
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Espen Sund

Multi-user security for Schnorr-like
signature schemes

Bachelor’s thesis in Mathematical Sciences
Supervisor: Jiaxin Pan
June 2022

Ba
ch

el
or

’s
th

es
is

Espen Sund

Multi-user security for Schnorr-like
signature schemes

Bachelor’s thesis in Mathematical Sciences
Supervisor: Jiaxin Pan
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

In this thesis I will first consider a security proof of the Schnorr signature scheme
from the single-user to the multi-user setting. The proof consists of several steps
where we begin with the Schnorr identification scheme which is based on the
hardness of the Discrete logarithm problem and conclude by showing that the
Schnorr signature scheme derived through a Fiat-Shamir transformation is se-
cure in the multi-user setting. This proof is heavily based on the generic security
proof presented in the paper [1], but explicitly applied to the Schnorr signature
scheme with additional intuition. Next, I will look at the Guillou-Quisquater
signature scheme and in a similar fashion as the slightly tighter proof of the
Schnorr signature scheme presented in appendix B in [1], show that this also
holds for the Guillou-Quisquater signature scheme. Lastly, I will explain which
scheme conditions are necessary for this proof to hold.

Introduction

Digital signature schemes are an essential part of cryptography because they
make it possible for senders to authenticate themselves, as well as offer data
integrity which means that the data being sent was with high probability not
altered during the transmission. Creating efficient signature schemes is therefore
of great interest. Two such schemes are the Schnorr signature scheme proposed
by C.P. Schnorr in 1991 [2] and the Guillou-Quisquater signature scheme derived
from the Guillou-Quisquater identification scheme proposed by L.C. Guillou and
J.J. Quisquater in 1988 [3]. Both signature schemes are derived from identifica-
tion schemes through a Fiat-Shamir transformation and have short signatures
that are efficient to compute. Since the Guillou-Quisquater signature scheme
has similar properties as the Schnorr signature scheme and Schnorr is more well-
known, we refer to them as Schnorr-like signature schemes. The main difference
between the two schemes is the hardness assumptions the schemes are based on;
the Schnorr signature scheme is based on the discrete logarithm problem and
Guillou-Quisquater is based on the RSA problem.

1

Contents

1 Preliminaries 2
1.1 Definitions . 2
1.2 Theorems . 4

2 Schemes 6
2.1 Canonical identification scheme 6
2.2 Signature scheme . 7

2.2.1 The Fiat-Shamir transformation 8
2.3 Security notions . 8
2.4 Scheme conditions . 9

3 Security Implications 11
3.1 Properties of the Schnorr identification scheme 11
3.2 Main theorem . 12
3.3 The necessary lemmas . 13
3.4 Proof of the main theorem . 18

4 Guillou-Quisquater 19
4.1 Identification scheme . 19
4.2 Properties of IDGQ . 20
4.3 Signature scheme . 21
4.4 Tighter security reduction . 21
4.5 Necessary conditions . 25

1 Preliminaries

1.1 Definitions

Definition 1.1 (Set notation). A set of p number of elements will be denoted
by [p], that is [p] := {1, . . . , p}. The notation Zp will be used when we are dealing
with the residual ring of order p, that is Zp := Z/pZ. A group will always be
denoted by G.

Definition 1.2 (Negligible function). A function we will denote ϵ(λ) is negli-
gible if for every polynomial p we have limλ→∞ ϵ(λ)p(λ) = 0, that is, the fraction
1

ϵ(λ) grows faster than any polynomial p. For simplicity we will write it as ϵ.

Definition 1.3 (Probabilistic polynomial time PPT). We say that an
algorithm A is a probabilistic polynomial time algorithm, PPT algorithm for
short, if it runs in polynomial time and may use randomness to produce non-
deterministic results. All algorithms will be PPT unless stated otherwise.

2

Definition 1.4 (Random picking notation). Given a set S the notation
s←$S denotes picking an element s randomly and uniformly from the set S. If
A is a PPT algorithm, then a←$A(b) denotes the random variable a which is
the output of A on input b.

Definition 1.5 (Advantage notation). A fundamental part of proving secu-
rity of a cryptographic scheme is to find an upper bound on an adversary A’s
probability of breaking the scheme. We call this probability the advantage and
denote it as AdvxxxA (n), where A is the adversary, XXX is the scheme and n is
a variable that measures the input size of the problem, called the security pa-
rameter. Mostly, however, we will just use a negligible number ϵ to express the
adversary’s advantage when the scheme is assumed secure.

Definition 1.6 (Security reductions). When proving security implications
of the form; if scheme XXX is secure, then scheme YYY is secure, we will prove
the contrapositive statement. That is, if there exists an adversary A breaking the
security of scheme YYY, then there exists an adversary B breaking the security
of scheme XXX. The algorithm B that breaks the security of scheme XXX, using
A as a subroutine is called the reduction. Ideally, the running time of A and
B should be the same, in this case we call the reduction tight. If this is not the
case the reduction might lose effectiveness and we get some loss factor Q. The
loss factor can be expressed as AdvyyyA (n) ≤ Q · AdvxxxB (n).

Definition 1.7 (Discrete logarithm problem (DLOG)). Given parameter
par = (p, g,G) where p and g are the order and a generator of G, respectively.
The DLOG asks us to return x given X := gx, where x←$Zp. The discrete
logarithm assumption assumes that DLOG is hard for any PPT adversary A.
More specific, DLOG is (t, ϵ)-hard if Pr[gx = X |X ←$G;x←$A(X)] ≤ ϵ,
where ϵ is a negligible function and t is a bound on the running time of A [1].

Definition 1.8 (Standard model). The standard model is a computational
model in cryptography in which adversaries are only limited by the amount
of time and computational power available [4]. Moreover, since cryptographic
schemes usually are based on complexity assumptions like the discrete logarithm
assumption, we say that a scheme is secure in the standard model if it can be
proven secure by only using such assumptions. This is in contrast to the random
oracle model.

Definition 1.9 (Random oracle model (ROM)). In the random oracle
model parties are provided oracle access to a publicly available random function,
a random oracle (RO). The random oracle model enables security proofs of sev-
eral important schemes because reductions may exploit various properties of a
RO that can be realized only to a limited extent (if at all) in the standard model.
In the programmable random oracle model we allow the security reduction in the
random oracle model to dynamically choose the output of the random oracle [5].
Whenever we do a security reduction in this thesis that does not mention ran-
dom oracles or the random oracle model, the reduction is done in the standard
model.

3

Definition 1.10 (Oracle access). Let A be an adversary and O be an oracle.
The notation AO(·) denotes that A has oracle access to O. In other words, A
can make queries xi to O and get O(xi) in return.

Definition 1.11 (Cryptographic primitives and protocols). Cryptographic
primitives are the basic building blocks in cryptography and include among others
one-way functions, i.e., functions that are easy to compute but hard to invert.
By combining primitives we get something called cryptographic protocols which
includes identifications schemes which will be defined later.

1.2 Theorems

Theorem 1.1 (Jensen’s inequality [6]). Let X be a random variable whose range
is contained in I ⊂ R and g : I → R be a convex function, then

E[g(X)] ≥ g(E[X])

In the following theorem, the Multi-Instance Reset Lemma 1.2, we need to
make the randomized algorithm C’s randomness explicit. This will be done by
letting it take random coins ρ as input, where the coins refer to the random
choices C will make. When the randomness has been made explicit, C(I, h; ρ)
will be a deterministic algorithm on input (I, h) and the randomness ρ. The
proof of 1.2 is based on the one given in [1], with additional intuition and more
detailed calculations.

Theorem 1.2 (Multi-Instance Reset Lemma [1]). Fix an integer N ≥ 1 and a
non-empty set H. Let C be a randomized algorithm that on input (I, h) returns
a pair (b, σ), where b is a bit and σ is called the side output. Let IG be a
randomized algorithm that we call the input generator. The accepting probability
of C is defined as

acc := Pr[b = 1 | I ←$ IG;h←$H; (b, σ)←$ C(I, h)]

The (multi-instance) reset algorithm RC associated with C is the randomized
algorithm that takes input I1, . . . , IN and proceeds as follows.

