sources using the windowed sinusoidal equation 3.26, and following

the procedure for the simulation framework (section 3.2). The parameters for

the simulation are presented in table 4.1, for all the sources a width parameter

𝜎𝑖 = 0.12 was used.
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Single source case

s_i i=1

f_i (Hz) 10

c_i (s) 1

loc_i 4000

Three source case

s_i i=1 i=2 i=3

f_i (Hz) 20 12 4

c_i (s) 1 3 5

loc_i 4000 5020 150

Five source case

s_i i=1 i=2 i=3 i=4 i=5

f_i (Hz) 20 15 10 6 2

c_i (s) 1 2 3 4 5

loc_i 4000 5020 150 8100 2200

Table 4.1: Simulation Parameters for the single, three, and five source cases

This parameters of the simulation framework were used to simulate single

and multiple active sources cases to evaluate the performance of MEMD in terms

of its ability to separate source activity in the frequency domain, and to reduce the

mode-mixing generated in the process of obtaining the IMFs. Thus, simulated EEG

activity was obtained for the multiple cases that were spatially and temporally

located at different points. Source frequencies (𝑓𝑖) in the range of 2 to 20 Hz were

tested and the temporal localization 𝑐𝑖 of sources was in the range of 1 to 5 s.

After the simulation of the source activity the equation 3.27 was used to

compute the synthetic EEG y. Then, noise was added to the EEG signals, leaving

the signals with two SNR of 10 dB and -5 dB. Three configurations were considered

for the measurements: 32, 16, or 8 EEG channels. A reduced lead field matrix was

used for each synthetic EEG for each number of channels to perform the inverse

computations. An example of the EEG signals that resulted from the simulation is

presented in figure 4.3.
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Figure 4.3: Simulated activity for one source (A) using 10Hz and 32, 16, or 8 EEG

channels. Simulated activity for three sources (B) using 4, 12, and 20Hz windowed
sinusoidal activity and 32, 16, or 8 EEG channels. Simulated activity for five

sources (C) using 2, 6, 10, 15, and 20Hz windowed sinusoidal activity and 32, 16,

or 8 EEG channels [177].
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Source reconstruction was performed in two ways: first, using MSP directly

from the synthetic EEG without any pre-processing step, here referred to as raw-

MSP, and second, using the proposed methodology by applying MEMD prior to

MSP, referred to as MEMD-MSP, in which the main IMFs were selected according

to the entropy function in equation 4.1, for which those IMFs which presented the

highest entropy were used to recalculate the EEG. Finally, the reconstructions were

compared using theWM (section 3.1.4.4) to obtain a spatial accuracy measurement.

4.4 Experimental Framework- Multi-modal Faces
Dataset

Themulti-modal faces dataset was used to evaluate the extraction of the underlying

activity usingMEMD decomposition. The details of the dataset and the multimodal

ground-truth extraction are presented in section 3.7.2. In this dataset each subject

has their individual forward model and their ground-truth activity. The individual

lead field matrix was used to solve the inverse problem and the ground-truth

activity was used to compare the solutions. Similar to the simulation case, the

solutions were obtained using the ERPs as inputs for MSP (raw-MSP) and obtained

with the MEMD-MSP methodology, using the a priori extracted information as

inputs for the MSP.

The dataset contains the ERPs of familiar faces, unfamiliar, and scrambled,

where the N170 component has been found significant when differentiating the

faces from the scrambled images [212, 219]. Here the ERPs around 170 ms were

considered for the experiments with scrambled and familiar faces. In addition,

a spatial down-sampling similar to the simulated case was performed, by down-

sampling from 70 channels to 32, 16, and 8. To evaluate the performance of the

source reconstruction with MSP using one or several IMFs from MEMD and to

compare the results with those for MSP without MEMD decompostion, the activity

around the N170 component was considered. This was done by establishing a

time-ROI, as in [220]. The window was defined between 100 and 220 ms. The

comparison process applied to the multi-modal faces dataset is summarized in

figure 4.4.
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Figure 4.4: Block diagram of the evaluation and processing steps applied to the

multi-modal faces dataset [177].

Channels were selected from the hdEEG according to the number of electrodes

to be evaluated. The down-sampling data were directly processed by MSP to

obtain the so-called raw-MSP inverse solution. In addition, the reduced channel

data were also processed using MEMD and one or several IMFs were selected to

obtain the inverse solution with MSP, to obtain the so-called MEMD-MSP. Finally,

the WM was used to compare both reconstructions, raw-MSP and MEMD-MSP,

against the ground-truth to evaluate the spatial accuracy of the solutions. The lead

field matrix was reduced according to the position of the electrodes following a

similar procedure as that used for the synthetic EEG signals, the channels selected

to maintain as much as possible their equal spatial distribution over the scalp.

The 8196 distributed sources of one of the subjects, the electrode down-sampling

layouts for 32, 16, and 8 channels, and their positions are shown related to the

sources in figure 4.5.
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Figure 4.5: Layout according to the 10-10 system for 70 electrodes and the electrode

down-sampling performed for (A) 32, (B) 16, and (C) 8 electrodes.(D) The 8196
distributed sources and the positions of electrodes [177].

4.5 Results

4.5.1 Synthetic EEG Signals

The synthetic EEG signals were generated and processed for the multiple source

configurations of single, three, and five active sources. An example of the

application of MEMD for the reconstruction case of a single source with 10Hz and

8 EEG channels is shown in figure 4.6. Following MEMD, IMF2 showed only noise



4.5. Results 105

activity with no identifiable source activity, whereas IMF3 unmixed the source

activity, which was clearly identifiable, with no underlying noise. In addition, the

reconstruction of the source activity by raw-MSP split the source activity into two

sources, where only one had an acceptable location. However, the main activity,

represented in red, was mislocated in a lateral position the frontal lobe, with an

important distance from the original source at the pre-frontal cortex. This explains

the higher WM of 6.23 obtained with raw-MSP. In contrast, a WM value of 1.26

was obtained using MEMD-MSP and the main activity in the source map was

correctly located. Although spurious activity appeared at the same position as

that found with raw-MSP, its value was attenuated. However, it is remarkable

that the value obtained using MEMD-MSP was lower than raw-MSP and the main

activity was accurately located.

Figure 4.6: MEMD for one source with 10 Hz sinusoidal windowed activity and 8

EEG channels [177].
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MEMD was able to separate from the noisy signal the frequency activity for

the single source case. This effect was also observed for the three and five active

sources. In addition, for the multiple source cases, no mode-mixing was presented

in the extracted IMFs, as can be seen in figure 4.7 at left, for the three source case.

This case was also evaluated with univariate EMD to provide a comparison and

the mode-mixing effects. When using univariate EMD, the mode-mixing at IMF2

and IMF3 can be seen. As a consequence, the source reconstruction was clearly

affected by its effects, which become evident in the EMD-MSP reconstruction

(figure 4.7 at right bottom) by the higher WM value due to the error in the location

of sources and the ghost activity.

The main IMFs decomposed byMEMD over 16 EEG channels, and the resulting

brain reconstruction for the three source case is shown in figure 4.7. The

decomposition using MEMD clearly split the activity into three IMFs as follows:

the activity at 20 Hz is shown in IMF2, the activity at 12 Hz in IMF4, and the

activity at 4 Hz in IMF6. There was no mode-mixing in the MEMD decomposition.

In addition, the MEMD-MSP achieved a WM of 10.14, which is substantially

less than the 15.57 value achieved using raw-MSP. Moreover, the MEMD-MSP

reconstruction correctly identified the position of the three simulated sources, even

if some spurious activity also appeared. In contrast, in the raw-MSP reconstruction,

the position of the second source, located in the left hemisphere of the visual

cortex, was incorrectly assigned and spurious activity appeared in various areas,

with even higher intensity than the main source, shown by the higher WM values

obtained.

The spatial and temporal evolution of the neural activity for the ground-truth

and the reconstructions using MEMD-MSP and raw-MSP are shown in figure

4.8 for the three source case reconstructed using the information from 16 EEG

channels. The neural activity reconstruction obtained by the MEMD-MSP offered

a better WM than that obtained from the raw-MPS in terms of the WM for each

source. The time evolution of the neural activity for the MEMD was obtained by

mixing the resulting brain mapping for IMF2, IMF4, and IMF6 of the MEMD, as the

activity corresponding to each source was clearly divided between the selected

IMFs.

A similar evaluation of the spatio-temporal evolution to the sources was
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Figure 4.7: Ground-truth activity, MEMD-MSP reconstruction, EMD-MSP

reconstruction, and raw-MSP reconstruction (center) [177]. The source

reconstruction was performed using 16 EEG channels. For the depicted MEMD-

MSP reconstruction, IMFs 2, 4, and 6 (left) were added to rebuild the EEG. For the

depicted EMD-MSP reconstruction, IMFs 2 and 3 were used (right).

obtained with the five source case, which is presented in figure 4.9. In it, the

five active sources were reconstructed using the down-sampled subset of 32

EEG channels and were analyzed. In this analysis, MEMD-MSP outperformed

raw-MSP, with the reconstructed neural activity by raw-MSP showing a lower

spatial accuracy in almost all the sources. Raw-MSP gave a lower WM value

than MEMD-MSP for only the third source at 𝑡3. However, the raw-MSP

reconstruction contained several spurious activities for this source. In addition,
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Figure 4.8: Ground truth, MEMD-MSP and raw-MSP neural activity mapping

considering the evolution in time for three sources at time 𝑡1 = 1, 𝑡2 = 3, and 𝑡3 = 5

seconds with 16 EEG channels [177].

it is possible to observe the effects of anterior and posterior sources in the other

source reconstructions. In contrast, these effects were reduced when MEMD

decomposition was applied, for which only attenuated activity from the third

source is visible in the fourth reconstructed source. Furthermore, the WM values
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were smaller than those for raw-MSP for almost all sources. Such a reduction

of spurious activity and the attenuation of effects from other sources appeared

when the EEG signals were decomposed into IMFs, and is arguably due to the

rejection of noisy information in the IMF selection process and the attenuation of

mode-mixing effects by MEMD.

Figure 4.9: Ground truth, MEMD-MSP, and raw-MSP neural activity mapping

considering the evolution in time for five sources at time 𝑡 = 1, 𝑡 = 2, 𝑡 = 3, 𝑡 = 4,

and 𝑡 = 5 seconds with 32 EEG channels [177].

To perform a quantitative evaluation of the performance of MEMD-MSP

and raw-MSP, a comparison was performed for the mean across trials of source

reconstruction performance for the three sources case. The performance for each

one of the sources at the time instants 𝑡 = 1, 𝑡 = 3, and 𝑡 = 5 seconds with 32,

16, and 8 electrodes was analyzed. The results of this evaluation are presented in

figure 4.10. In general, the effects of the electrode down-sampling are visible by the
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higher inaccuracy of raw-MSP than MEMD-MSP for eight channels. These results

suggest that brain reconstruction with MEMD-MSP can still be performed without

affecting the accuracy by reducing the number of EEG channels by a factor of

two. Although the WM index increases when spatial down-sampling, its slope is

small and the reconstruction quality can be considered reasonable. In contrast, the

raw-MSP reconstruction showed an exponential increase in the WM value when

spatial down-sampling was performed. In several cases the inclusion of the MEMD

step improved significantly the performance of the source reconstruction, specially

with a lower number of electrodes. With 32 electrodes, no significant difference

was found. This fact can be explained by the MSP estimation itself, due to the

fact that when the estimations are made using a higher number of electrodes, the

noise estimation in the EEG made by MSP become feasible and accurate, resulting

in similar WM values between MEMD-MSP and raw-MSP. However, when the

number of electrodes is reduced, the MSP method accuracy decreases significantly,

which effect is attenuated by the pre-processing step by MEMD. These significant

differences were obtained by performing two-sided pairwise t-tests with an alpha

level of 𝑝 < 0.05 using Bonferroni adjustment for multiple comparisons in the

software IBM SPSS Statistics for Windows, version 24 (IBM Corp., Armonk, N.Y.,

USA).

