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Summary

Integrating high levels of variable renewable energy sources (VRESs) in power
systems imperils the security of supply. Energy storage systems (ESSs) contribute
both to cost reduction through increased and improved utilization of VRESs, as
well as to securing the supply in periods with low generation from VRESs.

The work in this thesis has considered the modeling of microgrids (MGs), small
scale power systems, with a high level of VRESs and ESSs and limited dispatch-
able generation capacity where VRESs and ESSs contribute to the security of sup-
ply. Although the presented work focuses on MGs, the findings are also relevant
for larger systems. Since these systems rely on ESSs, where the ability to deliver
power depends on a sufficiently high state-of-charge (SOC), they are vulnerable
to persistent low generation from VRESs. Future generation and demand should
therefore be considered in operation planning models with sufficient foresight,
and for a broad range of possible scenarios.

The implemented methods include:

• A detailed non-linear battery optimization model representing the battery
cell voltage and the converter efficiency with spline function based on em-
pirical battery data. The model is capable of operating closer to the op-
erational limits of the battery compared to existing simpler optimization
models.

• A linear multi-stage stochastic power system model using stochastic dual
dynamic programming (SDDP) considering degradation due to cyclic and
SOC dependent calendar degradation. The model can increase the expected
lifetime of a battery by more than four years. The model results also show
that it is advantageous to consider battery degradation in coherence with
stochastic optimization.

• A stochastic power system model using SDDP considering both short-term
uncertainty within weather forecast horizon and long-term uncertainty for
infinite foresight. Whereas rule-based operation and deterministic optimiza-
tion causes significant load shedding in critical periods, the implemented
method is superior at keeping the load shedding very low while still retain-
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ing low generation costs.

The solution of stochastic dynamic programming based methods also has a use-
ful representation with respect to valuating stored energy for systems of any size
dominated by VRESs. The value of stored energy changes in time due to vari-
ations in future expected generation and demand, and it also changes with the
SOC for itself and all other ESSs in the system. The value of stored energy is a
useful quantity for valuating the stored energy in detailed models, for real-time
operation, and for bidding into competitive markets.
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Chapter 1

Introduction

1.1 Background

The goal of the Paris agreement is to limit the global temperature rise [1], and the
EU intends to make Europe emission neutral, as stated in the European Green Deal
[2], by 2050. Roadmaps toward net zero emissions by 2050 have been presented
by both the International Energy Agency (IEA) and International Renewable En-
ergy Agency (IRENA), and require electrification of industry, transportation, and
buildings [3, 4].

Both the growth in the electricity sector and the phase-out of fossil generation
sources must to a great extent be met by variable renewable energy sources (VRESs).
Around 63% of the energy and 74% of the power capacity in the electricity sec-
tor are expected to originate from solar and wind power by 2050 [4]. The large
scale integration of VRESs also increases the demand for flexible resources, such
as different types of energy storage systems (ESSs), to maximize the utilization of
VRESs [5].

Besides not producing CO2 nor other harmful exhaust gases, generation from
VRESs differs from conventional dispatchable generators in the following ways
[6]:

1. The output is variable.
2. The output is uncertain due to the characteristics of the primary resource.
3. They are modular and relatively small.
4. They are bounded to specific locations due to the availability of the natural

resource.
5. They are mostly non-synchronous.
6. The short-run marginal operating costs are low.

1
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These fundamental differences impose significant changes with respect to how
these systems are analyzed and operated.

Grid scale ESSs, in particular lithium-ion batteries, have seen tremendous growth
during the past decade [7] partly driven by decreasing costs [8]. The increasing
level of electric vehicles (EVs) also has great potential for offering flexibility to the
grid [9]. Operation of ESSs does not incur direct costs, but both efficiency losses
as well as degradation costs [10] should be considered.

System adequacy is the ability to provide electricity, both power and energy. Gen-
eration from VRESs does not contribute to power capacity adequacy in the same
way as dispatchable generators due to their output variability [11]. Meeting the
demand in periods with low wind and solar power production necessitates either
sufficient dispatchable generation capacity or other types of flexibility, both ESSs
and demand side response (DSR). ESS technologies enable shifting surplus gener-
ation to periods with lacking generation from VRESs, and contribute to improved
power capacity adequacy. However, ESSs are only capable of providing power ca-
pacity if the state-of-charge (SOC) is sufficiently high, and these systems are there-
fore energy-constrained as opposed to power systems dominated by dispatchable
(thermal) generators that are power-constrained. The ESSs must be large enough
to tackle the variations in demand and generation. VRESs are subject to signif-
icant uncertainty, which mandates a probabilistic approach to supply adequacy.
Whereas the most prominent risk in power-constrained systems is power capacity
inadequacy, systems with a high share of VRESs and ESSs are vulnerable to energy
inadequacy.

The marginal cost pricing principle is widely deployed in competitive energy mar-
kets through day-ahead auctions and real-time markets [12]. The producers and
consumers place their bids based on their marginal operating cost and marginal
utility at the different production/consumption volumes. The generators’ marginal
costs are dependent on the fuel price and efficiency. Since VRESs have marginal
operating costs close to zero, they will produce at maximum unless the price is
close to zero or negative. ESSs exposed to short-term energy markets gain their
profit on arbitrage, and their marginal value will therefore be some place between
the least and most expensive unit in the system. Initial studies of the cost recov-
ery and marginal cost of ESSs has been reported in Korpås and Botterud [13].
Moreover, the marginal operating value of ESSs will also be influenced by their
degradation with respect to power charge and discharge in conjunction with its
replacement cost [10].

The emerging electricity systems with high VRES penetration have interesting sim-
ilarities with hydropower dominated systems. Both systems are dependent on lim-
ited energy storage capacities, and they both must manage variable and uncertain
energy inflows. The utilization of stored hydropower has been studied for decades
where the focus has been on minimizing the operation costs from thermal power
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generation while keeping the risk of scarcity low under uncertain inflow to the hy-
dro power reservoirs [14, 15]. Pumped hydro is also efficient for managing daily
and weekly variations, and is experiencing a renewed interest due to the rapid
increase in VRES [16]. A limiting factor for ESS technologies in general are their
strict limitations on the amount of energy that can be stored, and their ability to
deliver capacity will, of course, depend on sufficient stored energy. It is therefore
crucial that the ESS operation is planned with sufficient foresight, in particular for
systems where the ESS capacity contributes to securing the supply and the con-
sequence of empty ESS is scarcity. Therefore, supply adequacy not only concerns
having sufficient generation capacity to meet the demand but will also require
secure operation of ESS over time to avoid situations with energy shortage.

Power systems have traditionally been organized hierarchically with power flow
from large centralized generation units through the transmission system down
to the distribution systems. The interaction between the different levels has been
very limited. In 2005, the European Commission Research Directorate established
the Technology Platform for the Electricity Networks of the Future, where the objec-
tive was to increase the efficiency, safety and reliability of both electricity trans-
mission and distribution in Europe, and to facilitate large-scale integration of dis-
tributed renewable sources [17]. The large increase in VRESs urges the need for
flexibility, and distributed flexibility is one of several contributors [18]. The in-
creasing share of distributed flexibility also influences the security of supply, and
Sperstad et al. [19] summarizes some of the implications:

• The distribution systems are becoming more equal to the transmission sys-
tems.

• There will be more interaction between the transmission and distribution
systems.

• There will be greater interplay between different aspects of security of sup-
ply.

Recent trends also impose that microgrids (MGs), small scale power systems that
can operate both connected and disconnected from the utility grid, provide a vi-
able option for how to operate distributed flexibility [20–22].

Considering the major transition toward a decarbonized energy system, it is evi-
dent that proper tools for planning, operation, and control of the emerging VRESs
and ESSs in the power system are crucial for a secure, cost efficient, and sustain-
able power system.
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1.2 Objectives

The goal of this thesis is to study how high levels of VRESs and ESSs influence
the power system operation strategy and the electricity price. This thesis devel-
ops power system modeling techniques to manage both VRESs and ESSs with a
sufficient level of detail, and manage the uncertainty concerning both generation
and demand in energy-constrained systems with sufficient foresight as described
in more detail in the following objectives:

Develop optimization models for ESS, generation and demand: ESSs are key
enablers for integrating a high level of VRESs in power systems while keeping the
need for dispatchable generation capacity low. Different ESS technologies have
distinctive characteristics such as energy rating, power rating, efficiency, operat-
ing limits, and operating costs that must be addressed properly. Since the energy
storage links power dispatch over time, they must be planned and operated with
sufficient foresight to maximize the utilization of VRESs while keeping the risk of
scarcity low. For example, batteries are capable of delivering and absorbing high
power at very high efficiency, but only for a very limited time due to energy con-
straints. On the other hand, large amounts of energy can be stored as hydrogen at
a relatively low cost while the charge and discharge capacity is expensive to scale
up and the efficiency is intermediate. The modeling objectives can be summarized
as:

• The operational limits and efficiency should be represented sufficiently ac-
curately for the model purpose.

• The models should account for marginal operating costs due to degradation
and fuel consumption.

Develop stochastic optimization methods for operating VRESs and ESSs con-
sidering both short- and long-term uncertainties: Managing uncertainty is
essential in energy-constrained power systems where the level of VRESs is high,
and the ESSs must contribute to the security of supply due to low dispatchable
generation capacity. Therefore, stochastic models are important for operating the
systems such that the costs are minimized while keeping the risk of scarcity low.
The main objectives with the stochastic optimization models are:

• Implement methods for operating multiple ESSs in energy-constrained power
systems considering both short- and long-term uncertainty in demand and
generation from VRESs.

• Study the marginal value of the stored energy based on the solution of the
optimization methods.
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• Study the electricity price formation in coherence with the marginal value
of the stored energy.

• Study the role of storage devices in periods with energy scarcity.

1.3 Contributions

The main contributions of this thesis are:

Non-linear battery model expressed in the current and voltage variable space
(Paper II). The implemented model optimizes the operation of a lithium-ion
battery using charge, current, and voltage as variables. These variables are closer
to the battery chemistry compared to a classical model with power and energy
variables, and enable a more detailed representation of the operational limits. The
battery voltage and the converter efficiency are given by cubic spline functions.
The overall model formulation can be solved with interior-point based non-linear
solvers, and the spline technique can also be adapted to other storage types.

Linear approximation of SOC dependent battery calendar aging (Paper V).
The proposed formulation approximates the SOC dependent battery calendar ag-
ing with piece-wise linear segments and requires a convex calendar aging func-
tion. Battery degradation models are often non-linear and dependent on multiple
variables. However, stochastic programming methods often utilize the structure
of linear programs for decomposition and computation time reduction. The for-
mulation has been implemented and tested in combination with a linear cyclic
degradation model [10] in a multi-stage stochastic programming (MSSP) energy
management model that has been solved with stochastic dual dynamic program-
ming (SDDP).

Multi-stage stochastic energy management models considering battery degra-
dation, both cyclic and calendar aging, and an analysis studying the impli-
cations with respect to operation costs and battery lifetime (Papers I and V).
This thesis studies the consequence of considering battery degradation in opti-
mization, both stochastic and deterministic, for long-term operation of a MG with
a high level of generation from VRESs, and both hydrogen and battery ESSs. Bat-
teries have relatively high investment costs and limited lifetime, but the battery
lifetime can be prolonged by properly accounting for the degradation in the op-
eration strategy.
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Methods for considering uncertainties associated with wind and solar power
forecast uncertainties (Papers I and IV). Solar and wind power are expected
to be the two most important sources of renewable energy. Both are highly un-
certain, and it is therefore important to investigate how they can be embedded
into stochastic energy management models, and how their statistical properties
can be utilized to improve the model performance. The implemented methods
include auto-regressive (AR) models as well as Markov chains to account for the
VRES generation auto-correlation.

Comparison of stochastic, deterministic, and rule-based methods for man-
aging high levels of VRESs and ESSs in microgrids (Paper IV). This thesis
studies the value of using stochastic methods as opposed to deterministic and
rule-based methods to coordinate operation of ESSs in systems with high pen-
etration from VRESs. Energy-constrained systems, where the dispatchable gen-
eration capacity is low, have been the main focus. The gap between rule-based
operation strategies and stochastic optimization is bridged by showing how the
ESS marginal values can be translated into operating rules.

Implementation of linear distribution power flow formulation in PowerMod-
els.jl PowerModels.jl is an open source tool developed through the Los Alamos
National Laboratory’s Advanced Network Science Initiative by Coffrin et al. [23].
The purpose of PowerModels.jl is to study and compare different power flow for-
mulations in a unified framework, and the framework has attracted high attention
in research communities. As a contribution to the completeness of this framework,
the author of this thesis has implemented the linear distribution flow [24, 25] de-
scribed in Section 3.4.2. Unlike the purely linear formulation, the implemented
formulation also includes second order cone flow bounds.

Price formation in systems with high VRES and ESS levels (Paper III). The
electricity price in energy-contrained systems is highly influenced by the expected
future generation from VRES as well as the SOC of the ESSs. The marginal value
of stored energy has been studied, as well as corresponding electricity price for-
mation.

Market clearing with VRES and ESS: an open-source tool for visualizing the
market clearing in systems where ESS bid their marginal value [26]. This is
an educational tool for visualizing how ESSs, bidding their marginal value, influ-
ence the merit order and market clearing in competitive markets. The tool visual-
izes supply and demand curves, where the ESSs appear on both curves, and shows
the cleared volume and price for the given combination. The user can modify the
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Paper II
Modeling of ESS operational limits and
efficiency

Papers I and V
Modeling ESS degradation costs

Paper IV
Stochastic operation of energy-
constrained power systems

Paper III
Electricity pricing and valuation of
stored energy

Figure 1.1: Overview of papers and objectives.

capacity, value, and efficiency for all units while the market clearing illustration
updates dynamically.

1.4 List of publications

Figure 1.1 shows how the papers in this thesis relate to the objectives presented
in Section 1.2. The papers and short summaries are presented below:

Paper I P. Aaslid, M. M. Belsnes, and O. B. Fosso, “Optimal microgrid operation
considering battery degradation using stochastic dual dynamic programming,” in
SEST 2019 - 2nd International Conference on Smart Energy Systems and Technolo-
gies, Institute of Electrical and Electronics Engineers (IEEE), Sep. 2019, pp. 1–6,
ISBN: 9781728111568. DOI: 10.1109/SEST.2019.8849150

This paper considers the operation of a MG exposed to a variable market price
through a weak grid connection. The objective is to minimize battery degradation,
diesel generation, and power purchase costs under wind and demand uncertainty.
The implemented model uses SDDP to solve the MSSP model. The wind power
generation and the demand are subject to uncertainty, where the forecast error
auto-correlation is represented with an order one auto-regressive model. Battery
degradation is implemented with a piece-wise linear approximation to represent
quadratic cyclic degradation. The analysis investigates the effect of including bat-
tery degradation costs both for a stochastic model and a deterministic model. The
results show that the stochastic model avoids operating close to the battery upper

https://doi.org/10.1109/SEST.2019.8849150
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bound to prevent unnecessary battery cycling compared to the corresponding de-
terministic model and the model without degradation costs. Moreover, the model
considering battery degradation also requires a greater price differences for arbi-
trage.

Paper II P. Aaslid, F. Geth, M. Korpås, M. M. Belsnes, and O. B. Fosso, “Non-linear
charge-based battery storage optimization model with bi-variate cubic spline con-
straints,” Journal of Energy Storage, vol. 32, p. 101 979, Dec. 2020, ISSN: 2352152X.
DOI: 10.1016/j.est.2020.101979

This paper implements a non-linear battery optimization model in the variable
space of voltage [V ], current [A], and charge [Ah], referred to as the IVQ-model,
that is compared with a more traditional model formulation in the variable space
of power [W ] and energy [Wh], referred to as the PE-model. The IVQ-model is
closer to the battery chemistry than the PE-model and enforces operating limits
with respect to current, voltage, and charge. This model enables operation closer
to the battery capabilities and more accurate estimation of the battery SOC. The
battery voltage characteristics and converter efficiency are given by cubic spline
functions based on empirical data.

Paper III P. Aaslid, M. Korpås, M. M. Belsnes, and O. B. Fosso, “Pricing electricity
in constrained networks dominated by stochastic renewable generation and elec-
tric energy storage,” Electric Power Systems Research, vol. 197, p. 107 169, Aug.
2021, ISSN: 03787796. DOI: 10.1016/j.epsr.2021.107169

This paper describes the electricity price formation process for energy-constrained
systems where ESSs must contribute to the security of supply. The implemented
method uses stochastic dynamic programming (SDP) to analyze the operating
strategy, and the stage-wise optimization problems are connected with storage end
value (SEV) functions using cubic splines. The results present locational marginal
prices (LMPs) and ESS marginal values to show how electricity prices are influ-
enced by the probability of scarcity. The prices, which increase with increasing
probability of scarcity, incite flexible units to respond as a precautionary action
against scarcity.

Paper IV P. Aaslid, M. Korpas, M. M. Belsnes, and O. Fosso, “Stochastic Optimiza-
tion of Microgrid Operation With Renewable Generation and Energy Storages,”
IEEE Transactions on Sustainable Energy, pp. 1–1, 2022, ISSN: 1949-3029. DOI:
10.1109/TSTE.2022.3156069. [Online]. Available: https://ieeexplore.ieee.
org/document/9727092/

This paper considers the optimal operation of a real MG where the demand is met
with generation from VRESs, both wind and solar power as well as a diesel gen-
erator serving as backup. A lithium-ion battery and a hydrogen ESS balance the
supply and demand. The model is divided into a short-term model for the interval

https://doi.org/10.1016/j.est.2020.101979
https://doi.org/10.1016/j.epsr.2021.107169
https://doi.org/10.1109/TSTE.2022.3156069
https://ieeexplore.ieee.org/document/9727092/
https://ieeexplore.ieee.org/document/9727092/


Chapter 1: Introduction 9

covered by the weather forecast, and a long-term model for the period beyond the
weather forecast horizon. SDDP, deterministic, and rule-based methods are tested
in six different combinations of short- and long-term models and compared with
each other using rolling horizon simulation over almost a full year for real ob-
servations and real meteorological forecasts for the MG. The proposed method is
tested for three different variations of the MG: a) large diesel generator, b) small
diesel generator, and c) weakly grid connected. The results show that stochastic
optimization, especially for the long-term perspective, outperforms the rule-based
and deterministic approaches for the energy-constrained cases where the diesel
generator is too small or the grid connection is too weak to meet the peak demand
in case of empty ESSs. Whereas the deterministic and rule-based approaches in-
cur significant operating costs due to load shedding, the SDDP-based approaches
keep the load shedding low while still retaining low diesel generating costs. The
paper also explains how the cutting hyperplanes from SDDP can be interpreted as
adaptive time and state dependent priorities for the flexible resources.

Paper V P. Aaslid, M. Korpås, M. M. Belsnes, and O. B. Fosso, Stochastic Operation
of Energy Constrained Microgrids Considering Battery Degradation, 2021. [Online].
Available: https://arxiv.org/abs/2111.03313

This paper considers the optimal operation of the MG from Paper IV, and investi-
gates how battery degradation influences the operational pattern and costs. The
paper proposes a piece-wise linear approximation of the SOC dependent degra-
dation and combines it with a cycling dependent degradation model. The results
indicate that the battery lifetime can be extended by around four years by includ-
ing both degradation types in the operation costs for the analyzed system.

1.5 Outline of thesis

Chapter 2 gives a fundamental introduction to power system operation, and the
distinct characteristics of power-constrained and energy-constrained systems. We
also explain the role of the transmission and distribution systems in coherence
with the emerging distributed energy resources (DERs), and how new types of
complexity can be managed.

The two main topics of the thesis are covered in Chapters 3 and 4. Chapter 3
presents modeling techniques for DERs, both ESSs and VRESs as well as grid.
Chapter 4 presents methods for combining the modeling techniques presented in
Chapter 3 into stochastic models capable of solving models with several states
across several stages under uncertainty. A summary of the results is presented
and discussed in Chapter 5, and the conclusions and recommendations for future
work are presented in Chapter 6.

https://arxiv.org/abs/2111.03313




Chapter 2

Power system operation

This chapter provides background information about power system operation. Sec-
tion 2.1 introduces fundamental concepts like supply, demand, power balance, and
the difference between centralized and market-based organization. Sections 2.2 and 2.3
explain the characteristics of power-constrained systems compared to energy-constrained
systems. Section 2.4 considers the DERs as opposed to centralized resources with re-
spect to managing grid limitations, and Section 2.5 describes the role of uncertainty
in energy-constrained systems. Section 2.6 considers how complexity in several di-
mensions adds up, and Section 2.7 considers the MG perspective as a part of the
solution for how to operate the future power system.

Electricity is a commodity that can be purchased and sold in competitive markets,
but it is also a service that is critical for most parts of modern society. Residen-
tial, industrial, and commercial appliances as well as transportation and public
services are strongly dependent on a secure and reliable power supply. The ob-
jectives of power system operation are therefore to ensure that the supply and
demand balances in a reliable, safe, and cost effective way [32].

2.1 Power balance

Compared to many other commodities, electricity cannot be stored directly but
must be delivered at the time of generation. In other words, supply and demand
must be balanced at all times. The power systems comprise large networks, from
high to low voltage, for distributing the produced electricity to the consumers. The
operation of a power system is a complex sequence of decisions that respect the
technical limitations of both the network as well as the producers and consumers.
The decisions must be cost effective while ensuring reliable and secure system

11
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Figure 2.1: Optimal price and quantity are given where the supply and demand
curves cross. The gray areas indicate the total surplus that can be divided into
consumer and producer surplus for competitive markets.

operation.

A power system comprises multiple producers and consumers. From an economic
perspective, the objective is to maximize the total surplus, the sum of consumer
and producer surplus, as illustrated in Figure 2.1. The supply curve shows the
suppliers’ willingness to produce and indicates their marginal production cost.
Likewise, the demand curve indicates how much the consumers are willing to pay,
their marginal utility [12]. The optimal solution is to operate where the supply and
demand curves cross, and the competitive price is given by the marginal producing
or consuming unit.

The power system operation does not directly consider the optimal sizing of the
production, consumption, or corresponding investment costs, only the marginal
operating cost and utility.

2.1.1 Organization

Power systems are either organized through centralized control, competitive mar-
kets, or hybrid markets. Centralized control means that the total production and
consumption are decided by a centralized operator based on operating costs of the
production and the value of supplying the consumers. This was the dominant way
of operating power systems until the first power markets emerged in the 1980s.
Competitive markets have multiple individual producers and consumers that each
seek to maximize their surplus. A fundamental requirement for efficient markets
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is perfect competition where some of the requirements are [12]:

1. The agents are acting on the market price without exercising market power.
2. The agents have well behaved costs that increase with output.
3. Market prices are publicly known.

These requirements are valid to a lesser extent for distribution systems, which are
typically organized as regulated monopolies.

Given perfect competition, both centralized control and competitive power mar-
kets will, from a theoretical perspective, maximize the total surplus. The price in
a competitive market is set where supply and demand intersect as shown in Fig-
ure 2.1, and the distribution of the surplus between producers and consumers is
given by the market price. A high market price will therefore allocate a higher
share of the total surplus to the producers while the consumers will benefit from
low prices. Both organizations have pros and cons and cause many practical chal-
lenges that will not be discussed further in this thesis. For further reading about
power markets, the reader is referred to Stoft [12].

The Norwegian power system is a part of joint power market with the Nordic
countries (except Iceland) and the Baltic countries organized by Nord Pool [33],
and is also connected to the UK, Germany, and the Netherlands. Nord Pool cur-
rently divides the market into 15 price zones, five of them in Norway, where the
producers and consumers place their bids daily for their willingness to produce
or consume in the day-ahead market. Nord Pool clears the market for each zone
based on the bids and the exchange capacities for connected zones the day be-
fore implementation, and each participant is allocated a volume to produce or
consume for each hour at the cleared price. The participants are also allowed to
adjust their volumes after the market clearing before activation by trading in the
intra-day market.

The transmission system operator (TSO), in Norway Statnett [34], is responsible
for the real-time operation of the power system. The system is continuously mon-
itored and adjusted to keep the system frequency stable without violating other
operational constraints like voltage limits, thermal capacity limits as well as relia-
bility measures. The scope of this thesis is system operation with respect to energy
management, primarily hourly, but the presented methods are also adequate for
shorter time steps.
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2.2 Power-constrained systems

Power systems dominated by thermal dispatchable generators have well-defined
operating costs. Characteristics like ramping capabilities and minimum load should
be considered, especially for coal and combined cycle gas turbine (CCGT) power
plants [35], but their marginal generation costs are principally given by the fuel
costs. Except for ramping restrictions and unit-commitment, their generation and
the corresponding cost at one step is independent from the generation at other
time steps.

Given well-defined operating costs, the optimal operation of a power system (with
unlimited and lossless transmission) can be found using the merit order, where the
supply is ranked with ascending marginal costs and the demand with descending
marginal utility. The activation order is given by the merit order, and more supply
is activated to meet the demand until the remaining supply has higher marginal
cost than the marginal utility of the remaining demand as illustrated in Figure 2.1.

Due to the relatively weak coupling in time compared to systems with ESSs, the
optimal generation capacities of these systems are often analysed based on the
load duration curve as shown in Figure 2.2. The load duration curve indicates
the system demand ordered by power magnitude instead of chronologically and
shows the duration (x-axis) of the different power levels (y-axis) through a year.
For known generation capacity investment costs and marginal operating costs, the
optimal durations and capacities, denoted t i and pi in Figure 2.2, can be found
[12]. The optimal capacities based on load duration curves have also been derived
for ESSs under the assumption of limited power capacity and infinite energy ca-
pacity [13]. The optimal capacities ensure the demand is met with a mix of gen-
eration technologies that minimizes the long-term operating costs, and that the
suppliers recover their investment cost through the generator’s lifetime.

These systems are considered power-constrained, given the fuel availability at the
given price is not a limiting factor, since the total available power capacity is the
main limiting factor to meet meet the demand in a cost effective way at all times.
As illustrated in Figure 2.2, the highest demand has a very short duration. It is
therefore extremely expensive to provide the peak capacity since it is rarely used.
Moreover, since the price is set by the marginal producing unit, each unit will only
be profitable in the periods where an even more expensive unit sets the price.
Therefore, the optimal solution in a competitive market involves some scarcity to
enable the most expensive generators to recover their investment costs.
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Figure 2.2: Load duration curve showing the optimal duration and the respec-
tive optimal capacities for three generation technologies ordered from highest to
lowest operating costs.

2.3 Energy-constrained systems

Power systems dominated by VRESs and ESSs, for example hydro-power dom-
inated systems, are fundamentally different from power-constrained systems in
the following ways:

• A high share of the energy inflow is variable and uncertain with a marginal
cost close to zero.

• Energy spent from ESSs influenced their capability of delivering and ab-
sorbing energy later. The operation strategy is therefore strongly coupled in
time.

• The systems often have high installed power capacity, but they are limited
by the available stored energy.

Unlike power-constrained systems, where the marginal cost of most units are well-
defined through the fuel costs, energy-constrained systems have a high share of
variable units with marginal cost close to zero. Moreover, ESSs act as both supply
and demand by shifting energy in time without adding energy to the system. Al-
though the ESSs’ net energy delivery is less than zero due to losses, they add value
to the system by maximizing the utilization of VRESs with close to zero marginal
cost and minimizing expensive dispatchable generation and load shedding. There-
fore, their marginal cost/value are mainly given by the costs of all the other units
in the system.

However, energy-constrained systems can still use the marginal cost/value princi-
ple for operating the system in a safe and cost effective way like in the Norwegian
case [36]. Whereas power-constrained systems are dominated by dispatchable



16 Per Aaslid: Optimal coordination of renewable sources and storage

generators with well-defined costs that are independent from previous decisions,
the costs in energy-constrained systems are given by the marginal value of the
ESSs. ESSs comprise hydro-power reservoirs, batteries, and hydrogen storage sys-
tems as well as other resources that permit shifting energy in time and can also
include some types of DSR.

The hourly decisions for ESSs cannot be taken independently from decisions in
other time steps due to the strong time coupling. The optimal decisions from a
price taker perspective will therefore require price forecasts. Price forecasts are
derived based on analysis from a system perspective, hence the system analysis
still has a relevance for competitive markets. Both price taker and system opti-
mization perspectives are therefore considered in this thesis: Papers I and II take
a price taker perspective, Paper III considers the price formation seen from a sys-
tem perspective, while Papers IV and V consider small subsystems that act as price
takers in a larger system.

2.3.1 Storage marginal value

The marginal value of ESSs can be considered as the future opportunity cost
of the stored energy. How valuable is the stored energy compared to other re-
sources? How much power should be charged or discharged now? Unlike thermal
resources, ESSs have a very strong coupling in time. The storage marginal value
(SMV) is therefore obtained through optimization considering:

• Variability and uncertainty in both generation and demand.
• All future decisions are not taken at once, but updated stage-wise as time

elapses and uncertainty is revealed.
• The modeling horizon is in reality undefined.

Methods for complying with the uncertainty, stage-wise decisions and undefined
horizon are presented in Section 4.1, and the interpretation of the SMV is dis-
cussed in Section 4.1.4.

Valuation of stored energy, primarily in hydro-power reservoirs, has been exten-
sively studied in hydro-power dominated areas such as Norway, Sweden, Brazil,
New Zealand, and Canada for decades. The process of deriving the marginal oper-
ating value for hydro-power reservoirs for a stage-wise process under uncertainty,
commonly known as the water value [37], is closely related to SDP and has also
driven the development of SDDP [38].

This thesis will extend the marginal value principle to other ESS types, such as
batteries and hydrogen storage with fuel cell and electrolyzer, as well as other
uncertainties like wind and solar power generation.
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2.4 Transmission and distribution

The transmission system is the backbone of the power system enabling transmis-
sion of power over large geographical distances between large-scale producers,
consumers, and distribution networks. The transmission system operates at high
voltage to minimize the losses, and typically has a meshed structure for high se-
curity in case of outages. The distribution systems are regional medium and low
voltage networks, typically with a radial structure, that distribute the power from
the transmission system all the way down to the consumers. Whereas the trans-
mission system is operated actively to stay within its physical operating limits, the
distribution systems have been operated more passively by ensuring the network
capacity is sufficient to handle the maximum load at all times [19]. Moreover, the
transmission system can experience alternating power flow directions, while the
distribution systems have typically had a well-defined power flow direction from
the transmission system connection point to the consumers.

The emerging distributed resources, including production, flexible demand, and
ESSs, reveal new challenges and opportunities for how the distribution system
is operated and utilized. The flexibility enables operation of the distribution sys-
tem in a similar manner as the transmission system [19], and can both manage
challenges on the distribution level as well as interact with the markets on the
transmission level.

The increasing share of VRESs also imposes new challenges with respect to man-
aging geographical imbalances. For example, areas with a high level of solar power
will often experience contrary production compared to areas with a high level of
wind power. Temporary local energy shortages can be avoided by transmitting
power from areas with surplus. However, grid limitations necessitate planning of
power exchange upfront to ensure a sufficiently high SOC of the ESSs in areas
with energy deficit.

2.5 Uncertainty

Power systems are exposed to uncertainties, which can be classified into technical
and economical, as illustrated in Figure 2.3 [39].

This thesis considers the uncertainty in power delivered from VRESs and power
absorbed by consumers, which can be classified as a technical operational un-
certainty. Whereas the power-constrained systems dominated by thermal genera-
tors must mainly manage the demand uncertainty, the energy-constrained systems
with a high share of VRESs must also manage uncertainties in both wind and so-
lar power. Lasting low generation from VRESs can potentially empty ESSs and
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Figure 2.3: Classification of power system uncertainties [39]

cause energy deficit. Hence, operational efficiency and security of supply must be
carefully balanced under adequate uncertainty management.

2.6 Complexity

The operation of energy-constrained systems should consider:

• The system’s technical characteristics.
• A broad range of possible scenarios.
• Long time horizons.
• Large geographical areas.

However, the temporal and spatial level as well as the scenarios will each increase
the size of any system model linearly. Formulating detailed optimization models in
a straightforward manner while accounting for complexity in multiple dimensions
yields intractable models that are difficult to solve within moderate computation
time.

Aggregation and decomposition techniques are widely deployed in hydro-power
scheduling. The models are often decomposed into a sequence of models where
the first covers all the three aspects above, but with an aggregated representa-
tion of the power system. The following levels use the previous model results as
input, and have an increasing level of detail but decreasing time horizon and/or
geographical extension [40]. By doing so, detailed technical modeling can be in-
cluded while still accounting for large-scale phenomena like long-term energy
adequacy and transmission between distant geographical areas.
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2.7 The microgrid perspective

The US Department of Energy define a MG in the following way [41]:

A microgrid is a group of interconnected loads and distributed energy
resources within clearly defined electrical boundaries that acts as a single
controllable entity with respect to the grid. A microgrid can connect and
disconnect from the grid to enable it to operate in both grid-connected
or island-mode.

This definition includes the following requirements [42]:

• The boundaries of a MG are clearly defined.
• The MG resources are controlled with respect to each other rather than the

grid.
• The MG can also operate disconnected from the grid.

MGs have recently attracted increasing attention for several reasons:

• Whereas the traditional distribution systems are vulnerable to failures at
any point of a radial, MGs provide increased security of supply by allowing
disconnected operation for limited periods or permanently [43].

• Electrification of and expansion of remote areas is costly due to the geo-
graphical distances, and sometimes few consumers to pay for the costs. In
some situations, MGs can be a viable alternative to expensive grid expan-
sions [44].

• The market price signals does not necessary capture local scarcity or surplus
of supply. MGs facilitate local energy trading and local harvesting of profit
[45].

• A high number of DERs can become intractable to manage for system opera-
tors. MGs enable efficient integration of distributed generation from VRESs
[22] and utilization of distributed flexibility, such as DSR [21] and EVs [46].
MGs can serve as an aggregation layer to simplify the interaction between
DERs and the grid operator [47].

The points above can be summarized into three main drivers for MG deployment:
1) energy security, 2) economic benefits, and 3) clean energy integration [42].

All papers in this thesis take a MG perspective, where the operation considers
a set of resources with clearly-defined boundaries. The contributions and main
findings are therefore mostly seen from the body of MG research. However, several
of the results are also valid for large-scale systems and will be further discussed
in Chapter 5.
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Figure 2.4: Conceptual topology of Rye microgrid.