Algorithm RC
For i ∈ [N] :

pick random coins ρi

hi ←$H

(bi, σi)←$ C(Ii, hi; ρi)

If b1 = · · · = bN = 0 then return (0, ϵ, ϵ) // Abort in Phase 1

Fix i∗ ∈ [N] such that bi∗ = 1

For j ∈ [N] :

h′
j ←$H

(b′j , σ
′
j)←$ C(Ii∗ , h′

j ; ρi∗)

If ∃j∗ ∈ [N] : (hi∗ ̸= h′
j∗and b′j∗ = 1) then return (i∗, σi∗ , σ

′
j∗)

Else return (0, ϵ, ϵ) // Abort in Phase 2

4

Let

res := Pr[i∗ ≥ 1 | I1, . . . , IN ←$ IG; (i∗, σ, σ′)←$RC(I1, . . . , IN)]

Then

res ≥

(
1−

(
1− acc+

1

|H|

)N
)2

Intuition: Note that the reset algorithm RC runs C in N related executions
on input I∗ in Phase 2 and acts according to its output. The key idea is that
the reset algorithm ”rewinds” C whenever it runs it on some new h←$H where
I and ρ remain the same. By ”rewind” we mean observing what C would have
output with a different input before it was executed the first time.

Proof. For fixed instance I and coins ρ, we define the probabilities

acc(I, ρ) := Prh←$H[b = 1 | (b, σ)←$ C(I, h; ρ)]
res(I, ρ) := Prh,h′ ←$H[b = 1 ∧ b′ = 1 ∧ h ̸= h′ | (b, σ)←$ C(I, h; ρ); (b′, σ′)←$ C(I, h′, ρ′)]

As I and ρ are fixed, the two events b = 1 and b′ = 1 are independent because b =
1 only depends on h and b′ = 1 only depends on h′. Using this we can bound the
probability res(I, ρ) as follows (Note: All the following probabilities are actually
conditioned and have h, h′←$H, (b, σ)←$ C(I, h; ρ) and (b′, σ′)←$ C(I, h′; ρ) like
in the definitions of res(I, ρ) and acc(I, ρ) above):

res(I, ρ) = Pr[b = 1 ∧ b′ = 1 ∧ h ̸= h′]

= Pr[b = 1] · Pr[b′ = 1 ∧ h ̸= h′ | b = 1]

≥ Pr[b = 1] ·
(
Pr[b′ = 1 | b = 1]− 1

|H|

)
(1)

= Pr[b = 1] ·
(
Pr[b′ = 1]− 1

|H|

)
= acc(I, ρ) ·

(
acc(I, ρ)− 1

|H|

)
(2)

In (1) we have used Pr[X ∧ Y] = Pr[X]−Pr[X ∧ ¬Y] ≥ Pr[X]−Pr[¬Y] and 1
|H|

accounts for the fact that Pr[¬(h′ ̸= h)] = Pr[h′ = h] = 1
|H| . With expectation

taken over I ←$ IG and random coins ρ, we also bound

EI,ρ[res(I, ρ)] ≥ EI,ρ

[
acc(I, ρ) ·

(
acc(I, ρ)− 1

|H|

)]
(3)

≥ EI,ρ[acc(I, ρ)] ·
(
EI,ρ[acc(I, ρ)]−

1

|H|

)
(4)

= acc ·
(
acc− 1

|H|

)
(5)

5

Above, we used (2) to get (3) and arrived at (4) by applying Jensen’s inequality
1.1 to the convex function ϕ(X) = X · (X + 1/|H|). In (5) we have used acc =
EI,ρ[acc(I, ρ)] since expectation is taken over I ←$ IG and random coins ρ which
is the definition of acc.
Next, consider the random variables bi∗ and b′j (j ∈ [N]) as defined during the
execution of the algorithm RC(I1, · · · , IN). By using Bayes’ rule for conditional
probability on acc = Pr[bi∗ = 1] and Pr

[
b′j = 1 ∧ bi∗ = 1

]
= EI∗,ρi∗ [res(I

∗, ρi∗)],
we obtain

Pr
[
b′j = 1

∣∣ bi∗ = 1
]
=

Pr
[
b′j = 1 ∧ bi∗ = 1

]
Pr[bi∗ = 1]

≥ acc− 1

|H|

Which lets us bound the following probability

Pr[no abort in phase 2 |no abort in phase 1] = 1−
N∏
j=1

(1− Pr
[
b′j = 1

∣∣ bi∗ = 1
]
)

≥ 1−
(
1− acc+

1

|H|

)N

We also have

Pr[no abort in phase 1] =

N∏
i=1

(1− Pr[bi = 1]) = 1− (1− acc)N

Combining Pr[no abort in phase 1] and Pr[no abort in phase 2 |no abort in phase 1]
we complete the proof by using Bayes’ rule for conditional probability and
1− (1− acc)N ≥ 1− (1− acc+ 1/|H|)N to get

res = Pr[no abort in phase 1 ∧ no abort in phase 2] ≥ 1− (1− acc+
1

|H|
)N)2

2 Schemes

2.1 Canonical identification scheme

A canonical identification scheme is a three-round protocol between a prover P
and a verifier V. P initializes the communication with a message R called the
commitment, V then selects a uniform challenge h from the set of challenges
ChSet, and upon receiving a response s from P, makes a deterministic decision.
The scheme can be formally defined as follows [1]:
A canonical identification scheme ID is defined as a tuple of algorithms ID :=
(IGen, P, ChSet, V).

• The key generation algorithm IGen takes parameters par as input and
outputs the key pair (pk,sk). Where we assume that pk defines the set of
challenges ChSet.

6

• The prover algorithm P = (P1,P2) is split into two algorithms. P1 takes
the secret key sk as input and returns a commitment R and a state state;
P2 takes as input the secret key sk, a commitment R, a challenge h and
state and returns a response s. It is important to note that state makes
sure P2 has all the secret information P1 had before terminating.

• The verifier algorithm V takes as input the public key pk and the conversa-
tion transcript (R, h, s) and outputs a bit, 1 (acceptance) or 0 (rejection).

The canonical identification scheme we are going to use in the first part is
the well-known Schnorr identification scheme IDS , defined as follows [1]:

IGen(par)

1 : sk := x←$Zp

2 : pk := X = gx

3 : ChSet := {0, 1}n

4 : return (pk, sk)

V(pk, R, h, s)

1 : If R = gs ·X−h then return 1

2 : Else return 0

P1(sk)

1 : r←$Zp;R = gr

2 : state := r

3 : return (R, state)

P2(sk, R, h, state)

1 : Parse state = r

2 : return s = x · h+ r mod p

Note that in line 1, the verifier V recomputes the commitment as R′ =
gs ·X−h and returns 1 if and only if R′ = R. An identification scheme with this
property is called commitment-recoverable [1].

2.2 Signature scheme

A digital signature scheme SIG is defined as a triple of algorithms SIG := (Gen,
Sign, Ver).

• The key generation algorithm Gen(par) returns the public and secret key
pair (pk, sk).

• The signing algorithm Sign(sk,m) returns a signature σ of message m.

• The deterministic verification algorithm Ver(pk,m, σ) returns a bit 1 (ac-
ceptance) or 0 (rejection).

We also require correctness, that is for all key pairs (pk, sk) ∈ Gen(par), for
all messages m ∈ {0, 1}∗, we have Ver(pk,m, Enc(sk,m)) = 1 [1]. By {0, 1}∗ we
mean a bit string of arbitrary size.

7

2.2.1 The Fiat-Shamir transformation

In order to transform a canonical identification scheme into a signature scheme,
one usually uses something called the Fiat-Shamir transformation [7]. This
transformation gets rid of the interaction between the prover P and the verifier
V, by letting P get the challenge h from a hash function H : {0, 1}∗ → ChSet,
where h = H(R,m) and R is the commitment. Signature schemes derived
from the standard Fiat-Shamir transform have signatures σ that consists of the
commitment R and the response s. When proving the security of the Schnorr
signature scheme in section 3 we will use the Schnorr signature scheme SIG[IDS]
derived from the Schnorr identification scheme IDS (1) through the standard
Fiat-Shamir transformation, given by:

Gen(par)

sk := x←$Zp

pk := X = gx

return (pk, sk)

Sign(sk,m)

r←$Zp;R = gr

h = H(R,m)

s = x · h+ r mod p

σ = (R, s) ∈ Zp × Zp

return σ

V(pk,m, σ)

Parse σ = (R, s) ∈ Zp × Zp

h = H(R,m)

If R = gsX−h then return 1

Else return 0

The hash function we useH : {0, 1}∗ → ChSet is chosen such that |ChSet| =
2n < p = |Zp| [1]. It is worth noting that the signer Sign runs both of the prover
algorithms P1 and P2 before and after calculating the challenge h, respectively.
Since the Schnorr identification scheme IDS is commitment-recoverable we can
also use an alternative Fiat-Shamir transform that derives signature schemes
with signatures σ consisting of the challenge h and the response s. The alter-
native Schnorr signature scheme we then get is [1]:

Gen(par)

sk := x←$Zp

pk := X = gx

return (pk, sk)

Sign(sk,m)

r←$Zp;R = gr

h = H(R,m)

s = x · h+ r mod p

σ = (h, s) ∈ {0, 1}n × Zp

return σ

V(pk,m, σ)

Parse σ = (h, s) ∈ {0, 1}n × Zp

R = gsX−h

If h = H(R,m) then return 1

Else return 0

This type of alternative signature scheme will be used in the last section when
working with the slightly tighter security proof then the one we get in section
3.2. Note: I will not use the alternative Schnorr signature scheme in this thesis,
this will only be done for the Guillou-Quisquater signature scheme which will
be introduced later.