In general, the results for the synthetic EEG signals suggest that the use of

the information extracted by MEMD improves the MSP source reconstruction,

alleviating its ill-condition. In all analyzed cases, MEMD-MSP attenuated the

appearance of spurious activity and the proposed methodology with the MEMD-

MSP approach retained spatial accuracy despite the electrode spatial down-

sampling. In addition, according to the reconstruction shown in figure 4.8 for the

three sources case and figure 4.9 for the five sources case, it is remarkable that

with MEMD-MSP the reconstructions seem cleaner of ghost sources, localizing the

source in the same place or with a close location to the place where the original

activity was simulated. In contrast, in the reconstructions made by raw-MSP, the

existence of ghost sources remains due to the influence of the sources that have

occurred before and after the analyzed source, an effect that is clearly attenuated

due to the extraction of the underlying source activity by MEMD.
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Figure 4.10: Mean WM and standard deviation of the reconstruction considering

two levels of noise 10dB and -5dB and three levels of electrode resolution 8, 16,

and 32 [177]. The WM was calculated in each time-ROI around the simulated

sources at times 1s, 3s, and 5s. *Significant value p<0.001.
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4.5.2 Multi-modal EEG Dataset

Following the methodology described in figure 4.4 the ERP data were decomposed

using MEMD prior to the reconstruction of the source activity. The source

estimation solutions obtained using MSP for MEMD and directly from the ERP

signals were compared to the ground-truth activity for each individual. A general

vision of the results over the dataset is presented in figure 4.11. In it, the general

mean across all subjects and conditions of the WM index is presented with its

standard deviation. When comparing the raw-MSP and MEMD-MSP estimations

with the ground-truth activity, the results are discriminated by the number of

channels used. Electrode down-sampling directly affected the quality of the source

reconstruction, for which the solutions with MEMD-MSP had a lower WM mean

and a lower standard deviation than those with raw-MSP in all the cases. The

inaccuracy of raw-MSP increased as the number of electrodes was reduced with

a steep slope. In contrast, MEMD-MSP retained a constant quality index when

the brain mapping was performed with 32 or 16 electrodes, and increased slightly

when 8 electrodes were used. However, with 8 electrodes, MEMD-MSP reached a

WM value and standard deviation similar to that obtained with raw-MSP with 32

electrodes, for which there was no significant difference between raw-MSP using

32 electrodes and MEMD-MSP using eight electrodes when a two-sided pairwise

t-test was applied using an alpha value of 𝑝 < 0.05.

Figure 4.12 presents the labeled WM indexes according to the condition of

the EEG signals, familiar faces or scrambled faces, and the number of channels

used to perform the inverse solutions to provide another vision of the results. The

mean WM value was slightly higher for scrambled faces with eight electrodes

with MEMD-MSP than that obtained with raw-MSP with 32 electrodes. However,

raw-MSP with 32 electrodes obtained a lower WM value for familiar faces (24.43%

less) than MEMD-MSP with 8 electrodes. However, MEMD-MSP outperformed

raw-MSP in all the cases for comparisons between the same condition and the

same number of electrodes.

The improvement of the results by applying theMEMD can be explained by the

separation of IMFs, as shown in figure 4.13, in which the 8 electrode EEG signals

are presented together with their IMF4 EEG reconstruction obtained by MEMD.

The figure depicts how the main information of the ERPs is extracted around
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Figure 4.11: Mean WM and standard deviation according to the number of

electrodes for 16 subjects [177] . The red line points out the similar error obtained

between raw-MSP with 32 electrodes and MEMD-MSP with 8 electrodes, even

when the electrode number with MEMD-MSP was lower than raw-MSP.

the established time-ROI, where the sparse temporal and frequency information

provided by the IMF is sufficient to obtain better source localization of the activity

than by using all the components of the EEG signal.

The location of the neural activity in the brain is shown in figure 4.14. Its

activity was found in the visual cortex and the fusiform gyrus, by [212] and [220]

using a multi-modal technique involving EEG+MEG+fMRI. The figure provides

the ground-truth activity and the brain mapping reconstruction with 8, 16, and 32

electrodes with raw-MSP and MEMD-MSP.

The reconstructions using MEMD-MSP showed a small variation between

the different numbers of electrodes involved during source reconstruction (figure

4.14). In contrast, the localization of the reconstructed sources varied without

pre-processing the data in the raw-MSP, according to the number of electrodes.
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Figure 4.12: Mean WM and standard deviation according to the number of

electrodes used in the reconstruction and the type of stimuli presented [177].

Moreover, these solutions showed activity in different brain areas, whereas the

MEMD method focused solely on the visual cortex and fusiform gyrus, which are

directly involved during the visual face stimulus. Therefore, the use of certain

IMFs provided by MEMD resulted in consistent accurate localization of the neural

activity and an attenuation of background activity, represented by the lower WM

values.

4.6 Discussion

It is well known that the brain can exhibit activity at frequencies between 0.5Hz

for Delta waves to 45Hz for Gamma waves (section 2.1.4). The use of time-

frequency decomposition methods for EEG signals is generally applied to study

brain processes associated with activity at certain frequencies and changes in

brain wave oscillations during a number of experimental situations e.g. ERP
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Figure 4.13: Eight-channel real EEG (Top) and the IMF4 component by MEMD

(Bottom) [177]. The topographic plot at 170 ms of the IMF4 represents the

activation of the occipital region after the stimuli presentation.

studies. EMD is a method that has shown the ability to separate signals using

time-frequency decomposition in various contexts. However, EEG signals are

challenging due to the frequency proximity of the source activity. Thus, EMD

solutions are generally hampered by mode-mixing during IMF decomposition.
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Figure 4.14: Source activity reconstruction using a multi-modal technique

involving EEG+MEG+fMRI [177]. (Left) Brain activity reconstruction using

MEMD-MSP with 8, 16, and 32 electrodes. (Right) Brain activity reconstruction

using raw-MSP with 8, 16, and 32 electrodes.

MEMD attenuates such effects when sources exhibit close frequency, as shown by

[178].

Here, this study investigated the MEMD decomposition combined with the

source reconstruction algorithm MSP to evaluate the effects of MEMD as a pre-

processing step during the calculation of inverse problem solutions and to examine

their performance for three different electrode counts: 32, 16, and 8 channels. The

solutions obtained with MEMD-MSP were compared to those obtained by raw-

MSP for synthetic EEG signals, for which three scenarios of source activity were

tested: one active source, three active sources, and five active sources, which were
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simulated at frequencies from 2 to 20 Hz. The solutions were also compared using

a real dataset of EEG signals from 16 subjects who participated in a behavioral

study of face perception, as reported by [3].

The use of a pre-processing step with MEMD improves the accuracy of source

reconstruction by MSP for all the evaluations. The results for synthetic and

real EEG data showed that the quality of the solutions obtained by MEMD-MSP

remained stable when 16 or 32 electrodes were used, and decreased slightly only

when using 8 channels. The reconstructions using MEMD-MSP with 8 channels

achieved similar values as raw-MSP with 32 channels for simulated sources (figure

4.10) and for real data (figure 4.12), for which no significant differences were found

between the reconstructions. Moreover, the proposed methodology involving

the decomposition stage with MEMD and using selected information during the

source reconstruction process clearly makes it feasible to perform this process

using low-density electrode counts, for which the small number of electrodes and

sparse information of IMFs from MEMD are sufficient to retain the accuracy of

the source reconstruction and reduce the effects of noise in the inverse problem

calculation. Besides, this accuracy retention is favored by the mode alignment,

and it allows to obtain the same frequency mode in the same IMF for each channel

of the original signal. This property allowed this study to separate the noise in

the first IMFs and after this, the other modes were decomposed in aligned form.

This could be useful when designing an automatic algorithm to choose the IMFs

with the relevant modes.

The performed temporal evaluation was focused on time-ROIs defined by time

windows around the appearance of sources in the synthetic EEG signals test and

around the evoked activity for the real dataset. In general, the reconstructions

with MEMD-MSP showed a clear attenuation of the background activity (figures

4.7, 4.8, 4.9, and 4.14). This effect can be explained by the frequency decomposition

and attenuation of mode-mixing resulting from MEMD, in which the analysis of

the frequency information of the EEG channels allows MSP to focus on the source

activity presented in the selected IMFs (figures 4.7, and 4.13), resulting in solutions

with a lower WM index for the combination of methods.

In conclusion, the proposed methodology shows that adding a priori time-

frequency information as an input to the MSP source reconstruction algorithm
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makes it possible to obtain better solutions, even when information from only a

reduced number of electrodes is used. MEMD should allow extraction of the main

time-frequency information of sources that are hidden within the channels’ data,

and then it can be used to obtain an reconstruction with spatial reconstruction

accuracy comparable to that obtained using the same MSP method with a high

number of electrodes and without any prior decomposition. Moreover, source

activity is clearly separable in the MEMD-MSP solutions, resulting in an unmixing

effect in the source space. The application of MEMD with other methods and the

unmixed activity for brain connectivity should be studied in future studies. Here,

it is considered that the proposed methodology can be applied for source activity

reconstruction studies using ldEEG. In addition, due to the temporal accuracy

showed by the MEMD-MSP, this method can be considered suitable to study brain

connectivity at source levels.

Recently, in [245], a new method of time-frequency decomposition for

multivariate signal called multivariate variational mode decomposition (MVMD)

was presented. This method as the MEMD decomposes the signal in intrinsic mode

functions while keeping the mode-alignment property. In [245] the MVMD was

applied to EEG signals showing robustness to noise. Such characteristics can be

considered to be useful for source reconstruction applications as the MEMD. Here

the strong impact that the proposed methodology has on the source reconstruction

is demonstrated. Due to its intrinsic properties multivariate time-frequency

decomposition methods based on mode decomposition are an important tool

for unmixing source activity and their impact should be studied further in future

works.



Chapter 5

Low-density EEG Source
Reconstruction Based on Partial
Brain Models and
Relevance-based Channel
Selection

This chapter introduces a methodology to apply source reconstruction constraining

the solution to a brain-ROI by intervening the forward model, and using a section

of the brain denominated partial brain model (PBM), that is related to the brain

activity of interest. This is done to alleviate the ill-possedness of the inverse solution,

by reducing the number of unknowns to estimate. In addition, the relevance-based

selection is also introduced and applied to identify ldEEG subsets of channels that can

be used for source estimation while maintaining a hdEEG reconstruction accuracy.

The relevance-based selection of channels is compared with multiple electrode layouts

that lie in both, hdEEG and ldEEG categories. The evaluations presented here are

performed on the synthetic EEG dataset presented in section 3.7.1.

This chapter is based on the articles [215] and [246], and mainly addresses the

2nd research question.

119
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5.1 Introduction
The inverse problem that requires to be solved for estimating the source activity

is well known to be ill-posed, where the number of knowns, EEG channels, is

much less than the number of unknowns [12]. In addition, the spatial resolution of

EEG ≈10 mm is the lowest compared to other brain imaging techniques like fMRI,

PET, CT, and MEG [161] and section 2.4.5. In source reconstruction it has been

established that to obtain reliable reconstructions and control the ill-possedness

of the EEG inverse problem, hdEEG is required. It has been proven to be the most

accurate option to perform source reconstruction and localize the activity sources

[24, 25, 247]. In contrast, recent studies have suggested that source reconstruction

can be performed with ldEEG [159, 160]. Considering this, a methodology to

reduce the number of unknowns to alleviate the ill-posed problem and select

a reduced set of channels in the ldEEG category is introduced. It consists of

estimating the source activity of a particular brain region by using the model

of a section of the brain called PMB, and applying frequency constraining and

relevance-based channel selection to perform source reconstruction in ldEEG

settings.

A few studies have shown the possibility of performing source reconstruction

methods using a small number of electrodes. e.g. in [244]. The authors proposed

and evaluated the use of 7 electrodes to map the activity of the whole brain

using several brain mapping methods, obtaining a localization accuracy around

15 mm using MSP. In [248], a low-density approach to BCI was presented, in

which the occipital activity was mapped using MSP and a PBM of the occipital

region, obtaining an accuracy around 23 mm in the location of the source with

four electrodes. However the selection of channels was based on local electrodes

and the PBM was briefly formulated. To alleviate ill-possedness, in [249] an

approach to reduce the number of unknowns was presented with the objective

to perform faster computations that can be used in BCI. The alleviation was

performed by computing a reduced lead field matrix that groups the sources of the

Broadmann areas, leaving one source per area. By using this approach functional

areas could be mapped. The authors obtained localization error values below 18

mm while using hdEEG sets. A similar approach of dividing the cortex using the

Broadmann areas as functional zones and grouping the sources into the areas



5.2. Partial Brain Model Formulation 121

was presented in [250], In this, multiple numbers of electrodes were used, 19, 33

and 71, obtaining errors below 22 mm, where the best result was around 5 mm

with the hdEEG set. However, the number of channels in studies involving ldEEG

were selected based on spatial down-sampling by maintaining coverage and local

electrodes close to the ROI. In here, the selection of channels by relevance criteria

is introduced, where multiple tests and evaluations were performed to evaluate the

source reconstruction accuracy of relevance-based selected channels and multiple

layouts in hdEEG and ldEEG.

Two evaluations were performed using separate experimental frameworks

used in publications [215] and [246]. The first experimental framework related

to [215] is focused on the evaluation of the proposed methodology combining:

PBM, frequency constraining and relevance-based channel selection. The second

experimental framework related to [246] is intended to evaluate relevance-based

channel selection by comparing source reconstruction results of selected channels

with hdEEG montages, standard positioning systems in hdEED and ldEEG, and

down-sampled versions based on coverage in ldEEG category.

