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Sammendrag

Cerebral parese (CP) er en samlebetegnelse på motoriske funksjonsforstyrrelser
grunnet skade på hjernen tidlig i barnets utvikling. Det er særlig spedbarn med
medisinske risikofaktorer, som for eksempel for tidlig fødsel, pustebesvær og in-
feksjoner, som står i fare for å utvikle CP. CP har innvirkning på barnets holdning
og motorikk, men gir også andre utfordringer og komplikasjoner. Som følge av
manglende tidlige symptomer blir ofte ikke diagnosen satt før 1-2 års alder. Tidlig
gjenkjenning av CP hos spedbarn er viktig for å kunne starte målrettet behandling,
forebygge komplikasjoner og redusere bekymring hos foreldre.

Undersøkelse av spedbarnets spontane bevegelser med metoden General Move-
ment Assessment (GMA) kan indikere om et barn har CP allerede før 5 måned-
ers alder. GMA utføres ved observasjon av et spedbarns spontane bevegelser i en
video. Ettersom dette avhenger av tilgang til erfarne og trenede observatører er
denne undersøkelsen ikke tilgjengelig for alle. Maskinlæringsbasert CP-prediksjon
har blitt utforsket som et alternativ til GMA, men foreløpig har man ikke lyktes
med å lokalisere de spontane bevegelsene til et spedbarn i en video på en pre-
sis måte. Samtidig er man avhengig av menneskelige eksperter for å kunne velge
ut relevante egenskaper i spedbarnsbevegelsene og for å utvikle prediksjonsmod-
eller.

Konvolusjonelle nettverk kan tilpasse seg komplekse oppgaver gjennom au-
tomatisk utvelgelse av relevante egenskaper ved bruk av tilpassede nettverksarkitek-
turer. Formålet med denne avhandlingen var å undersøke presisjonen og beregn-
ingseffektiviteten til bildebaserte konvolusjonelle nettverk (ConvNets) for lokalis-
ering av spedbarns spontane bevegelser i videoopptak, og å evaluere nøyaktigheten
til grafbaserte konvolusjonelle nettverk (GCNs) for prediksjon av CP.

Resultatene fra dette doktorgradsarbeidet viser at ConvNets er i stand til å
lokalisere spedbarnsbevegelser i video like godt som det et menneske gjør sam-
tidig som videoen prosesseres i sanntid. En GCN-basert prediksjonsmodell for CP
kan videre oppnå like god nøyaktighet som det kliniske eksperter gjør ved bruk
av GMA ved 3 måneders alder. Prediksjonsmodellen har også svært god evne til
å forutsi gående eller ikke-gående funksjon hos barn med CP og å skille mellom
spedbarn som utvikler ensidig og tosidig lammelse.



Denne avhandlingen viser at konvolusjonelle nettverk kan brukes til videobasert
bevegelsesanalyse av spedbarn for nøyaktig automatisk prediksjon av CP. Tidlig
og objektiv gjenkjenning av CP hos spedbarn med medisinske risikofaktorer kan
inspirere til utvikling av maskinlæringsbasert klinisk beslutningsstøtte og opp-
muntre til videre forskning i grenseflaten mellom moderne medisinsk teknologi
og klinisk ekspertkunnskap.
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Summary

Cerebral palsy (CP) is the most common physical disability in childhood, with
a particularly high prevalence in infants with medical risk factors (i.e., high-risk
infants), like preterm birth. CP is caused by injury to the developing brain which
affects a child’s movement and posture but also involve associated impairments
and complications. The lack of early pathological signs of CP, typically delays the
diagnosis until 12 to 24 months of age. However, early detection of CP is necessary
to improve function through targeted intervention.

The quality of spontaneous movements of infants has evolved as an accurate
marker for CP before 5 months of age. The qualitative General Movement Assess-
ment (GMA) enables early prediction of CP from infant spontaneous movements
in a video. However, the dependency on highly experienced human GMA experts
questions its scalability. Machine learning-based CP prediction has attempted to
replicate the predictive accuracy of GMA, but currently lack precise motion cap-
ture of infant spontaneous movements in videos and require human expert in-
volvement in selecting movement features and designing prediction models.

Convolutional networks have ability to adapt to complex tasks through auto-
matic feature extraction with dedicated network architectures. In this thesis, we
investigate the localization performance and computational efficiency of image-
based convolutional networks (ConvNets) in video-based motion capture of in-
fant spontaneous movements, and the predictive accuracy of graph-based convo-
lutional networks (GCNs) for prediction of CP.

Results show that video-based motion capture harnessing ConvNets can ap-
proach human-level localization performance with real-time processing speeds.
Moreover, a prediction model for CP utilizing GCNs can achieve predictive ac-
curacy non-inferior to the clinically recommended human expert-based GMA in
high-risk infants at 3 months age. Such a prediction model can also distinguish
infants with ambulatory CP from non-ambulatory CP and infants with unilateral
CP from bilateral CP.

This thesis demonstrates the potential of convolutional networks in video-
based infant movement analysis. The knowledge acquired may pave the way for
early, objective detection of CP in high-risk infants, encourage implementation
of machine learning-based clinical decision support, and inspire future research
to discover fruitful collaborations between contemporary medical technology and
clinical expert knowledge.
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Chapter 1

Introduction

1.1 Cerebral palsy

Advancements in neonatal care have increased the survival rates of infants with
medical risk factors, like preterm birth [1]. Every year, 15 million infants are born
preterm, and the number keeps rising [2]. Extremely preterm birth (i.e., gesta-
tional age (GA) of less than 28 weeks) and other medical risk factors (e.g., neona-
tal encephalopathy and intraventricular hemorrhages) during the neonatal period
pose a great risk for brain injuries and neurodevelopmental disabilities [3].

Cerebral palsy (CP) is the most common physical disability in childhood, with
an overall prevalence of around two per 1 000 live births [4, 5] and 11% in
extremely preterm infants [4]. CP is defined as “a group of permanent disorders
of the development of movement and posture, causing activity limitation, that are
attributed to non-progressive disturbances that occurred in the developing fetal or
infant brain. The motor disorders of cerebral palsy are often accompanied by dis-
turbances of sensation, perception, cognition, communication, and behaviour, by
epilepsy, and by secondary musculoskeletal problems” [6]. Hence, CP is an umbrella
term for permanent motor disorders, often involving associated impairments and
complications, due to abnormal brain development in an early phase of life.

Although CP mirrors early disturbances to the infant brain, it takes develop-
mental time for pathological signs of CP to emerge [7]. Accordingly, diagnosis
of CP is typically performed between 12 and 24 months of age based on a con-
stellation of clinical and neurological signs [8]. However, early detection of CP is
necessary to optimize function and improve quality of life [8]. Especially, targeted
intervention during the first two years of life, when the plasticity of the brain is
at its highest [9], promotes improved motor and cognitive outcomes in children
with CP [10]. Moreover, early detection may improve access to community ser-
vices reducing further complications and reassure parents of healthy infants [11,
12]. Hence, there is a call for techniques accurately predicting CP from early mark-
ers [13].

1



Chapter 1 Introduction

1.2 Early medical prediction of CP

Before 5 months post-term age (PTA), prominent markers for CP are abnormali-
ties in neonatal neuroimaging, infant spontaneous movements (i.e., movements
that infants perform spontaneously without any external stimulation), and abnor-
mal muscle tone, reflexes, and reactions [8, 14–16]. These markers have in com-
mon that they are age-specific, and hence require assessment techniques adapted
to the particular developmental period [7]. At term-equivalent age, brain abnor-
malities may be identified using magnetic resonance imaging (MRI) [17]. The
predictive validity for CP from infant spontaneous movements is strongest at 2-5
months PTA, using Prechtl’s General Movement Assessment (GMA) [18, 19]. Neu-
rological function (e.g., muscle tone, reflexes, and reactions) can be assessed with
Hammersmith Infant Neurological Examination (HINE) at 3-18 months PTA us-
ing age-dependent cut-off values for prediction of CP [16, 20]. Recent guidelines
recommend the use of MRI, GMA, and HINE to give an interim diagnosis of high
risk of CP before 5 months PTA [8]. However, in infants with known medical risk
factors, GMA at 2-5 months PTA has demonstrated the best predictive accuracy
for later CP [7, 8].

GMA focuses on distinct infant spontaneous movements that “involve the whole
body in a variable sequence of arm, leg, neck and trunk movements” [18], termed
by Prechtl et al. [21] as general movements (GMs). GMs take different forms from
2 months post-menstrual age (PMA) [22] to 5 months PTA (Figure 1.1) [23], and
particularly the type of GMs, called fidgety movements (FMs) [23], appearing be-
tween 2 and 5 months PTA is indicative of healthy motor development [24, 25].
FMs are characterized as “small movements of moderate speed and variable ac-
celeration, of neck, trunk and limbs, in all directions” [18]. Whereas the presence
of FMs indicates typical brain development during the major transition of neural
functions around 3 months PTA [7, 26], a lack of FMs (i.e., absent FMs) during
this period is often intertwined with abnormal brain development. This indicates
neurological disorders [27, 28], especially CP [8, 29–31].

GMA qualitatively assesses FMs from a video recording of an infant in supine
position [18]. This makes it a promising assessment which can be easily per-
formed in clinic, even in low-resource settings, with a single video camera or
smartphone [33–35], and that is non-invasive unlike MRI and HINE. FMs are
perceived by trained human observers with visual gestalt perception [18]. This
implies an advanced form of pattern recognition that pays attention to the overall
character of whole-body movements rather than individual movements of certain
body parts. As described by Lorenz [36]: “Gestalt perception is able to take into
account a greater number of individual details and more relationships between these
than in any rational computation.”

2



1.2 Early medical prediction of CP

Figure 1.1: From 2 months PMA to 5 months PTA, general movements (GMs)
take different forms; fetal and preterm GMs before term, writhing movements
until 2 months PTA, and fidgety movements (FMs) between 2 and 5 months
PTA [18]. During the FMs period, there are also other movement patterns (e.g.,
kicking, circular arm movements, and hand-to-hand contact) and postural pat-
terns (e.g., head centered, body symmetry, and extended legs), occurring together
with FMs [18, 23, 32]. These patterns, referred to as the concurrent motor reper-
toire, in combination with FMs constitute the infant spontaneous movements at
this age.

Consequently, complex gestalt perception is attained through repetitive ob-
servation and learning from experience [36]. As a result, GMA requires extensive
training and years of experience for high inter-observer reliability [37], which
limit the number of certified GMA observers that are available [38], and, in turn,
hamper the widespread clinical use of GMA. Furthermore, the subjective and qual-
itative nature of gestalt perception in GMA hinders the quantification of FMs,
which makes them a questionable marker for CP [38]. Moreover, GMA during FMs
age, unlike the Assessment of Motor Repertoire [18], does not take into account
other movement patterns and postural patterns of infant spontaneous movements
which occur together with FMs (i.e., concurrent motor repertoire in Figure 1.1
in GMA recordings [18, 23], and that also often appear atypical in infants with
CP [32, 39]. Hence, there is a need for more objective and scalable techniques to
support GMA for early prediction of CP.

3



Chapter 1 Introduction

1.3 Convolutional networks for machine learning-based
CP prediction

Recent advancements in computer vision and machine learning, with the advent
of deep learning, have provided automated solutions to many challenging tasks re-
lated to analysis of images and videos, which preserves the non-invasive character
of GMA with no dependency to body-worn markers, sensors, or specialized labora-
tory equipment. In particular, the kind of deep learning called image-based convo-
lutional network (ConvNet) has enabled automated analysis that is approaching
or even surpassing human performance on specific visual tasks [40]. ConvNets
achieve human-level performance by harnessing representation learning to de-
tect complex task-specific features without the need for human expert involve-
ment [41]. The resulting features obtained by ConvNets could represent complex
gestalts similar to the modern computers Lorenz [36] foresaw when he stated
that “Gestalt perception can uncover an unsuspected regularity, whereas the rational
abstraction process is absolutely incapable of doing so. With the exception of some
very modern computers, which are able to superimpose a large number of curves and
to derive a principle operating in them all, we have no means . . . which is able to
discover inherent principles.”

Thus, ConvNets could be considered analogous to gestalt perception in hu-
mans. In particular, the ability of ConvNets to find intricate global features in
data, through feature hierarchies of increasing abstraction level, could remind of
the way humans detect meaningful patterns using gestalt perception to empha-
size the overall picture rather than individual details. To obtain an analogue to
gestalt perception in humans, ConvNets have drawn inspiration from the human
visual cortex [41]. By employing convolution, neurons in the early layers of a
ConvNet have a small receptive field and detect local features in an image (e.g.,
edges). This reminds of neurons in the primary visual cortex [42, 43]. The stack-
ing of several layers increases the receptive fields of neurons in later ConvNet
layers, like those in higher-order visual cortices, ultimately enabling detection of
meaningful global features in images [41]. Furthermore, the principle of convo-
lution and stacking of layers in convolutional networks to extract global features
have proven promising beyond visual data and could be used to analyze complex
whole-body movements [44].
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1.3 Convolutional networks for machine learning-based CP prediction

In infant movement analysis, convolutional networks may be used to auto-
matically quantify FMs and other complex movement patterns of spontaneous
movements, and perform objective early prediction of CP, as a promising alterna-
tive to the subjective and qualitative gestalt perception in GMA. Former machine
learning methods for CP prediction from GMA recordings at FMs age have ei-
ther focused only on absent FMs as a surrogate outcome for CP (i.e., automated
GMA), or all patterns of infant spontaneous movements related to CP outcome
(i.e., automated CP prediction) [45–47], as summarized in Table 1.1 and 1.2, re-
spectively. These have followed the two-step approach in Figure 1.2. In the first
step, the infant spontaneous movements in a GMA recording are quantitatively
represented as body keypoint positions in each video frame (i.e., video-based mo-
tion capture). Thereafter, in the second step (i.e., prediction model), features are
extracted from the movements of body keypoints and analyzed by a classification
method to perform prediction of outcome.

Figure 1.2: The two-step approach for machine learning-based CP prediction con-
sists of 1) video-based motion capture quantitatively representing the infant spon-
taneous movements in a GMA recording, and 2) prediction model with selection
of features and classification method to predict outcome.
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Chapter 1 Introduction

1.3.1 Video-based motion capture

Frame differencing

Whereas early studies on machine learning-based CP prediction, relied on the sim-
ple frame differencing technique for motion capture in GMA recordings (step 1,
Figure 1.2) [48–50, 57], recent approaches have utilized more advanced video-
based motion capture technologies. Since frame differencing pays equal atten-
tion to all pixel changes that appear between video frames, it is highly prone to
disturbances (e.g., varying lighting conditions and background distractions) not
associated with the infant movements.

Optical flow

The use of optical flow, first by Stahl et al. [58] and later in various studies [51,
59–62], enables grouping of pixel changes that relate to each other, and hence
better distinguishes infant movements from noise and irrelevant video informa-
tion. Furthermore, since most movements happen in limbs (i.e., arms and legs)
and these often move independently of each other, optical flow can be used to
divide the infant body into a set of segments and analyze movements of differ-
ent limbs separately [63]. Despite this progress, optical flow is limited to a coarse
segmentation of the body into a few body segments (e.g., head, arms, legs, and
trunk). Moreover, optical flow collapses in case of occluded body parts, which in-
troduced a need for regular manual segmentation to avoid losing movements of
certain body parts [63].

Image-based convolutional networks

These limitations were addressed by the use of pose estimation, in particular the
ConvNet-based framework called OpenPose [64]. This enabled fully automated
estimation of an infant skeleton (i.e., infant pose estimation) in each video frame
of a GMA recording, containing positional information of 18 predefined body
keypoints [53–56]. Accordingly, the infant movements in a video can be repre-
sented as a sequence of detailed infant skeletons. However, the OpenPose method,
trained and validated on images of adults [64], is not suited for the anatomical
proportions of infants [46], which differ significantly from those of adults [65].
Only the recent study by Nguyen-Thai et al. [54] has utilized a modification of
OpenPose adapted for infants [66]. However, the ability of OpenPose to precisely
estimate body keypoint positions in videos containing a single infant, with limited
computational budget available, is still questionable, due to its architectural com-
ponents developed for multi-person human pose estimation (HPE) [64]. Hence,
there is a need for developing ConvNets for single-person HPE, and perform re-
training on infant images representative of the variation in GMA recordings, to
systematically investigate the localization performance and computational effi-
ciency of ConvNets in relation to OpenPose on infant pose estimation.
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1.3 Convolutional networks for machine learning-based CP prediction

1.3.2 Prediction model

Conventional machine learning

The prediction models (step 2, Figure 1.2) of initial studies on machine learning-
based CP prediction harnessed expert-based simple global features, such as the
standard deviation of the centroid of motion (CSD) or mean of quantity of motion
(Qmean), in combination with a single cut-off value or linear classifier to distin-
guish between infants with and without CP [48–50, 57]. It was believed that these
features could cover important aspects about pathological movements. For exam-
ple, it was suggested that higher CSD could reflect a monotonous and stereotyped
movement pattern in infants with absent FMs [48]. Despite the promising predic-
tive accuracy of CSD reported by Adde et al. [48], in a larger sample of infants
Støen et al. [50] displayed more modest results and suggested that improved ac-
curacy could be achieved by including additional features, such as frequency of
limb movements.

Rahmati et al. [60, 61] proposed the use of the fast Fourier transform to extract
frequency components associated with the movements of individual body parts,
resulting in a total set of 2 376 features. Ihlen et al. [62] extended upon this by
using multivariate empirical mode decomposition and Hilbert-Huang transform
to capture dynamics of body part movements in the time-frequency domain. The
larger feature sets introduced a need for classification methods that could reduce
the dimensionality of provided features by retaining only components explain-
ing most of the variance between classes. For this purpose, conventional machine
learning with partial least squares regression was used to compress a feature set
into a few latent variables [60–62]. However, although the proposed features in
these studies express CP-related movements, as reflected by high predictive val-
ues for automated CP prediction (see Table 1.2), these features were also selected
based on human assumptions, which does not guarantee that all movement infor-
mation relevant for CP prediction is retained.
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Chapter 1 Introduction

Graph-based convolutional networks

The ability of convolutional networks to extract complex task-relevant features,
without human involvement, suggests potential for automatically discovering quan-
titative movement features directly related to CP outcome. This implies an unbi-
ased search for infant spontaneous movements, whether FMs or patterns of the
concurrent motor repertoire, that discriminate between infants with and without
CP. Furthermore, the high capacity (i.e., number of parameters) of convolutional
networks, compared to conventional machine learning methods, may yield im-
proved predictive values for CP. Graph-based convolutional network (GCN) repre-
sent an interesting alternative towards achieving this, by detecting complex move-
ment gestalts through explicit modeling of infant skeleton sequences, obtained by
video-based motion capture, as spatiotemporal graphs. The alternating spatial and
temporal operations in GCNs, which combines analysis of postural features across
body keypoints within a single video frame and movement features of body key-
points across video frames, respectively [44], could enable detection of complex
spatiotemporal features of coordinative whole-body movements (e.g., FMs) re-
lated to the prediction of CP. A few studies conducted simultaneously to ours have
harnessed convolutional networks, including GCNs, in infant movement analysis
to automatically quantify and classify FMs from infant skeleton sequences [54,
56]. However, no studies have thus far used convolutional networks for CP pre-
diction by also including the concurrent motor repertoire of infant spontaneous
movements.
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Chapter 2

Aims of the thesis

The overall aim of this thesis was to propose convolutional networks for analysis
of infant spontaneous movements in videos to achieve early objective prediction
of CP. Two specific aims were pursued:

Aim I
Develop and validate image-based convolutional networks (ConvNets)

to obtain motion capture precisely and efficiently estimating
positions of infant body parts in video recordings.

Aim II
Develop and validate graph-based convolutional networks (GCNs)

to obtain prediction model for CP in high-risk infants from
spontaneous movements at 3 months age.
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Chapter 3

Methods

3.1 Research overview

The overview of the research conducted in this thesis is presented in Figure 3.1.
The research was divided into two main endeavors. The first was concerned with
Aim I of the thesis, namely the development of ConvNets for motion capture of in-
fants in video recordings. To achieve this, two specific subgoals were pursued. Aim
Ia was to address the lack of demonstrated computational efficiency and localiza-
tion performance among existing ConvNets for single-person HPE by proposing
novel ConvNets. This formed the basis for Study I, comprising Paper I. Subse-
quently, Aim Ib was to retrain and evaluate the developed ConvNets for single-
person HPE on a novel dataset of infant images to obtain feasible ConvNets for
infant pose estimation in video-based motion capture. This was carried out in
Study II and associated results presented in Paper II. The second main endeavor
of the thesis involved the development and validation of a GCN-based prediction
model for CP to address Aim II of the thesis. More specifically, we investigated
how GCNs could harness the spatiotemporal graph structure of infant skeletons,
obtained with motion capture in GMA recordings, to detect whole-body sponta-
neous movement features relevant for the prediction of CP. Study III included the
development and associated validation of the prediction model, which was de-
scribed in Paper III.

In the remainder of this chapter, we will first formally introduce the principle
of convolution and relevant works on ConvNets and GCNs. Thereafter, we will ex-
plain our approach for developing and validating convolutional networks related
to the specific studies of the present thesis, namely single-person pose estimation
(Study I), infant pose estimation (Study II), and prediction model for CP (Study
III).
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Chapter 3 Methods

Figure 3.1: The thesis conducted research for developing convolutional networks
for infant movement analysis for the purpose of automated CP prediction from
videos of infant spontaneous movements at 3 months age. This included three
studies: Study I with development of ConvNets for single-person HPE to address
Aim Ia, which comprised Paper I, Study II with retraining and evaluation of the
proposed single-person HPE ConvNets on infant pose estimation to target Aim Ib,
which was described in Paper II, and Study III with development and evaluation
of GCN-based prediction model for CP to achieve Aim II, which resulted in Paper
III.

3.2 Preliminaries

3.2.1 Convolution

The protagonist of the methods developed in this thesis is the convolution opera-
tion. Based on some specific input X , for example an image, convolution performs
a local calculation at each position (i, j) in the image (i.e., pixel), which takes into
account not only the value of the associated pixel but also the values of neighbor-
ing pixels:

F(i, j) = (X ∗W )(i, j) =
V
∑

v=0

H
∑

h=0

X (i + v, j + h)W (v, h) (3.1)

As defined in Equation 3.1 and depicted by Figure 3.2, a weighted average
F(i, j) is computed, where a weight matrix W , called a kernel, determines the
size of the neighborhood (i.e., kernel size) in vertical (V ) and horizontal (H) di-
rection. This is referred to as V ×H convolution. The weights of the kernel specify
which pattern (i.e., feature) in the input it should emphasize. In this way, con-
volution acts as a local feature detector, yielding a feature map F expressing in
which locations of the image the feature has highest response. By employing mul-
tiple kernels of different weights, a single convolutional layer generates several
feature maps, associated with different features (e.g., vertical and horizontal lines
in Figure 3.2). The number of feature maps is referred to as the width of the Con-
vNet. To determine which specific features should be detected by a convolutional
layer for a certain task, kernel weights are tuned through training on task-specific
data. As illustrated by Figure 3.3, when convolutional layers are stacked on top
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3.2 Preliminaries

of each other in a ConvNet, more global features are detected due to increased
receptive field, which facilitates automatic learning of complex patterns in data.
The number of convolutional layers in a ConvNet is often referred to as the depth
of the network. In 2012, Krizhevsky et al. [67] demonstrated the success of Con-
vNets on image classification, and few years later families of deeper ConvNets,
like VGG [68] and ResNets [69], substantially improved upon this. However, the
increasing depth and high complexity of these ConvNets do not align well with
requirements for computational efficiency in real-world applications [70].

Figure 3.2: The convolution operation applied to an image X , where kernels
W1 and W2, with vertical (V ) and horizontal (H) kernel size of 3, detect specific
features in the image (i.e., vertical line and horizontal line, respectively), yielding
feature maps F1 and F2. To achieve resolution of feature maps consistent with the
input image, zero padding in each direction is initially applied to the image, as
depicted by white pixels with grey borders. The pixel with the highest value in F1
(i.e., the black pixel with blue dotted border) represents the location in the image
where the vertical line feature is detected by W1, as reflected by the blue dotted
region of the padded image. Similarly, the location associated with the green
region in the padded image yields highest value in F2 (i.e., the black pixel with
green dotted border), as reflected by the presence of the horizontal line feature.
Dark gray or light gray pixels in F1 and F2 represent regions in the padded image
containing only parts of the features associated with W1 and W2, respectively.
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Chapter 3 Methods

Figure 3.3: A ConvNet with several consecutive convolutional layers (e.g., 3 ×
3 convolutions) gradually increases the size of the receptive field, from small
receptive field in the feature maps of layer 1 (i.e., F1) permitting detection of only
simple features in local image regions (e.g., a horizontal line), to larger receptive
fields in feature maps of later layers (i.e., F2 and F3 for layer 2 and layer 3,
respectively), which eventually cover the whole image and accordingly enable
detection of global features (e.g., the number eight in layer 3).

3.2.2 EfficientNets

Howard et al. [70] proposed MobileNet, employing a more computationally effi-
cient type of convolutional layer, called depthwise separable convolution, which
modifies the basic convolution in VGG (Figure 3.4a) and bottleneck convolution
in ResNets (Figure 3.4b). As depicted by Figure 3.4c, the depthwise separable
convolution first performs a depthwise convolution, with each kernel operating
on a separate channel (i.e., feature map) in the input. The depthwise convolu-
tion is followed by a 1× 1 (i.e., pointwise) convolution to integrate information
across channels. MobileNet achieved similar accuracy to VGG-16 on the ImageNet
benchmark for image classification, while reducing the number of parameters in
the ConvNet by 33 times, from 138 to 4.2 million, and the number of floating-point
operations (FLOPs) by 27 times, from 15 to 0.6 billion. Despite this improvement
in computational efficiency, the MobileNet architecture was manually designed
based on human heuristics. Considering the infinite number of possible configu-
rations of a ConvNet, this makes it practically impossible for a human to find the
single architecture providing the optimal balance between accuracy and compu-
tational efficiency.
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3.2 Preliminaries

Tan et al. [71] partitioned a ConvNet into blocks of consecutive layers and
harnessed neural architecture search (NAS) on a novel search space to automati-
cally determine the components of each block, by simultaneously optimizing Im-
ageNet accuracy and inference latency on the CPU of a Pixel 1 phone. Mnas-
Net was selected from a search through 8 000 different ConvNet architectures,
and outperformed MobileNet both in terms of accuracy and computational effi-
ciency [71]. The blocks of MnasNet extensively employ mobile inverted bottleneck
convolution (MBConv) [72] with squeeze-and-excitation (SE) [73]. As illustrated
by Figure 3.4d, MBConv is an extension of depthwise separable convolution with
capacity to detect more fine-grained features than regular depthwise separable
convolution by increasing the number of feature maps using computationally ef-
ficient 1× 1 convolution, typically by three or six times, referred to as MBConv3
and MBConv6, respectively. SE employs channel-wise attention to perform recal-
ibration of the features generated by the depthwise convolution by using global
information to ensure informative features are emphasized. Moreover, in MnasNet
MBConvs are accompanied by residual connections, which improve propagation
of information across layers [69].

As a generalization of the NAS behind MnasNet, Tan and Le [74] performed
optimization with the hardware-agnostic measure of FLOPs rather than device-
specific inference latency. This resulted in the development of EfficientNet-B0,
comprising only 0.4 billion FLOPs [74]. Despite the very low complexity, EfficientNet-
B0 surpassed the accuracy of ResNet-50 [69, 74]. Consequently, Tan and Le in-
vestigated whether further improvement in accuracy was possible by scaling up
EfficientNet-B0. To properly balance the different dimensions of the ConvNet,
namely depth, width, and image resolution, compound scaling was proposed [74].
Compound scaling determined optimal scaling coefficients for depth, width, and
resolution, denoted α, β , and γ, respectively, with the constraint that α ·β2 ·γ2 =
2. In other words, by employing scaling coefficients on EfficientNet-B0, a more
accurate EfficientNet-B1 with twice as many FLOPs as EfficientNet-B0 was ob-
tained. By assuming the relationship between scaling coefficients holds for more
complex models, scaling of EfficientNet-B1 resulted in EfficientNet-B2, and so
forth. From this compound scaling, a family of eight EfficientNets was devel-
oped, from EfficientNet-B0, the most computationally efficient, to EfficientNet-
B7, the most accurate, serving various computational budgets and accuracy re-
quirements. Furthermore, for the most lightweight EfficientNets (EfficientNet-B0
through EfficientNet-B4) to run efficiently on edge devices, EfficientNet-Lite mod-
els were developed [75]. Recently, Song et al. [76, 77] demonstrated that ad-
vancements related to ConvNets, in general, and EfficientNets, in particular, are
transferable to GCNs, by first extending ResNet into ResGCN [76], and thereafter
developing EfficientGCNs combining compound scaling with consistent use of MB-
Convs [77].
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Figure 3.4: Four prominent types of convolutional layers operating on feature
maps of layer l (i.e., F l) to generate feature maps of layer l + 1 (i.e., F l+1). a)
Basic convolution applies convolution once, with kernel size V × H, where each
generated feature map is computed from all feature maps of layer l. b) Bottle-
neck convolution first reduces the number of feature maps with 1×1 convolution
(e.g., from two to one), before applying basic V × H convolution, followed by
another 1 × 1 convolution restoring the number of feature maps. c) Depthwise
separable convolution performs depthwise convolution (i.e., dconv), by V × H
kernels operating on feature maps in layer l separately, followed by 1 × 1 con-
volution to integrate information across feature maps, yielding F l+1. d) Mobile
inverted bottleneck convolution first applies 1 × 1 convolution to increase the
number of feature maps (e.g., from two to four), before performing V ×H depth-
wise convolution, and another 1×1 convolution to restore the number of feature
maps. To emphasize the differences between the four convolutional layers, other
operations that are commonly included in convolutional layers, such as batch nor-
malization and nonlinear activations, are omitted in the visualization.
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3.2.3 Graph convolution

The main distinction between ConvNets and GCNs is the introduction of graph
convolution. Figure 3.5 depicts the principle of the graph convolution operation.
Graph convolution harnesses the structure of a graph G, like the infant skele-
ton model in Figure 3.5, to analyze spatial dynamics of features of neighboring
nodes (i.e., body keypoints) using adjacency matrices. More specifically, based on
some input X (e.g., biomechanical properties like positions and velocities), 1× 1
convolution first increases the number of feature maps by N times (N = 3 in Fig-
ure 3.5). Subsequently, an equal number of the resulting features are processed
by N parallel branches, where each branch performs multiplication with a distinct
adjacency matrix A. The sum of the N matrix multiplications yields feature maps
F1 of layer 1. Adjacency matrices determine the type of spatial dynamics that are
analyzed. For example, Figure 3.5 illustrates disentangled aggregation graph con-
volution [78] where an adjacency matrix A(k) defines the k-hop neighbors of body
keypoints in the infant skeleton model, as well as the identity matrix (i.e., A(0)).
We refer the reader to Yan et al. [44] for further description of graph convolution.

