
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Sunniva Engan

Provable Security of Authenticated
Encryption Schemes

Bachelor’s thesis in Mathematical Sciences
Supervisor: Jiaxin Pan
June 2022

Ba
ch

el
or

’s 
th

es
is





Sunniva Engan

Provable Security of Authenticated
Encryption Schemes

Bachelor’s thesis in Mathematical Sciences
Supervisor: Jiaxin Pan
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





Abstract

This bachelor thesis studies the provable security of the randomized counter mode (RCM) and the Galois

counter mode (GCM). This is done by making use of sequences of games to structure our proofs. We will

prove that the randomized counter mode is CPA-secure under the PRF assumption, and we will prove

that the GCM is nonce-based AEAD-secure under the assumption that the underlying block cipher is a

secure PRF and that the keyed hash function GHASH is an XOR-DUF.
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Chapter 1

Introduction

Authenticated encryption (AE) schemes are symmetric key encryption schemes that provide both con-

fidentiality and authenticity for the message that is to be encrypted. The need for AE security emerged

as one saw that safely combining an encryption only scheme with a message authentication code (MAC)

did not always work as intended.[1] One of the paradigms for AE schemes is generic construction, where

two examples of ways to combine confidentiality and integrity are Encrypt-then-MAC, and MAC-then-

Encrypt. However, only Encrypt-then-MAC guarantees AE security when constructed from a combina-

tion of a CPA-secure scheme and a secure MAC. An example of a MAC-then-Encrypt that was shown

to be insecure is SSL 3.0 with the POODLE attack.[2]

Counter mode is a block cipher mode of operation. A block cipher is in itself not an encryption scheme,

but we use it as a building block for other schemes. Amode of operation is a way of making schemes from

a block cipher. Counter mode is a mode that has become a preferable choice for high-speed encryption.[3]

However, it does not provide authenticity for data on its own. One of the popular AE schemes that makes

use of the counter mode is the Galois counter mode (GCM). It uses a nonce-based counter mode for

encryption, and also a keyed hash function to provide authenticity. The counter mode used for encryption

and decryption in the GCM is essentially the same as in the randomized counter mode, however it requires

the use of unique nonces instead of uniformly distributed elements. GCM was designed to fit the need

for an efficient authenticated encryption mode that also was free of patents.[3]

GCM is a mode of operation for block ciphers that supports associated data. That is, in addition to en-

crypting and authenticating the message that is to be sent, it gives the opportunity to include information

that is to be authenticated, but not encrypted. This can for example be packet headers.[3] Furthermore,

it can be used as a stand-alone MAC for the associated data if the message string that is to be encrypted

is empty. Another good property of the GCM is that it can input nonces of arbitrary length, with the re-

quirement that the nonces must be unique for each encryption query. In this thesis, we focus on the case

where the nonce length is 96 bits, and we will look at the GCM for 128-bit block ciphers. GCM has been

standardized by NIST, the U.S. National Institute of Standards and Technology.[4]

The goal of this thesis is to prove that the GCM is AEAD-secure. To do so, we first introduce some

helpful definitions. Then we prove the difference lemma, which is a central lemma in provable security.

After that we introduce and prove the security of the randomized counter mode. The RCM is included

because its security proof is similar to one of the proofs we need for the security of the GCM, and also to

get used to the proof framework used throughout this thesis. We finish with the security proof of GCM,

showing that it is AEAD-secure under the assumption that the underlying block cipher is a secure PRF

and that GHASH is an XOR-DUF.
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Chapter 2

Definitions

In this thesis, we use techniques and code-based games from [5] to write our schemes, security defini-

tions and proofs. We also use techniques from [6] for the sequences of games. This way of writing and

structuring the proofs is chosen because it organizes the definitions and transitions for our game-based

proofs well.

In order to talk about the security of different cryptographic schemes, we need to establish some various

forms of security a scheme can possess. We begin our discussion by establishing what terms such as

“negligible”, “poly-bounded” and “super-poly” mean. For our scheme to be secure, we would like the

probability that an adversary trying to break our scheme succeeds to be negligible. The negligibility of

the success of an adversary is connected to the security parameter of the scheme, however there will not

be a detailed discussion regarding this connection in this thesis.

Definition 2.0.1 (Negligible function). A function f : N→ R is said to be negligible if for any polyno-

mial p, we have that
lim
x→∞

p(x)f(x) = 0

�

Definition 2.0.2 (Poly-bounded). We say that a function f : N≥1 → R is poly-bounded if there exists

two constants c, d,∈ R+ such that for all integers n ≥ 0, |f(n)| ≤ nc + d. �

Definition 2.0.3 (Super-poly). A function f : Z→ R is said to be super-poly if 1
f is negligible. �

Remark 2.0.4. We will use the following facts about negligible, poly-bounded and super-poly values. If

ε and ε′ are negligible values and Q and Q′ are poly-bounded values, then the following holds:

• ε ·Q is a negligible value

• ε+ ε′ is a negligible value
• Q+Q′ and Q ·Q′ are poly-bounded values

Wewill now give some other basic definitions that will be used to continue our discussion into the security

proofs of different cryptographic schemes.

Definition 2.0.5 (Security parameter). The security parameter is a parameter for a cryptographic scheme

that decides the level of security. �

Definition 2.0.6 (Polynomial time). An algorithm is said to run in polynomial time if for each input λ,
the algorithm is O(λk) for some fixed k. �

3
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Definition 2.0.7 (PPT algorithm). An algorithm is a probabilistic polynomial time algorithm (PPT al-

gorithm) if it runs in polynomial time and uses randomness. �

Definition 2.0.8 (Flag). A flag is a boolean variable in a game that changes its values at most once from

its initial value as false. Once a flag becomes true, it never turns false again. �

Definition 2.0.9 (Identical-until-bad games). Two games G and H are called identical-until-bad games

if they are syntactically equivalent except for what follows the setting of a flag to true. �

Definition 2.0.10 (Correctness property). The correctness property for a cryptographic scheme π = (Gen,
Enc, Dec) states that for all keys k ∈ K and for all messagesm ∈M, the following computation

m′ ← Dec(k,Enc(k,m))

yields

Pr[m′ = m] = 1.

The correctness property ensures that a given scheme correctly relates the decryption of the ciphertexts

to their corresponding encrypted messages. �

The following security definitions are the ones we will make use of for the rest of this thesis.