5.2 Partial Brain Model Formulation

Consider the problem of EEG generation for a time instant given by the forward

EEG equation in 2.2. This model can be rewritten by considering two subsets of

brain activity x as follows:

y =

[
M1 M2

] 
x1

x2

 + ϵ (5.1)

whereM1 and x1 is the leadfield matrix and its corresponding neural activity

for a specific brain-ROI or target zone, andM2 and x2 the lead field matrix and

its corresponding neural activity of the remaining brain. It can be seen that the

equation 5.1 can be rewritten as:

y = M1x1 + η (5.2)

where η is a vector that holds the noise and the activity in the part of the brain

related toM2 and x2. In addition, if the vector x2 is close to zero (which means



122 122

Figure 5.1: (A) New York head model[216] with 60 electrodes and 10016 sources,

10K model, (B) brain section for occipital cortex area PBM, OC model, and (C)
brain section for the sensory-motor cortex area PBM, MC model [215].
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that the neural activity outside the target zone is closed to zero), the following

approximation can be performed:

y ≈M1x1 + ϵ (5.3)

By using an approximated model as described in equation 5.3 the inverse

problem for x̂1 can be solved. However, the activity outside the target zone

could affect the estimation because all recorded activity by the electrodes will be

projected in the target zone. Therefore, an additional stage to reduce the effect of

M2x2 over y can be added before performing the inverse problem, by considering

that the source in the target zone appears in a known frequency, then, the EEG e.g.

by applyingMEMD decomposition or band-pass filtering; leading to an attenuation

of the activity outside the region of interest. In addition, by assuming that the

electrodes mostly record activity in the neighbor spaces around it, a reduction in

the number of electrodes can be made as:

y𝑟 ≈M1𝑟x1𝑟 + ϵ𝑟 (5.4)

where the resulting estimation of x1𝑟 is an approximation of x1 obtained by

using a reduced number of channels.

A PBM is a section of the brain based on a specific brain-ROI and it is generated

from a complete brain model. To exemplify this, the New York head model [216]

is considered. It is based on the computation of a FEM over a non-linear average

of 152 individual MRI (ICBM152 v2009) from the International Consortium for

Brain Mapping [251]. Detailed information of this model is presented in section

3.7.1. In here, the model and lead field matrix of 10016 source was considered,

and an electrode down-sampling was performed to reduce from 231 electrodes in

10-5 to 60 positions of the 10-10 international system. This model is presented in

figure 5.1A. In this chapter, this model is referred as the 10K model and is used to

compare the performance of a hdEEG montage with the PBM with ldEEG. Two

PBMs were generated from the occipital cortex area, referred to the OC model,

and the sensory motor cortex areas referred to the MC model. Both cortex sections

of the PBMs are presented in figure 5.1. The number of distributed sources for

PBM is 3054 for the OC model and 2162 for the MC model.
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5.3 Channel Selection Based on Relevance

Here, relevance analysis [203] is proposed as an approach to select the 𝑁𝛼 most

relevant EEG channels to be used for source reconstruction. The input for this

analysis is the ERP data y to be reconstructed. Then, the relevance value 𝛼𝑁𝑐ℎ
for

each channel is calculated using the Standard Power-Embedded Q-𝛼 algorithm

(Q-𝛼 algorithm details are presented in section 3.5). Then the 𝑁𝛼 channels with

the highest 𝛼 value are selected to obtain a reduced EEG y𝑁𝛼
.

5.4 Methodology for Source Reconstruction Based on
Partial Brain Models and Relevance-based Channel
Selection

A summary of the proposed methodology is presented in figure 5.2. The

methodology has two main branches, the first one related to the processing and

selection of EEG channels, and a second one related to the model reduction and

estimation of the PBM. For the first branch, the input is the ERP data y. Then, the

ERP can be filtered or decomposed e.g. using band-pass filtering or using MEMD

as in the chapter 4 methodology. This process is referred to here as frequency

constraining. Independently of the selected frequency analysis to filter the signals,

the filtered EEG ŷ can constrain the solution in particular frequencies, e.g. the

signals can be decomposed in frequency bands related to brain rhythms. In a

subsequent step, the filtered ŷ is used for relevance-based channel selection. In

this step, the complete epoch of the ERP can be evaluated or a particular time-ROI

can be defined for applying the channel selection. The relevance 𝛼 is computed

by the 𝑄 − 𝛼 algorithm for each channel, and a subset of selected channels 𝑁𝛼 is

used for source reconstruction.

In the case of the second branch of the methodology, the input is the the head

model including the lead field matrixM and the 3D locations of the distributed

sources. This model is then reduced, by considering only the sources associated

of a Brain-ROI. This can be done by cortical parcellation including atlases to

differentiate the brain regions [252–254] when forward modeling or directly by

dissecting the 3D cortex mesh. Then the reduced model and the selected channel

branches are joined in the source reconstruction process.
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Figure 5.2: Methodology for source reconstruction using PBM and 𝑄 − 𝛼
relevance-based channel selection. The dashed squares represent the inputs of the

methodology.

5.5 Experimental Framework - PBM and Relevance-
Based Channel Selection

The experimental framework and evaluation procedure is summarized in figure

5.3. To evaluate the performance of the proposed methodology a two-source
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dataset was generated. The procedure started with the generation of 400 trials of

simulated EEG activity using the simulation framework 3.2, five levels of noise

are considered in the dataset: 0, 5, 10, 15, and 20 dB, 80 trials per level. Each trial

has two simulated sources overlapping between 37.5% and 40%. The parameters

of simulation are presented in table 5.1.

Figure 5.3: (A) Flowchart of the followed pipeline, after the trial generation, the

procedure is applied per trial (gray square). (B) Source reconstruction tree, gray

squares contain the name of the reconstruction using the EEG signal at left, the

region in blue indicates the use of the 10K model, orange for the OC model, and

green for the MC model [215].

The first source was simulated in the occipital areas, while the second source

was simulated in the sensory-motor cortex areas, with a frequency simulating a

source in the range of mu rhythm. The positions were randomly selected between

a set of pre-defined positions distributed on the corresponding regions. The pre-

defined set of positions has six locations, three in each hemisphere. The positions

were: 3727, 8735, 2734, 7742, 3461, and 8469 for the source 𝑠1 at occipital areas and

3837, 8845, 2284, 7292, 2271, and 7279 for the source 𝑠2 at motor cortex areas. An

example of the simulated activity is shown in figure 5.4. It shows the location of

the simulated sources at the center of activity and the time courses of the sources



5.5. Experimental Framework - PBM and Relevance-Based Channel
Selection 127

s_i i=1 i=2

f_i (Hz) 20 10

c_i (s) 0.3 0.8

\sigma_i 0.12

loc_i Occipital

Sensory-

Motor

a_i Equation 3.36 Equation 3.36

Table 5.1: Simulation Parameters for PBM and Q-𝛼 evaluation

during the simulated trial. In addition, the EEG related to the simulated activity is

presented with the channel names.

Each EEG trial was filtered by using high order FIR band-pass filters. The

cutoff frequencies were set up at 19 and 21 Hz for the first source, and for the

second source were at 9 and 11 Hz. The filters were applied in both directions of

time to prevent losing information. As the output of the filter stage, two filtered

sets of EEG signals were obtained y𝑠1 and y𝑠2 for the respective simulated source.

After filtering, several EEG reductions were calculated. Here, two criteria

were applied to select the electrodes. The first criteria is related with the proposed

methodology, by using Q-𝛼 method, three levels of relevance based on the 4, 8 and

16 most relevant channels were applied. This results in y𝑠1_𝑟𝑒𝑙4𝑒 and y𝑠2_𝑟𝑒𝑙4𝑒 by

the first level of relevance with 4 electrodes, y𝑠1_𝑟𝑒𝑙8𝑒 and y𝑠2_𝑟𝑒𝑙8𝑒 by the second

level of relevance with 8 electrodes, and y𝑠1_𝑟𝑒𝑙16𝑒 and y𝑠2_𝑟𝑒𝑙16𝑒 by the third level

of relevance with 16 electrodes. A second criteria based on local electrodes was

applied. In it a configuration of 8 electrodes around the target zone is selected

maintaining an equal number of electrodes across both brain hemispheres. This

results in a set of channels y𝑠1_𝑙𝑜𝑒 and y𝑠2_𝑙𝑜𝑒 . Those configurations are shown in

figure 5.5 for the OC and MC PBMs.

Two methods were applied for source reconstruction: sLORETA and MSP.

Multiple source reconstructions were evaluated for each one of the 400 trials, using

combinations of channel selection, model, and filtering. They are summarized

in figure 5.3B, where a diagram with the name of each EEG configuration and

the respective reconstructions is presented. The localization error was used as
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Figure 5.4: (Top) Example of source activity, source activity one simulated between

0-0.7s at 20Hz in the occipital area (red), source activity two simulated between

0.4-1.2s at 12Hz in the motor cortex (blue). (Bottom) EEG and channel information

. The overlap between the source activity one and two is around 37.5% to 42%

(marked in the gray area) [215].
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Figure 5.5: Electrode layout and selected local electrodes, local electrodes for OC

model (green), and local electrodes for MC model (red) [215].

performance measurement. Here the location of the source with the highest

power was selected as the main source location. This estimated location was then

compared with the original simulated position using the equation 3.22. In addition,

to provide a view of the effects of filtering over the channel selection and source

reconstruction, the same reconstructions were calculated removing the filtering

stage from the procedure, making y𝑠1 and y𝑠2 equal to y.

5.6 Results PBM and Relevance-Based Channel
Selection

The results of the proposed methodology are presented in figure 5.6 and table 5.2.

The mean localization error across the 400 trials is presented for both cases, when

applying the complete procedure including filtering and without applying it. It
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can be seen that when the filter stage is not applied (figure 5.6A), the sources were

mixed and the relevance criteria tended to select the channels related to the same

source. In the case of source 𝑠1, it presents a higher power than source 𝑠2, therefore

it was reconstructed with higher accuracy than 𝑠2. The accuracy obtained without

filtering for source 𝑠2 shows that the inverse methods projected the 𝑠1 in the MC

model, which explains the high mean localization error of the methods using the

full set of electrodes.

Analyzing the results of the hdEEG count with the full 10K model. It obtained

the best localization error for the first source 𝑠1 by using sLORETA for both, when

filtering 1.1 mm and without filtering 3.2 mm. For the MSP, there was a notable

increasing of the localization error, it increased from 4.2 mm with filtering, to 24.4

mmwithout filtering. For the second source 𝑠2 sLORETA andMSP did not obtained

the best localization error, both obtained a value >10mm, with 13.8 mm and 15.9

mm, respectively. In addition, both had a significant increase in the localization

error when removing the filtering stage. sLORETA increased to 109,6 mm, and

MSP to 91.1 mm, being those values the worse performance for 𝑠2 without filtering.

Regarding the reconstructions using the proposed methodology, the relevance-

based channel selection obtained more stable values, than the hdEEG with

10K model. The localization error also increased when removing the filtering

stage, however, the slope was less notable. For source 𝑠1 using the complete

methodology including the frequency constraining, the selected channels with

PBM and sLORETA obtained a value <8.2 mm, with 8.1, 5.5, and 4.6 mm for 4, 8,

and 16 channels respectively, and with MSP <20.5 mm, with 20.4, 12.6, and 9.1

mm for 4, 8, and 16 channels respectively. For source 𝑠2, the selected channels

with PBM and sLORETA obtained a value <9.3 mm, with 9.2, 7.1, and 6.4 mm for

4, 8, and 16 channels respectively, and with MSP <16.2 mm, with 15.2, 16.1, and

13.6 mm for 4, 8, and 16 channels respectively.

