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Abstract

In this thesis, the goal is to introduce the reader to a few multivariate public
key cryptography systems. We will go through three such systems. These are
Matsumoto Imai, Oil and Vinegar, and Rainbow. We look at the construction,
a few examples, and attacks against these systems.
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Chapter 1

Introduction

The thesis will introduce multivariate public key cryptography (MPKC), where
the goal is to take the reader through a few systems/signature schemes. These
are Matsumoto-Imai, Balanced and Unbalanced Oil-Vinegar, and Rainbow.

Chapter 3 will be about the Matsumoto Imai cryptosystem. We will first look
into this system’s construction and the signature scheme. Followed by an ex-
ample, and then close the chapter by looking at the attack that was done by
Patarin, using linearization equations.

We will continue to chapter 4 with an introduction to the Oil and Vinegar
Signature Scheme. We will again look at the construction of this scheme. Then
take a look at two examples, one for the Balanced scheme and one for the
Unbalanced scheme. Followed by the attack on this scheme by Kipnis and
Shamir, using invariant subspaces.

In chapter 5, we will look at the construction of the Rainbow Signature Scheme,
followed by an example, and end the chapter with a brief look at some of the
attacks against Rainbow.

Cryptography has played a significant role in the security of modern-day commu-
nication and is used in many applications, such as computer passwords, banking
transaction cards, etc.

As the world and technology progress, we want the security around us to be
better. However, here is where some problems occur.

Most commonly used cryptosystems are systems like Diffie-Hellman and RSA.
Both these systems are based on mathematical problems that are difficult to
break, where Diffie-Hellman is based on the difficulty of the known discrete-log
problem over a large prime field. In contrast, RSA is based on the difficulty of
factoring a large integer into a product of prime numbers.

These are secure schemes for the time being. However, as stated earlier, the
evolution of technology might change this. Our ”normal” computers may not
be able to break DH/RSA given a reasonable time frame; however, quantum
computers may be able to break these systems within a reasonable amount
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of time. Hence there need to be cryptosystems that can stand against these
quantum computers.

These last years, a wave of systems has been introduced and categorized as
Multivariate public-key cryptosystems. Whose intention is to use multivariate
quadratic polynomials (over a field k) to make it difficult for quantum computers
to break.
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Chapter 2

Background

Definition 1 A public key encryption scheme (PKE) consists of three algo-
rithms (K, E ,D).

1. Key generation algorithm K; It does not take in anything. However, it returns
an encryption key and a decryption key, written as ek and dk, respectively.
There is a message set Mek which is associated with each encryption key.

2. Encryption algorithm E(ek,m); Takes in an encryption key ek and message
m ∈Mek and returns a ciphertext c.

3. Decryption algorithm D(dk, c); Takes in a decryption key dk and a ciphertext
c and returns a message m. In case of a decryption failure, the symbol ⊥ will
be shown.

Definition 2 The correctness of a public key encryption scheme is defined as
∀m ∈Mek, (ek, dk)←− K we have the following

D(dk, E(ek,m)) = m

Note that in PKE, the encryption key ek is the public key, while the decryption
key dk is the secret key. In other words, (ek, dk) = (pk, sk) where pk and sk
stand for public key and secret key, respectively.

Definition 3A digital signature scheme consists of three algorithms (K,S,V).

1. Key generation algorithm K; It does not take in anything. However, it returns
a signature and verification key, written as sk and vk, respectively. There is a
message set Msk or Mvk which is associated with each key.

2. Signing algorithm S(sk,m); Takes in a signing key sk and message m ∈Msk

and returns a signature σ.

3. Verification algorithm V(vk,m, σ); Takes in a verification key vk, a message
m ∈Mvk and the signature σ. It then returns 0 or 1. If 1 is shown, we look at
it as a valid signature, and if 0 is shown, then it is an invalid signature.

Definition 4 The correctness of the digital signature scheme is defined as the
following.
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V(vk,m,S(sk,m)) = 1
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Chapter 3

Matsumoto-Imai

Matsumoto and Imai were one of the first to come forward with a new idea in
1988 for MPKCs. Matsumoto and Imai’s new way of thinking brought much
attention when they proposed C* (or MI) in Eurocrypt88. The idea was based
on finding invertible maps on a field K (instead of in vector space kn), then
using this map as an invertible map over kn.

Because of this, their system MI showed high efficiency and potential for prac-
tical use. MI was even offered as a candidate for security standards for the
government of Japan. Nevertheless, Jacques Patarin was able to break MI be-
fore the final selections, where he used an algebraic attack that uses linearisation
equations.

This would typically be the end of a cryptosystem. However, MI had a vital role
in the field because of a new mathematical idea later explored and extended.
There have been new variants of the MI system with much potential. Sflash is
one of them. One can look at Matsumoto Imai as a catalyst for a new way of
handling MPKCs.

In this chapter, we will look at the construction of the Matsumoto Imai system
and a brief look at the signature scheme. Followed by an example and the attack
based on linearization equations done by Patarin.

3.1 Construction

Let k be a finite field of characteristic two, that is k = GF (2) and cardinality q.
Let g(x) ∈ k[x] be any irreducible polynomial of degree n. We define the field
K as k[x]/p(x), a degree n extension of k.

Definition 5 Let ϕ : K −→kn be the standard k-linear isomorphism between
K and kn, then its function is given by:

ϕ(a0 + a1x+ ...+ an−1x
n−1) = (a0, a1, ..., an−1)

6



Hence,

ϕ−1(a0, a1, ..., an−1) = a0 + a1x+ ...+ an−1x
n−1 =

n−1∑
i=0

aix
i

Now we have to pick θ, which has to satisfy these two conditions

0 < θ < n

and,

gcd(qθ + 1, qn − 1) = 1.

Now that θ is chosen, and the conditions are satisfied, then we can define our
map F over K, which is invertible because of the conditions of θ.

F (X) = X1+qθ

Assume that we have an integer t such that:

t(1 + qθ) ≡ 1mod(qn − 1) (3.1)

Then F−1 is given as:
F−1(X) = Xt

Proposition 1 The inverse of F (X) is Xt.

Proof

We know from number theory that

t(qθ + 1) ≡ 1mod(qn − 1)

= t(qθ + 1) = k(qn − 1) + 1.

Therefore,

Xt(qθ+1) = Xk(qn−1)+1 = Xk(qn−1)X.

We know that the degree of the extended field is qn. Using this information
together with Fermat’s Little Theorem we have,

Xt(qθ+1) = Xk(qn−1)+1 = Xk(qn−1)X = X.□

Because Xk(qn−1) = 1. □

Let F̃ be the map over kn defined by:

F̃ (x1, ..., xn) = ϕ ◦ F ◦ ϕ−1(x1, ..., xn) = (f̃1, ..., f̃n)

7



where f̃1, ..., f̃n ∈ k[x1, ..., xn].

Now, let L1 and L2 be two invertible affine transformations over kn.

F (x1, ..., xn) = L1 ◦ F̃ ◦ L2(x1, ..., xn) = (f1, ..., fn)

where f1, ..., fn ∈ k[x1, ..., xn]. This is for i = 1, ..., n. This encryption can be
done by anyone since the map F is the public key.

Key Generation The key generation of the MI construction returns a public
and a private key.

The public key is the field k, including its additive and multiplicative structure.
It also includes the map F (x1, ..., xn).

The private key consists of the two invertible affine transformations L1 and L2.
It can also include θ; however, it is unimportant. Because 0 < θ < n, and n
usually is not large, therefore hiding θ will not be necessary.

Encryption of MI

Given a plaintext p = (p1, ..., pn), the encrypted plaintext (ciphertext) will
be

(c1, ..., cn) = fi(p1, .., pn)

for i = 1, ..., n.

Decryption of MI

Since (c1, ..., cn) = fi(p1, .., pn) for i = 1, ..., n we can decrypt the ciphertext like
this:

F
−1

(c1, ..., cn) = L−1
2 ◦ F̃−1 ◦ L−1

1 (c1, ..., cn)

= L−1
2 ◦ ϕ ◦ F−1 ◦ ϕ−1 ◦ L−1

1 (c1, ..., cn).

Usually the components of F are of high degree; hence it is usual to decrypt the
ciphertext (c1, ..., cn) like this.

1. Compute (c′1, ..., c
′
n) = L−1

1 (c1, ..., cn)

2. Compute (c′′1 , ..., c
′′
n) = ϕ ◦ F−1 ◦ ϕ−1(c′1, ..., c

′
n)

3. Compute (p1, ..., pn) = L−1
2 (c′′1 , ..., c

′′
n)

Even though the person who decrypts the ciphertext only knows (L1, L2), he
still can find F−1. Because t will be known by solving (3.1)

Correctness of MI

We want to show the correctness of this MI scheme.

Recall from Definition 2 that the correctness of a public key encryption is defined
as:

8



D(dk, E(ek,m)) = m

From the MI construction we know that the encryption key (or public key) is
F = (f1, .., fn).

This means,

F (m) = L1 ◦ F̃ ◦ L2(m) = L1 ◦ ϕ ◦ F ◦ ϕ−1 ◦ L2(m)

and the decryption key (secret key) is (L1, L2) and the decryption algorithm
is:

L−1
2 ◦ ϕ ◦ F−1 ◦ ϕ−1 ◦ L−1(c)

where, the ciphertext c = (c1, ..., cn).