Definition 2.0.11 (CPA-security, bit-guessing version). Let π = (Enc,Dec) be a cipher defined over
(K,M, C), where K is the key space,M is the message space and C is the ciphertext space. Let A be

a PPT adversary, and let Q be the number of encryption queries made by adversary A. We define the

following game:

Game IND-CPA:

1 : b←$ {0, 1}
2 : k←$K
3 : b′←$AEnc(·,·)

4 : return b = b′

Oracle Enc(m0,m1): // Q queries

1 : c←$Enc(k,mb)

2 : return c

We define A’s advantage with respect to π as

Advind-cpaπ,A (n) = |Pr[IND-CPAA ⇒ 1]− 1

2
|.

The cipherπ is said to be semantically secure against chosen plaintext attacks (CPA-secure), ifAdvind-cpaπ,A (n)
is negligible for all PPT adversaries A in the security parameter n. �

Remark 2.0.12. When using the arrow “←$ ”, it carries two different meanings. When used to the left

of an algorithm such as the adversary, the arrow indicates that the algorithm that outputs some value is

probabilistic. However, if it is used to the left of some set it indicates that one samples an element from

that set uniformly.

Definition 2.0.13 (CI-security). Let π = (Enc,Dec) be a cipher defined over (K,M, C), where K is the

key space,M is the message space and C is the ciphertext space. LetA be a PPT adversary, and letQ be

the number of encryption queries made by adversary A. We define the following game:

Game CI:

1 : k←$K
2 : c←$AEnc(·)

3 : return (c /∈ LC) ∧ (Dec(k, c) 6= ⊥)

Oracle Enc(m): // Q queries

1 : c←$Enc(k,m)

2 : LC = LC ∪ {c}
3 : return c
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We define A’s advantage with respect to π as

Advciπ,A(n) = Pr[CIA ⇒ 1].

The cipher π is said to provide ciphertext integrity (or to be CI-secure), if Advciπ,A(n) is negligible for all
PPT adversaries A in the security parameter n. �

Definition 2.0.14 (AE-secure). A scheme π is said to provide authenticated encryption or to beAE-secure
if the cipher is both CPA-secure and CI-secure. �

Definition 2.0.15 (Pseudo-random function). A pseudo-random function (PRF)

F : K ×X → Y

is a deterministic algorithm defined over (K,X ,Y)whereK is the key space,X is the input space, and Y
is the output space. All these sets are finite. Let Funs[X ,Y] denote the set of all functions f : X → Y . �

Definition 2.0.16 (Secure PRF, left-or-right style). Let F be a PRF defined over (K,X ,Y), where K is

the key space, X is the input space and Y is the output space. LetA be a PPT adversary, and letQ be the

number of queries the adversary A makes. We define the following game:

Game LR-PRF0/LR-PRF1:

1 : k←$K
2 : f ← F (k, ·)
3 : f ← Funs[X ,Y]
4 : b′←$AEval(·)

5 : return b′

Oracle Eval(x): // Q queries

1 : y ← f(x)

2 : return y

We define A’s advantage with respect to F as

Advlr-prfF,A (n) = |Pr[LR-PRFA0 ⇒ 1]− Pr[LR-PRFA1 ⇒ 1]|.

We say that a F is PRF secure if Advlr-prfF,A (n) is negligible for all PPT adversaries A in the security

parameter n. �

Definition 2.0.17 (Secure block cipher). A block cipher B = (E,D) is a deterministic cipher defined
over (K,X ) where K denotes the key space and X is called the data block space. An element of X is

called a data block. For each key k ∈ K, we can define a function fk = Enc(k, ·) which is a bijection by
the correctness property of the deterministic encryption algorithm and that X is a finite set. Let Perm[X ]
Denote the set of all permutations on the data block space.

Let A be a PPT adversary, and let Q be the number of queries made by adversary A. We define the

following game:

Game LR-BC0/LR-BC1:

1 : k←$K
2 : f ← E(k, ·)
3 : f ← Perm[X ]
4 : b′←$AEval(·)

5 : return b′

Oracle Eval(x): // Q queries

1 : y ← f(x)

2 : return y
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We define A’s advantage with respect to E as

Advlr-bcE,A(n) = |Pr[LR-BCA
0 ⇒ 1]− Pr[LR-BCA

1 ⇒ 1]|.

We say that a block cipher B is BC secure if Advlr-bcE,A(n) is negligible for all PPT adversaries A in the

security parameter n. �

We will now state the security definitions we need for AEAD security. Rogaway formalized the AEAD

problem in 2002 [7], where the goal was to have the opportunity of providing both privacy and authenticity

for some information, and only authenticity for other data that is to be sent in clear text.

Definition 2.0.18 (Nonce-based CPA-security with associated data). Let π = (Enc,Dec) be a nonce-
based AD cipher defined over (K,M, C,N ,D), where K is the key space,M is the message space, C is
the ciphertext space,N is the nonce space and D is the associated data space. LetA be a PPT adversary,

and let Q be the number of encryption queries made by adversary A. We define the following game:

Game nCPAad:

1 : b←$ {0, 1}
2 : k←$K
3 : b′←$AEnc(·,·,·,·)

4 : return b = b′

Oracle Enc(m0,m1, n, d) : // Q queries

1 : if n ∈ Ln :

2 : return ⊥
3 : Ln = Ln ∪ {n}
4 : c← Enc(k,mb, n, d)

5 : return c

We define A’s advantage with respect to π as

Advncpaadπ,A (n) = |Pr[nCPAad
A ⇒ 1]− 1

2
|.

The nonce-based AD cipher π is said to be nonce-based semantically secure against chosen plaintext

attack (or to be nCPAad-secure), if Advncpaadπ,A (n) is negligible for all PPT adversaries A in the security

parameter n. �

Definition 2.0.19 (Nonce-based CI-security with associated data). Let π = (Enc,Dec) be a nonce-based
AD-cipher defined over (K,M, C,N ,D), where K is the key space,M is the message space, C is the
ciphertext space,N is the nonce space andD is the associated data space. LetA be a PPT adversary, and

let Q be the number of encryption queries made by adversary A. We define the following game:

Game nCIad:

1 : k←$K
2 : (c∗, n∗, d∗)←$AEnc(·,·,·)

3 : return ((c∗, n∗, d∗) /∈ LCND) ∧ (Dec(k, c) 6= ⊥)

Oracle Enc(m,n, d): // Q queries

1 : if n ∈ LN :

2 : return ⊥
3 : LN = LN ∪ {n}
4 : c← Enc(k,m, n, d)

5 : LCND = LCND ∪ (c, n, d)

6 : return c

We define A’s advantage with respect to π as

Advnciadπ,A (n) = Pr[nCIad
A ⇒ 1].