The local electrodes criteria presented a stable value for the reconstruction

even if the filtering stage was not applied. For the source 𝑠1 with PBM, the mean

localization error was between 15 to 20 mm, and for source 𝑠2 and MC model,

between 11 to 22 mm. In general, when used the PBM with relevance-based

channel selection, the localization error remained below 10 mm for the sLORETA

method, and below 21 mm for the MSP reconstructions.
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Figure 5.6: Mean error localization, without applying the filter stage (A), and
following the complete procedure with the frequency constraining stage using

linear filters (B) [215].
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Non-Filtered Data Filtered Data

Method
Head
Model

Source
Channel
Selection
Criteria

Number
of

Electrodes

Mean
Localization
Error (mm)

SD
Mean

Localization
Error (mm)

SD

MSP 10K S1 - 60 24.41 40.22 4.19 0.82

sLORETA 10K S1 - 60 3.22 5.70 1.08 2.79

MSP OC S1 Relevance 4 28.67 18.97 20.37 11.63

sLORETA OC S1 Relevance 4 20.33 20.26 8.07 7.48

MSP OC S1 Relevance 8 22.19 19.69 12.58 11.72

sLORETA OC S1 Relevance 8 16.74 18.86 5.46 5.46

MSP OC S1 Relevance 16 18.68 20.29 9.14 7.02

sLORETA OC S1 Relevance 16 14.67 17.74 4.61 5.17

MSP OC S1 Local 8 19.47 12.54 18.73 9.89

sLORETA OC S1 Local 8 15.70 2.44 17.23 3.79

MSP 10K S2 - 60 91.09 38.32 15.94 5.71

sLORETA 10K S2 - 60 109.66 10.61 13.87 10.08

MSP MC S2 Relevance 4 48.90 23.16 15.17 11.13

sLORETA MC S2 Relevance 4 65.88 15.25 9.24 8.51

MSP MC S2 Relevance 8 53.09 24.39 16.05 10.82

sLORETA MC S2 Relevance 8 66.83 15.07 7.09 6.82

MSP MC S2 Relevance 16 51.93 23.19 13.64 12.17

sLORETA MC S2 Relevance 16 65.71 15.61 6.44 7.30

MSP MC S2 Local 8 18.14 12.27 21.44 6.22

sLORETA MC S2 Local 8 14.34 5.71 11.01 4.85

Table 5.2: Mean error localization without applying the filter stage, and following

the complete procedure including the filtering stage [215].

sLORETA with the proposed methodology obtained stable results with a

localization error below 10mm even with 4 selected channels, in several cases the

error level was lower than values obtained with the same method and MSP with

hdEEG montage. Comparing to [150], the levels of error of MSP obtained a similar

error value around 5 mm when using the 60 electrodes for source 𝑠1. Regardless of

the use of the filtering stage, it is notable that with the proposed methodology was

achieved a mean localization error around 7 mm using 8 channels with sLORETA

and 16 mm with MSP, and slightly less with 16 electrodes, around 6 mm with

sLORETA and 14 mm with MSP.

To offer an overview of the computation time required to perform source

reconstruction with the PBMs and the full model, the mean and standard deviation

of the computation times over the 400 trials is presented in table 5.3 for the two
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source reconstruction methods with the 10K model and the PBMs.

10K Model OC Model MC Model

Method Time (ms) std (ms) Time (ms) std (ms) Time (ms) std (ms)

MSP 405,02 44,50 265,88 36,12 224,52 28,31

sLOR 47,03 1,90 12,22 0,92 7,36 0,69

Table 5.3: Mean and standard deviation of computation times for source

reconstruction over the 400 trials using the 10K model and the PBMs.

5.7 Experimental Framework - Relevance-based
Channel Selection

The synthetic dataset presented in section 3.7.1 is used here to perform

multiples evaluations using the ground-truth to compare the source reconstruction

performance using relevance-based channel selection with multiple hdEEG and

ldEEG electrode layouts. The dataset consists of EEG data of 150 trials with six

underlying sources with temporal mixing, the data contains the signals recorded

by 231 electrode positions, of which 161 are located on the scalp according to the

10-5 system, and 70 electrodes distributed between neck and face. Before applying

channel selection, a time-ROI for the first three sources of the dataset was defined,

250 to 750 ms for the first source 𝑠1, 750 to 1250 ms for the second source 𝑠2, and

1250 to 1750 ms for the third source 𝑠3. Then, the channel selection based on

relevance was applied to select the 𝑁𝛼 = 2 and 𝑁𝛼 = 3 most relevant channels

per each source time-ROI. Therefore, the total number of electrodes per EEG used

during source reconstruction for 𝑁𝛼 = 2 was 6 channels, and for 𝑁𝛼 = 3 was 9

channels. They are referred to as 𝑅𝑒𝑙 − 6𝐸 and 𝑅𝑒𝑙 − 9𝐸, respectively. Figure 5.7
summarizes the selection process and presents the time-ROI times for each source.

To compare the performance of source reconstruction using relevance-based

channel selection, multiple layouts based on coverage and standard systems

were considered. The first electrode layout considered is based on the 161 scalp

electrodes of the model, referred to as 𝐻𝐷 − 161𝐸. Two subsets of 19 and 62

electrodes were considered based on the 10-20 and 10-10 standard electrode

distribution, referred to as 𝐿𝐷 − 19𝐸 (10− 20) and 𝐻𝐷 − 62𝐸 (10− 10), respectively.
Four more subsets of electrodes were selected based on coverage criteria, one lies
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Figure 5.7: Relevance-based channel selection procedure for selecting the 6 and 9

most relevant channels per each EEG trial [246].

in the category of high-density with 128 channels and is referred to as 𝐻𝐷 − 128𝐸;
the other three are considered low-density, with electrode numbers of 32, 16, and 8,

and were selected by electrode down-sampling, trying to keep an equal coverage

of the head. They are referred to as 𝐿𝐷 − 32𝐸, 𝐿𝐷 − 16𝐸, and 𝐿𝐷 − 8𝐸. Figure 5.8
shows the different standard-based and coverage-based layouts.

The evaluation procedure is presented in figure 5.9. The inputs are the ground-

truth synthetic dataset and the forward model. Each one of the 150 trials were

processed separately. The channels were selected according to the three criteria:

coverage-based, standard-based, and relevance-based. The selected channels were

considered during inverse solution and processed with wMNE, sLORETA, and

MSP source reconstruction algorithms, and with MUSIC and TRAP-MUSIC source

localization algorithms. After performing the inverse computing, the localization

error for each of the three sources was calculated by using the localization error

equation 3.22 between the ground-truth 𝑃𝑥 and the estimated 𝑃𝑥 location. Then,

the localization error was averaged between the three sources to provide a single

value for the error of localization. The number of trials in which the localization

error with relevance selection was equal or lower than with coverage or with

standard-based layouts was proposed to measure at what extent of trials the

relevance selection produced equal or better accuracy compared to the other

criteria. This is to referred as the Accuracy Comparison index. The time course of

the sources reconstructed with wMNE, sLORETA, and MSP with relevance-based

channel selection 𝑅𝑒𝑙 − 6𝐸, 𝑅𝑒𝑙 − 9𝐸 were extracted and compared to the time

courses reconstructed with the denser electrode layout 𝐻𝐷 − 161𝐸. To compare
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Figure 5.8: Standard-based (top row) and coverage-based (middle and bottom rows)

electrode Layouts [246]. The selected electrodes for each layout are marked with

a red circle over the 161 scalp electrodes available in the New York Head[216].

them, the Pearson correlation coefficient was used, computed using equation 3.25.
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Figure 5.9: Summary of the evaluation procedure of multiple electrode layouts

and channel selection [246].

5.8 Results - Relevance-based Channel Selection

The mean and standard deviation of the localization error for the 150 trials is

shown in figure 5.10. The electrode layouts on the x-axis were organized according

to the number of electrodes they consider, except the 𝑅𝑒𝑙 − 6𝐸 and 𝑅𝑒𝑙 − 9𝐸 that

were located first on the left side. The best accuracy was obtained when using the

highest number of electrodes with the 𝐻𝐷 − 161𝐸 layout when considering all the

scalp electrodes of the forwardmodel. In contrast, the worst accuracy was obtained

when using the 𝐿𝐷 − 8𝐸 layout. A trend can be seen in the localization error, as
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the number of electrodes is being reduced, the localization accuracy decreases.

However, the trend is abruptly interrupted when considering the results of the

channels selected with the relevance criteria.

Figure 5.10: Localization error of the multiple electrode layouts combined with

each of the source reconstruction algorithms. (Adapted from [246]).

The localization error of the relevance selection 𝑅𝑒𝑙 − 6𝐸 and 𝑅𝑒𝑙 − 9𝐸 are

comparable to the𝐻𝐷−128𝐸 test. Particularly the methods wMNE, sLORETA, and

TRAP-MUSIC, for the relevance cases offer a slightly better localization error mean

with similar standard deviation as with the 𝐻𝐷 − 128𝐸. Here, it is remarkable that

for the same methods, 𝑅𝑒𝑙 − 9𝐸 kept the mean localization error below 10mm, a

result that was achieved only with all the electrodes𝐻𝐷−161 case. The case of the
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MSP method presented a similar behavior with 𝑅𝑒𝑙 − 9𝐸 compared to 𝐻𝐷 − 128𝐸,
and the MSP accuracy with 𝑅𝑒𝑙 − 9𝐸 was slightly lower than with 𝐻𝐷 − 128𝐸. In
contrast, the MUSIC method was highly affected by the reduction in the number

of electrodes. It is a generalized effect for this particular algorithm, regardless

of whether the channels were selected with relevance or not; as the number of

electrodes is reduced the standard deviation increases.

Table 5.4. offers the accuracy comparison indexes when considering the

percentage of trials that obtained equal or better localization error with relevance

criteria 𝑅𝑒𝑙 − 6𝐸 and 𝑅𝑒𝑙 − 9𝐸, than the other layouts based on standard and

coverage criteria. It is remarkable that for methods sLOR, wMNE, and TRAP-

MUSIC, 𝑅𝑒𝑙 − 9𝐸 obtained an index between 61% and 68% when compared to

𝐻𝐷 − 128𝐸 and between 67% and 73% when compared to 𝐻𝐷 − 62𝐸 (10 − 10),
especially considering that 𝑅𝑒𝑙−9𝐸 has 119 and 51 fewer channels than𝐻𝐷−128𝐸,
and 𝐻𝐷 − 62𝐸 respectively. In the case of 𝑅𝑒𝑙 − 6𝐸 the results are also noticeable,

it uses 122 fewer channels than 𝐻𝐷 − 128𝐸 and 55 less than 𝐻𝐷 − 62𝐸 (10 − 10),
and it obtained indexes between 59% and 64% when compared to 𝐻𝐷 − 128𝐸 and

between 63% and 71% when compared to 𝐻𝐷 − 62𝐸 (10 − 10).

To compare the reconstructed time courses of the estimated source activity,

the Pearson correlation coefficient was computed between the reconstructions

using 𝑅𝑒𝑙 − 6𝐸 and 𝑅𝑒𝑙 − 9𝐸 and the denser electrode layouts of 𝐻𝐷 − 161𝐸 and

𝐻𝐷 − 128𝐸. The comparison was done for the reconstructions with the methods

that obtained the lowest localization error, sLORETA, and wMNE. The results of

the comparison between the aforementioned sets of channels are presented in

figure 5.11. It can be seen that the correlation in all the cases was more than 98%

and particularly for the comparisons with 𝑅𝑒𝑙 − 9𝐸, the correlation values were

higher than 99%.

To offer an overview of the relevance-based selected channels the number

of times that the channels were repeatedly chosen by the two relevance criteria

are presented in figure 5.12. For relevance analysis, the 231 channel positions of

the forward model were considered, including 70 locations on the face and neck,

however, none of the selected channels were in those areas. It is important to note

that the selected channels across trials were distributed between both hemispheres,

in which a particular position in the right hemisphere and its equivalent at the
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Method

Channel

Layout

Rel 6E Rel 9E Method

Channel

Layout

Rel 6E Rel 9E

sLOR

LD-8E 0,96 0,97

MUSIC

LD-8E 0,82 0,88

LD-16E 0,95 0,95 LD-16E 0,83 0,89

LD-19E 0,91 0,92 LD-19E 0,75 0,79

LD-32E 0,77 0,85 LD-32E 0,62 0,68

HD-62E 0,71 0,73 HD-62E 0,47 0,55

HD-128E 0,59 0,61 HD-128E 0,42 0,47

HD-161E 0,11 0,11 HD-161E 0,13 0,15

WMN

LD-8E 0,97 0,97

TRAP-

MUSIC

LD-8E 0,96 0,97

LD-16E 0,95 0,97 LD-16E 0,96 0,95

LD-19E 0,93 0,94 LD-19E 0,89 0,87

LD-32E 0,79 0,84 LD-32E 0,81 0,88

HD-62E 0,63 0,67 HD-62E 0,65 0,69

HD-128E 0,62 0,68 HD-128E 0,64 0,63

HD-161E 0,19 0,21 HD-161E 0,32 0,41

MSP

LD-8E 0,91 0,97

LD-16E 0,90 0,94

LD-19E 0,75 0,80

LD-32E 0,67 0,70

HD-62E 0,57 0,64

HD-128E 0,49 0,53

HD-161E 0,21 0,22

Table 5.4: Accuracy Comparison Index, which presents the percentage of trials

that obtained equal or better localization error when comparing the relevance

criteria 𝑅𝑒𝑙 − 6𝐸 and 𝑅𝑒𝑙 − 9𝐸 with other electrode configurations [246].
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Figure 5.11: Source time courses correlation coefficient between high-density

layouts and relevance-based channel selection [246].

left hemisphere obtained similar repetition values. The small differences can be

explained by the location of the simulated sources which were selected randomly

from a pre-set of sources for each brain area, equally distributed between both

hemispheres.