2.7.1 Rye microgrid

Rye microgrid is located near Trondheim in Central Norway. As illustrated in Fig-
ure 2.4, the MG comprises a farm and a few households, which are supplied by
solar and wind power. Supply and demand are balanced with a lithium-ion bat-
tery and a hydrogen unit with electrolyzer and fuel cell, and a diesel generator
serves as backup [48]. Papers IV and V have used different variations of Rye to
study the optimal operation strategies.



Chapter 3

Modeling of flexible energy
resources

This chapter considers basic modeling principles for ESSs, wind and solar power as
well as the grid. Section 3.1 presents detailed modeling principles for batteries and
under which assumptions they can be simplified to a representation in the power
and energy variable space. Common operating costs due to degradation are also out-
lined. Section 3.2 presents common modeling principles for wind and solar power.
Section 3.3 briefly explains how DSR can be considered as a combination of a ESS
and flexible load. Section 3.4 presents basic grid modeling and some common linear
approximations.

Flexibility comprises DSR, ESSs, and flexible generation [49]. The mathematical
description of the flexible resources are the main building block of power system
models. The description should be accurate enough to represent the technical
properties and limitations, yet simple enough to integrate into larger power sys-
tem models. As opposed to traditional power systems with large centralized flex-
ible generators, the emerging flexibility is often distributed and uncertain. Grid
limitations must also be accounted for at a more detailed level to enable high
utilization of the distribution systems.

3.1 Electric energy storage

ESSs in power systems has previously mainly included stored hydropower de-
signed for managing seasonal variations, and pumped hydro for managing daily
and intra-day variations. With the increasing amount of installed VRESs, the in-
terest in pumped hydro has been renewed, resulting in both new plants and re-
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habilitation of existing plants [16, 50].

However, hydropower is only possible in areas where the geographical conditions
are right. Therefore, alternative ESS technologies have gained significant atten-
tion to increase the utilization of generation from VRESs. One of the most salient
ESS technologies are lithium-ion batteries. The 150 MW/193.5 MWh Tesla bat-
tery in Hornsdale, South Australia has been successful in balancing a power sys-
tem with an increasing share of generation from VRESs [51], and even larger
batteries are under construction such as the 300 MW/1200 MWh battery at the
Moss Landing Power plant, California [52]. Batteries are also widely deployed on
distribution level where their applications range from short-term power quality
improvement to energy management to increased the utilization of VRESs [53].
Residential scale batteries are also pointed out as an important factor for efficient
solar photovoltaic (PV) integration [54].

Although lithium-ion batteries can increase the utilization of VRESs, they suffer
from a relatively short duration (typically 1-4 hours) and high energy capacity
costs. Reaching 50-80% generation from VRESs require ESSs with a duration of
up to 10 hours, while 70-90% VRESs requires ESSs with a duration of up to 100
hours [55]. Hydrogen is a possible long-duration storage alternative due to its rel-
atively low energy capacity cost [56]. The cost of scaling up batteries with respect
to energy storage capacity is relatively high, and they also suffer from self dis-
charge. In contrast, hydrogen tanks are relatively inexpensive and hydrogen can
be stored for long periods without worrying about self discharge. On the other
hand, they have poor round-trip efficiency, typically below 40% [57], and despite
decades of research, they still struggle to compete commercially due to high fuel
cell and electrolyzer costs and limited lifetime [58]. However, hydrogen can con-
nect electricity and gas markets, increasing the overall system flexibility. Providing
sufficient flexibility into the energy system with variability at both short and long
timescales will require a wide range of flexible resources with high efficiency, high
power capabilities, and a long duration.

3.1.1 Electrochemical batteries

Electrochemical batteries comprise multiple interconnected cells, both in series
and parallel, as shown in Figure 3.1. They deliver energy by converting a high en-
ergy reactant to lower energy products, where this process is reversible for charge-
able batteries. Battery models for economic dispatch often consider batteries in the
variable space of power and energy, while more detailed battery models consider
the current, voltage, and electric charge variable space [59, 60]. The cell voltage
vcel l(icel l , qcel l) depends on both the current i and the SOC q.

By assuming identical cells, and that the voltage and SOC always will be equal
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Figure 3.1: Organization of cells in series and parallel in a battery and conversion
between DC and AC.

for all cells, the battery voltage is given by the cell voltage times number of cells
in series as shown in Equation (3.1a) and the current by the cell current times
number of cells in parallel given by Equation (3.1b). The power equals the product
of current and voltage as shown in Equation (3.1c), and Equation (3.1d) shows
how the converter losses depends on the power charge/discharge. The change in
SOC is given by the injected current as shown in Equation (3.1e). Voltage, current,
and charge are limited by the properties and capabilities of the cells as shown in
Equations (3.1f) to (3.1h).

v = vcel l(icel l , qcel l) · Nseries (3.1a)

i = icel l · Nparal lel (3.1b)

pdc = i · v (3.1c)

pac = pdc − ploss(pac) (3.1d)

qcel l,t =

∫ t

0

(−icel l,t)d t (3.1e)

V min ≤ v ≤ V max (3.1f)

−Imax ≤ i ≤ Imax (3.1g)

Qmin ≤ q ≤Qmax (3.1h)

This battery model formulation has been implemented as a non-linear optimiza-
tion model in Paper II where the relation between cell voltage, current, and charge
and the converter loss has been represented using spline functions based on em-
pirical data. Equation (3.1e) is reformulated using numerical integration, where
forward Euler is the most common method. However, the discharge power de-
pends on the voltage as shown in Equation (3.1c), which is a function of both cur-
rent and charge as shown in Equation (3.1a). The numerical integration method
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and the step length will therefore influence the optimization results, which have
been studied and discussed in Paper II.

3.1.2 Generic storage model

The voltage profile for lithium-ion batteries is relatively flat compared to other
battery technologies, and is commonly assumed to be constant in battery model-
ing for economic dispatch. By also assuming the losses are proportional with the
power, the proposed formulation reduces to the generic storage model in Equa-
tion (3.2), where the ESS is represented in the power and energy variable space.
The losses are given by the efficiency coefficients ηc ,ηd for charging and discharg-
ing, respectively.

et =

∫ t

0

pt d t (3.2a)

pt = ηcsct −
sdt

ηd
(3.2b)

Emin ≤ et ≤ Emax (3.2c)

0≤ sct ≤ SCmax (3.2d)

0≤ sdt ≤ SDmax (3.2e)

This simplification ignores the dependency between charge power and SOC, hence
the choice of numerical integration method does not influence the results such that
Equation (3.2a) can be written as Equation (3.3) when using the forward Euler
method.

et = et−1 +∆Tt

�

ηcsct −
sdt

ηd

�

(3.3)

Many formulations also include restrictions preventing simultaneous charging and
discharging. It can either be formulated as a non-linear constraint as shown in
Equation (3.4), or with a binary variable δ as shown in Equation (3.5) [61].

sct · sdt = 0 (3.4)

0≤ sct ≤ SCmax ·δt

0≤ sdt ≤ SDmax · (1−δt)

δ ∈ {0,1}
(3.5)
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Figure 3.2: Battery capacity as a function of cycle depth.

However, simultaneous charging and discharging is, in reality, a way for the opti-
mization model to discard energy due to rigorous constraints, for example, ther-
mal generators ramping constraints or non-dispatchable generation from VRESs
[62]. This effect can be reduced by making the generation from VRESs dispatch-
able as shown in Papers I to V, and include discharge costs for ESS dispatch as
shown in Papers I and V. Moreover, Paper II avoids simultaneous charge and dis-
charge by representing the charge/discharge in the voltage and current variable
space where the current variable can be both positive and negative, but this for-
mulation is non-linear.

Although a more detailed mathematical formulation imposes a more complex op-
timization problem, the solution time will not necessarily increase correspond-
ingly. An optimization problem with an overly simplified storage model will in
many situation have a flat optimum (multiple equally good solutions). By adding
more details to the modeling, more curvature is added to the solution space, yield-
ing a smaller or a unique optimum that, in turn, might contribute to reduce the
solution time.

3.1.3 Operating costs

Whereas thermal generator operating costs are highly dependent on fuel con-
sumption and emission costs, an ESS only shifts energy in time. However, the oper-
ational pattern may influence the degradation rate. For example, electrochemical
batteries like lithium-ion batteries degrade with time (calendar aging), tempera-
ture, ampere throughput, charge/discharge power, and cycling depth [63].

Figure 3.2 illustrates how the battery degradation increases with increasing cy-
cling depth and how the degradation changes with SOC. These degradation effects
are operationally dependent, and Paper I studies the implications of cyclic degra-
dation in coherence with wind uncertainty in a MG using SDDP. Moreover, Paper V
studies the optimal operation of both battery and hydrogen storage considering
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both cycling and calendar aging under solar PV, wind, and demand uncertainty
over a full year for the Rye MG [48, 64].

Non-linear degradation effects can be linearized using piece-wise linear segments
both for cyclic degradation as described in Xu et al. [10] and SOC dependent
degradation as shown in Paper V. By using linear formulations, these degrada-
tion effects can be combined with powerful stochastic optimization methods like
SDDP.

3.2 Variable renewable energy sources

The deployment of VRESs world-wide is dominated by solar and wind power
[3]. The maximum power production from these sources are solely given by the
weather, but they can often be controlled freely below the maximum power pro-
duction. Curtailment has traditionally been considered as a last resort measure,
but supply shaping and proactive curtailment are necessary for optimal and safe
operation of the energy system when the levels of VRESs are high [65].

3.2.1 Solar power

Solar power production depends mainly on the solar-zenith angle and the cloud
cover. The solar-zenith angle is a predictable quantity given by the geographical
location of the PV array, and the time of day and year. The relation between the
power production and the solar radiation, often expressed as direct normal irra-
diance (DNI) and diffuse horizontal irradiance (DHI), are well described in the
literature [66]. From a stochastic programming perspective, it is advantageous to
divide the solar power production into a deterministic and a stochastic part as
shown in Equation (3.6) where PF max

t is the theoretical maximum production at
time t with clear sky and cit is the clearness index (CI).

pt = PF max
t · cit (3.6)

The CI is a value between zero and one, where one represents clear sky. The CI is
strongly connected to the cloud fraction, which represent the fraction of an area
that is covered with clouds based on satellite images [67] and is a common quan-
tity for meteorological forecasts [68]. The CI is more suitable to represent as a
stochastic process than the power directly since the CI varies between zero and
one and has a weaker coupling to time of day and year than the actual produc-
tion. Papers II, IV and V consider solar power uncertainty representing uncertainty
through the CI.
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Figure 3.3: Ratio between wind speed and power generation for a Vestas V27
wind turbine [70].

3.2.2 Wind power

The maximum power production from a wind turbine is primarily given by the
wind speed as shown in Figure 3.3. The ratio is non-linear, and at intermediate
wind speeds even small variations can cause significant change in production.
This curve is therefore important for the variance of the wind power production,
which will depend on the wind speed. The wind turbine will not produce power
at all below the lower threshold, the cut-in speed. Moreover, wind speeds above
the upper threshold, the cut-off speed, will either cause a controlled shut-down
or a gradual ramp down to avoid excessive loading of the equipment [69]. In the
range between the cut-in and cut-off speed, the production can be adjusted freely
below the maximum production by adjusting the blade tilt angle. Different turbine
types have a distinct generation curve as well as cut-in and cut-off speeds.

3.3 Demand side response

DSR is expected to be an increasingly important balancing tool as more VRESs
are connected to the grid. Potential flexibility is available in different sectors, for
example, large-scale industry, heating of buildings [71], EV charging [72], and
household appliances [73]. These types of flexibility can be considered as either
changing or shifting the load, or a combination of both. Whereas changing the load
involves either shedding or increasing the load without any future obligations,
load shifting means the load reduction/increase has to be compensated for later
and can be represented as a virtual battery [74].

This thesis only considers demand flexibility through load shedding, which is an
essential instrument in energy-constrained systems. Systems with low dispatch-
able generation capacity will possibly yield infeasible optimization problems in
periods with low generation from VRESs unless load shedding is permitted. More-
over, Section 2.2 emphasizes that the theoretical optimal solution from a system
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perspective involves some load shedding [12].

3.4 Grid modeling

The networks connecting generation, consumption, and ESSs, both transmission
and distribution, are represented through the power flow equations. The power
flow follows the physical laws, and they describe the relation between voltage
magnitude |v|, voltage angle θ , active power p, and reactive power q at each bus or
line in the system. The power system must be operated within its technical limits,
such as thermal rating of lines and voltage limits, and the power flow equations
enable us to operate generation, demands, and ESSs within these limits.

3.4.1 Bus power injections

The total bus power injections, both active power and reactive power, balance the
power transmitted to other buses at each individual bus. The power injections
pi/qi at bus i in Equation (3.7) are the sum of generated power pg/qg and power
discharged from ESSs pe/qe minus the consumption pd/qd , where the sets of of
generators, ESSs, and demands at bus i are denoted as Gi ,Ei ,Di respectively.

pi,t =
∑

g∈Gi

pg,t +
∑

e∈Ei

pe,t −
∑

d∈Di

pd,t (3.7a)

qi,t =
∑

g∈Gi

qg,t +
∑

e∈Ei

qe,t −
∑

d∈Di

qd,t (3.7b)

∀i ∈ B,∀t ∈ T

3.4.2 Power flow

The power flow between the buses is given by the power flow in Equation (3.8)
where |vi,t |/|v j,t | are the bus voltage magnitudes, θi,t/θ j,t are the voltage angles,
and Yi j = Gi j + jBi j where Yi j is element i j of the system admittance matrix.

pi,t = |vi,t |
n
∑

j=1

|v j,t |(Gi j cos(θi,t − θ j,t) + Bi j sin(θi,t − θ j,t)) (3.8a)

qi,t = |vi,t |
n
∑

j=1

|v j,t |(Gi j sin(θi,t − θ j,t)− Bi j cos(θi,t − θ j,t)) (3.8b)

∀i ∈ B,∀t ∈ T
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Figure 3.4: Illustration of convex relaxation (blue) compared to approximation
(red) of a non-convex space (gray) (redrawn based on [76, p.4]).

The power flow equations are key constraints for power system optimization mod-
els when network limits are considered. The full power flow equations are both
non-linear and non-convex, and computationally difficult to solve [75]. It is also
difficult to guarantee whether an optimal solution is globally or locally optimal.
However, there are a wide range of alternative formulations, both convex relax-
ation and approximations, as illustrated in Figure 3.4, that reduce the complexity
at the sacrifice of precision. The convex relaxations encloses the whole non-convex
feasible space of Equations (3.8a) and (3.8b) and guarantees a global optimum.
However, the solution is not guaranteed to be a feasible solution of the power
flow equations. Approximations can neither guarantee that the solution is a feasi-
ble solution of the power flow equations nor global optimality, but they are often
satisfactorily accurate yet simple enough. The reader is referred to Molzahn and
Hiskens [76] for further reading about power flow formulations.

DC power flow

A simple yet very common linear approximation is the DC power flow. As summa-
rized by Stott et al. [77], there are many variations of the DC power flow. However,
the main assumptions are:

• The voltage is high such that R� X (resistance is small compared to reac-
tance.

• The difference in voltage angle between buses is small such that sin(θi −
θ j)≈ θi − θ j and cos(θi − θ j)≈ 1.

• The voltage magnitudes are close to unity |vi| ≈ 1.

The DC power flow approximation has been used in Papers I and III. Due to the
DC power flow’s limitations with respect to modeling medium- and low-voltage
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grids accurately, alternative formulations has been addressed as future work in
Section 6.1.

Distribution power flow (DistFlow)

The distribution power flow (DistFlow) [24, 25] is an exact solution of the AC
power flow for radial systems and is therefore commonly used for distribution sys-
tems. Instead of expressing the power flow equations using bus power injections
and bus voltages, DistFlow considers line powers pi j/qi j and current ii j . Moreover,
the voltage and current variables are expressed using the squared magnitudes |vi|2

and |ii j|2. The line resistance and reactance are denoted by Ri j and X i j , respec-
tively. The branch connections between buses j and k are denoted j→ k where k
is located below j seen from the substation. The resulting set of equations defined
for each line i j in the network are shown in Equation (3.9) [76].

pi j = Ri j|ii j|2 − p j +
∑

k∈ j→k

p jk (3.9a)

qi j = X i j|ii j|2 − q j +
∑

k∈ j→k

q jk (3.9b)

|v j|2 = |vi|2 − 2(Ri j pi j + X i jqi j) + (R
2
i j + X 2

i j)|ii j|2 (3.9c)

|ii j|2|vi|2 = p2
i j + q2

i j (3.9d)

The linear DistFlow assumes the active and reactive power losses are small com-
pared to the power flows and ignores the losses associated with the squared cur-
rent in Equation (3.9). The equation reduces to Equation (3.10), which is linear
if the squared voltage magnitudes |vi|2 and |v j|2 are used as variables.

pi j = −p j +
∑

k∈ j→k

p jk (3.10a)

qi j = −q j +
∑

k∈ j→k

q jk (3.10b)

|v j|2 = |vi|2 − 2(Ri j pi j + X i jqi j) (3.10c)



Chapter 4

Stochastic programming for
power systems with energy
storage

This chapter presents stochastic optimization methods for power system operation.
Section 4.1 describes how to account for uncertainty using rolling horizon and stochas-
tic dynamic programming, and how stage-wise decomposition provides a useful method
for deriving the value of stored energy as a function of time and state. Section 4.2
presents techniques for modeling uncertainty.

Power systems are exposed to both technical and economical uncertainties as em-
phasized in Section 2.5. This thesis focuses on the technical operational uncer-
tainties associated with generation from VRESs and demand. Power generation
from VRESs is highly uncertain due to forecast discrepancies, and the demand
side is also uncertain due to variations in the individual consumption both for
residential, commercial, and industrial consumers.

Power systems with high energy storage capabilities can store surplus energy from
VRESs to maximize their utilization, and they can withdraw energy from ESSs to
minimize load shedding and thermal generation. However, the current operation
of ESSs is connected to the future capability of delivering and absorbing energy.

Energy-constrained systems, where the dispatchable generation capacity depends
on support from VRESs and ESSs to meet the peak demand, must consider the
operation of ESSs carefully since the current decisions are connected to the fu-
ture security of supply. Likewise, demand and generation discrepancies caused by
uncertainty also influences the future security of supply.

31
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Section 4.1 considers different modeling techniques to manage uncertainty associ-
ated with generation and demand discrepancies in power system operation, both
rolling horizon modeling, value-based storage management as well as multi-stage
stochastic programming.

Energy-constrained systems are particularly vulnerable to generation and demand
uncertainties. Weather dependent uncertainties, like wind and cloud cover, are of-
ten strongly auto-correlated. Low wind at one time step increases the probability
of low wind at the next time step, and forecast errors are also correlated. The auto-
correlation can therefore increase the risk of scarcity if not properly accounted for.
Modeling of correlations both in time and between different resources can con-
tribute to an increased utilization of VRESs without compromising the security of
supply. Selected methods for modeling uncertainties are presented in Section 4.2.

4.1 Modeling uncertainty

The result of an optimization model for operation is a proposal for how to oper-
ate a system’s flexible resources from an initial condition and for a limited time
forward. The proposed solution is only optimal for the conditions defined by the
model, and due to modeling inaccuracies and uncertainties, the control may not
be optimal or feasible for the real-time control of the system.

4.1.1 Rolling horizon optimization

Rolling horizon involves finding the optimal decisions within a prediction horizon
as illustrated in Figure 4.1, where the decisions within the roll horizon are imple-
mented. When the roll horizon has elapsed, the initial states and the forecasts are
updated, and the system is re-optimized for the new prediction horizon.

By repeating the procedure, the optimal strategy is corrected stage-wise through
the updated forecasts and initial states. This procedure is often associated with
model predictive control (MPC) [78]. The rolling horizon approach is tractable
since it ensures the state of the system and the optimization model are synchro-
nized regularly, reducing the risk of infeasible operating strategies.

Rolling horizon optimization has been used to optimize the operation of the Rye
MG in combination with both deterministic and stochastic models in Papers IV
and V.
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Figure 4.1: Illustration of rolling horizon optimization.

4.1.2 Modeling horizon and expected future value

Although generation and demand forecasts have limited look-ahead, in reality,
power system operation models have an undefined time horizon. Unless the stored
energy is properly valued beyond the time horizon of the operational optimization
models, the ESSs tend to be emptied. This can be avoided by simply enforcing
a fixed lower bound for the SOC at the end. However, in many situations this
approach will be unnecessary rigorous and will be further discussed in Section 5.3.

A more sophisticated method is to determine the value of the stored energy as
a function of SOC, an idea which is widely deployed in hydro-power scheduling.
Papers III and IV demonstrate how to determine the value of stored energy in
ESSs, both batteries and hydrogen, in systems with high penetration from solar
and wind power.

Let Vs(xs) represent the cost of the system state xs, typically the SOC of all ESSs
as well as other systems states. Vs(xs) is the expected future cost of the system
states if the system is operated perfectly in the future for the given states.

ESSs balances the operation between the extremes: generation curtailment and
load shedding. High SOC is associated with high risk of generation curtailment,
hence adding more energy to an almost full ESS has low value. Low SOC is as-
sociated with high risk of scarcity, hence adding more energy can contribute to
prevent load shedding and will therefore have a high incremental value.
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4.1.3 Stochastic programming

This section uses the terminology from Dowson [79] to describe the MSSP formu-
lation in general terms:

• A stage s is a discrete moment in time where uncertainty is revealed and a
control is chosen.

• The state variable xs is a vector that encapsulates all necessary information
to model the system from stage s and onward.

• The control variable vector us represents all decisions, both explicit and im-
plicit, taken at stage s. The control must be within the set of admissible
controls Us(xs,ωs).

• The random variable vector ωs represents the uncertainty revealed at stage
s.

• The stage-objective function Cs(xs, us,ωs) represents the cost accrued at stage
s given the initial state xs, the uncertainty ωs, and the control action us.

• The state-transition function Ts(xs, us,ωs)maps the incoming state xs to the
outgoing state for the given control action us and uncertainty ωs.

From a power system operation perspective, the state variable vector typically in-
cludes all variables that are coupled in time such as the SOC of ESSs, and may
also include auto-regressive moving average (ARMA)-model variables (see Sec-
tion 4.2.1). The control variable vector includes all decisions, where the explicit
decisions include how the generators and ESSs are dispatched, while the implicit
decisions include variables like power flow and voltage levels that are connected to
the decisions but cannot be controlled directly. All these variables must stay within
the set of admissible controls defining the technical limitations of the system. The
random variable vector typically includes the demand and generation uncertainty.
The stage-objective function represents the operating costs from, for example,
thermal generators, load shedding, and degradation. The state-transition func-
tion describes how the state evolves between stages, for example, how the SOC of
the ESSs changes for the given initial state, control, and random variable vectors.

The classical two-stage stochastic model [80] is a decision process where the agent
first makes a decision under uncertainty before the uncertainty is revealed and a
corrective action can be taken. This decision process is given by Equation (4.1).

min
u1

C1(x1, u1,ω1) + E
ω2∈Ω2

�

min
u2

C2(x2, u2,ω2)
�

subject to x2 = T1(x1, u1,ω1)

u1 ∈ U1(x1,ω1)

u2 ∈ U2(x2,ω2)

(4.1)

The objective is to find the optimal control of the first stage that minimizes the
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operating costs for both stages, when the future is partly uncertain. The second
term in the objective function is actually the expectation of an optimization prob-
lem, hence we assume the future decisions are taken optimally. This formulation
is very useful for power system operation since the decision process, in reality, is
a sequence of decisions that can be corrected stage-wise as uncertainty becomes
known.

A key advantage with a stochastic model compared to a deterministic model is that
it considers the possibility of discrepancies between generation and demand fore-
cast and actual values. For example, a deterministic model will not take any pre-
cautionary actions against scarcity before it is expected to occur. For a stochastic
model, it is sufficient that one of the scenarios indicates the possibility of scarcity
such that precautionary actions can be taken to keep the probability of scarcity
low.

The two-stage stochastic model can be generalized to the MSSP formulation [80]
as shown in Equation (4.2).

min
u1

C1(x1, u1,ω1) + E
ω2|ω1

�

min
u2

C2(x2, u2,ω2) + . . .

+ E
ωS |ωS−1,...,ω1

�

min
uS

CS(xS , uS ,ωS)
�

�

subject to xs+1 = Ts(xs, us,ωs)

us ∈ Us(xs,ωs)

s ∈ {1, . . . , S}

(4.2)

Besides considering the expectation value of multiple nested optimization prob-
lems, the stage-wise uncertainty is also dependent on the noise of all previous
stages. Due to its complexity, the MSSP formulation in extended form is normally
intractable to solve for large-scale problems and various techniques have been
proposed to reduce the complexity. This thesis considers dynamic programming
techniques, both SDP [81] and SDDP [38]. The formulation in Equation (4.2) is
tractable to reformulate as a recursive problem as shown in Equation (4.3), given
stage-wise independent uncertainty, and is known as the Bellman equation [81].

Qs(xs,ωs) =min
us

Cs(xs, us,ωs) + Vs+1(xs+1)

Vs(xs) = E
ωs
[Qs(xs,ωs)]

subject to xs+1 = Ts(xs, us,ωs)

us ∈ Us(xs,ωs)

s ∈ {1, . . . , S}

(4.3)

As emphasized in Paper III, the recursive problem comprises two terms with the
following interpretations: The first term Cs(xs, us,ωs) represents the operating
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costs of the current stage s, while the second term Vs+1(xs+1) represents the future
cost for the state xs+1 given optimal future operation. The negative future cost
is denoted as the storage end value (SEV) in Equation (4.4), where the storage
marginal value (SMV) for each individual element in the state variable vector is
given by the gradient of the SEV-function with respect to the state xs as shown in
Equation (4.5).

SEVs(xs) = −Vs(xs) (4.4)

SMVs(xs) =∇SEVs(xs) (4.5)

The SMV represent the marginal value of the stored energy and is referred to
as the water value [37] in hydropower scheduling. The interpretation of SMV is
further discussed in Section 4.1.4.

Stochastic dynamic programming

SDP is a classical approach for solving the stochastic recursive problem in Equa-
tion (4.3) given the stage-wise independency, where the state space xs is divided
into a finite number of discrete states. The problem is solved for each discrete
state starting at the final stage S. The solution of the problem at each discrete
state constructs a SEV-function for the previous stage. Using backward recursion,
the whole problem can be solved yielding an optimal operating strategy for all
combinations of stages and states. Unfortunately, the problem size grows expo-
nentially with number of state variables due to the discretization, also known as
the curse of dimensionality [81]. The variation proposed in Paper III uses splines
to generate the SEV-functions, and the method requires fewer discrete points for
each state than the classical linear approach [82].

Stochastic dual dynamic programming

Convex models can be solved without discretizing the state space using SDDP
[38]. The SEV-function is approximated with linear cutting planes using a sampling-
based forward-backward sweeping algorithm. The forward pass samples and opti-
mizes a sequence of random scenarios from either historical scenarios or a statisti-
cal distribution. The backward pass refines the approximation of the SEV-function
by adding new cuts as illustrated in Figure 4.2. The stage-wise mathematical
formulation is shown in Equation (4.6) where θs represents the negative SEV-
function (expressed as a cost), and αk

s and β k
s are cut coefficients obtained by the

algorithm in iteration k. Detailed algorithms are presented by Pereira and Pinto
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xs

SEVs

Figure 4.2: Approximation of the storage end value function bounded by linear
cuts (illustrated with red lines).

[38] and Dowson [79].

min
us

Cs(xs, us,ωs) + θs

subject to xs+1 = Ts(xs, us,ωs)

us ∈ Us(xs,ωs)

θs ≥ αk
s + β

k
s xs+1, k ∈ {1,2, ..., K}

s ∈ {1, . . . , S}

(4.6)

Whereas SDP typically reaches its computational limit for only a few state vari-
ables due to the curse of dimensionality [81], SDDP has been used to handle
hundreds of state variables [83].

The original SDDP algorithm [38] requires stage-wise independent noise. How-
ever, stage-wise dependencies in noise can be managed by modeling the depen-
dent noise as a part of the state using ARMA-models [84, 85] as demonstrated
in Paper I, and will be further explained in Section 4.2. The combination of SDP
and SDDP can also handle non-linear stage-wise dependencies through Markov
models [79, 86]. The proposed approach was originally used to model stage-wise
dependent price uncertainty [86], but Paper IV shows that the method can also
capture the non-linear auto-correlation in wind power forecasts.

4.1.4 Storage marginal value

The SMV represents the marginal value of charging or discharging stored en-
ergy, where both cause efficiency losses. Let CSc

s (xs) denote the marginal value of
charging energy to an ESS, and CSd

s (xs) the marginal cost of discharging energy.
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Figure 4.3: Energy storage systems act as both supply and demand in the market
clearing problem. The figures illustrate how the market price can be set by either
the charge value (Equation (4.7)) for high storage marginal value (left) or the
discharge value (Equation (4.8)) for low storage marginal value (right).

The charge value and discharge cost for an ESS with fixed efficiencies as shown
in Equation (3.2b) are then given by Equations (4.7) and (4.8).

CSc
s (xs) = η

c · SMVs(xs) (4.7)

CSd
s (xs) =

1
ηd
· SMVs(xs) (4.8)

The charge value indicates how much value is added to the system by charging
one unit to the ESS, and its value compared to other demands and charge values in
the system. Likewise, the discharge cost indicates the cost of discharging one unit
from the ESS and how it should be prioritized compared to other supplies. These
values change in time and as a function of all states in the system. For example,
in systems with both battery and hydrogen as described in Papers III and IV, the
battery SMV depends on the SOC for both the battery and hydrogen system.

The priorities based on SMVs can be visualized, as a snapshot, using supply and
demand curves where the ESSs act as both producers and consumers as shown
in Figure 4.3. In case of high SMV (left figure), the thermal generation will be
used to charge the ESS and the charging becomes the marginal unit that sets the
competitive price. In case of low SMV (right figure), the ESS is cheaper than the
thermal generation, hence ESS discharging becomes the marginal unit that sets
the competitive price.

The tool Market clearing with VRES and ESS [26], one of the contributions of
this thesis, visualizes how different supply and demand capacities and values in
combination with ESS power capacity, efficiency, and marginal value influence
the market clearing with respect to volume and price. The user can adjust the
parameters of the individual parameters while the visualization of the market
clearing updates dynamically.
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Since the future cost Vs(xs) is only a function of the state xs, it can also be used
to valuate the stored energy at the end of the optimization period in more de-
tailed power system models like the non-linear model proposed in Paper II. This
approach is commonly applied in hydropower scheduling [40].

4.2 Scenario generation

Stochastic programming methods rely on realistic scenarios spanning the sample
space adequately. Generation from VRESs is primarily weather dependent, hence
meteorological weather forecasts are essential to generate accurate generation
scenarios. Demand is also weather dependent through heating and cooling needs,
but will also, for example, follow known patterns through the day and week based
on habits associated with heating, cooking, washing, EV charging, and so on.

4.2.1 Auto-regressive models

Dynamic programming assumes stage-wise independence to decompose the prob-
lem into a sequence of decisions. It is therefore useful to represent uncertainty
using auto-regressive models capturing the correlations both in time and between
variables in a way that can be effectively implemented into SDDP as demonstrated
in Paper I.

A standard ARMA-model is shown in Equation (4.9) where X t represents the pre-
dicted variable at time t, εt is a white noise variable, αi and θ j are the model
parameters, and c is a constant. As seen from the structure, the predicted vari-
able depends on its value and the noise from previous time steps. Since weather
phenomena often tend to persist, auto-regressive models are commonly used to
model VRES uncertainties.

X t = c +
p
∑

i=1

αiX t−i + εt +
q
∑

j=1

θ jεt− j (4.9)

Forecast error

Instead of modeling the power pt directly using ARMA-models, it may be bene-
ficial to model the forecast error ∆pt as shown in Equation (4.10) where PFt is
the forecast.

∆pt = c +
p
∑

i=1

αi∆pt−i + εt +
q
∑

j=1

θ jεt− j

pt = PFt +∆pt

(4.10)
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Figure 4.4: Example of possible Markov model to describe how the weather de-
velops.

A limitation with this representation is that the generation can become negative,
especially when the forecast PFt is low. Moreover, it also assumes constant vari-
ance. However, wind power variance tends to increase for increasing wind power.
An alternative representation is to use a multiplicative model as shown in Equa-
tion (4.11), which both eliminates the negative production and makes the vari-
ance proportional with the forecast power [85].

∆pt =

�

c +
p
∑

t=1

∆pt−i

�

εt

pt = PFt ·∆pt

(4.11)

4.2.2 Markov model

A Markov model is a stochastic model where future state only depends on the
current state. For example, Figure 4.4 shows a very simple example for how the
weather tomorrow depends on the weather today. If the weather is sunny today,
the probability of sunny weather tomorrow is higher than the probability of cloudy
or overcast weather.

A benefit of Markov models is that the probabilities can be chosen freely and do not
need to follow any probability distribution, and they can easily incorporate non-
linearities. A clear disadvantage is that it is discrete, hence optimization models
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must explore all different states to find an exact solution.

4.2.3 Stage length

Correlations in time and between variables can also be captured by using rep-
resentative scenarios. For example, historical scenarios are commonly used for
long-term hydropower scheduling in the Nordic system [87] since correlations
both in time and space are difficult to preserve in stochastic models such that the
risk of prolonged dry or wet periods are underestimated [83].

A limitation with historical scenarios is that the model does not capture the possi-
bility to correct the operation strategy as new uncertainty becomes known. Power
system operation is in reality a sequence of decisions in time that are updated
each time new information is available, such as new observations and updated
forecasts. Moreover, the historical scenarios are only appropriate to use for long-
term scheduling beyond the horizon of the forecasts.





Chapter 5

Results and discussion

This chapter discusses the main results of the presented papers in coherence with
the objectives in Section 1.2. Section 5.1 concerns findings related to detailed battery
modeling in Paper II, and Section 5.2 presents results from the modeling of battery
degradation in Papers I and V. Stochastic operation of energy-constrained systems
as presented in Paper IV is considered in Section 5.3, and electricity pricing and the
valuation of stored energy from Paper IV are discussed in Section 5.4.