2.3 Security notions

When we are defining and proving security of the identification and signature
schemes, we will refer to them as (t, ϵ,Qh)-XXX-YYY secure, where in the case

8

of the Schnorr identification scheme, XXX ∈ {KR, IMP, PIMP} and YYY =
KOA. The elements in the tuple t, ϵ and Qh will be upper bounds on the adver-
sary’s running time, advantage and oracle queries, respectively. The tuple might
contain other elements, which will be specified when necessary. The second part
of the security notion of a scheme, XXX-YYY, is divided into two parts. The
XXX-part defines the attacker’s goal and the YYY-part defines the attacker’s
capabilities. We define the attacker’s goals as follows: In key-recovery (KR) the
attacker tries to compute a valid secret-key; in impersonation (IMP), it tries to
impersonate a prover by convincing an honest verifier; in parallel impersonation
(PIMP), it tries to impersonate a prover by convincing an honest verifier in QCH

many parallel sessions. By honest verifier we mean a verifier that follows the
scheme procedure. In the case of the adversary’s capabilities, we have key-only
attack (KOA), where the adversary is only given the public-key [1].
In the case of the Schnorr signature scheme SIG[IDS] (0), we will refer to the
attacker’s goals as XXX ∈ {UF, MU-UF, MU-SUF} and attacker’s capabilities
as YYY ∈ {CMA,KOA}. Where UF stands for unforgeability, that is, the ad-
versary tries to forge a valid signature of a message; in multi-user unforgeability
(MU-UF), the adversary tries to forge a valid signature of a message in a set-
ting with multiple users. For the attacker’s capabilities, KOA, is the same as
for identification schemes and in chosen-message attack (CMA), the adversary
can choose messages and get valid signatures in return.

2.4 Scheme conditions

In this section we will define some useful conditions for identification schemes
which will be important in the security proofs in the next section. Examples of
such are honest-verifier zero-knowledge (HVZK), special soundness (SS), unique-
ness and bits of min-entropy. We will also define the attacker’s capabilities from
the previous section for both identification schemes and signature schemes more
explicitly.

Definition 2.1 (Honest-verifier zero-knowledge (HVZK)). A canonical
identification scheme ID is said to be HVZK if there exists an algorithm Sim(pk)
that outputs a properly distributed transcript (R, h, s) with respect to the public
key pk [1].

Intuitively, this means that an adversary does not learn anything by honestly
following the protocol to obtain valid transcripts, since it could generate such
transcripts by itself by only using the public key.

Definition 2.2 (Special Soundness (SS)). A canonical identification scheme
ID is said to be special sound if there exists an extraction algorithm Ext(pk,R, h, s, h′, s′)
that for any key pair (pk, sk)←$ IGen(par) and two accepting transcripts (R, h, s)
and (R, h′, s′) where h ̸= h′, outputs a secret key sk* such that the pair (pk, sk*)
∈ IGen(par) [1].

Intuitively, this means that if the scheme is secure and satisfies SS it should
be hard to come up with two valid transcripts with h ̸= h′.

9

Definition 2.3 (Random-self reducibility (RSR)). A canonical identifica-
tion scheme ID is said to be Random-self reducible if there is an algorithm
Rerand and two deterministic algorithms Tran and Derand such that for all
(pk, sk)←$ IGen(par) the following holds [1]:

• pk′ and pk′′ have the same distribution, where (pk′, τ ′)←$ Rerand(pk) is
the randomized key pair and (pk′′, sk′′)←$ IGen(par) is a freshly generated
key pair.

• For all (pk′, τ ′) ∈ Rerand(pk), all (pk′′, sk′′) ∈ IGen(par), and sk∗ =
Derand(pk, pk′, sk′, τ ′), we have (pk, sk∗) ∈ IGen(par).

• For all (pk′, τ ′) ∈ Rerand(pk), all transcripts (R′, h′, s′) that are valid
with respect to pk′, the transcript (R′, h′, s := Tran(pk, pk′, τ ′, (R′, h′, s′))
is also valid with respect to pk.

Intuitively, this means that for a scheme satisfying RSR, no problem instance
is harder than the average case. To see this, note that a worst case problem
instance can with high probability be reduced to an average case one by applying
the Rerand algorithm and then turned back to the worst case problem instance
by using the Derand algorithm.

Definition 2.4 (Uniqueness and bits of min-entropy). An identification
scheme ID is called unique if for all (pk, sk) ∈ IGen(par), (R, state) ∈ P1(sk),
h ∈ ChSet, there exists at most one response s ∈ {0, 1}∗ such that V(pk, R, h, s) =
1, i.e., the verifier accepts. A canonical identification scheme ID has α bits of
min-entropy, if for all key-pairs (pk, sk) ∈ IGen(par), the commitment gener-
ated by the prover algorithm is chosen from a distribution with at least α bits
of min-entropy. That is, for all strings R′ we have Pr[R = R′] ≤ 2−α, if R was
honestly generated by the prover [1].

Definition 2.5 (Key-recovery (KR) [1]). A canonical identification scheme
is said to be secure against key-recovery under key-only attack (t, ϵ)-KR-KOA ,
if for all adversaries A with running time bounded by t,

Pr

[
(pk, sk∗)←$ IGen(par)

∣∣∣∣ (pk, sk)←$ IGen(par)

sk∗←$A(pk)

]
≤ ϵ

Definition 2.6 ((Parallel) Impersonation (PIMP/IMP)). A canonical iden-
tification scheme ID is said to be (t, ϵ,QCH)-PIMP-KOA secure, if for all ad-
versaries A with at most QCH queries to the challenge oracle CH,

Pr

V(pk, Ri∗ , hi∗ , si∗) ∧ i∗ ∈ [QCH]

∣∣∣∣∣∣∣
(pk, sk)←$ IGen(par)

state←$A(pk)
(i∗, si∗)←$ACH(·)(pk)

 ≤ ϵ

where on the i-th query CH(Ri) the challenge oracle returns hi←$ChSet to
A. Since PIMP is only a parallel version of IMP with QCH queries to CH,
(t, ϵ)-IMP-KOA is defined as (t, ϵ, 1)-PIMP-KOA [1].

10

Definition 2.7 (Multi-user strongly unforgeable against chosen mes-
sage attacks (MU-SUF-CMA)). A signature scheme is said to be (t, ϵ,N,Qs)-
MU-SUF-CMA secure if for all adversaries A running in time at most t and
making at most Qs queries to the signing oracle,

Pr

[
Ver(pki∗ ,m

∗, σ∗) = 1

∧ (i∗,m∗, σ∗) /∈ {(ij ,mj , σj)| j ∈ [Qs]}

∣∣∣∣∣For i = 1, · · · , N : (pki, ski)←$Gen(par)

(i∗,m∗, σ∗)←$ASign(·,·)(pk1, · · · , pkN)

]
≤ ϵ

where on the j-th query (ij ,mj) ∈ [N]×{0, 1}∗ where j ∈ [Qs] the signing oracle
Sign returns σj ←$ Sign(skij ,mj) to A, i.e., a signature on message mj under
public key pkij .
Notice that this definition covers strong security, in the sense that a new sig-
nature on a previously queried message is considered as a fresh forgery. By
fresh forgery we mean (i∗,m∗, σ∗) /∈ {(ij ,mj , σj)| j ∈ [Qs]}. If we modify this
condition to (i∗,m∗) /∈ {(ij ,mj)| j ∈ [Qs]}, i.e., to break the scheme the at-
tacker needs to come up with a signature on a message-key pair that has not
been queried to the signing oracle, we get MU-UF-CMA security. It is also
worth noting that by not allowing any signing queries we get MU-UF-KOA, i.e.,
(t, ϵ,N)-MU-UF-KOA := (t, ϵ,N, 0)-MU-UF-CMA.
Lastly, in the single-user setting, N = 1 users, (t, ϵ,Qs)-SUF-CMA security is
defined as (t, ϵ, 1, Qs)-MU-SUF-CMA security. Similarly, non-strong (t, ϵ,Qs)-
UF-CMA security is defined as (t, ϵ, 1, Qs)-MU-UF-CMA security [1].