5.9 Discussion
The PBM approach works by alleviating the number of unknowns of the inverse

problem, and constrains the solution to a reduced area of the brain. Applying the

proposed methodology by extracting the information in frequency, and selecting

relevant electrodes, the activity in the PBM can be unmixed from other non

target regions, and accurately reconstructed. The reconstruction performance was

measured in terms of localization error, and based on the accuracy of the results

obtained herein, using PBM in the proposed methodology can reconstruct the

source activity using ldEEG number of channels, being remarkable that only with

8 and 16 channels a precision below 10 mm was obtained with sLORETA and 20

mm with MSP, see figure 5.6.

The use of PBM constrains the source reconstruction to find a solution in a

pre-defined space, which will make it prone to error when the source of interest

originates from other areas. For this reason, the application of PBM should be
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Figure 5.12: Channel repetition for relevance-based selection [246].

restricted to applications in which the area of interest that will be activated is

well known, e.g, in some visual evoked potentials (VEP) experiments, in which

the interest is to know how the visual cortex areas respond to certain stimuli

[5, 255], or in motor imaginary tasks where it is well known that the motor cortex

is activated [256, 257].

Regarding the comparisons with the proposed methodology with the local

electrodes criteria, the localization error was higher with the local electrodes. In

[127] an evaluation using local electrodes for source reconstruction was performed,

showing that the local electrodes contribute to false localization of sources.

However, there the full model was considered. Here, the local electrodes showed

an average performance, as shown in figure 5.6 and table 5.2, the mean error

was kept below 22 mm regardless of the use of filters to isolate the sources. This

method could be applied in settings in which a high quantity of electrodes is

not available, however, a careful analysis of the source maps should be done to

evaluate the apparition of ghost sources.
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The methodology proposed here was evaluated using linear filtering for

frequency constraining with the intention to focus on the PBM to source

activity reconstruction. However, it has been demonstrated in chapter 4 and

previous studies [177, 178, 193] that the use of advanced techniques for frequency

decomposition like MEMD can offer a solution for unmixing the source activity

and improving the source reconstruction solutions.

The method Q-𝛼 was used to select relevant channels, where it was

demonstrated that a subset of selected channels, with a sparser number far

from hdEEG, can reconstruct a set of sources in the brain with comparable

quality as a high-density number of channels, as shown in figures 3.22 and 5.10.

The reconstruction quality obtained with relevance-based channel selection can

be comparable to using a set of 128 channels, and better than 62 channels in

terms of the localization error as shown in figure 5.10. Moreover, in terms of

the time-courses similarity, the high level of correlation obtained between the

reconstruction with the relevant channels and the densest coverage-based as

presented in figure 5.11. This supports the hypothesis that ldEEG using relevance-

based channel selection can be comparable with high-density to reconstruct a

particular brain activity.

The location of the selected channels was found on scalp, with any of the

selected electrodes positioned on the neck or face. This is in line with the results

presented in [158], where the face and neck electrodes were not found significant

to contribute to the localization accuracy.

In this chapter, a formal definition of the PBM was introduced. Multiple

evaluations showed the capability to reconstruct the source activity of a brain-ROI

using a reduced model of the regions. In addition the combination with relevance-

based channel selection allowed this study to find subsets of channels in ldEEG

and accurately localize the multiple sources in the two evaluations performed.

The proposed relevance-based channel selection for source reconstruction

remains to be verified over real signals. Further studies on multiple recording

paradigms and analysis of different brain activity responses should be done in order

to validate the proposed selection over a more realistic scenario. However, the

presented framework for source and EEG simulation in this study simulates signals

with similarities to ERPs, as can be seen in figure 6.2. In addition, considering
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that the level of noise added to the signals had equal power than the signal, the

trial data simulated here can be regarded as having a similar SNR to typical ERP

signals.
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Chapter 6

Low-density EEG Source
Reconstruction based on
Optimal Channel Selection

This chapter introduces an automated methodology for minimizing the number

of channels and to identify ldEEG subsets to perform source reconstruction while

maintaining a high reconstruction accuracy, equal to or better than hdEEG electrode

counts. The number of channels and the accuracy are optimized using a multi-

objective approach. This optimization is performed by the NSGA-II algorithm, by

identifying ldEEG channel subsets that contribute to obtain a hdEEG accuracy level.

Multiple validation test over synthetic and real signals are performed using the

synthetic EEG dataset and the localize-MI dataset presented in sections 3.7.1 and 3.7.3,

respectively.

This chapter is based on article [214] and mainly addresses the 3rd research

question.

6.1 Introduction

Estimation of the brain source activity using EEG depends on several factors to be

accurately performed, with the number and location of electrodes at scalp being

one of the most important. It is generally accepted that increasing the number of

electrodes yields more precise localization [22, 23, 25]. The number of electrodes

145
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has evolved towards high-density numbers with the introduction of the standard

10-10 positioning system [81, 258] introducing up to 70 locations, and with the

introduction of the 10-5 system [83] the number was elevated to 345 locations for

scalp coverage. While the 10-10 system was accepted as a standard by the ACNS

and the IFCN [82, 259], the 10-5 system was not accepted by either of them [260].

In section 2.4.4 the evolution and influence of the number of electrodes for source

reconstruction is presented in more detail.

In [261] an extensive investigation of the validity of the 10-20, 10-10 and

10-5 systems as relative head-surface-based positioning systems was performed.

There it was argued that even though the 10-20 system has not been conceived to

support localization of brain sources, its high-density extensions into the 10-10

and 10-5 systems have mainly provided increased electrode density proven to

be effective in brain source localization [169]. The high-density extensions of

the 10-20 system logically inherit its electrode positioning principle, which was

not conceived to improve the accuracy of brain source localization algorithms.

Although it is sufficiently proven that these extensions are effective in increasing

the accuracy of brain source localization, it remains to be seen to what extent

these high-density systems require all the electrode positions for attaining that.

Even though the use of hdEEG systems has resulted in improved spatial resolution

in source localization, practical use has come at a cost [260, 261]. Increasing

electrode number decreases localization error but this improvement plateaus at

some point[24]. This has been revealed by examining the relationship between

localization error and the number of electrodes for the particular case of partial

epilepsy in pediatric patients [24].

Here, an automated methodology for channel selection based on the

contribution of the electrode locations to accuracy is presented. The methodology

uses information from electrode locations on multiple systems and electrode

configurations, e.g. the systems inherent to the 10-5, 10-10, 10-20 and/or geodesics

systems, to select the optimal number of electrodes and their locations to

solve the problem of EEG source localization for single and multiple sources.

This optimization is performed using multi-objective optimization, to minimize

the number of electrodes while minimizing the localization error obtained.

The optimization is based on the NSGA-II algorithm [211]. The algorithm,
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combined with EEG source reconstruction algorithms, searches for combinations

of electrodes for solving the EEG inverse problem that minimizes the localization

error while using the lowest number of channels possible. Considering 𝐶 as the

number of channels, exploring all the combinations of electrodes in order to find

the optimal solution means solving the inverse problem 2
𝐶
times for a single

source case, and 𝑆 (2𝐶 ) for 𝑆 multiple sources. These numbers will exponentially

grow when increasing the number of channels, significantly increasing the

computational efforts, e.g. in the case of 128 electrodes, it is required to solve the

inverse problem 3.4𝑥1038 times to evaluate all the possible electrode combinations.

In contrast, the NSGA-II aims to reduce the computational cost on average to

𝑂∗(𝑃2), where𝑂 is the number of objectives, in this case 𝑠+1, and 𝑃 the population

size [211].NSGA algorithms have been successfully applied in multiple fields for

optimization and feature selection, like facial expression recognition [262] and

telecommunications [263]. This algorithm has been applied to EEG channel

selection for classification of motor imagery [264]. Moreover, the algorithm has

proven to be effective in identifying low-density EEG subsets that maximize

classification accuracy while reducing the number of EEG channels required for

epileptic seizure classification [191] and subject identification [238]. Channel

selection based on other optimization algorithms have been previously explored

with genetic algorithms for classification of alcoholics in [265], and for motor

imagery in [266, 267], and using harmony search algorithm for alcoholism

screening and detection [268].

In this chapter, the methodology for channel selection based on contribution

to source reconstruction accuracy is evaluated in a step-by-step manner, by first

evaluating a simulation-based source reconstruction problem for one single source

and for multiple sources, using the synthetic dataset presented in section 3.7.1.

In a second phase, it is examined how effective the methodology is in accurately

detecting the stimulation site from intra-cerebral stereotactically implanted

electrodes, based on the Localize-MI dataset, presented in detail in section 3.7.3.

Three widely used source reconstruction algorithms, wMNE, sLORETA, and MSP,

were combined with the NSGA-II algorithm, to evaluate the effect of optimally

reducing the number of electrodes.
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6.2 Automated Methodology
for Channel Selection Based on Genetic Algorithm
Multi-objective Optimization

The proposed methodology is presented in figure 6.1. It combines a source

reconstruction algorithm and NSGA-II to find electrode subsets with the minimum

number of channels that maximize the localization accuracy, attempting to retain

the highest possible source localization accuracy. The general structure of the

automated methodology can be summarized by a loop of four blocks: NSGA-II,

Weighting, Source Reconstruction, and Performance indexes, where the outputs

of NSGA-II are a set of best channel combinations and a set of all evaluated

candidates.

Figure 6.1: Flowchart of the proposed automated methodology for channel

selection based on contribution to source reconstruction accuracy [214].

The central block of NSGA-II consists of several stages: Population

initialization, Fitness calculation, Crossover, Mutation, Survivor selection, and

Termination criteria to return the best solutions. The population consists of

a set of chromosomes, which are possible solutions to the problem, and each

chromosome can have as many genes as variables in the problem. In this case,

each gene represents an EEG channel, and the chromosome contains as many

genes as the number of EEG channels in the registered EEG y. A representation

of the chromosome structure representing the electrode combination is presented
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at the bottom left of figure 6.1. The NSGA-II initializes with a population of 𝑃

chromosomes with random binary values. Then, in the weighting block, the gene

values are used to weight the EEG by a dot multiplication between the EEG and

the chromosome to compute the weighted EEG y𝒘 = y · 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 . As a result
of this mathematical operation, the channels with a gene value of one keep their

value, while information of the channels with a gene value of zero is discarded.

The number of objectives 𝑂 is defined as 𝑂 = s + 1. Where, the algorithm

considers a fixed objective to minimize the number of EEG channels used to

localize single or multiple sources. The subsequent objectives are to minimize

the localization error of the number of sources s desired to localize, with a

separate objective per each source. NSGA uses a non-dominated sorting ranking

selection method to emphasize good candidates and a niche method to maintain

stable sub-populations of good points (Pareto-front).

The weighted EEG y𝒘 is used in the source reconstruction block for calculating

the source activity and estimating the location of each source. In each weighted

EEG y𝒘 the non-selected channels are converted to a temporal data series with

zero value, therefore, the inverse solution is calculated using all the electrodes

available in the head conduction model, but the information contained in the non-

used electrodes is discarded during source estimation. The use of all electrodes is

preferred to avoid increasing the ill-posedness of the inverse problemwhen using a

subset of the volume conductionmatrix and to avoid using computational resources

for re-calculating the volume conduction for each candidate combination.

In the performance indexes block, the number of channels extracted from

each chromosome and the localization errors per each source are computed by

comparing the estimated position with a ground-truth. The performance indexes

return to the NSGA-II block that applies the non-dominated sorting, the half of the

population with better performance is used to create the next generations using

crossover and mutation procedures. The actual generation finishes when the new

population is created and the process is repeated with the next generation until

the termination criteria is reached. A number of maximum generations was used

as criteria to stop the algorithm. Finally, from all sets of chromosomes, the best

combination per each number of channels is extracted to create a pseudo-Pareto

front. In the case of the multiple sources, the pseudo-Pareto front is generated
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from the mean of the localization error between all the sources

6.3 Experimental Framework - Synthetic Dataset
The synthetic EEG dataset is presented in section 3.7.1. It consists of 150 trials of

multiple source activity for 231 electrodes, from which 161 are located on the scalp

(based on the 10-10 and 10-5 systems), and the others are distributed between

LPA, RPA, neck and face. Only the first three sources of the dataset have been

considered for the evaluation tests. An example of the time course of the simulated

sources and their location is shown in figure 6.2

Figure 6.2: Example of simulated source activity [214]. Source 𝑠1 time course is

depicted in blue color, source 𝑠2 in orange, source 𝑠3 in yellow, and the remaining

activity from 𝑠4 in purple. The locations of the first three sources are depicted on

top, where the time was chosen where the maximum amplitude value for each

source took place. The light gray areas depict the time sections where there are

temporal mixing between sources.

Two tests over the synthetic dataset are proposed, where the objective is to

investigate to what extent the quality of the source reconstruction of hdEEG,

measured in terms of source location error, can be maintained while using a set

of reduced number of channels that were selected by the proposed methodology.

The first test was based on source reconstruction for one source, referred to as a

single-source test. This test was performed by setting two minimizing objectives

for the optimization: the localization error of the single source and the number of
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channels. The first source 𝑠1 of the synthetic dataset was considered for testing,

the epoch was set between 250 to 750 ms, including a section of overlapping with

the next source 𝑠2.