The nonce-based AD-cipher π is said to provide nonce-based ciphertext integrity with associated data

(or to be nCIad-secure), if Advnciadπ,A (n) is negligible for all PPT adversaries A in the security parameter

n. �
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Remark 2.0.20. The nonce-based encryption algorithm is deterministic. Instead of having a probabilistic

algorithm and a larger ciphertext space, we require that each encryption query provides a unique nonce.

Definition 2.0.21 (AEAD-secure). A scheme π is said to provide authenticated encryption with associ-

ated data or to be nonce-based AEAD-secure if the cipher is both nCPAad secure and nCIad secure. �

Definition 2.0.22 (Computational DUF). LetH be a keyed hash function defined over (K,M, T )Where

K is the key space,M is the message space and T = ZN is the digest space, and letA be a PPT adversary.

We define the following game:

Game DUF:

1 : k←$K
2 : (m0,m1, δ)←$A
3 : if H(k,m1)−H(k,m0) = δ :

4 : return = 1

5 : else :

6 : return = 0

We define A’s advantage with respect to H as

AdvdufH,A(n) = Pr[DUFA ⇒ 1].

We say thatH is a computational difference unpredictability function (or to be a computational DUF) if

AdvdufH,A(n) is negligible for all PPT adversaries A in the security parameter n. �

Remark 2.0.23. One can also have the digest space T = {0, 1}n, where we instead use XOR as the

difference operator. In that case, δ denotes the bit string one gets from using the XOR operation on the

hash values of the input messages. The adversary then has a valid forgery if it can output two messages

and the valid delta corresponding to them.

Definition 2.0.24 (XOR-DUF). LetH be a keyed hash function defined over (K,M, T )WhereK is the

key space,M is the message space and T = {0, 1}n is the digest space, and let A be a PPT adversary.

We define the following game:

Game XOR-DUF:

1 : k←$K
2 : (m0,m1, δ)←$A
3 : if H(k,m1)⊕H(k,m0) = δ :

4 : return = 1

5 : else :

6 : return = 0

We define A’s advantage with respect to H as

Advxor-dufH,A (n) = Pr[XOR-DUFA ⇒ 1].

We say that H is an XOR-DUF if Advxor-dufH,A (n) is negligible for all PPT adversaries A in the security

parameter n. �
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We end this part of the thesis by stating and proving the difference lemma, which gives us an important

tool for bounding the difference of two identical-until-bad games.

Lemma 2.0.25 (Difference lemma). Let G and H be identical-until-bad games, and let A be an ad-

versary. Let BoolG be the event that the flag Bool turns true during the execution of A in game G, and

let BoolH be the event that the flag turns true during the execution of A in game H. Then the following

inequality holds:

Adv(GA,HA) = |Pr[GA ⇒ 1]− Pr[HA ⇒ 1]| ≤ Pr[BoolG] = Pr[BoolH].

Proof. Since G and H are identical-until-bad games, we know that they are syntactically equivalent until

the flag Bool. Also, if the flag never changes value, the games are identical. Therefore

Pr[BoolG] = Pr[BoolH].

Also, since the games are identical if the flag does not change its truth value, we have that

Pr[GA ⇒ 1|¬BoolG] = Pr[HA ⇒ 1|¬BoolH].

Now calculations give us that

Adv(GA,HA) = |Pr[GA ⇒ 1]− Pr[HA ⇒ 1]|
= |Pr[GA ⇒ 1|¬BoolG] + Pr[GA ⇒ 1|BoolG]− (Pr[HA ⇒ 1|¬BoolH] + Pr[HA ⇒ 1|BoolH])|
= |Pr[GA ⇒ 1|BoolG]− Pr[HA ⇒ 1|BoolH]|
≤ Pr[BoolG] = Pr[BoolH].

Thus the inequality holds.



Chapter 3

Randomized Counter Mode (RCM)

In this section we look at the randomized counter mode. We will show that it is CPA-secure under the

assumption that the function we build the scheme from is a secure PRF. The proof follows the one in

“A Graduate course in Applied Cryptography” in section 5.4.2.[2] We formalize the proof from the book

using code-based sequences of games.

Construction 3.0.1 (Randomized counter mode). Let F be a secure PRF defined over (K,X ,Y), where
K is the key space, X = {0, . . . , N − 1} for N ∈ N is the input space and Y = {0, 1}h for h ∈ N is

the output space. For some poly-bounded l ≥ 1, we define the scheme RCM = (Gen,Enc,Dec) over
(K,M, C) = (K,Y≤l,X × Y≤l) as follows:

Gen(1n):

1 : k←$K
2 : return k

Enc(k,m):

1 : v = |m|
2 : x←$X
3 : for j = 0 . . . v − 1 do :

4 : c[j]← F (k, x+ j mod N)⊕m[j]

5 : ct = (x, c)

6 : return ct

Dec(k, ct):
1 : parse ct = (x, c)

2 : v = |c|
3 : for j = 0 . . . v − 1 do :

4 : m[j]← F (k, x+ j mod N)⊕ c[j]

5 : returnm

For notation, the function | · | outputs a non-negative integer which is the number of blocks in the input.
Correctness:We now show the correctness of the RCM scheme. Letm′ ∈M and k ∈ K. We compute

the encryption and decryption using the chosen message and key as follows:

Enc(k,m′):

v = |m′|
x←$X
for j = 0 . . . v − 1 do :

c′[j]← F (k, x+ j mod N)⊕m′[j]

ct′ := (x, c′)

return ct′

Dec(k, ct′):
parse ct′ = (x, c′)

v = |c′|
for j = 0 . . . v − 1 do :

m[j]← F (k, x+ j mod N)⊕ c′[j]

m[j]← F (k, x+ j mod N)⊕ (F (k, x+ j mod N)⊕m′[j])

m[j]← 0h ⊕m′[j]

m[j]← m′[j]

returnm

9
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Sincem[j] = m′[j] for each j = 0, . . . , v − 1, we have thatm = m′. By this, correctness holds.

Theorem 3.0.2. If F is a secure PRF and N is super-poly, then for any poly-bounded l ≥ 1 and poly-

boundedQ denoting the number of encryption queries, the cipher RCM described above is a CPA-secure

cipher.

In particular, for every PPT adversaryA playing the Q-query CPA security game against the RCM, there

exists a PPT adversary B that plays the PRF security game against F such that

Advind-cpaRCM,A(n) ≤
Q2l

N
+ Advlr-prfF,B (n).

