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Abstract 
Seagrass meadows around the world are threatened by anthropogenic activity, causing 

habitat destruction and global warming. There is a need for better high-resolution mapping 

to increase monitoring abilities and fill knowledge gaps regarding these vulnerable shallow 

coastal ecosystems. In this study, an underwater hyperspectral imager (UHI) was deployed 

by an unmanned surface vehicle (USV) to map spatial and seasonal distribution of marine 

vegetation (seagrass and macroalgae) in a Zostera (eelgrass) habitat in Hopavågen, a 

semi-enclosed bay in Agdenes, Norway. The UHI enables species-specific identification 

based on characteristic pigment composition of the organism of interest (OOI), resulting 

in a spectral reflectance curve (i.e. optical signature) detected by the sensor, and obtained 

in each image pixel with spatial resolution of 1 cm2 and spectral resolution of 2.2 nm. Three 

transect lines from September, December and February were recorded with an altitude of 

~1.6 m above the area of interest on the seafloor.  

After the georeferencing, radiometric processing and radiance conversion of the UHI data, 

the marine vegetation was identified using the supervised classification algorithm Support 

Vector Machine (SVM) in order to create distribution maps and estimate percent areal 

coverage of the OOIs. Additionally, the SVM-classifier was compared to Band Ratio and 

Decision Tree classifications. The efficiency and reliability of this mapping technique were 

assessed by looking at the classification accuracy, time use and the ability to revisit the 

same location. Since turf algae (filamentous epiphytic algae) is a major threat to seagrass 

health and grows rapidly due to eutrophication, the study also investigated the potential 

for detection and quantification of turf algae growth, but further work is needed to separate 

specific brown macroalgae species with confidence.  

The SVM classification successfully separated seagrass from macroalgae, but performed 

differently according to the pre-processing and quality of the UHI data. Downwelling 

spectral irradiance and inherent optical properties of the seawater play an essential role in 

the signal-to-noise ratio, influencing correct classification. Thus, the Band Ratio 

classification is considered to be the most reliable and time efficient classifier for seagrass 

mapping in different seasons, under the conditions outlined by this thesis, using the 

characteristic reflectance maximum at 550 nm and reflectance minimum at 665 nm to 

extract information of the distribution of photosynthesizing biomass absorbing wavelengths 

corresponding to Chlorophyll a and b. However, withered seagrass was found to have a 

similar optical signature as brown algae, and this must be kept in mind when interpreting 

the classification results. Turf algae of small sizes were also difficult to classify with 

confidence.             

By demonstrating USV-based UHI mapping, the study is a contribution to establish and 

validate different methods for acquiring and translating UHI data into ecologically 

important information, which can be applied to seagrass research and aid ecosystem 

management and conservation in the upcoming years.  
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Sammendrag 
Sjøgressenger over hele verden trues av menneskeskapte habitatødeleggelser og global 

oppvarming. Det er et behov for kartlegging med høy oppløsning for å øke 

overvåkningsevnene våre og fylle kunnskapshull knyttet til disse sårbare og grunne 

kystøkosystemene. I denne studien blir en undervanns-hyperspektral avbilder (UHI) båret 

av et ubemannet overflatefartøy (USV) for å kartlegge sesongvariasjoner av romlig 

fordeling av marin vegetasjon (sjøgress og makroalger) i et Zostera habitat i Hopavågen, 

en nesten lukket våg i Agdenes, Norge. UHI-en muliggjør en artsspesifikk identifisering 

basert på den karakteristiske pigmentsammensetningen til en organisme av interesse 

(OOI). Dette innebærer at en spektral reflektanskurve (også kalt optisk signatur) blir 

registrert av sensoren og tilegnet hver bildepiksel med en rommlig oppløsning på 1 cm2, 

og en spektral oppløsning på 2.2 nm. Tre transektlinjer fra september, desember og 

februar ble kjørt med UHI-en ~1.6 m over området av interesse på havbunnen.  

Etter georeferering, radiometrisk prosessering og radians-konvertering av UHI-dataen, ble 

den marine vegetasjonen identifisert ved hjelp av Support Vector Machine (SVM), som er 

en veiledet klassifiseringsalgoritme. På denne måten ble utbredelseskart over OOIene lagd 

og dekningsgrad i prosent ble beregnet. I tillegg ble SVM-klassifiseringen sammenlignet 

med Band Ratio- og Decision Tree-klassifiseringer. Effektiviteten og påliteligheten til denne 

kartleggingsteknikken ble vurdert ved hjelp av klassifiseringsnøyaktigheten, tidsbruk og 

evnen til å gjenbesøke samme område. Trådalger (trådlignende epifyttiske alger) er en 

stor trussel mot sjøgresshelse og vokser raskt hvis det er eutrofiering i et område. Derfor 

undersøkte denne studien også potensialet for å oppdage og kvantifisere trådalgevekst, 

men mer arbeid trengs for å kunne separere brune makroalgearter med sikkerhet.  