From the definition of correctness, we have

L−1
2 ◦ ϕ ◦−1 ◦ϕ−1 ◦ L−1

1 (L1 ◦ ϕ ◦ F ◦ ϕ−1 ◦ L2(m))

= L−1
2 ◦ ϕ ◦ F−1 ◦ ϕ−1 ◦ ϕ ◦ F ◦ ϕ−1 ◦ L2(m)

= L−1
2 ◦ ϕ ◦ F−1 ◦ F ◦ ϕ−1 ◦ L2(m)

= L−1
2 ◦ ϕ ◦ ϕ−1 ◦ L2(m)

= L−1
2 ◦ L2(m)

= m.

Hence the following theorem is proved:

Theorem 1 The Matsumoto Imai cryptosystem is correct.

MI signature scheme

Until now, we looked at MI as an encryption scheme, but for the sake of the
other schemes that we will look at later, we want to introduce the algorithm
of the MI signature scheme as well. However, it is not very different from the
encryption scheme.

Key Generation The key generation is the same as in the encryption scheme.
Hence, the public and private keys are the same as above.

Note In the signature scheme, we use sk as the signature key and vk as the verifi-
cation key but this is the same as the private and public key, respectively.

Signature Generation Let m = (m1, ...,mn) be a the document (or the hash
value of the document) that needs to be signed.

The way the document gets signed is by doing the following.

σ = (σ1, ..., σn) = F
−1

(m).
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To get the signature we need to calculate F
−1

(m). From the decryption algo-
rithm of MI, we have

F
−1

(m) = L−1
2 ◦ ϕ ◦ F−1 ◦ ϕ−1 ◦ L−1

1 (m).

Signature Verification

The recipient has to check if

F (σ) = m

where, σ = (σ1, ..., σn) and m = (m1, ...,mn)

Correctness of MI signature scheme

We want to check the correctness of the MI signature scheme just as we did
with the encryption scheme.

Correctness is defined as

V(vk,m,S(sk,m)) = 1.

Both the verification algorithm and signature algorithm are known, as shown
above. Hence we end up with the following.

L1 ◦ ϕ ◦ F ◦ ϕ−1 ◦ L2(L
−1
2 ◦ ϕ ◦ F−1 ◦ ϕ−1 ◦ L−1

1 (m))

= L1 ◦ ϕ ◦ F ◦ ϕ−1 ◦ ϕ ◦ F−1 ◦ ϕ−1 ◦ L−1
1 (m)

= L1 ◦ ϕ ◦ F ◦ F−1 ◦ ϕ−1 ◦ L−1
1 (m)

= L1 ◦ ϕ ◦ ϕ−1 ◦ L−1
1 (m)

= L1 ◦ L−1
1 (m)

= m.

The verification algorithm V will therefore return 1.

Hence we have proved the following theorem:

Theorem 2 The Matsumoto Imai signature scheme is correct.

3.2 Example

Now we will look at a small example. Let k = GF (2), with q = 2 elements.
Let K be degree 5 extension. Hence value of n = 5 and we choose θ = 4 since
1 < θ < n.

The field elements are {0, 1}. Now let g(x) = x5 + x2 + 1.

x5 + x2 + 1 is an irreducible polynomial in k[x].

The map F is given by

10



F (X) = X24+1.

Now, we find t by solving

(1 + 24)t ≡ 1mod(25 − 1)

17t ≡ 1mod(31).

Solving this, gives t = 11.

Now we can find the inverse map as well, that is

F−1(X) = Xt = X11.

Now we need to define L1 and L2 such that we can hide F . We want L1 and
L2 be invertible maps.

Let L1 and L2 be given by:

L1 =


0 1 1 0 1
0 0 0 0 1
0 0 1 1 0
1 1 0 0 1
0 1 1 1 0

L2 =


0 1 1 0 0
1 1 0 1 1
0 0 0 1 0
1 0 0 1 0
1 0 0 1 1


.

Assume we have a plaintext

p = [1, 0, 0, 1, 1]T .

We need to multiply our plaintext with L2.

This gives us

L2(p) =


0 1 1 0 0
1 1 0 1 1
0 0 0 1 0
1 0 0 1 0
1 0 0 1 1




1
0
0
1
1

 =


0
1
1
0
1

 .

Now we apply ϕ−1 to L2(p)

ϕ−1(L2(p)) = 0 + (1)x+ (1)x2 + (0)x3 + (1)x4.

Here the coefficient in front of the xi’s is the ai’s, which was shown in the
definition of ϕ.

We can now apply F to ϕ−1(L2(p)).
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F(ϕ−1(L2(p)) = (ϕ−1 ◦ L2(p))
qθ+1

= (ϕ−1 ◦ L2(p))
24 · (ϕ−1 ◦ (L2(p))

= (x + x2 + x4)16 · (x+ x2 + x4).

With the help of the irreducible polynomial g(x) = x5 + x2 +1 and a computer
program, we can simplify this large expression, which yields

F (ϕ−1(L2(p)) = 1 + x+ x2.

Now we use the function ϕ.

ϕ(F (ϕ−1(L2(p)))) =


1
1
1
0
0


Multiply the vector with L1.

L1(ϕ(F (ϕ−1(L2(p))))) =


0 1 1 0 1
0 0 0 0 1
0 0 1 1 0
1 1 0 0 1
0 1 1 1 0




1
1
1
0
0

 =


0
0
1
0
0

 .

This is the ciphertext that corresponds to the plaintext p = [1, 0, 0, 1, 1]T .

We want to decrypt this ciphertext to show that we obtain the plaintext after
the decryption.

To decrypt the ciphertext c = [0, 0, 1, 0, 0]T we do the following.

L−1
2 (ϕ(F−1(ϕ−1(L−1

1 (c))))).

We start by taking composing the inverse of L1 with the ciphertext c.

L−1
1 (c) =


0 1 1 1 1
0 0 1 0 1
1 1 1 0 1
1 1 0 0 1
0 1 0 0 0




0
0
1
0
0

 =


1
1
1
0
0

 .

Further, calculate ϕ−1(L−1
1 (c)).

ϕ−1((L−1
1 (c)) = 1 + x+ x2.

Now, we use the map F−1, which gives
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F−1(ϕ−1(L−1
1 (c))) = (ϕ−1(L−1

1 (c)))t = (ϕ−1 ◦ (L−1
1 (c)))11

= (1 + x+ x2)11 = x+ x2 + x4.

Now we have found F−1(ϕ−1(L−1
1 (c))). We will use the function ϕ to ob-

tain

ϕ(F−1(ϕ−1(L−1
1 (c)))) =


0
1
1
0
1

 .

Now multiply this with L−1
2 .

L−1
2 (ϕ(F−1(ϕ−1(L−1

1 (c))))) =


0 0 1 1 0
0 1 0 0 1
1 1 0 0 1
0 0 1 0 0
0 0 0 1 1




0
1
1
0
1

 =


1
0
0
1
1

 .

This is the plaintext we started with before encrypting it.

3.3 Linearization equation attack

This section will look at Patarin’s attack against the Matsumoto Imai cryp-
tosystem. Under we will define a linearization equation (LE).

Definition 6 Let F = {f1, ..., fm} be the public key of a multivariate public
key cryptosystem. A linearization equation for F is any polynomial equation in
k[p1, ..., pn, c1, ..., cm] of the form

n∑
i=1

m∑
j=1

αijpicj +

n∑
i=1

βipi +

m∑
j=1

γjcj + δ

such that, when we substitute the plaintext/ciphertext pair (p, c) in the lin-
earization equations, we get the zero. Also, when substituting a ciphertext
(c1, ..., c1) into the linearization equation, we get a linear equation in the plain-
text variables p1, ..., pn. This means substituting a random ciphertext into cj ,
yields a linear equation with only the pi’s as variables.

The question is, how do we use these linearization equations to break the Mat-
sumoto Imai system?

It is done by doing the following.

First we need to compute (m+ 1)(n+ 1) plaintext/ciphertext pairs (p1, c1), ...,
(p(m+1)(n+1), c(m+1)(n+1)) We compute these pairs by choosing some random

plaintexts pi and then compute F (pi) = ci, for i = 1, ..., (m+ 1)(n+ 1).

13



After computing (m+ 1)(n+ 1) plaintext/ciphertext pairs, then substitute the
pairs, into the linearization equations, such that we obtain a linear system
with the coefficients αij , βi, γj , δ. Then we have bilinear equations b1, ..., bk
(where b1, ..., bk are all linearly independent) with the variables p1, ..., pn and
c1, ..., cm.

Then we substitute the challenge ciphertext c∗ into the equations b1, ..., bk and
then we obtain linear equations in the plaintext variables p1, ..., pn.

Patarin proposed the linearization equations attack against the Matsumoto Imai
cryptosystem. Remember in the standard Matsumoto Imai system, m = n
and,

Y = F (X) = Xqθ+1,

for X,Y ∈ K.

Raise both sides to the power of qθ − 1 this gives

Y qθ−1 = (Xqθ+1)q
θ−1

Y qθ−1 = X(qθ+1)(qθ−1)

Y qθ−1 = X(2qθ−1).

Now multiply both sides by XY , this yields

XY qθ = Xq2θY,

this is the same as

XY qθ −Xq2θY = 0.