Proof. We give four games. Game 0 is exactly the CPA-security game between the adversaryA and the

scheme RCM. Game 1 is the same as Game 0 except that we use the assumption that the function F is a

secure PRF, so we switch F out with a truly random function. In Game 2 we switch F out by drawing

uniformly distributed values directly from the output space. Game 2 and Game 3 are identical-until-bad

games, where Game 3 keeps track of earlier values for its input, while Game 2 do not. The description of

these games are as follows:

Game G0/G1/G2/G3:

1 : b←$ {0, 1}
2 : k←$K
3 : f ← F (k, ·)
4 : f ←$Funs[X ,Y]
5 : b′←$AEnc(·,·)

6 : return b = b′

Oracle Enc(m0,m1) : //Q queries

1 : v = |m0| = |m1|
2 : x←$X
3 : for j = 0 . . . l − 1 do :

4 : xj ← x+ j mod N

5 : yj ← f(xj) yj ←$Y
6 : if xj ∈ Lx : bad← true;
7 : yj ← Σ[xj ]

8 : Lx ← Lx ∪ {xj}
9 : Σ[xj ] := yj

10 : for j = 0 . . . v − 1 do :

11 : c[j]← yj ⊕mb[j]

12 : return (x, c)

We follow the convention that for the sequence of games, each of the coloured statements are executed in

their respective game and so on. That is, the red statement is executed in Game 1 and so on, and similarly

for the other colours/games. The non-coloured pseudo-code is executed in all games.

We now analyze the above games in more detail. We assume that the underlying probability space is the

same in all four games. This is so that the flags in Game 2 andGame 3 turn identically. By our construction

of Game 0, we have that

Advind-cpaRCM,A(n) = |Pr[G
A
0 ⇒ 1]− 1

2
|.

We can make a reduction B against the PRF security of F that simulates Game 0 and Game 1 for A. By
constructing B, we can connect Game 0 and Game 1 to the PRF security. It inputs the function f and has
to distinguish if f is a truly random function or if it is the real function F . Let LR-PRF0 denote the game
where where f is the real function F with the correct key as its first input, and let LR-PRF1 denote the

game where f is a truly random function. Adversary B is defined as follows:
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Adversary B(f):
1 : b←$ {0, 1}
2 : b′←$AEnc(·,·)

3 : return b = b′

Oracle Enc(m0,m1): //Q queries

1 : v = |m0| = |m1|
2 : x←$X
3 : for j = 0 . . . l − 1 do :

4 : xj ← x+ j mod N

5 : yj ← f(xj)

6 : for j = 0 . . . v − 1 do :

7 : c[j]← yj ⊕mb[j]

8 : return (x, c)

IfB is in Game 0 of the PRF games, then f = F (k, ·), and therefore Pr[LR-PRFB0 ⇒ 1] = Pr[GA
0 ⇒ 1]. If

B is in Game 1 of the PRF games, then f ←$Funs[X ,Y], and we have Pr[LR-PRFB1 ⇒ 1] = Pr[GA
1 ⇒ 1].

Therefore

Advlr-prfF,B (n) = |Pr[LR-PRFB0 ⇒ 1]− Pr[LR-PRFB1 ⇒ 1]|

= |Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]|.

Now we move on to Game 2 and Game 3. We begin discussing Game 3 since it is connected to Game

1. This game can be viewed as having a direct implementation of the function f from Game 1. It draws

uniformly distributed elements directly from the output space Y , and assigns them to xj-values in the
same manner as a random function would do. That is, it keeps track of previously assigned values. We

have that

Pr[GA
1 ⇒ 1] = Pr[GA

3 ⇒ 1].

In Game 2, the adversary’s output bit b′ is independent of b since the yj-values are independently distrib-
uted over the output space. Therefore Pr[GA

2 ⇒ 1] = 1
2 .

Since Game 2 and Game 3 are identical-until-bad games, we have by the difference lemma that

|Pr[GA
2 ⇒ 1]− Pr[GA

3 ⇒ 1]| ≤ Pr[bad].

We want to analyze Pr[bad] to find an upper bound for it. The flag turns true if two xj-values from two

different encryption queries are the same. So we want to find the probability of two xj-values having a
collision.

For two values a←$X and b←$X used as the initial counting value in two different encryption queries,

let S = {a mod N, . . . a+ l − 1 mod N} and T = {b mod N, . . . b+ l − 1 mod N} for notation.
We have a collision if

S ∩ T 6= ∅.

T intersects S if b ∈ {a+ j | −l+1 ≤ j ≤ l+1}. Assuming thatN ≥ 2l (which is reasonable, sinceN
is super-poly and l is poly-bounded), this happens with a probability of 2l−1

N . This is because the number

of elements in {a+ j | −l + 1 ≤ j ≤ l + 1} is 2l − 1, and the number of elements in X is N .
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By the union bound, for a countable set of events A1, A2, . . . we have that

Pr[
∞⋃
i=1

Ai] ≤
∞∑
i=1

Pr[Ai].

We use this for our bound on Pr[bad]. As we saw above, the probability of two encryption queries to have

a collision of counter values is 2l−1
N , and there areQ encryption queries. Therefore there are

(
Q
2

)
ways to

have a collision with the given probability. By this, we have that

Pr[bad] ≤ Q(Q− 1)

2

2l − 1

N
≤ 2Q2l

2N
=

Q2l

N
.

This gives us that

Pr[bad] ≤ Q2l

N
.

SinceN is super-poly, 1
N is by definition a negligible value. Therefore by properties of negligible values,

l · 1
N = l

N is also a negligible value since l is poly-bounded. In addition, Q2 is poly-bounded since Q is

poly-bounded. Therefore the bound Q2l
N is still negligible and so is Pr[bad].

Connecting our games we have by the triangle inequality that

Advind-cpaRCM,A(n) = |Pr[G
A
0 ⇒ 1]| − 1

2
|

≤ |Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]|+ |Pr[GA
1 ⇒ 1]− 1

2
|

= |Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]|+ |Pr[GA
3 ⇒ 1]− Pr[GA

2 ⇒ 1]|

≤ Advlr-prfF,B (n) + Pr[bad]

≤ Q2l

N
+ Advlr-prfF,B (n).

We have shown that Q2l
N is a negligible value, and Advlr-prfF,B (n) is negligible by our assumption that F

is a secure PRF. Thus by the properties of negligible values, Advind-cpaRCM,A(n) is negligible as well. This
concludes our proof of the CPA-security of the randomized counter mode.

Remark 3.0.3. In the theorem we assumed N to be super-poly, because we wanted 1
N to be negligible.

One could also assumeN to be exponential and we would have the same result, however super-poly is a

weaker assumption, and an exponentially large N makes the algorithm less efficient.