5.1 Operational limits of energy storage systems

The non-linear battery operation optimization model that was implemented in
Paper II illustrated by Figure 5.1 uses the current, voltage, and charge variable
space for the battery instead of power and energy. Some of the benefits of this
formulation compared to a simpler model using the power and energy variable
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Figure 5.1: Topology of grid connected system with battery, solar photovoltaic
and converter (figure adopted from Paper II [28]).
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Figure 5.2: Battery and VSC efficiencies (figure adopted from Paper II [28]).

space and fixed efficiencies are:

• The voltage and current limits are enforced directly instead of through the
power. This representation is closer to the physical properties of the battery
and enables operation closer to the battery capabilities.

• The current variable can be both positive and negative allowing bi-directional
power flow without separate charge/discharge variables. The typical non-
linear or binary complementarity constraints to avoid simultaneous charg-
ing and discharging are therefore avoided.

• The SOC limits are enforced through the charge (Ampere hours) instead of
energy. This is considered a more accurate way of estimating the battery
SOC.

• Empirical data is used to represent the battery voltage and converter effi-
ciency, ensuring the model is accurate, and it captures the efficiency losses
in both battery and converter.

The results show that the implemented model enables operating closer to the oper-
ational limits of the battery. The efficiency is also represented more accurately, and
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Figure 5.2a illustrates how the battery round-trip efficiency depends on both SOC
and charge/discharge power. The converter efficiency also influences the overall
efficiency, depending on whether the energy has to pass the AC/DC converter once
(consumption of stored energy that originates from solar PV) or twice (consump-
tion of stored energy that originates from grid) as shown in Figures 5.2b and 5.2c.
As a consequence, the estimation of SOC is more accurate compared to simpler
models. However, lithium-ion batteries have a relatively flat voltage curve and low
losses, and the differences between the simple and detailed model are relatively
small.

However, the principle of using variable space close to the physical representation
of the ESS and estimating physical relations with spline functions are still appli-
cable for other ESS types, such as flow batteries, hydropower plants as well as
hydrogen electrolyzers and fuel cells.

For real-time operation, it is highly important that the proposed schedule does not
violate the technical limitations such as power, current, and voltage limits. From
a daily and weekly perspective, it is important that the ESSs are scheduled with
sufficient foresight considering generation and demand uncertainties to prevent
energy deficit. The long-term perspective might sacrifice technical details and time
resolution granularity, to increase the foresight and the number of scenarios.

Both the short- and long-term requirements can be met by dividing the model into
a sequence of models as suggested in Section 4.1.4. The optimization results from
coarse aggregated models with a long modeling horizon over large geographical
areas can be used as boundary conditions for more detailed models with shorter
time perspectives.

5.2 Degradation of energy storage systems

Battery degradation partly depends on the operation. Papers I and V implemented
cyclic degradation costs and Paper V also implemented SOC dependent degrada-
tion as piece-wise linear approximations. The capacity fade associated with the
operation dependent variables was converted to a cost reflecting the battery in-
vestment cost and expected end of life.

Paper I shows that the cyclic operating costs make the stochastic operating strategy
more precautionary against operating close to maximum SOC to keep the risk of
generation curtailment low and prevent unnecessary charging and discharging of
the battery. Moreover, the price difference threshold for arbitrage is also increased
by the cyclic degradation costs.

Paper V considers cyclic degradation (also referred to as DOD degradation) in
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Figure 5.3: Expected battery lifetime for operation with different optimization
methods. Text in parentheses indicates which type of degradation costs that has
been included in the optimization model: depth-of-discharge (DOD)/cyclic degra-
dation and state-of-charge (SOC)/calendar degradation.

combination with SOC dependent calendar aging. The comparison of the expected
lifetime for the operation of a 1MW battery in Rye MG in Figure 5.3 shows that
the implemented method (SDDP (DOD + SOC)) is capable of increasing the ex-
pected battery lifetime with more than four years compared to the plain stochastic
model (SDDP), and that the cost reduction associated with battery degradation
exceeded the increase in other operating costs. The results also demonstrate that
the operational pattern adapts to seasonal variations. For example, the summer
has high stable PV power production and scarcity occurs less frequently than dur-
ing winter. It is therefore beneficial to lower the SOC in this period to reduce the
calendar aging as shown in Figure 5.4.

However, SOC dependent degradation can also potentially provoke non-physical
energy dumping through simultaneous charging and discharging since there is
actually an increasing cost associated with storing energy. This undesirable effect
is effectively reduced when implemented in combination with cyclic degradation
where the discharging is penalized.

When considering co-operation of battery and hydrogen, the annual energy through-
put for hydrogen nearly doubles when battery degradation is considered. There-
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Figure 5.4: Four-day average SOC for co-operation of hydrogen and battery
(based on case 1 from Paper V [31]).

fore, it is important to consistently model degradation for all involved units to
prevent the burden being moved from one unit to another. Degradation costs asso-
ciated with rapid change in power for hydrogen electrolyzers and fuel cells should
therefore be studied more in depth.

The costs and prices in traditional power systems dominated by large thermal
power plants are principally set by the global gas, coal, and oil price as well as
the CO2 price. However, the marginal operating cost of VRESs is close to zero
while the value of energy delivered by ESSs depends on the ability to reduce the
use of expensive units by shifting generation and consumption temporally. The
future power system costs and prices will therefore depend less on fuel costs and
more on technology costs. The technology costs influence the prices both directly
through the degradation costs, and indirectly through the mixture of generation
technologies, DSR, and ESS driven by the market investments.

5.3 Stochastic operation of energy-constrained systems

The stochastic operation of a MG with high level of VRESs and ESSs has been
studied in Paper I, and with particular emphasis on energy-constrained systems
in Papers IV and V. Paper IV performs a comparison of state-of-the-art methods
for MG operation based on rule-based approaches and deterministic rolling hori-
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zon optimization, both with respect to short- and long-term perspectives for Rye
MG. The MG has generation from wind and solar power, as well as a diesel gen-
erator as backup, and balances the generation and demand with a battery and a
hydrogen system with fuel cell and electrolyzer. The paper shows how the short-
and long-term perspectives can be optimized individually and connected through
the SEV expressed as linear hyperplanes using SDDP. The short-term model con-
siders the period where the generation can be predicted through meteorological
forecasts, and the long-term model considers typical seasonal conditions for the
present month. Six different combinations of short- and long-term methods as
well as perfect foresight, as shown in Table 5.1, have been simulated using rolling
horizon for almost a full year with rolling horizon for the following three different
variations of the MG:

a) Large diesel generator (75 kW).
b) Small diesel generator (15 kW).
c) Weak grid connection (15 kW).

The results presented in Figure 5.5 show that the SDDP short-term model in
methods 2-4 reduces the operating costs compared to rule-based and determin-
istic operation strategies, and that the difference is more pronounced for energy-
constrained systems. Cases b) and c) also show that the stochastic short-term
model contributes to a significant reduction in load shedding compared to the
other methods.

Moreover, the SDDP long-term model in methods 5-7 causes an even more signif-
icant cost reduction, in particular with respect to load shedding in cases b) and
c). Energy-constrained systems are vulnerable to persistent low generation from
VRESs. Due to the limited dispatchable generation capacity, it is decisive to have
sufficient stored energy upfront for situations with high demand and low genera-
tion from VRESs to prevent scarcity.

A key assumption for the model is that the load can be freely curtailed at a high

Table 5.1: Methods used for the operation of the microgrid presented in Paper IV.

Method Short-term model Long-term model

1 Prefect foresight
2 None Rule-based
3 Deterministic Rule-based
4 SDDP Rule-based
5 None SDDP
6 Deterministic SDDP
7 SDDP SDDP
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Figure 5.5: Comparison of operating costs for Rye microgrid using rule-based
operation, deterministic optimization, and SDDP both with respect to short- and
long-term operation. The results includes the following variations of the case:
large diesel generator (75 kW), small diesel generator (15 kW), and weak grid
connection (15 kW).
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cost defined by the value of lost load (VOLL). In other words, the stochastic opti-
mization method performs well in minimizing the thermal generation costs while
considering the risk of extreme prices. The VOLL is a way of quantifying the
power system reliability, and the system reliability is dependent on the quantity
of the VOLL. This approach is similar to how the water-value in the Norwegian
hydropower system also encapsulates the system’s reliability through the risk of
scarcity that influences the system price.

Stochastic optimization methods are computationally intensive. The number of
scenarios and stages must be chosen carefully such that the sample space is ex-
plored sufficiently, to capture both the risk of scarcity as well as the probability of
generation curtailment accurately, while keeping the computational burden low.

To prevent the ESSs from being emptied at the end of the optimization hori-
zon, the implemented methods in Papers III to V consider an infinite horizon,
either through the iterative SDP approach suggested in Paper III or through cyclic
Markov chains as shown in Papers IV and V. Whereas a fixed final SOC is com-
monly used in many studies, this thesis uses value-based criteria for the final SOC.
Fixed final SOC promotes the worst sides of optimization by forcing imbalances,
both surplus and deficit, to be resolved within the optimization period. Value-
based termination criteria, through the SEV, is more flexible by permitting uti-
lization of the ESS flexibility beyond the optimization horizon.

5.4 Pricing and valuation of stored energy

The electricity price formation in systems with a high level of VRESs and ESSs
has been studied in Paper III using an SDP model. Figure 5.7a shows the expected
future SMV for a full week as a function of SOC for the system illustrated in Fig-
ure 5.6 when fully supplied by VRESs where the SMV is influenced by the VOLL.
The optimal operation has been simulated for 100 random scenarios, and Fig-
ure 5.7b shows the quantiles for how the resulting SOC develops, and Figures 5.7c

1 43

Lres

PbatGPV

2

Lind

Gpeak Gbase

Figure 5.6: Topology of small grid with variable solar power and battery (figure
adopted from Paper III [29]).
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(c) LMP at industrial bus.
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(d) LMP at residential bus.

Figure 5.7: Multiple simulations of case with only solar PV generation and EES
(figure adopted from Paper II [28]).

and 5.7d display how the corresponding LMP develops at the respective buses.

The electricity price in competitive markets is set by the marginal value of the
marginal unit as explained in Section 4.1.4. An ESS will in many situations be the
marginal unit, either as a consumer or a producer, and set the price. The marginal
value of ESSs, referred to as the SMV, can be considered as the opportunity cost
of the stored energy given perfect future operation. The SMV is influenced by the
value of all the other units in the system. In situations where load shedding is a
possible outcome, load shedding can become the marginal unit and the ESS op-
eration can be considered as an arbitrage against scarcity. In these situations, the
VOLL gradually becomes effective when the probability of load shedding increases
as a precautionary signal against scarcity before it eventually occurs.

Whereas high prices in power-constrained systems are driven by high power, high
prices in energy-constrained systems are driven by lasting low generation from
VRESs and high demand. The prices in energy-constrained systems can therefore
vary between zero and the VOLL. Lasting periods with low wind power can there-
fore cause lasting periods with a high price, and lasting periods with high wind
power can also cause lasting periods with a low price. These variations will incite
more flexibility, both supply and demand, that responds to the extreme prices as
well as ESSs that gain their profit from arbitrage. Even ESSs with poor efficiency
become profitable if the price variations are high enough, while the required en-
ergy capacity is connected with the frequency of the price variations. Low fre-
quency in the price variations imposes larger energy capacity.
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The SMV is an important quantity for valuating the ESS operation as opposed to
other units in the system. Paper IV shows how the SMV can be interpreted as a set
of adaptive decision rules that changes over time. Figure 5 in Paper IV also shows
how these decision rules are state dependent.

The SMV is an important quantity for bidding ESSs into competitive energy mar-
kets, and has been extensively studied regarding hydropower [88]. Moreover, the
optimal bidding value of ancillary services like frequency reserves is also related
to the SMV as shown in Gebrekiros et al. [89].

The valuation of stored energy can also be combined with more detailed mod-
els, such as the detailed model proposed in Paper II. The SEV function from the
stochastic models can be used as a boundary value condition for more detailed
models. By doing so, the potential future value of saving stored energy for later
can be encapsulated in a detailed model with short foresight.



Chapter 6

Conclusion and
recommendations for future
work

This thesis has made new contributions with respect to modeling MGs with high
levels of VRESs and ESSs. The contributions include both detailed ESS modeling
as well as modeling of grids with multiple ESS technologies under uncertainty
with long foresight.

The operation of lithium-ion batteries can be more accurately optimized by using
the current, voltage, and charge variable space compared to the power and energy
variable space. The current, voltage, and charge variable space has previously
mainly been considered for simulation but to a lesser extent for optimization. The
non-linear optimization model presented in Paper II uses cubic spline functions to
express the battery voltage and the converter efficiency based on empirical data,
and has the following advantages compared to traditional models in the power
and energy variable space:

• The operational limits are represented in both current and voltage, which
are closer to the actual physical limits compared to simpler models. The SOC
is expressed as charge (in ampere hours) instead of energy (in Watt hours).
This enables operation to be close to the physical limits of the battery and
more accurate estimation of SOC.

• The model considers efficiency due to both voltage variations and converter
characteristics instead of assuming a fixed efficiency. Therefore, the losses
are approximated more accurately and can increase the overall performance.

• The use of spline functions based on empirical data is generic and can also be
adapted for other ESS technologies such as flow batteries, hydrogen (with

53
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electrolyzer and fuel cell), and hydropower.

The use of the SEV function to valuate stored energy is a useful way to connect
models with different time perspectives. The stage-wise SEV functions can be ex-
tracted from the results of the optimization models presented in Papers I and III
to V and inserted in the objective of the detailed battery model presented in Pa-
per II. This method enables the combination of detailed component modeling with
long-term strategic considerations.

The operating costs of systems with high levels of VRESs and ESSs have a high
degree of generation with a marginal cost close to zero. They are therefore less
dependent on fuel costs, and the operating costs are to a greater extent set by the
technology costs through degradation properties and the risk of extreme prices
due to expensive generators and scarcity. The implemented models considers degra-
dation due to cycling and SOC dependent calendar aging, and based on the results
from Papers I and III, the following conclusions are drawn:

• ESS degradation costs influence the optimal operation strategy, especially
under uncertainty. Correcting a sub-optimal SOC caused by uncertainty has
a significant cost.

• Proper valuation of degradation during operation can prolong the expected
lifetime of ESSs.

• Battery degradation costs also influence the operation of other flexible re-
sources and the degradation costs should be represented consistently for all
flexible units in the system.

Stochastic optimization is important for both the short- and long-term operation
of systems with high levels of VRESs and ESSs, especially for energy-constrained
systems where the dispatchable generation capacity is a limiting factor. The MG
in Paper IV considers the operation of both battery and hydrogen ESSs under
uncertainty from demand as well as solar and wind power generation. Whereas
the battery has high power capacity and high efficiency but low energy capacity,
the hydrogen storage has low power capacity and low efficiency but high energy
capacity. The main conclusions from this paper are:

• The coordination of short- and long-duration ESSs in energy-constrained
power systems must balance operating cost minimization against the risk
of scarcity quantified through the VOLL. The ESS operation, in particular
the long-duration hydrogen storage, must consider sufficient foresight to
manage potential periods with lasting low generation from VRESs.

• Stochastic optimization, in this thesis SDDP, reduces the operating costs
compared to rule-based operation and deterministic optimization. The dif-
ferences are most significant for energy-constrained systems, where SDDP
shows a superior ability to minimize operating costs without compromising
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the security of supply.

As emphasized in the research literature, long-duration storage is a potential so-
lution for VRES intermittency [56]. Balancing the advantages of highly efficient
short-duration ESS against less efficient long-duration ESS require stochastic mod-
els with sufficient foresight. The security of supply is not only connected to sizing
the system’s units properly but also operating ESSs such that they have sufficient
high SOC upfront periods with potential low generation from VRESs. The opera-
tion of ESSs is a combination of generation cost minimization and minimizing the
risk of extreme costs associated with scarcity.

A high level of ESSs also influences the formation of electricity prices. Whereas the
marginal production cost of thermal and renewable generators is relatively well
defined, the marginal production cost and consumption value for ESSs is both
time and state dependent, as such:

• ESSs act as both supply and demand in competitive markets. Both the ESS
discharge cost and the charge value are related to the SMV (as decirbed in
Section 4.1.4), and set the market price when they are the marginal pro-
ducing unit.

• The marginal value of stored energy (SMV) is the marginal future value of
the stored energy assuming it is operated optimally. The SMV is influenced
by the marginal cost/value of all other units in the system, including scarcity
through the VOLL, and considers future generation and demand under un-
certainty. The SMV value is both time and state dependent.

The ESS marginal cost/value can be extracted from the solution of the methods
implemented in Papers I and III to V through the SEV function. Whereas high
prices are driven by high power in power-constrained systems, the high prices
in energy-constrained systems are driven by the risk of expensive generation or
scarcity caused by energy deficit. The price signals provide incentives for all units
in the system to operate in a cost optimal way that minimizes the risk of scarcity.

Safe and efficient coordination of VRESs and ESSs, both at the spatial and tem-
poral level, is a key factor to reach net zero emissions. Both VRESs and ESSs have
complementary properties that should be carefully utilized. The winters are typi-
cally windy, while the summers are sunny, while batteries have high efficiency and
power capacity, and hydrogen has high energy capacity. An optimal utilization of
the complementary properties of the diverse generation and storage technologies
requires coordination at the right spatial and temporal level. Decomposition is a an
efficient instrument for breaking down complexity, and an alternative to solving
detailed large-scale models is to formulate a sequence of models with decreas-
ing temporal and spatial level and increasing level of detail. Valuation of energy,
both through SMVs and electricity prices, mandates safe and efficient coordina-
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tion of both conventional dispatchable resources as well as the emerging VRESs
and ESSs.

6.1 Future work

The operation of the future power systems, both MGs and large-scale systems, in-
cludes a wide range of flexible units: dispatchable and variable generators, short-
and long-duration ESSs, as well as small- and large-scale DSRs. The flexibility
can be both centralized and distributed. This thesis has only considered batteries
and hydrogen ESSs in combination with solar and wind power, with a particular
emphasis on the detailed battery modeling. Several research areas need further
investigation both with respect to modeling different types of flexible units as well
as further development of the stochastic system models.

6.1.1 Modeling of flexible resources

Different storage technologies have distinct characteristics that must be treated
carefully. Hydrogen electrolyzers should avoid frequent start and stop, and they
must be operated above a predefined minimum limit. This challenge is similar
to the thermal unit commitment problem. Both electrolyzers and fuel cells have
variable efficiency depending on how they are operated, and they also have their
own degradation characteristics that should be considered. The wide range of
energy storage technologies all have distinct properties that must be considered
with respect to how they influence the power system operation.

The internet-of-things makes unused DSR accessible. For example, charging of
EVs and heating appliances have a great potential for managing daily variations.
However, the operation of DSR must be done carefully to prevent inconveniences
for the consumer who offers the flexibility. Further research is needed to better
understand and model the potential in DSR such that it can be fully utilized.

Grid limitations should also be more carefully analysed at a detailed level, both
with respect to voltage and thermal limits, due the increasing share of distributed
flexibility. The power flow equations are non-linear and non-convex, but a wide
range of alternative formulations, both convex and linear, have been presented in
the research literature. Several of these aim for good performance for medium-
and low voltage grids, such as the linear DistFlow [24, 25] described in Sec-
tion 3.4, and are promising candidates to combine with stochastic optimization
methods.
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6.1.2 Stochastic modeling of energy systems

This thesis has proposed representing auto-correlation in demand and wind power
through AR-models in Paper I and in wind power with Markov chains in Paper IV.
Both solar and wind power as well as demand are weather dependent. Wind
and solar power are often complementary. The wind speed is low on sunny days
and vice versa. The weather also influences the cooling and heating of buildings
through temperature, wind, and solar radiation. The weather is also a naturally
slow process and has a strong auto-correlation. Representing both the correla-
tions between the different generation sources and the demand as well as the
auto-correlation can reduce the operating costs and the risk of scarcity for these
systems, and should be addressed in future research.

Subsystems are often modeled individually to reduce the system complexity, and
the prices for exchanging power with adjacent systems are typically given exoge-
nously. Surplus generation can be exported and power deficit can be imported.
However, if all systems are weather dependent, they may experience surplus or
deficit simultaneously. An energy deficit in a subsystem is therefore often cor-
related with a high price in the adjacent subsystems, hence correlation in power
exchange price and generation from VRESs can be an important factor to consider.

6.1.3 Cost recovery of energy storage systems in markets

Cost recovery conditions for power-constrained systems have been extensively
studied based on load duration curves, see, e.g., Stoft [12]. Moreover, Korpås and
Botterud [13] derived cost recovery conditions for VRESs and ESSs based on load
duration curves. However, these approaches assume power-constrained systems
where the ESS energy capacity is unlimited. The methods presented in this thesis
can analyze the expected annual income associated with optimal operation of
VRESs and ESSs. Moreover, by introducing the sizes of the VRESs and ESSs as
decision variables, the optimal sizes can be optimized in a way that accounts for
the energy-constrained nature of these systems.
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Abstract—Intermittent energy sources demand temporal stor-
ages to balance generation and load, and batteries stand out as an
alternative. However, the lifetime is limited, and cycling depth
affects the battery degradation rate. Current stochastic multi-
stage methods lack proper representation of battery degradation.
This paper proposes a stochastic multi-stage model for optimizing
battery operation in a microgrid considering battery degradation
with a piece-wise linear cost function with uncertain wind power
production and load. The model is solved using Stochastic Dual
Dynamic Programming (SDDP) and is demonstrated on a 4-bus
test case with limited import and export capacity to illustrate the
battery degradation cost’s impacts on the battery cycling strategy.
The results show that the importance of a stochastic method is
more pronounced when battery degradation is modelled.

Index Terms—stochastic dual dynamic programming, battery
degradation, microgrid, arbitrage

I. INTRODUCTION

A. Motivation and background

The increasing share of energy conversion from intermittent
sources such as photovoltaics (PV) and wind energy con-
version systems (WECS) increase the demand for balancing
services in the power system. Coordination of energy storages
in distribution grids and microgrids are important for reliability
of supply as well as optimal economic dispatch [1].

Energy conversion from PV and WECS are uncertain by
nature, and smaller energy systems yields larger variation both
in generation and load. Optimal operation of storage in a
deterministic model will typically provide an overly aggres-
sive utilization of the storage capacity by frequently cycling
between maximum and minimum. Unfortunately, this strategy
does not account for forecast error, which may cause load
shedding or production curtailment. Therefore, the forecast
error may increase the operation cost, but also accelerate aging
of battery storage [2]. Stochastic methods are effective for
balancing cost minimization and risk, and applicable both for
planning, operation and control of microgrids [3].

B. Relevant literature

A commonly used stochastic formulation is the two-
stage stochastic problem. Reference [4] suggests a two-stage
stochastic formulation for minimizing the operational costs
including the grid power losses of a microgrid. Similar two-
stage formulations are shown in [5]–[7].

A limitation of the two-stage stochastic formulation is the
assumption that all uncertainty is revealed at once. For a
multi-stage formulation, the uncertainty is revealed stage-
wise and the control of the system is updated stage-wise as
the uncertainty is revealed. This formulation is widely used
in hydropower scheduling [8], and stochastic dual dynamic
programming is an efficient technique for solving large scale
multi-stage stochastic problems [9].

There are a few proposed methods for managing storages
in microgrids based on SDDP in the literature. Reference [10]
suggests a microgrid model minimizing procurement cost un-
der uncertain wind generation where load is balanced in terms
of purchase and sale to the utility grid, by using load shifting
and micro generators. Reference [11] has a similar formulation
also including power loss minimization and uncertain price. In
[12], the cost is minimized for a private household with battery
storage and uncertain PV generation. Reference [13] balances
uncertain wind generation with conventional generation and
battery storage including a cost associated with varying the
battery level.

C. Contributions and organization

Batteries degrade from several factor, among others state-
of-charge (SoC), depth-of-discharge (DoD) and operating tem-
perature. A shortcoming among the aforementioned papers are
lack of more sophisticated modelling of degradation due to
DoD. Batteries will typically have an increasing degradation
rate with increasing cycling depth, and [14] shows how to
represent this with a piece-wise linear model.

The contributions of this paper can be summarized as
follows: i) The microgrid storage coordination problem has
been formulated as a multi-stage stochastic problem. Battery
degradation has been modelled as a piece-wise linear cost
function to assess cycling costs. ii) The proposed method has
been applied on a 4-bus test case to demonstrate the impact
of battery degradation both for stochastic and deterministic
model formulations. The problem has been solved using the
SDDP algorithm.

The remainder of this paper is organized as follows. Section
II formulates the multi-stage stochastic formulation of the
microgrid storage dispatch problem, section III presents a test
case including numerical values, and discusses the impact
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TABLE I
NOMENCLATURE

Sets
T Time steps
N Buses
S Battery segments
Parameters
ηck Charge efficiency for battery at bus k
ηdk Discharge efficiency for battery at bus k
R Storage replacement cost e/MWh
cmk,t Power price at bus k, time t

cbk,s Marginal storage aging cost of cycle depth at bus k, segment s
ēk,s Maximum energy stored in bus k, segment s
WPk Wind scale factor at bus k
LPk Load scale factor at bus k
p̂wk,t Normalized wind power forecast at bus k, time t

p̂lk,t Normalized load forecast at bus k, time t

φw Auto-correlation wind forecast error
φl Auto-correlation load forecast error
Emax

k Maximum energy storage in battery at bus k
Emin

k Minimum energy storage in battery at bus k
Bc

k Maximum charge power to battery at bus k
Bd

k Maximum discharge power from battery at bus k
P s
k Maximum sale power to market at bus k

P b
k Maximum purchase power from market at bus k

Pw
k Maximum wind power generation at bus k

Variables
∆t Time step length
ek,t,s Energy stored at bus k, time t, segment s
bck,t,s Storage charge power bus k, time t, segment s
bdk,t,s Storage discharge power bus k, time t, segment s
pbk,t Power purchase in wholesale market at bus k, time t

psk,t Power sale in wholesale market at bus k, time t

pwk,t Wind power generation at bus k, time t

plk,t Load at bus k, time t

p̂wt Normalized wind power generation at time t
p̂lt Normalized load at time t
∆p̂wk,t Normalized wind forecast error at bus k, time t

∆p̂lk,t Normalized load forecast error at bus k, time t

εwt Normalized wind forecast error noise at time t
εlt Normalized load forecast error noise at time t
Φ Battery cycle stress cost
δ Battery cycle depth

of modelling the battery degradation costs. The algorithm
convergence properties are also presented. Conclusions are
drawn in section IV.

II. MODEL DESCRIPTION

This section presents a mathematical formulation of the
optimal purchase, sale, storage and generation dispatch in a
microgrid with uncertain wind power generation and load. The
objective is to minimize utility grid power exchange costs,
diesel generation costs, and battery cycling degradation costs.
Diesel generation is considered as a purchase opportunity with
fixed price. Symbols used in the mathematical formulations are
shown in the nomenclature in table I.

A. Problem definition

Each stage in the multi-stage problem is given by a linear
problem formulation and linear objective terms. Each time step
t represents a stage in this formulation, but the formulation
may be generalized such that each stage can have multiple

time steps. A state variable represents the required information
to model the system from present time and onward. A stage
problem may contain both current and previous state variables.
A control variable is an internal stage variable and represents
an action or decision, either implicit or explicit. A noise is a
stage-wise independent random variable [15], [16].

In this paper, the state variables are given by the battery
level, wind generation forecast error and load forecast error.
The battery level must be a state variable since the current
level depends on the previous, while the wind generation and
load forecast errors are state variables since they are modelled
with auto-regressive models. The system noise is the noise
terms in the AR-models describing generation and load error.
The remaining variables are control variables.

The objective is to minimize purchase costs from the utility
grid and minimize battery degradation costs as shown in (1)
under exogenous power price.

min
∑

t∈T

∑

k∈N

(
cmk,t(p

b
k,t − psk,t) +

∑

s∈S

cbk,sb
d
k,t,s

)
∆t (1)

B. Battery degradation

Some of the factors causing battery degradation are depth-
of-discharge (DoD), state-of-charge (SoC) and operating tem-
perature. This paper only considers degradation due to DoD.
The cycle depth stress function describes how much the battery
degrades as a percentage of its expected lifetime, and is
approximated using a quadratic stress function based on the
results from [17]. The cycle depth stress function in (2), where
δ is the cycle depth percentage, has been used in this paper.
It permits 10 000 cycles at 50% DoD before battery must be
replaced.

Φ(δ) = 4 · 10−4 δ2 (2)

The battery cycling cost is implemented as a piece-wise
linear model as described in [14]. The battery is divided into
segments, where the discharge cost is increasing for increasing
segment number. This method demands segmentation of the
energy storage state variable, and the charge and discharge
variables since SDDP is not capable of handling non-linear
states. This is a potential drawback with this method as
increased accuracy for the cycling cost function demands ad-
ditional state variables, which again increase the computation
time.

To avoid simultaneous charging and discharging of battery
one must ensure that loosing power never is profitable. In this
case generation curtailment is free, and the power exchange
price is always non-negative. Simultaneous charging and dis-
charging may also be avoided by using binary variables, but
that is not supported by standard SDDP. The objective function
(1) has an individual cost associated with discharging each
segment. The low-cost segments will always be charged and
discharged first, while deeper cycles also demand use of the
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high-cost segments. The marginal cost of the segment is given
by (3) where s̄ is the number of segments.

cbk,s =
R

ηdk
s̄

[
Φ
(s
s̄

)
− Φ

(
s− 1

s̄

)]
, s ∈ 1, . . . , s̄ (3)

C. Battery and energy balance

The battery energy balance is given by the charge/discharge
and efficiency as shown in (4). Moreover, the charge/discharge
is given by the sum of the segment variables as shown
in (5). The battery segments are enforced by (7), and the
segments have equal size for each storage in our model. The
charge/discharge is enforced by (6) limiting maximum battery
charge and discharge. The total energy stored at a bus is
limited by the battery maximum and minimum limits as shown
in (8), and the purchase and sale with the utility grid is limited
as shown in (9). The power must balance at every bus in the
network, thus the net injection must be zero (10).

ek,t,s − ek,t−1,s =

(
bck,t,sη

c
k − bdk,t,s

1

ηdk

)
∆t (4)

bck,t =
∑

s∈S

bck,t,s, bdk,t =
∑

s∈S

bdk,t,s (5)

0 ≤ bck,t ≤ Bc
k, 0 ≤ bdk,t ≤ Bd

k (6)
ek,t,s ≤ ēk,s (7)

Emin
k ≤

∑

s∈S

ek,t,s ≤ Emax
k (8)

0 ≤ psk,t ≤ P s
k , 0 ≤ pbk,t ≤ P b

k (9)
∑

k∈N

(
bck,t − bdk,t + psk,t − pbk,t + plk,t − pwk,t

)
= 0 (10)

D. Load and generation uncertainty

The SDDP algorithm is only capable of solving stochastic
problems with stage-wise independent uncertainty. However,
the uncertainty is introduced as a state variable and modelled
as a first order auto regressive model, and the uncertainty is
decomposed into a dependent and an independent term [18]
as shown in (11).

∆p̂wt = φw ∆p̂wt−1 + εwt (11)

Generation and load are correlated series. However, the
uncertainty in this model is not the generation and load but
the generation and load forecast error. Since most of the
correlation between generation and load is captured by the
forecast, the weak correlation between the forecast errors is
neglected.

The expression for wind power generation at a specific node
is given by (12) and (13) where WPk is the maximum genera-
tion at node k, p̂kt the normalized wind generation forecast and
∆p̂wt the normalized forecast error. The normalized forecast is
computed by dividing the forecast on the historical maximum
from the three previous years. To avoid negative production,
a slack variable is introduced to capture negative values.

pwk,t − pw,slack
k,t = WPk(p̂

w
t +∆p̂wt ) (12)

pwk,t, pw,slack
k,t ≥ 0 (13)

The wind forecast error is modelled as an auto-regressive
model of first order (11), which holds under the assumption
that the process is weak stationary. This is a common assump-
tion for wind forecasting, for details see [19].

The slack variable may also be used to generate power,
hence the cost for using it must be greater than the highest
generation cost in the system.

Similar representation is used for load forecast error but
with no cost on the slack variable, which implies that load
may be added at no cost.

E. Storage end value

If the end value is not included in the objective, the
algorithm tends to always empty the storage in the end since
there are no incentives for saving the energy for later. In this
model, the value of the stored energy in the last stage is set
equal to the value of selling all stored energy in the market
after the last stage.

F. Stochastic dual dynamic programming (SDDP)

The model has been solved with SDDP, which is a de-
composition technique for solving linear multistage stochastic
programs. The SDDP algorithm approximates the expected
cost-to-go function with piece-wise linear bounds obtained
from the dual solutions of the optimization problem at each
stage. The SDDP algorithm has two main phases: forward sim-
ulation where scenarios are sampled based on the probability
distribution of the random variables, and backward recursion
where each stage is optimized backwards along the trajectory
from the forward simulation. This procedure is repeated until
a convergence criteria is reached [9].

The model has been implemented in Julia with SDDP.jl [20]
using CPLEX 12.8.0.

III. CASE STUDY

This section presents the results from a case study of a 4-
bus test system with storage, generation and load, where both
generation and load are subject to uncertainty. The maximum
purchase and sale for the system is limited. Figure 1 shows the
topology of the test system where the utility grid connection
is limited such that the battery and the emergency generator
must balance the load and wind power generation.