Figure 3.5: Graph convolution analyzes spatial dynamics of biomechanical prop-
erties X of body keypoints in graph G through 1 × 1 convolution followed by
multiplication with a set of adjacency matrices A(k) (i.e., k-hop neighbors in G).
The resulting products of the matrix multiplications are aggregated into feature
maps of layer 1 (i.e., F1).
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3.3 Study I: Single-person pose estimation

3.3.1 MPII Human Pose Dataset

To develop and evaluate ConvNets for single-person HPE, experiments were con-
ducted on the single-person benchmark of the openly available MPII Human Pose
Dataset [79], referred to as MPII. MPII comprises images and associated anno-
tations (x and y coordinates) of 16 body keypoints (i.e., head top, upper neck,
shoulders, elbows, wrists, upper chest, right/mid/left pelvis, knees, and ankles) of
mainly healthy adults in over 800 different outdoor and indoor activities extracted
from public YouTube videos. The benchmark contains 28 880 (80%) images for
training and validation, as well as a test set of 7 247 (20%) separate images for
official evaluation.

3.3.2 Experimental approach

The training and validation portion of the MPII dataset were randomly split into
datasets for training, 26 379 (91%) images, and validation, 2 501 (9%) images,
while ensuring all frames (i.e., images) of a single video were placed into one of
these datasets. ConvNets were proposed by combining transfer learning of state-
of-the-art ConvNets (i.e., backbones) on ImageNet with novel architectural com-
ponents targeting HPE (see Section 3.3.3 for more details on the proposed Con-
vNets). By employing supervised learning with stochastic gradient descent (SGD)
on the training set, the ConvNets were tuned for HPE to optimize predictions of
body keypoint locations relative to target coordinates. To avoid overfitting, data
augmentation with horizontal flipping, rotation (+/− 45 degrees), and scaling
(0.75− 1.25) was performed. Hyperparameters of the ConvNets and the training
procedure (e.g., learning rate, batch size, and number of epochs) were determined
from localization performance on the validation set. All experiments were carried
out on an NVIDIA Tesla V100 GPU. Further details on the optimization procedure
are described in Appendix B of Paper I.

3.3.3 EfficientPose and EfficientHourglass

EfficientPose

To address the limitations of OpenPose [64] regarding single-person HPE, we pro-
posed EfficientPose, which modified several components of the ConvNet architec-
ture of OpenPose, as depicted by Figure 3.6a and b. First, EfficientPose processes
in separate branches two different resolutions of the input image (step 1, Fig-
ure 3.6b). A high-level branch, operating on a high-resolution image, has capacity
to detect fine-grained features in the input image (e.g., small variations in nearby
pixels), whereas a low-level branch, associated with a low-resolution image (i.e.,
half the height and width of the high-resolution image), detects less detailed im-
age features. Second, the VGG-19 [68] backbone of OpenPose was replaced by the
more accurate and computationally efficient EfficientNet [74] backbones (step 2,
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Figure 3.6b). To enable detection of high-level semantic information from the
fine-grained features in the high-level branch, the initial three blocks of an Effi-
cientNet, with a resolution matching the input image, were included. For the low-
level branch, the first two blocks of a lower-scale EfficientNet model were used.
To facilitate detection of generic visual features, the EfficientNet backbones were
initialized with pretrained ImageNet weights. Third, motivated by the success of
multi-scale feature extraction in HPE [80, 81], the high-level and low-level fea-
tures of the two EfficientNet backbones were concatenated into cross-resolution
features (step 3, Figure 3.6b). This enables selective emphasis of image features
of different abstraction levels, to yield an effective multi-scale feature extractor.
Fourth, we modified the computationally expensive detection stage of OpenPose
by reducing the number of detection passes from six to three while replacing ba-
sic 3× 3 convolutions in the DenseNet inspired detection blocks [82] with more
efficient E-MBConv6 (i.e., an adaptation of MBConv6 with a fixed number of fea-
ture maps in the depthwise convolution which employs E-swish activation [83]),
yielding Mobile DenseNets (step 4, Figure 3.6b). Fifth, EfficientPose includes a
stack of three 4 × 4 transposed convolutions [84] to improve the level of detail
in the low-resolution heatmaps (i.e., output) of the final detection pass through
upscaling with bilinear interpolation (step 5, Figure 3.6b).

In accordance with the compound scaling proposed by Tan and Le [74], the
architecture of EfficientPose was scalable. By employing the scaling coefficients
of EfficientNet regarding depth, width, and image resolution, five different vari-
ants of EfficientPose were developed. The models EfficientPose I, II, III, and IV
gradually increase the input resolution, from 256 × 256 to 600 × 600 pixels, as
well as the depth and width of the backbones and detection blocks, in relation to
the most computationally efficient model, EfficientPose RT. EfficientPose RT com-
prises a single-resolution model matching the scale of EfficientNet-B0 with input
resolution of 224×224 pixels. Apart from the five main EfficientPose variants pre-
sented in Paper I, this thesis also includes three additional EfficientPose models,
EfficientPose RT Lite, I Lite, and II Lite, targeting deployment on edge devices. In
EfficientPose Lite, the backbones of their original counterparts (i.e., EfficientPose
RT, I, and II) were substituted with matching EfficientNet-Lite backbones [75],
while omitting the low-level branch, cross-resolution feature extraction, and SE
modules, and E-swish activations were replaced by ReLU6 [85]. Implementations
of the EfficientPose models in common deep learning frameworks are made pub-
licly available at https://github.com/daniegr/EfficientPose. See Paper I for
technical details on EfficientPose.
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Figure 3.6: An overview of the architectural differences between a) OpenPose,
b) EfficientPose, and c) EfficientHourglass. a) OpenPose utilizes 1) a single input
image, 2) VGG-19 backbone, 3) single-resolution features, 4) six detection passes
of Dense blocks with basic 3× 3 convolutions, and 5) low-resolution output. b)
EfficientPose modifies OpenPose by harnessing 1) both high-resolution and low-
resolution input images, 2) high-level and low-level EfficientNet backbones, 3)
cross-resolution features, 4) three detection passes of Mobile DenseNets with E-
MBConv6, and 5) high-resolution upscaled output. c) EfficientHourglass employs
1) a single high-resolution input image, 2) EfficientNet backbone, 3) multi-scale
features, which are upscaled with 4×4 transposed convolutions (i.e., convT ), 4)
a single detection pass, and 5) high-resolution upscaled output. Extension of Fig.
1 and 2 of Paper I.
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EfficientHourglass

In addition to EfficientPose, we also proposed a ConvNet architecture motivated
by the design of state-of-the-art ConvNets on the single-person MPII benchmark [86–
88]. More specifically, the multi-scale hourglass architecture of Newell et al. [80]
was modified into EfficientHourglass, by exploiting more extensively the generic
visual features of an ImageNet-pretrained EfficientNet backbone related to an in-
put image (step 1 and 2, Figure 3.6c). Local image features of high spatial reso-
lution from the initial blocks of the EfficienNet were combined with global image
features of lower spatial resolution in later blocks to construct a multi-scale fea-
ture extractor integrating features from four different scales (step 3, Figure 3.6c).
In contrast to the original multi-scale hourglass based on bottleneck convolutions,
EfficientHourglass consistently employs MBConvs with integrated SE and resid-
ual connection, which reduces the computational complexity. In the present thesis,
EfficientHourglass is paired with an EfficientNet-B4 backbone, yielding Efficien-
tHourglass B4. To facilitate estimation of body keypoint positions with sufficient
level of detail, the proposed variant uses a high input resolution of 608 × 608
pixels, as opposed to 368× 368 pixels with OpenPose. Moreover, similarly to Ef-
ficientPose, the network output is upscaled, using bilinear interpolation with two
4×4 transposed convolutions, but EfficientHourglass only requires a single detec-
tion pass (step 4 and 5, Figure 3.6c). Due to most network parameters originating
from the pretrained EfficientNet-B4 backbone, EfficientHourglass B4 was trained
with a standardized procedure using the Adam optimizer with a learning rate of
0.001 for 100 epochs, instead of the optimization procedure described in Sec-
tion 3.3.2 specialized for ConvNets with detection blocks of mostly randomized
weights (e.g., OpenPose and EfficientPose).

3.3.4 Evaluation

The localization performance of the EfficientPose models, EfficientHourglass B4,
and the existing OpenPose ConvNet were evaluated on single-person MPII, in
terms of the percentage of predictions of body keypoint locations within a fraction
τ of the head size from annotated positions (i.e., (PCKh@τ) in Fig. 4b of Paper I).
The ability of the ConvNets for coarse localization was measured by PCKh@0.5,
setting the threshold τ at 50% of the head size. On the other hand, PCKh@0.1
assessed fine localization performance, reflected by a smaller acceptable level of
error (i.e., 10% of the head size). A comparison of PCKh@0.5 and PCKh@0.1 of
all ConvNets were performed on the MPII validation set, by employing multi-scale
testing as commonly done in HPE benchmarking [81, 89]. Furthermore, predic-
tions of EfficientPose RT, EfficientPose IV, EfficientHourglass B4, and OpenPose on
the MPII test set were formally submitted to yield official evaluation of ConvNets
in relation to other state-of-the-art methods for single-person HPE. The computa-
tional efficiency of ConvNets were measured in terms of computational complexity
and model capacity, with FLOPs and number of parameters, respectively.
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3.4 Study II: Infant pose estimation

3.4.1 In-Motion Poses

Video database

To adapt ConvNets for HPE to the anatomical proportions of 3-month-old infants
and recordings setups of GMA to perform high-precision infant pose estimation,
we harnessed a large international database of 1 424 recordings at 9-18 weeks
PTA following GMA standards [18]. The database comprised video recordings of
1-9 minutes of infants with different medical risk factors (e.g., high-risk infants
and typically developing infants) from standardized and less standardized setups
at hospital as well as home-based smartphone recordings [31, 33]. These were
collected through research initiatives in Norway, India, United States, Turkey, Bel-
gium, Denmark, and Great Britain between September 2001 and September 2018.
The use of videos for machine learning-based CP prediction was approved by the
regional committee for medical and health research ethics in Norway, under refer-
ence numbers 2011/1811 and 2017/913, with written parental consent obtained
before inclusion.

Datasets

From these videos, 20 000 video frames were extracted to compose the In-Motion
Poses dataset (see Figure 3.7a for a selection of representative images). To en-
sure that all recording setups were sufficiently represented, a fixed portion of
frames from each setup was included, 40% and 20% from standardized and less
standardized hospital recordings, respectively, and 40% from home-based smart-
phone recordings. Within each setup, 80% of frames were randomly selected with
an equal number of frames from each video. The remaining 20% of frames were
manually selected to cover infant poses that are normal but less frequently oc-
curring, based on the following criteria: 1) legs moving towards upper body, 2)
overlap of body parts, and 3) crossing of body parts. See Table 3.1 for an overview
of the number of videos and associated frames included in In-Motion Poses from
each country and recording setup. Following a similar data split as in MPII, the
total of 20 000 images were divided into 80% for training and validation, with 14
483 (72%) and 1 493 (8%) images in the training set and validation set, respec-
tively, and 4 024 (20%) into test set. To ensure strict evaluation, the frames of a
single video was represented in only one of these sets.
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Figure 3.7: a) A selection of representative images in In-Motion Poses from stan-
dardized hospital recordings (top row), less standardized hospital recordings
(middle row), and home-based smartphone recordings (bottom row). b) Anno-
tated body keypoints and associated skeleton model. Adapted from Fig. 1 and 7
of Paper II.

Table 3.1: Contents of In-Motion Poses in terms of number of videos and video
frames for each country and recording setup (i.e., standardized hospital record-
ing, less standardized hospital recording, and home-based smartphone record-
ing).

Setup Country Number of videos Number of frames

Standardized hospital recording

India 418 (29.4%) 3 037 (15.2%)
Norway 309 (21.7%) 2 153 (10.8%)
United States 281 (19.7%) 2 114 (10.6%)
Turkey 62 (4.4%) 404 (2.0%)
Belgium 39 (2.8%) 292 (1.5%)

Less standardized hospital recording

Norway 137 (9.6%) 2 503 (12.5%)
Turkey 62 (4.4%) 1 128 (5.6%)
Great Britain 19 (1.3%) 359 (1.8%)
Belgium 1 (0.1%) 9 (0.1%)

Home-based smartphone recording
Belgium 49 (3.4%) 4 100 (20.5%)
Denmark 31 (2.2%) 2 622 (13.1%)
Norway 16 (1.1%) 1 279 (6.4%)

Total 1 424 20 000
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Table 3.2: The set of 19 body keypoints in In-Motion Poses and their associated
definitions. Adapted from Table 4 of Paper II.

# Body keypoint Definition

1 Head top Top of the forehead
2 Nose Tip of the nose
3 Right ear Center of the right ear
4 Left ear Center of the left ear
5 Upper neck Center of the larynx
6 Right shoulder Center of the right shoulder joint
7 Right elbow Center of the right elbow joint
8 Right wrist Center of the right wrist joint
9 Upper chest Midway between body keypoints 6 and 10
10 Left shoulder Center of the left shoulder joint
11 Left elbow Center of the left elbow joint
12 Left wrist Center of the left wrist joint
13 Mid pelvis Midway between body keypoints 14 and 17
14 Right pelvis Right spina iliaca anterior superior
15 Right knee Center of the right knee joint
16 Right ankle Center of the right ankle joint
17 Left pelvis Left spina iliaca anterior superior
18 Left knee Center of the left knee joint
19 Left ankle Center of the left ankle joint

Annotation

To enable training and evaluation of ConvNets on In-Motion Poses, the 20 000
images were annotated by 10 trained humans, to yield ground truths for x and
y coordinates of body keypoint positions. A group of human movement scientists
and clinical physiotherapists agreed upon a set of 19 body keypoints (i.e., head
top, nose, ears, upper neck, shoulders, elbows, wrists, upper chest, right/mid/left
pelvis, knees, and ankles), defined in Table 3.2, comprising an infant skeleton
model (see Figure 3.7b). Based on these definitions, body keypoints were la-
belled using an adapted version of a separate annotation software [90]. Further-
more, by comparing annotation consistency of humans across 100 randomly se-
lected frames, we computed the inter-rater annotation spread in terms of mean
Euclidean distance to the average human annotation.

26



3.4 Study II: Infant pose estimation

3.4.2 Experimental approach

The images and associated annotations of In-Motion Poses were harnessed to
adapt MPII-trained ConvNets to infant pose estimation. A standardized supervised
learning procedure, using the Adam optimizer with a learning rate of 0.001 for
100 epochs, performed fine-tuning of ConvNets on the training set while moni-
toring progress on the validation set. Data augmentation with random horizontal
flipping, rotation (+/− 45 degrees), and scaling (0.75− 1.25) of images was ap-
plied. Models were trained on an NVIDIA GTX 1080 Ti or an NVIDIA Quadro RTX
8000, depending on the amount of GPU memory required.

3.4.3 Comparative analysis

The determine the feasibility of ConvNets for infant pose estimation, a compari-
son of the performance of nine different alternatives was conducted. First, the of-
ficial version of the state-of-the-art method OpenPose [64, 91] was tested without
fine-tuning to yield baseline performance of infant pose estimation. Thereafter,
OpenPose was fine-tuned on In-Motion Poses to determine the effect of training
on infant images. We also fine-tuned and analyzed another lightweight ConvNet
inspired by OpenPose, called CIMA-Pose, which has previously achieved promis-
ing localization performance for infant pose estimation on standardized hospital
recordings [90]. CIMA-Pose replaced the VGG-19 backbone of OpenPose with the
first two blocks of a DenseNet-121 [82], while reducing the number of detection
passes from six to two and making each detection block more computationally ef-
ficient by employing dilated convolutions [92]. For more details on the CIMA-Pose
ConvNet, we advise the reader to consult the original paper [90]. Lastly, fine-tuned
versions of the five main EfficientPose models (i.e., EfficientPose RT and I-IV) and
EfficientHourglass B4 were included in the comparative analysis.
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3.4.4 Evaluation

The localization performance of the ConvNets for infant pose estimation was eval-
uated on the test set of In-Motion Poses and was measured in terms of mean er-
ror (M E) as well as PCKh@τ with different levels of error (i.e., thresholds) τ
relative to head length l (i.e., distance between the body keypoints of head top
and upper neck), as displayed by Figure 3.8. For coarse evaluation, PCKh@1.0,
PCKh@0.5, and PCKh@0.3 were computed, whereas PCKh@0.2 and PCKh@0.1
performed fine-grained evaluation. Furthermore, from the inter-rater spread of
body keypointb, denoted Hb, a separate threshold Hb

0.95 was proposed to define
PCKh@Human0.95, expressing model performance relative to the performance
of humans. More specifically, Hb

0.95 reflects the 95th percentile of the inter-rater
spread, and hence PCKh@Human0.95 = 95% indicates human-level performance.
The formal definition of the proposed PCKh@Human0.95 metric is provided in Pa-
per II. PCKh@Human0.95 was estimated for the best performing ConvNet in each
model family. To evaluate the computational efficiency of ConvNets, the num-
ber of parameters and FLOPs were computed. Moreover, the inference latency of
ConvNets in milliseconds and processing speed in frames per second (FPS) on an
NVIDIA GTX 1080 Ti consumer GPU estimated the run-time performance of the
ConvNets.

Figure 3.8: The percentage of predictions within τl distance from the ground
truth location (i.e., PCKh@τ) with separate thresholds τ for coarse evaluation
(PCKh@1.0, PCKh@0.5, and PCKh@0.3), fine-grained evaluation (PCKh@0.2
and PCKh@0.1), and inter-rater spread Hb

0.95 of body keypoint b (e.g., nose)
for evaluating localization performance relative to human-level performance
(PCKh@Human0.95). Extension of Fig. 3 in Paper II.
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3.5 Study III: Prediction model for CP

3.5.1 Participants

Infant sample

To develop and validate a GCN-based prediction model for CP, we harnessed a
sample of 557 high-risk infants (i.e., infants with medical risk factors for CP),
who were prospectively enrolled between September 2001 and October 2018 in
previous studies from our group [31, 57, 93, 94]. More specifically, this included
248 and 190 infants with heterogeneous high-risk factors (e.g., very/extremely
low GA/birth weight, neurological abnormalities, and congenital heart disease)
from United States and Norway, respectively, as well as 82 infants with neonatal
encephalopathy from India and 37 infants with perinatal stroke from Belgium.

All high-risk infants had been video recorded in a standardized setup during
the FMs period at 9-18 weeks PTA following Prechtl’s GMA standards [18], and
associated GMA classifications had been performed by two experienced observers.
Videos were classified based on temporal organization of FMs, including contin-
ual FMs (i.e., FMs occur frequently), intermittent FMs (i.e., FMs occur regularly,
but less frequently compared to continual FMs), sporadic FMs (i.e., FMs occur
only sporadically), and absent FMs (i.e., no FMs) [95], and FMs that appeared
exaggerated were classified as abnormal FMs [18].

Moreover, the included high-risk infants had been considered for a diagnosis
of CP after 12 months PTA, by a pediatrician following the decision tree of the
Surveillance of Cerebral Palsy in Europe (SCPE) [96]. Based on characteristics of
symptoms, infants with CP were further divided into different subtypes, namely
spastic unilateral CP, spastic bilateral CP, dyskinetic CP, and ataxic CP [96]. The
severity of CP, in terms of level of motor function, was determined by the Gross
Motor Function Classification System (GMFCS) [97], from level I (i.e., the mildest
form of CP) to level V (i.e., the most severe form of CP). GMFCS I, II, and III
represent infants with ability to walk (i.e., ambulatory CP), whereas GMFCS IV
and V constitute non-ambulatory CP. Specific clinical characteristics of high-risk
infants are presented in eAppendix 2 of Paper III.

For each participating infant, a single video recording following GMA stan-
dards was included for further analysis. Ethical approval for development and
evaluation of machine learning-based CP prediction from video recordings and
CP outcomes of infants was provided by the regional committee for medical and
health research ethics in Norway under reference number 2011/1811, and parental
consent was obtained before inclusion.
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Datasets

Datasets for method development (i.e., training and internal validation) and ex-
ternal validation were composed of high-risk infants stratified on center (step 1,
Figure 3.9) and CP subtype (step 2, Figure 3.9). For each class (i.e., stratum) of
infants, 418 (75%) infants were randomly placed into dataset for method devel-
opment (blue path in step 3, Figure 3.9), whereas the remaining 139 (25%) com-
prised test set for external validation (red path). To enable 7-fold cross-validation
for assessing internal validity, the 418 infants were randomly placed into seven
distinct internal validation folds, comprising nine infants with CP and 50 or 51
infants without CP, based on a similar procedure for stratification on center and
CP subtype.

Figure 3.9: Randomization of high-risk infants into dataset for development
(training and internal validation) and test set for external validation, from strat-
ification on center and CP subtype (i.e., NO CP for infants without CP and UL CP
and BL CP for infants with unilateral CP and bilateral CP, respectively). Adapted
from Figure 1 of Paper III.
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3.5.2 Experimental approach

Motion capture and pre-processing

The video recordings and associated binary CP outcomes (i.e., classification into
CP or no CP) of infants in the method development dataset were utilized to con-
struct a GCN-based CP prediction model. First, the video-based motion capture
from Study II was used to estimate, for each frame in a video, an infant skeleton
of x and y coordinates of the 19 body keypoints in In-Motion Poses. The infant
skeletons of all frames together represented the infant spontaneous movements
in a video as a spatiotemporal skeleton sequence. Subsequently, the skeleton se-
quence was pre-processed, with resampling to 30 Hz, temporal smoothing with
5-point median filter, and standardization of coordinates by centralizing on the
median mid pelvis position and normalizing by two times the trunk length of the
infant (i.e., median distance from upper chest to mid pelvis). To train and vali-
date GCNs for binary CP classification each skeleton sequence was divided into 5
second windows, deemed to be the minimum time required by a GMA observer
to determine whether FMs are present [98], while harnessing the binary CP out-
come of the respective infant as a noisy label of the time window. During training,
each infant of a particular class (i.e., CP or no CP) had an equal number of time
windows, which were randomly selected from different parts of the skeleton se-
quence. Furthermore, to ensure proper optimization of GCNs, despite low preva-
lence of CP (15%) compared to no CP (85%), infants with CP had five times more
time windows compared to infants without CP.

Optimization procedure

To determine the appropriate optimization procedure for training GCNs with ran-
domized weights (i.e., no pretraining), a simple hyperparameter search was con-
ducted on one internal validation fold (i.e., val1) with the commonly applied ST-
GCN model [44]. In particular, we explored type of weight initialization (includ-
ing LeCun initialization [99], forward and backward cases of He normal initializa-
tion [40], and Mean Var initialization [100]), numbers of time windows presented
in each epoch of training per non-CP skeleton sequence, settings for data augmen-
tation (i.e., rotation, scaling, and translation), type of optimizer (Adam or SGD),
learning rate, and batch size. From this search, a suitable configuration comprised
backward case of He normal for weight initialization, 12 time windows per non-
CP skeleton sequence for each training epoch, data augmentation with +/− 45
degrees rotation, 0.7− 1.3 scaling, and +/− 0.3 translation, and SGD optimizer
with learning rate of 5 · 10−4 and batch size of 32. Subsequently, we performed
7-fold cross-validation of ST-GCN with the proposed optimization procedure for
200 epochs, yielding baseline performance for GCN-based CP prediction. The re-
sults in Table A.5 (Appendix A) suggest that two of the internal validation folds,
val2 and val7, were particularly easy and hard to optimize against, respectively.
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Neural architecture search

With the results of ST-GCN and the proposed pre-processing and optimization pro-
cedure in mind, we turned to the development of novel GCNs for CP prediction.
To ensure that GCNs were particularly targeted towards CP prediction from 5 sec-
ond windows, we proposed an automatic search (i.e., NAS) exploring different
configurations of architectures across a variety of conventional and contempo-
rary components of GCNs and ConvNets. More specifically, based on an overall
architectural design (Figure 3.10), inspired by Song et al. [76, 77] to predict CP
with confidence c from biomechanical properties (i.e., positions, velocities, and
bones), 20 architectural choices were investigated. This comprised a search space
of more than four billion possible GCN architectures of varying complexity and
computational efficiency, with a minimum of five thousand parameters and 0.01
billion FLOPs and a maximum similar to ST-GCN (i.e., three million parameters
and six billion FLOPs). The architectural choices included number of network
blocks (i.e., depth), number of feature maps (i.e., width), type of convolution
(basic, bottleneck, or MBConv), kernel size, activation function, SE, and residual
connection. Furthermore, GCN-specific design choices were taken into account,
like type of graph convolution (spatial configuration [44] or disentangled aggre-
gation [78]) to integrate information of neighboring body keypoints through ad-
jacency matrices (see Section 3.2.3 for an introduction to graph convolution) and
attention mechanism (i.e., no attention or attention on channels, frames, or body
keypoints [76]). To yield high-performing GCNs, we developed and employed
a novel search strategy, called K-Best Search (see Algorithm 1 in Appendix A).
For efficient convergence on an NVIDIA Tesla V100 GPU, K-Best Search exploits
architectural choices of GCNs achieving high area under the receiver operating
characteristic curve (AUC) across infants in the combined sample of the easy and
hard validation folds (i.e., val2 and val7, respectively). The remaining five inter-
nal validation folds were used for supervised training of candidate architectures
during K-Best Search. K-Best Search was repeated 10 times to yield 10 promising
GCNs for CP prediction. Subsequently, 7-fold cross validation, with training for
200 epochs, was performed for each model to yield a total of 70 GCN instances.
For further details on the NAS procedure and the obtained models, we refer the
reader to Appendix A.
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3.5 Study III: Prediction model for CP

Figure 3.10: The proposed GCNs process biomechanical properties of 5 second
windows, including positions p, velocities (i.e., change in position) v, and bones
(i.e., distance from the neighboring body keypoint) b, through parallel input
branches, main branch, pooling layer, fully connected (FC) layer, and softmax
function to yield confidence c from 0.0 to 1.0 for the risk of CP. The number of
time steps T = 150 (i.e., 30 Hz), the number of body keypoints J = 19, and the
number of spatial dimensions D = 2. Adapted from eFigure 1 of Paper III.

3.5.3 Ensemble-NAS-GCN

Feature extraction

Figure 3.11 provides an overview of the proposed method for prediction of CP.
First, the skeleton sequence, obtained from a single GMA recording by harnessing
the video-based motion capture proposed in Study II (step 1 and 2, Figure 3.11),
is divided into 5 second windows, with 2.5 seconds overlap between each time
window. Each 5 second window is thereafter processed individually by all 70 GCN
instances obtained with NAS. In a similar manner to how ConvNets operate on
images by gradually increasing the receptive field in vertical and horizontal di-
mensions (see Figure 3.3), GCNs utilize increased receptive field in spatial and
temporal dimensions of time windows. Initial GCN layers detect features of move-
ments of neighboring body keypoints over few time steps, whereas later layers
generate feature maps related to complex whole-body movements across 5 second
windows (step 3, Figure 3.11). Furthermore, GCNs with dissimilar configurations
(e.g., kernel size or graph convolution type) differ in how features are extracted
from the biomechanical properties, and thus have different starting points for the
prediction of CP.
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Chapter 3 Methods

Figure 3.11: The overall procedure of the proposed method for prediction of CP.
From left: The motion capture proposed in Study II is used to estimate positions
of 19 body keypoints in all video frames (step 1) to comprise a skeleton sequence
of infant spontaneous movements (step 2). Each 5 second window of the skeleton
sequence is processed by 70 GCN instances obtained with NAS (i.e., Ensemble-
NAS-GCN) to extract features, from simple movements in initial layers to complex
whole-body movements in later layers, and compute CP risk in the time window
as the median of the 70 predictions (step 3). Subsequently, the overall CP risk in
the video is estimated as median CP risk across all 5 second windows (step 4), to
yield final classification of CP based on a fixed decision threshold (dashed line).
CP classification is color coded based on the agreement across GCN instances,
with green and yellow as certain and uncertain decision of no CP, and orange and
red as uncertain and certain decision of CP. Adapted from Figure 2 of Paper III.

Ensemble modeling

Accordingly, Ensemble-NAS-GCN was constructed as an ensemble model compris-
ing of the 70 GCN instances, each employing a slightly different process to dis-
tinguish infants with CP from infants without CP based on the same 5 second
window. The median of the 70 individual time window predictions estimates the
CP risk in the 5 second window. Furthermore, the boxplot of the 70 predictions
is used to determine the uncertainty of the ensemble through color coding (see
boxplot in step 3, Figure 3.11), based on the agreement across the ensemble in
the number of GCN instances predicting presence of CP (i.e., predictions above a
fixed decision threshold). Green (< 25.0% predict CP) and yellow (≤ 50.0% pre-
dict CP) yield certain and uncertain ensemble prediction of no CP, whereas orange
(> 50.0% predict CP) and red (> 75.0% predict CP) yield uncertain and certain
prediction of CP.