Figure 6.3: Location and names of the 161 scalp electrodes included in the New

York head model[216]. Red and gray circles represent the subset of 60 electrodes,

and orange and gray circles represent the subset of 128 [214].

A second test was performed considering the first three sources of the synthetic

dataset 𝑠1, 𝑠2, and 𝑠3. This is referred to as the multiple-source test. In this test, the

epoch definition was set between 250 to 1750 ms, and four minimization objectives

were set for the optimization algorithm: the individual localization error of each

source and the number of channels. To evaluate the approach over a different
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number of electrodes, the multiple-source test was performed over the full set

of 231 electrodes. This is referred to as multiple-source test 231𝑒 (161 electrodes

at scalp, of those 73 are located in positions of the standard 10-10 system and 88

located in positions of the standard 10-5 system, the other electrodes are placed

in the neck and face areas (figure 3.12)). A second number of electrodes was

considered by constraining the search space for the optimization algorithm to 128

scalp electrodes, of which 64 channels were selected from the standard 10-10 and

64 channels from the standard 10-5. This is referred to as multiple-source test

128𝑒 . Finally a third number of electrodes was considered by constraining the

search space of the NSGA-II to 60 electrodes, all of them located in standard 10-10

positions. This test is referred to as multiple-source test 60𝑒 . Figure 6.3 shows the

161 positions of the scalp electrodes of the New York head model, and the subsets

configuration for 128 and 60 electrodes.

6.4 Experimental Framework - Localize-MI Dataset

To test the methodology over real EEG signals the Localize-MI dataset presented

in section 3.7.3 was used. It consist of recordings from 256 scalp locations using

a geodesic electrode system of seven participants, while they were stimulated

with a single-pulse biphasic current by implanted electrodes. This was used as

the stimulation position is known and the dataset serves as ground-truth for

evaluating inverse solutions. The dataset includes 61 sessions of stimulation, and

in each session the stimulation took place in the location. Therefore, the epochs

for each session were averaged and cropped 20 ms around the stimulation artifact.

For this case, the dataset was processed as a single source case, by setting two

minimizing objectives for the optimization algorithm: the localization error of

the artifact source and the number of channels. This test is referred to as the

Localize-MI test.

6.5 Test Structure

The procedure during all tests started by defining the electrodes to be considered.

Only in the multiple-source tests did the electrode number vary according to the

test (when constraining to 128 or 60 electrode positions); in the single-source

test all the electrodes were considered. In the case of the Localize-MI test, the
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electrodes that were marked as bad were removed when calculating the forward

model, no attempt to clean or interpolate channels was carried out. The number

of electrodes to use defines the length of the chromosome for the optimization.

After setting the number of electrodes, the number of objectives was defined, and

the EEG of each trial (in the case of the synthetic data) or the ERP of the session

(in the case of the Localize-MI dataset) were transferred to the algorithm. In the

next step, the population size and the maximum number of generations were set.

Their values were determined experimentally and set as 100 and 400 respectively.

Finally, the algorithm for source reconstruction was defined, and the algorithm

could start processing data by combining the NSGA-II with sLORETA, wMNE and

MSP in separated runs respectively.

Each trial or ERP was processed by the algorithm at least three times, each

time with a different source reconstruction algorithm. During a run, the algorithm

evaluated 40000 combinations of electrodes while trying to minimize the objectives.

When the run finalized, a output file with the combinations and performance

indexes of all generations and chromosomes was generated. From this, the

performance of the best combination per each number of channels can be extracted

to create the pseudo-Pareto front. Finally an accuracy index was computed for

comparing the reconstructions from the optimized set of channels versus all the

channels available. The accuracy index represents the percentage of trials or ERPs

that obtained equal or lower localization error with a given number of electrodes

when comparing the accuracy when using all the electrodes for the same trial or

ERP.

6.6 Results

6.6.1 Single-source test - Synthetic EEG Dataset

The pseudo-Pareto front from the single-source test and localization error with

all the electrodes are presented in figure 6.4. The accuracy obtained with the

optimized combinations of channels presents a stable value for the localization

error when using combinations with five or more channels, independently of

the source reconstruction method applied. An inflection point can be seen in

the pseudo-Pareto front when reducing from 5 to 4 channels. It is also evident

when looking at the values presented in table 6.1, where the results from the
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optimization with 2 to 16 channels and the results with all the electrodes are

summarized. The accuracy index of the optimized combinations of channels

was extracted by quantifying the percentage of trials with a given number of

channels that obtained equal or lower localization error than when using all

the electrodes for the same trial. The accuracy index for the single source test

exhibits a relatively stable behavior from 16 to 5 channels, but it has a decrease of

more than two perceptual points when reducing from 5 to 4 channels. Its value

continues decreasing substantially while reducing the channels, coinciding with

the increasing of the localization error and the standard deviation.

When analyzing the results presented in figure 6.4 and table 6.1 in a more

detailed level, it can be seen that with a combination of 4 or more channels, more

than 92% of accuracy index was obtained for sLORETA and wMNE, indicating that

at least 138 over 150 trials obtained equal or lower accuracy than when using all

the electrodes. In the case of MSP it presents a lower accuracy index than the other

methods, with a stable value around 88%, and when considering combinations

with 4 or more channels at least 127 of 150 trials were equal or better than the

reconstructions with all electrodes.

6.6.2 Multiple-source test

The pseudo-Pareto Front for the multiple-source test with the different electrode

configurations are shown in figure 6.5. The multiple test had four optimization

objectives. To facilitate the visualization of the results, the pseudo-Pareto front

was obtained from the mean localization error across the 150 trials, where the

localization error is the average of the individual localization error for each one of

the three sources. Table 6.2 presents the localization error, standard deviation and

accuracy index for the multiple-source tests for a selected number of channels

and with all electrodes.

The results for all electrodes in the three tests show a tendency of increasing

the localization error when using a lower number of electrodes (figure 6.5 right

column). When localizing the sources, the mean between 60 and 128 channels

presents a similar value in each method, with the solution with 60 channels being

less accurate. In contrast, the difference is notorious when increasing from 128

to 231 channels, and it is more evident for sLORETA and wMNE methods. In the

pseudo-Pareto’s fronts of the proposed methodology, the same tendency as with
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Figure 6.4: Results for the single-source test [214]. The pseudo-Pareto fronts

relating the number of channels and the localization error by each source

reconstruction method are presented at left. The lines represent the mean

localization error across the 150 trials and their respective colored bands represent

their standard deviation. The mean localization errors across the trials and the

standard deviation obtained by using all the electrodes available (231) by each

method are presented at right.

all electrodes can be observed. In them, the localization error was more accurate

when using the full set of 231 channels, and when restricting the search space to

128 and 60 channels, the localization error increased. However, when comparing

the solutions for the test with 128 and 231 channels, there is not a considerable

difference between the solutions, but the obtained localization error values were

lower for sLORETA and wMNE in the multiple-source test with 231 electrodes.

When analyzing the values of table 6.2, it can be seen that for the multiple-

source tests of 60e and 128e, the proposed methodology obtained a lower mean

localization error when considering optimized combinations with 4 or more

electrodes than with the 60𝑒 and 128𝑒 subsets. In the case of the multiple-source

test 231𝑒 , the proposed methodology obtained lower errors than with all the

231 channels, when using optimized combinations of eight or more channels.

Regarding the accuracy index, in the multiple-source test 231e, for the optimized

combinations with 16 electrodes, in 145 of 150 trials the proposed methodology

obtained equal or lower accuracy than the full set of electrodes. The accuracy
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Figure 6.5: The pseudo-Pareto fronts for the multiple-source test with the different

constrained number of channels are shown at left [214]. They relate to the number

of channels vs the average between the three sources localization error. The lines

represent the mean of the localization error
∗
of the three sources across the 150

trials, and the colored bands the standard deviation. The mean localization error
∗

across the trials and the standard deviation obtained by using the subsets of 60

and 128 electrodes, and the full set of 231 electrodes for the three sources are

presented at right.
∗
The mean localization error is computed using the average

error between the three sources and then the average of this value across the 150

trials.
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Method Chs

Mean

Loc.

Error

SD

Acc.

Index

Method Chs

Mean

Loc.

Error

SD

Acc.

Index

Method Chs

Mean

Loc.

Error

SD

Acc.

Index

sLOR

2 2.5 4.0 66.7

wMNE

2 3.0 4.6 76.7

MSP

2 15.3 21.3 71.3

3 1.3 3.1 82.7 3 1.5 3.3 89.3 3 11.3 11.2 80.0

4 0.6 2.3 92.0 4 1.0 2.7 93.3 4 10.3 5.6 84.7

5 0.3 1.3 95.3 5 0.3 1.4 96.0 5 9.8 4.8 88.0

6 0.2 1.1 96.7 6 0.1 0.8 98.0 6 9.7 4.7 88.0

7 0.1 0.9 97.3 7 0.1 0.7 98.7 7 9.7 4.7 87.3

8 0.1 0.9 97.3 8 0.0 0.0 100.0 8 9.7 4.7 88.7

9 0.1 0.6 98.0 9 0.0 0.0 100.0 9 9.6 4.7 88.0

10 0.1 0.6 98.0 10 0.0 0.0 100.0 10 9.6 4.8 88.0

11 0.0 0.4 99.3 11 0.0 0.0 100.0 11 9.6 4.8 88.7

12 0.0 0.0 100.0 12 0.0 0.3 99.3 12 9.6 4.7 88.7

13 0.0 0.0 100.0 13 0.0 0.3 99.3 13 9.5 4.7 88.7

14 0.0 0.0 100.0 14 0.1 0.7 99.3 14 9.4 4.7 89.3

15 0.0 0.0 100.0 15 0.0 0.0 100.0 15 9.3 4.6 89.3

16 0.0 0.0 100.0 16 0.0 0.0 100.0 16 9.5 5.1 88.7

All 0.0 0.0 - All 1.6 3.8 - All 11.8 6.2 -

Table 6.1: Summary of the localization error obtained with the optimized

combinations of channels, from 2 to 16, and with the full set of 231 electrodes [214].

The accuracy index represents the percentage of trials with the given number of

channels that obtained equal or lower localization error than when using all the

electrodes for the same trial.

index reduces as the number of channels decreases. At the point of 8 electrodes

the accuracy index presents a value of 58% (87 of 150 trials), however, despite the

relative low accuracy index, the mean across the trials was lower than with the

full set.

Examples of the position of the true and estimated source locations and

the selected channels are show in figure 6.6. This shows the optimized

combinations with 4 and 8 electrodes for one trial of the dataset, and the resulting

combinations were obtained from the multiple-source test 231e results for each

source reconstruction method. In the combinations of 4 channels, it can be

observed that the channels selected are located close to the true source location,

where the mean localization errors were 5.3, 4.7, and 14, 5 mm, for sLORETA,

wMNE, and MSP, respectively. In addition, when observing the combination

of 8 channels, the selected electrodes were located not only close to the source

location, but also in intermediate positions between the sources that were relatively

close. In contrast, for the sources that were more separated, there was not
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Method Chs

Mean

Loc.

Error

SD

Index

(%)

Method Chs

Mean

Loc.

Error

SD

Index

(%)

Method Chs

Mean

Loc.

Error

SD

Index

(%)

sLOR

Test

60e

4 11.40 3.38 65.33

wMNE

Test

60e

4 11.53 3.75 58.00

MSP

Test

60e

4 14.79 3.36 74.00

6 8.91 3.43 84.67 6 9.25 3.30 74.67 6 12.34 2.85 90.67

8 7.73 3.42 91.33 8 8.01 3.15 84.67 8 11.40 2.49 97.33

10 6.25 3.31 98.00 10 6.72 3.05 92.00 10 10.70 2.56 98.67

12 5.59 3.16 98.67 12 5.90 2.85 96.00 12 10.68 3.02 98.00

14 5.45 3.15 98.67 14 5.64 2.91 96.67 14 10.83 2.88 98.00

16 5.44 3.12 99.33 16 5.55 3.08 98.67 16 11.07 3.10 97.33

All 13.56 5.25 - All 13.06 5.77 - All 18.98 5.07 -

sLOR

Test

128e

4 10.75 8.92 55.33

wMNE

Test

128e

4 8.35 3.96 69.33

MSP

Test

128e

4 13.16 3.54 74.67

6 5.87 3.84 79.33 6 5.43 3.30 87.33 6 10.72 2.64 94.00

8 4.23 3.00 87.33 8 4.54 2.90 90.00 8 10.00 3.03 96.67

10 3.26 2.56 94.00 10 3.82 2.67 96.00 10 9.37 2.51 97.33

12 2.58 2.25 95.33 12 2.92 2.43 97.33 12 9.04 2.43 96.67

14 2.13 1.94 98.00 14 2.46 2.18 99.33 14 9.06 2.66 98.00

16 2.03 1.96 99.33 16 2.20 1.87 100 16 8.90 2.47 98.00

All 11.28 5.93 - All 11.74 5.43 - All 17.82 4.25 -

sLOR

Test

231e

4 7.08 5.75 20.00

wMNE

Test

231e

4 7.18 5.87 24.00

MSP

Test

231e

4 20.15 13.81 29.33

6 3.69 2.59 44.00 6 5.06 6.99 47.33 6 13.15 6.76 56.00

8 2.54 2.13 58.00 8 3.06 2.78 60.67 8 10.74 3.87 74.00

10 2.00 2.00 71.33 10 2.35 2.14 66.67 10 9.53 2.99 82.00

12 1.23 1.53 88.00 12 1.72 2.00 76.00 12 9.47 2.97 81.33

14 1.16 1.49 90.00 14 1.38 1.64 82.00 14 9.32 2.90 84.00

16 0.90 1.26 96.67 16 1.26 1.60 82.67 16 9.39 3.02 86.00

All 3.17 3.52 - All 4.43 3.28 - All 14.19 4.01 -

Table 6.2: Multiple-sources test results [214].

selected any channel between them. The mean localization errors for the eight

channel combinations were 2.4, 4.2, and 4, 5 mm, for sLORETA, wMNE, and MSP,

respectively. This suggests that the proposed methodology selected not only the

channels that contained the most information from a single source, but also the

channels that contained shared information from multiple sources.