A. Case numerical data

This case study uses historical time series from ENTSO-
E Transparency Platform [21]. The price series is day-ahead
for Denmark (DK-2) between 2018-12-15 and 2018-12-18.
The corresponding series are used for load and onshore wind
generation. The load and wind series has been normalized
as described in section II. The AR(1) model parameters
are calculated based on normalized historical generation and
forecast values from the given time with regression analysis.
The historical forecasts are day-ahead forecasts. The shift
between old and new forecast at midnight has therefore been
removed when doing the regression analysis. The calculated
auto-correlation for the normalized series was 0.90 and 0.65
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2 3
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Fig. 1. Test system

TABLE II
CASE PARAMETERS

Utility grid
Maximum purchase 1 MW
Maximum sale 1 MW
Max purchase/sale violation penalty 600 e/MWh
Storage
Size 3 MWh
Maximum charge/discharge 1 MW
Efficiency charge/discharge 95%
Replacement cost 100,000 e/MWh
Diesel
Maximum generation 1 MW
Cost 500 e/MWh
Wind generation
Maximum generation 2 MW
Forecast error auto-correlation 0.90
Forecast error standard deviation 0.05
Slack variable cost 600 e/MWh
Load
Maximum load 2 MW
Forecast error auto-correlation 0.65
Forecast error standard deviation 0.05

for wind and load respectively, and the standard deviation
was 0.02 and 0.0065. Note that these are the statistical
properties of the forecast errors. In this case, the standard
deviation is increased to 0.05 for both generation and load to
demonstrate the capabilities of the method, and to reflect that
a smaller population yields greater standard deviation. Each
noise variable is sampled into three evenly spaced quantiles
such that the number of discrete outcomes for each stage is
nine. Other parameters are presented in table II, while net load
and price profiles are shown in figure 2. The storage cycling
cost function is divided into five segments of equal size, and
the segment marginal costs for this particular case is shown
in table III.

B. Results and discussion

The presented stochastic solution shows the percentiles of
500 simulations of 72 stages where each hour represents a
stage. The results show that the primary objective is to avoid
expensive generation from diesel by ensuring high battery level
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(a) Net load: Difference between load and generation
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Fig. 2. Sampled load, wind power generation and price.

TABLE III
BATTERY CYCLING MARGINAL COST

Segment Marginal cost
0-20% 24

20-40% 72
40-60% 120
60-80% 168

80-100% 216

when reaching the period with high net load as seen from
around hour 54 where the net load in figure 2a exceeds the
maximum purchase limit, and the battery level is 100% in
both figure 3a and 3b. Figure 3c and 3d shows that there is
no sale for at least 90% of the scenarios despite the very high
price, since all the stored energy is used to avoid generation
from diesel. Nevertheless, diesel generation is unavoidable in
25-50% of the scenarios as shown in figure 3e and 3f.

The secondary objective, given that the diesel cost always is
higher than the price difference, is using battery for arbitrage.
The battery level without degradation cost in figure 3a shows
arbitrage between hour 0 and 54. This is also shown in figure
3c where there are frequent changes between purchase and
sale. However, when including battery degradation costs as
shown in figure 3b, there is no sign of arbitrage, and the
purchase/sale profile in figure 3d is much more stable. The
lowest prices are found between hour 24 and 30 causing two
spikes in the deterministic solution in figure 3d to fully charge
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Fig. 3. Comparison of optimization without and with battery degradation costs.

the battery in advance to the high load from hour 54.
The difference between the deterministic and stochastic

solution is more pronounced when battery degradation costs
are included. With no degradation cost, figure 3a shows that
the deterministic and the stochastic median solutions have
almost overlapping solutions much of the time. In contrast,
the solution including battery degradation costs has a more
risk averse strategy for the stochastic solution. Instead of
charging the battery immediately as the deterministic solution,
the storage level is kept below maximum to avoid production
curtailment in case the net load should exceed the export limit.

Calculating the value of the stochastic solution is a compu-
tationally hard task. Nevertheless, an interesting property with
the solution of a SDDP problem is the interpretation of the
cuts added by SDDP. For a minimization problem, the cuts

are lower bounds for the future cost functions of the problem
state variables. These cuts may also be used as boundary
conditions for an optimization model with shorter time horizon
and possibly different solving methodology.

Note that these analysis has been carried out on a limited
case for the purpose of demonstrating the concept. To verify
the scalability of the method, it should be tested on a larger
case.

C. Algorithm convergence

To check if the algorithm has converged, the lower bound
is compared with and upper bound confidence interval as
described by [9]. The 95% confidence interval for the upper
bound is computed regularly with 200 Monte Carlo simula-
tions, and figure 4 shows how the confidence interval and
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Fig. 4. Algorithm convergence

lower bound develops for the case with degradation costs. The
results show that a high number of iterations are required to
satisfy the convergence criteria. Testing also shows that if the
diesel generation and penalty costs had been closer to the day-
ahead price, the algorithm would have converged faster.

IV. CONCLUSIONS

The importance of stochastic methods in the microgrid stor-
age coordination problem is more pronounced when including
degradation costs incurred by battery cycling. A naive model
permits correction of a sub-optimal battery level by charging
and discharging at no other cost than the energy price. For
a model including battery degradation costs, the stochastic
strategy will attempt to avoid correction of a sub-optimal
battery level caused by uncertainty by operating farther away
from the battery limits than a deterministic solution.

The battery price and cycling cost used in this case also
shows that high price differences are necessary to profit on
arbitrage with batteries. Since the net demand is correlated
with price, the battery is already occupied with load shifting
in the hours with the highest arbitrage potential.

Battery degradation has significant impact on the optimal
strategy, hence it will be instructive to extend the degradation
model to also include SoC in future work. Moreover, it
will also be instructive to embed different types of end-user
flexibility to compare how they can provide an alternative or
supplement to battery storage. Finally, recent developments
in SDDP has provided new methods for handling correlated
uncertainty in price [22] and integer problems [23] enabling
more precise formulations of multi-stage stochastic programs.
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A. Barbosa-Póvoa, and P. Ferrão, “Microgrid reliability modeling and
battery scheduling using stochastic linear programming,” Electric Power
Systems Research, vol. 103, pp. 61–69, 10 2013.

[8] M. V. Pereira and L. M. Pinto, “Stochastic Optimization of a Mul-
tireservoir Hydroelectric System: A Decomposition Approach,” Water
Resources Research, vol. 21, pp. 779–792, 6 1985.

[9] M. V. F. Pereira and L. M. V. G. Pinto, “Multi-stage stochastic
optimization applied to energy planning,” Mathematical Programming,
vol. 52, pp. 359–375, 5 1991.

[10] P. Fatouros, I. Konstantelos, D. Papadaskalopoulos, and G. Strbac, “A
stochastic dual dynamic programming approach for optimal operation
of der aggregators,” in 2017 IEEE Manchester PowerTech, Powertech
2017, pp. 1–6, IEEE, 6 2017.

[11] A. Bhattacharya, J. P. Kharoufeh, and B. Zeng, “Managing energy
storage in microgrids: A multistage stochastic programming approach,”
IEEE Transactions on Smart Grid, vol. 9, pp. 483–496, 1 2018.

[12] F. Hafiz, A. R. De Queiroz, and I. Husain, “Multi-stage stochastic
optimization for a PV-storage hybrid unit in a household,” in 2017 IEEE
Industry Applications Society Annual Meeting, IAS 2017, vol. 2017-
Janua, pp. 1–7, IEEE, 10 2017.
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A B S T R A C T   

Variable renewable generation demands increasing amount of flexible resources to balance the electric power 
system, and batteries stand out as a promising alternative. Battery models for optimization typically represent the 
battery with power and energy variables, while the voltage, current, charge variable space is used for simulation 
models. This paper proposes a non-linear battery storage optimization model in the voltage, current, charge 
variable space. The battery voltage is conceived as an empirical function of both state-of-charge and charge 
current and represented through bi-variate cubic splines. The voltage source converter losses are also approxi-
mated with a cubic spline function. Compared to energy-based storage models, the results show that this 
approach enables safe operation closer to the battery voltage and current limits. Furthermore, it prefers operating 
around high state-of-charge due to the higher efficiency in that region.   

1. Introduction 

1.1. Motivation and background 

The increasing amount of variable renewable energy in the electric 
power system increases the demand of flexible resources and energy 
storage. Battery energy storage systems (BESS) are capable of delivering 
and consuming high power almost instantaneously, and BESS costs are 
decreasing rapidly. BESS is expected to play an important role in 
ensuring efficient and reliable operation of the electric power system. 
They are also easy to install and goes hand in hand with distributed 
power generation. 

BESS installed in low voltage grids also have positive effects in me-
dium and high-voltage grids [1]. Different applications of BESS systems 
are described in reference [2–4], such as energy trade, ancillary services 
and grid support, and customer energy management. The optimal 
strategy for BESS operation depend on the application, but the overall 
goal is to balance load and generation both in the time domain and 
geographically. Customer energy management is demonstrated in [5] 
where load is shifted due to grid tariff design in combination with PV. 
Energy trade is shown in [6] where the price differences over time is 
utilized for arbitrage, and a grid support application is shown in [7] 
where battery is applied for voltage control. Several applications are 

often combined, such as simultaneous operation in day-ahead market 
(energy trade) and frequency reserve market (ancillary service) [8,9]. 

Batteries can be modelled both in the current, voltage, electric 
charge variable space, and in the power, energy variable space, hereby 
referred to as IVQ-model and PE-model respectively. The IVQ-model 
represents the battery state by counting charge in coulomb or ampere- 
hours, while the battery state for the PE-model is represented as en-
ergy in joule or watt-hours. The IVQ-model treats voltage and current as 
individual variables, while the PE-model is a special case of the IVQ- 
model with constant battery voltage. Since the battery voltage de-
pends on both state of charge (SOC) and discharge current, the battery 
efficiency will also depend on those. 

Existing battery simulation models span from simple models based 
on basic electric circuits to generic models with controlled voltage 
source [10]. One of the most common generic models is the Shepherd 
model [11], which has been further developed in [12,13]. All these 
models describe the battery behaviour in a more detailed and accurate 
way than the PE-models, and they provide insight into the battery 
voltage characteristics. However, an accurate model demands a complex 
model structure with many parameters, whereas a simpler model with 
fewer parameters will be less accurate. 

Techno-economic BESS optimization models are dominated by PE- 
models [2,5,6,8,9]. In [14], an optimization model considering varia-
tions in efficiency for changing battery states is presented. Reference 

* Corresponding author. 
E-mail address: per.aaslid@sintef.no (P. Aaslid).  

Contents lists available at ScienceDirect 

Journal of Energy Storage 

journal homepage: www.elsevier.com/locate/est 

https://doi.org/10.1016/j.est.2020.101979 
Received 4 June 2020; Received in revised form 10 September 2020; Accepted 11 October 2020   



Journal of Energy Storage 32 (2020) 101979

2

[15] compares battery operation optimization including degradation 
with a PE-model, an equivalent circuit model and a single particle 
model, where the equivalent circuit- and the single particle model are 
IVQ-models. The single particle model combines detailed modelling, 
optimal operation and degradation well, but it requires a very detailed 
parametric description of the BESS. 

Optimal BESS operation also relies on a accurate representation of 
power electronics. Many optimization models consider the battery and 
the voltage source converter (VSC) as a joint unit with a fixed charge and 
discharge efficiency. However, the VSC efficiency both depends on 
current and voltage. Reference [16] suggests the modelling of the VSC 
losses for optimization as a second order polynomial of current. The 
small scale VSC in [17] is provided with efficiency curves as a function of 
AC side power and DC side voltage. Detailed simulation of battery and 
power electronics is conducted in [18] showing that round-trip effi-
ciency both depends on charge/discharge power and SOC, which is not 
accounted for in the PE-models. 

1.2. Contributions and organization 

The contribution of this paper is a non-linear IVQ-model for battery 
storage optimization. The battery voltage and the VSC power loss is 
embedded with cubic splines generated from empirical data of the 
battery voltage and the VSC efficiency. The cubic splines are imple-
mented directly into the non-linear optimization problem. The model 
accounts for voltage and efficiency variations due to SOC and charge/ 
discharge power, and efficiency variations in VSC. The battery voltage 
splines also encapsulate the battery series resistance. Moreover, since 
battery operation limitations are defined by voltage and current indi-
vidually instead of power, this model enables safer operation close to the 
battery boundaries. Since the battery voltage is described by empirical 
data, it could also be updated based on measurement data as the battery 
degrades. Finally, the modelling method can easily be adapted to other 
battery types as well as other storage technologies such as hydrogen and 
hydro-power. 

The remainder of this paper is organized as follows: Section 2 pre-
sents mathematical model of BESS, VSC, load, market and solar PV, 

Section 3 presents numerical values used in this model, Section 4 pre-
sents results from numerical examples demonstrating the model capa-
bilities, and Section 5 draws the conclusions and suggests further work. 

2. Model description 

This section presents an IVQ-model for a BESS, VSC, load and grid 
connection as shown in Fig. 1, where the objective is to minimize 
operation costs. Symbols used for the mathematical modelling are 
described in the nomenclature. A corresponding PE-model is also pre-
sented as a comparison to investigate the differences between the IVQ- 
and the PE-model. 

2.1. Battery energy storage system 

BESS are assembled by multiple chemical cells connected in series or 
parallel. This section will outline a non-linear IVQ-model, and a simple 
quadratic PE-model. 

2.1.1. Assumptions 
This paper studies battery operation for daily market optimization, 

typically 24–48 hours ahead. Therefore, self discharge and change in 
voltage characteristics due to degradation are neglected. Faster tran-
sients, which are more pronounced at high SOC [13], demanding time 
resolution down to a few seconds are also neglected. Wiring losses 

Nomenclature 

Sets and indices 
t Time step index 
n / m Degree of x / y in spline function 
i / j Spline function indices along x / y axis 
xi / yj Spline function control point at index i /j 
txi / tyj Spline knot at index i / j 

Parameters 
ΔTt Step length at time t (h) 
ηc / ηd Battery charge/discharge efficiency 
p̂l

t Load forecast at time t (kW) 
p̂PV

t PV generation forecast at time t (kW) 
cp

t /cs
t Power purchase/sale price at time t (€ /kWh) 

Emin/ Emax Battery min/max storage energy (kWh) 
Ib,ch / Ib,dch Battery max charge/discharge current (A) 
MCb,max BESS marginal end-value at empty storage (€ /kWh) 
Nb

par Number of battery cells in parallel 
Nb

ser Number of battery cells in series 
Pb,ch / Pb,dch Battery max charge/discharge power (kW) 
Pp,max/Ps,max Maximum purchase/sale (kW) 
PVSC,max VSC maximum AC conversion power (kW) 
PVSC,loss

0 /PVSC,loss
2 VSC loss constant/quadratic term 

Qmin/ Qmax Battery min/max storage charge (Ah) 
Vb, avg Battery average voltage (V) 
Vb,min / Vb,max Battery min/max operating voltage (V) 

Variables and functions 
Ce(e) BESS energy end value function (€ ) 
Cq(q) BESS charge end value function (€ ) 
et BESS SOC (energy) at time t (kWh) 
fb
v (qt , ibt ) Battery voltage function (V) 

fVSC
loss (p

VSC,AC
t ) VSC loss function (kW) 

ibt Battery discharge current at time t (A) 
pb,ch

t / pb,ch
t BESS charge/discharge power at time t (kW) 

pb,DC
t DC discharge power from battery at time t (kW) 

pc
t /pd

t BESS PE-model charge/discharge power at time t (kW) 
pPV

t / pPV,curt
t PV generation and curtailment at time t (kW) 

pp
t /ps

t Power purchase/sale at time t (kW) 
pVSC,AC

t Power from VSC to AC bus at time t (kW) 
pVSC,DC

t Power to VSC from DC bus at time t (kW) 
pVSC,loss

t VSC power loss at time t (kW) 
qt BESS SOC (electric charge) at time t (Ah) 
vb

t Battery voltage at time t (V)  

Fig. 1. Test system topology.  

P. Aaslid et al.                                                                                                                                                                                                                                   



Journal of Energy Storage 32 (2020) 101979

3

internal in battery and between VSC are much lower than other in-
efficiencies and will not be accounted for. 

2.1.2. PE-Model 
A basic BESS optimization model is shown in (1), (2), (3), (4), (5), 

(6). The model assumes that the charge and discharge efficiencies are 
fixed. Numerical examples will later show the limitations of this 
assumption. This formulation often includes a charge/discharge 
complementarity constraint to prevent simultaneous charging and dis-
charging. Since the system in this paper allows curtailing generation at 
no cost, this constraint has been excluded to avoid mixed integer 
variables. 

et =

∫ t

0

(

ηcp
c
t −

1
ηd

pd
t

)

dt (1)  

Pb,ch = Ib,chVb,avg (2)  

Pb,dch = Ib,dchVb,avg (3)  

Emin ≤ et ≤ Emax (4)  

0 ≤ pc
t ≤ Pb,ch (5)  

0 ≤ pd
t ≤ Pb,dch (6)  

2.1.3. IVQ-Model 
A representation closer to the battery chemistry is considering the 

SOC in terms of charge q in ampere hours (7), and the voltage as a 
function of SOC and discharge current (8). Both values are given for an 
individual battery cell under the assumption that all battery cells will 
have identical SOC at all times. Equation (9), (10), (11) show the bounds 
for SOC, current and voltage respectively. 

qt =

∫ t

0

(
− ib

t

)
dt (7)  

vb
t = f b

v

(
qt, ib

t

)
(8)  

Qmin ≤ qt ≤ Qmax (9)  

− Ib,ch ≤ ib
t ≤ Ib,dch (10)  

Vb,min ≤ vb
t ≤ Vb,max (11)  

2.1.4. Battery package 
Let Nb

serrepresent the number of cells in series and Nb
parthe number of 

cells in parallel, hence the total number of cells is Nb
ser⋅Nb

par. The battery 
discharge power is given by (12). The DCsuperscript is used to distin-
guish power on DC and AC side of the VSC. 

pb,DC
t = vb

t ⋅Nb
ser⋅i

b
t ⋅Nb

par (12)  

2.2. Voltage source converter 

The voltage source converter (VSC) converts between DC and AC 
power in both directions. Typical DC sources and loads are battery 
storages and solar PV generations, but other DC loads and sources can 
also occur. The VSC is also subject to losses, and [16] suggests to model 
the losses with constant, linear and quadratic terms of the AC side cur-
rent. For the PE-model, a convex relaxation with a constant and a 
quadratic term will be used to model VSC losses. For the IVQ-model, the 
losses are approximated with a cubic spline function. 

2.2.1. Assumptions 
The AC side is often part of a large utility grid with relatively stable 

voltage, hence the effects of voltage variation on this side are neglected. 
Moreover, the efficiency variations due to DC side voltage in [dataset] 
[17] are relatively small, hence they are neglected. Therefore, the losses 
will solely depend on the DC side power. 

2.2.2. Model 
The VSC efficiency is undefined when pVSC,AC

t = 0yielding a discon-
tinuous function. Therefore, the power loss is expressed as the absolute 
power loss instead. The conversion from efficiency to absolute power 
loss is explained in Section 3.3. The IVQ-model uses a cubic spline 
function (13). The properties of cubic spline functions are discussed 
more in detail in Section 2.6, but the function shape will typically be 
close to quadratic. The PE-model uses a convex relaxation of a poly-
nomial function (14). The VSC AC and DC power and losses for both 
models are tied together as shown in (15) where the losses always are 
positive. 

pVSC,loss
t = f VSC

loss

(
pVSC,AC

t

)
(13)  

pVSC,loss
t ≥ PVSC,loss

0 + PVSC,loss
2

(
pVSC,AC

t

)2 (14)  

pVSC,DC
t = pVSC,AC

t + pVSC,loss
t (15)  

2.3. Load, generation and utility grid 

The solar PV generation and load are given by separate forecasts. 
Generation curtailment and import from the power grid are decision 
variables. 

2.3.1. Assumptions 
To keep computational burden modest, uncertainties in forecasts are 

not accounted for. Generation can be curtailed, and power can be pur-
chased from or sold to the utility grid at a fixed or variable exogenous 
positive price. In one of the examples, the effect of only being able to 
change the purchase/sale volume hourly will be studied. This aligns well 
with typical market structures where the energy is traded hourly either 
in the day-ahead or intra-day market. If forecast data has fewer data 
points than the optimization problem, data is re-sampled with linear 
interpolation. 

2.3.2. Model 
The relation between solar PV generation, forecast and curtailment is 

shown in (16). 

pPV
t = p̂PV

t − pPV,curt
t

pPV
t ≥ 0

(16) 

The PV generation is injected on the DC side, while the power 
exchanged with the utility grid is injected on the AC side. The PV and the 
BESS share a common VSC. Storing energy from utility grid yields larger 
losses than PV generation since power injected on the AC side must pass 
the VSC before being stored in the battery. 

Utility grid imports and exports are permitted within certain limits as 
shown in (17). 

0 ≤ pp
t ≤ Pp,max

0 ≤ ps
t ≤ Ps,max (17) 

The resulting DC and AC bus power balances are shown in (18) and 
(19) respectively. 

pVSC,DC
t = pPV

t + pb,DC
t (18)  

p̂l
t = pVSC,AC

t + pp,AC
t − ps,AC

t (19)  
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2.4. Objective function 

The objective function is given by the integral of the power exchange 
costs minus the BESS end storage value (20), which is described in 
Section 2.7. 

min
∫ T

0

(
cp

t pp
t − cs

t p
s
t

)
dt − Cq(q) (20)  

2.5. Integration rule 

The integrals of (1), (7) and (20) can be discretized and solved 
numerically using methods for solving ordinary differential equations 
(ODE). Some of the simplest methods for solving the initial value 
problem in (21) are forward Euler (22), backward Euler (23) and the 
trapezoidal method (24). 

y
′

(t) = f (t, y(t)), y(t0) = y0 (21)  

yn+1 = yn + h⋅f (tn, yn) (22)  

yn+1 = yn + h⋅f (tn+1, yn+1) (23)  

yn+1 = yn +
h
2
(f (tn, yn)+ f (tn+1, yn+1)) (24) 

The choice of method is of minor importance for the PE-model in (1) 
since the charging and discharging are independent of SOC. This paper 
has used forward Euler integration as shown in (25). 

et+1 = et + ΔTt

(

ηcp
c
t −

1
ηd

pd
t

)

e1 = einit

eend = eT + ΔTT

(

ηcp
c
T −

1
ηd

pd
T

)
(25)  

However, in the IVQ-model the discharge power is function of voltage, 
while the voltage is a function both SOC and charge/discharge current. 
Hence, the choice of integration method will affect the results. More-
over, the choice of step length will also be more critical with respect to 
both the precision and the numerical stability. 

The IVQ-model in (7) can be written recursively (26). Applying the 
different integration methods on (26) yields sets of sparse difference 
equations: the storage balance for forward Euler (27), backward Euler 
(28) and trapezoidal (29). 

qt+1 = qt +

∫ t+1

t

(
− ib

t

)
dt (26)  

Forward Euler: 

qt+1 = qt − ΔTtit
q1 = qinit

qend = qT − ΔTT iT

(27)  

Backward Euler: 

qt+1 = qt − ΔTtit+1
q1 = qinit − ΔT1i1

qend = qT

(28)  

Trapezoidal method: 

qt+1 = qt −
ΔTt

2
(it + it+1)

q1 = qinit −
ΔT1

2
i1

qend = qT −
ΔTT iT

2

(29) 

Forward integration rewards discharge using high power since the 
high voltage at high SOC yields higher power per charge unit, and the 
SOC update is delayed due to forward integration. Likewise, it will also 
reward charging using high power, as less power is demanded per 
ampere hour stored compared to low voltage charging. On the other 
hand, backward Euler gives incentive to discharge with lower power as 
the SOC is changed in advance. For these reasons, the trapezoidal 
method yields the most accurate integration for continuous operation, 
but will also build a slightly denser system of equations as the storage 
balance equations contain two discharge variables instead of one. The 
objective function is integrated in the same manner as the storage. 

Overall, the presented approaches convert the ODE-constraints into a 
set of sparse difference equations (algebraic) of the same variables, 
which are only defined at a pre-determined set of time steps. These final 
sets of algebraic equations are used in the implementation of the opti-
mization model, enabled by the use of non-linear programming solvers. 
Implementation and solution method are presented in Section 4.1. 

2.6. Cubic splines 

The constraints (8) and (13) will be modelled with cubic splines as 
these are compatible with non-linear programming, and possible to 
implement in interior point solvers. Interior point solvers are also rela-
tively efficient at solving large-scale non-linear dynamic problems [19]. 

A spline function is a piece-wise polynomial function. A k degree 
spline function has continuous derivatives up to order k − 1, hence a 
spline function with degree 3 is guaranteed to have continuous de-
rivatives up to order two. This is a necessary property for non-linear 
optimization tools requiring twice continuously differentiable func-
tions. Spline functions are composed of multiple Bezier curves shown in 
(30). The Bezier curves are linear combinations of the Bernstein basis 
polynomials shown in (31) where n is the degree, and βν are known as 
Bernstein or Bezier coefficients. 

BZn(x) =
∑n

ν=0
= βνbeν,n(x) (30)  

beν,n(x) =
(n

ν

)
xν(1 − x)n− ν

,

ν = 0,⋯, n, x = [0, 1]
(31) 

A property of the Bezier curve is that the start and the end value of 
the function is a linear combination of the Bezier coefficients, and the 
same applies for the start and the end values for the derivatives of the 
curve. This makes them well suited for building piece-wise polynomial 
functions with continuous derivatives. 

A spline function can be uniquely described as a linear combination 
of basis functions as shown in (32), and this representation is known as 
B-splines. The spline function parameters are the control points xi and 
knots ti. The knots represent the distance between the control points. A k 
degree spline with n+ 1control points will consist of n − k+
1polynomial segments. The basis function is constructed in a recursive 
manner using the Cox-de Boor formula (33)[20]. The derivatives are 
also defined as a linear combination of the basis functions. 

Sn,t(x) =
∑

i
αiBi,n(x) (32)  

Bi,0 =

{
1 if ti ≤ x ≤ ti+1

0 otherwise

Bi,k(x) =
x − ti

ti+k − ti
Bi,k− 1(x) +

ti+k+1 − x
ti+k+1 − ti+1

Bi+1,k− 1(x)

(33)  

Moreover, the bi-variate spline function is given by (34) where n and m 
are the spline degrees of the two dimensions x and y respectively. The bi- 
variate spline describes a smooth surface given by a mesh of control 
points αij where the corresponding knots are txi, tyi. 
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Sn,m,tx,ty(x, y) =
∑

i

∑

j
αijBi,n(x)Bj,m(y) (34) 

Alternatively, the splines can also be described as a matrix of poly-
nomials. This description is more extensive than the combination of 
basis splines, but the resulting function is differentiable in Julia/JuMP. 
Surface (i, j) of the bi-variate spline function on polynomial form is 
shown in (35). 

Si,j,n,m,tx,ty(x, y) =
∑n

kn=0

∑m

km=0
βi,j,kn,km Δxkn

i Δykm
j

Δxi = x − xi

Δyi = y − yi

(35)  

Each polynomial surface is defined by (n+ 1)⋅(m+ 1)coefficients, for 
cubic splines in both x and y yields a 4 by 4 matrix with coefficients for 
each polynomial surface. These coefficients are obtained by evaluating 
(34) and its derivatives at the corners of the respective surfaces. 

The splines have been generated using the Python Scipy [21] func-
tions bisplrep and splrep, which are based on [20]. 

2.7. Battery energy storage system end value 

In energy storage optimization, the storage tends to be emptied at the 
end of the optimization period, unless the end value is bounded by 
constraints, or the stored energy at the end is valuated in the objective 
function. A possible approach is to keep the end value fixed, for example 
to the initial value. However, the conversion between SOC in terms of 
charge and energy is not uniquely defined since the battery voltage 
depends on both SOC and charge/discharge current. Instead of keeping 
the end value fixed, an end value function is defined in this model. This 
enables comparison of the objective function through simulation of 
different cases even though the end point values are different. The 
valuation of end storage is a well established concept from hydro power 
scheduling [22,23], and [24] gives a general description also including 
PV generation. 

When the SOC is 100%, it is unable to receive more power, hence the 
energy marginal value is zero. On the other hand, an empty storage is 
not capable of supplying energy, hence it has a high marginal value 
MCb

max. For simplicity, the marginal value of the end storage is set to vary 
linearly between these to points. The marginal value function for a PE- 
model is shown in (36). The corresponding storage end value function is 
the integral of (36)as shown in (37). The value function is converted 
from energy in the PE variable space (kWh) to charge in the IVQ variable 
space (Ah) through a conversion (38) under the assumption that the 
BESS is charged/discharged at constant voltage. The same conversion is 
used to convert the storage max value between PE and IVQ variable 
space. The resulting storage end value function is shown in (39). 

MCe(eT) = MCb,max
(

1 −
eT

Eb,max

)

(36)  

Ce(eT) =
∫ eT

0 MCe(e) de

= MCb,max
(

eT −
eT

2

2Eb,max

) (37)  

eT = Vb,avg⋅Nb
ser⋅Nb

par⋅qT

= ceq⋅qT
(38)  

Cq(qT) = MCb,max⋅ceq

(

qT −
qT

2

2⋅Qb,max

)

(39)  

2.8. Model summary 

The objective and constraints of the PE-model and the IVQ-model are 
summarized in Table 1. 

The PE-model formulation is quadratic and convex. Note that 
simultaneous charging and discharging is possible to create artificial 
losses. In these situations, an equally good solution will be to curtail the 
generation. 

The IVQ-model is continuous and twice differentiable, but the con-
straints are non-linear and non-convex. Ipopt searches for the optimal 
solution in an iterative manner, hence the spline functions are only 
evaluated at their current point for each iteration. Binary variables are 
therefore not needed to decide which segment of the spline function is 
active. However, the optimal solution is only local and can not be 
guaranteed to be the global optimum. 

3. Case study data 

This section presents numerical values used to describe the BESS and 
the VSC in the optimization problem, and the procedure for converting 
the data points into spline functions. The resulting BESS and VSC effi-
ciencies are presented as well as the total system efficiency. Other 
general numerical values are presented in Table 2. Case-specific nu-
merical results are presented in Section 4. 

3.1. Battery voltage splines 

The battery voltage is given by experimental values from a Nissan 
Leaf battery cell [dataset][25]. The cell has been charged at around 15 A 
and discharged at 30, 60 and 90 A while the voltage has been monitored. 
To generate the spline functions, the voltage has been sampled with 
uniformly distributed sample points in the SOC variable space q and for 
four selected charge/discharge currents yielding the bi-variate spline 
function fb

v (qt , ibt ). Fig. 2shows the resulting splines compared to the 
original sampling points for different smoothing factors. In addition, 
voltage curves for 0 A and 30 A are shown to verify if the spline model 
predicts reasonable voltage values between and outside the sampling 
points. Fig. 2a shows that a low smoothing factor yields an accurate fit 
for the data points marked with black dots. However, the voltage at 0 A 
should be between the voltage at 15 A and -30 A which is not the case in 
Fig. 2a, hence is likely to be overfit. The intermediate smoothing factor 
in Fig. 2b fits quite well with the data point. The 0A voltage is also be-
tween the -30 A and the 15 A voltage, and the 30 A voltage seems to scale 
linearly compared to the other curves. However, the increasing slope for 
high SOC is not well captured for charging (positive current). The high 

Table 1 
Summary of PE- and IVQ-model equations.  

PE-model  

Objective (20), (37) and (38) 
Storage constraints (25) 
Other constraints (2) (3) (4) (5), (6), (14), (15), (16), (17), (18) and (19)  

IVQ-model  

Objective (20) and (39) 
Storage constraints (27), (28) or (29) 
Other constraints (8), (9), (10), (11), (12), (13) and (15), (16), (17), (18), (19)  

Table 2 
Model numerical values.  

Battery & VSC  

Vmin/Vmax/Vavg  3.20/4.15/3.90 V 

Qb,min/Qb,max/Qinit 0/29/20 Ah 
Ib,ch/Ib,dch 30/90 A 
VSCmax  25 kW  

Market  

Pp,max/Ps,max 10/10 kW 
cp/cs 10/9 € /kWh 
MCb,max 15 € /kWh  
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smoothing factor in Fig. 2c captures the increasing slope for high SOC at 
the cost of accuracy, especially for low SOC where the deviation be-
tween the measured data points and the curves are significant. The in-
termediate smoothing factor 0.01 will be used further. 

3.2. Battery modules and package 

The Nissan Leaf 2013 battery package configuration consisting of 48 
modules in series has been used. Each module has four cells, where two 
and two are in parallel. The experimental values in [25] has been ob-
tained by cycling the battery cells between 3.0 V and 4.2 V. This 
configuration has Nb

ser = 96and Nb
par = 2yielding a voltage range from 

288.0 to 403.2 V. Note that the examples in this paper use conservative 
voltage limits to illustrate the properties of the IVQ-model. 

3.3. Voltage source converter loss curve 

VSC loss values are obtained from [17] (SBS3.7–10), where the ef-
ficiency is given as function of AC side power. The efficiency is con-
verted to absolute power loss as shown in (40), and the converted 
efficiency data points are used to generate the spline function 
fVSC
loss (p

VSC,AC
t ). To adapt the size of the VSC for the different cases, the 

pVSC,AC
t data points are scaled linearly with PVSC,max as the maximum 

value. 

Fig. 2. Comparison of bi-variate spline curve and measured data for battery cell 
voltage for different smoothing factors. 

Fig. 3. VSC efficiency.  
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pVSC
loss

(
pVSC,AC

t

)
=
(
1 − ηVSC( pVSC,AC

t

))
(40) 

The VSC efficiency curve as function of per unit power is shown in 
Fig. 3a. This efficiency curve is for the nominal DC voltage 360 V. The 
VSC power loss sampling points and the resulting spline function are 
shown in Fig. 3b, where the solid line represents the spline function that 
is used in the optimization problem. The smoothing factor is 0. 

The coefficients of the PE-model loss curve in (14) are fitted by 
evaluating the spline function for 0 and maximum power as shown in 
(41) and (42). 

PVSC,loss
0 = f VSC

loss (0) (41)  

PVSC,loss
2 =

f pu,VSC
loss

(
PVSC,max

)
− PVSC,loss

0
(
PVSC,max

)2 (42)  

3.4. Battery and system efficiency 

The battery round trip efficiency can be calculated based on the 
charge and discharge voltage. Assume the battery is charged at a con-
stant current for a short optimization horizon, and then discharged with 
the same current. By neglecting the change in SOC due to the short time 
period, the battery round trip efficiency as a function of current and SOC 
can be found using (45). This has been mapped from the IVQ to the PE 
variable space, and the resulting numerical values are shown in Fig. 4a. 

pb,dch = fv
(
q, ib)⋅ib (43)  

pb,ch = fv
(
q, − ib)⋅ib (44)  

η =
pb,dch

pb,ch =
fv
(
q, ib

)

fv
(
q, − ib

) (45) 

When storing energy in the battery, the energy can either come from 
surplus solar PV generation, or be purchased from the grid. Since PV 
generation is injected on the DC side, it does not have to pass VSC before 
it is discharged. However, when energy is purchased for storage, it is 
first converted to DC and then must be converted back later when 
consumed by the load. The system DC efficiency is the efficiency asso-
ciated with storing solar PV energy for later use, and the VSC efficiency 
is multiplied with the BESS efficiency once. The AC efficiency is the ef-
ficiency when purchased energy is stored and consumed later, and the 
VSC efficiency is multiplied with the BESS efficiency twice. Both DC and 
AC efficiencies are shown in Fig. 4b and 4c respectively. 