We now define R(X,Y ) ∈ K[X,Y ] by

R(X,Y ) = XY qθ −Xq2θY = 0,

and we define R̃ as

R̃ = ϕ ◦R ◦ (ϕ−1 × ϕ−1).

Looking at R̃, when substituting a plaintext/ciphertext pair, R̃ will equal zero

because of the Frobenius isomorphism. We have the case that X −→ Xqθ and

Y −→ Y q2θ is linear. When substituting one of the pairs, we will achieve n
linear equations with degree 1. This is both for the values in X and Y . Hence
this demonstrates that R̃ consists of a set of L linear equations. Note that L is
a vector space since it is closed under addition and multiplication.

We have shown that there exists a set of linear equations, from R̃. Now the ques-
tion is, how many linearly independent equations do we get after substituting a
ciphertext in R̃.

14



Lemma 1 For a fixed Ỹ ∈ K there exists at most, qgcd(θ,n) different values of
X ∈ K such that

R(X, Ỹ ) = 0

.

Proof

We have the following.

XỸ qθ = Xq2θ Ỹ

this gives for Ỹ ̸= 0

Ỹ qθ−1 = Xq2θ−1.

And this has at most gcd(q2θ − 1, qn − 1) different solutions for X in K,
now,

gcd(q2θ − 1, qn − 1) = gcd((qθ − 1)(qθ + 1), qn − 1)

= gcd(qθ − 1, qn − 1)gcd(qθ + 1, qn − 1) = gcd(qθ − 1, qn − 1).

This is because of the condition we had in the construction that gcd(qθ+1, qn−
1) = 1.

This means XỸ qθ = Xq2θ Ỹ has at most gcd(qθ − 1, qn − 1) + 1 (we have +1
because of the trivial solution).

However,

gcd(qθ − 1, qn − 1) = qgcd(θ,n) − 1

.

Meaning, number of solutions is at most qgcd(θ,n). □

This means when substituting a ciphertext c∗ we get at most qgcd(θ,n), this
forms a space of a dimension less than qgcd(θ,n), hence there will be n−gcd(θ, n)
linearly independent equations.

However, we are interested in seeing how many linearly independent equations
we receive in the plaintext variables when we substitute the challenge cipher-
text.

Theorem 3 Let F be a Matsumoto Imai public key, after substituting the
challenge ciphertext ĉ ∈ kn 0}, in the linearization equations from F , we get at
least

n− gcd(n, θ) ≥ 2n

3
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linearly independent linear equations, in the plaintext variable, p1, ..., pn.

Proof

To prove this, we have to introduce some notations.

L is the space of linearization equations derived from the map F̃ .

L is the space of linearization equations derived from the public key map
F .

Lc∗ is the space of linear equations, with plaintext variables, that we derive after
substituting the ciphertext c∗ into the linearization equations from L.

Lc∗ is the space of linear equations, with plaintext variables, that we derive after
substituting the ciphertext c∗ into the linearization equations from L.

Remark: There are a few different notations used in this sub chapter. However,
these are the difference the reader should know p, c are generally speaking plain-
text, ciphertext. p∗, c∗ some chosen plaintext,ciphertext. ĉ challenger ciphertext,
i.e., the ciphertext whose plaintext we want to find.

As we can see, the linearization equations derived from R̃ are contained in L.
We know that the dimension of Lc∗ is n− gcd(n, θ) because of Lemma 1, where
we showed the substitution of a fixed ciphertext for the linearization equations
in L. Now our task is to show that.

dim(Lc∗) = n− gcd(n, θ) ≥ 2n

3
.

We will prove the theorem by using three Lemmas.

Lemma 2

dim(L) = dim(L)

.

Proof

We want to find a bijection between these two spaces, that is, a bijection be-
tween L,L. This bijection will show the equality between the spaces, i.e., show
that the dimension of the spaces is the same. We start by assuming one of the
transformations is the identity, while write the other transformation using coef-
ficients and variables (because we want to have it in polynomial form), then we
start with one of the sets F̃ = (f̃1, ..., f̃n), F = (f1, ..., fn), and do linearization
equations for this set, using the form in (Definition 6). After substituting the
transformation, we want to rearrange the linearization equation such that it can
be passed on to the other set. Doing this for both sets will lead to a bijection,
showing that the dimensions are the same.

First, assume L2 is the identity matrix. This gives

f i(p1, ..., pn) =

n∑
j=1

sij f̃i(p1, ..., pn) + si0.
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Now, let

r =

n∑
i=1

n∑
j=1

αijpicj +

n∑
i=1

βipi +

m∑
j=1

γjcj + δ

be the linearization equation for the public polynomials (f1, ..., fn), hence when
substituting plaintext/ciphertext pair (p∗, F (p∗)), we get 0. Meaning,

0 =

n∑
i=1

n∑
j=1

αijp
∗
i f j(p

∗) +

n∑
i=1

βip
∗
i +

m∑
j=1

γjf j(p
∗) + δ

=

n∑
i=1

n∑
j=1

αijp
∗
i (

n∑
k=1

sjkf̃k(p
∗) + sj0) +

n∑
i=1

bip
∗
i +

m∑
j=1

γj(

n∑
k=1

sjkf̃k(p
∗) + sj0) + δ

=

n∑
i=1

n∑
j=1

α′
ijp

∗
i f̃j(p

∗) +

n∑
i=1

β′
ip

∗
i +

m∑
j=1

γ′
j f̃j(p

∗) + δ′.

The second equality shows the substitution, while the third equality shows the
rearrangement, we now have linearization equations for the other set, in this
case, the set of (f̃1, ..., f̃n).

The same goes for F̃ = L−1
1 ◦ F , meaning when we start with linearization

equations in the set F̃ = (f̃1, ..., f̃n), we can get linearization equations for
F̃ = L−1

1 ◦ F .

Hence there is an isomorphism between the spaces F̃ and F this implies both
spaces have the same dimension.

Now, assume L1 is the identity matrix. This leaves us with F = F̃ ◦ L2.

Let,

pi = L2(p)i =

n∑
j=1

tijpj + ti0

this means,

f i(p1, ..., pn) = f̃i(p1, ..., pn)

.

We do the same as above by having r as the linearization equation for polyno-
mials f̃i.

0 = r(p∗, F̃ (p∗)) =

n∑
i=1

n∑
j=1

αijp
∗
i f̃j(p

∗) +

n∑
i=1

βip
∗
i +

m∑
j=1

γj f̃j(p
∗) + δ.
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The invertible change of variables above, amounts to a perturbation of kn, which
gives

0 =

n∑
i=1

n∑
j=1

αijp∗i f̃j(p
∗) +

n∑
i=1

βip∗i +

m∑
j=1

γj f̃jp∗) + δ.

Because of f i(p1, ..., pn) = f̃i(p1, ..., pn) we have,

0 =

n∑
i=1

n∑
j=1

αijp∗i f j(p
∗) +

n∑
i=1

βip∗i +

m∑
j=1

γjf j(p
∗) + δ.

Now we get the following, because of pi = L2(p)i =
∑n

j=1 tijpj + ti0.

0 =

n∑
i=1

n∑
j=1

α′
ijp

∗
i f j(p

∗) +

n∑
i=1

βip
∗
i +

m∑
j=1

γjf j(p
∗) + δ.

This an linearization equation for the public polynomials.

The same way goes for F̃ = F ◦ L−1
2 . □

Lemma 3

Lc∗ = Lc∗ .

From Lemma 2, we saw that there is a bijection between L and L, this means
there is an bijection between Lc∗ and Lc∗ . □

We know from Lemma 1, that the dimension of Lc∗ = n−gcd(n, θ), from Lemma
3 we saw that dim(Lc∗) = dim(Lw∗), now we need to show the lower bound for
the dimension.

Lemma 4 For the Matsumoto Imai cryptosystem, we have

n− gcd(n, θ) ≥ 2n

3
.

Proof

We want to prove that gcd(n, θ) has to be less or equal to n
3 . This is done by

showing that it cannot be either n or n/2.

From the construction of Matsumoto Imai system, we defined θ as 1 < θ < n
meaning θ ̸= n.

If gcd(n, θ) = n
2 then θ has to be n

2 , however if θ = n
2 , then

gcd(qn−1, qθ+1) = gcd(q(n/2+1)(n/2−1), q(n/2+1)) = q(n/2+1) > 1.

Which is a contradiction, since θ was chosen such that gcd(qn−1, qθ+1) = 1.
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Therefore, gcd(n, θ) ≤ n
3 □

Hence, with the help of Lemma 2− 4, Theorem 3 is proved. □
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Chapter 4

Oil and Vinegar Signature
Scheme

As mentioned in the chapter of Matsumoto Imai, the role of their cryptosystem
had much effect on future systems. One of these systems was the Oil and Vinegar
signature scheme, which Patarin proposed in 1997. He converted the lineariza-
tion equation attack on MI into the Oil Vinegar signature scheme.

The system is based on hiding quadratic equations consisting of ”Oil” variables
and ”Vinegar” variables over a finite field k, using linear secret functions.

A difference between Oil Vinegar and Matsumoto Imai is that the private poly-
nomials are random in Oil Vinegar but not in Matsumoto Imai. Hence in Oil
Vinegar, the map of private polynomials F will not be composed with random
invertible matrices on both sides, just one. Both operate with quadratic polyno-
mials; however, in Matsumoto Imai, we did a field extension, but this is not the
case in the Oil Vinegar scheme. Also, Matsumoto Imai has both an encryption
system and a signature scheme, while Oil Vinegar only has a signature scheme.
This is because of the algorithm for finding the inverse of the map F .