CP risk and classification uncertainty

The final score for CP risk of Ensemble-NAS-GCN in the provided video is com-
puted as the median CP risk across all 5 second windows of the skeleton sequence.
An infant is classified into CP if the overall CP risk exceeds a fixed decision thresh-
old, and otherwise Ensemble-NAS-GCN classifies the infant as not having CP. As
depicted by step 4 in Figure 3.11, classification into CP is of high certainty (red)
if > 75.0% and of low certainty (orange) if > 50.0% of the GCN instances agree
on the decision of CP, and classification into no CP of low certainty (yellow) if
≤ 50.0% and of high certainty (green) if < 25.0% classified the infant with CP.
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Temporal and spatial explanations

Although GCNs, like other deep learning methods, are black box models, their de-
cisions can be made more transparent through various techniques. In the present
thesis, we have developed methods for temporally and spatially explaining the es-
timated CP risks in 5 second windows. Figure 3.12a demonstrates that box plots
associated with each 5 second window can operate as temporal explanations in-
forming about which specific time windows are associated with high (red) or low
(green) CP risk. Furthermore, to obtain spatial information about which specific
body parts are involved in the movements Ensemble-NAS-GCN associates with
CP or no CP, we have used class activation mapping (CAM) [101]. By adopting
the implementation of Song et al. [77] targeting GCNs, CAM computes the con-
tribution of each individual body keypoint towards the prediction of CP, with red
and green in Figure 3.12b indicating high and low contributions, respectively. The
median contribution of each body keypoint across all time windows of a skeleton
sequence yields an overall CAM of the respective infant.

3.5.4 Statistical analysis

The predictive accuracy of Ensemble-NAS-GCN for prediction of CP in the test set,
comprising high-risk infants for external validation (described in Section 3.5.1),
was compared with observational GMA [18], as well as the state-of-the-art con-
ventional machine learning method for automated CP prediction (i.e., CIMA model
proposed by Ihlen et al. [62]) and ST-GCN [44]. To ensure fair comparisons, the
sensitivity of the methods was fixed at the level of GMA. Apart from sensitivity,
we provided measures of specificity, positive and negative predictive value (PPV
and NPV), and accuracy, including exact 95% confidence intervals using Clopper-
Pearson, as well as receiver operating characteristic (ROC) curves and associated
AUC. Furthermore, we analyzed the ability of Ensemble-NAS-GCN to differentiate
between infants with ambulatory CP (i.e., GMFCS I, II, or III) and non-ambulatory
CP (i.e., GMFCS IV or V), and unilateral CP and bilateral CP, based on differences
in CP risks assessed with Wilcoxon rank sum test and P values below 0.05 were
considered statistically significant. Finally, we assessed the robustness of the spa-
tial explanation method CAM on the test set for external validation by computing
the Spearman’s rank correlation between the overall CP risk and the mean value
of the overall CAM of infants.
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Figure 3.12: Temporal and spatial explanations associated with spontaneous
movements in GMA recordings of one infant without CP and one infant with
unilateral CP. a) The boxplots of CP risks in specific 5 second windows constitute
temporal explanations. The dashed horizontal line reflects the decision threshold,
whereas the green (left panel) and red (right panel) horizontal lines indicate the
overall CP risks across all 5 second windows of the respective infants. b) Class ac-
tivation mapping (CAM) enables spatial explanations by computing the contribu-
tion of each specific body keypoint towards prediction of CP in 5 second windows,
and overall CAM is obtained through median aggregation across time windows.
Red color in CAM indicates high contribution, suggesting that Ensemble-NAS-
GCN associates the movements of a body keypoint with the presence of CP (e.g.,
for the body keypoints of the left leg in the overall CAM of the infant with unilat-
eral CP), whereas green color reflects low contribution towards prediction of CP.
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Chapter 4

Summary of results

4.1 Study I

The aim in Study I of the thesis was to develop highly precise and computationally
efficient ConvNets for single-person pose estimation. For this purpose, the Effi-
cientPose and EfficientHourglass models were proposed. The most precise variant
in each model family, EfficientPose IV and EfficientHourglass B4, outperformed
the commonly applied OpenPose ConvNet, with 2.4% and 12.6 − 13.5% increase
in coarse and fine localization performance, respectively, while improving com-
putational efficiency with 1.4 − 4.0 times fewer parameters and 2.2 − 6.0 times
fewer FLOPs (Table B.1 in Appendix B). ConvNets with further improved computa-
tional efficiency were also able to display localization performance comparable to
OpenPose. EfficientPose RT increased the fine localization performance of Open-
Pose by 1.7%, despite 56 and 184 times improvement in number of parameters
and FLOPs, respectively. This study demonstrated the ability of low-complexity
ConvNets to perform precise localization of body keypoints in video recordings of
a single individual.
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4.2 Study II

Based on the ConvNets proposed in Study I, the aim of Study II was to achieve
motion capture of infants in GMA recordings, with high localization performance
and computational efficiency. By constructing the In-Motion Poses dataset from an
international, large-scale database of GMA videos of infants aged 9-18 weeks PTA,
ConvNets were retrained for infant pose estimation. As depicted by Figure 4.1, the
two most precise ConvNets, EfficientHourglass B4 and EfficientPose III, demon-
strated superior localization performance compared to OpenPose by approaching
human-level performance. See Appendix D of Paper II at ScienceDirect for local-
ization performance in an external GMA recording. Furthermore, these ConvNets
achieved processing speeds approximating real-time performance (i.e., 30 FPS)
on a consumer GPU. The most computationally efficient ConvNet, EfficientPose
RT, surpassed the localization performance of OpenPose, while operating at 198
FPS (see Figure 4.1 and Table C.1 in Appendix C). Overall, this study achieved
video-based motion capture that is capable of localizing, with high precision, body
keypoints of infants in GMA recordings, while operating efficiently.

Figure 4.1: The distributions of prediction errors and computational efficiency
(i.e., number of parameters in millions (M), number of FLOPs in billions (G),
and processing speed in FPS) of a) OpenPose, in relation to the most computa-
tionally efficient ConvNet b) EfficientPose RT, and the most precise ConvNets c)
EfficientPose III and d) EfficientHourglass B4, and e) inter-rater spread of human
annotators (i.e., human-level performance). Extension of Fig. 4 in Paper II.

38

https://www.sciencedirect.com/science/article/pii/S0895611121001610?via%3Dihub#sec0090


4.3 Study III

4.3 Study III

In Study III, the spontaneous movements of high-risk infants in GMA recordings
were quantified by the motion capture from Study II, with the aim to develop
and validate a GCN-based prediction model for CP. With fixed level of sensitiv-
ity (see dashed horizontal line in Figure 4.2 and Table D.1 in Appendix D), the
proposed prediction model, Ensemble-NAS-GCN, displayed significantly improved
specificity (94.1%, 95% CI: [88.2%, 97.6%]) compared to the state-of-the-art con-
ventional machine learning method (i.e., CIMA model; 72.9%, 95% CI: [63.9%,
80.7%], P < 0.001) and the existing GCN-based method (i.e., ST-GCN; 83.9%,
95% CI: [76.0%, 90.0%], P = 0.002), and non-inferior specificity compared to
the clinically recommended human expert-based GMA (88.7%, 95% CI: [81.5%,
93.8%], P = 0.079). Among the high-risk infants with and without CP, 66.7% and
88.1% were classified with high certainty, respectively (see Figure 4.3a and b).
Moreover, Ensemble-NAS-GCN had higher CP risk in infants with non-ambulatory
CP compared to ambulatory CP (P = 0.007), and for infants with bilateral CP
compared to unilateral CP (P = 0.029). The sum of contributions of individual
body keypoints, obtained with CAM, was very strongly correlated with CP risk
(i.e., Spearman’s rank correlation coefficient of 0.946), and hence CAM may be
used to provide spatial explanations associated with decision of CP or no CP. This
study demonstrated the potential of an GCN-based ensemble model obtained by
NAS for automated CP prediction.

39



Chapter 4 Summary of results

Figure 4.2: ROC curves of CIMA model, ST-GCN, and the proposed Ensemble-
NAS-GCN, in relation to the sensitivity (i.e., dashed horizontal line) and speci-
ficity of GMA, on the test set of high-risk infants. Extension of eFigure 2 in Paper
III.
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4.3 Study III

Figure 4.3: Distribution of CP risks and classification uncertainties (i.e., red and
green for high certainty on decision of CP and no CP, respectively, and orange
and yellow for uncertain classification of CP and no CP) of a) high-risk infants
with CP in the test set, where the x-axis displays GMFCS level (i.e., I-V) and CP
subtype (UL and BL for unilateral CP and bilateral CP, respectively, and NA for
not available) and b) high-risk infants without CP in the test set. Adapted from
Figure 3 of Paper III.

41





Chapter 5

Discussion

The early detection of CP from movement markers during infancy can initiate
early follow-up and interventions of infants to optimize function and improve
quality of life when brain plasticity is high. The qualitative assessment of infant
spontaneous movements with GMA at 2-5 months PTA has currently reported the
highest predictive accuracy for CP in high-risk infants. The overall objective of
the present thesis was to develop convolutional networks for analysis of infant
spontaneous movements in video recordings for the purpose of early objective
prediction of CP.

This thesis revealed that machine learning-based CP prediction harnessing
convolutional networks for video-based infant movement analysis at 3 months
PTA may achieve predictive accuracy non-inferior to GMA in external validation
on a representative sample of high-risk infants. Although recent studies on ma-
chine learning-based CP prediction have approached the performance of GMA
using less conservative evaluation methods, like cross-validation, similar results
have not previously been seen in external validation [47].

The high external validity of the proposed machine learning-based CP pre-
diction indicates potential for use in infants from different countries with vari-
ous medical risk factors. Furthermore, the assessment is performed automatically
from a single video recording. This may facilitate widespread clinical adoption of
non-invasive, objective screening for CP in high-risk infants, which is aligned with
United Nations Sustainable Development Goals 3 and 10 [102] to “ensure healthy
lives and promote well-being for all at all ages” and “reduce inequality within and
among countries”. The ability of the proposed CP prediction model to differentiate
between infants with ambulatory and non-ambulatory CP and unilateral and bilat-
eral CP may enable early prognosis to support physiotherapists in designing per-
sonalized interventions to better function and improve efficacy of follow-up. Fur-
thermore, the provided color coding for classification uncertainty may aid health
professionals in interpreting a decision of the machine learning-based CP predic-
tion. High classification uncertainty could indicate a clinical choice for a follow-up
consultancy or recommend the use of alternative assessment techniques, like GMA
or HINE. Hence, machine learning-based CP prediction may supplement existing
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expert-based assessments in clinical practice.
A possible future clinical service implementation of the machine learning-

based CP prediction is outlined by Figure 5.1. Based on a GMA recording that is
taken by a parent at home or a clinician in the hospital and uploaded into the elec-
tronic health record system, the video-based motion capture (step 1, Figure 5.1)
could run automatically at a hospital computer to localize infant body keypoints.
Subsequently, the automated prediction model (step 2, Figure 5.1) may harness
this quantitative movement information to estimate CP risk and uncertainty of
classification, along with temporal and spatial explanations, which are provided
to physiotherapists and pediatricians through an interactive clinical dashboard.

In the remainder of this chapter, we describe strengths and limitations regard-
ing the proposed video-based motion capture and prediction model for CP, as well
as other considerations and avenues for future research.
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Figure 5.1: Emmet is born at 27 weeks GA and the preterm birth puts him at in-
creased risk of CP. He is referred to a follow-up program after discharge from hos-
pital and his parents are informed that an early prediction of CP can be performed
at 3 months PTA. At the time of assessment, Emmet’s mother Charlotte uses a
smartphone application at home to record a 3-minute video of Emmet’s sponta-
neous movements, following GMA standards, and to upload the video safely into
the electronic health record system. Physiotherapist Lars accesses the electronic
health record system at a hospital computer, selects the video of Emmet, and initi-
ates the machine learning-based CP prediction. First, the video-based motion cap-
ture (step 1) localizes the body keypoints of Emmet across the video frames. The
video-based motion capture has a) high localization performance (i.e., correct-
ness in position estimates), which enables accurate quantification of the move-
ment patterns and postural patterns of Emmet needed for prediction of CP, and
b) high computational efficiency, causing the video to be fully processed when
Lars gets hold of his colleagues, pediatrician Ragnhild and physiotherapist Toril,
3 minutes later. Within this time, the less computationally expensive operation,
the prediction model for CP (step 2) has also completed. From the quantitative
movement information extracted by the video-based motion capture, the predic-
tion model a) estimates the CP risk of Emmet to 0.1%, recommending a classifi-
cation into no CP with low uncertainty (green color code). The recommendation
is provided to physiotherapists Lars and Toril and pediatrician Ragnhild through
b) an interactive clinical dashboard which also includes the temporal and spatial
explanations behind the decision. The temporal explanations enable the health
care personnel to examine the specific time windows of the video where the pre-
diction model detects spontaneous movement patterns related to no CP, whereas
the spatial explanations suggest which of Emmet’s body parts are involved in this
decision. The health care personnel agree with the machine learning method on
the decision of no CP. Physiotherapist Lars reaches out to Emmet’s mother Char-
lotte and books an appointment to reassure Charlotte that there is no reason to
believe that Emmet is at risk of CP and that they can come to the hospital at 6
months PTA to verify his motor development.
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5.1 Video-based motion capture

To address Aim I of the thesis, namely to obtain ConvNets feasible for video-based
motion capture of infants, we hypothesized that ConvNet architectures of high lo-
calization performance and computational efficiency in single-person HPE would
appropriately transfer to infant pose estimation. High localization performance
and computational efficiency are important in a clinical application because this
ensures that the infant spontaneous movements are correctly represented while
avoiding unnecessary delay for the available health care personnel in Figure 5.1.

5.1.1 Localization performance

Figure 5.2: The localization performance of video-based motion capture reflects
its ability to correctly estimate the positions of body keypoints.

The localization performance of video-based motion capture determines how
precisely body keypoints are localized by the ConvNet. In particular, fine local-
ization performance measures the ability to represent movements of small am-
plitude, like FMs, which could contain important discriminative information for
prediction of CP. Figure 5.2 depicts that the skeleton model of the infant Emmet
can be precisely estimated by the use of the proposed video-based motion capture.
Study I and II confirmed improved fine localization performance of EfficientPose
and EfficientHourglass compared to commonly applied OpenPose ConvNet, on
single-person HPE and infant pose estimation, respectively.
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5.1 Video-based motion capture

The OpenPose architecture was originally designed not only to localize body
keypoints of different humans in a variety of activities, but simultaneously to
tackle the presence of several person instances (i.e., multi-person HPE) [64]. This
was reflected in the high capacity of the ConvNet, which might also have con-
tributed to high robustness against coarse prediction errors, like misses and inver-
sions [103], as suggested by higher coarse localization performance of OpenPose
on single-person HPE compared to lower-scale EfficientPose models (e.g., Effi-
cientPose RT). However, the low spatial resolution in inputs and outputs of the
OpenPose ConvNet restricts the fine localization performance, especially for per-
sons occupying a smaller portion of the video frame [104]. The higher spatial res-
olutions of EfficientPose and EfficientHourglass promoted increased correctness
in estimated body keypoint positions, with a general tendency on single-person
HPE and infant pose estimation that higher spatial resolution increased the fine
localization performance.

Nevertheless, it should be emphasized that high spatial resolution alone is not
sufficient to obtain highly precise ConvNets for HPE. As indicated by EfficientPose
RT achieving higher fine localization performance than OpenPose despite lower
spatial resolution, appropriate composition of architectural components, capac-
ity, and compound scaling of ConvNets across depth, width, and resolution are
of high importance. The present thesis proposed multi-scale feature extraction
with state-of-the-art EfficientNet backbones [74]. Sun et al. [81] has previously
reported improved fine localization performance with lower spatial resolution by
employing multi-scale ConvNet. This might suggest that multi-scale feature ex-
traction partly overcomes the challenge with precise localization of body keypoints
of small-scale persons. The use of compound scaling in EfficientPose and Efficien-
tHourglass might have enabled further improvements in localization performance,
e.g., by carefully balancing the required number of features (i.e., ConvNet width)
in accordance with the complexity of features (i.e., ConvNet depth).

However, the adoption of compound scaling coefficients, optimized for im-
age classification with EfficientNet [74], in EfficientPose and EfficientHourglass
might be suboptimal for HPE. Although existing compound scaling coefficients
may provide a good starting point, as reflected by the success of EfficientDet for
object detection [105], task-specific compound scaling could yield improved per-
formance [106]. Further studies could therefore systematically assess the appro-
priate compound scaling of ConvNet dimensions in single-person HPE and infant
pose estimation. This could be performed by first using multi-objective NAS to ar-
rive at a computationally efficient baseline network with decent localization per-
formance, similar to EfficientNet-B0 for image classification. Subsequently, under
the assumption of a doubling in FLOPs, optimal compound scaling coefficients
could be found from a small grid search, which eventually yield ConvNets of
higher scale. Furthermore, to attempt transferring the knowledge of high-scale
ConvNets with high localization performance into a ConvNet of higher compu-
tational efficiency, knowledge distillation [107] could be employed, an approach
that has previously shown promising results in single-person HPE [108].
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Future research should also establish the required level of localization perfor-
mance of video-based motion capture for infant movement analysis. This might
vary between applications, and hence should be examined more thoroughly for
each application separately. In automated CP prediction, we might conduct an ex-
periment to indicate whether the high localization performance of the proposed
video-based motion capture is necessary, or if a lower level of localization per-
formance would be sufficient. A simple approach would be to simulate different
magnitudes of Gaussian noise in normalized body keypoint positions to assess
associated changes in estimated CP risk. However, it might be worth consider-
ing that lower-scale ConvNets could have different biases in localization behav-
ior compared to highly precise ConvNets. Hence, a more informative experiment
would be to estimate body keypoint positions with several ConvNets, for example
EfficientPose RT, I, and III, of increasing localization performance on infant pose
estimation, to determine the relationship between localization performance and
differences in estimated CP risk.

The effect of statistical techniques for post-processing ConvNet predictions
could also be investigated. Temporal smoothing of body keypoint trajectories with
median filter [109] might diminish certain inaccuracies of lower-scale ConvNets
(e.g., EfficientPose RT) in frame-by-frame infant pose estimation, which might
make these models promising alternatives for computationally efficient video-
based motion capture. Moreover, soft-argmax localization of body keypoints [110]
might further improve the fine localization performance of ConvNets.

Despite these potentials for further improvements, the high fine localization
performance of higher-scale EfficientPose models and EfficientHourglass B4 in
comparison to OpenPose could enable more fine-grained analysis of movement
kinematics, such as detection of small amplitude movements (e.g., FMs), due to
the reduction in jitter (i.e., fine prediction errors) [103]. The high correctness in
body keypoint positions, in turn, may facilitate that an accurate prediction of CP
in the clinical service implementation in Figure 5.1 is achieved by the spontaneous
movements of the infant Emmet being precisely represented.
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5.1 Video-based motion capture

5.1.2 Computational efficiency

Figure 5.3: The computational efficiency of video-based motion capture com-
prises the computational complexity (number of FLOPs), model capacity (num-
ber of parameters), and run-time performance (inference latency and processing
speed).

To obtain feasible video-based motion capture for clinical use, apart from high
localization performance, adequate computational efficiency should be empha-
sized. The computational efficiency of ConvNets, in terms of computational com-
plexity (i.e., number of FLOPs), model capacity (i.e., number of parameters), and
run-time performance (i.e., inference latency and processing speed), dictates the
computational resources and time required to perform video-based motion cap-
ture. In Figure 5.3, the clock reflects upon that high computational efficiency is
necessary to avoid wasting valuable time of health care personnel in waiting for
a response from the clinical decision support system. Study I and II demonstrated
more efficient use of FLOPs and parameters in EfficientPose and EfficientHourglass
in relation to OpenPose.

Despite the demonstrated reduction in computational complexity and model
capacity of EfficientPose and EfficientHourglass compared to OpenPose, these im-
provements were not proportional to increase in processing speed. As reported
by Li et al. [111], contemporary hardware accelerators (e.g., GPUs and TPUs) are
dependent on operational intensity of ConvNets (i.e., FLOPs per memory byte) to
maximize processing speed. Consequently, the lower operational intensity of MB-
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Convs, extensively employed in EfficientPose and EfficientHourglass, in relation
to basic convolutions, utilized in OpenPose, constrains the processing speeds that
can be achieved [111].

However, the current implementation of ConvNets could be made more effi-
cient using techniques for compressing ConvNets with minimal loss of localization
performance, like parameter pruning and quantization [112]. For example, if we
assume a similar improvement in processing speed as achieved by EfficientNet-
Lite0 with integer-only post-training quantization [75], EfficientPose III would
process a 3-minute video recording in 2 minutes on a consumer GPU, whereas
EfficientPose RT would only require 15 seconds. This might eventually enable
real-time decentralized processing of video recordings with high-precision motion
capture on smartphones, eliminating the need for specialized hardware while pre-
serving patient privacy.

Apart from determining the time consumption of the video-based motion cap-
ture in clinical use, the computational efficiency could impact the necessary time
and data required to perform training of ConvNets. In this thesis, the Efficient-
Pose and EfficientHourglass ConvNets required less extensive training and less
available training data than OpenPose to reach a certain level of localization per-
formance. Like EfficientPose and EfficientHourglass, OpenPose learnt anatomical
proportions of infants in supine position with fine-tuning on infant images from
GMA recordings, as reflected by improved localization performance on infant pose
estimation. This aligns well with previous results by Chambers et al. [66] and
confirms the hypothesis of Sciortino et al. [65] that retraining is necessary for
ConvNets to adapt to infant pose estimation. However, EfficientPose and Efficien-
tHourglass better utilized human annotations, as demonstrated by prediction er-
rors resembling the inter-rater spread of human annotators, a trait not displayed
by OpenPose. The CIMA-Pose ConvNet [90], a more computationally efficient ver-
sion of OpenPose, also achieved improved localization performance on infant pose
estimation compared to OpenPose over fewer epochs of training. This suggests
that ConvNets of higher computational efficiency, in terms of number of parame-
ters and FLOPs, may be beneficial for rapid convergence and better utilization of
training data on infant pose estimation.

The high computational efficiency of the proposed video-based motion cap-
ture is therefore important both to yield efficient training and to achieve high
run-time performance in clinical practice. The former enables high localization
performance, but also social impact due to reduced energy use and carbon emis-
sions related to tuning of the ConvNet. The latter ensures that the health care
personnel in Figure 5.1 perceive the clinical support system as responsive and do
not experience any prolonged wait, which would have been the case with lower
run-time performance (e.g., a processing speed of 5 FPS had required the video-
based motion capture to spend 18 minutes to process the 3-minute video).
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5.2 Prediction model

Aim II of the thesis, to obtain a GCN-based prediction model for CP from sponta-
neous movements of high-risk infants, was approached through ensemble model-
ing and automatic architecture search (i.e., NAS) while emphasizing the robust-
ness and trustworthiness of the CP prediction model. The robustness and trustwor-
thiness of machine learning-based CP prediction are important in a clinical service
implementation to ensure that the classification into CP or no CP of a high-risk
infant (e.g., Emmet in Figure 5.1) is likely to be correct and that it is properly
documented such that the clinical team can verify the decision and suggest the
appropriate follow-up care. We refer to the robustness of the prediction model as
the ability to perform accurate classification while indicating the associated un-
certainty of classification, whereas trustworthiness relates to the credibility of the
support evidence (i.e., explanations).

5.2.1 Classification and uncertainty

Figure 5.4: The classification and uncertainty of prediction model for CP express
the decision of determining whether the infant spontaneous movements relate to
CP or no CP and the associated level of confidence of this decision.
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The classification represents the recommendation of the prediction model for
decision of CP or no CP, whereas the uncertainty indicates the confidence level
of the prediction model in making this recommendation. In Figure 5.4, the low
estimated CP risk of 0.1% across the ensemble of GCN instances in the prediction
model suggests to the health care personnel that the infant Emmet should be clas-
sified as not having CP. Furthermore, green color code reflects a low classification
uncertainty, with more than 75% of GCN instances agreeing on the decision of no
CP, which communicates to the health care personnel that the prediction model
has strong evidence for the classification into no CP. In Study III, the robustness of
Ensemble-NAS-GCN in high-risk infants was confirmed with improved predictive
values for automated CP prediction compared to the state-of-the-art conventional
machine learning method (i.e., CIMA model) and the existing GCN-based method
(i.e., ST-GCN), and non-inferior performance to the clinically recommended GMA.

The improvement of Ensemble-NAS-GCN, in relation to CIMA model, could
reflect upon the ability of GCNs to operate directly on biomechanical proper-
ties of raw skeleton sequences. This contrasts to the human expert-based ex-
traction of a small set of relevant movement features, such as CSD [48–50, 57]
or frequency components [60–62], in conventional machine learning methods
like CIMA model. The convolution-based automatic feature extraction performs
higher-order analysis of complex relationships in whole-body movements to iden-
tify abstract features associated with the presence or absence of CP. This could
mimic how gestalt perception emphasizes global patterns over individual details [36].
Hence, the demonstrated success of this seamless integration of automatic extrac-
tion of abstract features with prediction of outcome suggests that GCNs could
represent a solution to the question of Silva et al. [46] regarding “if and how hu-
man gestalt perception can be appropriately emulated by artificial intelligence”.

The use of ensemble modeling in Ensemble-NAS-GCN improved the predic-
tive accuracy of classification by reducing the generalization error of individual
model instances through “wisdom of the crowd” [113]. Ensemble modeling was
also harnessed by CIMA model and few other methods for conventional machine
learning-based CP prediction [51, 55, 62]. However, in contrast to the 70 GCN in-
stances in Ensemble-NAS-GCN, CIMA model only comprises six model instances.
This might limit the accuracy improvement of ensemble aggregation by most clas-
sification problems requiring at least tens of individual instances to reach conver-
gence [114]. Furthermore, a higher level of classification uncertainty in CIMA
model would be expected due to small ensemble size [115].

Nevertheless, it remains to establish the optimal ensemble configuration for
automated CP prediction. Further research could examine the number of GCN
instances in Ensemble-NAS-GCN, e.g., from 1 to 100, to assess differences both
in terms of predictive accuracy and classification uncertainty. This might indicate
whether the predictive accuracy saturates at a certain number of GCN instances
and express how many GCN instances are required for negligible sampling error
when computing classification uncertainty. Future studies could also explore al-
ternative strategies for aggregating predictions of individual GCN instances. The
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use of median aggregation in the present thesis yields equal contribution to all
GCN instances in all time windows despite that different GCN instances could pay
attention to different patterns of infant spontaneous movements. Improved pre-
dictive accuracy might be achieved by giving higher attribution to GCN instances
considered active (i.e., of high or low predicted CP risk). Similarly, all time win-
dows across a skeleton sequence might not contain discriminative movements. Ac-
cordingly, techniques like temporal attention-based aggregation, previously used
in machine learning-based CP prediction by Nguyen-Thai et al. [54], could differ-
entiate the attribution of time windows.

Apart from ensemble modeling, the use of NAS in Ensemble-NAS-GCN enabled
improved predictive values for CP compared to the existing GCN-based method
ST-GCN [44], commonly applied for tasks involving spatiotemporal skeleton se-
quences (e.g., human action recognition). This was despite that each of the differ-
ent GCNs obtained by NAS had lower capacity (i.e., number of parameters) and
complexity (i.e., number of FLOPs) than ST-GCN (see Table A.5 in Appendix A).
This might suggest that automated CP prediction, approached as a binary classi-
fication task, does not demand as many degrees of freedom in GCN architectures
compared to human action recognition. Alternatively, the use of other architec-
tural components (e.g., type of convolutional layers, SE, activation functions, and
attention mechanisms) and their configurations (e.g., kernel size, bottleneck fac-
tor, and SE ratio), and NAS to determine the optimal order of operations in a
GCN, might have enabled more efficient use of parameters by constructing GCN
architectures specialized towards detecting movement features related to CP and
no CP.

However, the different design choices in Ensemble-NAS-GCN should be more
extensively examined in future studies. In particular, the overall architectural de-
sign utilized in GCNs, inspired by the efforts of Song et al. [76, 77] in human
action recognition from 3D skeleton sequences, could be investigated. The dif-
ferences to the use of 2D sequences for automated CP prediction questions the
validity of this architectural design. An important consideration to assess is the
individual contributions of the included biomechanical properties (i.e., positions,
velocities, and bones) and whether additional biomechanical properties should
be incorporated. Further studies could also investigate alternatives to the fixed
GCN structure (i.e., parallel input branches, feature concatenation, main branch,
pooling layer, and fully-connected layer), and examine the specific architectural
choices constraining GCN variants explored by NAS. It could also be established
whether there are time window lengths that yield improvements compared to a
time window length of 5 seconds. For example, we could assess a selection of dif-
ferent time window lengths, from 1 second to 30 seconds, by running NAS five
times for each of the time window lengths and retain the time window length that
achieves candidate GCNs with highest predictive accuracy. Such an experiment
might indicate whether 5 seconds are sufficient to capture CP-related movement
patterns. Alternatively, longer time windows might be preferred by including low-
frequency movement patterns, but also more postural patterns and movement pat-
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terns within a single time window could enable GCNs to analyze the co-existence
of different patterns in infants with and without CP.

The proposed NAS strategy was designed to pursue GCN architectures reach-
ing high predictive values within few epochs of training from restricted amount of
available data. Accordingly, Ensemble-NAS-GCN was able to achieve performance
non-inferior to observational GMA, despite each GCN instance being trained on
a small number of skeleton sequences from associated infants, including only 54
skeleton sequences from infants with CP. In contrast, Yan et al. [44] trained ST-
GCN on 240 000 skeleton sequences to perform human action recognition [116].
In yet other applications, convolutional networks may even require large-scale
pretraining on millions or billions of data points to maximize accuracy [117].
The high external validity of Ensemble-NAS-GCN on the separate test set suggests
that the training data appropriately approximates the natural variation among
high-risk infants. Furthermore, the various spontaneous movement patterns con-
tained in few skeleton sequences might have sufficiently covered the distribution
of movements related to CP and no CP, diminishing the need for a large-scale train-
ing set or separate pretraining. Moreover, the splitting of skeleton sequences into
5 second windows, each comprising fewer distinct patterns of infant spontaneous
movements, and hyperparameter search to determine an appropriate optimiza-
tion procedure, including settings for data augmentation and weight initializa-
tion, might have facilitated robust convergence of GCNs.