Both figures show that the system efficiency is highest for moderate 
power since the battery efficiency is highest for low power, while the 
VSC has a standby power consumption which shifts the system optimum. 
The efficiency decreases almost linearly when the SOC is around 50%, 
while the non-linearity is more pronounced for both high and low SOC. 

4. Results and discussion 

This section presents the implementation and solving method for the 
proposed models. Moreover, a simulation based validation method is 
proposed. Finally, the results from two examples are presented to 
demonstrate the capabilities of the IVQ optimization model. Both ex-
amples are built on the topology in Fig. 1 and the numerical values 
presented in Section 3, and solved using Ipopt in Julia/JuMP. The first 
example involves cycling of the battery, and demonstrates how the 
change in efficiency with respect to SOC influences the optimal solution. 
It also shows how the choice of step length and integration method can 
influence the accuracy of the numerical integration. The second case 
shows how the power delivery capability, due to voltage and current 
limits, is accounted for with an IVQ-model compared to a PE-model. 

4.1. Implementation and solution method 

The problem is solved using the optimization toolbox JuMP (0.21.2) 
[26] in the programming language Julia (1.2) and the non-linear interior 
point solver Ipopt (3.12.10) [27]. Ipopt finds a local solution to 
non-linear and non-convex optimization problems where the objective 
and the constraint functions are twice continuously differentiable. 

Fig. 4. Battery and VSC efficiencies.  
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Computation time of Ipopt depends on problem structure as well as 
the underlying linear equality solver. Both the default solver in Ipopt, i. 
e. MUMPS, as well as the large scale solver PARDISO (6.0) [19] have 
been tested in this paper. PARDISO generally performs well on large 
scale systems [28]. 

Moreover, the voltage function and the VSC loss function must also 
be twice continuously differentiable. A common continuous function for 
describing this voltage is given by [12]. However, this function will 
often give a significant stationary offset compared to the actual voltage 
curve. 

JuMP supports automatic differentiation of user-defined non-linear 
functions [26]. Instead of using a rigorously defined polynomial, the 
voltage surface and the VSC loss are described with a cubic spline 
function. The cubic spline function is piece-wise polynomial, but has 
continuous derivatives up to order two, hence no integer variables are 
needed to solve the problem. Since the voltage is a function of both i and 
q, a bi-variate cubic spline function is used to approximate (8), and a 
uni-variate cubic spline function is used to describe the VSC losses in 
(15). 

4.2. Validation 

To verify feasibility of the proposed schedules from the optimization 
models, a simulation model is used. The simulation model is based on 
the IVQ-model with forward Euler, but the step length is shorter, only 1 
second. The simulation will therefore give a more accurate update of 
SOC under the assumption that the IVQ-model is the true model. 

The simulation model assumes the load, grid exchange, VSC AC 
power and battery discharge is given by the optimization, and simulates 
the battery current and voltage, VSC loss, PV curtailment and SOC. This 
comparison identifies how much the SOC in optimization will drift of 
from the simulation result due to the inaccuracy in numerical integra-
tion. Since the PE-model does not include voltage and current as vari-
ables, the simulation is also used to check for voltage and current limit 
violations in the model result. Note that the SOC from optimization is 
used in this case since the effect of SOC drift should be kept apart from 
other effects. This simulation method ensures that the load is always 
met, and will reveal if the proposed schedule causes violation of current, 
voltage or SOC limits. 

4.3. Optimality and integration method 

The system efficiency depends on SOC, hence the optimal strategy 
involves operating around the optimal SOC as well as hitting the optimal 
end value. The relation between charge-discharge power and SOC de-
pends on the integration method. To demonstrate this, the net load (load 
minus generation) is set to a sine wave with period 2 hours and ampli-
tude 10 kW. The system is optimized for 36 hours which involves 18 
charge/discharge cycles, which is long enough to let the battery cycling 
stabilize around the optimal SOC. Other numerical values of this test 
case are shown in Table 3 

The case is optimized with step length 30, 10 and 1 min, and Fig. 5 
shows the resulting optimized SOC, the simulation result and the opti-
mization error (difference between optimization and simulation) at 10- 
minute optimization step lengths. Fig. 5a shows how the forward Euler 
cycles at lower SOC than the other methods, which is not optimal based 
on the efficiency surface shown in Figs. 4b, and 4c. The voltage at the 
beginning of a time step is used for integrating the SOC, hence for dis-
charging the voltage will be higher than the actual voltage. The losses and the discharge current will therefore be underestimated and promote 

high discharge power. When charging, the voltage will be lower than the 
actual voltage, hence the charge current will be overestimated. In total, 
Fig. 5a shows that the simulated value drifts off from the optimized 
value and the error in SOC accumulated up to the value shown in 
Table 4. When the step size is reduced, the error is reduced significantly. 

Table 5 summarizes number of variables and constraints for the 

Table 3 
Numerical values for sine wave case.  

Pp,max/Ps,max 10.0/10.0 kW 
cp/cs 10.0/9.0 € 
PVSC,max 25.0 € /kWh  

Fig. 5. Comparison of optimization and simulation results for battery cycling 
with different integration methods with step length 10 minutes. 
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problems solved, and the respective computation time and number of 
iterations. The default linear solver in Ipopt, MUMPS, took between four 
and eight minutes solving the cases with one minute step length, and 
several of the other cases did not converge to the desired tolerance. 
Therefore, the PARDISO [19] solver was used instead, which gave a 
significant reduction in computation time for the largest cases and 
improved convergence tolerance. 

For longer step lengths, forward Euler showed convergence problems 
for small initial storage values, which is in accordance with its known 
properties. This is also confirmed by the higher number of iterations 
needed for these cases in Table 5. 

Fig. 5b and 5c show similar comparison for the trapezoidal method 
and backward Euler respectively. The trapezoidal method has a smaller 
error compared to the other methods, which is as expected, since the 
integration is based on the average voltage value for the time step. 
Backward Euler has a smaller deviation than forward Euler for the long 
time steps, while the error magnitude is almost identical for small step 
length. Backward Euler uses the voltage at the end of the time step to 
calculate the current, hence it will underestimate the needed charging 
current and overestimate the discharge current. 

4.4. Solar PV smoothing 

The numerical values for solar PV generation are acquired from [29], 
where the overcast series from Varennes with overcast cloud cover has 

been used. The series have variable time resolution with step length ≤
60s. This case demonstrates how the battery can be used to smooth the 
output from solar PV under the assumption that the system purchase/-
sale only can be changed hourly. The PV generation is shown in Fig. 6 
together with the system sale for both the IVQ- and the PE-model. Other 
numerical values specific for this case are shown in Table 6. It is noted 
that despite the differences, the dispatch curves are shaped similarly, 
suggesting that for the non-convex IVQ model the optimizer didn’t 
converge to an obviously sub-optimal solution. 

Fig. 7 shows the simulated SOC for the IVQ- and the PE-model, and 
the error between simulation and optimization. The result show that the 
PE-model violates the SOC lower bound (remark 1, indicated with a 
numbered red circle), and that the error increases when the battery is 
discharged at high power. The PE-model assumes constant battery ef-
ficiency, hence it does not capture the increasing loss for high discharge 
power causing the increase in error at remark 1. 

The battery voltage is shown in Fig. 8a, and the both the upper and 
lower voltage is violated for the PE-model (remark 1–4). It would have 
been possible to adjust the power and energy limits such that they were 
not violated, but that would also put unnecessary conservative limits on 
the discharge power or SOC in other situations. Similar violations are 
observed for the current in Fig. 8b (remark 1). 

Also note the difference is charging profile for the two models in 
Fig. 8c. Remark 1 and 2 shows how the charging is ramped down to 
avoid voltage limit violation, while at remark 3, the power is ramped up 
as the increasing battery voltage permits increasing charge power. 

5. Conclusions 

The IVQ optimization model enables operation closer to battery 
boundaries in terms of both voltage, current and SOC than a PE-model. 
Whereas a PE-model must implement conservative charge, discharge 
and SOC limits to ensure feasible solutions and battery life, the IVQ- 
model incorporates the voltage and current limits directly, allowing 
safe operation close to the battery limits. Moreover, the incorporation of 
the voltage surface and VSC efficiency with cubic splines enables the use 
of empirical data or updated measured data directly into the optimiza-
tion model. The model can therefore be updated regularly through the 
battery lifetime providing optimal and feasible plans, even when the 
battery properties have changed due to degradation. Finally, the IVQ- 
model will ensure operation at the optimal SOC and charge/discharge 

Table 4 
Accumulated optimization error SOC (Ah) for different integration methods and 
step length with sine wave net load.  

Step length 30 min 10 min 1 min 

Forward 24.13 3.856 0.1222 
Trapezoidal –1.172 –0.1670 –0.003733 
Backward –2.950 –1.125 –0.1215  

Table 5 
Optimization statistics for different integration methods and step length with 
sine wave net load.  

Step length  30 min 10 min 1 min 

#Variables 1024 3040 30,256 
#Equality constraints 733 2173 21,613 
#Inequality constraints 74 218 2162 
#Iterations Forward 119 132 44  

Trapezoidal 46 39 50  
Backward 49 38 39 

Solve time (s) Forward 2.9 6.1 16.5  
Trapezoidal 1.6 2.0 20.0  
Backward 2.0 2.1 15.3  

Fig. 6. PV generation and system output for PV smoothing case.  

Table 6 
Numerical values for PV smoothing case.  

Ps,max 150.0 kW 
cs 10.0 € /kWh 
PVSC,max 150.0 kW  

Fig. 7. Battery SOC for PV smoothing case.  
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power yielding highest efficiency whenever possible. However, the re-
sults are sensitive to choice of numerical integration method and step 
length. The trapezoidal integration method has similar scalability to 
problem size as forward and backward Euler, but significantly less error 
for similar step lengths. 

5.1. Further work 

A possible extension of this model is to incorporate degradation costs 
associated with operative variables such as SOC and charge/discharge 
power. The modelling principle may also be adapted to other types of 
storage technologies such as hydrogen or hydropower. 

Renewable generation is subject to uncertainty, and the error from 

uncertainty is integrated over time when it comes to storage operation. 
Combining the proposed method with stochastic renewable generation 
and load is therefore also important further work. 

Finally, the model may also be incorporated in an unbalanced OPF 
model using model predictive control to perform model-based conges-
tion management through battery storage operation. 
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A B S T R A C T   

This paper studies the electricity price formation in a competitive market when introducing generation from 
variable renewable energy technologies with zero marginal cost and electric energy storage systems. A power 
system is analyzed with a stochastic optimization model combining multi-period optimal power flow with sto-
chastic dynamic programming. The results illustrate how variable renewable energy, in this case solar photo- 
voltaic generation, displaces some of the expensive thermal generation and reduces the price. Electric energy 
storage will reduce the price variations caused by the variable renewable generation and demand as the time 
with price cap and zero price is reduced. In systems with only variable renewable generation and energy storage, 
the price will be set by the probability of scarcity similar to the price formation in hydro power dominated 
systems. The price will indicated the future cost of scarcity as a stochastic expectation value. This paper assumes 
that the demand is inflexible. However, the resulting electricity prices will remunerate provision of flexibility, 
which in turn will contribute to securing the supply and reducing the price volatility.   

1. Introduction 

The share of Variable Renewable Energy (VRE) generation world-
wide is increasing, and although most electricity markets still are 
dominated by thermal generation, projections show that VRE will be the 
dominant energy source by 2050 both in terms of electricity generation 
and and installed capacity [1]. Until now, the deployment of VRE has to 
a large extent been driven by subsidies, but the cost level of VRE has 
been decreasing rapidly and is now becoming lower than conventional 
generation, even without subsidies [2]. 

VRE has a marginal operating cost close to zero and will therefore 
displace some of the dispatchable generation due to the merit order 
effect, which has been extensively studied [3–8]. This in turn will reduce 
the profit of the conventional generation units, but also make large-scale 
deployment of competitive VRE more difficult due to the energy price 
reduction [9]. However, Helm and Mier [10] shows that VRE can be 
competitive in an energy-only market when the levelized cost of energy 
is sufficiently low. Moreover, Korpås and Botterud [11] show that there 
exists a market equilibrium including VRE in an energy-only market 
where all units recover their costs. The market price at the new equi-
librium will be more volatile compared to a system without VRE. The 

new market equilibrium will also have a significant duration of zero 
price, a higher amount of energy not supplied, and there will be rela-
tively more power stations with higher variable costs and lower fixed 
costs [12]. 

Electric Energy Storage (EES) can facilitate integration of VRE. The 
deployment of grid scale EES has seen a tremendous growth since 2013 
[13], partly driven by decreasing EES costs [14]. The application of EES 
in combination with VRE has been extensively studied [15,16], either 
from a system optimization perspective [17,18], or from a price taker 
perspective [19,20] regardless of generating source. The EES profit in a 
wholesale market comes from arbitrage, hence accurate price forecasts 
capturing both the volatility as well as the uncertainty are important. 
Ward et al. [21] shows that current market models tend to underesti-
mate the volatility, and suggests a more accurate description of the merit 
order to better capture the price volatility and to account for the im-
plications on the market equilibrium caused by EES by solving the model 
iteratively. The implications EES have for the market equilibrium are 
studied more in detail in Korpås and Botterud [11] where they show 
how profit maximization for each generation and storage unit in a 
market based on marginal cost pricing and administrative scarcity 
pricing will have the same result as system cost minimization using 
traditional system optimality and cost recovery conditions from Stoft 
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[22]. Since the approach is based on duration curves, the storage size 
limitations are not accounted for. 

The similarities between the hydro power dominated electricity 
markets, such as the Nordic market, and markets with high penetration 
of VRE and EES, are interesting when studying the market equilibrium 
and the corresponding electricity prices. The marginal cost pricing 
principle is also used in these markets [23], and the marginal value for 
hydro power plants has been studied for decades [24]. In contrast to VRE 
and thermal generation, the marginal value for a hydro power plant is 
not given by its operational costs but the future opportunity value of 
saving the stored energy for later rather than using it now [25]. 

The marginal value of EES, hereby referred to as the Storage Mar-
ginal Value (SMV), is actually a function of both time, due to variations 
in generation and demand, and EES State-Of-Charge (SOC) as the ca-
pacity for avoiding expensive generation or load curtailment in the 
future depends on the current SOC. The SMV will therefore also be a 
function of the SOC of other EES’ in the system [26] since the risk of 
scarcity depends on the total energy stored in the system and potential 
grid congestion associated with the EES locations. Although the pro-
posed method supports multiple EES [27], this paper will study a single 
aggregated storage. Moreover, both generation from VRE and demand 
are subject to uncertainty. Seen from a system perspective, the future 
SOC depends on the realizations of the uncertainty and will therefore 
also influence the future electricity price. Since the operation strategy 
may be corrected multiple times as the uncertainty is revealed, the 
problem is tractable to formulate as a multi-stage stochastic model. 
Geske and Green [28] points out that if EES capacity replaces some 
generation capacity, the optimal EES strategy must balance arbitrage 
against the risk of not being able to meet the system demand. The 
electricity price can in this case be seen as an arbitrage against risk of 

extreme prices. 
The implications on electricity prices caused by large-scale integra-

tion of VRE and EES have until now been studied for systems where 
dispatchable generation technologies are still the backbone of the 
electricity system. This paper goes one step further and analyses the 
implications on a power system when VRE is the dominating source of 
power generation, and the system relies on EES to secure the supply. 

This paper presents a multi-stage stochastic optimization model of an 
electricity system with VRE and EES seen from a system perspective and 
solves it with Stochastic Dynamic Programming (SDP) [29]. The model 
formulation is based on Multi-Period Optimal Power Flow (MP-OPF) 
[30]. 

The solution of the model yields the SMV for all time steps as a 
function of SOC as a cubic spline function. The SMV indicates the 
operating strategy for that particular EES in a wholesale market. 
Moreover, by simulating several scenarios sampled from the probability 
distribution, a range of possible electricity prices can be generated 
yielding a probabilistic electricity price for all buses in the entire system. 
The resulting electricity price will be studied to illustrate the effect of 
introducing VRE and EES in a power system dominated by thermal 
generation, thus confirming the results from previous studies and the 
correctness of the proposed model. Finally, the electricity price in a 
system with only VRE and EES will be studied where the price is set by 
the risk of extreme prices caused by scarcity. 

The contributions of this paper can be summarized as follows:  

i) A novel SDP model for electricity system optimization including 
EES and uncertainty. The model embeds MP-OPF as stage-wise 
models, and connects them through cubic spline end value 
functions generated from the state variable dual values. 

Nomenclature 

Sets and indices 
b ∈ B Set of buses in network 
(i,k) ∈ L Set of lines in network 
(i,k) ∈ L b Set of lines from bus b 
s ∈ S = [1,S] Set of stages in optimization problem 

t ∈ T s =

[

ts, ts

]

Set of time steps at stage s 

n ∈ N = [1,N] Set of discrete states at each stage 
ωs ∈ Ωs Noise in sample space at stage s 
m ∈ M Set of discrete scenarios from noise probability distribution 
e ∈ E b Set of EES at bus b 
g ∈ G b Set of thermal generation units at bus b 
r ∈ R b Set of VRE generation units at bus b 
d ∈ D b Set of loads at bus b 

Parameters 
Pmax

g Maximum active power for thermal generator g 
Pmax

r,t Theoretical maximum generation solar power system r,
time t 

ϕr,s Clearness index solar power system r, stage s 
ρm Noise probability scenario m 
PDd,t Active power demand forecast load d, time t 
Bik Imaginary component of admittance matrix element ik 
Θmin

b /Θmax
b Minimum/maximum voltage angle at bus b 

Pmax
ik Maximum transmission capacity for line between bus i,k 

Cg Generator g marginal operating cost 
Cd Load d marginal shedding cost 
Xn Discrete state n 
ΔTt Step length at time t 

SOCmin
e /SOCmax

e Minimum/maximum SOC at storage e, time t 
PSc

e,t/PSd
e,t Maximum charge/discharge power at storage e, time t 

βq,s,n Spline coefficient order q, discrete state n at stage s 
ηc/ηd EES charge/discharge efficiency 

Variables and Functions 
xs/x′

s Incoming/outgoing state variables at stage s 
xs Incoming state dummy variable at stage s 
us Control variable at stage s 
Us(xs,ωs) Control variable feasibility set at stage s 
Ts(xs,us,ωs) Stage-transition function between stage s and s+ 1 
Cs(xs,us,ωs) Stage-objective function at stage s 
Vs(xs,ωs) Future cost function at stage s 
πs(xs,ωs) Decision-rule function at stage s 
λs,n State variable dual value at stage s, discrete state n 
pb,t Active power injection at bus b, time t 
pg,t Active power thermal generator g, time t 
pr,t Active power from solar power system r, time t 
pe,t Active power withdrawn by storage e, time t 
pse,t Net power charged to storage e 
psc

e,t/psd
e,t Power charged to/discharge from storage e, time t 

soce,t Energy storage e SOC, time t 
pd,t Active power withdrawn by load d, time t 
plsd,t Shedding of load d, time t 
θb,t Voltage angle at bus b, time t 
SEVs(xs) Storage end value function at stage s 
SMVs(xs) Storage marginal value function at stage s 
sevs Storage end value variable at stage s 
Bq,s,n(xs) Spline order q, discrete state n at stage s 
Πn(xs) Spline activation function discrete state n  
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ii) The storage end value for the final stage is updated iteratively to 
simulate infinite horizon optimization.  

iii) The electricity price is studied first for a traditional power system 
with thermal generation, followed by systems including VRE and 
EES. Finally, the price is studied for a system with only VRE and 
EES.  

iv) The interpretation and usage of the storage marginal value 
function are discussed. 

The remainder of this paper is organized as follows: Section 2 de-
scribes the optimization method used to find the SMV and Locational 
Marginal Price (LMP), Section 3 presents numerical data used to illus-
trate the energy price in a system dominated by thermal generation 
compared to VRE generation, Section 4 presents the results using the 
described method in combination with the presented numerical data, 
Section 5 discusses the implications of the presented results, and Section 
6 draws the conclusions and presents possible directions for future work. 

2. Method 

This section presents a detailed description of the multi-stage sto-
chastic optimization problem used to study the optimal operation and 
the corresponding electricity price in a constrained power system with 
VRE generation and EES under uncertainty, exemplified by the system in 
Fig. 1. The presented solution method combines SDP and MP-OPF. 

2.1. Multi-stage stochastic programming 

The goal with the proposed optimization problem is to find the 
optimal operation of generators, EES and loads, and to study the 
resulting LMP and SMV. The objective is to minimize operation costs. 
The ability to deliver and absorb energy from an EES depends on its SOC, 
and the SOC depends on the operation strategy and the realization of 
uncertain variables. The SOC and other variables coupled in time, 
hereby referred to as state xs, will therefore require additional attention. 
Due to uncertainty in generation and load, the resulting operation 
strategy of a deterministic model formulation will often in practice be 
sub-optimal, and could even be infeasible due to the differences in the 
predicted and the actual generation and load. A more robust and real-
istic approach is to assume the uncertainty is revealed stage-wise as time 
elapses, and that the operation strategy also can be corrected stage-wise 
as more uncertainty becomes known. These assumptions makes the 
problem tractable to formulate as a multi-stage stochastic optimization 
problem. 

The following stochastic programming terminology is based on 
Dowson [31]. Instead of solving the stochastic optimization problem as 
one large problem, it is broken down into a sequence of smaller 
stage-wise problems. Each stage s ∈ S represents a discrete moment in 
time where uncertainty is revealed and a decision is made. The stage 
objective represents the operation costs, such as generation and load 
shedding costs. The decision process for each stage is illustrated in Fig. 2, 
where the decision-rule πs(xs,ωs) chooses a control us that respects the 
set of admissible controls such that us ∈ Us(xs,ωs). The overall goal is to 
find a policy, a sequence of decision-rules π = {π1,⋯, πS}, that mini-
mizes the sum of all the stage objectives Cs(xs,us,ωs). 

The stages divide the full problem into smaller sub-problems in a 
similar manner as continuous time problems are divided into discrete 
time steps. The time between stages, the stage length, is a compromise 
between accuracy and computational burden but should also reflect how 
the system is operated. Hourly stages could be a good choice when 
operating in an hourly market, but the EES size and the noise variability 
are also important factors. At each stage, the noise ωs ∈ Ωs is observed 
and assumed to be known for that stage. The noise represents the un-
certainty in VRE generation, but may also include load uncertainty, and 
describes the possible variability in energy delivered by VRE due to 
uncertainty. The perfect foresight assumption for the current stage can 
be justified through accurate short-term forecasts and that the uncer-
tainty has only a relatively small impact on the state for a single stage. 

The noise in the model formulation should be stage-wise indepen-
dent, signifying that the observed noise at a stage does not influence the 
noise in the next stage. In other words, if it is more sunny than expected 
at one stage such that the VRE generation is increased, it will not in-
fluence the probability of increased generation at the next stage. This 
assumption might be inaccurate and could be compensated for by 
including the VRE generation in the state with, for example, an auto- 
regressive model [32,33]. 

For this particular system, the state is given by the EES SOC. The 
capability of delivering energy from the EES depends on sufficiently 
high SOC, and the capability of absorbing energy depends on sufficiently 
low SOC. In contrast, dispatchable generators can freely change the 
generation independent of generation in the previous stage (unless 
ramping limitations must be accounted for). 

The control variable represents all the decisions made to balance 
generation and load, such as how much the different generators should 
deliver, and how much the EES should deliver or absorb. VRE generation 
curtailment and load shedding are also decisions in the control variable. 
All these decisions must be admissible us ∈ Us(xs,ωs) such that that 
generation minimum and maximum limits, EES charge/discharge limits, 
load shedding limits and generation curtailment limits are respected, 
and the network is not overloaded. 

The transition function Ts(xs, us,ωs) describes how the state evolves 
for a given control and observed noise, in this case how the EES SOC 
changes given the decisions for how to meet the load and the observed 
generation for the current stage. The stage-objective Cs(xs, us,ωs) rep-
resents the corresponding operation costs related to generation costs and 
load shedding. 

2.2. Stochastic dynamic programming 

According to Bellman’s principle of optimality [29], the optimal 
policy can be found by solving the optimization problem recursive. By 
assuming the future optimal decisions are known, the optimal decision 
for the current stage can also be found. Moreover, the entire problem can 
then be solved with backward recursion. The resulting recursive opti-
mization problem is shown in Eq. 1. 

Vs(xs,ωs) = min
us

{

Cs(xs, us,ωs) + E
ωs+1∈Ωs+1

[
Vs+1

(
x′

s,ωs+1
)]
}

s.t. x′

s = Ts(xs, us,ωs)

us ∈ Us(xs,ωs)

(1) 

Fig. 1. Power system topology.  

Fig. 2. Multi-stage stochastic optimization decision node [31]  
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This problem will be solved with a SDP method called the water 
value method from hydro power optimization [25]. The expectation of 
the future costs is replaced with the Storage End Value (SEV) as shown in 
Eq. 2. 

min
us

{Cs(xs, us,ωs) − sevs+1}

s.t. x′

s = Ts(xs, us,ωs)

sevs+1 ≤ SEVs+1
(
x′

s

)

us ∈ Us(xs,ωs)

(2)  

The objective function of the presented optimization problem in Eq. 2 
has a very interesting structure. The first term represents the operational 
costs of the current stage, often referred to as the immediate costs, while 
the second term represents the SEV and is a function of the outgoing 
state. Just like the generation marginal cost Cg is given by the derivative 
of the cost function with respect to the generation pg Eq. 3, the marginal 
value of the state (here SOC) is given by the derivative of the SEV 
function with respect to the state Eq. 4. Numerical examples in Section 4 
will provide a clearer understanding of the relation between SMV, 
generator marginal cost and their applications. 

Cg =
dC
dpg

(3)  

SMVs(xs) =
dSEVs(xs)

dxs
(4) 

However, the marginal value of the state is a function of both state 
and stage. In other words, the marginal value of the EES depends on its 
SOC and stage due to the variability in future expected generation and 
load. Since it is difficult to solve the optimization problem with respect 
to a continuous state variable x, it is discretized into N discrete states. 
Each stage-wise optimization problem is solved for each discrete state 
n ∈ N and each scenario ωs ∈ Ωs. The solution of the optimization 
problems forms the basis for approximating the SEV function. This 
approximation is described in Section 2.3, and a procedure for finding 
the SEV for the final stage is described in Section 2.3.1. The SEV function 
SEVs(xs) is convex if the sub-problem given by Cs(.),Ts(.),Us(.) is convex 
in xs,ωs and is therefore expressed as a convex relaxation in Eq. 2 
(although SDP also permits non-linear sub-problems). 

2.3. Storage end value function 

The SEV function will be expressed as a cubic spline function yielding 
a smooth function, as illustrated in Fig. 3, demanding fewer discrete 
states than a piece-wise linear approximation [27]. A spline function is a 
piece-wise polynomial function composed of polynomials up to degree q 

with continuous derivatives up to the order q − 1. A cubic spline will 
therefore have piece-wise cubic segments, and continuous derivatives 
up to the order of two. This makes it possible to embed the SEV function 
into a non-linear optimization problem where all the constraints and the 
objective must be twice continuously differentiable in order to solve the 
problem with interior point based methods. 

The SEV function is approximated using the marginal value given by 
the dual value of the state x. The initial value of the SEV function can 
also be chosen arbitrarily and is set to zero such that the SEV of empty 
storage is zero. By adding the dummy variable xs and the constraint Eq. 5 
to the optimization problem in Eq. 2, the corresponding dual variable λs 
will represent the marginal value of SEV function with respect to the 
state x [34]. Let λs,n,ωs denote the dual value at stage s for the discrete 
state n and the noise ωs such that the expected dual value λs,n for stage s 
and discrete state n is given by Eq. 6. 

xs = xs, | λs (5)  

λs,n = E
ωs∈Ωs

[
λs,n,ωs

]
(6) 

The SEV function Eq. 7 is expressed as a sum of polynomials Eq. 8 
multiplied with an activation function Eq. 9 defined such that the correct 
spline segment is activated. 

SEVs(xs) =
∑N− 1

n=1
Bq,s,n(xs) Πn(xs), (7)  

Bq,s,n(xs) =
∑q

η=0
βη,s,n(xs − Xn)

η
, (8)  

Πn(xs) =

{
1, if Xn ≤ xs < Xn+1
0, otherwise

s ∈ S , n ∈ N \{N}

(9) 

Each spline segment Eq. 8 of a cubic spline is uniquely defined by the 
four coefficients βη,s,n | η ∈ [0,q]. If spline segment n is known, then the 
value and derivatives up to order two of segment n + 1 are also given at 
the intersection between segment n and n+ 1. Therefore, segment n + 1 
has only one degree of freedom and can be fitted using the derivative at 
the next intersection. The initial value of the first segment and and the 
initial second order derivative is also assumed to be zero. The spline 
function can therefore be found by solving the set of equations in Eq. 10. 

B3,s,1(0) = 0,
B3,s,1

′′(0) = 0,
B3,s,n

′

(Xn) = λs,n
B3,s,n(Xn+1) = B3,s,n+1(Xn)

B3,s,n
′

(Xn+1) = B3,s,n+1
′

(Xn)

B3,s,n
′′(Xn+1) = B3,s,n+1

′′(Xn)

s ∈ S , n ∈ N \{N}

(10)  

2.3.1. Storage end value boundary conditions 
The presented storage optimization problem has in reality infinite 

horizon. Stage s in the SDP algorithm uses the SEV function generated in 
stage s + 1 as the boundary condition for the stage-wise optimization 
problem. The final stage, which is optimized first due to the backward 
recursion, does not have any SEV function generated by the subsequent 
stage. If the SEV at the end of the final stage is not properly defined, the 
storage will typically be emptied. The end state can also be bounded by a 
fixed value [35–37]. However, this paper proposes an iterative SEV 
update procedure to approximate the SEV at the end of the final stage. 
The SEV function for the final stage is initially estimated by assuming 
that the slope equals the value of lost load for minimum SOC and the 
slope is zero for maximum SOC. The SEV function at the final stage is 
thereafter updated iteratively with the SEV function from the first stage 
until the solution converges. This is equivalent to solving the problem 
repeatedly such that the choice of final end value does not influence the 

Fig. 3. Storage end value function.  
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solution, and could be considered as equivalent with infinite horizon 
[25]. 

2.4. Multi-period optimal power flow 

The stage-wise optimization problem Eq. 2 is given by a MP-OPF 
problem. The incoming state is given by the initial SOC and the out-
going state by the end SOC as shown in Eq. 11 and 12. 

xs =
{

soce,ts

}
(11)  

x′

s =
{

soce,ts

}

∀e ∈ E b, b ∈ B
(12) 

All other variables are control variables, either given explicitly such 
as the generation, or implicitly like the bus voltage angle that follows 
from the other decisions as shown in Eq. 13. Moreover, the SOC vari-
ables not part of the state are included here and have therefore been 
assigned to a different subset of the time steps denoted ̃t in Eq. 13. 

us =
{

pb,t, pg,t, pr,t , pe,t, psc
e,t, psd

e,t, pd,t, plsd,t, soc
e,̃t
, θb,t

}

∀b ∈ B , g ∈ G b, r ∈ R b, e ∈ E b, d ∈ D b, t ∈ T s, t̃ ∈ T s\

{

ts, ts

}

(13) 

Finally, the noise of this model is the clearness index (CI) as shown in 
Eq. 14. The relation between CI and generation is described in Section 
2.4.1, and a comprehensive introduction to CI is given in Section 2.5.1. 
The CI is sampled from a beta distribution, as described in Section 2.5.2. 

ωs =
{

ϕr,s
}

∀r ∈ R b, b ∈ B (14)  

2.4.1. Power flow 
The power flow equations describe the relation between bus power 

injections and voltages at buses in a power system and form the key 
constraints for the Optimal Power Flow (OPF) optimization problem. All 
the power flow equations are included in the set of admissible control 
Us(xs,ωs). 

There exist many different OPF formulations, both exact models, 
approximations and relaxations, and they can be expressed in terms of 
bus injections or branch flows [38,39] either in rectangular or polar 
form [40]. The AC-OPF [41] provides an exact solution for the OPF 
problem, but due to the non-convex nature of the power flow equations, 
a global optimal solution cannot be guaranteed. The DC-OPF is linear, 
and derived by neglecting the line resistance and reactive power, 
assuming unity voltage magnitude and small voltage angles. The method 
is computationally efficient, easy to implement and widely used, but 
must be used carefully as it can deviate significantly from AC-OPF on 
constrained lines and therefore give inaccurate LMP [42]. 

To also account for the dynamic behavior of energy storage, the OPF 
formulation is repeated for each time step, and energy storage equations 
are included yielding the multi-period OPF. 

This paper will use the DC MP-OPF, but the proposed method will 
work for any convex MP-OPF formulation. The DC power flow neglects 
the line resistance and assumes small voltage angles such that sin(θi −

θk) ≈ θi − θk. The resulting bus power injections are given by Eq. 15, the 
line power is bounded by Eq. 16 and the voltage angle must stay within 
its limits Eq. 17. 

pb,t =
∑

(i,k)∈L b

Bik
(
θi,t − θk,t

)
(15)  

− Pmax
ik ≤ Bik

(
θi,t − θk,t

)
≤ Pmax

ik (16)  

Θmin
b ≤ θb,t ≤ Θmax

b (17)  

To balance generation and load, the bus power injection is given by the 
sum of generation from both thermal and renewable generators minus 
loads and energy storage charging for all the units on the respective bus 
Eq. 18. 

pb,t =
∑

g∈G b

pg,t +
∑

r∈R b

pr,t −
∑

e∈E b

pe,t −
∑

d∈D b

pd,t (18) 

The thermal generation must not exceed its maximum generation 
and can be operated continuously from zero to maximum Eq. 19. The 
VRE generation is shown in Eq. 20. The maximum VRE generation is 
time dependent and is bounded by the theoretical maximum Pmax

r,t 

multiplied by a scale factor sampled from the uncertainty distribution 
and is further described in Section 2.5.1. Note that this representation of 
uncertainty is specific for solar PV generation. The load can be curtailed 
where the cost is given by the scarcity price Eq. 21. 