In this chapter, we will study the construction of the Oil Vinegar signature
scheme, followed by an example both for the balanced and unbalanced cases, and
end the chapter by looking at the attack by Kipnis and Shamir using invariant
subspaces.

4.1 Construction of Oil and Vinegar

Definition 7 An Oil-Vinegar polynomial is any polynomial with a total degree
of two f ∈ k[x1, .., xo, x̃1, .., x̃v] of the form.

f =

o∑
i=1

v∑
j=1

aijxix̃j +

v∑
i=1

v∑
j=1

bij x̃ix̃j +

o∑
i=1

cixi +

v∑
j=1

dj x̃j + e,

where aij , bij , ci, dj , e ∈ k.
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Definition 8 Let F : kn −→ ko be a polynomial map of the form.

F (x1, ...xo, x̃1, ..., x̃v) = (f1, ..., fo),

where the f1, ..., fo ∈ k[x1, ..., xo, x̃1, ..., x̃v] are Oil and Vinegar polynomials.
Then F is called an Oil-Vinegar map.

The main idea of the Oil-Vinegar map F is that we want to invert this map
for a fixed vector (for instance m = (m1, ...,mo) ∈ ko), we do this by choosing
randomly (or if we are given) a vector (x̃′

1, ..., x̃
′
v) that we assign to the Vinegar

variables. This will give us a set of linear equations of just Oil variables given
by

F (x1, ..., xn, x̃1, ..., x̃n) = (m1, ...,mo).

The inverse is of (m1, ...,mo) under F is given by

F−1(m1, ...,mo) = (x∗
1, ...x

∗
o).

Let us take a closer look at the Oil-Vinegar map F .

Assume again that we have (m1, ...,mo) ∈ ko which is a fixed vector and the
Vinegar variables (x̃′

1, ..., x̃
′
v) ∈ kv, which we will give some value, leaving us

with (x∗
1, ..., x

∗
o) that satisfies

F (x∗
1, ..., x

∗
o, x̃

′
1, ..., x̃

′
v) = (m1, ...,mo).

The inverse is given as

F−1(m1, ...,mo) = (x∗
1, ..., x

∗
o).

Notice that the notation of F−1 does not show that we depend on the value of
(x̃′

1, ..., x̃
′
v) ∈ kv, however we will only be concerned whether or not F−1(m1, ...,mo)

exists for a given value of (x̃′
1, ..., x̃

′
v).

From here, we choose the map F and then hide it. This is done by using an
invertible and affine map L : kn −→ kn, which is of the form

(x1, ..., xo, x̃1, ..., x̃v) = L(z1, ..., zn).

Then this is composed with the Oil Vinegar map F .

That leaves us with the map F : kn −→ ko defined by

F = F ◦ L = (f1, ..., fo).

Key Generation The key generation returns a public key (the verification key)
and a secret key (the signature key).
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The public key consists of the field k, including the additive and multiplicative
structure. Also the map F = F ◦ L.

The private key consists of the invertible affine transformation L : kn −→ kn

and the Oil Vinegar map F .

Signature Generation:

Let m = (m1, ...,mo) ∈ ko be a document (or the hash of a document) that
needs to be signed. The signer has to first compute

(x∗
1, ..., x

∗
o) = F−1(m1, ...,mn)

for some random choice of (x̃′
1, ..., x̃

′
v) ∈ kv.

This is the same as solving the linear system

F (x1, ..., xo, x̃1, ..., x̃v) = (m1, ...,mo).

(Because, as we mentioned above, we choose random values for the Vinegar
variables, leaving us with the linear equations with only Oil variables).

The signer now computes the signature of (m1, ...,mo) as

σ = (σ1, ..., σn) = L−1(x∗
1, ..., x

∗
o, x̃1, ..., x̃v).

Signature Verification:

To check if σ = (σ1, ..., σn) is a valid signature for the message (m1, ...,m
′
o) the

recipient simply see if

F (σ1, .., σn) = (m1, ...,mo).

Correctness of the Oil Vinegar signature scheme

We want to look at the correctness of the Oil Vinegar signature scheme. From
Definition 4 we have that correctness of a signature scheme is

V(vk,m,S(sk,m)) = 1.

Where vk and sk are the verification key and signature key, respectively.

The verification key vk is F = F ◦L, and the signature key sk is F and L. Since
the signature σ = L−1 ◦ F−1(m), we simply need to show

F ◦ L(L−1 ◦ F−1(m))

= F ◦ F−1(m)

= m.

The verification algorithm V will return 1.
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Hence, the following theorem is proved:

Theorem 4 The Oil and Vinegar Signature Scheme is correct.

4.2 Example o = v

We will look at a small example of the Oil Vinegar signature scheme.

We will use GF (2) like we did in the MI example. Let n = 6 since this is a
scheme where o = v, we have that o = v = 3. Let

x = [x1, x2, x3, x̃1, x̃2, x̃3].

Since o = 3, there will be three random polynomials f1, f2, f3 of the form shown
in Definition 7. The polynomials are shown below.

f1 = x1x̃1 + x1x̃2 + x2x̃1 + x2x̃2 + x3x̃2 + x3x̃3 + x̃1x̃3 + x̃2
2 + x̃2

3.

f2 = x1x̃1 + x1x̃3 + x2x̃2 + x2x̃3 + x3x̃1 + x̃2
1 + x̃1x̃2 + x̃1x̃3 + x̃2

2 + x̃2x̃3 + x̃2
3.

f3 = x1x̃3 + x2x̃2 + x2x̃3 + x3x̃3 + x̃1x̃1 + x̃2
3.

Now we want to write these functions in bilinear form fi = xTQix for i =
1, 2, 3.

Q1 =


0 0 0 1 1 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1



Q2 =


0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1



Q3 =


0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1


Let L be an invertible linear transformation in matrix form given by

x = Lz. Where z = [z1, z2, ..., z6]
T .
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L =


0 1 1 0 1 1
0 0 0 0 1 1
0 0 1 1 0 1
1 1 0 0 1 0
1 0 1 1 1 0
1 0 0 0 1 0

L−1 =


0 1 1 0 1 0
0 0 0 1 0 1
1 1 0 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1
0 0 1 0 1 1

 .

f i(z1, ..., zn) = fi(x1, .., xo, x̃1, ..., x̃v)

zTQiz = xTQix

zTQiz = (Lz)TQi(Lz)

zTQiz = zT (LTQiL)z

This means that we can calculate

f i = zTQiz = zT (LTQiL)z

for i = 1, 2, 3.

The set of these new polynomials is the public key for this scheme.

f1 = z21 + z2z1 + z22 + z2z4 + z2z5 + z23 + z3z4 + z5z4 + z25

f2 = z2z3 + z2z5 + z3z1 + z23 + z4z1 + z24 + z6z1 + z6z3 + z6z4 + z6z5

f3 = z1z2 + z22 + z4z1 + z5z1 + z5z2 + z5z3 + z25 + z6z3 + z6z4.

Now that we have our public key, which consists of F = (f1, f2, f3), then use
this to get our signature σ, and then verify it.

Let m = (m1,m2,m3) = (0, 1, 1) and the signature is σ = (σ1, .., σ6).

We start by choosing random values for the vinegar variables

(x̃1, x̃2, x̃3) = (1, 1, 0)

so that we can find a valid signature σ . In this case a valid signature means
that we find a solution for the linear system fi(x1, x2, x3, 1, 1, 0) = mi. If the
system doesn’t have any solutions, we will try again but with different values
for the vinegar variables (x̃1, x̃2, x̃3).

We substitute the vinegar variables in F = (f1, f2, f3) this leaves us with

f1(x1, x2, x3, 1, 1, 0) = x3 + 1

f2(x1, x2, x3, 1, 1, 0) = x1 + x2 + x3 + 1

f3(x1, x2, x3, 1, 1, 0) = x2 + 1.

Now we write fi(x1, x2, x3, 1, 1, 0) = x′
i, hence leaving us with
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x3 + 1 = 0

x1 + x2 + x3 + 1 = 1

x2 + 1 = 1

After solving the linear system, we get the following.

(x1, x2, x3) = (1, 0, 1).

(Remember we are working in GF (2), so we have x3 = 1 for instance).

Before sending our signature σ and our message m, we want to check that there
are not any mistakes by verifying if

F (1, 0, 1, 1, 1, 0) = (0, 1, 1).

After that, we find our signature σ that is

σ = (σ1, .., σ6) = L−1(1, 0, 1, 1, 1, 0) = (0, 1, 0, 1, 0, 0).

We send the pair (σ,m) to the verifier, and the signature gets verified if

F (0, 1, 0, 1, 0, 0) = (0, 1, 1).

4.3 Example o = 2v (UOV)

The Oil-Vinegar schemes can be divided into three groups. These are bal-
anced Oil-Vinegar, unbalanced Oil-Vinegar, and Rainbow (multilayer construc-
tion that uses Oil-Vinegar at each layer). We have talked about the general
construction of the Oil-Vinegar scheme (this goes for both balanced and unbal-
anced cases), and in the next chapter, we will talk about Rainbow. However,
there will be a brief introduction of the unbalanced Oil and Vinegar scheme,
with an example.