Chapter 4

Galois Counter Mode (GCM)

In this section we will look at the Galois counter mode, which was designed by David A. McGrew and

John Viega. It shares similarities with the randomized counter mode, and its nCPAad security proof is

essentially the same as the CPA proof of RCM. Instead of using a uniformly chosen value for its counter,

GCM use a unique nonce to make its counting values for each encryption query. In this thesis will look

at GCM constructed from the 128-bit AES. We assume that the length of the nonces are fixed to 96 bits

for simplicity, and we also assume that each message to be encrypted has a length which is a multiple of

128, so we are always encrypting complete blocks. Normally the only assumption on the length of the

plaintext, associated data and the nonce is that is has to be a multiple of 8.[4] Other than the specifications

given above, we follow the length requirements of input as the ones stated in [3].

13
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Construction 4.0.1 (Galois counter mode). Let B = (E,D) be a block cipher defined over (K,X )where
K = {0, 1}128 is the key space and X = {0, 1}128 is the data block space. Let GHASH be a keyed hash

function defined over (K,M, T ) where K = {0, 1}128 is the key space,M = X≤l for some positive

integer l is the message space, and T = {0, 1}128 is the digest space. For 96-bit nonces, we define
GCM = (Gen,Enc,Dec) over (K,M, C,D,N ) where K = {0, 1}128 is the key space,M = X≤232−2

is the message space, C = X≤232−2 is the ciphertext space, D = {0, 1}264 is the associated data space
and N = {0, 1}96 is the nonce space as follows:

Gen(1n):

1 : k←$K
2 : return k

Enc(k,m, n, d):

1 : km = E(k, 0128)

2 : x← (n||0311) ∈ {0, 1}128

3 : x′ ← x+ 1

4 : v := |m|
5 : for j = 0 . . . v − 1 do :

6 : c[j]← E(k, x′)⊕m[j]

7 : x′ ← x′ + 1

8 : dpad := −len(d) mod 128

9 : cpad := −len(c) mod 128

10 : d′ ← d||0dpad

11 : c′ ← c||0cpad

12 : input← (d′||c′||[len(d)]64||[len(c)]64)
13 : h← GHASH(km, input)

14 : t← h⊕ E(k, x)

15 : ct := (c, t)

16 : return ct

Dec(k, ct, n, d):
1 : parse ct = (c, t)

2 : km = E(k, 0128)

3 : dpad := −len(d) mod 128

4 : cpad := −len(c) mod 128

5 : d′ ← d||0dpad

6 : c′ ← c||0cpad

7 : input← (d′||c′||[len(d)]64||[len(c)]64)
8 : h← GHASH(km, input)

9 : x← (n||0311) ∈ {0, 1}128

10 : x′ ← x+ 1

11 : t′ ← h⊕ E(k, x)

12 : if t′ 6= t :

13 : return := ⊥
14 : else :

15 : v := |c|
16 : for j = 0 . . . v − 1 do :

17 : m[j]← E(k, x′)⊕ c[j]

18 : x′ ← x′ + 1

19 : returnm

To give a description of the different notation used in the scheme: the expression A||B denotes the con-

catenation of two bit strings. 0l for some l denotes the zero string of length l. | · | of some value outputs
a non-negative integer which is the number of blocks in the argument. len(·) of some value outputs a
non-negative integer which is the total number of bits in the argument. The function [len(·)]64 outputs a
64-bit string, which is a bit-representation of the number of bits in the argument. The values dpad and

cpad are used for padding the input for GHASH. Both dpad and cpad denote the number of zeros that

need to be added to d and c respectively, such that the number of bits in the string becomes a multiple of
128.
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Correctness: We now show the correctness of the GCM scheme. Let m∗ ∈ M, n ∈ N , d ∈ D and

k ∈ K. We compute the encryption and decryption using the chosen key, message, nonce and associated

data as follows:

Enc(k,m∗, n, d):

km = E(k, 0128)

x← (n||0311) ∈ {0, 1}128

x′ ← x+ 1

v := |m∗|
for j = 0 . . . v − 1 do :

c[j]← E(k, x′)⊕m∗[j]

x′ ← x′ + 1

dpad := −len(d) mod 128

cpad := −len(c) mod 128

d′ ← d||0dpad

c′ ← c||0cpad

h← GHASH(km, d′||c′||[len(d)]64||[len(c)]64)
t← h⊕ E(k, x)

ct := (c, t)

return ct

Dec(k, ct, n, d):
parse ct = (c, t)

km = E(k, 0128)

dpad := −len(d) mod 128

cpad := −len(c) mod 128

d′ ← d||0dpad

c′ ← c||0cpad

h← GHASH(km, d′||c′||[len(d)]64||[len(c)]64)
x← (n||0311) ∈ {0, 1}128

x′ ← x+ 1

t′ ← h⊕ E(k, x)

if t′ 6= t :

return := ⊥
else :

v := |c|
for j = 0 . . . v − 1 do :

m[j]← E(k, x′)⊕ c[j]

m[j]← E(k, x′)⊕ (E(k, x′)⊕m∗[j])

m[j]← 0128 ⊕m∗[j]

m[j]← m∗[j]

x′ ← x′ + 1

returnm

Since we input the same key, nonce and associated data into both the encryption and decryption algorithm,

all the values km, x, x
′, dpad, cpad, d′, c′, [len(d)]64, [len(c)]64 and E(k, x) in both algorithms will all be

equal. This implies that h also will be the same. We then have that t = t′, which means the decryption
algorithm will not abort. From this point on, the computation ofm is essentially the same as the one in the

randomized counter mode. Since the term E(k, x′) cancels out,m[j] = m∗[j] for each j = 0, . . . , v − 1
and we have thatm = m∗. By this, correctness holds.

Theorem 4.0.2 (Nonce-based AEAD security of GCM). The GCM is nonce-based AEAD-secure under

the assumption that the underlying block cipher is a secure PRF, and that GHASH is an XOR-DUF.

In particular, for every PPT adversary A playing the Q-query nCPAad game against GCM, there exists

a PPT adversary B that plays the PRF security game against F such that

AdvncpaadGCM,A(n) = Advlr-prfE,B (n).

For every PPT adversaryA playing the Q-query nCIad game against GCM, there exists a PPT adversary

B that plays the PRF security game against F and a PPT adversary C that plays the XOR-DUF security

game against GHASH such that

AdvnciadGCM,A(n) ≤ Advlr-prfE,B (n) + Advxor-dufGHASH,C(n).
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Proof. To show that GCM is nonce-based AEAD-secure, we must show that it is both nCPAad secure

and nCIad secure. We structure this by proving each of these results as separate lemmas. Theorem 4.0.2

then follows.

Lemma 4.0.3. For every PPT adversaryA playing the Q-query nCPAad game against GCM, there exists

a PPT adversary B that plays the PRF security game against F such that

AdvncpaadGCM,A(n) = Advlr-prfE,B (n).