0 ≤ pg,t ≤ Pmax
g (19)  

0 ≤ pr,t ≤ ϕr,s⋅Pmax
r,t (20)  

pd,t = PDd,t − plsd,t ≥ 0 (21)  

2.4.2. Electric energy storage 
The EES SOC at a time step equals the SOC at the previous step plus 

the power charged psc
e,t minus the power discharged psd

e,t compensated 
for the efficiency losses ηc, ηd that includes both converter and battery 
losses Eq. 22. The power withdrawn from the bus equals the power 
charged minus the power discharged Eq. 23, and the energy storage 
upper and lower bounds are enforced by Eq. 24. The EES maximum 
charge and discharge power due to, for example, converter and battery 
limitations are enforced by Eq. 25 and 26. 

soce,t = soce,t− 1 + ΔTt

(

ηcpsc
e,t −

psd
e,t

ηd

)

,∀t ∈ T s\

{

ts

}

(22)  

pse,t = psc
e,t − psd

e,t (23)  

SOCmin
e ≤ soce,t ≤ SOCmax

e (24)  

0 ≤ psc
e,t ≤ PSc

e,t (25)  

0 ≤ psd
e,t ≤ PSd

e,t (26) 

The state transition function Ts(xs, us,ωs) is given by the energy 
balance equation Eq. 22 when t = ts. The energy balance for other 
values of t and the remaining constraints Eq. 23, 24, 25 and 26 are in the 
set of admissible controls Us(xs,ωs). 

2.4.3. Objective 
A common OPF objective is minimizing the operating costs ac-

counting for the constraints and losses in the grid. Recall that under 
perfect competition, the solution of global cost minimization equals 
profit maximization for each individual unit, and the dual values of the 
bus power balance from the OPF solution, also known as LMP, repre-
sents the electricity price for that bus. The objective in this case is to 
minimize the sum of generator operating costs and load shedding costs. 
The costs are given by constant marginal costs and must be summed for 
all generators and loads at all buses for all time steps as shown in Eq. 27, 
and define the stage-objective Cs(xs, us,ωs) in the SDP formulation in Eq. 
2. 

Cs(xs, us,ωs) =
∑

b∈B

∑

t∈T s

(
∑

g∈G b

Cg pg,t +
∑

d∈D b

Cd plsd,t

)

ΔTt (27)  
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2.5. Noise 

This paper will study the effect of uncertainty from solar PV gener-
ation in combination with energy storage. Demand uncertainty will have 
similar implication on the result, but this has not been analyzed. 

2.5.1. Solar PV forecasting 
Solar PV forecasting can be grouped into statistical and physical 

methods, or a combination of these. The statistical methods exploit the 
properties of historical data, while the physical methods include Nu-
merical Weather Prediction (NWP), sky imagery and satellite imaging. 
The forecasting technique for solar PV generation is highly dependent on 
forecasting horizon. Statistical methods are commonly used for short- 
term forecasts up to six hours, while NWP is used for forecasts up to 
15 days ahead [43]. 

The maximum generation from solar PV depends on the PV panel’s 
size, geographical location, direction and angle, and the time of day and 
year. Weather type also has a significant impact on the generation, and is 
commonly classified into different categories, such as clear sky, partly 
clouded and overcast. The weather type influences both the total daily 
generation as well as the generation variability [44]. A sunny day will, 
for example, provide stable high generation with low uncertainty, while 
the generation will fluctuate rapidly on partly clouded days due to the 
rapid changes in cloud cover. 

The CI is the ratio between actual generation and the theoretical 
maximum at that time and location Eq. 28. The CI value is between 0 and 
1 and quantifies how much the solar radiation passes through the clouds. 
It is commonly used for statistical analysis of the solar PV generation. 

ϕr,s =
pr,t

Pmax
r,t

(28) 

A probabilistic model for the CI will be used in this paper, where the 
expected value and variance are assumed to be known ahead. The CI is 
always between 0 and 1, which also applies for the beta distribution that 
is commonly used for solar PV CI [45–47]. The CI Φr,s is undefined for 
the hours where the theoretical maximum generation is zero due to zero 
division, but the resulting generation will of course be zero. 

2.5.2. Beta distribution 
The probability density function (PDF) of the beta distribution on 

standard form is shown in Eq. 29 where B(1; α, β) is a distribution spe-
cific constant given by the beta function Eq. 31 that ensures the distri-
bution sums up to one. The cumulative distribution function is shown in 
Eq. 30. 

f (x; α, β) = 1
B(1; α, β)x

α− 1(1 − x)β− 1 (29)  

F(x; α, β) = B(x; α, β)
B(1; α, β) (30)  

B(α, β) =
∫ x

0
tα− 1(1 − t)β− 1dt α, β ≥ 0, 0 ≤ x ≤ 1 (31)  

For a known expected value μ and variance σ2, the beta distribution 
coefficients can be found from Eq. 32 and 33 [48]. 

α =
μ2(1 − μ)

σ2 − μ (32)  

β =

(
μ(1 − μ)

σ2 − 1
)

(1 − μ) (33)  

2.5.3. Uncertainty sampling 
The noise in SDP must be stage-wise independent. However, de-

pendencies in noise across stages can be respected by modelling the 
noise with state variables, but will also increase the dimensionality of 

the optimization problem and thus have not been accounted for in this 
paper. 

The true continuous probability distribution must be represented 
with a discrete probability distribution with M discrete points ϕm and 
their corresponding probability ρm, where the probabilities sums up to 
one Eq. 34. By selecting initial probabilities ρ̂m, the corresponding 
boundary values δ1,⋯, δM− 1 where 0 = δ0 < δ1 < ⋯ < δM− 1 < δM = 1 
can be found numerically from Eq. 35. Let ϕ̂m represent an initial so-
lution given by the expected value in the corresponding interval [δm− 1,

δm] as shown in Eq. 36. 
∑

m∈M

ρm= 1 (34)  

ρm =

∫ δm

δm− 1

f (ϕ) dϕ, m ∈ M (35)  

ϕ̂m =

∫ δm
δm− 1

ϕf (ϕ) dϕ
∫ δm

δm− 1
f (ϕ) dϕ

, m ∈ M (36) 

The discrete distribution given by ρ̂m, ϕ̂m will give the same expected 
value as the true distribution, but the variance will be lower. Let ρm,ϕm 
represent the improved discrete distribution for the boundary values δm. 
The improved discrete distribution can be found by minimizing the 
squared difference between the initial distribution points ϕ̂m and ϕm,

constrained such that expected value and variance from continuous 
distribution are conserved [49]. 

min
ρ,ϕ

∑

m∈M

ρm

(
ϕm − ϕ̂m

)2

subject to
∑

m∈M

ρm = 1
∑

m∈M

ρmϕm = μ
∑

m∈M

ρmϕm
2 = μ2 + σ2

(37)  

2.6. Simulation 

A multi-stage stochastic optimization model provides a strategy for 
how to optimally operate at a given stage and state for a given realiza-
tion of the noise. A simulation of multiple scenarios can give a proba-
bilistic LMP and SMV. The scenarios are sampled from the noise 
distribution(s) and optimized with the stage-wise MP-OPF models 
beginning at the first stage and using the final state for each stage as the 
initial state for the next state. This procedure is similar to the one 
described in Fosso et al. [23] and is shown in Algorithm 1. 

2.7. Model summary 

The SDP optimization procedure is illustrated in Fig. 4, where stages 
are shown at the x-axis and the discrete states at the y-axis. Each stage- 
wise problem s is solved for each discrete state n and each scenario m,

and a SEV-function is approximated using the expected gradients λs,n for 
each discrete state n. The stage-wise problems are repeated extensively 
in Appendix A. Algorithm 2 summarizes the optimization procedure 
where ϵ is a convergence threshold. 

3. Implementation and numerical values 

This section presents implementation details, system topology and 
the numerical data that will be used to demonstrate the optimal oper-
ation and the corresponding prices in a power system with uncertain 
variable renewable generation and energy storage. 

The optimization problem is implemented in the programming lan-
guage Julia (1.4) using the JuMP modelling language (0.21.3) [50] with 
the non-linear solver Ipopt (0.6.2) [51]. The power flow equations have 
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been implemented using PowerModels (0.17.1) [52] with the 
multi-period description from [53]. 

3.1. System topology 

Fig. 1 shows the system topology, where bus 1 has an expensive peak 
generator, bus 2 industrial loads and VRE generation in terms of solar 
PV, bus 3 has residential loads and battery storage, and bus 4 has a 
cheaper base generator. The base generator typically represents com-
bined cycle gas turbines (CCGT), where the investment cost is high, and 
the marginal operating cost is low. The peak generator typically repre-
sents open cycle gas turbines (OCGT) where the investment cost is lower 
and the marginal operating cost is higher. The base generator demands a 
relatively higher duration compared to the peak generator in order to be 
profitable. Thermal plants also have limitations in start-up time, 

ramping rates, minimum generation limits and marginal operating cost 
varying with generation [54], which have not been modelled in this 
paper. Section 3.6 presents the combination of generation capacities 
that will be analyzed in Section 4. 

3.2. Time steps and stages 

The time step length in the MP-OPF problems is one hour, and there 
are three time steps between each stage. That means perfect foresight 
three hours ahead at a stage, and that the uncertainty in the next stage is 
revealed every three hours. The planned operation will also be adjusted 
every three hours. 

3.3. Solar PV clearness index 

The CI expected value and variance are assumed to be known ahead 
based on forecasts. Three different weather types are used: sunny, partly 
clouded and overcast. Both the continuous and discrete probability 
distributions are shown in Fig. 5 as well as the expected value and 
standard deviation, and assumes a similar pattern as described in [44]. 
The discrete probability distribution has been obtained using the 
method described in Section 2.5.3 with probability intervals 5%, 20%, 
50%, 20% and 5%. Table 1 shows the sequence of weather types for the 
respective days used in the simulations. The probability distribution and 
the maximum PV generation are shown in Fig. 6. 

The SDP algorithm does not propose a single solution to the problem, 
but an operation strategy for all state combinations at any time. To 
verify the strategy, different scenarios are sampled using the continuous 
probability distribution, and simulated based on the SDP strategy. 

For real-time operation, the ideal solution is to update the CI fore-
cast, and the corresponding operation strategy as often as possible. It is 

Initialize x1
for s ∈ S do
Sample scenario ωs ∈ Ωs
Solve (2) and (5)
Save LMP (dual value of (18))
Save SMV (dual value of (23))
Save EES SOC (soce,t from (23))
Initialize incoming state for the next stage with outgo-
ing state of current stage: xs+1 ← x′s

end for
Algorithm 1. Simulation algorithm.  

Fig. 4. Stochastic dynamic programming solution procedure.  

Initialize S EVS+1(xS+1)
repeat
for s ∈ reverse(S) do
for n ∈ N do
for ωs ∈ Ωs do
Solve (2) and (5) for xs = Xn and ωs

end for
Find λs,n(6)

end for
Approximate S EVs(x), equation (7) to (10)

end for
S EVS+1(x)← S EV1(x)

until Terminate when final end value function has con-
verged:

∣∣∣∣S EVS+1(Xn) − S EV1(Xn)∣∣∣∣ < ε, ∀ n ∈ N
Algorithm 2. SDP algorithm.  
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also possible to use a combination of different forecasting techniques to 
cover the different time horizons as accurately as possible. In this paper, 
the prices and operation are only studied from one point in time. 

3.4. Load forecast time series 

The system load is typically subject to uncertainty, often represented 
as a Gaussian distribution. There is also often a correlation between load 
and VRE generation since they both depend on weather. Neither the load 
uncertainty nor the correlation between load and generation are not 
modelled in this paper such that the impact of generation uncertainty is 
clearer. The system has two loads, as shown in Fig. 1, an industrial and a 
residential load where the profiles for the loads are shown in Fig. 7, 
where the profiles have been generated using the FASIT model devel-
oped by SINTEF Energy Research [55]. Note that the weekday profiles 

differ from the weekends. The time series shows the one week profile. 

3.5. Generation and storage capacities and cost 

The base generator has a marginal operating cost of 20 € /MWh and 
the peak generator 30 € /MWh, and start and stop costs are neglected. 
The solar PV generation and storage have zero marginal cost. The 
scarcity price in the system is 100 € /MWh for both loads. The storage 
duration is 4 hours, meaning that it takes 4 hours to empty a full battery 
at maximum discharge. The storage efficiency is 95% for both charging 
and discharging. The maximum charge and discharge power are equal. 

3.6. Test cases 

The price making will be studied for four different cases with 
different combinations of generation and storage capacities as shown in 
Table 2. The first case includes only thermal generation to illustrate how 
the price is set by the marginal unit at the respective nodes. Moreover, 
the next case will show how the introduction of solar PV and storage will 
change the price. Finally, the last case will show a system with no 
thermal generation to set the price. The transmission capacity between 
bus 2 and 3 is limited in all cases, but the maximum capacity is increased 
when introducing VRE. 

4. Results 

This section presents the numerical results of the cases outlined in 
Section 3. Both optimal dispatch, LMP and SMV based on the resulting 
marginal values will be studied. 

For the examples involving stochastic solar PV generation and en-
ergy storage, the SMV is presented as a function of time and state of 
charge. The interpretation of the SMV will also be discussed. Optimal 
generation and storage operation, and energy prices are presented as 
percentiles based on multiple simulations using the continuous distri-
bution of the uncertain variable. 

Fig. 5. Continuous and discrete probability distributions of clearness index for 
different weather types with 5 samples per distribution. 

Table 1 
Expected value and standard deviation of clearness index beta distribution for 
the simulated days.  

Day Weather type 

1 Partly clouded 
2 Partly clouded 
3 Sunny 
4 Overcast 
5 Overcast 
6 Sunny 
7 Overcast  

Fig. 6. Solar PV one week probabilistic profile.  

Fig. 7. Industrial and residential weekly load profile.  

Table 2 
Test case generation, EES and transmission capacities.  

Case name Base Peak PV Storage Line 2-3 
limit 

Only thermal (Section 4.1) 1.5 0.5 0.0 0.0 0.7 
Thermal & PV (Section 4.2) 1.5 0.5 4.0 0.0 0.7 
Thermal, PV & EES (Section 

4.3) 
1.0 1.0 4.0 0.8 0.8 

PV & EES (Section 4.4) 0.0 0.0 9.5 10.0 5.0  
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4.1. Only thermal generation 

In a system with only thermal power generation and fixed demand, 
the price is set by the marginal producing unit if the capacity is higher 
than the load. For a congested grid, the price will also vary between the 
different nodes, as illustrated in this simple 4-bus system with two 
thermal generators and two loads. 

Fig. 8a shows the two system loads and generators over the first 24 
hours, and Fig. 8b shows the corresponding LMPs. The price is 20 € 
/MWh when the base generator can meet the entire load, and 30 € 
/MWh when the peak generator also must contribute. From hour 12, the 
LMPs are different between the nodes since the transmission line be-
tween bus 2 and 3 has reached its limit, hence the peak generation must 
replace some of the base generation to prevent overloading of the line. In 
this situation, the base generator will be the marginal unit for the resi-
dential load since it is not able to generate at maximum capacity so the 
two nodes get different prices. 

4.2. Variable renewable generation 

As explained earlier, introduction of variable renewable generation 
with zero marginal cost will reduce the prices when the existing gen-
eration capacities are unchanged due to the merit order effect. Solar PV 
generation is installed at bus 2. 

The resulting generation and price are shown in Fig. 9a and b 
respectively. Note that the base generator gets a high ramp rate due to 
the high solar PV generation in the middle of the day, and the shape of 
the curve is often referred to as the ”duck curve” [56]. The solar PV 
generation makes the peak generation redundant and reduces the price 
at both buses compared to the previous case. At the middle of the day, 
the transmission capacity between node 2 and 3 is insufficient to meet 
the demand with solar PV generation, thus the price is set by the base 
generator for the residential load. However, the industrial load can meet 
all its demand with solar PV generation that becomes the marginal 
generation unit at this bus, thus the price becomes zero. 

4.3. Energy storage 

In the previous cases, the optimal generation and energy price were 
only dependent on the present load and PV generation. When energy 
storage is introduced, the optimal strategy and the corresponding energy 
price also depend on the state of charge of the energy storage. Moreover, 
the state depends on previous decisions, which in turn are influenced by 
uncertainty. The stochastic result will therefore be studied for this case 
and the following cases. 

In a competitive market, the VRE will typically displace some of the 
base generation that depends on a high duration to recover its costs. 
Some of the base capacity has therefore been replaced with peak ca-
pacity in the case setup. 

Fig. 10a shows the SMV as a function of time and storage SOC. As 
emphasized earlier, the SMV represents the marginal future value by 
storing an additional unit of energy. The SMV has several interesting 
interpretations. Under perfect competition, the individual energy stor-
age profit is maximized by bidding the SMV, and the solution of indi-
vidual profit maximization for all units equals the system optimal 
solution. The SMV will therefore set the LMP when the storage is the 
marginal unit at that node. Since the marginal value has been found 
using SDP, it also captures uncertainty, hence the value represents a 
weighted probability of the prices of the units in the system at any time 
and SOC taking into account the probabilistic forecast of PV. 

The optimal usage of the storage in this case involves charging from 
the cheap generators such that the storage can discharge later in order to 
avoid using the expensive generators or load shedding. 

The SMV is close to zero for maximum SOC around mid-day all the 
days (hours 12, 36 and 60). This occurs when the solar PV generation is 
high, and it is likely that the battery can be charged to maximum before 
the solar PV generation reduces. It also indicates that the energy from 
the EES should be used rather than the thermal generation since the SMV 
is less than the marginal cost of both thermal units. The SMV is higher in 
the evening (hours 18, 42 and 66), when there is no or very low solar PV 
generation and a relatively high load. For very low SOC, the SMV is close Fig. 8. Simulation of case with only thermal generation.  

Fig. 9. Simulation of case with thermal and solar PV generation.  
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to 50 and higher than the marginal cost of both thermal generators. This 
indicates that the thermal generators should be used rather than the EES 
unless the thermal generators are insufficient to prevent load shedding. 
The scarcity price is 100 € /MWh, and a SMV at 50 indicates a significant 
probability of scarcity price in this situation. Finally, observe that the 
SMV is between 20 and 30 in most situations. That is when the EES is 
used to balance the probability of being able to meet the demand with 
base generation versus peak generation for the different combinations of 
time and SOC taking into account the probabilistic forecast of PV. 

Fig. 10c and d show the price percentiles for 50 simulations sampled 
from the continuous probability distribution of the solar PV generation 
at the bus with industrial loads and residential loads respectively. The 
price will often be zero at the industrial node around mid-day as the 
storage does not have capacity to store the surplus generation. At the 
same time, the residential node will not get zero price as the trans-
mission capacity between the nodes is at the maximum limit. Uncer-
tainty plays an important role in the price making for the system as the 
spread for both nodes is quite significant. 

The resulting SOC in Fig. 10b shows that almost the entire storage 
capacity is utilized to minimize the generation costs. 

4.4. Only renewable generation and energy storage 

In the final case, the thermal units are removed completely, and the 
solar PV generation and EES capacity are sized up considerably. The EES 
must be large enough to meet all the demand through the evening and 
night when the solar PV is not generating. Moreover, the solar PV must 
be sized such that it provides enough generation for both the current 
demand as well as the evening/night demand - even for a day with 
relatively low generation. An important assumption to avoid imperfect 
competition is that the EES actually represents multiple aggregated EES 
with different operators. Otherwise, the EES operator could maximize its 
profit by bidding the scarcity price. 

The price will now be set solely by the scarcity price, and future 
foresight is even more important for the electricity price. The 

optimization model is therefore using a one-week generation forecast. 
Fig. 11a shows the SMV for all states and the corresponding expected 

solar PV generations are shown in Fig. 6. As observed earlier, the SMV 
follows the pattern from the solar PV generation. High generation re-
duces the marginal value of stored energy and vice versa. Another 
interesting observation is that due to expected low generation from hour 
72, the marginal value of the storage increases upfront, indicating it is 
important to increase the SOC before entering the days with expected 
low generation. Likewise, the SMV decreases towards hour 120 as the 
expected generation the next day is high. 

The corresponding LMPs are shown in Fig. 11c and d. The price is on 
average low until the end of day 3 (around hour 66), where the SOC has 
been built up to meet the expected low generation the next two days. 
However, the spread in price is high due to the high variability in gen-
eration. Then the price increases instantaneously and the further 
development has a high spread and high expected value. Finally, the 
price reduces at the end as the expected further generation is equal to the 
generation in the beginning. 

Note that the price change is no longer dominated by the solar PV 
generation pattern as in previous cases, but rather the future probability 
of scarcity. This market price will be attractive for suppliers of flexibility 
capable of shifting energy over several days by utilizing the price vari-
ations. They will also get paid for reducing the risk of scarcity rather 
than getting paid only if scarcity occurs. 

The differences between the LMP for the industrial and residential 
nodes occur when some of the solar PV generation is curtailed due to 
insufficient load and transmission capacity. The development in SOC in 
Fig. 11b clearly shows how the SOC is built up ahead of the period with 
low generation and emptied towards the period with high generation. 

5. Discussion 

VRE and EES play a key role in the future fully renewable energy 
system, and they will also have significant implications on the market 
equilibrium and electricity prices. As already emphasized in previous 

Fig. 10. Multiple simulations of case with thermal and solar PV generation and energy storage.  
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literature, the short-term consequence of increasing VRE generation is a 
reduction in electricity price due to the merit order effect as shown in 
Section, but also increased volatility. However, the price volatility can 
be reduced by EES. When uncertainty is accounted for, the combination 
of VRE and EES will result in a probabilistic price spanning between the 
price of the most and the least expensive unit. 

While previous studies primarily focus on the electricity price in 
systems combining VRE with thermal generation, this paper also focuses 
on the price formation when most of the generation is supplied by VRE 
sources. If EES replaces some of the dispatchable capacity such that the 
system depends on EES to meet peak demand, scarcity may occur and 
load shedding can be considered as the most expensive unit. The elec-
tricity price can then be seen as an arbitrage against the risk of scarcity. 
An interesting consequence of this is that the scarcity price becomes 
effective without scarcity necessarily occurring, and the price can be 
seen as a precaution against scarcity. 

The weighted scarcity price creates possibilities for flexible loads 
with marginal price below the scarcity price to enter the market. A 
flexible load can in its simplest form be modelled as a dispatchable 
negative generator, meaning that the load can be curtailed at a pre-
determined cost with no need of delivering the lost load at a later stage. 
A flexible load can also represent shifting of load, and can be modelled as 
an EES where a penalty applies when deviating from the ideal SOC. 

Flexible loads will in general contribute to reducing the high prices 
by reducing the risk of scarcity. The scarcity price has a practical 
implication although the electricity price rarely reaches the full scarcity 
price. With sufficient flexibility in the system to fully eliminate the risk 
of scarcity, the maximum price will be set by the most costly flexible 
unit. Likewise, the flexible loads will also increase the low prices by 
reducing the risk of generation curtailment. 

5.1. Future work 

Possible steps towards a more practical applicable model could 
involve modelling of flexible demand, and also other uncertainties such 

as demand and generation from wind. Uncertainties are often corre-
lated, with both auto-correlation and correlation between uncertainties. 
Both handling correlated uncertainty and additional EES will require 
new state variables, which scale poorly with SDP although the scal-
ability can be improved using splines [27]. A more common method for 
handling increasing number of state variables is using Stochastic Dual 
Dynamic Programming (SDDP) [57], where the model formulation must 
be convex. The infinite horizon method suggested in this paper is not 
feasible to implement in SDDP, but cyclic graphs and discount factors 
provides an interesting alternative to infinite horizon optimization in 
SDDP [31]. 

Multi-stage stochastic models are in general computationally inten-
sive to solve, and scalability often goes hand in hand with convexity and 
linearity such as for SDDP. Real-life power systems are neither linear nor 
convex. Thermal generators as well as hydro power plants have 
discontinuous production functions due to rigorous minimum genera-
tion limits, and the power flow equations are both non-linear and non- 
convex. Convexification and linearization must therefore be performed 
cautiously since the result could easily deviate from the true optimal 
solution. However, recent research has proposed methods to handle 
integer variables in the SDDP framework [58]. 

In a competitive market where each individual unit seeks to maxi-
mize its profit and where the price is given exogenously, it is important 
to also recall that the price is set by the VRE generation and demand. 
Additionally, there will be a strong correlation between the generation 
and demand uncertainty, and the price uncertainty. Managing uncer-
tainty in price yields a non-linear optimization problem that can be 
handled in several ways [59,60]. 

EES is subject to degradation caused by its operational pattern, and 
Aaslid et al. [32] indicate that EES degradation could be an important 
factor in combination with generation uncertainty. 

The proposed model will also provide storage end value functions for 
all stages. The end value function can be used as boundary conditions for 
a more detailed finite horizon storage model [61]. This principle has 
been described for hydro power in [62] and combines detailed storage 

Fig. 11. Multiple simulations of case with only solar PV generation and EES.  
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modelling and stochastic modelling with long foresight while still 
keeping the computational burden modest. 

Flexibility has traditionally been provided by centralized generation 
units, but has to a greater extent been decentralized through flexible 
demand. A preferred approach is to solve operational challenges in the 
electricity system as close as possible to their origin. Until now, power 
markets have been driven by development and limitations on trans-
mission level. However, solving problems locally demands local price 
signals reflecting the local challenges. A good starting point for this is to 
study the LMP in these systems as it can give valuable insight into how to 
design and operate future electricity systems with more distributed 
resources. 

6. Conclusions 

The road towards a zero emission electricity system calls for massive 
integration of VRE and flexibility to ensure a secure and efficient supply. 
These major changes will influence the price-making process in 
competitive markets. While capacity inadequacy is the main driver for 
high prices in markets dominated by thermal generation, energy in-
adequacy is the main driver for high price in markets dominated by VRE 
and EES. Managing uncertainty is crucial to balance optimal operation 
by reducing generation curtailment while keeping the risk of scarcity 
sufficient low. 

This paper presents a multi-stage stochastic electricity market model 
including grid constraints, EES and VRE. The model uses SDP to solve a 
multi-stage MP-OPF problem under uncertain VRE generation, EES and 
administrative scarcity pricing, both with and without dispatchable 
generation. The stage-wise problems are interconnected with SEV 
functions describing the marginal value of stored energy both in time 

and with respect to SOC represented as cubic spline functions. The re-
sults shows how the LMP can be seen as an arbitrage between the 
marginal cost of the units in the system, where load shedding is the most 
expensive unit through the scarcity price. The SMV depends on the state 
of all EES in the system as well as expected future VRE generation and 
can be used to determine the optimal operation of EES, and will set the 
price when EES is the marginal generating unit. 
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Appendix A. Summary of optimization problem 

A1. Stage-wise optimization problem 

min
us

{Cs(xs, us,ωs) − sevs+1}

s.t. x′

s = Ts(xs, us,ωs)

sevs+1 ≤ SEVs+1
(
x′

s

)

us ∈ Us(xs,ωs)

A2. State variables 

Incoming state is given by the initial SOC and outgoing state by the end SOC of the stage-wise problem. 

xs =
{

soce,ts

}

x′

s =
{

soce,ts

}

∀e ∈ E b, b ∈ B  

A3. Control variables 

All variables except the state variables are considered control variables and are set either explicit or implicit. 

us =
{

pb,t, pg,t, pr,t , pe,t, psc
e,t, psd

e,t, pd,t, plsd,t, soc
e,̃t
, θb,t

}

∀b ∈ B , g ∈ G b, r ∈ R b, e ∈ E b, d ∈ D b, t ∈ T s, t̃ ∈ T s\

{

ts, ts

}
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A4. Noise 

ωs =
{

ϕr,s
}

∀r ∈ R b, b ∈ B  

A5. Stage-objective 

Cs(xs, us,ωs) =
∑

b∈B

∑

t∈T s

(
∑

g∈G b

Cg pg,t +
∑

d∈D b

Cd plsd,t

)

ΔTt  

A6. State-transition 

The state transition is given by the energy balance for the final time step in current stage. The incoming state xs is connected implicitly with the 
outgoing state x′

s through the admissible controls us ∈ Us(xs,ωs). 

soce,ts = soce,ts − 1 + ΔTt

⎛

⎝ηcpsc
e,ts −

psd
e,ts

ηd

⎞

⎠

A7. Admissible controls 

The admissible controls include all constraints except the state transition: 

Us(xs, us,ωs) = us :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pb,t =
∑

(i,k)∈L b

Bik
(
θi,t − θk,t

)
− Pmax

ik ≤ Bik
(
θi,t − θk,t

)
≤ Pmax

ik

Θmin
b ≤ θb,t ≤ Θmax

b

pb,t =
∑

g∈G b

pg,t +
∑

r∈R b

pr,t −
∑

e∈E b

pe,t −
∑

d∈D b

pd,t

0 ≤ pg,t ≤ Pmax
g

0 ≤ pr,t ≤ ϕr,s⋅Pmax
r,t

pd,t = PDd,t − plsd,t ≥ 0

pse,t = psc
e,t − psd

e,t

SOCmin
e ≤ soce,t ≤ SOCmax

e

0 ≤ psc
e,t ≤ PSc

e,t

0 ≤ psd
e,t ≤ PSd

e,t

soc
e,̃t

= soc
e,̃t− 1

+ ΔT̃
t

(

ηcpsc
e,̃t
−

psd
e,̃t

ηd

)

∀b ∈ B , g ∈ G b, r ∈ R b, e ∈ E b, d ∈ D b, t ∈ T s, t̃ ∈ T s\

{

ts

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Stochastic Optimization of Microgrid Operation
With Renewable Generation and Energy Storages

Per Aaslid, Member, IEEE, Magnus Korpås, Member, IEEE, Michael M Belsnes, Member, IEEE,
and Olav B Fosso, Senior Member, IEEE

Abstract—The operation of energy storage systems (ESSs)
in power systems where variable renewable energy sources
(VRESs) and ESSs must contribute to securing the supply, can be
considered as an arbitrage against scarcity. The value of using
stored energy instantly must be balanced against its potential
future value and future risk of scarcity. This paper proposes
a multi-stage stochastic programming model for the operation
of microgrids with VRESs, ESSs and thermal generators that
is divided into a short- and a long-term model. The short-
term model utilizes information from forecasts updated every six
hours, while the long-term model considers the value of stored
energy beyond the forecast horizon. The model is solved using
stochastic dual dynamic programming and Markov chains, and
the results show that the significance of accounting for short- and
long-term uncertainty increases for systems with a high degree of
variable renewable generation and ESSs and limited dispatchable
generation capacity.

Index Terms—Energy Management, Variable Renewable En-
ergy Sources, Energy Storage Systems, Stochastic Dual Dynamic
Programming, Markov Chains, Quantile Regression

NOMENCLATURE
Sets and indices
i, j Markov node indices
i+ Children of Markov node i
ωi ∈ Ωi Set of scenarios at Markov node i
k ∈ K SDDP iteration index
n ∈ {1, . . . , N} Scenario node sequence number
R Markov chain root node
g ∈ G Set of dispatchable generators
r ∈ R Set of renewable generators
d ∈ D Set of loads
e ∈ E Set of EES
m ∈M Set of markets
t ∈ Ti Set of timesteps in node i
ti, t̄i First and last time step in Ti
Parameters
φij Transition probability from Markov node i

to j
∆Ti Time step length at time t
CGg Generation cost of generator g
CPm/CSm Purchase/sale price in market m
CDd Load shedding cost of demand d
CEe Fixed SMV of EES e

PGmaxg Maximum power generation generator g

P. Aaslid is a PhD student at the Norwegian University of Science and
Technology and SINTEF Energy Research. M. M. Belsnes is with SINTEF
Energy Research. M. Korpås and O. B. Fosso are with Norwegian University
of Science and Technology.

PRmaxr,i Renewable generator r power forecast at
time t

PMp
m/PM

s
m Maximum purchase/sale power at market m

PDd,i Active power demand (before load shedding)
by load d at time t

PSce,t/PS
d
e,t Maximum charge/discharge power of EES e

at time t
SOCmine /SOCmaxe Minimum/maximum SOC of EES e

ηce/η
d
e Charge/discharge efficiency of EES e

Variables and functions
xi/x

′
i Incoming/outgoing state variables at Markov

node i
x̄i Incoming state dummy variable at Markov

node i
ui Control variable at Markov node i
ωi Random variable at Markov node i
λi State dual variable of solution at Markov

node i
θi SDDP cut variable at Markov node i
αki , β

k
i SDDP cut coefficients at Markov node i,

iteration k
Ui(xi, ωi) Control variable feasibility set at Markov

node i
Ti(xi, ui, ωi) Stage-transition function at Markov node i
Ci(xi, ui, ωi) Stage-objective function at Markov node i
Vi(xi, ωi) Value function at node i
SEVi(xi) Storage end value at node i for state xi
SMVi(xi) Storage marginal value at node i for state xi
pg,t Power from dispatchable generator g at time

t

pr,t Power from renewable generator r at time t
ppm,t/p

s
m,t Power purchase/sale from/to market m at

time t
pd,t Power withdrawn by load d at time t
plsd,t Load shedding by load d at time t
psce,t/ps

d
e,t Active power charge/discharge to/from EES

e at time t
pse,t Net active power charge to EES e at time t
soce,t State-of-charge of storage e at time t

I. INTRODUCTION

VARIABLE renewable energy sources (VRESs), primarily
solar photovoltaic (PV) and wind, are expected to be the

main electricity sources in the future. The levelized cost of
energy (LCOE) of solar PV and onshore wind has been re-
duced by 77% and 30% respectively in less than ten years [1],
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and VRESs stand out as a clean and competitive alternative in
the electricity market [2]. Despite their relatively low LCOE,
large-scale integration of VRESs impose new challenges in
balancing the supply and demand. Energy storage system
(ESS) technologies have taken large steps both in terms of
technological improvements and cost reduction, and ESSs will
probably play an important role in balancing the electricity
system.