Nevertheless, GCNs might further increase predictive accuracy for classifica-
tion of CP with access to a larger training sample. This could involve large-scale
collaboration with international research groups to utilize the proposed video-
based motion capture on retrospective databases of GMA recordings with associ-
ated CP outcomes, to obtain a larger number of skeleton sequences. This might
be a cumbersome process which requires the handling of ethical and privacy con-
cerns of data sharing. Therefore, alternative technical solutions to increase the
amount and heterogeneity of training data could be to generate synthetic skele-
ton sequences from existing training data, e.g., by the use of Gaussian process
in CSGN [118], or by developing strategies for semi-supervised learning, like
SESAR [119], to also harness skeleton sequences of GMA recordings without CP
outcomes.

The present thesis has showcased the versatility of NAS to uncover the appro-
priate compositions of GCNs by harnessing infant spontaneous movements and
CP outcomes from a limited number of infants. Furthermore, ensemble modeling
has enabled accurate classification and estimation of classification uncertainty.
This could be used in screening of CP in high-risk infants to enable health care
personnel to quickly identify infants, like Emmet in Figure 5.1, displaying sponta-
neous movements indicating typical motor development. Moreover, classification
into CP with low uncertainty could initiate targeted intervention from 3 months
PTA to optimize function, whereas uncertain classifications may advise health care
personnel to perform GMA or HINE to complement machine learning-based CP
prediction.
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5.2.2 Explanations

Figure 5.5: The explanations of prediction model for CP represents the support-
ing evidence associated with a classification into CP or no CP.

The explanations of the machine learning-based CP prediction comprise sup-
porting evidence to verify and improve the understanding of a classification, to
establish the trustworthiness of the prediction. In a clinical service implementa-
tion, explanations can be presented through a clinical dashboard, as illustrated in
Figure 5.5, for health care personnel to assess the video periods where the spon-
taneous movements of the infant Emmet are associated with low CP risk (tempo-
ral aspect) and which body parts that are involved in these movements (spatial
aspect). Such temporal and spatial explanations for the decisions of Ensemble-
NAS-GCN in classifying high-risk infants into CP or no CP were proposed in Study
III.

Although the present thesis did not assess the usefulness of these explanations,
further studies could examine how such information might yield insights into the
patterns of infant spontaneous movements Ensemble-NAS-GCN associates with
CP and no CP. Systematic investigation of the connection between predictions of
high and low CP risk and associated temporal and spatial explanations could de-
termine hypotheses for potential biomarkers of CP in infant spontaneous move-
ments. This might potentially elicit quantitative evidence for absent FMs as an
important marker for CP, or establish the relevance of patterns of the concurrent
motor repertoire for prediction of CP.
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As a starting point towards achieving this, temporal explanations could be ex-
ploited to narrow down the investigation to video periods (e.g., 30 seconds) in the
test set that yield high predictive certainty for CP or no CP. Subsequently, a quali-
tative experiment could include an equal number of video periods of high and low
estimated CP risk which are displayed to GMA observers, blinded to the predic-
tions of Ensemble-NAS-GCN, to assess the presence of FMs in these video periods.
The portions of video periods with high and low CP risk that contain FMs indicate
whether or not FMs are deemed discriminative for CP by Ensemble-NAS-GCN. Al-
ternatively, an extended experiment could ask observers familiar with the Assess-
ment of Motor Repertoire [18] to systematize the presence of different movement
patterns and postural patterns of the concurrent motor repertoire in video peri-
ods of high and low estimated CP risk. This could suggest which specific infant
movement patterns that are considered by Ensemble-NAS-GCN as related to CP
or no CP.

These findings could thereafter be correlated with spatial explanations, ob-
tained with CAM, to assess if the body keypoints involved in the infant spon-
taneous movement patterns of high and low CP risk receive a contribution to-
wards prediction of CP that is high and low, respectively. A high correlation would
strengthen the hypothesis that the movement patterns or postural patterns ob-
served by the human experts are the same patterns of infant spontaneous move-
ments as emphasized by Ensemble-NAS-GCN in prediction of CP. Moreover, this
would further verify the robustness of CAM in providing accurate spatial expla-
nations, which could be useful for health care personnel in interpreting decisions
of the prediction model. On the contrary, a lack of correlation could suggest that
the patterns considered discriminative by Ensemble-NAS-GCN differ from the pat-
terns detected by human experts. However, it might also indicate that regular
CAM is not suitable and should be replaced with related alternatives (e.g., Grad-
CAM [120] or Grad-CAM++ [121]) or other explanation techniques, like attention
weights [54].

Although further research is required to fully exploit and refine the explana-
tions provided by the proposed machine learning method, this might eventually
make these black box models more transparent. Accordingly, clinical end users
of a decision support system might better interpret the decision of the prediction
model in Figure 5.1 for classification of Emmet into no CP to establish trust in
machine learning-based CP prediction.
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5.3 Other considerations and avenues for future research

5.3.1 Field of use and transfer validity

In this thesis, the ConvNets for video-based motion capture and the GCNs in the
prediction model for CP were trained on samples of infants recruited in previ-
ous studies. Although this included infants of various medical risk factors, these
infants originated from a limited number of countries. Furthermore, the infants
representing a certain country were mostly restricted to a specific medical risk fac-
tor (e.g., perinatal stroke for infants from Belgium and neonatal encephalopathy
for infants from India). It is uncertain whether these aspects might affect the local-
ization performance of video-based motion capture and predictive accuracy of pre-
diction model for CP in GMA recordings of high-risk infants from other countries
or of different medical risk factors. However, in general, convolutional networks
require proper validation on relevant data in use cases outside the domain of the
training data [41]. This is an important ingredient for understanding the knowl-
edge limitations of the proposed methods and a step towards obtaining pre-market
specification enabling use in medical devices. For example, Paper II reported de-
creased localization performance of ConvNets on synthetic GMA recordings. This
was an indication that the proposed video-based motion capture should only be
applied to video recordings following GMA standards in a real-world setting. Nev-
ertheless, ConvNets might adapt to synthetic GMA recordings through retraining
on an extended training set of In-Motion Poses which includes synthetic images
and associated body keypoint annotations from MINI-RGBD [122].

Another use case that requires further validation is the robustness of Ensemble-
NAS-GCN in GMA recordings captured by parents at home using smartphones, like
the scenario in the possible clinical service implementation in Figure 5.1. Due to
the lack of home-based smartphone recordings with available CP outcomes, train-
ing of Ensemble-NAS-GCN for CP prediction was restricted to standardized and
less standardized hospital recordings where the camera was placed on a stand.
However, home-based videos recorded with hand-held smartphones have been
reported as feasible in observational GMA [33, 35, 123], which could indicate
a potential for use in machine learning-based CP prediction. Nevertheless, there
might be systematic differences in skeleton sequences caused by variations in cam-
era angle and movement artefacts due to hand-held smartphone, but it is uncer-
tain whether this alters the behavior of Ensemble-NAS-GCN in estimating CP risk.
To assess this, future research could employ Ensemble-NAS-GCN on the home-
based smartphone recordings of high-risk infants collected by Adde et al. [33]. A
similar distribution of classification uncertainties across these infants compared to
high-risk infants in Study III might suggest appropriate behavior. However, sub-
sequent studies are required to verify this by determining the predictive values
of Ensemble-NAS-GCN in home-based smartphone recordings from collected CP
outcomes.
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It would also be valuable to investigate the predictive accuracy of Ensemble-
NAS-GCN in different groups of high-risk infants with and without CP. The low
number of infants with CP in the test set in Study III limited the possibility of do-
ing subgroup analysis to assess differences in predictive values of Ensemble-NAS-
GCN in infants with different medical risk factors (e.g., premature birth, perina-
tal stroke, and neonatal encephalopathy) and in infants with spastic, dyskinetic,
and ataxic CP. Moreover, future research should determine whether the predictive
accuracy of Ensemble-NAS-GCN can be replicated in other samples of high-risk
infants and verify that the behavior of the prediction model is consistent across
infants from different countries.

5.3.2 One-step versus two-step approach

Another consideration which is worth examining in future research is whether the
predominant two-step approach for machine learning-based CP prediction, com-
prising separate steps for video-based motion capture and prediction model, is
optimal. The quantification of movement information into skeleton sequences by
video-based motion capture could remove traits in GMA recordings relevant for
the prediction of CP. It could for example be valuable to allow prediction models
analyze infants’ finger postures and facial expressions, since it has been demon-
strated that infants with CP often have atypical variability of finger postures and
absent or atypical tongue movements [32]. Schmidt et al. [52] attempted to per-
form automated GMA directly from raw video frames, omitting the video-based
motion capture. However, the initial results of this attempt were not very promis-
ing, which we suspect was due to challenges regarding handling the large amount
of visual information in video frames, including the presence of irrelevant video in-
formation (e.g., background noise, skin color, and clothing) potentially misleading
the prediction model. Predictions directly from video also require proper address-
ing to avoid decisions from unjust grounds. In particular, it could be necessary
with an initial step to remove identifiable information in GMA recordings, such as
race and gender, e.g., by the use of the SMIL infant model developed by Hesse et
al. [124].
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5.3.3 Relation to automated GMA

The present thesis approached machine learning-based CP prediction as auto-
mated CP prediction. Although this enabled GCNs to independently determine
the discriminative value of different patterns of infant spontaneous movements for
prediction of CP, the alternative approach of automated GMA has other benefits.
In contrast to automated CP prediction, automated GMA does not consider other
movement patterns than FMs, which could make predictions in automated GMA
more interpretable, by directly indicating the presence or absence of FMs. More-
over, the exclusive focus on FMs might simplify the training of machine learning
systems, where methods for automated CP prediction might struggle discovering
discriminative cues in infant spontaneous movements or possibly be confused by
dissimilar pathological movements in infants with different subtypes of CP. Fur-
thermore, with automated CP prediction, the use of a single noisy label of CP
or no CP across a GMA recording further challenges the detection of CP-related
movements due to infants with CP also displaying normal patterns of infant spon-
taneous movements [32].

On the other hand, a similar issue might occur in automated GMA, where
a single GMA recording is commonly assigned an overall label of present FMs
or absent FMs [47], despite FMs most often being present in limited parts of a
video, reflecting upon the temporal organization of FMs [18]. Moreover, whereas
automated CP prediction is based on the long-term CP outcome, diagnosed by a
pediatrician blinded to the spontaneous movements in a GMA recording, methods
for automated GMA learn to predict FMs based on the subjective gestalt percep-
tion of GMA observers. Taking into account the variance among GMA observers,
and in particular the lower reliability of observers with limited experience [37],
we could therefore expect machine learning methods for automated GMA to show
a similar behavior and hence be constrained by the performance of the respective
observer. Nevertheless, further studies should assess the feasibility of both ap-
proaches, and determine if automated GMA and automated CP prediction could
potentially complement each other.
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5.3.4 Multimodality convolutional network-based CP prediction

Whereas the present thesis was limited to CP prediction from infant spontaneous
movements in GMA recordings, the importance of other prominent markers for CP
and their associated assessment techniques should not be neglected. Hence, fur-
ther efforts could explore the use of multimodality prediction models that extends
the proposed CP prediction by incorporating analysis of neonatal MRI scans to
assess brain abnormalities. A unified CP prediction framework might extract fea-
tures for each modality separately with suitable techniques, like ConvNets (e.g.,
U-Net [125]) for MRI scans, and the proposed combination of ConvNets and GCNs
for infant spontaneous movements in GMA recordings, followed by concatenation
into multimodality features from which a classification of CP and no CP could be
performed. This could potentially improve the predictive accuracy of early CP
prediction while providing clinically meaningful explanations connecting cues of
brain development and spontaneous movements of infants.
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Conclusion

This thesis approached the challenge of early prediction of CP through video-
based infant movement analysis harnessing convolutional networks. The infant
spontaneous movements in a video recording at 3 months PTA were localized us-
ing highly precise and computationally efficient ConvNet-based motion capture.
A GCN-based prediction model, in turn, analyzed this movement information to
provide an objective prediction of CP. The predictive accuracy of this non-invasive,
automated assessment in high-risk infants was non-inferior to the clinically rec-
ommended GMA, while possessing the ability to differentiate ambulatory CP from
non-ambulatory CP and unilateral CP from bilateral CP. Although the proposed so-
lution is yet to demonstrate feasibility in clinical practice and transfer validity in
new samples of high-risk infants, these findings portray a future where convolu-
tional networks may play an important role in next-generation clinical decision
support.
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Appendix A

Neural architecture search for
graph-based convolutional
networks

The architectures of GCNs for CP prediction from skeleton sequences were deter-
mined through automatic NAS based on the following search space and search
strategy.

A.1 Search space

The search space, specifying the degrees of freedom of the GCN, comprised 20
architectural choices, yielding more than four billion possible novel GCN architec-
tures. The choices included the number of stacked modules of alternating spatial
graph convolutions and temporal convolutions in input branches and main branch
(i.e., network depth), the width (i.e., number of channels) of modules, block types
(i.e., types of convolutions), specification of graph convolution, type of residual
connection and SE, number of parallel scales in temporal convolutions, type of
attention mechanism, and so forth. All architectural choices and available alter-
natives are summarized in Table A.1, where it is also indicated which architectural
building blocks are affected by the choice (i.e., input branches, main branch, or
pooling layer) or the architecture overall (i.e., general properties).
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A.2 K-Best Search

To navigate the vast number of configurations in the architectural search space, a
computationally efficient NAS strategy, K-Best Search, was developed, along with
an effective estimation of performance of proposed architectures on CP predic-
tion. The proposed NAS procedure is outlined in Algorithm 1.

Algorithm 1: K-Best Search
Input: Population size K , Architectural choices C , Performance threshold θ ,

Start temperature T0, End temperature T∞, Temperature drop τ,
Training samples St rain, Validation samples Sval

Init: Population P ← ;, Temperature T ← T0, Unsuccessful trials U ← 0
while |P|< K do

candidate← RandomAlternatives(C)
per f ormance(candidate)← TrainEval(candidate, St rain, Sval)
if per f ormance(candidate)≥ θ then

P ← P ∪ candidate

while U < K do
candidate← GoodAlternatives(P, T )
per f ormance(candidate)← TrainEval(candidate, St rain, Sval)
if per f ormance(candidate)>minx∈P per f ormance(x) then

U ← 0
P ← (P \ argminx∈P per f ormance(x))∪ candidate

else
U ← U + 1
if U = K and T > T∞ then

U ← 0
T ← T −τ

return argmaxx∈P per f ormance(x)
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Table A.2: Different values of K in K-Best Search.

K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

AUC Sval 0.937 0.939 0.935 0.949 0.940 0.946
No. trials 10 22 25 49 65 78

Inspired by the efforts of Mazzawi et al. [127], K-Best Search greedily uti-
lizes the K best-performing GCN architectures to construct architectural candi-
dates containing alternatives of architectural choices present in the population
of K architectures. Moreover, motivated by Noy et al. [128], annealing was em-
ployed, ensuring high degree of exploration of different alternatives in the early
phase of the search (i.e., high temperature), while gradually cooling down to
ensure higher degree of exploitation of best-performing alternatives in the later
phase of the search. More specifically, GoodAl ternatives composes an architec-
ture candidate from architectural choices c ∈ C with probability Prob of select-
ing an alternative a ∈ A being controlled by its ranking R in the current population
(e.g., if alternative X is present in the 1st and 2nd best-performing candidates in
the population with K = 5, whereas alternative Y occurs in the 3rd, 4th, and 5th

best-performing candidates, then R(X ) = 5 + 4 = 9 and R(Y ) = 3 + 2 + 1 = 6),
along with temperature T determining the importance of ranking:

Prob(a) =
ex p(R(a)

T )
∑

a′∈A ex p(R(a′)
T )

(A.1)

The performance of candidate architectures was estimated by TrainEval based
on the AUC of the candidate across subjects in the two validation folds that ST-
GCN [44] performed best and worst at, val2 and val7 according to Table A.5,
comprising Sval = Sval2 ∪ Sval7, yielding a proxy for the accuracy of 7-fold cross-
validation accuracy. The remaining infants of the training and validation dataset
(St rain = Sval1∪Sval3∪Sval4∪Sval5∪Sval6) were used for supervised training of the
proposed architecture for 100 epochs. An early stopping scheme was employed
to leave out candidates not converging towards high AUC, with checkpoints at
epochs 10, 20, 30, 40, 50, 60, 70, 80, and 90, with associated AUC criteria of 0.75,
0.775, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, and 0.95. Start temperature T0, end
temperature T∞, and temperature drop τ were set to 10, 1, and 3, respectively,
whereas the performance threshold θ for inclusion in the initial population was
AUC ≥ 0.9. The appropriate value of K , providing trade-off between the achieved
AUC and number of candidate architectures (i.e., trials), was determined as 5
based on the saturation of AUC observed at K > 5 in Table A.2. Table A.3 displays
that K-Best Search outperformed Random Search across 675 trials (10 iterations
of K-Best Search with K = 5), both with respect to the number of trials surpass-
ing each AUC checkpoint (e.g., 335 (49.6%) trials of AUC ≥ 0.9 compared to 144
(21.3%) for Random Search), median AUC, and highest AUC overall.
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A.3 Ensemble-NAS-GCN

The K-Best Search was repeated 10 times to yield 10 novel GCNs suited for the
task of CP prediction (Table A.4). The performance of each of the GCNs, as well
as the ST-GCN baseline, in 7-fold cross-validation is provided in Table A.5. More-
over, similar to Mazzawi et al. [127], intra-model ensembles combined the seven
instances of each GCN, to yield performance on the test set. The 10 intra-model
ensembles, originating from K-Best Search, were merged into the ensemble of 70
GCN instances composing Ensemble-NAS-GCN.
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Appendix B

Single-person pose estimation
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Appendix C

Infant pose estimation
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Appendix D

Automated CP prediction
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Abstract
Single-person human pose estimation facilitates markerless movement analysis in sports, as well as in clinical applications.
Still, state-of-the-art models for human pose estimation generally do not meet the requirements of real-life applications.
The proliferation of deep learning techniques has resulted in the development of many advanced approaches. However,
with the progresses in the field, more complex and inefficient models have also been introduced, which have caused
tremendous increases in computational demands. To cope with these complexity and inefficiency challenges, we propose
a novel convolutional neural network architecture, called EfficientPose, which exploits recently proposed EfficientNets
in order to deliver efficient and scalable single-person pose estimation. EfficientPose is a family of models harnessing
an effective multi-scale feature extractor and computationally efficient detection blocks using mobile inverted bottleneck
convolutions, while at the same time ensuring that the precision of the pose configurations is still improved. Due to its low
complexity and efficiency, EfficientPose enables real-world applications on edge devices by limiting the memory footprint
and computational cost. The results from our experiments, using the challenging MPII single-person benchmark, show that
the proposed EfficientPose models substantially outperform the widely-used OpenPose model both in terms of accuracy and
computational efficiency. In particular, our top-performing model achieves state-of-the-art accuracy on single-person MPII,
with low-complexity ConvNets.

Keywords Human pose estimation · Model scalability · High precision · Computational efficiency · Openly available

1 Introduction

Single-person human pose estimation (HPE) refers to the
computer vision task of localizing human skeletal keypoints
of a person from an image or video frames. Single-
person HPE has many real-world applications, ranging from
outdoor activity recognition and computer animation to
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clinical assessments of motor repertoire and skill practice
among professional athletes. The proliferation of deep
convolutional neural networks (ConvNets) has advanced
HPE and further widen its application areas. ConvNet-based
HPE with its increasingly complex network structures,
combined with transfer learning, is a very challenging task.
However, the availability of high-performing ImageNet [9]
backbones, together with large tailor-made datasets, such
as MPII for 2D pose estimation [1], has facilitated the
development of new improved methods to address the
challenges.

An increasing trend in computer vision has driven towards
more efficient models [11, 38, 46]. Recently, Efficient-
Net [47] was released as a scalable ConvNet architecture,
setting benchmark record on ImageNet with a more com-
putationally efficient architecture. However, within human
pose estimation, there is still a lack of architectures that
are both accurate and computationally efficient at the same
time. In general, current state-of-the-art architectures are
computationally expensive and highly complex, thus mak-
ing them hard to replicate, cumbersome to optimize, and
impractical to embed into real-world applications.

/ Published online: 6 November 2020
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The OpenPose network [6] (OpenPose for short) has
been one of the most applied HPE methods in real-
world applications. It is also the first open-source real-
time system for HPE. OpenPose was originally developed
for multi-person HPE, but has in recent years been
frequently applied to various single-person applications
within clinical research and sport sciences [15, 32, 34].
The main drawback with OpenPose is that the level of
detail in keypoint estimates is limited due to its low-
resolution outputs. This makes OpenPose less suitable for
precision-demanding applications, such as elite sports and
medical assessments, which all depend on high degree
of precision in the assessment of movement kinematics.
Moreover, by spending 160 billion floating-point operations
(GFLOPs) per inference, OpenPose is considered highly
inefficient. Despite these issues, OpenPose seems to
remain a commonly applied network for single-person HPE
performing markerless motion capture from which critical
decisions are based upon [2, 56].

In this paper, we stress the lack of publicly available methods
for single-person HPE that are both computationally effi-
cient and effective in terms of estimation precision. To this
end, we exploit recent advances in ConvNets and propose
an improved approach called EfficientPose. Our main idea
is to modify OpenPose into a family of scalable ConvNets
for high-precision and computationally efficient single-person
pose estimation from 2D images. To assess the performance
of our approach, we perform two separate comparative studies.
First, we evaluate the EfficientPose model by comparing
it against the original OpenPose model on single-person
HPE. Second, we compare it against the current state-of-
the-art single-person HPE methods on the official MPII
challenge, focusing on accuracy as a function of the number
of parameters. The proposed EfficientPose models aim to
elicit high computational efficiency, while bridging the gap
in availability of high-precision HPE networks.

In summary, the main contributions of this paper are the
following:

– We propose an improvement of OpenPose, called
EfficientPose, that can overcome the shortcomings of
the popular OpenPose network on single-person HPE
with improved level of precision, rapid convergence
during optimization, low number of parameters, and
low computational cost.

– With EfficientPose, we suggest an approach provid-
ing scalable models that can suit various demands,
enabling a trade-off between accuracy and efficiency
across diverse application constraints and limited com-
putational budgets.

– We propose a new way to incorporate mobile Con-
vNet components, which can address the need for

computationally efficient architectures for HPE, thus
facilitating real-time HPE on the edge.

– We perform an extensive comparative study to evaluate
our approach. Our experimental results show that
the proposed method achieves significantly higher
efficiency and accuracy in comparison to the baseline
method, OpenPose. In addition, compared to existing
state-of-the-art methods, it achieves competitive results,
with a much smaller number of parameters.

The remainder of this paper is organized as follows:
Section 2 describes the architecture of OpenPose and
highlights research which it can be improved from.
Based on this, Section 3 presents our proposed ConvNet-
based approach, EfficientPose. Section 4 describes our
experiments and presents the results from comparing
EfficientPose with OpenPose and other existing approaches.
Section 5 discusses our findings and suggests potential
future studies. Finally, Section 6 summarizes and concludes
the paper.

For the sake of reproducibility, we will make the Effi-
cientPose models available at https://github.com/daniegr/
EfficientPose.

2 Related work

The proliferation of ConvNets for HPE following the
success of DeepPose [54] has set the path for accurate HPE.
With OpenPose, Cao et al. [6] made HPE available to the
public. As depicted by Fig. 1, OpenPose comprises a multi-
stage architecture performing a series of detection passes.
Provided an input image of 368 × 368 pixels, OpenPose
utilizes an ImageNet pretrained VGG-19 backbone [41] to
extract basic features (step 1 in Fig. 1). The features are
supplied to a DenseNet-inspired detection block (step 2)
arranged as five dense blocks [23], each containing three 3×
3 convolutions with PReLU activations [20]. The detection
blocks are stacked in a sequence. First, four passes (step 3a-
d in Fig. 1) of part affinity fields [7] map the associations
between body keypoints. Subsequently, two detection
passes (step 3e and 3f) predict keypoint heatmaps [53] to
obtain refined keypoint coordinate estimates. In terms of
level of detail in the keypoint coordinates, OpenPose is
restricted by its output resolution of 46 × 46 pixels.

The OpenPose architecture can be improved by recent
advancements in ConvNets, as follows: First, automated
network architecture search has found backbones [47,
48, 62] that are more precise and efficient in image
classification than VGG and ResNets [21, 41]. In particular,
Tan and Le [47] proposed compound model scaling to
balance the image resolution, width (number of network
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Fig. 1 OpenPose architecture utilizing 1) VGG-19 feature extractor, and 2) detection blocks performing 4+2 passes of estimating part affinity
fields (3a-d) and confidence maps (3e and 3f)

channels), and depth (number of network layers). This
resulted in scalable convolutional neural networks, called
EfficientNets [47], with which the main goal was to provide
lightweight models with a sensible trade-off between model
complexity and accuracy across various computational
budgets. For each model variant EfficientNet-Bφ, from the
most computationally efficient one being EfficientNet-B0
to the most accurate model, EfficientNet-B7 (φ ∈ [0, 7] ∈
Z≥), the total number of FLOPs increases by a factor of 2,
given by

(α · β2 · γ 2)φ ≈ 2φ . (1)

Here, α, β and γ denote the coefficients for depth, width,
and resolution, respectively, and are set as

α = 1.2, β = 1.1, γ = 1.15. (2)

Second, parallel multi-scale feature extraction has improved
the precision levels in HPE [25, 33, 44, 57], emphasizing
both high spatial resolution and low-scale semantics.
However, existing multi-scale approaches in HPE are
computationally expensive, both due to their large size and
high computational requirements. For example, a typical
multi-scale HPE approach has often a size of 16 − 58
million parameters and requires 10 − 128 GFLOPS [8, 33,
36, 44, 49, 57, 61]. To cope with this, we propose cross-
resolution features, operating on high- and low-resolution
input images, to integrate features from multiple abstraction
levels with low overhead in network complexity and with
high computational efficiency. Existing works on Siamese
ConvNets have been promising in utilizing parallel network
backbones [17, 18]. Third, mobile inverted bottleneck
convolution (MBConv) [38] with built-in squeeze-and-
excitation (SE) [22] and Swish activation [37] integrated
in EfficientNets has proven more accurate in image
classification tasks [47, 48] than regular convolutions [21,
23, 45], while substantially reducing the computational

costs [47]. The efficiency of MBConv modules stem from
the depthwise convolutions operating in a channel-wise
manner [40]. With this approach, it is possible to reduce the
computational cost by a factor proportional to the number
of channels [48]. Hence, by replacing the regular 3 × 3
convolutions with up to 384 input channels in the detection
blocks of OpenPose with MBConvs, we can obtain more
computationally efficient detection blocks. Further, SE
selectively emphasizes discriminative image features [22],
which may reduce the required number of convolutions and
detection passes by providing a global perspective on the
estimation task at all times. Using MBConv with SE may
have the potential to decrease the number of dense blocks
in OpenPose. Fourth, transposed convolutions with bilinear
kernel [30] scale up the low-resolution feature maps, thus
enabling a higher level of detail in the output confidence
maps.

By building upon the work of Tan and Le [47], we present
a pool of scalable models for single-person HPE that is able
to overcome the shortcomings of the commonly adopted
OpenPose architecture. This enables trading off between
accuracy and efficiency across different computational
budgets in real-world applications. The main advantage
of this is that we can use ConvNets that are small and
computationally efficient enough to run on edge devices
with little memory and low processing power, which is
impossible with OpenPose.

3 The EfficientPose approach

In this section, we explain in details the EfficientPose
approach. This includes a detailed description of the Effi-
cientPose architecture in light of the OpenPose architecture,
and a brief introduction to the proposed variants of Effi-
cientPose.
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3.1 Architecture

Figures 1 and 2 depict the architectures of OpenPose
and EfficientPose, respectively. As can be observed in
these two figures, although being based on OpenPose, the
EfficientPose architecture is different from the OpenPose
architecture in several aspects, including 1) both high
and low-resolution input images, 2) scalable EfficientNet
backbones, 3) cross-resolution features, 4) and 5) scalable
Mobile DenseNet detection blocks in fewer detection
passes, and 6) bilinear upscaling. For a more thorough
component analysis of EfficientPose, see Appendix A.

The input of the network consists of high and low-
resolution images (1a and 1b in Fig. 2). To get the low-
resolution image, the high-resolution image is downsampled
into half of its pixel height and width, through an initial
average pooling layer.

The feature extractor of EfficientPose is composed of the
initial blocks of EfficientNets [47] pretrained on ImageNet
(step 2a and b in Fig. 2). High-level semantic information
is obtained from the high-resolution image using the initial
three blocks of a EfficientNet with φ ∈ [0, 7] (see (1)),
outputting C feature maps (2a in Fig. 2). Low-level local
information is extracted from the low-resolution image by
the first two blocks of a lower-scale EfficientNet-backbone
(2b in Fig. 2) in the range φ ∈ [0, 3]. Table 1 provides
an overview of the composition of EfficientNet backbones,
from low-scale B0 to high-scale B7. The first block of
EfficientNets utilizes the MBConvs shown in Fig. 3a and b,

whereas the second and third blocks comprise the MBConv
layers in Fig. 3c and d.

The features generated by the low-level and high-
level EfficientNet backbones are concatenated to yield
cross-resolution features (step 3 in Fig. 2). This enables
the EfficientPose architecture to selectively emphasize
important local factors from the image of interest and the
overall structures that guide high-quality pose estimation. In
this way, we enable an alternative simultaneous handling of
different features at multiple abstraction levels.