In UOV o ̸= v, i.e., the amount of Oil variables differs from that of Vinegar
variables.

The construction of the scheme is quite similar to the balanced OV construction.
We have in total n = o+v variables. A map L, that is invertible and maps from
kn −→ kn. The public key consists of o - polynomials, just as in the balanced
Oil Vinegar scheme. We will look at an example where o = 2v.

Let n = 6, this means o = 2, v = 4. We use GF (2) as we have done earlier,
where the elements are {0, 1}.

Let
x = [x1, x2, x̃1, x̃2, x̃3, x̃4].

Where x1, x2 are Oil variables, while x̃1, x̃2, x̃3, x̃4 are Vinegar variables.

Again we define two polynomials with the form from Definition 6.
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f1 = x1x̃2+x1x̃4+x2x̃1+x2x̃3+x2x̃4+ x̃2
1+ x̃1x̃2+ x̃1x̃3+ x̃2

2+ x̃2x̃3+ x̃3x̃4+ x̃2
4.

f2 = x1x̃1 + x1x̃3 + x2x̃4 + x̃1x̃2 + x̃1x̃3 + x̃2
2 + x̃2

3 + x̃3x̃4 + x̃4x̃1 + x̃2
4.

Now we want to write these functions in bilinear form fi = xTQix

Q1 =


0 0 0 1 0 1
0 0 1 0 1 1
0 0 1 1 1 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 1

Q2 =


0 0 1 0 1 0
0 0 0 0 0 1
0 0 0 1 1 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 1 0 0 1


We will use the same invertible map L as in the example above.

Further, we calculate f i = zTQiz = zT (LTQiL)z for i = 1, 2. This is just the
same process as we did in the example above.

The set F of these new polynomials is the public key for this scheme.

f1 = z1z2 + z2z3 + z3z6 + z4z5 + z4z6 + z5z4 + z5z6.

f2 = z1z2 + z22 + z3z1 + z3z2 + z3z5 + z4z2 + z5z2 + z6z4 + z6z5.

Again assume we want to send a message m = (m1,m2) = (1, 0) and the signa-
ture is σ = (σ1, .., σ6). Now that there are only two Oil variables, = (m1,m2)
rather than m = (m1,m2,m3) which we had in our example above.

We start by choosing random values for the vinegar variables so that we can
find a valid signature σ.

(x̃1, x̃2, x̃3, x̃4) = (1, 0, 1, 1).

Substitute the vinegar variables in F this leaves us with

f1(x1, x2, 1, 0, 1, 1) = x1 + x2,

f2(x1, x2, 1, 0, 1, 1) = x2 + 1.

Now we set fi(x1, x2, 1, 0, 1, 1) = mi.

x1 + x2 = 1,

x2 + 1 = 0.

It is easily seen that x1 = 0 and x2 = 1.
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Remark: As the example above if there isn’t a solution for the linear sys-
tem fi(x1, x2, 1, 0, 1, 1) = mi, then we go back and choose other vinegar vari-
ables.

Next, we want to check if there have not been any mistakes, we will check
if

F (0, 1, 1, 0, 1, 1) = (1, 0).

Now we find our signature.

σ = (σ1, .., σ6) = L−1(0, 1, 1, 0, 1, 1)T = (1, 1, 0, 0, 0, 1).

We send the pair (σ,m) and verify that

F (1, 1, 0, 0, 0, 1) = (1, 0).

4.4 Attack on the Balanced OV Signature Scheme

This section will look at the potent attack that Kipnis and Shamir proposed.
This is against the Oil and Vinegar scheme where n = 2o, i.e., the balanced
case. The goal is to find an equivalent key such that the forger can generate
signatures for random messages. To simplify the description of the attack, we
assume that the components of map F are homogeneous quadratic polynomials.
F = F ◦ L will be a homogeneous quadratic map too.

Definition 9 We define the Oil subspace O in kn to be

O = {(x1, ..., xo, 0, ..., 0)|xi ∈ k}.

Definition 10 We define the Vinegar subspace V in kn to be

V = {(0, ..., 0, x̃1, ..., x̃v)|x̃i ∈ k}.

In the balanced Oil Vinegar case, the subspace of the vectors in kn in which the
second half only contains zeros are in O, and for all vectors in kn in which the
first half only contains zeros are in V.

In this case, we have (o = v) and,

2o = 2v = o+ v = n.

Remark: To arrive at a common understanding of forgery, we will define the
term below.

Forgery is a valid signature, which was created without the signing key.

What we want to achieve when attacking the balanced Oil Vinegar scheme is to
forge the signature by recovering a key that is equivalent to the original private
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key. This can be done with symmetric matrices for the corresponding quadratic
form from the different polynomial in the public key.

We first look at the case where k is not of characteristic two. Later the case of
characteristic two will be shown.

As described in section 4.1, we have F = F ◦ L where, F : kn −→ ko. F is the
Oil Vinegar mapping with the components f1, ..., fo ∈ k[z1, ..., zn]. F and L are
the private keys.

We define z = (z1, ..., zn)
T as a n-dimensional column vector and x = (x1, ..., xo, x̃1, ..., x̃o)

T

is also a n-dimensional column vector, it is n-dimensional because o + v =
n.

We also have x = Lz,

where L is a linear invertible n× n matrix.

As we defined at the start of this section, we will use O as the Oil space and V
as the Vinegar space of F.

We want to find an invertible linear map L′ : kn −→ kn such that

L′ ◦ L−1(O) = O.

Then we calculate a new Oil Vinegar map F ′ : kn −→ ko defined by

F ′ = F ◦ (L′)−1.

This can be done since F is the public key.

The attacker can now use F ′ and L′ to forge signatures because we have the
following.

F ◦ L = F = F ′ ◦ L′.

Now we write each quadratic part of each fi(z1, ..., zn) as qi(z1, ..., zn) for i =
1, ..., o. As mentioned above we are now working with k, which is not of char-
acteristics two, hence there exists a unique symmetric matrix Qi of size n× n,
that can be used to represent qi(z1, ..., zn), the following way

zTQiz.

The same goes for every fi(x1, ..., xo, x̃1, ..., x̃o), we represent every qi for i =
1, ..., o as

xTQix.

The unique form of Qi is
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Qi =

(
0 Bi1

B1i Bi2

)
.

Hence, the intention is to write the polynomials in bilinear form, where the
square matrix is symmetric.

Qi is of size n×n, and the four submatrices 0, Bi1, B
T
1i, Bi2 are of size o×o. The

upper left o × o submatrix is a zero matrix because, from the definition of Oil
Vinegar polynomials, no Oil variable is multiplied by another Oil variable.

We want to turn our attention to the relation between Qi and Qi.

We know that

f i(z1, ..., zn) = fi(x1, ..., xo, x̃1, ..., x̃o)

zTQiz = xTQix

zTQiz = zT (LTQiL)z.

This means that

Qi = LTQiL,

and rearranging the equation makes

Qi = (L−1)TQiL
−1.

Lemma 5 For any u1, u2 ∈ O

uT
1 Qiu2 = 0

and, for any w1, w2 ∈ L−1(O) we have

wT
1 Qiw2 = 0.

Proof: The first equation results from the definition of an Oil and Vinegar
polynomial. Qi is a matrix whose upper left o×o submatrix only contains zero.
When this is multiplied with a column vector whose second half only contains
zero, then we get a column vector whose first half only contains zero. Since,
u1, u2 ∈ O, then we can write them as u1 = (∗, 0)T same for u2.

uT
1 Qiu2 =

(
∗ 0

)( 0 Bi1

B1i Bi2

)(
∗
0

)

=
(
∗ 0

)( 0
∗

)
=

(
0
)
.

29



The second equation; w1 ∈ L−1(O), this means w1 = L−1 ◦ w′
1, where w′

1 ∈ O,
the same goes for w2. Since Qi = LTQiL we have the following

wT
1 Qiw2

= (L−1 ◦ w′
1)

TLTQiL(L
−1 ◦ w′

2)

= w′T
1 ◦ (LT )−1LTQiLL

−1 ◦ w′
2

= w′T
1 ◦Qi ◦ w′

2 = 0. □

We want to find the pre-image of the Oil subspace under the map L.

Lemma 6

Let H : kn −→ kn be a linear transformation such that

H =

(
0 ∗
∗ ∗

)
.

1) H(O) ⊂ V.

2) If H is invertible, then we have H(O) = V and H−1(V) = O.

Proof

1)Let u1 be defined as in Lemma 5.

H(u1) =

(
0 ∗
∗ ∗

)(
∗
0

)
=

(
0
∗

)
∈ V.

From definition of a Vinegar subspace, we can clearly see that H(O) ⊂ V.

2)We know from 1) that H(O) ⊂ V. However since H is invertible, the image
space of H(O) has dimension o, and therefore it has to be H(O) = V and
H−1(V) = O. □

Let Q be the subspace of matrices spanned by the Qi and let Q be the subspace
spanned by Qi. Let W 1 and W 2 be two non-singular elements in Q, and let W1

and W2 be the corresponding matrices in Q.

Because of earlier definitions of Qi and Qi, we know W i is of the form

W i = LTWiL = LT

(
0 Wi1

WT
i1 Wi2

)
L.