Traditionally, the electricity system have been organized
hierarchically with a relatively small number of centralized
dispatchable generators operating to meet an almost inflexible
demand. In contrast, VRESs are to great extent distributed,
weather-driven and uncertain. Moreover, the market price
in today’s system is often set for large geographical areas
and does not capture the challenges related to distributed
generation [3]. With the increasing share of distributed energy
resources (DERs), a viable option is to move towards decen-
tralized control [4] to manage the system complexity. Micro-
grids (MGs) offer a possible way of integrating distributed
VRESs and ESSs into the power system [5]–[7]. MGs are
capable of operating disconnected from the main grid for a
limited time or permanently [8], and remote areas may also
be organized as MGs to avoid expensive grid expansions.

In energy-constrained systems, where the capacity of
VRESs is high and ESSs replace some of the dispatchable
capacity, the ESSs must contribute to secure the supply in
periods with low generation from VRESs. The operation of
these systems can be considered as balancing dispatchable
generation costs against the risk of scarcity [9]. The sys-
tem’s ESSs must be operated to have sufficient high state-
of-charge (SOC) for periods with high demand, and they
should also have sufficient low SOC upfront periods with high
generation from VRESs to minimize generation curtailment.
These decisions must account for both the daily variations
and uncertainty in demand and solar PV generation, as well
as the variations and uncertainty in wind power generation
over several days.

Power and energy limitations as well as efficiencies also
vary for different ESS technologies. Lithium-ion batteries can
deliver and absorb high power with low losses, but for a
limited time due to energy limitations. A key factor for large
scale integration of VRESs is long-duration energy storage
with sufficient low storage capacity cost, and hydrogen stands
out as one of the most viable options [10]. For hydrogen ESSs
(electrolyzer and fuel cell), the size of the hydrogen tank can
be scaled up at modest cost, while the electrolyzer and the
fuel cell are expensive to scale up and have poor round-
trip efficiency compared to lithium-ion batteries [11]. The
combination of power and energy limitations, efficiency losses,
and uncertain generation and demand makes the operation
optimization problem highly complex, and the long-duration
storage necessitates scheduling several days ahead.

Rule-based energy management has been successfully ap-
plied for managing DERs, both for experimental systems [12]–
[14] and virtual systems [15], [16]. These rule-based methods
charge/discharge the respective ESSs based on fixed SOC
thresholds and predefined priorities, and their computational
performance makes them well suited for integration in a real-

time environment. However, they do not utilize knowledge
about expected future generation and demand from forecasts.

Information from forecasts can improve the operation strat-
egy by formulating dynamic optimization problems with either
deterministic or stochastic generation and load forecasts. The
resulting power dispatch or SOC can be used as a reference to
a real-time control system where the system is re-optimized
using rolling horizon each time where either the forecast or
observed state are updated [17]–[19].

Stochastic dynamic programming (SDP) approaches [20]
also account for how the uncertainty is revealed stage-wise,
and the operation strategy can be adjusted stage-wise as
more uncertainty is revealed. Instead of providing an optimal
control, it provides an optimal policy which is a set of decision
rules on how to respond to a given state at a given time. The
storage marginal value (SMV) obtained from the SDP solution
also has a useful interpretation with respect to deciding when
to use the different ESSs compared to generators using con-
stant marginal cost principles [21]. However, SDP approaches
require stage-wise independent noise and the auto-correlation
of the scenarios are lost. Uncertainty from VRESs is naturally
auto-correlated [22]. Therefore, forecast errors tends to sustain
and must be accounted for to prevent the security of supply
from worsening.

The operation of ESSs is in reality an infinite horizon
optimization problem, and this is particularly important when
studying systems where ESSs must be used to prevent extreme
prices from, for example, periods of scarcity. A common
approach to prevent emptying the ESSs at the end of the
optimization period, is to apply a bound on the end SOC,
typically for daily planning [23]–[25]. However, this approach
is unnecessarily inflexible and prevents utilization of the
flexibility beyond the optimization horizon [26]. Solar PV and
wind power both have distinct seasonal variation, hence the
operation method should also be verified through a whole year
as in [15], [16], but these only consider rule-based approaches.

Existing literature often studies ESSs’ capabilities to mini-
mize thermal power generation and reduce CO2 emissions, but
very few papers consider how ESSs should be operated if they
must contribute to prevent extreme prices and scarcity. The
valuation of stored energy beyond the optimization period has
therefore gained little attention. However, research on large-
scale hydropower has paid more attention to infinite horizon
optimization both with SDP [27] and stochastic dual dynamic
programming (SDDP) [28].

This paper presents a multi-stage stochastic programming
(MSSP) energy management model that is solved using a
combination of SDP and SDDP [28], [29]. Unlike most pre-
vious studies, we address energy-constrained systems where
the ESSs are decisive to prevent scarcity. While previous
approaches consider forecast uncertainty [17], [19], our model
also accounts for the uncertainty beyond the forecast horizon
with a separate stochastic long-term model. Moreover, we
do not enforce rigorous state end value constraints [23]–
[25], but approximate state and time dependent storage end
value functions. The storage end value functions are updated
monthly to account for seasonal variations and represents
infinite horizon similar to approaches applied for hydropower
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Long-term model
• Monthly update
• Parameters: System model, uncertainty model and

scenarios

Short-term model
• 6 hourly update
• Parameters: System model, uncertainty model and

scenarios

Simulate model
• Hourly update
• Parameters: Observations of ingoing state and

uncertain variable
• Output: Control and outgoing state

Store results (state and control)

Storage end value function

Storage end value function

Control and outgoing state

Outgoing
state

Fig. 1. Summary of stochastic optimization method

scheduling [27]. To overcome the limitations of using stage-
wise independent noise, we address the auto-correlation in
wind uncertainty to maintain adequate security of supply.

Moreover, we bridge the gap between rule-based [12]–[16]
and optimization-based [17]–[19] operation by showing how
the solution of the stage-wise optimization problems can be
translated into a set of time and state dependent rules, and
investigate how these adaptive rules perform compared to
static rules for the operation of an actual MG over almost
a full year. Stochastic scenarios are generated using gradient
boosting quantile regression.

The remainder of this paper is organized as follows: Sec-
tion II describes the method, section III presents and discusses
the results from the application of the method, while section IV
provides the conclusions.

II. METHOD

The proposed method divides the decision process into
multiple stages where the stages within the look-ahead of
the forecasts are categorized as the short-term model and the
stages beyond the forecast horizon as the long-term model.
The short-term model stage length follow the frequency of
the weather forecast updates, while the long-term model stage
length is one day and repeated cyclically.

As illustrated in Fig. 1, the long-term model is solved
first. It considers typical seasonal weather, in this case for
the present month. Therefore, it is only re-optimized every
month as decribed in section II-D. Thereafter, the short-term
model is solved using scenarios based on the most recent
weather forecast that are updated six-hourly as described in
section II-E. Based on the short-term strategy, the optimal
control is obtained for the observed state, generation and
demand. Finally, the results are saved. The stages and models
are connected using the storage end value (SEV) functions
as described mathematically in section II-A and interpreted in
section II-C.

R

1,1

1,2

2,1

2,2

Stages

Markov

states

Fig. 2. Example of policy graph as a Markov chain.

A. Stochastic dual dynamic programming

MSSP represents the stage-wise decision process where
new uncertainty is revealed and control decisions are taken
stage-wise. The solution of an MSSP model is therefore not
a sequence of controls, but rather a sequence of decision-
rules, often referred to as policies, on how to respond to
a given state and for the revealed uncertainty. This is an
important difference from the classical two-stage stochastic
model [30] where the optimal control is obtained by assuming
all uncertainty is revealed at once.

The MSSP model variables are classified into state xt,
control ut and random variable ωt where the objective is
to find a set of admissible controls (1c) that minimizes the
expected stage-wise operating costs for all stages (1a). The
state transitions function (1b) describes how the state changes
for a given scenario ωt and control ut, representing decisions
taken both explicitly and implicitly.

min
ut

{
C1(x1, u1, ω1) + E

ω2|ω1

[
min
u2

(
C2(x2, u2, ω2) + . . .

+ E
ωT |ωT−1,...,ω2

[
min
uT

(
CT (xT , uT , ωT )

)])]
}

(1a)

s.t. xt+1 = Tt(xt, ut, ωt) (1b)
ut ∈ Ut(xt, ωt) (1c)

∀t ∈ T
The MSSP formulation is an optimization problem with nested
expected values of optimization problems, and where the
random variable at each stage depends on all previous random
variables. The size of the extensive problem becomes too large
to solve even for problems of modest size. MSSP models
are therefore commonly solved with dynamic programming,
where the full problem is decomposed into a sequence of
stage-wise problems.

This paper considers SDDP [31] for solving the proposed
MSSP problem. SDDP requires a convex problem formulation
[32] and stage-wise independent random variables. Similar to
SDP [33], SDDP divides the full problem into smaller stage-
wise problems, and approximates the future cost for each stage
using backward recursion. Whereas SDP discretizes the state
space, SDDP utilizes the convex problem formulation and
approximates the future cost iteratively using multiple linear
hyperplanes which serve as lower bounds for the future cost.

A common approach for managing the stage-wise dependent
random variables, are to model them as state variables using
an auto-regressive model [34]. These can be both additive
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and multiplicative [35] depending on the random variable
properties, but require a linear model formulation. However,
this paper uses a combination of SDDP and SDP with Markov
chains [29]. The sequence of stages and the corresponding
Markov states can be described with a policy graph [28] as
illustrated in Fig. 2: Each node is associated with a stage
representing a discrete moment in time, and a Markov state
which captures discrete states not included in the state variable
xi. Each node i has a set of children i+ representing the next
stage for the different Markov states. The transition probability
between nodes φij is positive if j is a child of i and otherwise
zero.

Given that all future decisions are optimal from a given node
and onward, the optimal decision for a previous node can be
found with backward recursion using Bellman’s principle of
optimality [33] by reformulating the model in (1a) to (1c) as
shown in (2a) to (2d).

Vi(xi, ωi) = min
ui

{
Ci(xi, ui, ωi)− SEVi(x′i)

}
(2a)

SEVi(x
′
i) = − E

j∈i+, ωj∈Ωj

[
Vj (x′i, ωj)

]
(2b)

s.t. x′i = Ti(xi, ui, ωi) (2c)
ui ∈ Ui(xi, ωi) (2d)

The recursive formulation can be solved with SDDP and
the algorithm can be divided into two phases: forward and
backward pass. In the forward pass, a random sequence of
nodes i1, . . . , iN is sampled from the Markov model, and
a random scenario ωi ∈ Ωi is sampled for each node. The
Markov model can also be cyclic to represent infinite horizon
where the probability of entering a cycle must be less than
one to ensure that the future value produces a finite sum. For
the example illustrated in Fig. 2, the outgoing edges from
node (2,1) and (2,2) will each sum up to the cycling discount
factor [28]. The algorithm also enforces a maximum number
of subsequent nodes. For the randomly sampled sequence of
nodes and scenarios, the optimization problem (3a) to (3e) is
solved sequentially using the outgoing state of previous node
as the ingoing state to the next node. When a random scenario
has been solved through all stages, the backward pass can
start. For each node i and state xi in the sequence i1, . . . , iN ,
(3a) to (3e) is solved for all outgoing nodes j ∈ i+ and all
scenarios ωj ∈ Ωj . The resulting objectives V Kj (x̂, ωj) and
dual values λj are used to calculate a linear hyperplane (3e)
for the current node i. The whole procedure is repeated until
enough hyperplanes have been added to represent the future
cost functions sufficiently accurate. Detailed algorithms are
provided in reference [28].

V Ki (x̄i, ωi) = min
ui,xi,x′i,θi

Ci(xi, ui, ωi) + θi (3a)

s.t. xi = x̄i, [λi] (3b)
x′i = Ti(xi, ui, ωi) (3c)
ui ∈ Ui(xi, ωi) (3d)

θi ≥ αki + βki x
′
i, k ∈ {1, 2, . . . ,K} (3e)

Unlike SDP, where the entire state space is explored, SDDP
explores the most interesting states based on sampling from
the uncertainty distribution.

B. Mathematical description

The detailed mathematical description below is repeated for
each node i. Incoming state xi is the initial SOC soce,t−1 for
the first time step in each node, and the outgoing state x′i is
the SOC soce,t for the final step in each node. The random
variable ωi includes the maximum generation from VRESs
(5), such that they can be freely curtailed at no cost, and the
demand (6). The admissible controls includes all the remaining
constraints.

Dispatchable generators can adjust the generation between
zero and maximum generation continuously (4), while the
VRES generators have time dependent upper bounds given by
weather conditions (5). The demand is also variable in time
and load shedding can be applied if the system has insufficient
capacity (6). Power can be injected and withdrawn from the
ESSs at constant efficiency (7a), but the SOC limits must be
respected (7b) and the charge and discharge power must stay
within their limits (7c) and (7d). The change in SOC and power
limits due to degradation are relatively small for the studied
interval and has not been considered. The operation costs due
to lifetime reduction for ESSs has neither been considered, but
has been addressed for future work. In grid-connected mode,
the system can exchange power with an external market within
the transmission limits (8a) and (8b). The power injected and
withdrawn must be balanced at all time (9). The objective is to
minimize the cost of dispatchable generation, net import and
load shedding (10).

0 ≤ pg,t ≤ PGmaxg , ∀g ∈ G, t ∈ Ti (4)

0 ≤ pr,t ≤ PRmaxr,t (ωt), ∀r ∈ R, t ∈ Ti (5)

pd,t = PDd,t(ωt)− plsd,t ≥ 0, ∀d ∈ D, t ∈ Ti (6)

soce,t = soce,t−1 + ∆Tt

(
ηcpsce,t −

psde,t
ηd

)
(7a)

SOCmine ≤ soce,t ≤ SOCmaxe (7b)
0 ≤ psce,t ≤ PSce,t (7c)

0 ≤ psde,t ≤ PSde,t (7d)

∀e ∈ E , t ∈ Ti

0 ≤ ppm,t ≤ PMp
m (8a)

0 ≤ psm,t ≤ PMs
m (8b)

∀m ∈M, t ∈ Ti

∑

g∈G
pg,t +

∑

r∈R
pr,t +

∑

m∈M
ppm,t +

∑

e∈E
psde,t

=
∑

d∈D
pd,t +

∑

m∈M
psm,t +

∑

e∈E
psce,t, t ∈ Ti (9)
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min
∑

t∈Ti

{∑

g∈G
CGg pg,t +

∑

d∈D
CDd plsd,t

+
∑

m∈M

[
CPm ppm,t − CSm psm,t

]}
(10)

C. Model interpretation

The optimal energy management of a small-scale power sys-
tem can be considered as the decision process of meeting the
energy demand using the available resources with the lowest
marginal operating cost. The marginal cost of dispatchable
generators is mainly given by the fuel and emission costs,
while VRESs have marginal operating costs close to zero.
The value of lost load (VOLL) represents the cost of not
being able to meet the demand, and is normally assigned a
high value [36]. Since the ESSs neither consume nor deliver
energy, but shift energy in time, the marginal cost/value can be
considered as the future opportunity cost/value given they are
dispatched perfectly in the future. Therefore, they will vary
between zero and the VOLL since the energy charged to an
ESS can originate from VRESs, and the discharged energy
can prevent loss of load [21].

The objective in (2a) has two terms: the stage-objective and
the SEV function. The stage-objective is a function of the
control variable, while the SEV function is a function of the
state. The marginal operating cost of dispatchable generators,
demand, purchase and sale are all time and state independent
(11), and the optimal dispatch can easily be obtained by
picking the unit with the lowest marginal cost first.

∂Ci(xi, ui, ωi)

∂pg,t
= CGg,

∂Ci(xi, ui, ωi)

∂plsd,t
= CDd

∂Ci(xi, ui, ωi)

∂ppm,t
= CPm,

∂Ci(xi, ui, ωi)

∂psm,t
= −CSm

(11)

The marginal charge and discharge cost of an ESS is both
time and state dependent and can be expressed as a function of
the SMV, the marginal value of the SEV function with respect
to state (12), as shown in (13) and (14).

∂SEVi(xi)

∂xi
= SMVi(xi) (12)

∂SEVi(x
′
i)

∂psce,t
=
∂SEVi(x

′
i)

∂x′i

∂x′i
∂psce,t

= SMVi(x
′
i) · ηc (13)

∂SEVi(x
′
i)

∂psde,t
=
∂SEVi(x

′
i)

∂x′i

∂x′i
∂psde,t

= −SMVi(x
′
i) ·

1

ηd
(14)

When the SMV function is known, the operation strategy
of both generators, loads and ESSs can be translated into a set
of time and state dependent decision-rules where the resources
with the lowest marginal operating costs are chosen similar to
the rule-based approaches in references [12]–[16]. However,
the proposed rules based on SMV are both time and state
dependent and will therefore consider the future generation
and demand under uncertainty.

D. Long-term model

The long-term model uses 24-hour scenarios which are
representative for the time of day and year, in this case the

respective month, to represent the expectation beyond the
forecast horizon. The SDDP algorithm is typically run from a
known initial state. In this case, the outgoing state of the short-
term model which is the incoming state of the planning is not
known ahead, hence the initial Markov state and state variable
value are randomized to ensure the model to be sufficiently
explored by the algorithm. Since the problem is, in reality, an
infinite horizon problem, a cyclic Markov model is used [28].
The cyclic Markov model permits transition from the nodes
representing the final stage back to nodes representing previous
stages, in this case 24 hours back, with probability 0.8. This
will represent an infinite horizon with a discount and prevents
the ESSs from emptying after 24 hours. This decomposition
permits updating the long-term strategy monthly instead of
six-hourly.

1) Wind power: The main purpose of the long-term model
is to predict net power balance over several days. Wind
power is the dominant energy source and has an evident
auto-correlation. The long-term model assumes constant daily
wind power generation using five scenarios represented as
individual Markov states. The scenarios are generated based on
the 24-hourly mean values of historical wind power observa-
tions which are sorted and divided into intervals of relative
size 0.1, 0.2, 0.4, 0.2, 0.1. The mean value of each interval
represents the scenario. The transition probabilities between
the scenarios are obtained using the method described in
section II-J.

2) Solar PV power: Clearness index (CI) is a number
between zero and one and gives the ratio between solar PV
power generation and the clear sky generation at that particular
time. The CIs are calculated for the historical observations
where hours with zero generation are neglected to avoid zero
division. The mean daily CIs are sorted and divided into three
equally sized intervals. The mean value for each interval is
used as the CI for the long-term model scenarios. The auto-
correlation has not been considered to keep the number of
Markov states sufficiently low, and since wind is the dominant
power source.

3) Demand power: The demand scenarios are generated
using quantile regression with the hour of day and the month
of year as explanatory variables. The scenarios are given by
the 0.1, 0.5, 0.9 quantiles with probability 0.2, 0.6, 0.2. The
quantile regression method is further described in section II-J.

E. Short-term model

The short-term model stage length is equal to the weather
forecast update frequency, six hours, and the forecasts have
60 hours look-ahead yielding ten stages.

1) Wind power: The ratio between wind speed and power
generation is non-convex [37] and has increasing variability
with increasing wind speed [35]. Wind power scenarios are
generated using the 0.1, 0.3, 0.5, 0.7, 0.9 quantiles, each with
0.2 probability, where each scenario represents a Markov state.
The quantile regression model is fitted using the following
explanatory variables: wind power forecast at turbine height,
wind speed forecast, wind direction forecast, look-ahead hours
and last observed power before the forecast period.
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The wind speed vref is forecasted at a reference height
href which usually differs from the turbine height hturbine.
Therefore, the turbine wind speed vturbine is scaled using the
power law profile [38] shown in (15).

vturbine = vref

(
hturbine
href

)k
(15)

The roughness factor k is an empirical value for the roughness
of the terrain around the wind turbine. Transition probabilities
are obtained as described in section II-J.

2) Solar PV power: Solar power explanatory variables
are: cloud area fraction forecast, normalized maximum so-
lar power, initial solar power and look-ahead hours. The
normalized maximum solar power represents the theoretical
maximum generation for that time of day and year as a
number between zero and one. There are theoretical methods
for determining this value given the geographical location, and
the panel direction and tilt. Since panel angle and direction
as well as seasonal configurations are unknown for the case
in this paper, the normalized maximum solar power has
been approximated using historically observed generation by
assuming the normalized maximum solar power is given by
the maximum observed value at that day and hour plus/minus
nine days for all observed years.

3) Demand power: The demand will use the same regres-
sion model as the long-term model described in section II-D3.

F. Simulation

To verify the value of the different optimization strategies,
historical observations are simulated with rolling horizon. For
each observed value, the corresponding node i is identified
based on the Markov state and stage, and the optimal control
is found by solving (3a) to (3e). The optimal control and the
resulting state are saved, and the procedure is repeated for the
next stage using the previous outgoing state as the incoming
state. The short- and long-term models are updated as shown
in Fig. 1.

G. Reference models

1) Perfect foresight: The perfect foresight model uses the
mathematical model description from section II-B but opti-
mizes the whole period at once with the actual historical
generations and demand instead of using forecasts. The SEV
at the end of the optimization is set using the fixed SMV
described in section II-G3. The perfect foresight model can
be considered as a theoretical absolute lower bound of the
operating costs.

2) Deterministic model: The deterministic model formula-
tion uses the same mathematical model description presented
in section II-B as the stochastic model, but with least square
point forecasts for generation from VRESs and demand instead
of multiple scenarios, stages and Markov states. The determin-
istic model only considers the short-term model horizon and
is similar to references [17], [18].

3) Rule-based model: Rule-based models [12]–[14] use a
fixed priority for generators and ESSs to decide where to with-
draw lacking or inject surplus energy. Given an arbitrary ESS
e with charge/discharge efficiency ηce/η

d
e and SMV CEe, then

the cost of discharging one unit will be CEe

ηde
, hereby referred

as discharge cost. The corresponding value of charging one
unit, the charge value, will be CEeηce. If the SMV is chosen
such that the discharge cost is less than the diesel generation
cost, the ESS will be used to meet the demand before the
diesel generator. Likewise, diesel will not be used to charge
the ESS as long the charge value is less than the diesel cost,
and the ESS with highest charge value will be charged first
when there are surplus generation from VRESs.

The cases with fixed end value will use SMV 80 e/MWh
for both ESSs. Since the charge value is less than the marginal
cost of the diesel generator, both of the ESSs will only be
charged when there are surplus generation from VRESs. The
discharge value of the battery is less than the diesel generator
marginal cost or the grid purchase price, hence it will displace
diesel generation or import whenever possible. However, the
discharge value of hydrogen is higher. Consequently, it will
only be used to prevent load shedding.

H. Implementation

The proposed method has been implemented in the pro-
gramming language Julia (1.4.2) using the toolbox SDDP.jl
(0.3.14) [39] and Gurobi (9.1) for solving the stage-wise linear
optimization models. The long-term models were trained with
1000 iterations, and the short-term models with 100 iterations.
To simulate the proposed case, 1350 short-term models were
trained and simulated in 4-5 hours while the training time for
12 months of the long-term model was around 1.5 hours on a
laptop with Intel i7-8650U CPU and 16 GB RAM.

I. Case study

Rye microgrid is located in Central Norway near Trondheim
and is partly funded by the Horizon 2020 project REMOTE
[40]. The MG comprises a farm and a few residential houses,
and the electricity is supplied by solar PV panels and a
wind turbine [41]. The turbine height and the reference height
are 30 and 10 meters respectively, and the terrain roughness
factor is set to 0.3 considering the wind turbine is partially
surrounded by forest [42]. There is also a lithium-ion battery
and a hydrogen storage unit with an electrolyzer and a fuel cell
to balance the load and generation. A diesel generator serves
as backup when the VRE generation is persistently low. The
generation capacities are 86 and 135 kW for solar PV and wind
respectively. The import price and diesel generator operating
cost are both 100 e/MWh, while the sale price is 50 e/MWh.
The VOLL is 5000 e/MWh. The numerical values of the ESSs
are presented in Table I. Diesel and wind power generation
capacities in this study have been reduced from the original
system to increase the probability of scarcity. This choice is
made to study the impact of ESS operation strategies in critical
periods of the year where ESSs are needed to prevent load
shedding. Time series for historical observed generation and
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TABLE I
NUMERICAL VALUES FOR MICROGRID ENERGY STORAGE SYSTEMS.

Description Unit Lithium-ion Hydrogen

Charge power [kW] 500 55
Discharge power [kW] 500 100
Size [kWh] 500 3300
Charge efficiency [%] 96 64
Discharge efficiency [%] 96 50
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Fig. 3. Accumulated generation and load (a) and weekly average generation
and load (b) for the entire studied period.

load, and historical weather forecasts can be downloaded from
[43].

The system has sufficient power generation from VRESs in
the long run, as shown in Fig. 3a. However, Fig. 3b shows a
significant weekly variability, especially for the wind power,
that must be balanced with ESSs. For an average daily load
above 20 kW, a fully charged lithium-ion battery can meet
the load for maximum 24 hours, while a full hydrogen tank
can meet the demand for around 80 hours. If the dispatchable
generation capacity is low, sufficient stored energy in the ESSs
is crucial to prevent load shedding. The analysis period is
between 2020-01-01 and 2020-12-09.

J. Quantile regression and transition probability

Generation forecasts for the short-term model are deter-
mined based on meteorological weather forecasts from the
Norwegian Meteorological Institute with a 60-hour foresight
updated every sixth hour. Let ψt+k|t denote the weather
forecast for time t+k issued at time t. The goal is to find a set
of scenarios Ωt+k = f(ωt−i, ψt+k|t, k) given previous obser-
vations and forecast variables. Unfortunately, it is difficult to
include the look-ahead as an explanatory variable in a linear
model as the product of two variables is not allowed. Linear
models will therefore require a separate regression model for
each look-ahead value k [44]. Gradient boosting (GB) is a
machine learning technique that can be used for regression
by forming an ensemble of weak decision trees [45], [46].
Moreover, GB is not limited to linear combinations, hence the
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Fig. 4. Example of wind power percentile forecasts (blue) compared to least
square forecast and observed power for a 60 hours interval. Percentile median
values are used as wind power scenarios for the stochastic optimization. Least
square forecast is used for the deterministic optimization.

look-ahead can be used directly as an explanatory variable.
All training data can therefore be used to fit one model
instead of an individual models for each k. This approach
will therefore be less dependent on having a large training
data set compared to linear regression. The regression has
been performed with MLJ.jl (0.16.2) [47] and ScikitLearn
(0.24.0) [48] with regularization constant 1.0 and interior-point
solver. Deterministic point forecasts are generated using a least
square regressor, while scenarios are generated using quantile
regression.

Let ωαi denote the α quantile of a random variable at node
i, and ω̂i an observed value, then P (ωαi ≥ ω̂i) = α. Moreover,
let E[ωαi ] and E[ω̂i] denote the mean value of the respective
quantiles and the observed values over time. The observed
values at the node i are then in the j’th quantile interval if
E[ω

αj−1

i ] ≤ E[ω̂i] < E[ω
αj

i ] where α = [α0, . . . , αn].
The quantile regression model is trained using historical

weather forecasts as explanatory variables and the actual gen-
eration as the outcome variable. For each historical forecast,
the outcome variable is classified into quantile interval and the
number of transitions between the quantile intervals is counted.
Let the matrix Φ denote the transition counts such that Φij
denotes the number of transitions between quantile interval i
and j, then the resulting transition probability matrix φ is given
by φij =

Φij∑n
k=1 Φik

. The resulting quantile intervals compared
to the point forecast and observed wind power are shown for
a random interval in Fig. 4.

III. RESULTS AND DISCUSSION

A. Long-term strategy

As explained in section II-C, generation from VRESs with
zero marginal cost is always preferred if available, while
the priorities between the dispatchable generation, import,
export and ESS charge and discharge varies and are given by
the SMV. Fig. 5 illustrates the resulting long-term operation
strategy for the ESSs based on the SMVs as a function of both
battery SOC (x-axis) and hydrogen SOC (y-axis). The SMV
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Fig. 5. Long-term model strategy for ESS dispatch based on SMV as a func-
tion of battery and hydrogen SOC for the system with 15kW import/export
capacity in May with intermediate wind speeds (Markov state 3 of 5) for (a)
hydrogen and (b) battery. The storage marginal value in the transition between
the different areas are shown in the legend and the numerical values are shown
in Table I and section II-I.

boundaries are based on the charge/discharge cost derived in
(13) and (14).

Fig. 5 shows that it is optimal to use available import
capacity to charge the ESSs when the SOC is sufficiently
low. For slightly higher SOC, the optimal strategy is to import
instead of using stored energy such that the stored energy is
saved for potential future situations with risk of scarcity. When
the SOC is sufficiently high, the stored energy should be used
to meet the demand instead of import, while when the SOC is
close to maximum, the energy should be exported to prevent
potential generation curtailment.

A similar strategy can be extracted from the short-term
strategy giving even more accurate rules which also considers
the short-term generation and load forecasts. Additionally, this
makes the proposed method suitable for integration towards
real-time systems.

B. Simulation of historical observations

The optimal operation of almost a full year with historical
data is summarized in Table II for three conditions of the
system: high dispatchable capacity (75 kW), low dispatchable
capacity (15 kW) and weakly grid connected system (15 kW
import/export capacity). Each condition has been analysed
with seven different methods. The first method (cases 1,8
and 15) shows the results with perfect foresight which can
be considered as an absolute lower bound of the costs. The
remaining methods are different combinations of short- and
long-term models, where the stochastic model is our proposed
model. The outgoing SOC is shown in Table II, but the value
of it is not included in the costs.

The dispatchable generation capacity of 75kW of the cases
1-7 is always sufficient to meet the peak demand. Therefore,
the load shedding is always zero and the difference in oper-
ating cost between the different methods originates from the
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Fig. 6. Snapshot from case 21 where power is imported due to low SOC
despite of positive net generation.

diesel consumption. The fixed end value (rule-based) of the
cases 2-4 is conservative and prioritizes hydrogen for load
shedding prevention, which results in a poor utilization of VRE
compared to the cut end values from the stochastic long-term
model. By also considering the forecast uncertainty in case 4,
the utilization of VRESs increase considerably. The stochastic
cuts of cases 5-7 adapt the strategy both with respect to SOC,
wind state and time of the day and seasonal variations, and
position the SOC such that surplus generation can be absorbed
efficiently.

Given perfect information (case 8), it is also possible to
fully prevent load shedding with a 15kW diesel generator
through early activation upfront periods with low generation
from VRESs to ensure sufficient energy in the system’s ESSs.
The operating costs are actually slightly less than for case
1 due to lower final hydrogen SOC. The rule-based long-
term strategy (cases 9-11), where only surplus generation from
VRESs is stored, causes significant load shedding. In contrast,
the stochastic long-term model (cases 12-14) almost eliminates
load shedding. A key difference is that the stochastic long-
term model provides a state dependent valuation of the stored
energy, while the rule-based method represents fixed valuation.
Therefore, the stochastic long-term model is very thrifty with
the stored energy when the SOC is low, which is essential to
prevent load shedding. Moreover, the use of weather forecasts
(cases 10-11), and in particular with stochastic modeling (cases
13-14), is important to keep both load shedding and diesel
generation low. Also note that case 12 has a high utilization of
wind and solar compared to 14, but still higher operating costs.
The lack of forecast imposes rapid cycling of the hydrogen
storage resulting in high efficiency losses, while the stochastic
model has less frequent cycling of the hydrogen storage and
less losses.

By replacing the diesel generator with a grid connection
with equal capacity, the surplus generation can be exported
(cases 15-21). The export price is set to half of the import
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TABLE II
SUMMARY OF OPERATING COSTS, LOAD SHEDDING, IMPORT, EXPORT, GENERATION AND FINAL EES SOC FOR ALL CASES AND ALL OPTIMIZATION

METHODS. NUMBERS IN PARENTHESIS SHOWS PERCENTAGE OF VRES THAT HAS BEEN UTILIZED.

[e] Energy [MWh]

Case Short-term
model

Long-term
model Cost Load

shedding Diesel Import Export Wind
generation

Solar
generation

H2 end
SOC

Batt. end
SOC

D
ie

se
l

ca
pa

ci
ty

:
75

kW

1 Perfect - 1957 0.00 19.6 - - 109.0 (57%) 55.8 (78%) 3.30 0.00
2 None Rule-based 2917 0.00 29.2 - - 83.6 (44%) 50.6 (70%) 3.30 0.00
3 Deterministic Rule-based 2988 0.00 29.9 - - 88.6 (47%) 52.6 (73%) 3.29 0.00
4 Stochastic Rule-based 2219 0.00 22.2 - - 102.4 (54%) 58.6 (82%) 0.58 0.00
5 None Stochastic 2341 0.00 23.4 - - 107.6 (57%) 59.8 (83%) 0.00 0.00
6 Deterministic Stochastic 2055 0.00 20.5 - - 108.3 (57%) 59.3 (83%) 0.00 0.00
7 Stochastic Stochastic 1929 0.00 19.3 - - 105.4 (56%) 56.9 (79%) 0.00 0.00

D
ie

se
l

ca
pa

ci
ty

:
15

kW

8 Perfect - 1954 0.00 19.5 - - 108.9 (57%) 55.6 (77%) 3.15 0.00
9 None Rule-based 9267 1.42 21.6 - - 96.0 (51%) 52.3 (73%) 0.10 0.00

10 Deterministic Rule-based 5563 0.61 25.3 - - 95.6 (50%) 53.5 (74%) 1.33 0.00
11 Stochastic Rule-based 3424 0.24 22.2 - - 104.1 (55%) 58.6 (82%) 0.08 0.00
12 None Stochastic 3288 0.00 32.9 - - 107.6 (57%) 61.5 (86%) 1.73 0.13
13 Deterministic Stochastic 2746 0.07 23.9 - - 106.7 (56%) 55.8 (78%) 1.41 0.00
14 Stochastic Stochastic 2354 0.00 23.5 - - 103.0 (54%) 55.3 (77%) 1.99 0.00

Im
po

rt
/e

xp
or

t
ca

pa
ci

ty
:

15
kW

15 Perfect - 632 0.00 - 24.7 36.8 120.2 (63%) 65.2 (91%) 3.15 0.00
16 None Rule-based 8610 1.42 - 21.6 13.1 104.3 (55%) 57.1 (79%) 0.10 0.00
17 Deterministic Rule-based 4023 0.54 - 26.0 25.2 107.1 (56%) 61.7 (86%) 1.33 0.00
18 Stochastic Rule-based 2260 0.27 - 26.5 34.5 117.8 (62%) 64.8 (90%) 0.10 0.00
19 None Stochastic 3302 0.11 - 41.9 28.5 115.5 (61%) 64.1 (89%) 1.63 0.13
20 Deterministic Stochastic 1918 0.13 - 28.6 32.3 117.5 (62%) 64.8 (90%) 1.13 0.00
21 Stochastic Stochastic 1185 0.00 - 28.2 32.9 117.8 (62%) 64.8 (90%) 2.05 0.00
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Fig. 7. Comparison of hydrogen SOC for rule-based (case 18) and stochastic
long-term model (case 21) with stochastic short-term model through the entire
optimization period for the weakly grid connected system.

price, for example due to grid tariffs. The trends are similar
to previous cases (8-14), but the differences are even more
pronounced. The stochastic short-term models (cases 18 and
21) have both the lowest load shedding and the highest export
compared to the equivalent deterministic and no-forecast short-
term models. Cases 19 and 21 also have higher outgoing SOC
than the corresponding fixed end value cases (16 and 18)
making them better prepared to prevent future scarcity.