3 Security Implications

In this section we will prove the security of the Schnorr signature scheme and
lastly put everything together to get the main theorem in subsection 3.2. In
order to do this we need theorem 3.1 about the properties of the Schnorr identi-
fication scheme. The proof is the same as the one given in [1], with correctness
being explicitly shown.

3.1 Properties of the Schnorr identification scheme

Theorem 3.1. The Schnorr identification scheme IDS (1) is a canonical identi-
fication scheme with log p bits of min-entropy and it is unique, has special sound-
ness (SS), honest verifier zero-knowledge (HVZK) and is random self-reducible
(RSR). Furthermore if DLOG is (t, ϵ)-hard, then IDS is (t, ϵ)-KR-KOA secure
[1].

Proof. First we show correctness of IDS , i.e., the verifier V should always accept
if the honest prover P executes the protocol correctly, but this is the case because
for a valid transcript (R, h, s) we have gs ·X−h = gx·h+r · g−x·h = gr = R. In
addition, since R in (R, state)←$P1(sk) is uniformly random over G, we have
for all strings R′, the probability Pr[R = R′] = 1

p = 2− log p, where p = |G|.
Which gives IDS log p bits of min-entropy.

11

Uniqueness is also straightforward to verify. For all key pairs (X,x) ∈ IGen(par),
(R, state := r) ∈ P1(sk) and h ∈ {0, 1}n, the value s ∈ Zp satisfying gs =
Xh ·R ⇐⇒ s = x · h+ r is uniquely determined.

To show honest-verifier zero-knowledge we let the simulation algorithm Sim(pk :=
X) sample both the challenge h←$ {0, 1}n and the response s←$Zp and then
output (R := gs ·X−h, h, s). Since s is uniformly random over Zp and R is the
unique value satisfying R = gs ·X−h, (R, h, s) is indeed a real transcript.

For special soundness we define the extractor algorithm as follows; Ext(pk :=
X,R, h, s, h′, s′) := x∗ = (s− s′)/(h− h′), where (R, h, s) and (R, h′, s′) are the
two accepting transcripts and h ̸= h′. Notice that (X,x∗) is in fact a valid key
pair, since R = gs ·X−h = gs

′ ·X−h′
which gives X = g(s−s

′)/(h−h′).

For random self-reducibility, we will define the rerandomization algorithm Rerand
and the deterministic algorithms Derand and Tran as follows:

• Rerand(X) chooses τ ′←$Zp and outputs the key pair (X ′ := X · gτ ′
, τ ′).

For all key pairs (X,x′) ∈ IGen(par), X ′ is uniform and has the same
distibution as X ′′, where (X ′′, x′′) ∈ IGen(par).

• Derand(X,X ′, x′, τ ′) outputs x∗ := x′ − τ ′. We have, for all (X ′, τ ′) ∈
Rerand(X := gx) and (X ′, x′) ∈ IGen(par), X ′ = gx

′
and x′ = x+ τ ′ and

thus x∗ = x.

• Tran(X,X ′, τ ′, (R′, h′, s′)) outputs s = s′ − τ ′ · h′. We have, for all
(X ′, τ ′) ∈ Rerand(X := gx), if (R′, h′, s′) is a valid transcript with respect
to X ′ := gx+τ ′

then s = s′ − τ ′ · h′ = (x+ τ ′) · h′ + r′ − τ ′ · h′ = x · h′ + r′

and (R′, h′, s) is valid with respect to X.

For the final part of the proof we want to show that if DLOG is (t, ϵ)-
hard, then IDS is (t, ϵ)-KR-KOA secure, but by plugging in (pk, sk) = (X :=
gx, x) in the definition of (t, ϵ)-KR-KOA security, this is exactly the DLOG
assumption.

3.2 Main theorem

Theorem 3.2. If the Schnorr identification scheme IDS (1) is (t, ϵ)-KR-KOA
secure then the Schnorr signature scheme SIG[IDS] (0) is (t′, ϵ′, Qs, Qh)-UF-
KOA secure and (t′′, ϵ′′, Qs, Qh)-MU-SUF-CMA secure in the programmable
random oracle model, where

ϵ′ ≤ 4ϵ+
QsQh

p
, t′ ≈ t

ϵ′′

t′′
≤ 24(Qh + 1) · ϵ

t
+

Qs

p

12

Here p comes from IDS ’s log p bits of min-entropy. In order to prove the
main theorem we need to combine the four next lemmas which will be done in
subsection 3.4.

3.3 The necessary lemmas

Lemma 3.1 (IMP-KOA security). If IDS (1) is (t, ϵ)-KR-KOA secure, then
IDS is (t′, ϵ′)-IMP-KOA secure, where for any N ≥ 1,

ϵ ≥ (1− (1− ϵ′ +
1

|ChSet|
)N)2, t ≈ 2Nt′ (1)

In particular, the success ratios are related as

ϵ′

t′
− 1

t′|ChSet|
≤ 6 · ϵ

t
(2)

In order to show the lemma we need to use the Multi-Instance Reset Lemma
[1.2].

Proof intuition: We define algorithm C from the multi-instance reset
lemma to execute the adversary A in the IMP-KOA experiment, such that A’s
advantage ϵ′ is equal to the accepting probability acc of C in the multi-instance
reset lemma. Next, we define the reduction algorithm B in the KR-KOA experi-
ment to run the reset algorithm RC associated to C, such that B’s advantage ϵ is
equal to the probability res. It is important to note that B has to use both the
RSR property and the SS property of IDS to make this happen. Substituting
the pair (res, acc) with (ϵ, ϵ′) in the multi-instance reset lemma gives the desired
result. As a sanity check we note that RC executes C and therefore B executes
in fact A.

Proof. We will first show how to get (2) from (1). If ϵ′ ≤ 1/|ChSet|, then (2)
holds trivially, because:

ϵ′

t′
− 1

t′|ChSet|
≤ 1

t′|ChSet|
− 1

t′|ChSet|
= 0 ≤ 6 · ϵ

t

Let us therefore assume ϵ′ > 1/|ChSet|, and set N := (ϵ′ − 1/|ChSet|)−1 to
obtain t ≈ 2t′/(ϵ′ − 1/|ChSet|) and

ϵ ≥ (1− (1− ϵ′ +
1

|ChSet|
)N)2 = (1− (1− 1

N
)N)2 ≥ (1− 1

e
)2 ≥ 1

3
.

Dividing ϵ by t yields (2).
To prove (2), let A be an adversary against the (t′, ϵ′)-IMP-KOA security of
IDS . We now construct an adversary B against the (t, ϵ)-KR-KOA security of
IDS , with (t, ϵ) as claimed in (1).
We use the Multi-Instance Reset Lemma [1.2], where H := ChSet and IG runs

13

(pk := gx, sk := x)←$ IGen and returns pk as instance I. We first define
adversary C(pk, h; ρ) that executes A(pk; ρ), answers A’s single query R := gr

with h←$ChSet, and finally receives s := x ·h+r from A. If transcript (R, h, s)
is valid with respect to pk (i.e., V(pk := X,R, h, s) = 1 ⇐⇒ R = gs ·X−h), C
returns (b = 1, σ = (R, h, s)); otherwise it returns (b = 0, ϵ). By construction, C
returns b = 1 if and only if A is successful, which means

acc = ϵ′

Adversary B is defined as follows. For each i ∈ [N], it uses the RSR prop-
erty of IDS to generate a fresh rerandomized key pair (pki := gx+τi , τi)←$

Rerand(pk := gx). Next, it runs (i∗, σ, σ′)←$RC(pk1, · · · , pkN) with C defined
as above. If i∗ ≥ 1, then both transcripts σ = (R, h, s) and σ′ = (R, h′, s′)
are valid with respect to pki∗ and h ̸= h′. B uses the SS property of IDS and
computes ski∗ ← Ext(pki∗ , R, h, s, h′, s′). Finally, using the RSR property of
IDS , it returns sk = Derand(pki∗ , ski∗ , τi∗) and terminates. By construction, B
is successful if and only if RC is. By the Multi-Instance Reset Lemma we can
bound B’s success probability as

ϵ = res ≥ (1− (1− ϵ′ +
1

|ChSet|
)N)2

The running time t of B is that of RC , meaning 2Nt′ plus the N times the
time to run Rerand and Derand algorithms of RSR plus the time to run the
Ext algorithm of SS. The approximation t ≈ 2Nt′ indicates that this is the
dominating running time of B.