We achieve this because W i is a linear combination of the Q
′
is.

While its inverse is

30



W
−1

i = (LTWiL)
−1 = L−1 1

−Wi1WT
i1

(
Wi2 −Wi1

−WT
i1 0

)
(L−1)T

= L−1

(
−W−1

i1 (WT
i1)

−1Wi2 (WT
i1)

−1

W−1
i1 0

)
(L−1)T .

Next we define W ij = W
−1

i W j .

W
−1

i W j = ((LTWiL)
−1)(LTWjL) = L−1W−1

i (LT )−1LTWjL = L−1

(
−W−1

i1 (WT
i1)

−1Wi2 (WT
i1)

−1

W−1
i1 0

)(
0 Wj1

WT
j1 Wj2

)
L = L−1

(
V11 V12

0 V22

)
L.

Where,

V11 = (WT
i1)

−1WT
j1,

V12 = −W−1
i1 (WT

i1)
−1Wi2Wj1 + (WT

i1)
−1Wj2,

V22 = W−1
i1 Wj1.

Now we will define what an invariant subspace is.

Definition 11 Let G be a k-vector space and let D : G −→ G be a linear
transformation on G. A linear subspace C ⊂ G is called an invariant subspace
for D if

D(c) ∈ C∀c ∈ C.

Corollary 1 The Oil subspace, is a common invariant subspace of all matrices
W12 = W−1

1 W2.

Proof

The form of W2 is

W2 =

(
0 W21

WT
21 W22

)
.

The exact form as the Qi matrices we talked about earlier.

While

W−1
1 =

(
−W22W

T
21

−1W−1
21 WT

21

W21 0

)
.

Now, let u1 be the same as described earlier.

W12 = W−1
1 W2(O) =

(
−W22W

T
21

−1W−1
21 WT

12

W12 0

)(
0 W21

WT
21 WT

22

)(
∗
0

)
.

We know from Lemma6, 1) that the first composition ofW2(u1) gives an element
in the Vinegar subspace of the form w′ = (0, ∗)T . Now W−1

1 composed with w′

will give
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W−1
1 (w′)

(
−W22W

T
21

−1W−1
21 WT

12

W12 0

)(
0
∗

)
=

(
∗
0

)
∈ O.

Hence, O is a common invariant subspace for W12 = W−1
1 W2 where, W1,W2

are linear combinations of the matrices Qi. □

Theorem 5 The space L−1(O) is a common invariant subspace of all the ma-

trices W 12 = W
−1

1 W 2.

Proof

W 12 = W
−1

1 W 2 = L−1V L.

Where V is the matrix

(
V11 V12

0 V22

)
.

The matrix V has the same form as the matrix W12. We know from Lemma 5
that O is an invariant subspace of W12. Hence we get

W 12(L
−1(O)) = W

−1

1 W 2(L
−1(O)) = L−1V L(L−1(O)) = L−1V (O) = L−1(O). □

By using linear algebra, we can be able to find the subspace of L−1(O). After
we have found L−1(O), we can use the relevant parts of the transformation L
in F = F ◦ L so that we can forge signatures for random messages. We will be
looking at an algorithm for finding the space L−1(O).

The idea is the following we want to find a random linear combination W 1 and
W 2 of the matrices Qi that represents the bilinear form of the public polyno-
mials. Where W 1,W 2 ∈ Ω. We define Ω as the span(Q1, ..., Qo). Then find

W 12 = W
−1

1 W 2.

After finding W 12, the algorithm then finds the minimal invariant subspace (in-
variant subspace that does not contain any non-trivial invariant subspaces) of
this matrix. The subspaces correspond to the irreducible factors of the charac-
teristic polynomial of W 12. However, each of these minimal invariant subspaces
may not be a subspace of L−1(O). But this can be checked quickly due to
Lemma 5 We keep continuing this process until we have o independent basis
vectors for L−1(O).

Therefore the way of breaking the Oil Vinegar scheme is like this.

1. Write down the symmetric matrices Qi that are associated with fi for i =
1, .., o, where f i is the i′th public polynomial.

2. Choose W 1,W 2 ∈ Ω Here, W 1, must be invertible, and calculate W 12 if it
is, else find another W 1.
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3. After calculating W 12, find the characteristic polynomial C(λ). Go back to
step 2, unless C(λ) = C1(λ)

2, i.e if C(λ) only has quadratic factors.

4. Compute C1(W 12). Find a basis for the null space, and then extend the basis
for kn. I.e., we make a basis of the eigenvectors of dimension o.

In case there aren’t o eigenvectors, make another W 12 but with different linear
combinations for W 1 and W 2. And repeat this until you have o eigenvec-
tors.

Check if the eigenvectors lie in L−1(O), this is done by using 2) in Lemma
5.

After this, extend the basis from ko to kn by inserting basis vectors into the
columns of L∗−1.

5. Use the basis to transform the public polynomials, into the Oil-Vinegar form.
By calculating fi

∗ = (L∗−1)T ◦Qi ◦ (L∗−1)

Where {F ∗, L∗}, F ∗ = (f∗
1 , ..., f

∗
o ) are the equivalent private keys.

Now we have the equivalent private keys, which can be used to forge signa-
tures.

The case of characteristic two When we are looking in characteristic two,
we cannot make a symmetric matrix of (L−1)TQiL

−1. For a matrix A = (aij),
if A is symmetric then aij + aji = 0, leaving a zero coefficient of xix̃j when
working with characteristic two.

Hence we need symmetric matrices Si to be on the form

Si = Qi +Q
T

i .

This is symmetric because Qi +Q
T

i = (Qi +Q
T

i )
T .

The algorithm is very much the same. However, there are a few changes.

C1(λ) will be zero. This is because all the entries in the diagonal are zero. Hence
we need to look for a distinctive linear factor (λ−λ1) of multiplicity one.

We calculate W 12 the same way we did in the odd case. The eigenspace of
W12 has dimension two, where one of the eigenvectors must be in L−1(O). We
then try out the (q+1) possible eigenvectors. These are the eigenvectors in the
set

Seigv = {v1 + kv2} ∪ {v2}

for k ∈ GF (2) .

Now, to see which eigenvector that is in the wanted invariant subspace, we will

go through every vector in s ∈ Seigv, together with arbitrary W 12 = W
−1

1 W 2,
and find which vector, that will generate the invariant subspace that we are
after.
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This is done by computing the image of the space spanned by the eigenvector
under the action of W 12 , i.e., if we denote the space spanned by s as Veigs,
then we are looking for W 12(Veigs). Then set Veigs = Veigs ∪W 12(Veigs).

This step will be repeated 2o − 1 times, or until the dimension of T is greater
than o.

If the dimension is greater than o, then it cannot be the space L−1(O), we
need to find new set of eigenvectors, by using another linear combination for

W
−1

1 ,W 2. Given that the dimension is o for some s in Seigv, we can extend the
basis as we did in the case where k is odd and forge the signatures.
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Chapter 5

Rainbow Signature
Scheme

In 2004, Jintai Ding and Dieter Schmidt proposed their signature scheme called
Rainbow. Rainbow is built on the Oil and Vinegar scheme that Patarin pro-
posed. We saw in the previous chapter that the attack on the Oil Vinegar scheme
proved it was not safe. The big difference between Rainbow and Oil Vinegar is
that Rainbow is just an Oil Vinegar scheme but with multiple ”layers” where
each layer represents a set of Oil and Vinegar variables.

In this chapter, we will look at the construction of Rainbow, an example, and a
brief look at the MinRank attack against Rainbow.

5.1 Construction of Rainbow

In this chapter, we will look at the construction of the Rainbow Signature
Scheme. However, before describing the scheme, we need to understand a
few notations that have an essential part of the scheme and the maps in-
cluded.

Let V be the set {1, 2, 3, ..., n}. Let v1, ..., vu be any set of u integers, where
u ≤ n and 0 < v1 < v2 < ... < vu = n and define Vl = {1, 2, ..., vl} for
l = 1, 2, ...u as sets of integers.

V1 ⊂ V2 ⊂ ... ⊂ Vu = V.

This is because vi < vi+1 for i = 1, ..., u− 1. Each Vl contains the integers 1 to
vl.

Further, let oi = vi+1 − vi and Oi = Vi+1 − Vi for i = 1, 2..., u − 1, oi is the
number of elements in Oi.

Now let Pl be the linear space of quadratic polynomials spanned by the poly-
nomials of the form
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f =
∑
i∈Ol

∑
j∈Sl

aijxixj +
∑
i∈Sl

∑
j∈Sl

bijxixj +
∑
iSl+1

cixi + d.

Given that i ∈ Ol and j ∈ Vl, we say that xi is an Oil variable and xj is a
Vinegar variable, respectively. These are also called the lth layer Oil variable
and lth layer Vinegar variable if xi ∈ Ol and xj ∈ Vl, respectively. This means
Pl will be called the lth layer Oil Vinegar polynomial.

Remark: In the Oil Vinegar chapter, we called and Oil variable xi and a Vinegar
variable x̃j, in these scheme, we will call an Oil variable for xi and a Vinegar
variable for xj and not x̃j. This is because the Oil variables are the integers in
Oi = Vi+1 − Vi. Writing Vinegar variables as x̃j and Oil variables as xi, can
lead to unnecessary confusion.