Regarding the effects of the estimated waveform for each source, the

standardized time courses of the sources estimated with 231 channels, and with

the optimized sets of 4 and 8 channels for the one trial, are presented in figure

6.7. The sources’ waveform are highly similar, independently of the number of

channels, however, the reconstructions were noisier when using the optimized

sets than with the full set of electrodes. For the same trial, the time courses of

the pseudo-Pareto channel combinations were compared against the time course

using the 231 channels. The relative error and Pearson correlation coefficient were
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Figure 6.6: Optimized combinations and source localization for one trial during

the multiple-source test 231e [214]. The mean localization errors with 4 channels

were 5.3, 4.7, and 14, 5 mm, and with eight channels were 2.4, 4.2, and 4, 5 mm, for

sLORETA, wMNE, and MSP, respectively. The hidden source indicator is intended

to point where there is a source that can not be seen from the top view.

calculated for each source, each number of channels from 3 to 30, and for each

reconstruction algorithm. It values are presented in figure 6.8. It was found that

the source time courses estimated with the optimized combinations and the full set

had more than a 97% correlation when considering 5 or more channels, obtaining

a relative error lower than 0.25. When considering optimized combinations with

more electrodes, the difference became smaller. The level of correlation with

16 channels or more is around 99%, independently of the source reconstruction

method.

Table 6.3 presents the mean computation times required to obtain the

reconstruction of the three sources over the 150 trials, and its standard deviation.
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It can be seen that the computation time for sLORETA and wMNE methods is

much lower than in MSP, in addition, their computational time are below 100 ms.

Method Time (ms) std (ms)

MSP 1841.95 155.94

sLOR 63.46 1.16

wMNE 50.11 1.07

Table 6.3: Mean and standard deviation of computation times for source

reconstruction over the 150 trials

6.6.3 Localize-MI test

The ERPs for the 61 sessions were processed by the proposed methodology with

each one of the source reconstruction algorithms. During processing, the channels

marked as bad channels were not taken into account, neither in the optimization

nor in the calculation of the values with "all channels". The number of channels

varied according to the number of channels labeled as good. The average number

of good channels among the 61 sessions was 210 channels (sd = 23). In the worst

case 162/256 and in the best case, 246/256 channels were considered during the

optimization process. Therefore, the number of channels used varied between

sessions, and the term "all channels" refers here to all channels labeled as good

channels. The pseudo-Pareto front resulting from processing each one of the ERPs

and the values with all channels are presented in figure 6.9. A similar tendency

than in the previous tests can be observed, in which the optimized combinations

obtained a lower localization error than with all the electrodes. In contrast to

previous tests, there is not an exponential trend when considering the fewest

number of channels, instead, a more linear behavior can be observed, where the

localization error and standard deviation increases as the number of channels

decreases.

Table 6.4 presents the summary of the localization error, standard deviation

and accuracy index for the Localize-MI test for the pseudo-Pareto combinations

from 2 to 16 channels. The accuracy index shows that more than 70% of the ERPs

were located with the same or higher accuracy than with all the electrodes when

using 8 or more electrodes, and more than 60% when using 4. It is noticeable that
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Figure 6.8: Relative error and Pearson correlation coefficient for each source,

comparing the pseudo-Pareto combinations with the full set of 231 channels [214].
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Figure 6.9: Results for the Localize-MI test. The pseudo-Pareto fronts relating to

the number of channels and the localization error by each source reconstruction

method are presented at left [214]. The lines represent the mean localization error

across the 61 sessions and their respective colored bands represent their standard

deviation. The mean localization errors across the trials and the standard deviation

obtained by using all the electrodes available (all channels labeled as good) by

each method are presented at right.

Method Chs

Mean

Loc.

Error

SD

Index

(%)

Method Chs

Mean

Loc.

Error

SD

Index

(%)

Method Chs

Mean

Loc.

Error

SD

Index

(%)

sLOR

2 11.62 9.57 63.93

wMNE

2 11.82 8.27 65.57

MSP

2 11.83 13.58 40.98

3 11.10 8.34 63.93 3 10.77 8.83 65.57 3 10.34 11.64 50.82

4 11.14 8.25 63.93 4 10.99 9.01 65.57 4 10.06 12.41 60.66

5 11.17 8.90 63.93 5 10.63 8.53 67.21 5 8.74 9.45 70.49

6 10.98 8.78 63.93 6 10.31 8.24 68.85 6 8.32 7.90 72.13

7 10.07 8.40 68.85 7 10.00 8.13 68.85 7 8.26 8.35 78.69

8 9.47 8.35 73.77 8 9.91 7.79 70.49 8 7.91 7.35 81.97

9 8.49 7.18 73.77 9 9.00 7.44 73.77 9 8.54 8.04 80.33

10 8.21 7.05 73.77 10 9.11 7.63 73.77 10 8.13 7.39 83.61

11 7.94 6.70 73.77 11 8.53 7.06 75.41 11 8.75 8.04 78.69

12 7.89 6.74 73.77 12 7.77 6.35 77.05 12 9.29 8.50 83.61

13 7.37 6.39 73.77 13 7.84 6.31 75.41 13 8.85 7.89 83.61

14 7.27 6.23 75.41 14 7.25 6.08 78.69 14 8.72 8.27 88.52

15 7.18 6.24 75.41 15 7.05 6.06 78.69 15 8.57 7.70 85.25

16 6.69 6.16 77.05 16 6.74 5.83 80.33 16 9.04 8.30 85.25

All 15.12 8.88 - All 15.89 8.94 - All 19.83 9.61 -

Table 6.4: Localize-MI test results [214].

with the optimized subset of 2 channels, the mean localization error was lower

than with all channels. In addition, the accuracy index values were 63.93%(39/61)
, 65.57%(40/61) , and 40.98%(25/61) for sLORETA, wMNE and MSP respectively,

with a marginal difference in the standard deviation for sLORETA and wMNE,

when compared to the deviation obtained with all electrodes.
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6.7 Discussion
The minimum number of electrodes required for modeling a single source is

defined by the number of parameters to describe it: the localization based on

three location coordinates (x,y,z) and the orientation based on three strength

components in each coordinate axis [16]. However, in distributed models based

on FEM and BEM modeling, the orientation can be assumed as fixed throughout

the activation period of the source, where often it is assumed to be normal to

the cortical surface. Therefore the number of parameters and electrodes required

can be reduced. In the single-source test, the results shown in figure 6.4 suggest

that 4 or 5 channels (where is located the inflection point of the pesudo-Pareto’s

front) are enough to estimate the source parameters with a satisfying localization

accuracy when compared to a set of hdEEG. These results are also supported by

the values shown in table 6.4, where the mean localization error was lower with

these number of channels than when using all available electrodes.

Previously, it was discussed that a plateau behavior was observed in the

localization error when increasing the number of electrodes [24]. This plateau

can also be observed in the pseudo-Pareto front for all the tests performed here

(figures 6.4, 6.5 and 6.9), where adding channels to the subset did not continue

decreasing the localization error. However, the plateau did not remain flat until

reaching the full number of electrodes. At some point adding channels started to

increase the localization error. This effect is possible to see in the pseudo-Pareto

front of the multiple-source test constrained to 60 channels, where at around

23 channels the error starts increasing notably. This effect is presented because

the optimization algorithm was set to identify electrode combinations with the

lowest number of electrodes and the lowest localization error possible for each

source; during the optimization process, the algorithm does not find the optimal

for each number of electrodes, rather, it evaluates a given number and as it finds

combinations with a lower number, it keeps the search in that direction. At the

end, most of the combinations evaluated lay in the first third of the total electrode

number. This effect was also present in the other test but for a higher number of

electrodes, figure 6.10 shows the pseudo-Pareto front for the multiple-source test

with 231 electrodes, showing the number of channels from 2 to 130 to exemplify

this effect.
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Figure 6.10: The pseudo-Pareto front for the multiple-source test with 231

electrodes [214].

The results of the multiple-test with 231, 128, and 60 channels offer evidence

of the general effect of using a lower number of channels, where the localization

error achieved the lower values when using 231 channels in both, without

optimization when using all channels, and with optimization for the subset of

channels. Considering this, when constraining the search to use less electrode

positions, as in the tests with 128 and 60 channels, it was possible to observe

an evident increment in the localization error with and without optimization

(figure 6.5). This accuracy behavior supports the proposition that intermediate

positions between electrodes in the 10-10 system adopted by the 10-5 electrode

layout play an important role. As there are more channels, the probability of

recording closer to the source of interest increases, resulting in a more accurate

estimation. Moreover, the results are in line with the widely accepted concept of a

higher number of channels leading to a higher localization accuracy, which has

been previously demonstrated and discussed [24, 25].

What is new in the results presented here is that an optimized subset of

electrodes can attain similar or better localization accuracy than when using all

electrodes in a hdEEG setting (extensions of the 10-20), as shown in tables 6.1, 6.2

for a simulated dataset, and in 6.4 for the Localize-MI dataset. At first it can appear

counter-intuitive that a reduced number of electrodes can attain such levels of

accuracy. However, it should be cautiously noted that not any subset of channels

can attain that accuracy. Through the combination of methods proposed in our
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methodology, it was possible to find combinations of channels for a particular

brain source/s configuration that attained values of localization error equal to or

better than with hdEEG.

In conclusion, the different tests performed in this study offer multiple views

of the channel optimization effects for source reconstruction in which multiple

and single source cases were analyzed. Overall, the proposed methodology was

able to optimize the localization error and the number of channels, by finding a

subset of channels with few electrodes that attained equal or similar localization

accuracy than hdEEG. In both cases, when analyzing the Localize-MI and the

synthetic EEG datasets, the sources have different localization, which allowed us to

evaluate the methodology over different brain regions and source configurations.

Additionally, the proposed methodology was tested on several electrode systems

(10-20, 10-10, 10-5, and geodesic) and considering different head modeling methods

(FEM and BEM). Independently of the variations, our proposal was able to find

combinations of channels with few channels that offer equal or better localization

accuracy, demonstrating the feasibility of using low-density optimized electrode

combinations to localize single and multiple sources.



Chapter 7

Conclusions and Future Work

This chapter summarizes the findings presented in this thesis, and offers an overview

of the research questions in section 1.2

7.1 Findings Summary
A diagram summarizing the contributions of the thesis is presented in figure 7.1.

7.1.1 Extraction of underlying information using frequency
decomposition

Chapter 4 presented a methodology for extracting frequency information to

improve source reconstruction accuracy in ldEEG. The alleviation of the ill-

condition characteristic of the inverse problem was performed by improving the

SNR using frequency decomposition with MEMD. This was discussed in chapter

4 and in the article related to the thesis [177]. The use of MEMD to extract the

underlying information of the source activity hidden in the EEG signals contributed

to improving the reconstruction accuracy for ldEEG settings.

It was shown that the use of selected IMFs decomposed by MEMD allowed

capturing of the underlying structure of source activity presented in the recordings,

resulting in an improvement of spatial accuracy when comparing the solutions

without pre-processing the EEG data with MEMD. As shown in figure 4.10

for synthetic data, the use of MEMD decomposition contributed to obtaining

a significant difference in the reconstruction accuracy and maintaining a low

reconstruction error when using ldEEG electrode counts of 16 and 8 channels.

167
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Figure 7.1: Summary of the thesis contributions
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This was confirmed with the multi-modal dataset in figure 4.11, where the

reconstruction accuracy of 32 channels with MSP was retained with MEMD-MSP

using considering only 8 electrode positions.