Lemma 3.2 (PIMP-KOA security). If IDS (1) is (t, ϵ)-IMP-KOA secure,
then IDS is (t′, ϵ′, QCH)-PIMP-KOA secure, where

ϵ′ ≤ QCH · ϵ, t′ ≈ t

Proof intuition: Since the adversary A in the PIMP-KOA experiment
can ask QCH challenge queries, whereas the reduction algorithm B in the IMP-
KOA experiment only can ask one challenge query. The reduction will randomly
choose one of A’s challenge queries to answer with querying its own challenge
oracle, which gives a 1/QCH success rate whenever A is successful.

Proof. Let A be an adversary against the (t′, ϵ′, QCH)-PIMP-KOA security of
IDS . We now construct an adversary B against the (t, ϵ)-IMP-KOA security of
IDS , with (t, ϵ) as above.
First, B obtains pk := X := gx from its IMP-KOA experiment and forwards it to
A. Next, it randomly picks i∗←$ [QCH]. On A’s i-th query to the challenge ora-
cle CHA(Ri), it proceeds as follows. If i ̸= i∗, then B returns hi←$ChSet. Oth-
erwise, it defines R := Ri∗ and queries its own challenge oracle h←$ CHB(R)
and returns hi∗ := h to A. Eventually, A returns its forgery (i, s) to B and
terminates. If i ̸= i∗, then B aborts. Otherwise, B outputs the response s

14

to its experiment and terminates. We note that if i = i∗ then B wins when-
ever A wins. Since i∗ is chosen uniformly in [QCH] the probability of i = i∗

is 1/QCH. Which gives rise to the loss factor of QCH in the reduction, that is,

Advpimp-koa
A (n) ≤ QCH · Advimp-koa

B (n). Since the running time t of B is roughly
that of A, we get t ≈ t′.

Lemma 3.3 (UF-KOA security). If the Schnorr identification scheme IDS

(1) is (t, ϵ,QCH)-PIMP-KOA secure, then the Schnorr signature scheme SIG[IDS]
(0) is (t′, ϵ′, Qh)-UF-KOA secure in the programmable random oracle model,
where

ϵ′ = ϵ, t′ ≈ t, Qh = QCH − 1

Proof intuition: The reduction B in the PIMP-KOA experiment will an-
swerA’s oracle queries in the UF-KOA experiment by querying its own challenge
oracle CH. When A outputs its forgery (m,σ = (R, s)), B will look up which
challenge query i ∈ [QCH] corresponds to σ and return (i, s). Since (R, h, s) is
a valid transcript if and only if A is successful, we get the equality ϵ′ = ϵ.

Proof. Let A be an adversary against the (t′, ϵ′, Qh)-UF-KOA security. We want
to construct an adversary B against the (t, ϵ,QCH)-PIMP-KOA security, with
parameters (t, ϵ,QCH) as claimed.
First, B gets pk := X := gx from its PIMP-KOA experiment and forwards
it to A. If A makes a query (Ri := gri ,mi) to the random oracle, B returns
H(Ri,mi) if it is already defined, otherwise B makes a query to its random oracle,
hi←$ CH(Ri), and programs the random oracle H(Ri,mi) := hi. Eventually,
A submits a forgery (m,σ = (R, s)) and terminates. We assume that (R :=
gr,m) ∈ {(Ri,mi)}i∈[QCH], i.e., H(R,m) was queried by A. If not, B makes a
dummy query to H(Ri,mi), which is simulated as above. Taking into account
the dummy query and Qh being the maximum number of oracle queries A can
make, there are maximum QCH := Qh + 1 queries to B’s challenge oracle CH.
Let i ∈ [Qh + 1] be the unique index such that (Ri,mi) = (R,m). Adversary B
outputs (i, si) and terminates. We note that (Ri, hi, si) is a valid transcript and
hence breaks PIMP-KOA security if and only if A’s forgery is valid, giving us
the equality ϵ = ϵ′. The running time of B is roughly that of A, hence t′ ≈ t.

Lemma 3.4 (MU-UF-KOA security). If SIG[IDS] (0) is (t, ϵ)-UF-KOA
secure, then SIG[IDS] is (t′, ϵ′, N)-MU-UF-KOA secure, where

ϵ′ = ϵ, t′ ≈ t

Proof intuition: The reduction algorithm B will use the RSR property of
IDS and the public key it receives from its UF-KOA experiment to generate
the key pairs for each of the N users in the MU-UF-KOA experiment. When
the adversary A submits a forgery on some message m∗, B will run the tran
algorithm to obtain a valid transcript on m∗ under its own public key. Since B
is successful whenever A is, we get the equality ϵ′ = ϵ.

15

Proof. Let A be an algorithm that breaks (t′, ϵ′, N)-MU-UF-KOA security of
SIG[IDS]. We will construct an adversary B that breaks (t, ϵ)-UF-KOA security
of SIG[IDS] with (t, ϵ) as stated above.
Adversary B is executed in the UF-KOA experiment and obtains a public key
pk := X := gx. To simulate the public keys input to A, for each i ∈ [N],
B generates (pki := gx+τi , τi)←$ Rerand(pk) by using the random-self re-
ducibility (RSR) property of IDS . Then B runs A on the input (pk1, · · · , pkN).
Eventually, A will output its forgery (i∗,m∗, σ∗ := (R∗, s∗)) in the MU-UF-
KOA experiment. The reduction B then computes h∗ = H(R∗,m∗) and runs
s←$ Trans(pk, pki∗ , τi∗ , (R

∗, h∗, s∗)). By the RSR property of IDS , the ran-
dom variables (pk, R∗, h∗, s∗) and (pki∗ , R

∗, h∗, s∗) are identically distributed.
If σ∗ := (R∗, s∗) is a valid signature on the message m∗ under pki∗ , then (R∗, s)
is also a valid signature on m∗ under pk. Thus, we have ϵ = ϵ′. The running
time t of B is the running time t′ of A plus N times the time to run Rerand
and Tran algorithms, which gives t ≈ t′.

Lemma 3.5 (MU-SUF-CMA security). If SIG[IDS] (0) is (t, ϵ,N,Qh)-
MU-UF-KOA secure, then SIG[IDS] is (t

′, ϵ′, N,Qs, Qh)-MU-SUF-CMA secure
in the programmable random oracle model, where

ϵ′ ≤ 4ϵ+
QhQs

p
, t′ ≈ t

N is the number of users, p comes from IDS’s log p bit min-entropy and Qs

and Qh are upper bounds on the number of signing queries and hash queries,
respectively.

Proof intuition: After receiving the public keys from its MU-UF-KOA
experiment, the reduction B needs to make sure it is able to simulate A’s signing
queries without aborting with high probability as well as eventually being able
to turn A’s forgery in the MU-SUF-CMA experiment into a forgery in its own
experiment. To do this B flips a secret bit bi for each of the N users. If bi = 1
then B defines A’s i-th public key to be its own i-th public key, otherwise it
generates a key pair and passes on the public key. By doing casework one can
find an upper bound on B aborting in the signing phase, which subtracted from
A’s advantage gives a lower bound on B not aborting. Combining this with the
probability of B not aborting after receiving A’s forgery gives the desired result.

Proof. Let A be an adversary that breaks the (t′, ϵ′, N,Qs, Qh)-MU-SUF-CMA
security of SIG[IDS]. We will construct an adversary B that breaks the (t, ϵ,N,Qh)-
MU-UF-KOA security of SIG[IDS] with (t, ϵ) as stated above. Adversary B
obtains public keys (pk1 := gx1 , · · · , pkN := gxN) from its MU-UF-KOA exper-
iment, and has access to a random oracle H.
To prepare the public keys to A, for each i ∈ [N], adversary B picks a secret bit
bi←$ {0, 1}. If bi = 1 then B defines pk′i := pki, otherwise B generates the key
pair (pk′i, sk

′
i)←$ Gen(par) itself. By doing this, all simulated public keys are

16

correctly distributed.
Adversary B runs A on input (pk′1, · · · , pk

′
N) answering hash queries to random

oracle H ′ and signing queries as follows.
In the simulation of hash queries, B answers a hash query H ′(R,m) from A by
querying its own hash oracle H(R,m) and returning its answer.
In the simulation of signing queries, B answers A’s j-th signing query (ij ,mj)
with a signature σj on mj under pkij according to the following case direction:

• Case A: bij = 0. In that case sk′ij is known to B and the signature is
computed as σj := (Rj , sj)←$ Sign(skij ,mj). After running the signing
algorithm which involves making a hash query, B defines H ′(Rj ,mj) :=
H(Rj ,mj).