From the extracted features, the desired keypoints are
localized through an iterative detection process, where each
detection pass performs supervised prediction of output
maps. Each detection pass comprises a detection block
and a single 1 × 1 convolution for output prediction.
The detection blocks across all detection passes elicit the
same basic architecture, comprising Mobile DenseNets
(see step 4 in Fig. 2). Data from Mobile DenseNets are
forwarded to subsequent layers of the detection block using
residual connections. The Mobile DenseNet is inspired
by DenseNets [23] supporting reuse of features, avoiding
redundant layers, and MBConv with SE, thus enabling
low memory footprint. In our adaptation of the MBConv
operation (E-MBConv6(K × K, B, S) in Fig. 3e), we
consistently utilize the highest performing combination
from [46], i.e., a kernel size (K × K) of 5 × 5 and an
expansion ratio of 6. We also avoid downsampling (i.e.,
S = 1) and scale the width of Mobile DenseNets by
outputting number of channels relative to the high-level

Fig. 2 Proposed architecture comprising 1a) high-resolution and 1b)
low-resolution inputs, 2a) high-level and 2b) low-level Efficient-
Net backbones combined into 3) cross-resolution features, 4) Mobile

DenseNet detection blocks, 1+2 passes for estimation of part affinity
fields (5a) and confidence maps (5b and 5c), and 6) bilinear upscaling
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backbone (B = C). We modify the original MBConv6
operation by incorporating E-swish as activation function
with β value of 1.25 [16]. This has a tendency to accelerate
progression during training compared to the regular Swish
activation [37]. We also adjust the first 1 × 1 convolution
to generate a number of feature maps relative to the
output feature maps B rather than the input channels M .
This reduces the memory consumption and computational
latency since B ≤ M , with C ≤ M ≤ 3C. With
each Mobile DenseNet consisting of three consecutive
E-MBConv6 operations, the module outputs 3C feature
maps.

EfficientPose performs detection in two rounds (step
5a-c in Fig. 2). First, the overall pose of the person is
anticipated through a single pass of skeleton estimation (5a).
This aims to facilitate the detection of feasible poses and
to avoid confusion in case of several persons being present
in an image. Skeleton estimation is performed utilizing
part affinity fields as proposed in [7]. Following skeleton
estimation, two detection passes are performed to estimate
heatmaps for keypoints of interest. The former of these acts
as a coarse detector (5b in Fig. 2), whereas the latter (5c in
Fig. 2) refines localization to yield more accurate outputs.

Note that in OpenPose, the heatmaps of the final
detection pass are constrained to a low spatial resolution,
which are incapable of achieving the amount of details
that are normally inherent in the high-resolution input [6].
To improve this limitation of OpenPose, a series of three
transposed convolutions performing bilinear upsampling are
added for 8× upscaling of the low-resolution heatmaps (step
6 in Fig. 1). Thus, we project the low-resolution output onto
a space of higher resolution in order to allow an increased
level of detail. To achieve the proper level of interpolation
while operating efficiently, each transposed convolution
increases the map size by a factor of 2, using a stride of 2
with a 4 × 4 kernel.

3.2 Variants

Following the same principle as suggested in the original
EfficientNet [47], we scale the EfficientPose network
architecture by adjusting the three main dimensions, i.e.,
input resolution, network width, and network depth, using
the coefficients of (2). The results from this scaling are
five different architecture variants that are given in Table 2,
referred to as EfficientPose I to IV and RT). As can be
observed in this table, the input resolution, defined by the
spatial dimensions of the image (H ×W ), is scaled utilizing
the high and low-level EfficientNet backbones that best
match the resolution of high and low-resolution inputs (see
Table 1). Here, the network width refers to the number of
feature maps that are generated by each E-MBConv6. As
described in Section 3.1, width scaling is achieved using the
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Fig. 3 The composition of MBConvs. From left: a-d) MBConv(K ×
K, B, S) in EfficientNets performs depthwise convolution with filter
size K × K and stride S, and outputs B feature maps. MBConv∗
(b and d) extends regular MBConvs by including dropout layer and
skip connection. e) E-MBConv6(K ×K, B, S) in Mobile DenseNets

adjusts MBConv6 with E-swish activation and number of feature
maps in expansion phase as 6B. All MBConvs take as input M feature
maps with spatial height and width of h and w, respectively. R is the
reduction ratio of SE

same width as the high-level backbone (i.e., C). The scaling
of network depth is achieved in the number of Mobile
DenseNets (i.e., MD(C) in Table 2) in the detection blocks.
Also, this ensures that receptive fields across different
models and spatial resolutions have similar relative sizes.
For each model variant, we select the number (D) of
Mobile DenseNets that best approximates the original depth
factor αφ in the high-level EfficientNet backbone (Table 1).
More specifically, the number of Mobile DenseNets are
determined by (3), rounding to the closest integer. In
addition to EfficientPose I to IV, the single-resolution model
EfficientPose RT is formed to match the scale of the

smallest EfficientNet model, providing HPE in extremely
low latency applications.

D = �αφ + 0.5� (3)

3.3 Summary of proposed framework

As can be inferred from the discussion above, the EfficientPose
framework comprises a family of five ConvNets (i.e., Effi-
cientPose I-IV and RT) that are constructed by compound
scaling [47]. With this, EfficientPose exploits the advances
in computationally efficient ConvNets for image recognition to

Table 2 Variants of EfficientPose obtained by scaling resolution, width, and depth

Stage EfficientPose RT EfficientPose I EfficientPose II EfficientPose III EfficientPose IV

High-resolution input 224 × 224 256 × 256 368 × 368 480 × 480 600 × 600

High-level backbone B0 (Block 1-3) B2 (Block 1-3) B4 (Block 1-3) B5 (Block 1-3) B7 (Block 1-3)

Low-resolution input − 128 × 128 184 × 184 240 × 240 300 × 300

Low-level backbone − B0 (Block 1-2) B0 (Block 1-2) B1 (Block 1-2) B3 (Block 1-2)

Detection block MD(40) MD(48) [MD(56)] × 2 [MD(64)] × 3 [MD(80)] × 4

Prediction pass 1 Conv(1 × 1, 2P, 1)

Prediction pass 2-3 Conv(1 × 1, Q, 1)

Upscaling [ConvT (4 × 4, Q, 2)] × 3

Mobile DenseNets MD(C) computes 3C feature maps. P and Q denotes the number of 2D part affinity fields and confidence maps, respectively.
ConvT (K × K, O, S) defines transposed convolutions with kernel size K × K , output maps O, and stride S
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Fig. 4 The MPII single-person pose estimation challenge. From left:
a) 10 images from the MPII test set displaying some of the variation
and difficulties inherent in this challenge. b) The evaluation metrics

PCKh@50 and PCKh@10 define the average of predictions within
τ l distance (l = 0.6d) from the ground-truth location (e.g., left elbow),
with τ being 50% and 10%, respectively

construct a scalable network architecture that is capable of
performing single-person HPE across different computa-
tional constraints. More specifically, EfficientPose utilizes
both high and low-resolution images to provide two sep-
arate viewpoints that are processed independently through
high and low-level backbones, respectively. The resulting
features are concatenated to produce cross-resolution fea-
tures, enabling selective emphasis on global and local image
information. The detection stage employs a scalable mobile
detection block to perform detection in three passes. The
first pass estimates person skeletons through part affinity
fields [7] to yield feasible pose configurations. The second
and third passes estimate keypoint locations with progres-
sive improvement in precision. Finally, the low-resolution
prediction of the third pass is scaled up through bilinear
interpolation to further improve the precision level.

4 Experiments and results

4.1 Experimental setup

We evaluate EfficientPose and compare it with OpenPose
on the single-person MPII dataset [1], containing images
of mainly healthy adults in a wide range of different out-
door and indoor everyday activities and situations, such as
sports, fitness exercises, housekeeping activities, and public
events (Fig. 4a). All models are optimized on MPII using
stochastic gradient descent (SGD) on the mean squared
error (MSE) of the model predictions relative to the tar-
get coordinates. More specifically, we applied SGD with
momentum and cyclical learning rates (see Appendix B
for more information and further details on the optimiza-
tion procedure). The learning rate is bounded according
to the model-specific value of which it does not diverge

during the first cycle (λmax) and λmin = λmax

3000 . The model
backbones (i.e., VGG-19 for OpenPose, and EfficientNets for
EfficientPose) are initialized with pretrained ImageNet weights,
whereas the remaining layers employ random weight
initialization. Supported by our experiments on training
efficiency (see Appendix A), we train the models for 200
epochs, except for OpenPose, which requires a higher
number of epochs to converge (see Fig. 5 and Table 5).

The training and validation portion of the dataset
comprises 29K images, and by adopting a standard random
split, we obtain 26K and 3K instances for training and
validation, respectively. We augment the images during
training using random horizontal flipping, scaling (0.75 −
1.25), and rotation (+/− 45 degrees). We utilize a batch size
of 20, except for the high-resolutional EfficientPose III and
IV, which both require a smaller batch size to fit into the
GPU memory, 10 and 5, respectively. The experiments are
carried out on an NVIDIA Tesla V100 GPU.

The evaluation of model accuracy is performed using the
PCKh@τ metric. PCKh@τ is defined as the fraction of
predictions residing within a distance τ l from the ground
truth location (see Fig. 4b). l is 60% of the diagonal d

of the head bounding box, and τ the accepted percentage
of misjudgment relative to l. PCKh@50 is the standard
performance metric for MPII but we also include the stricter
PCKh@10 metric for assessing models’ ability to yield
highly precise keypoint estimates. As commonly done in the
field, the final model predictions are obtained by applying
multi-scale testing procedure [44, 49, 57]. Due to the
restriction in the number of attempts for official evaluation
on MPII, we only used the test metrics on the OpenPose
baseline, and the most efficient and most accurate models,
EfficientPose RT and EfficientPose IV, respectively. To
measure model efficiency, both FLOPs and number of
parameters are supplied.
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Fig. 5 The progression of the mean error of EfficientPose II and OpenPose on the MPII validation set during the course of training

4.2 Results

Table 3 shows the results of our experiments with OpenPose
and EfficientPose on the MPII validation dataset. As
can be observed in this table, EfficientPose consistently
outperformed OpenPose with regards to efficiency, with
2.2 − 184× reduction in FLOPs and 4 − 56× fewer
number of parameters. In addition to this, all the model
variants of EfficientPose achieved better high-precision
localization, with a 0.8 − 12.9% gain in PCKh@10 as
compared to OpenPose. In terms of PCKh@50, the high-
end models, i.e., EfficientPose II-IV, managed to gain 0.6 −
2.2% improvements against OpenPose. As Table 4 depicts,
EfficientPose IV achieved state-of-the-art results (a mean
PCKh@50 of 91.2) on the official MPII test dataset for
models with number of parameters of a size less than 10
million.

Compared to OpenPose, EffcientPose also exhibited
rapid convergence during training. We optimized both
approaches on similar input resolution, which defaults to
368 × 368 for OpenPose, corresponding to EfficientPose
II. The training graph shown in Fig. 5 demonstrates that
EfficientPose converges early, whereas OpenPose requires
up to 400 epochs before achieving proper convergence.
Nevertheless, OpenPose benefited from this prolonged
training in terms of precision, with a 2.6% improvement
in PCKh@50 during the final 200 epochs, whereas
EfficientPose II had a minor gain of 0.4% (see Table 5).

5 Discussion

In this section, we discuss several aspects of our findings
and possible avenues for further research.

Table 3 Performance of EfficientPose compared to OpenPose on the MPII validation dataset, as evaluated by efficiency (number of parameters
and FLOPs, and relative reduction in parameters and FLOPs compared to OpenPose) and accuracy (mean PCKh@50 and mean PCKh@10)

Model Parameters Parameter reduction FLOPs FLOP reduction PCKh@50 PCKh@10

OpenPose [6] 25.94M 1× 160.36G 1× 87.60 22.76

EfficientPose RT 0.46M 56× 0.87G 184× 82.88 23.56

EfficientPose I 0.72M 36× 1.67G 96× 85.18 26.49

EfficientPose II 1.73M 15× 7.70G 21× 88.18 30.17

EfficientPose III 3.23M 8.0× 23.35G 6.9× 89.51 30.90

EfficientPose IV 6.56M 4.0× 72.89G 2.2× 89.75 35.63
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Table 4 State-of-the-art results in PCKh@50 (both for individual body parts and overall mean value) on the official MPII test dataset [1]
compared to the number of parameters

Model Parameters Head Shoulder Elbow Wrist Hip Knee Ankle Mean

Pishchulin et al., ICCV’13 [35] − 74.3 49.0 40.8 32.1 36.5 34.4 35.2 44.1

Tompson et al., NIPS’14 [53] − 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6

Lifshitz et al., ECCV’16 [28] 76M 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0

Tang et al., BMVC’18 [50] 10M 97.4 96.2 91.8 87.3 90.0 87.0 83.3 90.8

Newell et al., ECCV’16 [33] 26M 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9

Zhang et al., CVPR’19 [60] 3M 98.3 96.4 91.5 87.4 90.9 87.1 83.7 91.1

Bulat et al., FG’20 [5] 9M 98.5 96.4 91.5 87.2 90.7 86.9 83.6 91.1

Yang et al., ICCV’17 [57] 27M 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0

Tang et al., ECCV’18 [49] 16M 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3

Sun et al., CVPR’19 [44] 29M 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3

Zhang et al., arXiv’19 [61] 24M 98.6 97.0 92.8 88.8 91.7 89.8 86.6 92.5

OpenPose [6] 25.94M 97.7 94.7 89.5 84.7 88.4 83.6 79.3 88.8

EfficientPose RT 0.46M 97.0 93.3 85.0 79.2 85.9 77.0 71.0 84.8

EfficientPose IV 6.56M 98.2 96.0 91.7 87.9 90.3 87.5 83.9 91.2

5.1 Improvements over OpenPose

The precision of HPE methods is a key success factor for
analyses of movement kinematics, like segment positions
and joint angles, for assessment of sport performance
in athletes, or motor disabilities in patients. Facilitated
by cross-resolution features and upscaling of output (see
Appendix A), EfficientPose achieved a higher precision
than OpenPose [6], with a 57% relative improvement in
PCKh@10 on single-person MPII (Table 3). What this
means is that the EfficientPose architecture is generally
more suitable in performing precision-demanding single-
person HPE applications, like medical assessments and elite
sports, than OpenPose.

Another aspect to have in mind is that, for some
applications (e.g., exercise games and baby monitors), we
might be more interested in the latency of the system
and its ability to respond quickly. Hence, the degree of
correctness in keypoint predictions might be less crucial.

Table 5 Model accuracy on the MPII validation dataset in relation to
the number of training epochs

Model Epochs PCKh@50

OpenPose [6] 100 80.47

OpenPose [6] 200 85.00

OpenPose [6] 400 87.60

EfficientPose II 100 87.05

EfficientPose II 200 88.18

EfficientPose II 400 88.56

In such scenarios, with applications that demand high-
speed predictions, the 460K parameter model, EfficientPose
RT, consuming less than one GFLOP, would be suitable.
Nevertheless, it still manages to provide higher precision
level than current approaches in the high-speed regime, e.g.,
[5, 50]. Further, the scalability of EfficientPose enables
flexibility in various situations and across different types of
hardware, whereas OpenPose suffers from its large number
of parameters and computational costs (FLOPs).

5.2 Strengths of the EfficientPose approach

The use of MBConv in HPE is to the best of our knowledge
an unexplored research area. This has also been partly our
main motivation for exploring the use of MBConv in our
EfficientPose approach, recognizing its success in image
classification [47]. Our experimental results showed that
EfficientPose approached state-of-the-art performance on
the single-person MPII benchmark despite a large reduction
in the number of parameters (Table 4). This means that the
parameter-efficient MBConvs provide value in HPE as with
other computer vision tasks, such as image classification
and object detection. This, in turns, makes MBConv a very
suitable component for HPE networks. For this reason, it
would be interesting to investigate the effect of combining it
with other novel HPE architectures, such as Hourglass and
HRNet [33, 44].

Further, the use of EfficientNet as a backbone, and the pro-
posed cross-resolution feature extractor combining several Effi-
cientNets for improved handling of basic features, are also
interesting avenues to explore further. From the present
study, it is reasonable to assume that EfficientNets could
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replace commonly used backbones for HPE, such as
VGG and ResNets, which would reduce the computa-
tional overheads associated with these approaches [21, 41].
Also, a cross-resolution feature extractor could be use-
ful for precision-demanding applications by providing an
improved performance on PCKh@10 (Table 6).

We also observed that EfficientPose benefited from com-
pound model scaling across resolution, width and depth.
This benefit was reflected by the increasing improvements
in PCKh@50 and PCKh@10 from EfficientPose RT
through EfficientPose I to EfficientPose IV (Table 3). To
conclude, we can exploit this to further examine scalable
ConvNets for HPE, and thus obtain insights into appropriate
sizes of HPE models (i.e., number of parameters), required
number of FLOPs, and obtainable precision levels.

In this study, OpenPose and EfficientPose were opti-
mized on the general-purpose MPII Human Pose Dataset.
For many applications (e.g., action recognition and video
surveillance) the variability in MPII may be sufficient
for directly applying the models on real-world problems.
Nonetheless, there are other particular scenarios that devi-
ate from the setting addressed in this paper. The MPII
dataset comprises mostly healthy adults in a variety of every
day indoor and outdoor activities [1]. In less natural envi-
ronments (e.g., movement science laboratories or hospital
settings) and with humans of different anatomical propor-
tions such as children and infants [39], careful consideration
must be taken. This could include a need for fine-tuning
of the MPII models on more specific datasets related to
the problem at hand. As mentioned earlier, our experiments
showed that EfficientPose was more easily trainable than
OpenPose (Fig. 5 and Table 5). This trait of rapid conver-
gence suggests that exploring the use of transfer learning on
the EfficientPose models on other HPE data could provide
interesting results.

5.3 Avenues for further research

The precision level of pose configurations provided by
EfficientPose in the context of target applications is a topic
considered beyond the scope of this paper and has for
this reason been left for further studies. We can establish
the validity of EfficientPose for robust single-person pose
estimation already by examining whether the movement
information supplied by the proposed framework is of
sufficiently good quality for tackling challenging problems,
such as complex human behavior recognition [12, 29]. To
assess this, we could, for example, compare the precision
level of the keypoint estimates supplied by EfficientPose
with the movement information provided by body-worn
movement sensors. Moreover, we could combine the
proposed image-based EfficientPose models with body-
worn sensors, such as inertial measurement unit (IMU) [27],

or physiological signals, like electrical cardiac activity
and electrical brain activity [14], to potentially achieve
improved precision levels and an increased robustness. Our
hypothesis is that using body-worn sensors or physiological
instruments could be useful in situations where body
parts are extensively occluded, such that camera-based
recognition alone may not be sufficient for accurate pose
estimation.

Another path for further study and validation is the
capability of EfficientPose to perform multi-person HPE.
The improved computational efficiency of EfficientPose
compared to OpenPose has the potential to also benefit
multi-person HPE. State-of-the-art methods for multi-
person HPE are dominated by top-down approaches,
which require computation that is normally proportional
to the number of individuals in the image [13, 59]. In
crowded scenes, top-down approaches are highly resource
demanding. Similar to the original OpenPose [6], and
few other recent works on multi-person HPE [19, 24],
EfficientPose incorporates part affinity fields, which would
enable the grouping of keypoints into persons, and thus
allowing to perform multi-person HPE in a bottom-up
manner. This would reduce the computational overhead into
a single network inference per image, and hence yield more
computationally efficient multi-person HPE.

Further, it would be interesting to explore the extension
of the proposed framework to perform 3D pose estimation
as part of our future research. In accordance with recent
studies, 3D pose projection from 2D images can be
achieved, either by employing geometric relationships
between 2D keypoint positions and 3D human pose
models [58], or by leveraging occlusion-robust pose-maps
(ORPM) in combination with annotated 3D poses [3, 31].

The architecture of EfficientPose and the training process
can be improved in several ways. First, the optimization
procedure (see Appendix B) was developed for maximum
PCKh@50 accuracy on OpenPose, and simply reapplied
to EfficientPose. Other optimization procedures might be
more appropriate, including alternative optimizers (e.g.,
Adam [26] and RMSProp [52]), and other learning rate and
sigma schedules.

Second, only the backbone of EfficientPose was pre-
trained on ImageNet. This could restrict the level of accu-
racy on HPE because large-scale pretraining not only sup-
plies robust basic features but also higher-level semantics.
Thus, it would be valuable to assess the effect of pretraining
on model precision in HPE. We could, for example, pretrain
the majority of ConvNet layers on ImageNet, and retrain
these on HPE data.

Third, the proposed compound scaling of EfficientPose
assumes that the scaling relationship between resolution,
width, and depth, as defined by (2), is identical in HPE
and image classification. However, the optimal compound
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scaling coefficients might be different for HPE, where the
precision level is more dependent on image resolution,
than for image classification. Based on this, a topic for
further studies could be to conduct neural architecture
search across different combinations of resolution, width,
and depth in order to determine the optimal combination
of scaling coefficients for HPE. Regardless of the scaling
coefficients, the scaling of detection blocks in EfficientPose
could be improved. The block depth (i.e., number of
Mobile DenseNets) slightly deviates from the original depth
coefficient in EfficientNets based on the rigid nature of the
Mobile DenseNets. A carefully designed detection block
could address this challenge by providing more flexibility
with regards to the number of layers and the receptive field
size.

Fourth, the computational efficiency of EfficientPose
could be further improved by the use of teacher-student net-
work training (i.e., knowledge distillation) [4] to transfer
knowledge from a high-scale EfficientPose teacher network
to a low-scale EfficientPose student network. This tech-
nique has already shown promising results in HPE when
paired with the stacked hourglass architecture [33, 60].
Sparse networks, network pruning, and weight quantiza-
tion [11, 55] could also be included in the study to facilitate
the development of more accurate and responsive real-life
systems for HPE. Finally, for high performance inference
and deployment on edge devices, further speed-up could be
achieved by the use of specialized libraries such as NVIDIA
TensorRT and TensorFlow Lite [10, 51].

In summary, EfficientPose tackles single-person HPE
with an improved degree of precision compared to the
commonly adopted OpenPose network [6]. In addition
to this, the EfficientPose models have the ability to
yield high performance with a large reduction in number
of parameters and FLOPs. This has been achieved by
exploiting the findings from contemporary research within
image recognition on computationally efficient ConvNet
components, most notably MBConvs and EfficientNets [38,
47]. Again, for the sake of reproducibility, we have
made the EfficientPose models publicly available for other
researchers to test and possibly further development.

6 Conclusion

In this work, we have stressed the need for a publicly acces-
sible method for single-person HPE that suits the demands
for both precision and efficiency across various applica-
tions and computational budgets. To this end, we have
presented a novel method called EfficientPose, which is a
scalable ConvNet architecture leveraging a computationally
efficient multi-scale feature extractor, novel mobile detec-
tion blocks, skeleton estimation, and bilinear upscaling. In

order to have model variants that are able to flexibly find a
sensible trade-off between accuracy and efficiency, we have
exploited model scalability in three dimensions: input reso-
lution, network width, and network depth. Our experimental
results have demonstrated that the proposed approach has
the capability to offer computationally efficient models,
allowing real-time inference on edge devices. At the same
time, our framework offers flexibility to be scaled up to
deliver more precise keypoint estimates than commonly
used counterparts, at an order of magnitude less parameters
and computational costs (FLOPs). Taking into account the
efficiency and high precision level of our proposed frame-
work, there is a reason to believe that EfficientPose will
provide an important foundation for the next-generation
markerless movement analysis.

In our future work, we plan to develop new techniques to
further improve the model effectiveness, especially in terms
of precision, by investigating optimal compound model
scaling for HPE. Moreover, we will deploy EfficientPose on
a range of applications to validate its applicability, as well
as feasibility, in real-world scenarios.
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Appendix A Ablation study

To determine the effect of different design choices in
the EfficientPose architecture, we carried out component
analysis.

Training efficiency

We assessed the number of training epochs to determine
the appropriate duration of training, avoiding demanding
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Table 6 Model accuracy on the
MPII validation dataset in
relation to the use of
cross-resolution features

Model Cross-resolution features Parameters FLOPs PCKh@50 PCKh@10

EfficientPose I � 0.72M 1.67G 83.56 26.35

EfficientPose I 0.68M 1.58G 83.64 25.79

EfficientPose II � 1.73M 7.70G 87.05 29.87

EfficientPose II 1.69M 7.50G 86.93 29.16

optimization processes. Figure 5 suggests that the largest
improvement in model accuracy occurs until around 200
epochs, after which training saturates. Table 5 supports this
observation with less than 0.4% increase in PCKh@50
with 400 epochs of training. From this, it was decided to
perform the final optimization of the different variants of
EfficientPose over 200 epochs. Table 5 also suggests that
most of the learning progress occurs during the first 100
epochs. Hence, for the remainder of the ablation study 100
epochs were used to determine the effect of different design
choices.

Cross-resolution features

The value of combining low-level local information with
high-level semantic information through a cross-resolution
feature extractor was evaluated by optimizing the model
with and without the low-level backbone. Experiments were
conducted on two different variants of the EfficientPose
model. On coarse prediction (PCKh@50) there is little
to no gain in accuracy (Table 6), whereas for fine
estimation (PCKh@10) some improvement (0.6 − 0.7%)
is displayed taking into account the negligible cost of
1.02 − 1.06× more parameters and 1.03 − 1.06× increase
in FLOPs.

Skeleton estimation

The effect of skeleton estimation through the approximation
of part affinity fields was assessed by comparing the
architecture with and without the single pass of skeleton
estimation. Skeleton estimation yields improved accuracy
with 1.3 − 2.4% gain in PCKh@50 and 0.2 − 1.4% in
PCKh@10 (Table 7), while only introducing an overhead
in number of parameters and computational cost of 1.3 −
1.4× and 1.2 − 1.3×, respectively.

Number of detection passes

We also determined the appropriate comprehensiveness
of detection, represented by number of detection passes.
EfficientPose I and II were both optimized on three different
variants (Table 8). Seemingly, the models benefit from
intermediate supervision with a general trend of increased
performance level in accordance with number of detection
passes. The major benefit in performance is obtained by
expanding from one to two passes of keypoint estimation,
reflected by 1.6 − 1.7% increase in PCKh@50 and 1.8 −
1.9% in PCKh@10. In comparison, a third detection pass
yields only 0.5 − 0.8% relative improvement in PCKh@50
compared to two passes, and no gain in PCKh@10 while
increasing number of parameters and computation by 1.3×
and 1.2×, respectively. From these findings, we decided a
beneficial trade-off in accuracy and efficiency would be the
use of two detection passes.

Upscaling

To assess the impact of upscaling, implemented as bilinear
transposed convolutions, we compared the results of the
two respective models. Table 9 reflects that upscaling yields
improved precision on keypoint estimates by large gains
of 9.2 − 12.3% in PCKh@10 and smaller improvements
of 0.5 − 1.1% on coarse detection (PCKh@50). As
a consequence of increased output resolution upscaling
slightly increases number of FLOPs (1.04 − 1.1×) with
neglectable increase in number of parameters.

Appendix B Optimization procedure

Most state-of-the-art approaches for single-person pose
estimation are extensively pretrained on ImageNet [44, 61],

Table 7 Model accuracy on the
MPII validation dataset in
relation to the use of skeleton
estimation

Model Skeleton estimation Parameters FLOPs PCKh@50 PCKh@10

EfficientPose I � 0.72M 1.67G 83.56 26.35

EfficientPose I 0.54M 1.37G 81.13 25.00

EfficientPose II � 1.73M 7.70G 87.05 29.87

EfficientPose II 1.27M 6.03G 85.75 29.67
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Table 8 Model accuracy on the
MPII validation dataset in
relation to the number of
detection passes

Model Detection passes Parameters FLOPs PCKh@50 PCKh@10

EfficientPose I 1 0.52M 1.33G 81.85 24.51

EfficientPose I 2 0.72M 1.67G 83.56 26.35

EfficientPose I 3 0.92M 2.02G 84.35 26.42

EfficientPose II 1 1.24M 5.92G 85.42 28.01

EfficientPose II 2 1.73M 7.70G 87.05 29.87

EfficientPose II 3 2.22M 9.49G 87.55 29.61

Table 9 Model accuracy on the
MPII validation dataset in
relation to the use of upscaling

Model Upscaling Parameters FLOPs PCKh@50 PCKh@10

EfficientPose I � 0.72M 1.67G 83.56 26.35

EfficientPose I 0.71M 1.52G 82.42 14.02

EfficientPose II � 1.73M 7.70G 87.05 29.87

EfficientPose II 1.73M 7.37G 86.56 20.66

Fig. 6 Optimization scheme displaying learning rates λ and σ values corresponding to the training of EfficientPose II over 100 epochs
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enabling rapid convergence for models when adapted to
other tasks, such as HPE. In contrast to these approaches,
few models, including OpenPose [6] and EfficientPose, only
utilize the most basic pretrained features. This facilitates
construction of more efficient network architectures but
at the same time requires careful design of optimization
procedures for convergence towards reasonable parameter
values.

Training of pose estimation models is complicated
due to the intricate nature of output responses. Overall,
optimization is performed in a conventional fashion by
minimizing the MSE of the predicted output maps Y with
respect to ground truth values Ŷ across all output responses
N .

The predicted output maps should ideally have higher
values at the spatial locations corresponding to body part
positions, while punishing predictions farther away from the
correct location. As a result, the ground truth output maps
must be carefully designed to enable proper convergence
during training. We achieve this by progressively reducing
the circumference from the true location that should be
rewarded, defined by the σ parameter. Higher probabilities
T ∈ [0, 1] are assigned for positions P closer to the ground
truth position G (4).