The snapshot from case 21 in Fig. 6 shows positive import
although the net generation (generation from VRESs minus
demand) is positive. If the SOC is sufficiently low, it is
important to increase the SOC to prevent potential future load
shedding. This is also reflected by the brightest area in the
long-term strategy shown in Fig. 5.

Fig. 7 shows how the stochastic long-term strategy adapts
to seasonal variations compared to the rule-based method. The
risk of scarcity is higher through the winter due to higher load
and increased probability of sustained low generation from

wind compared to solar power. Therefore, the SOC is higher
in the beginning and the end of the year for the stochastic long-
term model compared to the rule-based long-term model. The
stochastic long-term model also permits lower SOC through
the summer to enable buffering surplus generation.

Although the results originate from a small-scale power
system, they are also relevant to large-scale power systems. To
reach net zero emissions towards 2050, 63% of the energy will
originate from VRESs with 74% of the total generation capac-
ity [49]. The high share of variable and uncertain generation
makes prevention of scarcity and extreme prices increasingly
important. The stored hydro-dominated Nordic power system
which has been operated as a competitive market where the
price has been influenced by the risk of scarcity since the early
1990s [50] shows that this is a feasible direction.

IV. CONCLUSIONS

The work presented in this paper shows the importance of
accounting for uncertainty in power systems when more of
the dispatchable generation capacity in autonomous systems
is replaced by VRESs and ESSs. The proposed multi-stage
stochastic programming model has demonstrated a reduction
in the operational costs associated with import, export and
thermal generation while at the same time increasing the
security of supply for the presented isolated microgrid com-
pared to a deterministic point-forecast model and a no-forecast
model. The results show a 70% cost reduction when using the
stochastic model compared to a deterministic point-forecast
model with fixed storage end value for the weakly grid con-
nected system, where 95% of the improvement originates from
reduction in load shedding. The model is also able to export
excess energy while keeping the risk of load shedding low.
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The benefits of the proposed model were most significant for
weakly connected systems and systems with low dispatchable
generation capacity.

Managing generation and load uncertainty is particularly
important in MGs where stored energy is the limiting factor
rather than installed capacity. Realistic and robust scheduling
models are a key component in the efficient and secure
operation of systems with a high share of VRESs and ESSs.

A. Future work

Possible steps towards a more applicable model could be
to add more details such as: generation cost curves and
efficiency as a function of charge/discharge for ESSs, ESS
degradation costs, start/stop costs for generators and ESSs, as
well as power flow equations. The proposed improvements will
impose new challenges with respect to convexity which can
be handled both with convex relaxations and integer variables,
and by using stochastic dual dynamic integer programming as
solution method [51].

Although SDDP is capable of handling several hundred state
variables [52], the use of discrete Markov states to represent
uncertainty has clear limitations with respect to dimensionality.
Moreover, adding new types of random variables, such as
new generation or demand, increases the number of scenarios
rapidly. Therefore, random variables must be chosen carefully
and can be managed with principal component analysis to
reduce the dimensionality, and by using a linear model for-
mulation of the random variables to enable the method to also
scale up for larger systems.
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Abstract—Power systems with high penetration of variable
renewable generation are vulnerable to periods with low gen-
eration. An alternative to retain high dispatchable generation
capacity is electric energy storage that enables utilization of
surplus power, where the electric energy storage contributes to
the security of supply. Such systems can be considered as energy-
constrained, and the operation of the electric energy storage
must balance the minimization of the current operating costs
against the risk of not being able to meet the future demand.
Safe and efficient operation requires stochastic methods with
sufficient foresight. Operation dependent storage degradation is a
complicating factor. This paper proposes a linear approximation
of battery state-of-charge degradation and implements it in a
stochastic dual dynamic programming based energy-management
model in combination with cycling degradation. The long-term
implications of degradation modelling in the daily operation are
studied for a small Norwegian microgrid with variable renewable
power generation and limited dispatchable generation capacity
as well as battery and hydrogen storage to balance supply
and demand. Our results show that the proposed strategy can
prolong the expected battery lifetime by more than four years
compared to the naive stochastic strategy but may cause increased
degradation for other system resources.

Index Terms—Energy Management, Electric Energy Storage,
Multi-Stage Stochastic Programming, Battery Degradation

I. INTRODUCTION

Electricity systems with high penetration of variable renew-
able energy sources (VRESs) rely on sufficient dispatchable
generation capacity to meet the peak demand in periods with
low VRES generation. An alternative to dispatchable thermal
generation capacity is to utilize electric energy storage (EES)
flexibility. A challenge with EES is that the current decision
also affects the energy content and the capability of providing
capacity in the future. The decisions here and now must
be taken while accounting for future power generation and
load under uncertainty, and needs to balance the risk of
generation curtailment versus the risk of not being able to
meet the demand. The operation of EES in these situations
can be seen as a precaution or arbitrage against extreme prices
[1], [2]. Moreover, these systems require significant VRES
overcapacity and will also be exposed to lasting periods with
excess energy resulting in generation curtailment [3]. The
EESs must be operated to balance short-term variations in

This work has been funded by the Norwegian Research Council under grant
number 272398.

generation and demand, and also store energy for potential
future energy deficit.

Different EES technologies have complementary properties
with respect to power and energy scalability. Lithium-ion
batteries have gained high attention both in the research
community as well as for power system applications due to
their ability to deliver and absorb very high power almost
instantaneously with very high efficiency. They also have a
relatively high energy to weight ratio compared to similar bat-
tery technologies. A key factor of large scale VRES integration
is long-duration energy storage [4]. Batteries are expensive to
scale up with respect to energy compared to hydrogen, which
can be stored in large tanks and scaled up at a relatively low
cost. However, the cost of fuel cells and electrolyzers are still
very high, and the round-trip efficiency is poor compared to
batteries [5].

Unlike traditional thermal power generators where the
marginal operating cost is well defined based on fuel and
emission costs, VRESs have marginal operating cost close
to zero. However, the expected lifetime of the power system
components, such as the EESs, are influenced by their oper-
ational pattern. Degradation characteristics differ for batteries
and hydrogen systems. The aging of hydrogen fuel cells are
largely affected by start, stop and rapid ramping. However, the
degradation has often been studied for vehicles that exhibit
several cycles each hour [6], while a grid connected fuel cell
will operate with less frequent cycling. Moreover, degradation
of fuel cells can also be related to dry membranes caused
by limited operation, and modest operation can extend the
expected lifetime compared to low operation [7]. The degrada-
tion cost of the hydrogen system has therefore been neglected.

The degradation of lithium-ion batteries is closely related
to operating conditions like charge/discharge power, depth-
of-discharge (DOD), state-of-charge (SOC), temperature, and
ampere throughput [8]. Energy management of VRES typi-
cally involves daily cycles, and the battery will rarely operate
close to its maximum power capabilities. Moreover, the battery
temperature will be controlled to ensure optimal operating
conditions and minimal degradation. Whereas balancing the
short-term fluctuation causes degradation due to DOD, long-
term storage increases the SOC degradation. This paper will
therefore consider degradation caused by DOD and SOC.

The aging is therefore influenced by the operational pat-
tern, and the optimal power dispatch largely depends on
the battery’s aging model [9]. Previous studies of microgrid
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(MG) economic dispatch often neglect the cost associated
with degradation [10], [11]. Single factor models, considering
degradation either as a function of power, SOC, DOD, or
ampere hour throughput, are also widely adopted [9]. For
example, references [12]–[15] assume the degradation is pro-
portional with energy throughput. More sophisticated models
capture non-linear effects, either as a single factor model [16]
or combined models [17], [18].

However, previous studies mainly focus on daily battery
cycling under variable photovoltaic (PV) generation with de-
terministic models [9], [16], [17]. This paper also considers
the effect of lasting generation surplus and deficit with respect
to how the battery and hydrogen storage are operated. To
account for the uncertainty in generation from VRES, which
is crucial for energy constrained systems [19], a multi-stage
stochastic formulation is implemented. Moreover, the expected
implication on the battery lifetime is considered using actual
data for a real MG over a whole year.

Non-linear models are often computationally intensive, es-
pecially for large-scale systems and stochastic problems. Con-
vex and linear problem formulations reduce the computational
burden, and enable utilization of decomposition techniques
such as dual decomposition. Reference [20] proposes a piece-
wise linear relaxation of the the non-linear DOD degradation,
and shows that a cost reduction can be achieved by considering
the cyclic degradation in the market clearing of a battery. How-
ever, linear approximation of the non-linear SOC degradation
has gained less attention.

This paper proposes a piece-wise linear approximation of
the battery SOC degradation effect, and demonstrates it in
combination with linear DOD degradation [20] on a real
MG from the EU project REMOTE [21], [22]. The system
is operating islanded, and is energy constrained since the
backup generator is too small to cover the peak demand
and the EES must be operated to prevent load shedding in
extreme situations. The optimal operation is considered using
rolling horizon [23] and stochastic dual dynamic programming
(SDDP) [24]. The system is simulated for a whole year with
rolling horizon using real observations from the MG and
scenarios generated from historical weather forecasts. Infinite
horizon is embedded using cyclic Markov chains [25], and the
implication of including battery degradation will be studied
with respect to the costs, VRES and EES utilization as well
as expected battery lifetime.

The contributions of this paper can be summarized as: i) a
linear battery SOC degradation formulation, ii) a multi-stage
stochastic energy management formulation including both
battery DOD and SOC degradation, and iii) an analysis of
a full year operation of an actual MG using the proposed
formulation to valuate the importance of considering battery
degradation in a life cycle perspective.

The remainder of the paper is organized as follows: sec-
tion II describes the rolling horizon simulation method as well
as the SDDP algorithm, and derives the linear power system
model including the SOC degradation model; section III
presents how the proposed method is implemented and the

1 2 3 4 5 6

Prediction horizon
Roll horizon

Prediction horizon
Roll horizon

Prediction horizon
Roll horizonu1 u2x2 x3

stages

Fig. 1. Rolling horizon optimization.

numerical values of the cases; section IV shows and discusses
the results; and section V draws the conclusions and suggests
future work.

II. METHOD

This section presents the rolling horizon stochastic energy-
management model where the goal is to find the optimal stage-
wise control decisions us at each stage s for the in-going state
xs and the stage-wise uncertainty ωs.

A. Rolling horizon simulation

Generation forecasts are based on weather forecasts issued
with fixed intervals, and the stochastic model is trained each
time a new forecast is available for the prediction horizon
as illustrated in Fig. 1. The actual generation and demand is
observed and evaluated for the roll horizon interval using the
trained stochastic model yielding the optimal control us that
is implemented. Finally, the optimization horizon is moved
forward and the procedure is repeated using the end state xs+1

from previous optimization as the initial value.

B. Multi-stage stochastic programming

This paper considers multi-stage stochastic programming
(MSSP) for solving the proposed energy management prob-
lem. MSSP captures that energy management is a sequential
decision making process and recognizes that decisions can
be updated stage-wise as uncertainty is revealed. The MSSP
formulation in (1a) to (1c) is divided into several stages s,
each representing a discrete moment in time. The goal is to
minimize the current and future operating costs. State variables
xs represent variables connected across stages, such as EES
SOC. Control variables us are decisions, both implicit and
explicit, and must be within the technical limitations of the
system given by the set of admissible controls (1c). The state
transition function (1b) describes the relation between the state
variables across stages. The random variable ωs represents the
uncertainty in demand and VRES generation.

min
ut

{
C1(x1, u1, ω1) + E

ω2|ω1

[
min
u2

(
C2(x2, u2, ω2) + . . .

+ E
ωS |ωS−1,...,ω2

[
min
uS

(
CS(xS , uS , ωS)

)])]
}

(1a)
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s.t. xs+1 = Ts(xs, us, ωs) (1b)
us ∈ Us(xs, ωs) (1c)

Generation from solar and wind power are correlated and
has significant auto-correlation. However, the auto-correlation
is partially captured by the stage-wise scenarios that can span
several hours. By assuming the random variable is stage-
wise independent and has a discrete set of realizations for
each stage, the problem can be formulated on extended form.
Instead of solving the intractable extended problem, SDDP
[24] decomposes the problem into sub-problems for each stage
s ∈ S and realization of the random variable ωs ∈ Ωs as
shown in (2a) to (2e). The algorithm is divided into two
phases: forward pass and backward recursion. The forward
pass samples a random variable for each stage and solves the
sequence of sub-problems using the outgoing state of stage
s as the in-going state to stage s + 1. When the final stage
is reached, the backward recursion starts by solving the final
stage for all the random variables. From convexity, the dual
variables λs of the state variable xs (2b) can be used to
generate a linear cutting plane (2e) that acts as a lower bound
for the previous stage problem, and the procedure is repeated
all the way back to the first stage. The whole procedure
is repeated, adding new cuts for each iteration k, until the
convergence criteria is met [24], [25] and it has been shown
that the algorithm under certain conditions will converge [26].

min
us,xs,xs+1,θs

Cs(xs, us, ωs) + θs (2a)

s.t. xs = x̄s, [λs] (2b)
xs+1 = Ts(xs, us, ωs) (2c)
us ∈ Us(xs, ωs) (2d)

θs ≥ αks + βksxs+1, k ∈ {1, 2, . . . ,K} (2e)

C. Power system model

Each stage-wise problem in (1a) to (1c) comprises a power
system model with multiple timesteps t. The power system
model including the battery degradation model will be ex-
pressed using the following sets and indices:
• t ∈ Ts: Time index t and the set of time steps Ts from

stage s.
• g ∈ G: Generator g and the set of dispatchable generators
G.

• r ∈ R: VRES r and the set of VRESs R.
• d ∈ D: Consumer d and the set of consumers D.
• e ∈ E : EES e and the set of EESs E .
• kδ ∈ Kδ: Battery cycling segment kδ in the set of

segments Kδ .
• kupσ ∈ Kupσ /kdnσ ∈ Kupσ : Battery SOC segment kupσ /kdnσ

direction up/down in the set of segments Kupσ /Kupσ re-
spectively.

The following parameters have been used:
• ∆Tt: Timestep t step length.
• PGmaxg : Generator g maximum power dispatch.
• Cg: Generator g marginal operating cost.
• PRmaxr,t : VRES r maximum power at time t.

• PDd,t: Demand of consumer d at time t.
• Cd: Consumer d marginal load shedding cost.
• SOCmine /SOCmaxe : EES e minimum and maximum

SOC.
• PSce/PS

d
e : EES e maximum charge/discharge power.

• Ce,kδ : EES e DOD marginal degradation cost segment k.
• SOCrefe : EES e SOC degradation reference value.
• Cupe,kσ/C

dn
e,kσ

: EES e SOC marginal degradation cost
up/down segment kupσ /kdnσ .

• ηce/η
d
e : EES e charge/discharge efficiency.

• R: Battery replacement cost.

The functions and variables are:

• pg,t: Generator g power dispatch at time t.
• pg,t: VRES r power dispatch at time t.
• pd,t: Consumer d demand at time t.
• plsd,t: Consumer d load shedding at time t.
• psce,t(,kδ)/ps

d
e,t(,kδ)

: EES e power charge/discharge DOD
(segment kδ) at time t.

• soce,t,kδ : EES e SOC DOD segment kδ at time t.
• socupe,t,kσ/soc

dn
e,t,kσ

: EES e SOC degradation segment
kupσ /kdnσ above/below reference value at time t.

• δt: Unitless EES cycle depth at time t.
• σt: Unitless EES SOC at time t.
• σref : Unitless EES reference SOC.
• fδ(δt): Incremental battery fade as a function of cycle

depth δt at time t.
• fσ(σt): Incremental battery fade as a function of SOC σt

at time t.

The resulting model is summarized in (3) to (13). The
objective is to minimize the dispatchable generation costs, load
shedding, and EES degradation associated with both DOD and
SOC (3). The total power injections and withdrawals must
balance at all time steps (4). The generation, both dispatchable
and VRES, must respect the maximum generation (5) and (6).
Demand that can not be met, causes load shedding (7). The
battery charge/discharge must respect the maximum limits,
both per segment (8) and (9) and the sum of the segments (10)
and (11). The EES energy balance is expressed per segment
(12), where the segments are divided into equal sizes (13).

min
∑

t∈T

[∑

g∈G
Cgpg,t+

∑

d∈D
Cdplsd,t+

∑

e∈E

∑

j∈J
Ce,kδps

d
e,t,kδ

+
∑

e∈E

( ∑

kσ∈Kupσ

Cupe,kσsoc
up
e,t,kσ

+
∑

kσ∈Kdnσ

Cdne,kσsoc
dn
e,t,kσ

)]

(3)

subject to

∑

g∈G
pg,t +

∑

r∈R
pr,t +

∑

e∈E
psde,t =

∑

d∈D
pd,t +

∑

e∈E
psce,t (4)
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0 ≤ pg,t ≤ PGmaxg (5)

0 ≤ pr,t ≤ PRmaxr,t (6)

pd,t = PDd,t − plsd,t (7)
0 ≤ psce,t,kδ ≤ PSce (8)

0 ≤ psde,t,kδ ≤ PSde (9)

psce,t =
∑

j∈J
psce,t,kδ ≤ PSce (10)

psde,t =
∑

j∈J
psde,t,kδ ≤ PSde (11)

soce,t,kδ = soce,t−1,kδ

+ ∆Tt

(
ηceps

c
e,t,kδ

− 1

ηde
psde,t,kδ

)
(12)

0 ≤ soce,t,kδ ≤
1

|Kδ|
(SOCmaxe − SOCmine ) (13)

Note that restrictions to prevent simultaneous charging and
discharging have not been included since it requires integer
variables or non-linear modeling. This assumption implies
that dumping of energy from the battery is accepted. This
is not a problem when the VRES generation can be curtailed
at no cost. However, by introducing SOC degradation cost,
situations where dumping of energy is beneficial might arise.
Moreover, minimum power for the thermal generator and
the hydrogen system has not been considered since it would
require binary variables that is not supported by standard
SDDP. As a consequence, the flexibility of the diesel generator
and the hydrogen system is overestimated and the battery
cycling need might be underestimated. This limitation can
be overcome by using SDDiP [27], but would increase the
computational burden significantly.

The state xs comprises the initial SOC variable soce,t,kδ
at each stage, and the final SOC variable at the outgoing
state xs+1. The random variable ω comprises the renewable
generation PRmaxr,t and the demand PDd,t for all the steps
in the stage. The remaining variables are decisions us, either
explicit or implicit.

D. EES degradation model

Experimental results show that the degradation rate of
lithium-ion batteries increases with increasing DOD. More-
over, the degradation rate is also higher for high SOC [28],
[29], but very low SOC will also cause high degradation [30]–
[33].

The proposed model assumes the degradation due to DOD
and SOC are decoupled. For an arbitrary convex DOD capacity
fade function fδ(δt), the EES SOC is divided into equally
sized segments Kδ yielding cost coefficients Cδk (14) [20].

Cδk =
R

ηdSOCmax
|Kδ|

[
fδ

(
k

|Kδ|

)
− fδ

(
k − 1

|Kδ|

)]
, k ∈ Kδ

(14)

Each energy level soct and charge/discharge psct/ps
d
t is di-

vided into Kδ segments. Since the marginal cost curve is

convex, the cheapest available segment will always be dis-
charged, and the suggested method will therefore count cycles
in a similar manner as the Rainflow counting algorithm [34].

The same principle can be used for modelling the SOC
degradation. For an arbitrary convex SOC capacity fade func-
tion fσ(σ), as illustrated in Fig. 3, σref represents the SOC
level where the SOC degradation is lowest as shown in (15).

σref = argmin
σ

fσ(σ) (15)

The incremental capacity fade as a function of SOC can be
found by taking the derivative of fσ(σ) with respect to soct.

∂fσ(σt)

∂soct
=
dfσ(σt)

dσt

∂σt
∂soct

=
1

SOCmax
dfσ(σt)

dσt
(16)

The soce,t variable is divided into Kup
σ and Kdn

σ equally
sized segments socupe,t,k and socdne,t,k for up and down direction
as illustrated by the orange and green segments in Fig. 3
respectively, and shown in (17) to (20). Therefore, socupe,t,k
and socdne,t,k represent the distance from the reference value in
both directions.

∑

k∈Kupσ

socupe,t,k ≥ soce,t − SOCrefe (17)

∑

k∈Kdnσ

socdne,t,k ≥ SOCrefe − soce,t (18)

0 ≤ socupe,t,k ≤
1

|Kupσ |
(
SOCmax − SOCrefe

)
(19)

0 ≤ socdne,t,k ≤
1

|Kdnσ |
SOCrefe (20)

Let Cupσ,k and Cdnσ,k denote the incremental aging cost with re-
spect to each segment in either direction socupe,t,k and socdne,t,k,
which can be interpreted as the segment slopes in Fig. 3. The
resulting cost coefficients are expressed in (21) and (22).

Cupσk =
R

SOCmax
|Kupσ |

[
fσ

(
σref +

k

|Kupσ |
(1− σref )

)

− fσ
(
σref +

k − 1

|Kupσ |
(1− σref )

)]
, k ∈ Kupσ (21)

Cdnσk =
R

SOCmax
|Kdnσ |

[
fσ

(
σref − k

|Kdnσ |
σref

)

− fσ
(
σref − k − 1

|Kdnσ |
σref

)]
, k ∈ Kdnσ (22)

The cheapest segments will always be used first, and the
correct segment will be used given a convex cost function.
Non-convex cost functions should consider convex relaxation
or mixed-integer programming to ensure global optimality but
has not been considered in this paper.

III. IMPLEMENTATION AND NUMERICAL VALUES

The proposed method is implemented in Julia (1.4.2) with
SDDP.jl (0.3.14) [35] and Gurobi (9.1). The models were
trained with 50 SDDP iterations.
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TABLE I
MICROGRID NUMERICAL VALUES

Description Unit Value

Wind turbine capacity [kW] 135
Solar PV capacity [kW] 86
Diesel generator capcity [kW] 25 / 75
Diesel generation cost [e/MWh] 100
Load shedding cost [e/MWh] 5000

TABLE II
NUMERICAL VALUES FOR MICROGRID EES.

Description Unit Lithium-ion Hydrogen

Charge power [kW] 500 55
Discharge power [kW] 500 100
Size [kWh] 500 / 1000 3300 / -
Charge efficiency [%] 96 64
Discharge efficiency [%] 96 50
Replacement cost [e/kWh] 100 NA

A. Microgrid

The model has been tested on the Rye microgrid in central
Norway that is partly funded by the Horizon 2020 project
REMOTE [21]. The MG comprises a few farms and houses,
and is supplied by a wind turbine, solar PV, and a diesel
generator that serves as backup in case of insufficient VRES
generation. The system is equipped with battery and hydrogen
storage to balance supply and demand [22]. Load shedding
costs occur if the supply is unable to meet the demand.
Numerical values for the MG are shown in Table I, and the
EES in Table II. Note that the wind and diesel generator sizes
in this case differs from the actual system. Fig. 2 shows the
four day average VRES generation and demand for the whole
period.

B. Battery degradation

This paper uses a quadratic DOD capacity fade function (23)
[17], [33]. The upper range of the SOC stress function (24) is
exponential [36], while the lower part is defined to capture the
potential collapse associated with operating at very low SOC

0 100 200 300 365
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w
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W
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Fig. 2. Four day average generation and demand for the optimization period.
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Fig. 3. Continuous and linearized SOC capacity loss functions.

[18], [32]. Note that any convex fade function can be used.

fδ(δ) = kδ δ
2 (23)

fσ(σ) =





kσ1e
kσ2(σ−σref ) 0.2 ≤ σ ≤ 1

fσ(1.0) + σ
0.1 (fσ(0.2)− fσ(1.0)) 0 ≤ σ < 0.1

fσ(0.2) 0.1 ≤ σ < 0.2

(24)

Assuming the battery fade is 85% higher at 90% compared to
10% SOC [37], yields kσ2 = 0.769. The battery is assumed
to reach end of life after 10 years with 3,000 cycles at 80%
DOD with 50% average SOC and after 20 years with no
cycling at 50% SOC. These assumptions yield kδ = 3.092e−4
and kσ1 = 5.708e−6, respectively. The resulting SOC loss
function and the corresponding linearized segments are shown
in Fig. 3. The SOC loss curve is assumed to be flat between
10 and 20%, and the SOC degradation is equal at 0 and 100%
SOC to also capture capacity fade at low SOC.

C. Scenarios and stages

The time-series for wind and solar PV power and demand
are based on actual values from the Rye MG through year 2020
and is available online [38]. The wind power has been scaled
down to 60% of the original size. Wind, solar PV and demand
have each been forecasted with a low, medium, and high
scenario with probability 20, 60 and 20% respectively, based
on the 0.2, 0.5, and 0.8 quantiles, yielding a combination of 27
scenarios. These have been ordered based on accumulated net
production and reduced by selecting the median scenario of
the percentiles 0-10, 10-30, 30-70, 70-90, and 90-100 with the
corresponding probabilities 0.1, 0.2, 0.4, 0.2, and 0.1. More
sophisticated scenario generation methods could have been
used but are outside the scope of this paper. The individual
percentiles are published online [39]. The interval between the
four first stages are 6 hours each, the next is 24 hours, while
the final is 72 hours and repeated cyclicly with discount factor
0.7 as described in reference [25]. The final stage is beyond
the meterological forecast, and historical daily mean values
are applied as scenarios using the same quantiles as previous
stages.

D. Cases

The model has been simulated with three different variants
of the system with respect to generator and EES sizes as
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TABLE III
OVERVIEW OF CASES THE PROPOSED MODEL HAS BEEN TESTED ON.

Case Diesel generator [kW] Battery [kWh] Hydrogen [kWh]

1. 25 500 3300
2. 75 500 3300
3. 25 1000 -

TABLE IV
OVERVIEW OF METHODS THE PROPOSED CASES HAVE BEEN ANALYZED

WITH.

Method Forecast DOD SOC

a. Perfect X X
b. Deterministic
c. Stochastic
d. Stochastic X
e. Stochastic X
f. Stochastic X X

shown in Table III. The systems in cases 1 and 3 are energy
constrained since the diesel generator is too small to meet the
peak demand, hence load shedding depends on how the EESs
are scheduled. However, the diesel generator in case 2 is large
enough to always meet the peak demand, hence there is never
a risk of scarcity unless the generator fails.

Each case will be analyzed with perfect forecast, determinis-
tic forecast, and stochastic optimization, both with and without
degradation in the optimization model as shown in Table IV.

IV. RESULTS AND DISCUSSION

The main objective is to always meet the demand in the
most cost effective way by using as much VRES generation
as possible, and only using diesel if necessary to avoid
load shedding. EES must also be utilized to maximize the
VRES utilization and to minimize the diesel consumption
and the load shedding. However, the battery degradation is
a complicating element. Although cycling the battery is less
expensive than generating power from the diesel generator,
even for deep cycles, it is difficult due to the uncertainty
in determining if the power charged now is needed later or
if it can be consumed directly from VRES generation. It is
therefore necessary to balance the cost of cycling the battery
toward the expected diesel generation reduction. Additionally,
there is an increasing cost associated with staying at high
SOC. It can therefore be cost effective to keep the SOC low
in periods with a stable high VRES generation to extend the
battery’s lifetime.

The results in Table V show that accounting for DOD and
SOC degradation increases the load shedding in the cases
1 and 3, and the diesel cost for all cases. However, the
reduction in degradation surpasses the increase in diesel and
load shedding costs and indicates an increase in expected
battery life time of more than four years for all the cases
when comparing methods c and f. A very common way to
reduce battery degradation is to apply fixed operating limits,
such as enforcing a permanent operating range between 10 and
90%. However, in situations where the only alternative is load

0

20

E
ne

rg
y

[M
W

h]

(a) Hydrogen

1a
1b

1c
1d

1e
1f

0 100 200 300 365

Time [days]

0

2

4

E
ne

rg
y

[M
W

h]

(b) Battery

Fig. 4. Four day average SOC for case 1.

shedding, it is optimal to utilize the full battery range since
the cost reduction associated with reducing load shedding
outperforms the cost accrued by degradation.

The energy balance in the cases 1 and 2 show that the hydro-
gen system replaces some of the battery cycling from method c
to f, since it has no degradation costs. However, case 3, which
has no hydrogen in the system, also shows a significant cost
reduction associated with battery degradation when hydrogen
is taken out of the system. SOC degradation without DOD
degradation (method e) causes significant cycling and energy
dumping through simultaneous charging and discharging of the
battery, hence the DOD degradation reduces the occurrence
of simultaneous charging and discharging caused by SOC
degradation as indicated in method f.

Fig. 4a shows that the hydrogen SOC on average is lower
when including the DOD degradation in methods d and f. The
wind turbine peak capacity is 135 kW while the electrolyzer
charge capacity is only 55 kW. In periods with very high wind
power, the battery can act as a buffer for the hydrogen system
that is unable to absorb the wind power peaks. However,
DOD degradation makes this less profitable, resulting in lower
hydrogen filling.

Fig. 4b shows that the battery SOC for methods e and f,
where SOC degradation is included, is stable low in mid-
year when the demand is low. These periods require relatively
low stored energy to secure the supply, especially when the
solar PV is delivering substantial energy due to many hours
of sunlight through the summer. However, SOC degradation
will, in general, lower the battery SOC, and DOD degradation
will lower the hydrogen SOC, which in turn increases the risk
of scarcity. The results in Table V shows a modest increase in
both load shedding and diesel consumption when accounting
for battery degradation.
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TABLE V
OVERVIEW OF OPERATING COSTS, DEGRADATION COSTS, BATTERY EXPECTED LIFETIME, VRES GENERATION AND EES CHARGE/DISCHARGE FOR

CASES IN TABLE III AND METHODS IN TABLE IV.

Operating cost [e] Degradation cost [e] [year] Energy [MWh]

Case Method Total Load shedding Diesel DOD SOC up SOC down Lifetime VRES H2 ch/dch Batt ch/dch

1 a 3719.7 0.00 3076 514 117 12 21.68 185.03 61.52 / 20.19 39.83 / 36.90
1 b 8541.1 4054.93 2840 1041 435 171 17.81 171.41 40.74 / 13.54 49.34 / 45.67
1 c 6011.1 968.94 2860 1328 731 123 16.26 166.73 32.87 / 11.02 52.67 / 48.73
1 d 5579.5 1086.00 2934 627 882 50 18.09 181.56 57.16 / 18.79 40.84 / 37.83
1 e 5804.1 1108.53 2861 1488 310 37 17.23 181.25 53.03 / 17.47 63.36 / 58.58
1 f 5256.8 1414.40 2964 582 268 29 20.62 183.48 60.64 / 19.90 39.71 / 36.79

2 a 3719.7 0.00 3076 514 117 12 21.68 185.03 61.52 / 20.19 39.83 / 36.90
2 b 4508.7 0.00 2917 998 445 149 17.98 171.41 40.86 / 13.58 47.87 / 44.31
2 c 5093.3 0.00 2864 1285 723 220 16.13 166.46 32.50 / 10.90 50.46 / 46.69
2 d 4575.3 0.00 2892 650 848 185 17.69 181.75 56.55 / 18.60 40.43 / 37.45
2 e 4704.9 0.00 2883 1494 313 16 17.27 181.26 53.10 / 17.49 62.37 / 57.63
2 f 3814.1 0.00 3000 556 253 6 20.90 183.46 60.79 / 19.95 38.50 / 35.63

3 a 4631.9 0.00 3459 771 348 53 19.45 141.21 - / - 56.93 / 52.66
3 b 9718.3 3822.67 3071 1228 1258 338 14.72 143.96 - / - 63.49 / 58.71
3 c 7202.8 775.38 3064 1436 1741 186 13.64 143.42 - / - 59.47 / 55.00
3 d 6968.8 1061.56 3091 885 1745 186 14.74 143.05 - / - 59.03 / 54.59
3 e 8467.5 1107.20 3215 3133 945 67 12.32 161.68 - / - 181.47 / 167.43
3 f 6188.1 1236.83 3321 776 789 66 17.86 140.56 - / - 56.43 / 52.20

V. CONCLUSIONS

Battery degradation is strongly connected to the opera-
tional pattern. In this study, the expected battery lifetime was
prolonged by more than four years by properly accounting
for degradation effects caused by DOD and SOC. Moreover,
the total operating costs were reduced by up to 25% com-
pared to the naive stochastic model without representation of
degradation. However, battery degradation minimization also
influences the operational pattern for the remaining resources
in the system. The operational costs for generators and other
EES technologies can, in the worst case scenario, increase even
more than the savings for battery degradation. Degradation
costs and inefficiencies associated with the operational pattern
should therefore be considered for the whole system.

Dedicated battery degradation minimization can be contra-
dictory to maximizing the security of supply, and the risk of
scarcity must be balanced against the potential reduction in
degradation. Realistic uncertainty models are therefore highly
important.

The optimal operation of the future power system will to a
greater extent be influenced by technology prices rather than
fuel price, and energy adequacy rather than power adequacy.
Future research should therefore give more attention to both
the degradation of all the flexible resources in the system as
well as precise uncertainty modeling to capture the future risk
of scarcity accurately.
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