• Case B: bij = 1. In that case sk′ij is unknown to B and the signature
is computed using the HVZK property of IDS . This is done by B run-
ning the simulation algorithm Sim to get a valid transcript (Rj , hj , sj)←$

Sim(pk′ij). If the hash value H ′(Rj ,mj) was already defined in one of A’s
hash/signing queries and H ′(Rj ,mj) ̸= hj , B aborts. Otherwise, it defines
the random oracle

H ′(Rj ,mj) := hj (3)

and returns σj := (Rj , sj), which is a correctly distributed valid signature
on mj under pk′ij . Note that by (3), B makes H(Rj ,mj) ̸= H ′(Rj ,mj)
with high probability. Also note that for each signing query, B aborts with
probability at most Qh/p because for every hash query Pr[R = Rj] = 1/p
since IDS has min-entropy log p. Furthermore, since the number of signing
queries is bounded by Qs, B aborts overall with probability QhQs/p.

Eventually, A submit its forgery (i∗,m∗, σ∗ := (R∗, s∗)), which we will as-
sume is a valid forgery in the MU-SUF-CMA experiment. That is, for h∗ =
H ′(R∗,m∗) we have V(pk′i∗ , R

∗, h∗, s∗) = 1. Furthermore, it satisfies the fresh-
ness condition, i.e.,

(i∗,m∗, R∗, s∗) /∈ {(ij ,mj , Rj , sj)| j ∈ [Qs]}. (4)

Using (4) together with SIG[IDS]’s uniqueness condition, i.e., s is uniquely de-
termined by R and h, we get the following freshness condition:

(i∗,m∗, R∗) /∈ {(ij ,mj , Rj) : j ∈ [Qs]}. (5)

After receiving A’s forgery, B computes a forgery for the MU-UF-KOA ex-
periment according to the following case distinction.

• Case 1: There exists a j ∈ [Qs] such that (m∗, R∗) = (mj , Rj). If there
is more than one j, fix any of them. In that case we have h∗ = hj and
furthermore i∗ ̸= ij by the freshness condition (5).

– Case 1a: bi∗ = 1 and bij = 0. Then the hash value h∗ = H ′(R∗,m∗)
was not programmed by B in (3). That means h∗ = H ′(R∗,m∗) =
H(R∗,m∗) and B returns (i∗,m∗, (R∗, s∗)) as a valid forgery to its
MU-UF-KOA experiment

17

– Case 1b: bi∗ = bij or bi∗ = 0 ∧ bij = 1. Then B aborts.

Note that in case 1 we always have i∗ ̸= ij which means that B does not
abort with probability 1/4 in which case it outputs a valid forgery.

• Case 2: For all j ∈ [Qs] we have (m∗, R∗) ̸= (mj , Rj).

– Case 2a: bi∗ = 1. Then the hash value h∗ = H ′(R∗,m∗) was not
programmed by B in (3). That means h∗ = H ′(R∗,m∗) = H(R∗,m∗)
and B returns (i∗,m∗, (R∗, s∗)) as a valid forgery to its MU-UF-KOA
experiment.

– Case 2b: bi∗ = 0. Then B aborts.

Note that in case 2, B does not abort with probability 1/2 in which case
it outputs a valid forgery.

Using this we can get a lower bound on B’s probability of returning a valid
forgery in its MU-UF-KOA experiment.

ϵ ≥ min

{
1

4
,
1

2

}
·
(
ϵ′ − QsQh

p

)
=

1

4

(
ϵ′ − QsQh

p

)
Note that the min(1/4, 1/2) factor makes sure the inequality holds even if A’s
forgery is in Case 1 or Case 2 and the (ϵ′−QsQh/p) factor is a lower bound on
B not aborting in the signing phase. The running time of B is that of A plus
the Qs executions of Sim. We write t′ ≈ t. This concludes the proof.

3.4 Proof of the main theorem

Proof. Putting it all together, we have the following:

• (t, ϵ)-KR-KOA → (t′, ϵ′)-IMP-KOA: ϵ′

t′ −
1

t′|ChSet| ≤ 6 · ϵt , t ≈ 2Nt′

• (t, ϵ)-IMP-KOA → (t′, ϵ′)-PIMP-KOA: ϵ′ ≤ QCH · ϵ, t′ ≈ t

• (t, ϵ)-PIMP-KOA → (t′, ϵ′)-UF-KOA: ϵ′ = ϵ, t′ ≈ t, Qh = QCH − 1

• (t, ϵ)-UF-KOA → (t′, ϵ′)-MU-UF-KOA: ϵ′ = ϵ, t′ ≈ t

• (t, ϵ)-MU-UF-KOA → (t′, ϵ′)-MU-SUF-CMA: ϵ′ ≤ 4ϵ+ QhQs

p , t′ ≈ t

Since all running times after the first implication are approximately the same,
we will assume t′ = t. By combining the first two implications to KR-KOA →
PIMP-KOA, we get ϵ′

t′QCH
− 1

t′|ChSet| ≤ 6 · ϵt , which is the same for KR-KOA

→ MU-UF-KOA, because ϵ stays the same and the running time t is assumed
to be the same. By combining this with the last implication to KR-KOA →
MU-SUF-CMA, we get (ϵ′ −QhQs/p)/(4t

′QCH)− 1/(t′|ChSet|) ≤ 6 · ϵ/t. After
multiplying with 4QCH and rearranging terms, we get

18

ϵ′

t′
≤ 24 · QCH · ϵ

t
+

QhQs

pt′
+

4QCH

t′|ChSet|

≤ 24(Qh + 1) · ϵ
t
+

(t′ − 1)Qs

pt′
+

4

|ChSet|
(a)

≤ 24(Qh + 1) · ϵ
t
+

Qs

p
(b)

In (a) we have used Qh ≤ t′ − 1 and Qh = QCH − 1. The reason for the
bound Qh ≤ t′ − 1 can be seen as the hash queries are not the major part of
the running time. In (b) we have used t′ − 1 ≈ t′ and removed 4/|ChSet| since
it is negligible. Proving the second part of the main theorem. To prove the first
part of the theorem, we only need to combine the last two security implications
to UF-KOA → MU-SUF-CMA which gives:

ϵ′ ≤ 4ϵ+
QhQs

p

Completing the proof of the theorem.

4 Guillou-Quisquater

4.1 Identification scheme

The Guillou-Quisquater identification scheme (IDGQ) is based on the assump-
tion that the RSA problem is hard for any PPT adversary A. The RSA prob-
lem can be summarized as follows: Given an RSA public key (N, e) and a
ciphertext C := me mod N one should efficiently compute m. The pub-
lic key satisfies N = p · q for prime numbers p and q and e ≥ 3 such that
gcd(ϕ(N), e) = 1, where ϕ(N) is the number of numbers less than and relative
prime to N [8]. We denote Z∗N to be the set {y ∈ ZN | gcd(N, y) = 1} where
|Z∗N | = ϕ(N) = pq − p− q + 1 = (p− 1)(q − 1). IDGQ is defined as follows [1]:

IGen(par)

sk := x←$Z∗
N

pk := X := xe mod N

ChSet := Ze

return (pk, sk)

V(pk, R, h, s)

If R = se ·X−h mod N

and (R, s) ∈ Z∗
N × Z∗

N then return 1

Else return 0

P1(sk)

1 : r←$Z∗
N ;R = re mod N

2 : state := r

3 : return (R, state)

P2(sk, R, h, state)

1 : Parse state = r

2 : return s = xh · r mod N

19

It is worth noting that e in IDGQ is chosen as both a prime and coprime to
ϕ(N), i.e. gcd(ϕ(N), e) = 1.

4.2 Properties of IDGQ

Like the Schnorr identification scheme IDGQ also satisfies correctness, unique-
ness, SS, HVZK and RSR. The proof of theorem 4.1 is the same as the one
presented in [1], with correctness being explicitly shown.

Theorem 4.1. IDGQ satisfies correctness, uniqueness, special soundness (SS),
honest-verifier zero-knowledge (HVZK) and random-self reducibility (RSR). It
also has α = log(ϕ(N)) bit min-entropy [1].