Ti = exp

(
−‖Pi − G‖2

2

σ 2

)
(4)

The proposed optimization scheme (Fig. 6) incorporates
a stepwise σ scheme, and utilizes SGD with momentum of
0.9 and a decaying triangular cyclical learning rate (CLR)
policy [42]. The σ parameter is normalized according to the
output resolution. As suggested by Smith and Topin [43],
the large learning rates in CLR provides regularization in
network optimization. This makes training more stable and
may even increase training efficiency. This is valuable for
network architectures, such as OpenPose and EfficientPose,
less heavily concerned with pretraining (i.e., having larger
portions of randomized weights). In our adoption of CLR,
we utilize a cycle length of 3 epochs. The learning rate
(λ) converges towards λ∞ (5), where λmax is the highest
learning rate for which the model does not diverge during
the first cycle and λmin = λmax

3000 , whereas σ0 and σ∞ are the
initial and final sigma values, respectively.

λ∞ = 10
log (λmax )+log (λmin)

2 · 2σ0−σ∞ (5)
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A B S T R A C T   

Assessment of spontaneous movements can predict the long-term developmental disorders in high-risk infants. In 
order to develop algorithms for automated prediction of later disorders, highly precise localization of segments 
and joints by infant pose estimation is required. Four types of convolutional neural networks were trained and 
evaluated on a novel infant pose dataset, covering the large variation in 1424 videos from a clinical international 
community. The localization performance of the networks was evaluated as the deviation between the estimated 
keypoint positions and human expert annotations. The computational efficiency was also assessed to determine 
the feasibility of the neural networks in clinical practice. The best performing neural network had a similar 
localization error to the inter-rater spread of human expert annotations, while still operating efficiently. Overall, 
the results of our study show that pose estimation of infant spontaneous movements has a great potential to 
support research initiatives on early detection of developmental disorders in children with perinatal brain in
juries by quantifying infant movements from video recordings with human-level performance.   

1. Introduction 

During the first months of life, spontaneous infant movements may 
indicate later developmental disorders, such as cerebral palsy (CP), Rett 
syndrome, and autism spectrum disorder (Novak et al., 2017; Einspieler 
et al., 2005, 2014). Early identification of infants at high risk for 
developmental disorders is essential in order to successfully select 
appropriate follow-up approaches, and is of greatest importance in 
research to evaluate early interventions (Støen et al., 2017). The 
expert-based observation of general movements (GMs) from video re
cordings, known as the general movement assessment (GMA) (Einspieler 
et al., 2004), has recently been recommended for clinical use in high-risk 
infants less than five months of age (Novak et al., 2017). It is especially 
the fidgety type of GMs, which typically occur between two and five 
months post-term age, that have shown to predict normal motor 
development with high accuracy (Einspieler et al., 2016). However, 
GMA is dependent on individual expert-based training and in
terpretations, requires time for video observation and analysis, and 
triggers a high demand for skilled observers if implemented in 

large-scale screening (Støen et al., 2017). As an evolving alternative to 
observational GMA, computer-based methods for objective and consis
tent risk-assessment are explored (Adde et al., 2010). This supports 
clinicians in diagnostics, ultimately identifying infants in need for early 
interventions and focused follow-up care. 

Computer-based assessment of infant movements aggregates quan
titative movement information from video recordings to yield estimates 
for the risk of later disorders, like CP (Ihlen et al., 2020). Hence, higher 
level of correctness in the representation of movement kinematics, such 
as segment positions and joint angles, facilitates optimal risk analysis. 
Fidgety movements are small movements of moderate speed and vari
able acceleration, of neck, trunk, and limbs, in all directions (Einspieler 
et al., 2004). Automated assessment of such movements requires precise 
localization of the body parts for proper computer-based risk analysis. 

The widespread use of conventional video recordings to capture in
fant movements has established the need for markerless motion capture, 
which enables the extraction of movement information in an unobtru
sive manner (Rahmati et al., 2015). This provides a low-cost alternative 
to sensor-based motion capture, which can be performed both at the 
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clinic and at home (Adde et al., 2021). Markerless motion capture has 
the potential to make movement assessments more widely available and 
promotes worldwide collaboration in analysis of infant movements. 
Moreover, existing large-scale databases of infant recordings, collected 
by clinical GMA networks (Støen et al., 2019; Orlandi et al., 2018; 
Ferrari et al., 2019; Morgan et al., 2019; Kwong et al., 2019; Gima et al., 
2019), can be exploited to yield more accurate computer-based methods 
for risk assessments. 

Convolutional neural networks (ConvNets) have improved the 
techniques for extracting human movement information from conven
tional 2D videos (Toshev and Szegedy, 2014; Newell et al., 2016; Cao 
et al., 2019). State-of-the-art markerless motion capture tracks move
ments automatically through frame-by-frame pose estimation, where 
the ConvNets predict x and y coordinates of a predefined set of body 
keypoints, directly from the raw video frames (Andriluka et al., 2014). 
However, most existing human pose estimation (HPE) methods are 
targeted towards adults, which compared to infants, differ in anatomical 
proportions and distribution of body poses (Sciortino et al., 2017). 
Employed on infant images, the localization performance drops signif
icantly, with 10% of the estimated body keypoint positions placed 
outside a head length distance from the annotated ground truth posi
tions (i.e., 90% in the PCKh@1.0 metric described in Section 2.3) 
(Sciortino et al., 2017). From this, Sciortino et al. (2017) conclude that 
there is a need to tune HPE ConvNets to the task of infant pose 
estimation. 

Following along these lines, Chambers et al. (2020) retrain the 
openly available OpenPose network (Cao et al., 2019) by utilizing a 
dataset of 9039 manually annotated infant images. This improves infant 
pose estimation, reducing the mean error by 60% (Chambers et al., 
2020). Despite this advance, a recent study carried out by our group 
found that OpenPose lacks the sufficient scaling of network depth, 
network width, and image resolution for optimal pose estimation (Groos 
et al., 2020b). Other alternatives to OpenPose, such as DeeperCut 
(Insafutdinov et al., 2016) used in DeepLabCut (Mathis et al., 2018), 
posses similar shortcomings as single-scale networks targeted towards 
multi-person pose estimation. Recent developments in HPE outperform 
OpenPose and variants by deploying novel multi-scale networks and by 
maintaining higher spatial resolution (Newell et al., 2016; Sun et al., 
2019). OpenPose is also computationally inefficient, which makes it less 
convenient for real-world applications (Groos et al., 2020b). ConvNet 
model scaling addresses this challenge by providing trade-offs in 

localization performance and computational efficiency across various 
computational budgets (Groos et al., 2020b), better serving 
single-person applications. 

The main objective of the present study is to obtain computationally 
efficient markerless pose estimation of the spontaneous movements of 
infants with a localization performance approaching that of human 
expert annotations. We exploit a large and heterogeneous infant pose 
dataset covering infant recordings from multiple sites across the world 
to conduct a comparative analysis of the localization performance and 
computational efficiency of eight different ConvNet models, including 
the commonly used OpenPose network. We compare the performance 
level of the ConvNets with the inter-rater spread of human expert 
annotations. 

2. Materials and methods 

In this section, we introduce In-Motion Poses, describe the ConvNet 
models included in the comparative study, and explain the various 
performance metrics used to evaluate the ConvNets. 

2.1. In-Motion Poses 

We developed a dataset comprising infant images with associated 
human annotations as the ground truth body keypoint positions. We 
used a large-scale database of 1424 recordings of 9–18 weeks post-term 
old infants to facilitate pose estimation of the spontaneous movements 
of infants in supine position across various recording setups. The videos 
were collected between 2001 and 2018 through different research 
projects on observational GMA, and all the recordings follow the stan
dards for video-based GMA during the fidgety movement’s period (i.e., 
infants wear a diaper or a onesie, are awake, alert, and content, are not 
disturbed or using pacifier, and are positioned in the center of a mattress 
or blanket with the whole body visible) (Einspieler and Prechtl, 2005). 
The resolution of videos varied from 576 × 720 to 1080 × 1920. The 
study was approved by the regional committee for medical and health 
research ethics in Norway, under reference numbers 2011/1811 and 
2017/913 on 14 January 2019 and 9 October 2019, respectively. 
Written parental consent was obtained before inclusion. 

From these recordings, we proposed a dataset of 20000 video frames. 
The dataset emphasizes the heterogeneity in spontaneous movements by 
including videos from 12 different sites from seven countries across the 

Fig. 1. a) A selection of video frames from In-Motion Poses, originating from standardized and less standardized hospital recordings (top and middle row, 
respectively), and videos captured from home by parents using the In-Motion smartphone application (Adde et al., 2021) (bottom row). Infant faces are blurred to 
ensure anonymity. b) The set of 19 body keypoints annotated in the images of In-Motion Poses. 
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globe (i.e., Norway, India, United States, Turkey, Belgium, Denmark, 
and Great Britain). The videos cover different groups of infants (e.g., 
typically developing infants, preterm infants, and other high-risk infants 
enrolled in hospital-based follow-up programs), and are recorded either 
by clinicians in a hospital setup or by parents using a smartphone 
application at home (Adde et al., 2021; Støen et al., 2019) (see Fig. 1a for 
examples from the dataset). To ensure all video variations were repre
sented, 8000 (40%) frames originated from standardized hospital re
cordings, 8000 (40%) from home-based smartphone recordings, and the 
remaining 4000 (20%) from less standardized hospital videos. In each of 
these three subsets, 80% of the frames were randomly picked with an 
equal number of frames from each video. Moreover, to achieve proper 
variation of infant poses, the remaining 20% of frames cover infant poses 
that occur less frequently, and hence might be particularly challenging 
for an automatic pose estimator. These frames were manually selected 
from a random pool of 20000 separate frames (8000, 8000, and 4000 for 
each subset, respectively), with selection criteria including 1) legs 
moving towards upper body, 2) overlap of body parts, and 3) crossing of 
body parts. The resulting total of 20000 frames were split into training 
(14483 (72%)), validation (1493 (8%)), and test sets (4024 (20%)) in a 
common machine learning fashion. To mitigate bias and ensure objec
tive evaluation, all frames of a single infant video were placed into one 
of these three sets. 

For the ConvNet models to learn from the data in a supervised 
fashion, and to be able to validate and test the models, the infant images 
were annotated to produce the ground truth positions. As depicted by 
Fig. 1b, 19 distinct body keypoints (i.e., head top, nose, ears, upper neck, 
shoulders, elbows, wrists, upper chest, right/mid/left pelvis, knees, and 
ankles) comprised a skeleton model of the infant. The definitions of the 
body keypoints were agreed upon by a group of human movement sci
entists and clinical physiotherapists (see Appendix A for a complete 
overview). Using a separate software tool (Groos and Aurlien, 2018), 10 
human expert annotators (two human movement scientists, two phys
iotherapists, and six engineers) estimated the x and y coordinates of 
body keypoints, through manual annotation. All body keypoints were 
annotated in all images regardless of their type of visibility (i.e., visible 
or occluded). This resulted in a total of 380000 human labels (i.e., 19 
annotated keypoint positions for each of the 20000 frames). To measure 
the consistency between the experts, all annotators estimated the posi
tions of body keypoints in the same sample of 100 randomly selected 
inter-rater frames. The frames were selected with a similar distribution 
across recording setups as the full dataset (i.e., 40% standardized, 40% 
home-based, and 20% less standardized). We computed the inter-rater 

annotation disagreement in terms of the mean inter-rater spread H of 
each body keypoint b. We calculated the mean distance of an annotation 
(xb,i,j, yb,i,j) of an individual expert j of a body keypoint’s position in 
image i, to the average annotation (xb,i, yb,i), across the N (i.e., 10) ex
perts for the S (i.e., 100) frames (see 1). H was normalized according to 
the head length of the infant in the image, defined as the distance from 
the top of the head to the upper neck (li). 

Hb =
1

N⋅S
∑S

i=1

∑N

j=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xb,i,j − xb,i)
2
+ (yb,i,j − yb,i)

2
√

li
(1)  

2.2. Comparative analysis 

By the use of the aforementioned dataset, we trained and evaluated a 
selection of ConvNet models for the task of infant pose estimation. First, 
the ConvNet of the state-of-the-art method for infant pose estimation, 
the OpenPose network (Cao et al., 2019; OpenPose, 2021) (see Fig. 2a 
for an architectural overview), was trained to yield baseline perfor
mance on In-Motion Poses, while also evaluating the official OpenPose 
library without fine-tuning1 (OpenPose, 2021). Unless otherwise speci
fied, OpenPose refers to OpenPose ConvNet fine-tuned on In-Motion 
Poses. Second, we trained a more computationally efficient approach 
inspired by OpenPose, named CIMA-Pose (see Fig. 2b), which has dis
played promising results on infant pose estimation on videos from 
standardized clinical setups (Groos and Aurlien, 2018). CIMA-Pose 
comprises a ConvNet with low complexity, reflected by 2.4 million pa
rameters compared to 26 million for OpenPose. OpenPose and 
CIMA-Pose operate on similar image input resolutions of 368 × 368 
pixels2. Third, EfficientPose (Fig. 2c) comprises a family of scalable 
ConvNets demonstrating 57% improvement in high-precision pose 
estimation compared to OpenPose, despite significant reduction in 
computational cost (i.e., FLOPs) and number of parameters (Groos et al., 
2020b). EfficientPose yields five model variants, EfficientPose RT and 
I-IV, obtained by the use of compound model scaling on input resolution, 
network width, and network depth. The computational requirements of 

Fig. 2. ConvNets address infant pose estimation from video frames in a frame-by-frame manner by 1) extracting image features, 2) determining features relevant for 
detection, and 3) estimating infant keypoint positions. The height of the ConvNet blocks (i.e., feature extractor, detector, and output) indicates the block’s spatial 
resolution in relation to the resolution of the input image. 

1 The raw images in In-Motion Poses were downsampled and zero padded to 
square aspect ratio to achieve the input resolution of the ConvNets.  

2 The latest version of OpenPose (v1.7.0) was used with default settings 
maintained. Evaluation on In-Motion Poses was performed on the keypoints in 
the 25-keypoint body model that exist in In-Motion Poses (i.e., all keypoints 
except head top and upper neck). 
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EfficientPose span from less than one GFLOP to 74 GFLOPs, which is 
substantially less than the 161 GFLOPs of OpenPose. Fourth and finally, 
we optimized an EfficientHourglass model with EfficientNet-B4 back
bone (i.e., EfficientHourglass B4) (Groos et al., 2020a), displayed in 
Fig. 2d. Inspired by the original multi-scale hourglass of Newell et al. 
(2016), EfficientHourglass performs parallel processing of image fea
tures at different scales, while conserving the level of detail (i.e., reso
lution) inherent in the input image. With an input resolution of 
608 × 608, EfficientHourglass B4 maintains a resolution of at least 
152 × 152 pixels throughout the stages of the network (i.e., feature 
extractor, detector, and output), compared to the consistent low reso
lution of 46 × 46 pixels in the detector and output of the single-scale 
OpenPose architecture (Cao et al., 2019; Groos et al., 2020a). For 
further details of the different ConvNets, the reader is referred to their 
original papers (Cao et al., 2019; Groos et al., 2020a, 2020b; Groos and 
Aurlien, 2018). 

In the experiments, all models (except the underlying model of the 
official OpenPose library) were trained using a standardized optimiza
tion procedure. Pretraining on the general-purpose MPII HPE dataset 
(Andriluka et al., 2014) was performed, followed by fine-tuning on the 
training set of In-Motion Poses using the Adam optimizer for 100 epochs 
with a learning rate of 0.001. We applied data augmentation with 
random horizontal flipping, scaling (0.75–1.25), and rotation (+/− 45 
degrees). The optimization procedure was obtained through tuning of 
models on the validation set of In-Motion Poses. 

2.3. Evaluation protocol and performance metrics 

To evaluate the localization performance of the models included in 
the comparative analysis, positions of body keypoints were predicted on 
the separate test set of In-Motion Poses, comprising 4024 images. The 
retrained OpenPose, CIMA-Pose, EfficientPose, and EfficientHourglass 
were evaluated using the model outputs upscaled to input resolution 
with bilinear interpolation (e.g., three transposed convolutions, each 
with a stride of 2 and 4 × 4 kernel, performed 8 × upscaling in Open
Pose, to increase the spatial resolution of outputs from 46 × 46 to 
368 × 368), omitting the expensive multi-scale testing and flipping 
procedure commonly used for benchmarking HPE (Tang et al., 2018; 
Yang et al., 2017), whereas default post-processing was employed with 
the official version of OpenPose. Model localization performance was 
determined by comparing the model outputs to human annotations. The 
performance metrics included percentage of correct keypoints according 
to head size (PCKh@τ), normalized mean error (ME), and a proposed 
metric; percentage of correct keypoints according to human-level 

performance (PCKh@Human0.95). PCKh@τ computes the fraction of 
keypoints within τli distance from the annotated position, where li is the 
infant head length of image i. To account for both model robustness and 
performance in high-precision pose estimation, we calculated measures 
of PCKh@τ across various percentages τ of the head size (see Fig. 3). 
Coarse evaluation was performed with PCKh@1.0, PCKh@0.5, and 
PCKh@0.3, and fine-grained evaluation by PCKh@0.2 and PCKh@0.1. 
Moreover, the ME measure reflects the average localization performance 
of model m on body part b in terms of the mean distance of a model’s 
predictions to the ground truth locations: 

MEm,b =
1
S

∑S

i=1
dm,b,i (2) 

where dm,b,i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(xm,b,i − x̂b,i)

2+(ym,b,i − ŷb,i)
2

√

li 
is the Euclidean distance from 

the estimated keypoint position (xm,b,i, ym,b,i) of model m to the human 
annotation (x̂b,i, ŷb,i), for keypoint b in image i of the test set. ME was 
normalized with respect to the head length li. To compare model per
formance against human-level performance, we introduce a metric, 
called PCKh@Human0.95. PCKh@Human0.95 defines the percentage of 
model predictions within the 95th percentile of the inter-rater spread of 
human experts: 

PCKh@Human0.95
m,b =

1
S

∑S

i=1
δ(dm,b,i) (3)  

δ
(
dm,b,i

)
=

{
1, if dm,b,i ≤ Hb

0.95

0, otherwise

}

(4) 

Here, δ is a binary step function with threshold Hb
0.95 defining the 

95th percentile of the inter-rater spread (where the mean inter-rater 
spread Hb is specified in Equation 1). In other words, PCKh@Hu
man0.95 is equivalent to PCKh@τ when Hb

0.95 = τ. Thus, PCKh@Hu
man0.95 = 95% reflects human-level performance. By utilizing the 
intraclass correlation coefficient (ICC) proposed by Fisher (1992), we 
also compared consistency (i.e., ICC(C, 1)) and agreement (i.e., ICC(A, 
1)) between model localization error and inter-rater spread across body 
parts. The ICC values, and associated 95% confidence intervals, between 
the model ME and the inter-rater spread H of the human experts were 
calculated using a two-way model. Perfect agreement and consistency 
with inter-rater spread across body keypoints (i.e., ICC(A, 1) = ICC(C, 
1) = 1) will suggest that a model displays human-level performance. 

In addition to model localization performance, we evaluated the 
computational efficiency of the ConvNet models. We provide measures 
for model complexity (number of parameters), computational cost 
(FLOPs), and inference time (latency). The inference latency per image 
was estimated from model predictions on an NVIDIA GTX 1080 Ti GPU 
with TensorFlow 2.5, CUDA 11.0, and CUDNN 8.1. We used a batch size 
of 128 and computed the median latency in milliseconds over 10 
computational runs. 

2.4. Sample efficiency 

To assess the amount of training data required for ConvNets to 
converge on the task of infant pose estimation, we carried out experi
ments with variation in the number of images in the training set, across a 
range of samples from no fine-tuning3 to 100 images to the full training 
set of 14483 infant frames. To evaluate differences in sample efficiency 
between different ConvNet architectures, experiments were carried out 
for the most accurate ConvNet in each of the four model families. All 
experiments were performed over 100 epochs of training, and model 

Fig. 3. PCKh@τ, the percentage of predictions within τl distance from the 
ground truth location (e.g., nose), is computed across five different thresholds τ 
(i.e., 100%, 50%, 30%, 20%, and 10%), evaluating the localization perfor
mance of a model, from coarse to fine. 

3 When models were evaluated without fine-tuning, predictions were made 
only on the subset of 16 body keypoints that were available both in the MPII 
dataset and In-Motion Poses. 
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Table 1 
The performance of the different ConvNets, pretrained on MPII (Andriluka et al., 2014) and fine-tuned on In-Motion Poses, as well as the official OpenPose library 
(OpenPose, 2021), in terms of localization performance on the test set of In-Motion Poses, and computational efficiency of the ConvNets from run-time experiments on 
an NVIDIA GTX 1080 Ti GPU.    

Localization performance Computational efficiency 

Model Resolution @1.0* @0.5* @0.3* @0.2* @0.1* ME Parameters FLOPs Latency 

OpenPose library - 96.99% 95.51% 90.90% 81.49% 49.66% 0.1432** - - 62.33*** ms 
OpenPose 368 × 368 99.94% 99.61% 97.65% 90.40% 54.89% 0.1087 26,011,743 161,077,013,640 35.21 ms 
CIMA-Pose 368 × 368 99.98% 99.83% 98.74% 93.09% 59.69% 0.0988 2,380,495 15,645,092,494 11.49 ms 
EfficientPose RT 224 × 224 99.96% 99.69% 98.15% 92.15% 58.71% 0.1022 481,336 955,490,248 5.06 ms 
EfficientPose I 256 × 256 99.98% 99.83% 98.81% 93.68% 60.78% 0.0974 743,476 1,785,432,722 7.05 ms 
EfficientPose II 368 × 368 99.97% 99.84% 98.54% 92.41% 62.25% 0.0969 1,759,372 7,944,292,598 19.38 ms 
EfficientPose III 480 × 480 99.99% 99.94% 99.54% 97.57% 78.21% 0.0732 3,258,888 23,777,830,318 41.92 ms 
EfficientPose IV 600 × 600 99.98% 99.93% 99.45% 96.77% 71.10% 0.0834 6,595,430 73,621,311,041 96.48 ms 
EfficientHourglass B4 608 × 608 99.99% 99.95% 99.56% 97.67% 81.11% 0.0681 18,699,936 27,009,544,472 47.01 ms  

* PCKh@1.0, PCKh@0.5, PCKh@0.3, PCKh@0.2, and PCKh@0.1 are abbreviated as @1.0, @0.5, @0.3, @0.2, and @0.1, respectively. 
** Keypoints in certain images, where the OpenPose library lack predictions due to not being confident, are excluded in computation of ME. 
*** Latency estimate of the OpenPose library includes time required to pre-process images and perform default post-processing of ConvNet predictions. 

Table 2 
The localization performance of OpenPose, CIMA-Pose, EfficientPose III, and EfficientHourglass B4, all pretrained on MPII (Andriluka et al., 2014) and fine-tuned on 
In-Motion Poses, on the test set of In-Motion Poses, in relation to human-level performance (i.e., inter-rater spread H) across body parts b, as evaluated by the proposed 
PCKh@Human0.95 metric.     

PCKh@Human0.95 

b Hb H0.95
b  OpenPose CIMA-Pose EfficientPose III EfficientHourglass B4 

Head top 0.0554 0.1158 60.39% 57.60% 81.59% 89.31% 
Nose 0.0301 0.0574 32.03% 42.89% 74.48% 82.41% 
Right ear 0.0603 0.1906 88.57% 92.40% 94.41% 92.00% 
Left ear 0.0502 0.1364 73.31% 77.49% 88.54% 89.04% 
Upper neck 0.0527 0.1212 80.67% 83.23% 88.77% 89.19% 
Right shoulder 0.0531 0.1106 62.97% 73.14% 85.71% 86.63% 
Right elbow 0.0429 0.0956 52.81% 71.00% 81.71% 86.73% 
Right wrist 0.0386 0.0851 45.43% 60.93% 80.14% 82.60% 
Upper chest 0.0643 0.1200 69.38% 72.44% 77.31% 79.42% 
Left shoulder 0.0576 0.1204 63.25% 60.71% 88.07% 88.74% 
Left elbow 0.0418 0.0959 48.19% 46.92% 82.50% 85.69% 
Left wrist 0.0388 0.0901 48.83% 52.44% 79.08% 84.74% 
Mid pelvis 0.0781 0.1587 82.75% 82.50% 86.43% 90.01% 
Right pelvis 0.0812 0.1553 78.31% 80.89% 87.30% 88.72% 
Right knee 0.0549 0.1119 66.58% 77.24% 86.63% 89.02% 
Right ankle 0.0417 0.0902 51.07% 60.21% 75.47% 80.79% 
Left pelvis 0.0828 0.1603 79.25% 77.53% 88.07% 90.31% 
Left knee 0.0489 0.1049 49.06% 48.29% 88.22% 89.71% 
Left ankle 0.0408 0.0861 45.75% 47.24% 75.70% 82.38% 
All body parts 0.0534 0.1161 62.03% 66.58% 81.59% 86.71%  

Fig. 4. From left: a-d) The distribution of model prediction errors of the different ConvNets on 1000 randomly sampled frames (according to the distribution of 
standardized hospital recordings, home-based smartphone recordings, and less standardized hospital recordings) from the test set of In-Motion Poses across body 
parts, and e) the distribution of the inter-rater spread of the 10 human experts across 100 inter-rater frames (i.e., a total of 1000 annotations). The prediction errors 
are normalized according to the head size of the infant in the sample image. 
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performance in ME, PCKh@0.5, and PCKh@0.1 were calculated on the 
test set of In-Motion Poses. The smaller training samples were con
structed by randomly selecting a subset of frames from the original 
training set, while maintaining the distribution of videos proposed in 
Section 2.1. Hence, the smaller samples and the full training set have 
similar variation in recording setups. 

3. Results 

Table 1 gives an overview of the performances of the eight different 
ConvNets, as well as the official version of OpenPose, on In-Motion 
Poses. In terms of localization performance, a 6–37% decrease in ME 
compared to the OpenPose baseline is achieved. This is supported by a 
higher robustness (i.e., gains in PCKh@1.0, PCKh@0.5, and PCKh@0.3). 
In high-precision pose estimation, PCKh@0.1 from 58.71% to 81.11% 
can be observed, compared to 54.89% and 49.66% for fine-tuned 
OpenPose and official OpenPose, respectively. With regards to compu
tational efficiency, all models are smaller, with 1.4–54 times fewer pa
rameters, and require less computation than OpenPose, i.e., 2.2–169 
times less FLOPs. Moreover, the most computationally efficient Con
vNet, EfficientPose RT, achieved run-time performance of 198 frames 
per second. 

Table 2 displays the localization performance of the top-performing 
ConvNet of each model family. The most accurate model, Efficien
tHourglass B4, achieved an ME of 0.0681 compared to the average 
human inter-rater spread H of 0.0534. This equals an average percent
age of human-level performance (i.e., PCKh@Human0.95) of 86.71%, 
compared to 62.03% for OpenPose. Fig. 4 shows a close resemblance 
between the spread of the human annotations and the estimates of 

EfficientPose III and EfficientHourglass B4 across body keypoints. This 
resemblance was supported by a significant consistency, ICC(C, 1), and 
high agreement, ICC(A, 1), between the spread of human expert anno
tations and the mean error of EfficientPose III and EfficientHourglass B4 
(see Table 3). The lower ICC(A, 1) compared to ICC(C, 1) reflects a 
slightly higher ME for the ConvNet models compared to the inter-rater 
spread H of the human experts. A similar resemblance with human an
notations was not achieved with OpenPose. 

Fig. 5 illustrates that fine-tuning significantly improves localization 
performance of infant pose estimation compared to no fine-tuning (i.e., 
W/O). Moreover, all ConvNets benefit from increased training set size, 
especially in terms of the PCKh@0.1 measure (Fig. 5c). However, 
whereas localization performance of OpenPose and CIMA-Pose saturates 
at sample sizes beyond 5000 images, EfficientPose III and Efficien
tHourglass B4 benefit from larger training sets. There is also a tendency 
that EfficientPose III and EfficientHourglass are more stable across 
dataset sizes, with a smaller difference in localization performance from 
100 to 14483 images, compared to OpenPose and CIMA-Pose. 

In Fig. 6, the localization performance of EfficientHourglass B4 is 
assessed qualitatively by providing model predictions on a selection of 
challenging images (i.e., less frequently occurring infant poses as 
described in Section 2.1) in the test set of In-Motion Poses. 

4. Discussion 

The main objective of the study was to obtain computationally effi
cient markerless infant pose estimation with a level of localization 
performance approaching that of human expert annotations. A 
comparative analysis has showed that performance levels comparable to 

Table 3 
Absolute agreement and consistency (i.e., ICC(A, 1) and ICC(C, 1)) of ConvNets in relation to human expert inter-rater spread across body parts, with 95% confidence 
intervals in brackets.   

OpenPose CIMA-Pose EfficientPose III EfficientHourglass B4 

ICC(A, 1) 0.00 [− 0.03, 0.07] 0.08 [− 0.04, 0.32] 0.47 [− 0.03, 0.84] 0.64 [− 0.03, 0.91] 
ICC(C, 1) 0.02 [− 0.43, 0.46] 0.45 [0.01, 0.75] 0.94 [0.85, 0.98] 0.96 [0.91, 0.99]  

Fig. 5. Localization performance of OpenPose, CIMA-Pose, EfficientPose III, and EfficientHourglass B4, all pretrained on MPII (Andriluka et al., 2014), without 
fine-tuning (i.e., W/O) and with increasing amounts of data (from 100 to 14483 images) for fine-tuning on In-Motion Poses. 
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human expert performance can be achieved, by utilizing contemporary 
ConvNets for HPE together with an extensive infant video database. This 
is reflected by PCKh@Human0.95 of the top-performing ConvNets 
approaching human-level performance, whereas the commonly applied 
OpenPose network does not reach similar level of localization 
performance. 