Proof. An important aspect of the proof is that adversary A do not have direct access to the underlying

block cipher. That enables us to switch it out with a truly random function and then make use of the

PRF assumption. Because of this, the main idea of this proof is the same as in the randomized counter

mode. By switching out the underlying block cipher with a truly random function, we are able to make a

reduction that bounds the nCPAad advantage. However, since the nonce is fixed to 96 bits and the number

of message blocks is less than or equal to 232−2, we will see that we are guaranteed unique input for each
use of the underlying block cipher. We will look at this in more detail. We define the following games:

Game G0/G1/G2/G3:

1 : k←$K
2 : b←$ {0, 1}
3 : krand←$X
4 : f ← E(k, ·)
5 : f ←$Funs[X ,X ]
6 : b′←$AEnc(·,·,·,·)

7 : return b = b′

Oracle Enc(m0,m1, n, d) : //Q queries

1 : if n ∈ Ln :

2 : return ⊥
3 : Ln ← Ln ∪ {n}
4 : km = f(0128) km ← krand

5 : x← (n||0311)
6 : x′ ← x+ 1

7 : v := |m|
8 : for j = 0 . . . 232 − 3 do :

9 : yj ← f(x′) yj ←$X
10 : xj = x′

11 : x′ ← x′ + 1

12 : if x′ ∈ Lx : bad← True;
13 : yj ← Σ[xj ]

14 : Lx ← Lx ∪ {xj}
15 : Σ[xj ] := yj

16 : for j = 0 . . . v − 1 do :

17 : c[j]← yj ⊕m[j]

18 : dpad := −len(d) mod 128

19 : cpad := −len(c) mod 128

20 : d′ ← d||0dpad

21 : c′ ← c||0cpad

22 : h← GHASH(km, d′||c′||[len(d)]64||[len(c)]64)
23 : y←$X
24 : if x ∈ Lx : bad← True;
25 : y ← Σ[x]

26 : Lx ← Lx ∪ {x}
27 : Σ[x] := y

28 : t← h⊕ f(x) t← h⊕ y

29 : ct := (c, t)

30 : return ct
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Each of the coloured statements are executed in their respective games and so on. That is, the red statement

is executed in game 1 and so on, and similarly for the other colours. We assume that the underlying

probability space is the same in all four games.

Game G0 is the real nCPAadgame, so we have that

AdvncpaadGCM,A(n) = |Pr[G
A
0 ⇒ 1]− 1

2
|.

Game G1 replaces the underlying block cipher E(k, ·) with a truly random function. We will use this to

construct an adversary B against the PRF security of the underlying block cipher E, simulating G0 and

G1 for A. That is, we will construct adversary B such that

Advlr-prfE,B (n) = |Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]|.

B inputs the function f and has to distinguish if f is the real function, or if it is a random function

f ←$Funs[X ,X ]. We construct the reduction as follows:

Adversary B(f):
1 : b←$ {0, 1}
2 : b′←$AEnc(·,·,·,·)

3 : return b = b′

Oracle Enc(m0,m1, n, d) : //Q queries

1 : if n ∈ Ln :

2 : return ⊥
3 : Ln ← Ln ∪ {n}
4 : km = f(0128)

5 : x← (n||0311)
6 : x′ ← x+ 1

7 : v := |m|
8 : for j = 0 . . . v − 1 do :

9 : c[j]← f(x′)⊕m[j]

10 : x′ ← x′ + 1

11 : dpad := −len(d) mod 128

12 : cpad := −len(c) mod 128

13 : d′ ← d||0dpad

14 : c′ ← c||0cpad

15 : h← GHASH(km, d′||c′||[len(d)]64||[len(c)]64)
16 : t← h⊕ f(x)

17 : ct := (c, t)

18 : return ct

We see that if b = 0, B perfectly simulates G0, and if b = 1, B perfectly simulates G1. Therefore, we

have that

Advlr-prfE,B (n) = |Pr[LR-PRFB0 ⇒ 1]− Pr[LR-PRFB1 ⇒ 1]|

= |Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]|.

We now look at G2 and G3. We begin with G3, since it is connected to G1. G3 switches to a direct

implementation of a truly random function f . Namely, it draws uniformly distributed elements directly
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from X , and assigns them to xj-values by use of the array Σ, keeping track of them. It also generates km
by drawing krand uniformly from X , and assigning its value to km. Therefore we have

Pr[GA
1 ⇒ 1] = Pr[GA

3 ⇒ 1].

In G2, we do not keep track of previous x-values. If the game is in some encryption query asked to use
f on the same x-value twice, the game will with high probability give two different values assigned to
x. G2 also raises a secret flag bad, but the event bad is independent of G2, since it does not influence

anything in this game. This is essentially the same situation as in Game 2 and Game 3 in the security

proof of the RCM. Since all the yj-values are chosen independently and are uniformly distributed over
X , we are basically using independent one-time pads for encryption of each message block. Therefore
the adversaryA cannot do any better than guessing randomly which of the messagesm0 andm1 that has

been encrypted. Therefore we have that

Pr[GA
2 ⇒ 1] =

1

2
.

G2 and G3 are identical-until-bad games, so we can use the difference lemma to bound their difference

by

|Pr[GA
2 ⇒ 1]− Pr[GA

3 ⇒ 1]| ≤ Pr[bad].

We want to calculate Pr[bad], which is the probability that at least two of the counting values from two

different encryption queries are the same. The counter consists of some unique nonce and 32 subsequent

bits used for the countingmechanism. Therefore, for two counter values to be the same, we need to flip the

last bit of the nonce. The counter value used for encryption starts at n||03010, so if this were to happen,
we would have to increment the counter 232 − 1 times. However, since we have defined the message
space to beM = {0, 1}≤232−2, we are guaranteed that this will never happen. The maximal number of

increments on the counter is the same as the number of message blocks. Therefore, we have that

Pr[bad] = 0 =⇒ Pr[GA
3 ⇒ 1] = Pr[GA

2 ⇒ 1] =
1

2
.

From an earlier argument, we know that Pr[GA
3 ⇒ 1] = Pr[GA

1 ⇒ 1], and therefore Pr[GA
1 ⇒ 1] = 1

2 .

By connecting our games, it then follows that

AdvncpaadGCM,A(n) = |Pr[G
A
0 ⇒ 1]− 1

2
|

= |Pr[GA
0 ⇒ 1]− Pr[GA

2 ⇒ 1]|
= |Pr[GA

0 ⇒ 1]− Pr[GA
3 ⇒ 1]|

= |Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]|

= Advlr-prfE,B (n).