The frequency decomposition and attenuation of mode-mixing resulting from

MEMD had a positive impact over the source reconstruction accuracy. As the

inverse method is constrained on the selected IMFs the solutions were more

accurate and cleaner using MEMD-MSP than raw-MSP (figures 4.7, 4.8, 4.9, and

4.14), obtaining MEMD-MSP lower reconstruction errors.

7.1.2 Partial brain models and relevance-based channel selection

Chapter 5 presented a methodology involving reduced models of target brain

regions or PBM as a technique to reduce the number of unknowns for the inverse

problem. This, combined with relevance-based channel selection, allowed to

obtain source localization errors typically seen in hdEEG but using ldEEG electrode

counts.

The PBM approach allowed to constrain the solution to a particular brain

region by reducing the number of unknowns of the inverse problem. The benefits

of this approach were seen when using selected channels using relevance-based

criteria and local electrodes. As shown in figure 5.6 and table 5.2, when using

PBM and relevance-based selection it was possible to obtain reconstruction errors

below 10 mm even with selected ldEEG electrode counts of 4, 8, and 16 electrodes,

similar to hdEEG using 60 channels. In addition, when combining PBM with local

electrodes, it was possible to obtain reconstruction errors below 20 mm.

The relevance selection based on Q-𝛼 method demonstrated that applying

channel selection for source reconstruction can maintain a high level of spatial

accuracy. As presented in figure 5.10 using ldEEG electrode counts of 6 and

9 channels selected by relevance criteria obtained source reconstruction errors

similar to a hdEEG system with 128 channels and better than with 62 channels.

In addition, even with such a smaller number of channels, the localization error

was maintained below 10 mm, showing that the use of ldEEG can obtain high

localization accuracy with selected channels. Moreover, the time courses were

accurately extracted, and the selected ldEEG did not compromise the temporal

accuracy as presented in figure 5.11, a high level of correlation was obtained

between the reconstruction with selected channels and the densest coverage-
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based.

7.1.3 Optimization-based channel selection

An automated methodology for channel selection was presented in chapter 6. In

this, the number of electrodes and the localization error for single and multiple

source cases were optimized using the NSGA-II algorithm combined with source

reconstruction.

The optimization-based methodology was able to identify subsets of electrodes

that lay in the category of ldEEG that retained the hdEEG source reconstruction

accuracy. The experimental results show that optimal subsets with 6 electrodes

can obtain an equal or better accuracy than hdEEG, with more that 200 channels,

for a single source case. This happened when reconstructing a particular brain

activity in more than 88% of the cases, for synthetic signals (table 6.1); and 63%,

for real signals (table 6.4), and in more than 88% and 73% of the cases when

considering optimal combinations with 8 channels for synthetic and real signals,

respectively. For a multiple-source case of three sources (table 6.2), it was found

that optimized combinations of 8, 12 and 16 electrodes attained an equal or better

accuracy than hdEEG with 231 electrodes in at least 58%, 76%, and 82% of the cases

respectively. Additionally, for such electrode numbers, a lower mean error and

standard deviation than with 231 electrodes were obtained.

The pseudo-Pareto fronts obtained from the multiple optimizations showed

that there are multiple ldEEG channel combinations that obtained a lower mean

localization error, with electrode numbers much lower than high-density numbers.

In multiple cases electrode counts with 6 to 12 electrodes exhibited a lower mean

with similar standard deviation, as shown in figures 6.4, 6.5, and 6.9. In addition,

when comparing the time-source reconstruction using the selected electrode

counts with the densest electrode array, it was found that the signals obtained a

high correlation over 97% as presented in figure 6.8, demonstrating that the time

courses were marginally affected by the channel reduction.

7.2 Final Conclusions and Remarks
The proposed methodologies presented and the results discussed in chapters

4, 5, and 6 demonstrate the feasibility of using ldEEG to perform accurate

source reconstruction. Three different approaches were presented, evaluated over
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multiple EEG signals (synthetic and real), and the results discussed. From them,

two approaches for channel selection for source reconstruction were introduced,

based on relevance analysis and based the optimization of the electrode number

and reconstruction accuracy.

In particular, the optimization-based approach for electrode selection can

enable systematic searches of electrode subsets for any given source or

combination of sources that can estimate the source/s location/s. Also, the

accuracy of different high-density electrode configurations widely used today can

be compared and benchmarked for any given source scenario. In ldEEG systems, it

can be used for evaluating the source localization capabilities of multiple consumer-

grade and wearable EEG systems that proliferate nowadays [269], to verify to

what extent they can be used, and to determine the potential brain source activity

they can monitor. The outcome of this research is envisioned as a powerful enabler

of flexible wearable EEG systems that can offer source imaging capabilities with

same accuracy as hdEEG to ldEEG systems in clinical and non-clinical settings.

Also, as a platform to validate and benchmark existing wearables and any other

type of EEG systems.

Multiple BCI systems are based on brain activity and responses of a particular

region or area of the brain e.g. classification of SSVEP, or motor imaginary

movements. Several works have studied the applicability, feasibility of source

reconstruction in BCI classification [270, 271] and have been applied over motor

imaginary tasks [103, 107, 272] reporting an increase in the classification accuracy

for source-based approaches over the traditional sensor-based methods. The use

of the source space has been poorly exploited in BCI systems, partially due to the

uncertainty of source reconstruction when recording with non-hdEEG systems. As

presented here, a selected configuration of electrodes can favor the development of

source-centered BCI systems with a sparse number of electrodes that can surpass

actual systems in accuracy, portability and comfort.

Simplifying the number of electrodes by implementing the approaches

presented can be beneficial for applications and systems based on a sparse number

of channels in medical and non-medical fields. Nowadays, there are an important

number of devices with EEG recording capabilities with less than 32 electrodes, and

especially in the clinical setting systems with 21 electrodes based on the standard
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10-20 are still the gold standard for multiple analysis [82]. For those systems,

the electrodes can be selected to estimate the activity of an area of interest; as

demonstrated, the sources retrieved when using a selected subset presented a high

level of correlation with the signals obtained with the full set of electrodes (figures

5.11 6.7), therefore, the source time-courses can be used for further analysis and

feature extraction.

The use of a low number of electrodes, inherently, reduces the preparation

time, and increases the portability of the EEG systems. The implementation of the

proposed methodology can increase the flexibility of brain source reconstruction

in multiple studies. For example, in mobile brain/body imaging (MoBI) there is

a need to offer flexibility and ease the acquisition of brain data [273] in order to

perform studies in natural environments for the participants, like while exercising

or working [274]. The proposed methodologies also have potential applications in

clinical settings in which it is required to monitor the activity of a specific area of

the brain. The electrodes required to map a particular region of the brain related

to a disease can be identified with the proposed approaches and placed in a patient,

then, the estimated time-course can be analyzed, i.g. for detecting the start of a

seizure in epileptic patients, or monitoring the changes in the brain activation

over time.

The use of individual head models can be seen as a particular limitation to

extend the applicability of the proposed methodologies. In multiple applications,

especially the non-medical, there is no anatomical information available that allows

to estimate a subject-specific model. However, in such cases, it is recommended to

use template precise models and to apply a warping process using head landmarks

and electrode positions [111]. After warping the model and co-registering with

the electrodes, the forward model can be computed and used during source

reconstruction.

It is important to consider that the selected electrodes based on optimization

or relevance criteria are important for the basis of the particular source activity

in which the analysis is applied. It must not be mis-interpreted that a selected

set of electrodes can be used for mapping all the cortical regions. In such cases,

to estimate a generalized activity over the brain, hdEEG is proven to be effective

regardless of the area of brain activity. It is also important to note that multiple
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channels that were repeatedly selected were located in positions out of standards

10-10, and 10-20, which supports the idea that multiple locations in non-standard

positions contribute to improving the reconstruction quality, unfortunately, these

positions are generally available only in denser layouts and EEG caps. However,

the use of head models including intermediate positions can be combined with the

physical adjustment of the positions of the electrodes of a system to the relevant

selected ones, in order to monitor a particular brain activity.

The aim of this study is not to discourage the use of hdEEG systems, it is

rather to offer alternative techniques to select and reduce the number of electrodes

for source reconstruction while maintaining the localization accuracy of hdEEG

systems. In several situations where for practical reasons high-density systems are

not an option, ldEEG solutions designed based on the methodologies proposed can

favor portability and reduce the volume of data while achieving the same quality

as hdEEG systems. These traits can enable the development of much needed of

portable EEG tools for medical diagnosis and non-medical applications.

7.3 Future Work

MEMDwas proven to improve the source reconstruction accuracy by constraining

the solution to selected frequency modes extracted over the EEG signals. MEMD

is a time-frequency decomposition method based on a data-driven approach that

does not use any particular assumption of the time course of the signals, and that

does not influence the signal to adopt a particular shape. As the decomposed

signals maintain their original frequency properties, MEMD should be evaluated

in further studies to analyze the connectivity of brain regions of constrained

solutions, and to evaluate the effects of ldEEG in connectivity analysis.

The use of frequency decomposition methods can improve source

reconstruction by providing unmixed frequency activity. Here the MEMD was

selected due to the mode-mixing attenuation and the mode-alignment of the

IMFs in multivariate analysis. However, new decomposition methods as MVDM

[245] and multivariate Fourier decomposition method (MFDM) [275] can also

be applied over multivariate data to extract frequency components that contain

underlying source activity. Those approaches have shown advantages over MEMD.

In particular MVMD has been found to show advantages in noise robustness and
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mode separation [245], and MFDM improves the mode-mixing [275]. Although,

multiple authors have applied them for feature extraction and time-frequency

decomposition [276–279], those methods remain to be evaluated over source

reconstruction.

As mentioned in the conclusions, multiple BCI systems are based on the brain

activity and responses of a particular region or area of the brain, and several studies

have demonstrated the advantages of using a source space-based approach over

electrode space [103, 107, 270–272]. It remains to be verified for those applications

whether the use of selected ldEEG electrode counts for source reconstruction can

be applied in the BCI domain. Future studies could focus on evaluating to what

extent the optimal selection of channels for source reconstruction with ldEEG

can impact the feature extraction from the estimated source activity, as well as

the classification accuracy. In BCI the computation times required for source

reconstruction must be added to the typical procedures of feature extraction and

classification. In that regard, the results of tables 5.3 and 6.3 suggest that the

methodologies proposed in chapters 5 and 6 are computationally feasible for BCI

implementation and general online applications, in particular when using the

algorithms based on minimum norm.

One of the most relevant applications of EEG source imaging is the detection

of epileptogenic zones in drug-resistant focal epilepsy, in particular during pre-

surgical stages [87, 280–282]. In future, studies should be performed on this task.

As the localization accuracy is the focus, selected electrodes can be be studied to

verify if reduced electrode numbers can locate the foci and/or monitor an affected

area.

The methodologies presented in this thesis were evaluated over synthetic

and real signals in most of the cases. In particular, the methodology of PBM and

relevance-based channel selection was only evaluated on synthetic signals using

the presented simulation framework for creating multi-source EEG signals 3.2.

Although multiple tests were performed providing ldEEG and hdEEG comparisons,

further studies should include the evaluation of real signals.

EEG connectivity analysis is a growing topic nowadays, as it offers the

possibility to measure and quantify the interaction of brain regions during multiple

tasks [27]. The study of brain connectivity is proven to be useful for neuromarker
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identification of different brain conditions and processes [283–285]. Even though

sensor-based connectivity is possible, the EEG volume conduction problem poses

several challenges for the analysis and interpretation of results. In contrast, the

source reconstructed maps offer more localized and unmixed information that is

used to perform clearer connectivity analysis that offer a better interpretation of

the connectivity between regions [28, 102]. However, this analysis on the source

space is limited to the use of hdEEG. As demonstrated here, ldEEG can achieve

a hdEEG localization accuracy for a particular brain activity or constrained to

brain-ROI. It remains to be determined as to what extent source connectivity

can be applied over a few regions of the brain, and provide meaningful results

of the interaction of limited regions. The use of ldEEG for tracing subcortical

activation using co-registration with fMRI and creating new models that based

on connectivity and afferent region activation, could illuminate by inference, the

subcortical region activation.

Here was demonstrated that multiple channels non-included in standard 10-10

and 10-20 systems also can contribute to improve the source reconstruction quality.

However, those electrode positions are only available in denser layouts (10-5) and

EEG caps, and they are generally not considered in ldEEG and wearable systems.

Therefore, it remains to be verified how intermediate positions not considered in

the typical positioning systems can contribute to source reconstruction. Moreover,

a flexible system that allows re-positioning electrodes should be considered.

Opposite to dipole fitting, instead of a dipole moving in the forward model,

electrodes that search for optimal locations on the scalp for best capturing the

underlying source activity remain to be studied. Although this can add challenges

for noise handling and might require more complex models, they might contribute

to the development of more accurate and personalized systems for source activity

monitoring.
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