4.1. Improving localization performance 

The large improvement in localization performance compared to the 
state-of-the-art method OpenPose (Cao et al., 2019) is due to two main 
reasons. First, the hypothesis of Sciortino et al. (2017), that HPE Con
vNets require fine-tuning on a selection of infant images to perform well 
on pose estimation of infants, is confirmed. The introduction of a 
large-scale infant pose dataset, In-Motion Poses, has improved the 
localization performance of OpenPose from 78.56% to 99.61% on 
PCKh@0.5, as illustrated by Fig. 5b. Taking into account the error tax
onomy of Ruggero Ronchi and Perona (2017), this indicates that the 
coarse localization errors, like the frequency of inversions (i.e., the 
predictions that appear at an incorrect body keypoint, such as misin
terpretation of the left and right wrist) and misses (i.e., the erroneous 
localizations that are made without interfering with other keypoints), 
have been reduced. Despite the increased robustness with regards to 
coarse prediction errors, the optimal level of localization performance 
has not been reached. Further improvement of the ConvNets may be 
achieved by more systematically studying the cases where the models 
fall short, for example with substantial occlusion of body parts or spe
cific body postures. Fig. 6 indicates that such scenarios exist. Accord
ingly, we could extend the existing dataset with images that target these 
situations to further improve model robustness through retraining. In a 
future perspective, it would also be valuable to assess if we could take 
into account the temporal information of a video to reduce prediction 
errors due to occlusion or rare body postures. Pose tracking that extends 
beyond frame-by-frame pose estimation may achieve this, but current 
progress in the field is restricted to processing a single pair of video 
frames with limited gap in time (Bertasius et al., 2019), which may not 
address cases of prolonged occlusion. 

Second, the large improvement in PCKh@0.2, PCKh@0.1, and 
PCKh@Human0.95 of CIMA-Pose, EfficientPose, and EfficientHourglass 

B4, compared to OpenPose, is due to a reduction in fine prediction er
rors. EfficientPose III, EfficientPose IV,4 and EfficientHourglass B4 
reduce fine prediction errors better than OpenPose by operating on 
increased input and output resolutions. The consistent high resolution of 
EfficientHourglass B4 seems to maximize this benefit by displaying the 
highest values of PCKh@0.1 and PCKh@Human0.95. However, the in
crease of resolution comes at the cost of reduced computational effi
ciency, in terms of increased number of FLOPs and decreased latency 
(see Table 1). Thus, alternative methods for post-processing of ConvNet 
predictions (e.g., soft-argmax (Levine et al., 2016)), or post-processing 
of the frame-by-frame position estimates over consecutive frames by 
low-pass filters, such as median filtering (Tukey, 1977), might reduce 
fine prediction errors more effectively. However, this demands that the 
video has a sufficient sample rate (e.g., 60 fps). Furthermore, fine pre
diction errors may also be minimized by decreasing the spread in an
notated keypoint positions. As illustrated in Fig. 4, the distributions of 
prediction errors of EfficientPose III and EfficientHourglass B4 across 
body parts resemble the inter-rater spread of the human experts (e.g., 
higher variation in the placement of the keypoints of the pelvis, 
compared to the nose keypoint). This indicates that contemporary 
ConvNets for HPE, when supplied with sufficient amounts of training 
data (see Fig. 5 for the effect of sample size), are able to maximize the 
benefit of human annotations. Hence, a hypothesis for further studies is 
that more precisely annotated keypoints will further eliminate fine 
prediction errors, by model error being highly correlated with the 
inter-rater spread of human experts (see Table 3). Consequently, lower 
variation in the annotation of the keypoints of the pelvis may improve 
the ability of the ConvNets to localize these keypoints with high local
ization performance. More consistent annotations between human ex
perts, reflected by lower inter-rater spread, may be obtained by 
proposing more precise definitions of the keypoint positions, than those 
in Appendix A. This could be particularly valuable for body keypoints 

Fig. 6. Predictions of EfficientHourglass B4 on rare but normal infant poses in the test set of In-Motion Poses. The first and second row contain images where the 
model correctly predicted the position of body keypoints. The third row indicates cases where the model missed certain body keypoints (images from left to right: 1) 
right ankle, 2) head top and nose, 3) right elbow and right wrist, and 4) right wrist and left wrist). Infant faces are blurred to ensure anonymity. 

4 EfficientPose IV displayed lower localization performance than Effi
cientPose III on In-Motion Poses, due to small batch size during training, which 
was necessary for the model to fit into GPU memory. As demonstrated by Ta
bles 1 and 5, EfficientPose IV performed better than EfficientPose III in case of 
similar batch sizes. 
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that currently have higher inter-rater spread (e.g., for the keypoint of the 
upper chest). Human expert annotations may also be supplemented or 
replaced by other methods, such as marker-based solutions and 3D 
motion capture systems. These approaches may also yield performance 
improvements beyond fine prediction errors, by providing more precise 
annotations of occluded keypoints than can be achieved with 2D videos. 
We suggest that studies on infant pose estimation, and HPE in general (e. 
g., on challenges such as MPII (Andriluka et al., 2014)), judge locali
zation performance against metrics related to human-level performance, 
such as PCKh@Human0.95, to evaluate the progress on these tasks in 
relation to human-level performance. 

4.2. Improving computational efficiency 

Our comparative analysis has shown that a large model size (i.e., 
number of parameters) is not necessary for high-precision infant pose 
estimation. On similar input resolution, both OpenPose and CIMA-Pose 
were outperformed by the more computationally efficient low- 
complexity EfficientPose II model on PCKh@ 0.1 (see Table 1). 
Instead, it appears that high-precision infant pose estimation can be 
obtained with a relatively small number of parameters. This is demon
strated by EfficientPose III displaying only 5.12% decrease in 
PCKh@Human0.95, compared to EfficientHourglass B4, despite having 
5.7 times fewer parameters. Combining this observation with the in
fluence of high input and output resolution on localization performance, 
we would suggest further studies to investigate the effect of high reso
lution with low-complexity ConvNets. This could potentially narrow the 
current gap in localization performance between computationally effi
cient ConvNets, such as EfficientPose RT, and high-precision counter
parts that are less computationally efficient, like EfficientPose III and 
EfficientHourglass B4. It would also be of particular interest to system
atically study the optimal trade-off between localization performance 
and computational efficiency, by carefully assessing the localization 
performance of ConvNets of various complexities across different image 
resolutions. Our study suggests that ConvNets developed for HPE can be 
simplified when transferred to the infant pose estimation domain. HPE 
targets more complex circumstances and environments (e.g., images of 
multiple persons, a wide range of different activities, individuals of 
varying age, and substantial occlusion), whereas infant pose estimation 
is concerned with a single, clearly visible infant in supine position ac
cording to the guidelines of GMA (Einspieler et al., 2004; Andriluka 
et al., 2014). Potential paths for reducing network complexity could be 
1) a decrease in network width (i.e., number of feature maps), and 2) less 
extensive use of multi-scale ConvNet architectures. The former may 
more appropriately address the little diversity in infant videos compared 
to the far-reaching HPE task, whereas the latter takes into account the 
small variation in an infant’s distance to the camera and anatomical 
proportions. Nevertheless, from studying the inference latency of the 
ConvNets, we observed processing speeds from 10 to 198 fps (Table 1) 
on an NVIDIA GTX 1080 Ti consumer GPU. Further speedups of the pool 
of models studied in this paper may be obtained by implementing the 
ConvNets in low-level code like C++ or CUDA. Thus, a three-minute 
video of infant spontaneous movements could potentially be processed 
by a high-precision pose estimator in less than three minutes, which is 
feasible for clinical use. Moreover, the efficiency of the ConvNets can be 
further enhanced by utilizing techniques for compressing models with 
minimal loss of localization performance. Quantization-aware training, 
knowledge distillation, model pruning, and sparse kernels are paths that 
are worth to investigate (TensorFlow, 2020; Bucilua et al., 2006; Tung 
and Mori, 2018; Elsen et al., 2020). By obtaining accelerated and com
pressed ConvNets, the automatic pose estimation have the potential to 
be deployed locally at smartphones in the clinic and at home. Thus, 
infant pose estimation will be more easily applicable, while preserving 
patient privacy through decentralized processing of infant recordings on 
local devices. 

4.3. External validity 

In previous studies on ConvNet-based markerless infant pose esti
mation from 2D videos, investigations have been restricted to small or 
synthetic samples of infant videos (Hesse et al., 2018; Chambers et al., 
2020). Hence, the external validity of such approaches is debatable, 
since ConvNets require large amounts of realistic images across various 
settings related to the task at hand to perform well on pose estimation. In 
this study, we have utilized a large-scale international database of GMA 
certified video recordings to train the ConvNets. Subsequently, we have 
validated the models on a separate set of 284 infant videos from a 
diverse range of hospital and home-based setups (see Fig. 1a). The high 
resistance to coarse prediction errors of the evaluated ConvNets suggests 
that infant pose estimation promotes flexibility in application in 
real-world scenarios. This encompasses various settings (e.g., clinic, 
research center, and home), across different countries, and without 
depending on specific camera equipment. When assessing the transfer 
validity of the ConvNets fine-tuned on In-Motion Poses on the synthetic 
dataset proposed by Hesse et al. (2018), only the best performing Con
vNet on In-Motion Poses, EfficientHourglass B4, outperformed the offi
cial version of the state-of-the-art method OpenPose and displayed an 
acceptable transfer by maintaining a high level of localization perfor
mance (Table 6 and Fig. 8). This could suggest that the high-capacity 
multi-scale feature extractor of EfficientHourglass B4, through pre
training on MPII (Andriluka et al., 2014) and fine-tuning on In-Motion 
Poses, has learnt features that generalize beyond the natural infant im
ages of In-Motion Poses. On the contrary, the feature extractors of 
OpenPose, CIMA-Pose, and EfficientPose are of lower relative capacity 
and contain fewer abstraction levels (i.e., scales) compared to Efficien
tHourglass B4 (Fig. 2). Hence, these fine-tuned ConvNets might lack the 
ability for appropriate transfer beyond recording setups of In-Motion 
Poses (e.g., plain backgrounds, and natural lighting and shading). 
However, the consistent localization performance of the official Open
Pose library (OpenPose, 2021) (Tables 1 and 6) suggests that training on 
a sufficiently heterogeneous and large-scale human pose dataset, such as 
COCO (Lin et al., 2014) of 250000 human poses from various contexts, 
may combat the lack of high-capacity and multi-scale feature extraction 
to yield better generalizability. Similar effects could be achieved by 
combining In-Motion Poses with synthetic or natural infant pose data
sets covering the variation in recording setups we want ConvNets to be 
tuned towards. Nevertheless, we should take into consideration the 
overall model capacity (i.e., number of parameters), which for 
CIMA-Pose and EfficientPose might not be sufficient to achieve appro
priate transfer from In-Motion Poses to synthetic infants. We could 
therefore investigate ConvNet compound scaling on infant pose esti
mation, to determine the appropriate scaling factors of input resolution, 
network width, and network depth. Further studies should also more 
thoroughly assess the external validity of the trained ConvNets on 
real-life infant recordings, to verify that the high level of localization 
performance demonstrated by the present study indeed can be repro
duced. This involves assessing the robustness in operating on video re
cordings from different recording setups with large variations in aspects, 
such as video quality, background environment, camera angle, and 
lighting conditions. The infant pose estimators could also be validated 
across groups of infants with different age, size, skin color, clothing, and 
postural variability within datasets like In-Motion Poses. Moreover, the 
degree of localization performance of the ConvNets in relation to 
state-of-the-art marker-based motion capture systems could also be 
assessed (Vicon, 2020; Qualisys, 2020). It is worth stressing that it is 
unrealistic to expect flawless pose estimation in recording situations 
highly dissimilar to the settings the models have been trained and 
evaluated in. However, the models can be retrained on other video da
tabases when keypoint annotations are available. It is also worth 
investigating if the predefined set of body keypoints is sufficient for 
performing relevant assessments of characteristics of infant spontaneous 
movements identified in clinical GMA. However, for applications 
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emphasizing movement kinematics of other body keypoints (e.g., rota
tion of hands and feet, and relative movements of fingers or toes), the 
proposed infant pose estimation can be extended through retraining of 
ConvNets on different annotated sets of keypoints. 

In summary, with improved ConvNet architectures and an extensive 
database of infant video recordings, body keypoint positions can be 
estimated with human-level performance. This will enable capturing 
more subtle infant movements and postures, and, consequently, improve 
early detection of risk-related infant movement kinematics (Ihlen et al., 
2020; Einspieler et al., 2019). These improved ConvNets will also 
facilitate the assessments of infant movement kinematics which require 
a high level of detail, like fidgety movements or postural patterns in 
specific parts of the body, such as side-to-side head movements and 
atypical head centering (Einspieler et al., 2019). 

5. Conclusions 

The present study represents a significant progress towards clinically 
feasible markerless pose estimation of infant movements between two to 
five months of post-term age. This has been achieved by combining 
state-of-the-art ConvNets for human pose estimation with a novel 
heterogenous infant dataset. Highly precise detection of body keypoints 
enables accurate localization of segments and joints, which may facili
tate computer-based assessment of characteristics of infant spontaneous 
movements related to risk of developmental disorders. With no de
pendency to body-worn markers, sensors or other expensive laboratory 
equipment, the automatic infant pose estimation can handle videos both 
captured by parents at home and by physicians at a hospital clinic. In 
conclusion, this technology has the potential to facilitate further 
research initiatives on infant movement analysis and motivate national 
and worldwide collaborations. 
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Appendix A. Keypoint definitions 

The set of 19 body keypoints along with their definitions (see Fig. 7 
and Table 4) were agreed upon by an expert group of human movement 
scientists and infant physiotherapists. The body keypoints were selected 
to cover most effectively the many degrees of freedom in the infant 
movements, while at the same time being properly defined to facilitate 
consistent annotation across humans. 

Fig. 7. The placements of the 19 different body keypoints on an infant.  

D. Groos et al.                                                                                                                                                                                                                                   



Computerized Medical Imaging and Graphics 95 (2022) 102012

10

Appendix B. Batch size inspection 

We assessed the effect of fine-tuning the EfficientPose models on a 
reduced batch size of four images (i.e., the batch size of EfficientPose IV) 
to investigate possible performance degrade with EfficientPose IV due to 
inappropriate batch size. In comparison to Table 1, Table 5 displays 
performance degrade from training with reduced batch size, most 
evident in terms of high-precision localization, with 11.20–30.83% 
reduction in PCKh@0.1. 

Appendix C. Transfer validity 

To investigate the transfer validity of the methods in our comparative 
analysis, we evaluated the localization performance of the models fine- 
tuned on In-Motion Poses, as well as the official OpenPose library, on the 
openly available MINI-RGBD dataset proposed by Hesse et al. (2018) 
(Table 6). The MINI-RGBD dataset comprises 12 synthetic infant video re
cordings of quite different nature than the recordings in In-Motion Poses. 
Localization performance, in terms of PCKh@1.0, PCKh@0.5, PCKh@0.3, 
PCKh@0.2, PCKh@0.1, and ME, was measured on the subset of 12 body 
keypoints that are similar for MINI-RGBD and In-Motion Poses (i.e., nose, 
upper neck, shoulders, elbows, wrists, knees, and ankles). Since MINI-RGBD 
does not contain a keypoint for the top of the forehead, the head length of an 
infant was estimated as two times5 the distance between the annotated 
keypoints of the nose and upper neck. This ensures that the evaluation 
metrics reflect a similar level of correctness as the metrics used with the 
evaluation on In-Motion Poses in Table 1. 

Furthermore, for the most accurate ConvNet, namely Efficien
tHourglass B4, we conducted a qualitative experiment by estimating the 
locations of the 19 body keypoints in In-Motion Poses on a randomly 
selected frame in each of the 12 infant videos in the MINI-RGBD dataset 
(Fig. 8). 

We also supply as Supplementary material frame-by-frame pre
dictions of keypoint locations in a real, external infant recording for the 
best performing ConvNet in each model family, as well as by the use of 
the official version of OpenPose. The recording follows the standards for 
GMA (Einspieler and Prechtl, 2005), and has been recorded using the 
setup of the In-Motion App (Adde et al., 2021), which is similar to the 
home-based smartphone recordings in In-Motion Poses. 

Table 4 
Definitions of body keypoints.  

# Body keypoint Definition 

1 Head top Top of the forehead 
2 Nose Tip of the nose 
3 Right ear Center of the right ear 
4 Left ear Center of the left ear 
5 Upper neck Center of the larynx 
6 Right shoulder Center of the right shoulder joint 
7 Right elbow Center of the right elbow joint 
8 Right wrist Center of the right wrist joint 
9 Upper chest Midway between 6 and 10 
10 Left shoulder Center of the left shoulder joint 
11 Left elbow Center of the left elbow joint 
12 Left wrist Center of the left wrist joint 
13 Mid pelvis Midway between 14 and 17 
14 Right pelvis Right spina iliaca anterior superior 
15 Right knee Center of the right knee joint 
16 Right ankle Center of the right ankle joint 
17 Left pelvis Left spina iliaca anterior superior 
18 Left knee Center of the left knee joint 
19 Left ankle Center of the left ankle joint  

Table 5 
The localization performance of EfficientPose RT and I-III on the test set of In-Motion Poses, when trained with the batch size of EfficientPose IV, followed by the 
performance difference in relation to the experiments in Table 1.  

Model PCKh@ 1.0 PCKh@ 0.5 PCKh@ 0.3 PCKh@ 0.2 PCKh@ 0.1 ME 

EfficientPose RT 99.80% (− 0.16%) 99.32% (− 0.37%) 92.93% (− 5.22%) 72.50% (− 19.65%) 27.88% (− 30.83%) 0.1717 (0.0695) 
EfficientPose I 99.94% (− 0.04%) 99.66% (− 0.17%) 97.22% (− 1.59%) 85.42% (− 8.26%) 38.38% (− 22.40%) 0.1311 (0.0336) 
EfficientPose II 99.98% (0.01%) 99.78% (− 0.06%) 98.01% (− 0.53%) 89.85% (− 2.56%) 49.73% (− 12.52%) 0.1137 (0.0168) 
EfficientPose III 99.99% (0.00%) 99.94% (0.00%) 99.47% (− 0.07%) 96.48% (− 1.09%) 67.01% (− 11.20%) 0.0884 (0.0152)  

Table 6 
The transfer validity of the different ConvNets, pretrained on MPII (Andriluka et al., 2014) and fine-tuned on In-Motion Poses, and the official OpenPose library 
(OpenPose, 2021), in terms of localization performance on the MINI-RGBD dataset (Hesse et al., 2018).  

Model PCKh@1.0 PCKh@0.5 PCKh@0.3 PCKh@0.2 PCKh@0.1 ME 

OpenPose library 98.35% 97.02% 94.47% 90.75% 73.80% 0.1030 
OpenPose 88.59% 79.59% 71.77% 62.27% 38.41% 0.3926 
CIMA-Pose 95.72% 88.99% 81.27% 71.83% 46.68% 0.2415 
EfficientPose RT 94.98% 91.28% 86.91% 79.98% 53.83% 0.2135 
EfficientPose I 93.13% 91.09% 88.16% 81.98% 56.19% 0.2772 
EfficientPose II 92.49% 90.41% 87.41% 80.57% 54.60% 0.3263 
EfficientPose III 83.79% 81.45% 79.60% 76.06% 58.56% 0.8559 
EfficientPose IV 93.02% 91.15% 89.05% 86.14% 71.35% 0.2565 
EfficientHourglass B4 99.81% 99.17% 97.52% 94.13% 75.86% 0.0845  

5 The head length of an infant (i.e., the distance from head top to upper neck) 
in In-Motion Poses was in average 1.98 times the distance from nose to upper 
neck. 
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Appendix D. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.compmedimag.2021.102012. 
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Key Points 
 
Question: What is the external validity of Deep Learning-based prediction of cerebral palsy from 
infant spontaneous movements at 3 months post-term age? 
  
Findings: In this prognostic study of 557 infants, Deep Learning-based early prediction of cerebral 
palsy demonstrated sensitivity of 71%, specificity of 94%, positive predictive value of 68% and 
negative predictive value of 95%. Deep Learning-based cerebral palsy prognosis was associated with 
later functional level and subtype in children with cerebral palsy. 
 
Meaning: Deep Learning-based assessments could support early detection of cerebral palsy in high-
risk infants. 
 
 
Abstract 
 
Importance: Early identification of infants with cerebral palsy (CP) is essential for early intervention, 
yet existing clinical expert-based assessments do not enable widespread use, and Conventional 
Machine Learning alternatives lack validity on external samples.  
 
Objective: To develop and assess the external validity of a novel Deep Learning-based prediction of 
CP from a video of spontaneous movements at 3 months corrected age (CA). 
 
Design: Prognostic study on early prediction of CP in infants with increased risks of perinatal brain 
injury enrolled between 2001 and 2018 in previous studies. 
 
Setting: 13 hospitals in United States, Norway, India, and Belgium.  
  
Participants: 557 high-risk infants, with 418 (75.0%) randomized into sample for prognostic model 
development and 139 (25.0%) for external validation. We included all infants with a video from 7-18 
weeks CA assessed with the General Movement Assessment (GMA), and who were evaluated for a 
diagnosis of CP after 12 months CA.  
 
Main Outcomes and Measures: Deep Learning-based prediction of CP was performed automatically 
from a single video. The primary outcome was CP and associated functional level and subtype. We 
assessed sensitivity, specificity, positive and negative predictive values, and accuracy.  
 
Results: Median CA at assessment was 12 (IQR: 11-13) weeks. Eighty-four (15.1%) infants were 
diagnosed with CP at mean 3.4 (SD: 1.7) years. On external validation, Deep Learning-based CP 
prediction displayed sensitivity of 71.4% (95% CI: 47.8%-88.7%) and specificity of 94.1% (95% CI: 
88.2%-97.6%). Positive and negative predictive values were 68.2% (95% CI: 45.1%-86.1%) and 
94.9% (95% CI: 89.2%-98.1%), respectively, and accuracy 90.6% (95% CI: 84.5%-94.9%). 
Corresponding sensitivity and specificity of GMA were 70.0% (95% CI: 45.7%-88.1%) and 88.7% 
(95% CI: 81.5%-93.8%), respectively. The automated prediction model had higher sensitivity in 
infants with non-ambulatory (100.0%; 95% CI: 63.1%-100.0%) compared to ambulatory CP (58.3%; 
95% CI: 27.7%-84.8%; 𝑃 = .02), and spastic bilateral (92.3%; 95% CI: 64.0%-99.8%) compared to 
spastic unilateral CP (42.9%; 95% CI: 9.9%-81.6%; 𝑃 < .001).  
 
Conclusions and Relevance: Deep Learning-based prediction of CP at 3 months CA provided 
predictive accuracy non-inferior to GMA on external validation. The study indicates possible avenues 
for utilizing Deep Learning-based software for objective, early detection of CP in clinical settings. 
 
 
 



 3 

Introduction 
 
Cerebral palsy (CP) is the most common physical disability in children, causing functional limitation 
and co-occurring impairments1 (e.g., pain, musculoskeletal deformities, seizures, and communication 
and sleep disorders) due to injury to the developing brain2. CP is typically diagnosed between 12 and 
24 months of age and associated classification of severity occurs even later in childhood3,4. Early 
identification of infants at high risk of CP is essential to provide targeted follow-up and interventions 
during infancy when neuroplasticity is high5,6, improve access to community services for proactive 
management to minimize complications7, and reassure parents of high-risk infants who are unlikely to 
develop CP8. 
 
The General Movement Assessment (GMA) is recommended as the most accurate clinical test for 
prognosis of CP in infants before 5 months4,9, based on the absence of the fidgety (FMs) type of 
general movements (i.e., spontaneous movements involving the whole infant body)10,11. The GMA is 
based on observation of infants’ general movements in video recordings by clinical experts. The 
method requires considerable training12, and rater experience may influence GMA reliability13. These 
facts hamper widespread clinical use14.  
 
With advancements in the field of Artificial Intelligence, Machine Learning techniques have been 
developed as objective, low-cost alternatives to GMA14-17. Former Machine Learning techniques for 
tracking and classification of infant spontaneous movements generally aimed to predict CP by 
proposing restricted sets of manually selected movement features used in combination with 
conventional statistical methods (e.g., logistic regression and support vector machine)18-22. A recent 
study by our group demonstrated predictive values of such Conventional Machine Learning-based CP 
prediction, approaching the level of GMA23. Despite this progress, there are fundamental challenges 
yet to be addressed. The restricted set of manually selected movement features have an unknown 
relation to observational GMA, which questions the construct validity of Conventional Machine 
Learning techniques. External validation is consequently lacking due to small sample sizes and short 
duration of follow-up evaluations17. As a result, validation is performed using less conservative 
methods, including leave-one-out cross-validation, and by using absence of FMs as a surrogate 
outcome for CP14,24.  
 
A new field within Machine Learning, called Deep Learning, has enabled automatic detection of 
discriminative movement features through representation learning25. That means dynamically 
selecting features relevant for the task at hand without any human expert involvement. Accuracy of 
Deep Learning improves with increasing amounts of data (e.g., videos), and Deep Learning has 
capacity to detect features representing intricate relationships in data, like complex full-body general 
movements.  
 
Our primary objective was to develop a Deep Learning-based early prediction of CP from infant 
spontaneous movements during the FMs period, and to perform external validation on a multicenter 
sample of high-risk infants. Our secondary objective was to compare the predictive accuracy with the 
clinically recommended GMA and Conventional Machine Learning for CP prediction, and to evaluate 
the ability of the Deep Learning-based prediction model to forecast functional level and CP subtype. 
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Methods 
 
Participants 
 
The sample comprised 557 high-risk infants prospectively enrolled between September 2001 and 
October 2018 in previously published studies from our group22,26-28. See eAppendix 1 for explanation 
of how these studies differ from the present study. Infants were included based on the following 
criteria: 1) available video recording following standards of Prechtl’s GMA29 during the FMs period 
at 9-18 (median: 12; IQR: 11-13) weeks corrected age (CA), 2) available GMA classifications of 
FMs, and 3) known CP status at 12 (median: 38; IQR: 23-46) months CA or older. Two infants with 
videos at 7 and 8 weeks CA were included for method development. Infants excluded due to missing 
video recording, GMA classification, or CP status are reported elsewhere22,26-28. The sample size was 
determined by the number of infants from previous studies with the aforementioned available data. 
See eAppendix 2 and eTable 1 in the Supplement for clinical characteristics of infants (including 
gestational age, birth weight, and infant sex). The present study was approved by the regional 
committee for medical and health research ethics (REC Central-Committee 4.2007.2327) in Norway 
and local Institutional Review Boards in United States, Belgium, and India. Written parental consent 
was obtained before inclusion. 
 
Video of Infant Spontaneous Movements and Classification of General Movements 
 
Infants were recorded in supine position during active wakefulness over 1-9 (median: 5) minutes, 
following GMA standards29. A conventional video camera (Sanyo VPC-HD2000 and Sony DCR-
PC100E) at recording rate of 24-60 (median: 30) frames per seconds and video resolution of 576x720 
to 1080x1920 (median: 720x1280) was used in a standardized setup comprising mattress and 
stationary overhead camera. If more than one recording was available, the one between 12 and 13 
weeks CA was used. 
 
GMA classifications from previous studies were used22,26-28. Two experienced observers (LA and TF) 
blinded to the medical history of the infants, classified the videos as normal (FMs sporadically, 
intermittently, or continuously present) or abnormal (absent FMs). Infants classified with exaggerated 
FMs, excessive in amplitude and speed, were a priori excluded from the analysis of GMA due to 
unpredictable outcomes of this category. In cases of disagreement between observers, videos were 
reassessed, and consensus was reached. 
 
Cerebral Palsy Status, Subtype of Cerebral palsy, and Functional Level 
 
The primary outcome of CP was diagnosed by a pediatrician following the decision tree of the 
Surveillance of Cerebral Palsy in Europe (SCPE)30, which included the classification of CP subtypes 
into spastic unilateral, spastic bilateral, dyskinetic, and ataxic. Follow-up time differed between 
studies, ranging from 18 months to 5 years of age22,26-28. The Gross Motor Function Classification 
System (GMFCS)3 was used to classify functional level into ambulatory CP (level I, II, and III) and 
non-ambulatory CP (level IV and V). Pediatricians responsible for CP diagnosis were blinded to 
GMA classifications.   
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Datasets for Method Development and External Validation 
 
To achieve representative samples for method development, i.e., training and internal validation, and 
external validation, all high-risk infants were stratified into classes based on study and nationality 
(centers in step 1, Figure 1) and CP subtype (step 2, Figure 1). As shown in step 3 in Figure 1, 75.0% 
of infants of each class (blue path) were randomly assigned into dataset for method development 
(training and validation), and the remaining 25.0% (red path) into test set for external validation. The 
infants for method development were further divided into seven internal validation samples (i.e., 
folds), each comprising nine infants with CP and 50 or 51 infants without CP. This enabled 7-fold 
cross-validation for evaluating internal validity. The internal validation samples were constructed 
utilizing a similar procedure for stratification on center and CP subtype, as with the external test set in 
Figure 1.  
 
Figure 1. Datasets for development and external validation 

Infants diagnosed with CP where subtype was not available were placed into class for unilateral CP (UL CP) in 
case of GMFCS level I or II, and into bilateral CP (BL CP) for GMFCS level III, IV, or V. Infants with 
dyskinetic CP and ataxic CP were placed into BL CP. 
Abbreviations: NO CP, without CP; UL CP, spastic unilateral CP; BL CP, spastic bilateral CP; CA, corrected 
age. 
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Deep Learning-Based CP Prediction 
 
The overall concept of the Deep Learning-based CP prediction method is presented in Figure 2. 
 
Figure 2. The steps involved in Deep Learning-based CP prediction 

 
1) Motion Tracking 
 
The raw infant video was processed by a motion tracker31 localizing horizontal (x) and vertical (y) 
coordinates of 19 body keypoints (i.e., forehead, nose, ears, upper neck, shoulders, elbows, wrists, 
upper chest, right/left/mid pelvis, knees, and ankles) (step 1, Figure 2), creating infant skeletons. The 
motion tracker had previously been trained and validated on infant videos satisfying GMA standards, 
following the anatomical definitions of In-Motion Poses32. Further technical details on the motion 
tracker are described in the original papers by Groos et al.31,32. 
 
2) Skeleton Sequence 
 
The infant skeletons of all video frames composed a spatiotemporal skeleton sequence (step 2, Figure 
2), representing infant movements in the video. The skeleton sequence was divided into 5 second 
windows, which were processed by the Deep Learning-based prediction model to estimate CP risk in 
that particular time window. 
 