Proof. We first show correctness. This is satisfied because for a valid transcript
(R, h, s) we have se ·X−h ≡ xhe · re · x−he ≡ re ≡ R mod N which means veri-
fier V accepts. For α bit of min-entropy we have for R′←$Z∗N the probability
Pr[R = R′] = 1/ϕ(N) = 1/2α =⇒ α = log(ϕ(N)).

To show uniqueness we note that for all key pairs (pk = X := xe, sk = x) ∈
IGen(par), R := re ∈ P1(sk) and h ∈ Ze then s ∈ Z∗N satisfying se ≡ R ·Xh

mod N ⇔ s ≡ rxh mod N is unique, because gcd(ϕ(N), e) = 1 implies there
exists a unique d ∈ Z∗N such that ed ≡ 1 mod ϕ(N).

For honest-verifier zero-knowledge we can let the simulator algorithm Sim(pk)
first sample h←$Ze and s←$Z∗N and then output the transcript (R := seX−h, h, s∗).
Since (h, s) is uniform over Ze × Z∗N and R is the unique value satisfying
R ≡ seX−h mod N .

For special soundness if given two accepting transcripts (R, h, s) and (R, h′, s′)
with h ̸= h′ we need to define an extractor algorithm Ext(X,R, h, s, h′, s′) that
returns a valid secret key for the public key X. Since the transcripts are valid
and assuming h > h′ we have seX−h ≡ R ≡ s′eX−h

′
mod N which implies

(s/s′)e ≡ Xh−h′
mod N . We also have gcd(e, h − h′) = 1 since e is a prime

and h, h′ ∈ Ze. This allows us to use the extended Euclidean algorithm to find
integers A,B ∈ Z∗N such that

A(e) +B(h− h′) = gcd(e, h− h′) = 1

Then we define an extractor algorithm Ext(X,R, h, s, h′, s′) := x∗ := XA(s/s′)B .
Note that x∗ is a valid secret key for X since (x∗)e = XA(e)(s/s′)B(e) =
XA(e)+B(h−h′) = X

For random-self reducibility the Rerand algorithm and the deterministic al-
gorithms Derand and Tran are defined as follows:

• Rerand(X1) chooses τ2←$Z∗N , computes X2 := X1 · τ2e mod N and
returns (X2, τ2). Since X2 is uniform and has the same distribution as
X3, where (X3, x3)←$ IGen(par), (X2, τ2) is indeed a valid rerandomized
key pair under public key X1.

20

• Derand(X1, X2, x2, τ2) outputs x∗ = x2/τ2 mod N . We have, for all
(X2, τ2)←$ Rerand(X1 := xe

1 mod N) with (X2, x2) ∈ IGen(par), X2 =
xe
2 mod N and x2 = x1 · τ2 mod N and thus x∗ = x1 mod N .

• Tran(X1, X2, τ2, (R2 := re2 mod N,h2, s2)) outputs s1 = s2/τ
h2
2 mod N .

We have, for all (X2, τ2) ∈ Rerand(X1 := xe
1 mod N), if (R2, h2, s2)

is valid with respect to X2 := (x1 · τ2)e mod N then s1 = s2/τ
h2
2 =

(x1τ2)
h2 · r2/τh2

2 = xh2
1 · r2 mod N and (R2, h2, s1) is valid with respect

to X1.

4.3 Signature scheme

Since IDGQ (0) is commitment-recoverable we can apply the alternative Fiat-
Shamir transform to arrive at the following Guillou-Quisquater signature scheme
SIG[IDGQ]:

Gen(par)

sk := x←$Z∗
N

X := xe mod N

pk := X

return (pk, sk)

Sign(sk,m)

r←$Z∗
N ;R = re mod N

h = H(R,m)

s = xh · r mod N

σ = (h, s) ∈ Ze × Z∗
N

return σ

V(pk,m, σ)

Parse σ = (h, s) ∈ Ze × Z∗
N

R = seX−h mod N

If h = H(R,m) and R ∈ Z∗
N then return 1

Else return 0

Where the hash function is of the form H : {0, 1}∗ → Ze [1].

4.4 Tighter security reduction

The next security proof shows that SUF-CMA security tightly implies MU-SUF-
CMA security in the standard model. This can be seen as an improvement of the
first part of the main theorem 3.2 which was done in the programmable random
oracle model. It is an improvement of 3.2, because lemma 3.5 can in the single-
user setting (UF-KOA → SUF-CMA) be proven more tightly secure, i.e., with
constant factor 1 [1]. The reason will not be discussed in this thesis. Combining
this improved bound (UF-KOA → SUF-CMA) with the next theorem (SUF-
CMA → MU-SUF-CMA) gives a better bound than lemma 3.5.

Theorem 4.2. If the Guillou-Quisquater signature scheme SIG[IDGQ] is (t, ϵ,Qs)-
SUF-CMA secure then, for any N ′ ≥ 1, SIG[IDGQ] is (t′, ϵ′, N ′, Qs)-MU-SUF-
CMA secure, where

ϵ′ ≤ 2ϵ+
Q2

s

(p− 1)(q − 1)
, t′ ≈ t

Qs is an upper bound on the number of signing queries and N ′ is the number of
users, not to be confused with N = pq.

21

Proof. Let A be an adversary breaking the (t′, ϵ′, N ′, Qs)-MU-SUF-CMA secu-
rity of SIG[IDGQ]. We will construct an adversary B breaking the (t, ϵ,Qs)-
SUF-CMA security of SIG[IDGQ] with t and ϵ as above. B is executed in the
SUF-CMA experiment and obtains pk = X = xe and has access to a signing
oracle Sign.
In the simulation of public keys, for each i ∈ [N ′], adversary B picks ai←$Z∗N ,
secret bits bi←$ {0, 1} and computes

pki = Xi := Xbi · aie (6)

That is, if bi = 0 then ski = ai is known to B, otherwise bi = 1 and ski = xai is
unknown to B. Adversary B then runs A on input (pk1, · · · , pkN) and answers
A’s signing queries as follows:
On A’s j-th signing query (ij ,mj) ∈ [N ′]× {0, 1}∗, B is supposed to return σj

on message mj under pkij . These are calculated as follows:

• Case A: bij = 0. In this case skij = aij is known to B and the signature is
computed as σj := (hj , sj)←$Sign(skij ,mj).

• Case B: bij = 1. In that case skij = xaij is unknown to B and the signature
is computed using B’s signing oracle by first querying (hj , ŝj)←$Sign(mj).

Then σj = (hj , sj := ŝj · a
hj

i) is a valid signature on mj under pkij . In-

deed, V(pkij ,mj) = 1 because H(sejX
−hj

ij
,mj) = H((ŝja

hj

ij
)eX

−hj

ij
,mj) =

H(ŝejX
−hj ,mj) = hj .

Adversary B returns σj = (hj , sj) which in both cases is a correctly distributed

valid signature. For future reference we define Rj := sej ·X
−hj

ij
and by (6)

rj := R
1/e
j = sj · (xbij aij)

−hj (7)

We assume that
∀k ̸= j ∈ [Qs] : rk ̸= rj (8)

Since sj and therefore also rj are uniform elements from Z∗N , condition (8)
is not satisfied with probability at most Q2

s/ϕ(N). This can be seen as

Pr[(8) is satisfied] =
ϕ(N)(ϕ(N)− 1) · · · (ϕ(N)−Qs + 1)

ϕ(N)Qs

≥ (ϕ(N)−Qs)
Qs

ϕ(N)Qs

≥
ϕ(N)Qs −

(
Qs

1

)
ϕ(N)Qs−1Qs

ϕ(N)Qs
(a)

= 1− Q2
s

ϕ(N)

In (a) we have used the fact that the sum of two consecutive terms in the
expansion of (ϕ(N) − Qs)

Qs is non-negative since ϕ(N) is of exponential size

22

and therefore larger than a polynomial factor times Qs.
Eventually A will submit a forgery (i∗,m∗, σ∗ := (h∗, s∗)) and terminate. For
the remainder of the proof we will assume σ∗ is a valid forgery on m∗ under
pki∗ , i.e., for R

∗ := s∗e ·X−h
∗

i∗ it holds that H(R∗,m∗) = h∗. Furthermore we
assume σ∗ is a valid fresh signature in the MU-SUF-CMA experiment:

(i∗,m∗, h∗, s∗) /∈ {(ij ,mj , hj , sj) | j ∈ [Qs]} (9)

After receiving A’s forgery, B is supposed to compute its own valid forgery under
pk = X. Adversary B defines the set of all indices j such that it queried mj to
its signing oracle J := {j ∈ [Qs] | bij = 1} and signs the messages as follows:

• Case 1: For all j ∈ [Qs] we have: h∗ ̸= hj or r∗ ̸= rj .