Since we assumed that the underlying block cipher E is a secure PRF, this shows that AdvncpaadGCM,A(n) is
negligible, meaning GCM is nCPAad-secure. This concludes the first part of our proof.

Lemma 4.0.4. For every PPT adversary A playing the Q-query nCIad game against GCM, there exists

a PPT adversary B that plays the PRF security game against F and a PPT adversary C that plays the
XOR-DUF security game against GHASH such that

AdvnciadGCM,A(n) ≤ Advlr-prfE,B (n) + Advxor-dufGHASH,C(n).
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Proof. In this proof as well, adversaryA do not have direct access to the underlying block cipher. There-

fore we can switch out the underlying block cipher with a truly random function. We use this to construct

an adversary B against the PRF assumption. Then we proceed by making a direct implementation of a

truly random function. In the last game, we pick the tag itself uniformly from {0, 1}128. That means the
corresponding y-value used for the tag is instead implicitly defined, and also we do not need GHASH
to compute the tag. We will use this to construct an adversary C against the XOR-DUF assumption. We

define the following games:

Game G0/G1/G2/G3:

1 : k←$K
2 : krand←$X
3 : f ← E(k, ·)
4 : f ←$Funs[X ,X ]
5 : (ct∗, n∗, d∗)←$AEnc(·,·,·)

6 : if ((ct∗, n∗, d∗) /∈ LCND) :
7 : parse ct∗ = (c∗, t∗)

8 : k′m := f(0128) k′m ← krand

9 : dpad′ := −len(d∗) mod 128

10 : cpad′ := −len(c∗) mod 128

11 : d∗′ ← d∗||0dpad
′

12 : c∗′ ← c∗||0cpad
′

13 : h′ ← GHASH(k′m, d∗′||c∗′||[len(d∗)]64||[len(c∗)]64)
14 : x← (n∗||0311)
15 : t′ = h′ ⊕ f(x) t′ ← h′ ⊕ Σ[x] t′ ← Σt[x]

16 : if t′ = t∗ :

17 : return 1

18 : else :

19 : return 0

20 : return 0

Oracle Enc(m,n, d) : //Q queries

1 : if n ∈ Ln :

2 : return ⊥
3 : Ln ← Ln ∪ {n}
4 : km = f(0128) km ← krand

5 : x← (n||0311)
6 : x′ ← x+ 1

7 : v := |m|
8 : for j = 0 . . . 232 − 3 do :

9 : yj ← f(x′) yj ←$X
10 : xj = x′

11 : if x′ ∈ Lx :

12 : yj ← Σ[xj ]

13 : Lx ← Lx ∪ {xj}
14 : Σ[xj ] := yj

15 : x′ ← x′ + 1

16 : for j = 0 . . . v − 1 do :

17 : c[j]← yj ⊕m[j]

18 : dpad := −len(d) mod 128

19 : cpad := −len(c) mod 128

20 : d′ ← d||0dpad

21 : c′ ← c||0cpad

22 : h← GHASH(km, d′||c′||[len(d)]64||[len(c)]64)
23 : y←$X
24 : if x ∈ Lx :

25 : y ← Σ[x]

26 : Σ[x] := y

27 : t← h⊕ f(x) t← h⊕ y

28 : t←$ {0, 1}128

29 : if x ∈ Lx :

30 : t← Σt[x]

31 : Σt[x] := t

32 : Lx ← Lx ∪ {x}
33 : ct := (c, t)

34 : LCND ← LCND ∪ {(ct, n, d)}
35 : return ct
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In this sequence of games, we write out the verification part in detail to show how it can be simulated in

G1, G2 and G3, when we do not make use of the secret key k.

Game G0 is the real nCIad-game, so we have that

AdvnciadGCM,A(n) = Pr[GA
0 ⇒ 1].

Game G1 replace the underlying block cipher E(k, ·) with a truly random function. We use G0 and G1 to

construct an adversaryB against the PRF security of the underlying block cipherE. ReductionB simulate
G0 and G1 for adversary A and makes use of A’s forgery in its bit guess for the PRF challenge. It inputs
the function f , which is either the underlying block cipher or a truly random function f ←$Funs[X ,X ].
We construct the reduction B as follows:

Adversary B(f):
1 : (ct∗, n∗, d∗)←$AEnc(·,·,·)

2 : parse ct∗ = (c∗, t∗)

3 : if ((ct∗, n∗, d∗) /∈ LCND) :
4 : k′m := f(0128)

5 : dpad′ := −len(d∗) mod 128

6 : cpad′ := −len(c∗) mod 128

7 : d∗′ ← d∗||0dpad
′

8 : c∗′ ← c∗||0cpad
′

9 : h′ ← GHASH(k′m, d∗′||c∗′||[len(d∗)]64||[len(c∗)]64)
10 : x← (n∗||0311)
11 : t′ = h′ ⊕ f(x)

12 : if t′ = t∗ :

13 : return 1

14 : else :

15 : return 0

16 : return 0

Oracle Enc(m,n, d) : //Q queries

1 : if n ∈ Ln :

2 : return ⊥
3 : Ln ← Ln ∪ {n}
4 : km = f(0128)

5 : x← (n||0311)
6 : x′ ← x+ 1

7 : v := |m|
8 : for j = 0 . . . v − 1 do :

9 : c[j]← f(x′)⊕m[j]

10 : x′ ← x′ + 1

11 : dpad := −len(d) mod 128

12 : cpad := −len(c) mod 128

13 : d′ ← d||0dpad

14 : c′ ← c||0cpad

15 : h← GHASH(km, d′||c′||[len(d)]64||[len(c)]64)
16 : t← h⊕ f(x)

17 : ct := (c, t)

18 : LCND ← LCND ∪ {(ct, n, d)}
19 : return ct

The reduction B checks the validity of A’s forgery by first making sure that the triple has not been

previously queried, and then it runs the validity test by the decryption algorithm using f . If A makes a

valid forgery, adversary B outputs 1, and if not it outputs 0. This gives us that if f = E(k, ·), B perfectly
simulates G0, and if f ←$Funs[X ,X ], B perfectly simulates G1. Therefore, we have that

Advlr-prfE,B (n) = |Pr[LR-PRFB0 ⇒ 1]− Pr[LR-PRFB1 ⇒ 1]|

= |Pr[GA
0 ⇒ 1]− Pr[GA

1 ⇒ 1]|.
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We now discuss G2 and G3. G2 in the nCIad proof is essentially the same as G3 in the nCPAad proof. It

switches to a direct implementation of a truly random function f . Namely, it draws uniformly distributed
elements directly from X , and assigns them to xj-values and the x-value by use of the array Σ, keeping
track of them. It also generates km by drawing krand uniformly from X , and assigning the value to km.
Therefore we have

Pr[GA
1 ⇒ 1] = Pr[GA

2 ⇒ 1].