3) Deep Learning-Based CP Prediction Model  
 
Automatic detection of movement features: To automatically detect movement features related to CP 
outcome, a novel Deep Learning procedure was developed. As illustrated by step 3 in Figure 2, a 
Deep Learning model consists of multiple layers. The initial layers detect features of simple 
movements of a single limb or joint, whereas the subsequent layers detect features of complex whole-
body movements. To prevent manual selection bias, the number of layers and type of computation in 
each layer was set by an automatic search for optimal Deep Learning models on the data for training 
and internal validation. The first 10 automatically selected models were defined as artificial experts 
and retrained on the seven internal validation samples (eTable 2 in the Supplement provides internal 
validation results). Each of the resulting 70 artificial expert instances utilized the biomechanical 
properties (position, velocity, and body segment length) in 5 second windows to detect complex 
whole-body movement features that distinguished infants with CP from infants without CP. See 
eAppendix 3, eFigure 1, eTable 3, and eTable 4 in the Supplement for details on the automatic search 
procedure and configurations of selected Deep Learning models. 
 
Group of artificial experts and uncertainty of decision: Based on the obtained movement features in 
each of the 70 artificial expert instances, the CP risk was estimated on a continuous scale from low 
(0.0%) to high (100.0%). The median value of the 70 individual artificial expert predictions was used 
as CP risk in the 5 second window, with uncertainty of CP risk color coded based on the agreement 
across the 70 predictions. Green (0-17 (<25.0%) predict CP) and yellow (18-35 (≤50.0%) predict 
CP) represent certain and uncertain prediction of no CP, and orange (36-52 (>50.0%) predict CP) and 
red (53-70 (>75.0%) predict CP) represent uncertain and certain prediction of CP, respectively.  
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4) CP risk 
 
The final score for CP risk in a total video was estimated as the median CP risk across all 5 second 
windows of the skeleton sequence (step 4, Figure 2). This score was used to classify an infant into CP 
or no CP based on a fixed decision threshold (see eAppendix 4, eFigure 2, and eTable 5 in the 
Supplement for different thresholds). Classification into CP was considered certain (red) if >75.0% 
and uncertain (orange) if >50.0% of the artificial expert instances classified as CP, and classification 
into no CP uncertain (yellow) if ≤50.0% and certain (green) if <25.0% classified as CP (step 4, 
Figure 2).  
 
Conventional Machine Learning-Based CP Prediction 
 
To enable fair comparison between the Deep Learning-based CP prediction and the Conventional 
Machine Learning method previously presented by our group23, retraining of the Conventional 
Machine Learning method on the dataset of the present study was performed. See Ihlen et al.23 for 
more details on the Conventional Machine Learning-based CP prediction. 
 
Statistical Analysis 
 
The sensitivity of the methods on the external validation was fixed a priori at the level of GMA in the 
present study to ensure fair comparisons. Clopper-Pearson was used to provide exact 95% confidence 
intervals of sensitivity, specificity, positive and negative predictive value (PPV and NPV), and 
accuracy, computed with the conf package in R (R Core Team) version 4.0. The association between 
CP risk and GMFCS level was assessed with difference in CP risk in infants with ambulatory 
(GMFCS I, II, or III) and non-ambulatory CP (GMFCS IV or IV) using 2-sided Wilcoxon rank sum 
test computed with SciPy in Python (Python Software Foundation) version 3.6. P values below 0.05 
were considered statistically significant. Wilcoxon rank sum test was also used to assess difference in 
CP risk of infants with spastic unilateral and spastic bilateral CP. 
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Results 
 
Among 139 high-risk infants comprising the external validation, 21 (15.1%) had a diagnosis of CP 
(see eTable 1 in the Supplement for details). Predictive accuracies of the Deep Learning method, 
GMA and previously reported Conventional Machine Learning method are presented in Table 1. The 
Deep Learning method achieved higher accuracy than the Conventional Machine Learning method 
(𝑃 < .001), but no significant improvement compared to GMA (𝑃 = .11).  
 
Table 1. Predictive values on external validationa given a fixed sensitivity of 70.0%b  
 

Method TP FP TN FN Sensitivity % Specificity % PPV % NPV % Accuracy % 
Deep Learning method 15 7 111 6 71.4 

[47.8, 88.7] 
94.1  
[88.2, 97.6] 

68.2 
[45.1, 86.1] 

94.9  
[89.2, 98.1] 

90.6 
[84.5, 94.9] 

General Movement 
Assessment 

14 13 102 6 70.0 
[45.7, 88.1] 

88.7 
[81.5, 93.8] 

51.9  
[32.0, 71.3] 

94.4 
[88.3, 97.9] 

85.9  
[78.9, 91.3] 

Conventional Machine 
Learning method 

15 32 86 6 71.4 
[47.8, 88.7] 

72.9  
[63.9, 80.7] 

31.9  
[19.1, 47.1] 

93.5  
[86.3, 97.6] 

72.7  
[64.5, 79.9] 

All values are provided in percentages, along with 95% confidence interval. 
Abbreviations: TP, true positives; FP, false positives; TN, true negatives; FN, false negatives; PPV, positive 
predictive value; NPV, negative predictive value.  
a The external validation comprised four infants (one with CP, three without CP) with exaggerated FMs 
(excluded by GMA), yielding three true negatives and one false negative both with Deep Learning-based and 
Conventional Machine Learning-based method.  
b Sensitivity is fixed at the level of GMA. 
 
 
Fourteen (66.7%) of the 21 infants with CP were classified with high certainty, including 12 (85.7%) 
true positives (i.e., red classifications in Figure 3c) and two (14.3%) false negatives (green). 
Moreover, 104 (88.1%) of the 118 infants without CP were classified with high certainty, 102 
(98.1%) true negatives (green in Figure 3d) and two (1.9%) false positives (red). Figure 3a and b 
illustrate CP risks across 5 second windows for one infant with certain classification of CP and no CP, 
respectively.  
 
The Deep Learning-based CP prediction model had higher sensitivity (i.e., percentage of infants 
above decision threshold) in infants with non-ambulatory CP (100.0%; 95% CI: 63.1%-100.0%) 
compared to ambulatory CP (58.3%; 95% CI: 27.7%-84.8%; 𝑃 = .02), and in infants with spastic 
bilateral CP (92.3%; 95% CI: 64.0%-99.8%) compared to spastic unilateral CP (42.9%; 95% CI: 
9.9%-81.6%; 𝑃 < .001), as depicted by Figure 3c. Figure 4 displays significantly higher estimated CP 
risk for non-ambulatory motor function (median: 0.90; IQR: 0.75-0.93) compared to ambulatory 
motor function (median: 0.45; IQR: 0.24-0.78; 𝑃 = .007), and for spastic bilateral CP (median: 0.85; 
IQR: 0.55-0.92) compared to spastic unilateral CP (median: 0.26; IQR: 0.23-0.56; 𝑃 = .03). 
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Figure 3. Predictions of infants in the external validation (n = 139) 

From top: a) and b) CP risk in 5 second windows (left) and aggregated CP risk (right) across the total video of 
one representative high-risk infant in the external validation with and without CP, respectively, both classified 
correctly with high classification certainty. c) and d) Distribution of individual CP risks (y-axis) and boxplots of 
classification uncertainties of the 70 artificial expert predictions in the Deep Learning method among c) high-
risk infants in the external validation with CP (n = 21) with x-axis displaying GMFCS level (i.e., I-V) and CP 
subtype at time of diagnosis and d) high-risk infants in external validation without CP (n = 118). The dashed 
horizontal line reflects the decision threshold. In box plots, black dashed and solid horizontal lines are 
aggregated CP risk and median CP risk across artificial experts, respectively, lower and upper edges are 
interquartile ranges, and whiskers the range or 1.5 times the interquartile range. Red and orange color coding 
represent certain and uncertain classification into CP, whereas green and yellow represent certain and uncertain 
classification into no CP. 
Abbreviations: UL, spastic unilateral CP; BL, spastic bilateral CP; NA, not available. 
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Figure 4. Boxplots of CP risk of infants in the external validation (n = 139) of different outcomes 
 

From left: distribution of CP risk across infants in the external validation a) with and without CP, b) with 
ambulatory versus non-ambulatory CP (GMFCS I-III and IV-V, respectively), and c) with spastic unilateral CP 
versus spastic bilateral CP. In box plots, red solid horizontal lines are median aggregated CP risk across infants, 
lower and upper edges are interquartile ranges, and whiskers the range or 1.5 times the interquartile range. 
 
 
Discussion 
 
In this study, a fully automated Deep Learning-based early CP prediction demonstrated predictive 
accuracy non-inferior to the clinically recommended GMA in an external multicenter sample of high-
risk infants. This is a significant improvement compared to previously published Conventional 
Machine Learning-based CP prediction23. Furthermore, the prediction model differentiated between 
infants who developed ambulatory and non-ambulatory CP, as well as unilateral and bilateral CP. 
 
The high external validity of the proposed Deep Learning method reflects the robustness of automated 
assessment of spontaneous movements in infants with various medical risk factors from different 
countries and with variation in video quality. This is a significant progress from previous studies, 
which either lack sufficient sample size or external validity17. Moreover, the method uses a single 5-
minute video, which can easily be performed in a non-invasive manner in clinic or from home33. This 
suggests potential for widespread clinical adoption. The ability to flag certainty of predictions through 
a color-coding scheme and the flexibility to adjust the decision threshold in accordance with a 
preference of few false negatives or few false positives, underpin the potential clinical relevance of 
the prediction model. Furthermore, the capacity to differentiate between unilateral and bilateral CP, 
and ambulatory and non-ambulatory motor function may have important clinical implications. This 
may support decisions in early pediatric care by initiating targeted intervention to improve function, 
prevent complications, and enhance efficacy of follow-up.   
 
The improved predictive accuracy of using Deep Learning for CP prediction in comparison to 
Conventional Machine Learning commonly applied in former studies18-23, may be due to several 
reasons. First, Deep Learning has the capacity to find intricate relationships in the data through 
processing by several layers. This suggests that Deep Learning could handle the high complexity and 
variation in infant spontaneous movements. Second, manual selection of movement features, as 
required by Conventional Machine Learning20,21 is eliminated by the automatic feature detection. This 
may also suggest flexibility in adapting the Deep Learning method to other infant samples and clinical 
outcomes. However, more studies are needed to identify which movement features the Deep Learning 
model selects as relevant for CP. In the present study, we have not investigated if the prediction 
model used features related to FMs, other movement and postural patterns in the early motor 
repertoire (e.g., kicking and body symmetry), or yet unidentified patterns of movement34. 
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The non-inferior performance of the Deep Learning method compared to observational GMA may 
indicate an upcoming paradigm shift in early prediction of CP. A recent review by Silva et al.14 
highlighted that adoption of automated CP prediction in clinical practice is restricted by existing 
Machine Learning methods lacking the predictive accuracy of GMA. The feasibility of home-based 
smartphone recordings33,35 and associated infant motion tracking32 may be combined with the 
proposed Deep Learning-based CP prediction to obtain a fully automated system for clinical decision 
support. 
 
The sensitivity of observational GMA was lower than reported in some previous studies9,36, but 
similar to what has been found in other studies from outside the highly skilled academic settings37,38. 
A sensitivity below what is commonly reported4 may, at least partly, be due to the classification of 
sporadic FMs as normal. This is in contrast to what is commonly taught in courses by the General 
Movements Trust, but it increases accuracy and PPV as shown in a previous study by our group26. 
Furthermore, in our study, a single assessment around 12 weeks CA may have contributed to lower 
sensitivity, compared to studies performing several assessments throughout the FMs period39,40.  
 
The present study included infants recruited from several sites based on a variety of risk factors for 
perinatal brain injury22,26-28. Despite the diverse set of risk factors and clinical characteristics of 
infants, the prevalence of CP in each diagnostic group matches numbers seen in literature41-43. This 
suggests that the results are generalizable to clinical follow-up programs for NICU graduates based on 
an increased risk of adverse neurodevelopment.  
 
Limitations 
 
Our study has several limitations. A separate dataset for method development limits the number of 
infants with CP for assessing external validity. This limits the possibility of doing subgroup analysis 
of CP subtypes and GMFCS levels. A minority of infants were assessed for CP before two years of 
age, and this may have resulted in a few infants with mild phenotypes not being identified. Short 
follow-up may also have led to less accurate GMFCS classification due to lower reliability below two 
years of age44. However, inaccurate GMFCS classification in a few infants is unlikely to change the 
general interpretation of results, since classification rarely changes from ambulatory CP to non-
ambulatory CP, and vice versa44. The present study comprised videos recorded in a standardized 
setup, and hence the Deep Learning-based CP prediction requires validation in home-based 
smartphone recordings. 
 
 
Conclusions 
 
The proposed Deep Learning-based prediction model for CP based on spontaneous movements in a 
video taken at 3 months CA, demonstrated predictive accuracy non-inferior to observational GMA on 
external validation in a high-risk population. The predictive model also differentiated between infants 
with ambulatory and non-ambulatory CP and infants with unilateral and bilateral CP. A fully 
automated system for infant motion tracking and CP prediction may serve as an important decision 
support for clinicians caring for high-risk infants. Future research is needed to identify specific 
movement biomarkers related to CP outcome and to facilitate widespread clinical use.  
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Supplementary Online Content 
 
eAppendix 1. Related Previously Published Papers  
 
The present study is related to five previously published papers: 
 
Støen et al.1: This study (Støen et al.1) did not assess a Machine Learning-based CP prediction method 
but was a study of GMA and its predictive accuracy for CP. The present study harnessed video 
recordings, GMA classifications, and CP outcomes of the infant sample from Norway and United 
States collected by Støen et al.1  
 
Adde et al.2: This study (Adde et al.2) evaluated a simple statistical method for Conventional Machine 
Learning-based CP prediction without assessing the external validity. The Machine Learning method 
used was entirely different from the method presented in the present study. The present study 
harnessed video recordings, GMA classifications, and CP outcomes of the infant sample from 
Norway collected by Adde et al.2  
 
Pascal et al.3: This study (Pascal et al.3) did not assess a Machine Learning-based CP prediction 
method but assessed the prediction of CP using GMA. The present study harnessed video recordings, 
GMA classifications, and CP outcomes of the infant sample from Belgium collected by Pascal et al.3  
 
Aker et al.4: This study (Aker et al.4) did not assess a Machine Learning-based CP prediction method 
but assessed CP prediction using GMA. The present study harnessed video recordings, GMA 
classifications, and CP outcomes of the infant sample from India collected by Aker et al.4  
 
Ihlen et al.5: The present study and the study by Ihlen et al.5 both harnessed the video recordings, 
GMA classifications, and CP outcomes of the infant sample from Norway and United States collected 
by Støen et al.1 but the previous study of Ihlen et al.5 evaluated a semiautomated Conventional 
Machine Learning method for CP prediction, in contrast to the fully automated Deep Learning 
method of the present study. The study of Ihlen et al.5 neither assessed the external validity of the 
Conventional Machine Learning-based CP prediction. 
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eAppendix 2. Characteristics of Included Infants 
 
The study sample comprised infants from four previous studies1-4. The first study1 enrolled infants 
who were referred to neurodevelopmental follow-up at discharge from tertiary care NICUs at three 
sites in Norway and two sites in the United States, including a) preterm infants with a gestational age 
(GA) < 29 weeks and/or birthweight (BW) < 1000 g (n=119), b) infants with congenital heart disease 
(CHD) in need of cardiac surgery before 4 weeks of age (n=41), c) infants with neonatal arterial 
ischemic stroke (NAIS; n=9), d) infants with neonatal encephalopathy (NE; n=43), e) infants with 
other risk factors for adverse neurological development (e.g. congenital anomalies and/or 
chromosomal abnormalities with extended NICU stay beyond 10 weeks CA, neonatal seizures, central 
nervous system (CNS) abnormalities, abnormal neonatal imaging, CNS infection, severe 
hypoglycemia; n=80), and f) infants with GA < 31 weeks and/or BW < 1500 g, enrolled in a 
randomized controlled trial of two different doses of inhaled nitric oxide for neuroprotection, 
requiring oxygen at birth (NOVA2 trial; https://clinicaltrials.gov/ct2/show/NCT00515281; n=116). 
The second study2 recruited infants from 4 sites in Norway, including a) preterm infants with GA < 28 
weeks and/or BW < 1000 g (n=15), b) infants with NE (n=4), c) infants with NAIS (n=2), and d) 
infants with other risk factors for adverse neurological development (n=9). The third study3 comprised 
infants with NAIS from six sites in Belgium (n=37). The fourth study4 comprised infants admitted to 
a tertiary care NICU in South India with NE (n=82). See eTable 1 for descriptive statistics, including 
cerebral palsy (CP) status, of infants in datasets for training & validation (i.e., method development) 
and test set (i.e., external validation) and study affiliation. 
  
eTable 1. Characteristics of Infants in Datasets 
 

 Heterogeneous high-risk 
infants1,2 

Infants with perinatal 
stroke3 

Infants with neonatal 
encephalopathy4 

 Training & 
validation 

Test Training & 
validation 

Test Training & 
validation 

Test 

No. infants (%) 328 (78.5) 110 (79.1) 28 (6.7) 9 (6.5) 62 (14.8) 20 (14.4) 
GA, mean (SD), w. 31.7 (6.2) 30.6 (5.9) 34.8 (5.4) 36.4 (5.1) 39.1 (1.4) 39.4 (1.2) 
BW, mean (SD), g 1849 (1245) 1678 (1209) 2430 (1088) 2669 (1209) 2904 (512) 2948 (555) 
Sex, no. (%)       
  Male 181 (55.2) 57 (51.8) 17 (60.7) 5 (55.6) 39 (62.9) 11 (55.0) 
  Female 147 (44.8) 53 (48.2) 11 (39.3) 4 (44.4) 23 (37.1) 9 (45.0) 
CA rec., mean (SD), w. 12.3 (1.3) 12.2 (1.4) 12.0 (1.6) 11.1 (0.8) 11.2 (1.8) 12.0 (1.7) 
CA fol., mean (SD), m. 40.5 (15.7) 39.7 (17.3) 27.9 (5.3) 27.7 (6.2) 19.4 (4.3) 20.8 (6.8) 
CP diagnosis, no. (%) 41 (12.5) 14 (12.7) 10 (35.7) 3 (33.3) 12 (19.4) 4 (20.0) 
CP subtype, no. (%)       
  Spastic unilateral 12 (29.3) 4 (28.6) 8 (80.0) 2 (66.7) 1 (8.3) 1 (25.0) 
  Spastic bilateral 22 (53.7) 9 (64.3) 2 (20.0) 1 (33.3) 9 (75.0) 3 (75.0) 
  Dyskinetic 5 (12.2)    1 (8.3)  
  Ataxic 1 (2.4)      
  Not available 1 (2.4) 1 (7.1)   1 (8.3)  
GMFCS, no. (%)       
  I 13 (31.7) 2 (14.3) 3 (30.0) 2 (66.7) 2 (16.7) 2 (50.0) 
  II 5 (12.2)  4 (40.0)  1 (8.3) 1 (25.0) 
  III 3 (7.3) 5 (35.7) 1 (10.0)  1 (8.3)  
  IV 8 (19.5) 3 (21.4) 1 (10.0) 1 (33.3) 2 (16.7)  
  V 11 (26.8) 3 (21.4)   5 (41.7) 1 (25.0) 
  Not available 1 (2.4) 1 (7.1) 1 (10.0)  1 (8.3)  

Abbreviations: GA, gestational age; w., weeks; BW, birth weight; CA, corrected age; rec., recording; fol., 
follow-up; m., months; CP, cerebral palsy; GMFCS, Gross Motor Function Classification System.  
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eAppendix 3. Deep Learning-Based CP Prediction Model 
 
In the following section, we describe stepwise how the Deep Learning-based prediction model was 
developed: 
 
Step 1: The skeleton sequence was resampled to 30 Hz and a 5-point temporal median filter was 
applied to each skeletal coordinate time series. Subsequently, the skeleton sequence was centralized 
according to the median mid pelvis location and normalized by two times the trunk length of the 
infant (i.e., median distance from upper chest to mid pelvis).  
 
Step 2: The skeletal sequence was divided into 5 second windows comprising 𝑇 (= 5	𝑠 ∙ 30	𝑠!" =
150) time steps of 𝐽 (= 19) body keypoints (i.e., joints), each with 𝐷 (= 2) coordinates (i.e., 𝑥#,% and 
𝑦#,% for keypoint 𝑗 at time step 𝑡). In each 5 second window, the infant skeletons were rotated spatially 
for vertical alignment of upper chest and mid pelvis in the first time step.  
 
Step 3: Biomechanical properties, i.e., position 𝒑𝒕,𝒗 and velocity 𝒗𝒕,𝒋 of each skeletal keypoint and 
distance from the neighboring body keypoint 𝒃𝒕,𝒋 = 𝒑𝒕,𝒋 − 𝒑𝒕,𝒋𝒂𝒅𝒋, were defined for each time step in a 
5 second window and used as input variables to the Deep Learning-based CP prediction model. 
 
Step 4: The processing of the input variables was performed by an ensemble of Graph Convolutional 
Networks (GCNs) (i.e., artificial expert instances) where the overall architecture is illustrated in 
eFigure 1. The configurations of the input branches, main branch, and pooling layer in eFigure 1 and 
their general properties were determined by K-Best Search6 with the search space summarized in 
eTable 3. The performance of GCN architectures was evaluated by the area under the receiver 
operating characteristic curve (AUC) on internal validation folds of the dataset. All GCNs were 
optimized using He initialization7, Stochastic Gradient Descent with learning rate of 5 ∙ 10!) and 
Nesterov momentum of 0.9, and batch size of 32 on an NVIDIA Tesla V100 GPU. 5 second windows 
were randomly sampled from the skeleton sequence and data augmentation with scaling (0.7 – 1.3), 
rotation (+/- 45 degrees), and translation (+/- 0.3) was employed to avoid overfitting. The best 
performing GCN architectures from 10 iterations of K-Best Search (i.e., artificial experts), as 
summarized in eTable 4, were trained for 200 epochs on each of the seven folds in the cross-
validation, comprising seven sets of model parameters associated with each of the GCN architectures. 
 
Step 5: The seven versions of the 10 obtained GCN models in eTable 4 constituted the 70 artificial 
expert instances. The artificial expert instances were utilized to yield CP predictions according to 
eFigure 1 on unseen skeleton sequences of the test set with 2.5 seconds overlap between each 5 
second window. 
 
eTable 2. Internal Validation of Deep Learning Method 
 

TP FP TN FN Sensitivity % Specificity % PPV % NPV % Accuracy % 
45 16 339 18 71.4  

[58.7, 82.1] 
95.5  

[92.8, 97.4] 
73.8  

[60.9, 84.2] 
95.0  

[92.2, 97.0] 
91.9 

[88.8, 94.3] 
The internal validity was evaluated using 7-fold cross-validation, with sensitivity fixed at the level of GMA 
(i.e., 70.0%). All values are provided in percentages, along with 95% confidence interval.  
Abbreviations: TP, true positives; FP, false positives; TN, true negatives; FN, false negatives; PPV, positive 
predictive value; NPV, negative predictive value.  
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eFigure 1. Overall Architecture of Graph Convolutional Networks 
 

From left: A GCN processes biomechanical properties, describing positions 𝑝, velocities (change in position) 𝑣, 
and bones (distance from the neighboring body keypoint) 𝑏, of a window of 𝑇 time steps from a skeleton 
sequence, 𝐽 body keypoints (joints), and 𝐷 spatial dimensions, through parallel input branches, followed by a 
main branch, pooling layer, fully connected (FC) layer, and softmax function to yield confidence 𝑐 about the 
risk of CP from 0.0 (no CP) to 1.0 (CP). 
 
eTable 3. Search Space of 20 Architectural Choices 
 

 Architectural choice Alternatives 

Input branches 

No. modules of input branches 1, 2, 3 
Width of input branches 6, 8, 10, 12 
Block type in initial modulea Basic8, Bottleneck8, MBConv9 
Residual type in initial modulea None, Block8, Module8, Dense8 
No. temporal scales in input branches 1, 2, 3, Linearb 

Main branch 

No. levels of main branch 1, 2 
No. modules of main branch levels 1, 2, 3 
Width of first level of main branchc 6, 8, 10, 12 
No. temporal scales in main branch 1, 2, 3, Linearb 

Pooling layer Pooling layer type Global average, Spatial average 

General properties 

Graph convolution type Spatial configuration10, DA 211,d, DA 411,d, DA 4+211,d 
Block typee Basic8, Bottleneck8, MBConv9 
Bottleneck factor 2, 4 
Residual typee None, Block8, Module8, Dense8 
SE type None, Inner12, Outer12, Both12 
SE ratio 2, 4 
SE ratio type Relative, Absolute 
Attention type None, Channel8, Frame8, Joint8 
Nonlinearity type ReLU13, Swish13 
Temporal kernel size 3, 5, 7, 9 

Abbreviations: MBConv, mobile inverted bottleneck convolution; DA, disentangled aggregation; SE, Squeeze-
and-Excitation; ReLU, rectified linear unit. 
a The initial module is the first module of input branches. 
b Linear scaling indicates that number of temporal scales increases by one for each module. 
c For the second level of the main branch, the width is doubled, while also reducing the time dimension by a 
factor of 2.  
d Graph convolutions with disentangled aggregation have different number of hops in neighborhood (i.e., 2 or 
4), where 4+2 yields separate number of hops in input modules and main module, with 4 and 2, respectively. 
e There is a separate architecture choice associated with the initial module. 
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eTable 4. Characteristics of Architectures Obtained by K-Best Search 
 

 K-Best Search 
Architectural choice 1 2 3 4 5 6 7 8 9 10 
No. modules of input br. 3 2 3 3 2 3 1 2 3 2 
Width of input br. 10 10 12 10 10 12 8 6 6 12 
Block type in initial mod. Bottl. Basic Basic Basic Bottl. Basic Basic MBC. Bottl. Basic 
Residual type in initial mod. None Den. None Block Den. Den. Mod. Block Den. Den. 
No. tmp. scales in input br. 1 3 2 2 3 1 3 2 1 2 
No. levels of main br. 1 1 1 1 2 2 2 2 2 1 
No. modules of main br. levels 1 3 2 1 1 3 3 2 1 3 
Width of first level of main br. 12 12 8 8 6 10 12 12 12 10 
No. tmp. scales in main br. 1 2 2 Lin. 3 Lin. 3 1 Lin. 3 
Pooling layer type Gl. Gl. Gl. Sp. Gl. Gl. Sp. Gl. Sp. Sp. 
Graph convolution type DA 2 DA 4+2 SC DA 4 DA 4 DA 2 DA 2 DA 4 DA 2 SC 
Block type Basic MBC. Basic Basic Basic Bottl. Basic Basic Basic Basic 
Bottl. factor 4 2 2 4 2 4 4 4 4 4 
Residual type None Block Mod. Den. None Block None Den. None None 
SE type None Outer Inner None Outer None None Outer Outer None 
SE ratio - 4 2 - 2 - - 4 4 - 
SE ratio type - Abs. Abs. - Abs. - - Abs. Abs. - 
Attention type Ch. Ch. None Ch. Ch. Ch. None None Ch. Ch. 
Nonlinearity type ReLU Sw. ReLU Sw. ReLU Sw. Sw. ReLU ReLU Sw. 
Tmp. kernel size 9 7 7 7 7 3 9 5 9 7 
AUC 0.949 0.942 0.938 0.943 0.937 0.956 0.953 0.953 0.932 0.947 

Abbreviations: br., branch; bottl., bottleneck; MBC., mobile inverted bottleneck convolution; den., dense; mod., 
module; tmp., temporal; lin., linear; gl., global; sp., spatial; DA, disentangled aggregation; SC, spatial 
configuration; SE, Squeeze-and-Excitation; abs., absolute; ch., channel; ReLU, rectified linear unit; sw., swish; 
AUC, area under the receiver operating characteristic curve. 
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eAppendix 4. Decision Thresholds 
 
From the receiver operating characteristic (ROC) curve in eFigure 2, we observe there are several 
feasible options for the choice of decision threshold in the Deep Learning-based CP prediction, 
depending on the preference of high sensitivity and few false negatives (e.g., decision threshold of 
0.15), high specificity and few false positives (e.g., 0.35), or a compromise of the two (e.g., 0.25), 
with an overall area under the ROC curve of 0.92. In eTable 5, the distributions of uncertainty of 
predictions across different decision thresholds are also presented.  
 
eFigure 2. ROC Curves on External Validation 
 

 
 

Different decision thresholds (0.15, 0.20, 0.25, 0.30, and 0.35) of the Deep Learning method are marked with 
cross and text in italic. 
Abbreviations: AUC, area under the receiver operating characteristic curve. 
 
eTable 5. Predictive Values of Decision Thresholds on External Validation 
 

Thres. TP FP TN FN Sens. 
% 

Spec. 
% 

PPV 
% 

NPV 
% 

Acc. 
% 

Infants with CP Infants without CP 
        

0.15 20 30 88 1 95.2 74.6 40.0 98.9 77.7 17 3 0 1 70 18 18 12 
0.20 18 20 98 3 85.7 83.1 47.4 97.0 83.5 14 4 2 1 78 20 10 10 
0.25 18 15 103 3 85.7 87.3 54.6 97.2 87.1 13 5 2 1 87 16 9 6 
0.30 16 14 104 5 76.2 88.1 53.3 95.4 86.3 12 4 4 1 95 9 10 4 
0.35 15 7 111 6 71.4 94.1 68.2 94.9 90.6 12 3 4 2 102 9 5 2 

Red and orange color coding represent certain and uncertain classification into CP, whereas green and yellow 
represent certain and uncertain classification into no CP. 
Abbreviations: thres., decision threshold; TP, true positives; FP, false positives; TN, true negatives; FN, false 
negatives; sens., sensitivity; spec., specificity; PPV, positive predictive value; NPV, negative predictive value; 
acc., accuracy.  
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