– Case 1a: bi∗ = 1. Then for ŝ∗ := s∗ · a−h
∗

i∗ we have

H(ŝ∗eX−h
∗
,m∗) = H(s∗eX−h

∗

i∗ ,m∗) = h∗

and hence
σ̂∗ := (h∗, ŝ∗)

is a correct signature on m∗ under pk = X. We now show that it is a
fresh signature in the SUF-CMA experiment. If h∗ /∈ {h1, · · · , hQs

}
then we directly obtain σ̂∗ := (h∗, ŝ∗) /∈ {(hj , ŝj) | j ∈ J}, which
means (m∗, σ̂∗) satisfies the freshness condition of the SUF-CMA
experiment. On the other hand, if the set J∗ of indices j ∈ [Qs] such
that hj = h∗ is non-empty, then we will use the condition rj ̸= r∗

to show that the corresponding ŝj are all distinct from ŝ∗. Indeed,
for all k ∈ J ∩ J∗ we have ŝk = xh∗ · rj ̸= xh∗ · r∗ and therefore
ŝ∗ = xh∗ · r∗ /∈ {ŝk | k ∈ J ∩ J∗}. For all k ∈ J\J∗ we have hk ̸= h∗

so σ̂∗ also in this case satisfies the freshness condition of the SUF-
CMA experiment.

– Case 1b: bi∗ = 0. Then B aborts.

Note that B aborts with probability 1/2 in case 1. If it does not abort, it
outputs a valid strong forgery.

• Case 2: There exists a j ∈ [Qs] such that h∗ = hj and r∗ = rj and i∗ = ij .

– Case 2a: bij = 1. As in case 1a,

σ̂∗ := (h∗, ŝ∗ := (s∗ · a−h
∗

i∗))

is a correct signature on message m∗ under pk = X. By r∗ = rj and
h∗ = hj we have (h∗, s∗) = (hj , sj). Since we also have i∗ = ij , A’s
freshness condition (9) implies mj ̸= m∗ meaning σ̂∗ is a valid fresh
forgery in the SUF-CMA experiment.

– Case 2b: bi∗ = 0. Then B aborts.

23

Note that B aborts with probability 1/2 in case 2. If it does not abort, it
outputs a valid strong forgery.

• Case 3: There exists a j ∈ [Qs] such that h∗ = hj ̸= 0 and r∗ = rj and
i∗ ̸= ij .
Note that if j exists it is uniquely defined by (8).

– Case 3a: bij ̸= bi∗ . From (7), r∗ = rj and h∗ = hj ̸= 0 we get the
two equations

r∗ = s∗(xbi∗ai∗)
−h∗

r∗ = sj(x
bij aij)

−h∗

From which B can extract the single-user secret key sk = x, since
bij ̸= bi∗ . Using sk = x B computes a valid forgery on any fresh
message.

– Case 3b: bij = bi∗ . Then B aborts.

In case 3, note that since bij = bi∗ with probability 1/2, it aborts with proba-
bility 1/2. If it does not abort, it outputs a valid strong forgery.

• Case 4: There exists a j ∈ [Qs] such that h∗ = hj = 0 and r∗ = rj and
i∗ ̸= ij .
Again if j exists it is uniquely defined by (8).

– Case 4a: bij = 0. Then
σ̂∗ := (0, s∗)

is a correct signature on m∗ under pk = X, since H(s∗e,m∗) =
h∗ = 0 from definition. For all k ̸= j with hk = h∗ = 0 we have
by (8) r∗ ̸= rk and therefore s∗ = r∗ ̸= rk = ŝk. This means
that σ̂∗ = (0, s∗) = (0, r∗) /∈ {(hk, σ̂k) | k ∈ J}. Therefore (m∗, σ̂∗)
satisfies the freshness condition in the SUF-CMA experiment.

– Case 4b: bij = 1. Then B aborts.

Note that in case 4, B aborts with probability exactly 1/2. If it does not abort,
it outputs a valid strong forgery.
Putting everything together, B returns a fresh strong forgery (m∗, σ̂∗) under

pk = X with probability ϵ = 1
2 (ϵ
′ − Q2

s

(p−1)(q−1)). Adversary B makes at most

Qs signing queries. Its running time is that of A in addition to some small
computation for each signing query and each user, hence t′ ≈ t.

24

4.5 Necessary conditions

In the security proof from last subsection 4.2 we showed a tighter reduction for
Guillou-Quisquater signature scheme (0) than the one we presented in the first
part of the main theorem 3.2 for Schnorr signature scheme. Since SIG[IDGQ]
satisfies all the properties listed in 4.1 we know that these are sufficient for the
security proof in 4.2. To finish my thesis, I will now explain which of these are
necessary.

Correctness. By definition we required a canonical identification scheme to
satisfy correctness. Therefore correctness is a necessary property.

Uniqueness. In Case 2a we obtain sj = s∗ from hj = h∗ and r∗ = rj . There-
fore uniqueness is a necessary property.

Honest-verifier Zero-knowledge (HVZK). At no point during the proof
do we rely on a simulator algorithm to produce a valid and correctly distributed
transcript. Therefore HVZK is not a necessary property.

Special Soundness (SS). In Case 3a we can extract a secret key under the
condition h∗ = hj . Since this is the only case where we can extract a secret
key and the extractor algorithm in SS require two accepting transcripts with
h∗ ̸= hj , SS is not a necessary property.

Random Self-reducibility (RSR). During the simulation of the public keys
B needs to rerandomize the public key from its experiment by using the Rerand
algorithm in RSR. In Case 1a B also uses the Tran algorithm in RSR to get a
valid signature under its public key. Therefore RSR is a necessary property.

25

References

[1] E. Kiltz, D. Masny, and J. Pan, “Optimal security proofs for signatures from
identification schemes,” Cryptology ePrint Archive, Report 2016/191, 2016,
https://eprint.iacr.org/2016/191.

[2] C. P. Schnorr, “Efficient signature generation by smart cards,” J.
Cryptol., vol. 4, no. 3, p. 161–174, jan 1991. [Online]. Available:
https://doi.org/10.1007/BF00196725

[3] L. Guillou and J.-J. Quisquater, “A “paradoxical” indentity-based signature
scheme resulting from zero-knowledge,” 01 1995, pp. 216–231.

[4] D. Naccache, Standard Model. Boston, MA: Springer US, 2011, pp. 1253–
1253. [Online]. Available: https://doi.org/10.1007/978-1-4419-5906-5 518

[5] M. Fischlin, A. Lehmann, T. Ristenpart, T. Shrimpton, M. Stam, and S. Tes-
saro, “Random oracles with(out) programmability,” in Advances in Cryptol-
ogy – ASIACRYPT 2010, ser. Lecture Notes in Computer Science, M. Abe,
Ed., vol. 6477. Singapore: Springer, Heidelberg, Germany, Dec. 5–9, 2010,
pp. 303–320.

[6] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, and L. E. Meester, “A modern
introduction to probability and statistics,” 2005.

[7] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to iden-
tification and signature problems,” in Advances in Cryptology — CRYPTO’
86, A. M. Odlyzko, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1987, pp. 186–194.

[8] R. L. Rivest and B. Kaliski, RSA Problem. Boston, MA: Springer
US, 2011, pp. 1065–1069. [Online]. Available: https://doi.org/10.1007/
978-1-4419-5906-5 475

26

https://eprint.iacr.org/2016/191
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/978-1-4419-5906-5_518
https://doi.org/10.1007/978-1-4419-5906-5_475
https://doi.org/10.1007/978-1-4419-5906-5_475

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Espen Sund

Multi-user security for Schnorr-like
signature schemes

Bachelor’s thesis in Mathematical Sciences
Supervisor: Jiaxin Pan
June 2022

Ba
ch

el
or

’s
th

es
is

	Preliminaries
	Definitions
	Theorems

	Schemes
	Canonical identification scheme
	Signature scheme
	The Fiat-Shamir transformation

	Security notions
	Scheme conditions

	Security Implications
	Properties of the Schnorr identification scheme
	Main theorem
	The necessary lemmas
	Proof of the main theorem

	Guillou-Quisquater
	Identification scheme
	Properties of IDGQ
	Signature scheme
	Tighter security reduction
	Necessary conditions