It is easily seen that Pi ≤ Pj for i ≤ j. This is because Pj which is the linear
space of quadratic polynomials of the jth layer Oil (Oj) and Vinegar (Vj) sets.
These sets contains more elements than the sets on the ith layer, that is why
Pi ≤ Pj .

Now, let
F̃ = (F1, ..., Fu−1),

where each Fi for i = 1, ..., u− 1 is

Fi = (fi1, ..., fioi).

This means that the map F̃ contains the maps Fi which represents the different
layers, that is why we have Fi for i = 1, ..., u − 1. Now every Fi contains oi
random polynomials.

However, to simplify the notations, we can look at F̃ as

F̃ = (f1, ..., fn−v1).

This means the map F̃ : kn −→ kn−v1 contains all the n − v1 random polyno-
mials, that are from all the different layers.

We will take a look at the different layers in Rainbow. The way we see it is
that the first layer consists of x1, ..., xv1 Vinegar variables, together with the Oil
variables xv1+1, ..., xv2 .

And the next layer consists of x1, ..., xv1 , xv1+1, ..., xv2 Vinegar variables, along
with xv2+1, ..., xv3 which are the Oil Variables of the second layer.

It continues like this until we reach the u− 1th layer.

Now we define the map F : kn −→ kn−v1 .

F = L1 ◦ F̃ ◦ L2 = (f1, ..., fn−v1),

where L1 : kn−v1 −→ kn−v1 and L2 : kn −→ kn, are both randomly chosen
invertible affine maps.
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This is all the information we need to show how the Rainbow Signature Scheme
works.

Key Generation

The Key Generation consists of the public and private keys.

The public key consists of the field k and including its additive and multi-
plicative structure. It also consists of F which consists of the polynomials
(f1, ..., fn−v1).

The private key consists of the maps L1, L2 and F̃ .

Signature Generation

For us to sign the document, m = (m, ...,mn−v1) ∈ kn−v1 we need to find a
solution for the equation

F (x1, ...xn) = L1 ◦ F̃ ◦ L2(x1, ..., xn) = m.

This is done by following these steps:

1) First, we start by taking the inverse of L1, namely L−1
1 of the message

L−1
1 (m) = m′ = (m′

1, ...,m
′
n−v1).

2) Now, we need to take the inverse of F̃ . It is almost the same procedure as
when we inverted F in the Oil Vinegar scheme. However, the difference is that
we need to do it multiple times in Rainbow because of the layers.

F̃ (x1, ..., xn) = m′ = (m′
1, ...,m

′
n−v1)

This is the equation we want to solve, and as mentioned, we do it the same
way as we did in the Oil Vinegar Scheme. Therefore we start by choosing some
random values for the vinegar variables (x1, ..., xv1). We will use the notation
(x̃′

1, ..., x̃
′
v1
) for these random values.

3) Substitute these values into the first layer (F1) of o1 equations, this gives
us

F1(x̃
′
1, ..., x̃

′
v1 , xvn+1 , ..., xv2) = (m′

1, ...,m
′
o1).

This equation represents the substituted randomly chosen Vinegar variables
x̃′
1, ..., x̃

′
v1 , together with the Oil Variables, xvn+1

, ..., xv2 . Which equals the first
o1 part of m′ i.e (m′

1, ...,m
′
o1).

Given that we find a solution for the Oil Variables in the first layer (by solving
the linear system of equations), we now have a set of variables that we substi-
tute into the second layer. These variables are the Vinegar variables and the
Oil Variables from the first layer. The values of the variables xv1 , ..., xv2 will
be substituted into the second layer. This produces o2 linear equations with
xv2+1, ..., xv3 as Oil Variables. Given that there exists a solution, we use these
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values together with the earlier ones and substitute them for the Vinegar vari-
ables in the next layer, and continue this process until we get to the u − 1th

layer.

Which will give us the solution

X∗ = (x∗
1, ..., x

∗
n).

Which means

F̃ (X∗) = m′.

If there is no solution to one of the linear systems in one of the layers, we start
from 2) again, however, with new values for the Vinegar variables. Nevertheless,
it is expected with a high probability that we will succeed eventually, as long
as the number of layers is not too many.

4) Lastly,

σ = (σ1, ..., σn) = L−1
2 (X∗)

σ is the signature of m = (m1, ...,mn−v1).

Signature verification

To verify the signature σ for m = (m1, ...,mn−v1) we need to see if

F (σ) = m.

The signature is valid if the equation is true. Else the signature is not valid.

Correctness of Rainbow

We will look at the correctness of the Rainbow Signature Scheme the same way
we have done earlier with the other schemes.

Remember that the correction of a signature scheme is defined as

V(vk,m,S(sk,m)) = 1.

In Rainbow, the signature key is L1, L2, F̃ , while the verification key is F .

F = L1 ◦ F̃ ◦ L2,

where F̃ is a map, that contains the n− v1 polynomials.

Sigma is defined as

σ = S(sk,m) = L−1
2 ◦ F̃−1 ◦ L−1

1 (m)

Therefore we have,
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L1 ◦ F̃ ◦ L2(σ)

= L1 ◦ F̃ ◦ L2(L
−1
2 ◦ F̃−1 ◦ L−1

1 (m))

= L1 ◦ F̃ ◦ F̃−1 ◦ L−1
1 (m)

= L1 ◦ L−1
1 (m)

= m.

The verification algorithm V will return 1.

Hence, following the theorem is proved:

Theorem 6 The Rainbow Signature Scheme is correct.

5.2 Example

We will look at an example of the Rainbow Signature Scheme with the following
information.

Let k = GF (2), n = 9 and vu = 4, where v1 = 2, v2 = 4, v3 = 7, v4 = 9, hence,
o1 = 2, o2 = 3, o3 = 2. This means the set V = {1, 2..., 9}. And we will have
the following sets

V1 = {1, 2}, V2 = {1, 2, 3, 4}, V3 = {1, 2, 3, 4, 5, 6, 7}, V4 = {1, 2, 3, 4, 5, 6, 7, 8, 9}

and,

O1 = {3, 4}, O2 = {5, 6, 7}, O3 = {8, 9}.

The scheme consists of three layers. Each layer consists of oi polynomials of the
form from the construction.

Remember from the construction that F̃ = (F1, ..., Fu−1) = (f1, ..., fn−v1). We
will, now use the map F̃ = (f1, ..., fn−v1) where each fi is a Oil Vinegar poly-
nomial.

There are in total o1 + o2 + o3 = 2 + 3 + 2 = 7 polynomials.

Polynomials - first layer

f1 = x1x3 + x2x3 + x2x4 + x2
1 + x2

2.

f2 = x1x3 + x2x3 + x2x4 + x1x2.

Polynomials - second layer

f3 = x1x5 + x1x7 + x2x5 + x2x6 + x2x7

+ x3x6 + x4x5 + x4x7 + x1x2 + x2
2 + x2x3 + x2

3 + x2
4.

f4 = x1x6 + x2x5 + x2x7 + x3x5 + x3x7

+ x4x7 + x2
1 + x1x3 + x1x4 + x2

2.

f5 = x1x6+x1x7+x2x6+x3x7+x4x5+x4x7+x1x3+x2x4+x2
3+x3x4+x2

4.
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Polynomials - third layer

f6 = x1x8 + x2x8 + x2x9 + x3x8 + x4x8 + x5x8 + x5x9

+ x6x9 + x7x8 + x7x9 + x2
1 + x1x3 + x1x4

+ x2
2 + x2x5 + x2

4 + x4x7 + x6x7 + x2
7.

f7 = x1x9 + x2x8 + x3x9 + x5x9 + x6x8 +
x1x2 + x2x3 + x2

3 + x3x5 + x2
4

+ x5x6 + x5x7 + x2
6 + x6x7.

These are the private polynomials.

Now we do the same as we did in the Oil Vinegar examples, where we write
these polynomials in bilinear form fi = xTQix.

This will give us the Qi matrices

Q1 =



1 0 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



Q2 =



0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



Q3 =



0 1 0 0 1 0 1 0 0
0 1 1 0 1 1 1 0 0
0 0 1 0 0 1 0 0 0
0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



40



Q4 =



1 0 1 1 0 1 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



Q5 =



0 0 1 0 0 1 1 0 0
0 0 0 1 0 1 0 0 0
0 0 1 1 0 0 1 0 0
0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



Q6 =



1 0 1 1 0 0 0 1 0
0 1 0 0 1 0 0 1 1
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



Q7 =



0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


We need to define random invertible maps L1 : k7 −→ k7 and L2 : k9 −→
k9.
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L1 =



1 0 0 0 1 0 0
0 1 1 0 1 0 0
1 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 1 1 0 0
1 1 0 0 1 1 0
1 0 1 0 0 0 1


L2 =



1 1 1 0 0 1 0 0 0
1 0 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0 1
1 1 1 0 1 1 0 1 1
1 1 0 1 0 0 0 1 1
1 1 0 0 1 1 0 1 0
0 0 0 1 1 0 1 1 0
1 1 0 1 1 0 1 1 0
1 1 1 1 1 0 1 0 1


.

Now we compose each Qi matrix with L2. This will mix the variables within
each polynomial fi.

Let

x = L2z.

This means the composition between L2 and Qi will be

f ′
i = zTQ′

iz = zT (LT
2 QiL2)z.