The only difference between G2 and G3, is that in G3 we draw the tag t uniformly from {0, 1}128, instead
of drawing the y-value used for the tag uniformly. That means we implicitly define the y-value, since it
must satisfy t = h⊕ y. Because adversary A has no direct access to the yj-values or the y-value used to
simulate the random function, G2 and G3 are indistinguishable for A. Therefore

Pr[GA
2 ⇒ 1] = Pr[GA

3 ⇒ 1].

Nowwe can make a reduction on G3, since we do not need GHASH to simulate encryption queries forA.
We construct adversary C against the XOR-DUF assumption, simulating G3 for adversary A as follows:

Adversary C:
1 : krand←$X
2 : (ct∗, n∗, d∗)←$AEnc(·,·,·)

3 : if ((ct∗, n∗, d∗) /∈ LCND) :
4 : parse ct∗ = (c∗, t∗)

5 : k′m ← krand

6 : dpad′ := −len(d∗) mod 128

7 : cpad′ := −len(c∗) mod 128

8 : d∗′ ← d∗||0dpad
′

9 : c∗′ ← c∗||0cpad
′

10 : h′ ← GHASH(k′m, d∗′||c∗′||[len(d∗)]64||[len(c∗)]64)
11 : x← (n∗||0311)
12 : t′ ← Σt[x]

13 : if t′ = t∗ :

14 : Find (ctk, nk, dk) ∈ LCND such that n∗ = nk

15 : parse ctk = (ck, tk)

16 : δ := t∗ ⊕ tk

17 : p0 := (d∗′||c∗′||[len(d∗)]64||[len(c∗)]64)
18 : p1 := (d′k||c′k||[len(dk)]64||[len(ck)]64)
19 : return (p0, p1, δ)

20 : else :

21 : return ⊥
22 : return ⊥

Oracle Enc(m,n, d) : //Q queries

1 : if n ∈ Ln :

2 : return ⊥
3 : Ln ← Ln ∪ {n}
4 : km ← krand

5 : x← (n||0311)
6 : x′ ← x+ 1

7 : v := |m|
8 : for j = 0 . . . 232 − 3 do :

9 : yj ←$X
10 : xj = x′

11 : x′ ← x′ + 1

12 : if x′ ∈ Lx :

13 : yj ← Σ[xj ]

14 : Lx ← Lx{xj}
15 : Σ[xj ] := yj

16 : for j = 0 . . . v − 1 do :

17 : c[j]← yj ⊕m[j]

18 : dpad := −len(d) mod 128

19 : cpad := −len(c) mod 128

20 : d′ ← d||0dpad

21 : c′ ← c||0cpad

22 : t←$ {0, 1}128

23 : if x ∈ Lx :

24 : t← Σt[x]

25 : Σt[x] := t

26 : Lx ← Lx ∪ {x}
27 : ct := (c, t)

28 : LCND ← LCND ∪ {(ct, n, d)}
29 : return ct
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For the forgery (ct∗, n∗, d∗) there are two cases: either n ∈ Ln or n /∈ Ln, meaning either adversary A
has asked an encryption query on the nonce used in the forgery or not. In the case of n /∈ Ln, all the

yj-values and the t-value used for encryption are not yet set for a nonce n specified by C. Since the valid
tag t is never set,A can never guess the correct tag. Therefore the probability ofA outputting a valid tag

is 0, so (ct∗, n∗, d∗) is never a valid forgery in this case.

In the case of n ∈ Ln, all the yj-values are already decided. Reduction C has access to previous (ct, n, d)
triples, so it can retrieve the triple such that n = n∗. We denote this triple as ((ck, tk), nk, dk), where
nk = n∗. For a valid forgery, we must have that c∗ = ck, since each nonce is only used once. Because
n∗ = nk, all counting values are the same, meaning that y

∗
j = yjk for all j ∈ {0, . . . , 232 − 3}, and

y∗ = yk implicitly. Since we assume that (ct∗, n∗, d∗) is a valid forgery, we have that d∗ 6= dk and

t∗ 6= tk. If not, then (ct
∗, n∗, d∗) ∈ LCND. Therefore since t∗ = y∗ ⊕ h∗ and tk = yk ⊕ hk, and we know

that t∗ 6= tk and y
∗ = yk implicitly, we must have that h

∗ 6= hk. If not, then t
∗ and tk would be equal.

Since y∗ = yk implicitly, reduction C can retrieve h∗ ⊕ hk by the following computation:

t∗ ⊕ tk = (h∗ ⊕ y∗)⊕ (hk ⊕ yk)

= h∗ ⊕ hk ⊕ (y∗ ⊕ yk)

= h∗ ⊕ hk ⊕ (0128)

= h∗ ⊕ hk.

Now, if we let δ = t∗ ⊕ tk = h∗ ⊕ hk, we break XOR-DUF if we are able to compute the correct

input for GHASH corresponding to h∗ and hk. Reduction C has access to all the values d∗, c∗, dk and
ck, so it can compute p0 = (d∗′||c∗′||len(d∗)||len(c∗)) and p1 = (d′k||c′k||len(dk)||len(ck)) such that

h∗ = GHASH(p0) and hk = GHASH(p1). Since d
∗ 6= dk, we know that p0 6= p1. Therefore (p0, p1, δ)

is a valid forgery against the XOR-DUF assumption.

We then have that

Pr[GA
3 ⇒ 1] = Pr[XOR-DUFC ⇒ 1] = Advxor-dufGHASH,C(n).

Connecting the games above, it follows that

AdvnciadGCM,A(n) = Pr[GA
0 ⇒ 1]

≤ |Pr[GA
0 ⇒ 1− GA

1 ⇒ 1]|+ Pr[GA
1 ⇒ 1]

= |Pr[GA
0 ⇒ 1− GA

1 ⇒ 1]|+ Pr[GA
2 ⇒ 1]

= |Pr[GA
0 ⇒ 1− GA

1 ⇒ 1]|+ Pr[GA
3 ⇒ 1]

= Advlr-prfE,B (n) + Advxor-dufGHASH,C(n).

Since we assumed that the underlying block cipher is secure as a PRF and that GHASH is an XOR-DUF,

it follows that AdvnciadGCM,A(n) is negligible. Therefore GCM is nCIad secure.

By lemma 4.0.3 and 4.0.4, we have that GCM is both nCPAad and nCIad secure, thus nonce-based AEAD-

secure. This concludes our proof.
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