Then each f ′
i will be

f’1 = z21 + z1z5 + z1z8 + z1z9 + z2z3 + z2z4 + z2z5 + z2z6
+ z2z7 + z2z9 + z23 + z3z5 +
z3z8 + z3z9 + z6z5 + z26 + z6z8 + z6z9.

f’2 = z1z2 + z1z5 + z1z8 +
z1z9 + z22 + z2z4 + z2z5 + z2z7 + z2z9 + z3z5 +
z3z8 + z3z9 + z6z5 + z6z8 + z6z9.

f’3 = z1z3 + z1z6 + z1z7 + z1z8 + z22 + z2z4 + z2z5
+ z2z6 + z2z7 + z23 + z3z4 ++z24 + z4z8 + z5z3 + z5z4
+ z5z9 + z6z3 + z6z9 + zz7z6 + z27
+ z7z9 + z8z3 + z8z6 + z28 + z29 .

f’4 = z21 + z1z2 + z1z3 + z1z5 + z1z9 + z2z3 + z23 + z3z7
+ z4z1 + z4z2 + z4z7 + z5z3 + z25 + z5z6 + z6z3 + z6z7
+ z7z1 + z7z5 + z27 + z7z9 + z8z1 + z8z2 + z8z3 + z8z4
+ z8z6 + z8z7 + z8z9 + z9z3 + z9z5 + z9z6.

f’5 = z1z3 + z1z6 + z1z8 + z2z6 + z2z7 + z2z8 + z2z9
+ z3z5 + z4z3 + z4z5 + z4z6 + z25 + z5z8 + z6z5 + z8z7
+ z28 + z9z5 + z9z7 + z9z8.

f’6 = z21 + z1z6 + z1z9 + z2z1 + z22 + z2z3 + z2z9 + z23
+ z3z6 + z3z8 + z3z9 + z4z2 + z5z3 + z5z4 + z25 +
z5z7 + z5z8 + z5z9 + z6z2 + z26 + z6z7 + z7z1 + z7z1 +
z7z2 + z7z8 + z7z9 + z28 + z9z8.
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f’7 = z1z2 + z1z9 + z22 + z2z3 + z2z9 + z3z4 + z4z1
+ z4z2 + z24 + z4z8 + z5z8 + z6z1 + z6z3 + z6z5 + z26 + z6z7
+ z6z9 + z7z4 + z7z8 + z7z9 + z8z1 + z8z2 + z8z5 + z9z4 + z29 .

Now we compose the polynomials f ′
i with L1 and we get the following polyno-

mials, which we call f i for i = 1, ..., n− v1.

f1 = z21 + z1z3 + z1z5 + z1z6 + z1z9 + z2z3 + z2z4
+ z2z5 + z2z8 + z23 + z3z8 + z3z9 + z4z3 + z4z5 +
z4z6 + z25 + z5z8 + z26 + z6z8

f2 = z1z2 + z1z5 + z1z7 + z1z8 + z1z9 + z2z7 +
z2z8 + z23 + z3z9 + z24 + z4z6 + z4z8 + z5z3 + z25 +
z5z8 + z6z3 + z7z6 + z27 + z8z7 + z9z8 + z29 .

f3 = z21 + z1z3 + z1z5 + z1z6 + z1z7 + z22
+ z2z3 + z2z9 + z3z4 + z3z8 + z3z9 + z5z4 + z5z9 + z6z3
+ z6z5 + z26 + z7z6 + z27 + z7z8 + z8z3 + z28 + z29 .

f4 = z21 + z1z2 + z1z3 + z1z5 + z1z9 + z2z3 + z23 + z3z7
+ z4z1 + z4z2 + z4z7 + z5z3 + z25 + z5z6 + z6z3 + z6z7
+ z7z1 + z7z5 + z27 + z7z9 + z8z1 + z8z2 + z8z3 + z8z4
+ z8z6 + z8z7 + z8z9 + z9z3 + z9z5 + z9z6.

f5 = z21 + z1z6 + z22 + z2z3 + z2z5 + z2z6 + z3z7 +
z4z1 + z4z3 + z4z5 + z4z6 + z4z7 + z5z6 + z5z8 + z6z3 +
z6z7 + z7z1 + z7z5 + z27 + z8z1 + z8z4 + z28 .

f6 = z1z2 + z1z3 + z1z8 + z1z9 + z3z6 + z3z8
+ z3z9 + z5z4 + z5z7 + z6z5 + z6z7 + z7z1.

f7 = z21 + z1z2 + z1z3 + z1z5 + z1z7 + z3z8
+ z3z9 + z4z1 + z4z2 + z5z4 + z5z9 + z6z9 + z7z4 + z27
+ z7z8 + z8z1 + z8z2 + z28 + z9z4.

These are the public polynomials.

We want to sign the hashed message m = (1, 1, 0, 0, 1, 0, 1). First, we need to
find a signature σ. From the construction, we know how this works.

Start by finding

m′ = L−1
1 (m) =



0 1 1 1 1 0 0
1 1 1 0 0 0 0
0 1 0 1 1 0 0
0 0 0 1 0 0 0
1 1 1 1 1 0 0
0 1 1 0 0 1 0
0 0 1 0 0 0 1





1
1
0
0
1
0
1


.

Solving this, gives us m′ = (0, 1, 0, 1, 1, 0, 1).

Now we need to find the values of the variables x3, ..., x9 for some random values
of the Vinegar variables x1, x2.

Let us have x1 = 0 and x2 = 1. Substituting these values into f1 and f2 results
to
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x3 + x4 + 1 = 0,

x3 + x4 = 1.

Now, this system has infinite amount of solutions, however since we are working
in GF (2) there are only two solutions, that is, x3 = 0, x4 = 1 or x3 = 1, x4 = 0.
We will use the first one.

This means we have the following

(x1, x2, x3, x4) = (0, 1, 0, 1).

These will be used as values for the Vinegar variables in the next layer. Substi-
tuting these values in f3, f4, f5 yields

x5 + x6 + x7 + x5 + x7 + 1 + 1 = 0,

x5 + x7 + x7 + 1 = 0,

x6 + x5 + x7 + 1 + 1 = 1.

Simplifying, and solving this system gives x5 = 1, x6 = 0, x7 = 1.

This process will be done once more for the third layer. Substituting the values
of x1, ..., x7 in f6 and f7 gives

x8 + x9 + x8 + x8 + x9 + x8 + x9 + 1 + 1 + 1 + 1 + 1 = 0,

x8 + x9 + 1 + 1 = 1.

Simplifying and solving this, gives x8 = 0, x9 = 1.

Hence, we are left with X∗ = (0, 1, 0, 1, 1, 0, 1, 0, 1).

The last step for finding the signature σ is to multiply the inverse of L2 with
X∗.

σ = L−1
2 (X∗) =



1 1 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1
0 0 1 0 1 0 1 0 0
1 0 1 1 0 0 0 1 0
1 0 1 0 0 0 1 1 1
1 0 0 0 1 1 0 0 1
0 0 0 1 0 1 0 1 1
0 0 1 1 0 1 0 0 1





0
1
0
1
1
0
1
0
1


.

This gives us the signature

σ = (0, 1, 1, 0, 1, 0, 0, 0, 0).
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Now, we need to verify the signature, which is done by checking if

F (σ) = m

or,

F (0, 1, 1, 0, 1, 0, 0, 0, 0) = (1, 1, 0, 0, 1, 0, 1).

Remark:This system was mainly done by hand; hence it is important that the
reader doesn’t expect the public polynomials to be entirely correct. There are a
few miscalculations (this is mostly from simplifying the polynomials after com-
posing with L2 and/or L1). That is also why we cannot verify the signature.
This example intends to show the procedure of the signature scheme; unfortu-
nately, it was with a few miscalculations.

5.3 MinRank attack

In this section we will briefly look at the MinRank attack.

The goal of this attack is to recover (or parts) of the transformations L1 and L2.
This is done by looking at the rank of the linear combinations of the matrices
that corresponds to the public polynomials.

Regarding Rainbow, we want to use the MinRank attack to find a matrix which
is a linear combination of the matrices that corresponds to f i for i = v1 + 1 ≤
i ≤ n, of low rank, which is v2.

Such a matrix corresponds to a linear combination of the o1 matrices LT
2 QiL2, (i ∈

O1), which are the private polynomials in the first layer of Rainbow.

Let us introduce the MinRank problem.

Given a set of m matrices M1, ...,Mm of size n×n. We want to achieve a linear
combination

H =

m∑
i=1

αiMi.

Whose rank is less or equal than r.

For Rainbow, the matrices we are looking at are Q
′
is that corresponds to

fv1+1, ..., fn with rank r = v2.

Now lets look at how we find a low rank matrix, which is a linear combination
of the matrices that corresponds to fv1+1, ..., fn.

Start by finding a vector α ∈ km and find F =
∑n

i=v1+1 αif i

Repeat this until a vector α is found such that Rank(F ) > 1 and Rank(F ) <
n

Then randomly choose a vector γ from the kernel of F then see if,
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Rank(M) ≤ v2 for M =
∑n

i=v1+1 γif i.

If its not, try with another γ.

By finding, o1 linearly independent low rank linear combinations of the matrices,
f1, ..., fn, we can extract the first Rainbow layer. More layers can be extracted
with similar technique. After separating all the Rainbow layers, the attacker
can generate signatures the same way as a legitimate user.
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