SVM-klassifiseringen klarte å skille sjøgress fra makroalger, men i varierende grad 

avhengig av pre-prosesseringen og kvaliteten til UHI-dataen. Innfallende spektral irradians 

(innstrålingstetthet) og sjøvannets iboende optiske egenskaper spiller en essensiell rolle i 

signal-til-støy-forholdet i dataen, og påvirker korrekt klassifisering. På grunn av dette blir 

Band Ratio-klassifiseringen vurdert som den mest pålitelige og tidseffektive 

klassifiseringsalgoritmen for sjøgresskartlegging i ulike sesonger, gitt forholdene som var 

til stede her. Ved å bruke det karakteristiske reflektansmaksimumet ved 550 nm og 

reflektansminimumet ved 665 nm var det mulig å trekke ut informasjon om fordelingen av 

fotosyntetiserende biomasse som absorberer bølgelengder av lys som sammenfaller med 

klorofyll a og b. Vissent sjøgress hadde lignende optisk signatur som brunalger, og dette 

må tas høyde for under tolkning av klassifiseringsresultatene. Små trådalger var også 

vanskelig å klassifisere med sikkerhet.  

Ved å demonstrere USV-UHI-basert kartlegging er studien et bidrag til å etablere og 

validere ulike metoder for å samle og ekstrahere viktig økologisk informasjon fra UHI-data. 

Denne informasjonen kan videre brukes i sjøgressforskningen og være nyttig for 

økosystemforvaltning og konservering de neste årene.     
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1.1 Global Perspective 

Coastal areas are hotspots for human settlement, and many of the largest cities in the 

world are located on the coast (Kummu et al., 2016). Human population growth increases 

land use and the pressure on coastal habitats like mangrove forests, kelp forests, coral 

reefs, salt marshes and seagrass meadows (Orth et al., 2006; Gumusay et al., 2019). 

Shallow coastal ecosystems contribute greatly to mitigating global warming. More than 

50% of carbon stored in the ocean is sequestered by ecosystems with rooted vegetation 

in the coastal zone, also called blue carbon ecosystems (IPCC, 2022), but they only account 

for 0.5% of total ocean area, making them the most efficient carbon sinks in the ocean 

(UNEP, 2009). Unfortunately, blue carbon ecosystems have an estimated reduction rate of 

2-7% per year, and 14% of all seagrass species have elevated extinction risk, with three 

species being endangered (Phyllospadix japonicus, Zostera chilensis and Zostera 

geojeensis) (Short et al., 2011; UNEP, 2009). Habitat destruction from anthropogenic 

activity in terms of pollution, physical disturbance, and rising seawater temperature due 

to global warming are only some of the threats these coastal habitats are facing (Orth et 

al., 2006; Grech et al., 2012; Hori, Bayne and Kuwae, 2019; Short et al., 2011; Han and 

Liu, 2014; Erftemeijer and Robin Lewis III, 2006; Moore and Short, 2006). 

Seagrass meadows are a shallow coastal water ecosystem consisting of salt tolerant 

monocotyledons (flowering plants; Green and Short, 2003; Unsworth et al., 2019; 

Unsworth et al., 2018) belonging to the phylum Tracheophyta (WoRMS, 2022). They have 

a good anchoring system consisting of roots and rhizomes, hydrophile pollination and 

characters aiding dispersal in the marine environment (Ackerman, 2006). In total, there 

exist six families, 13 genera and 63 species (Green and Short, 2003; Kuo and den Hartog, 

2006), with a global distribution estimated to cover ~165 000 m2 (Jayathilake and Costello, 

2018; McKenzie et al., 2020) and are important biogeochemical and structural components 

of coastal ecosystems (Hemminga and Duarte, 2000). The highest seagrass diversity is 

located in Indonesia, see Figure 1.1. Seagrass extent range from mean sea level down to 

90 m, limited by the water attenuation coefficient (Duarte, 1991), defined as the sum of 

absorption and scattering of light as it passes the water column (Cohen et al., 2020).  

1 Introduction 
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Figure 1.1: Estimation of global distribution of seagrass and species diversity. Light green color 
represents lowest number of species recorded, and dark green represents the highest number. 

Geographic bioregions: 1. Temperate North Atlantic, 2. Tropical Atlantic, 3. Mediterranean, 4. 

Temperate North Pacific, 5. Tropical Indo-Pacific, 6. Temperate Southern Oceans (Short et al., 2007). 

Illustration: Short et al. (2011). 

1.2 Zosteraceae - Eelgrass 

The most species rich seagrass family is Zosteraceae, where Zostera marina Linnaeus, 

1753 is the most abundant species in Europe and Norway (Moore and Short, 2006; Short 

et al., 2007; Lid et al., 2005). Zostera species are characterized as plants without visible 

upright stem but have strap-shaped leaves emerging from the rhizome nodes (Lid et al., 

2005; Kuo and den Hartog, 2006). Zostera can have two lifecycles (Figure 1.2), the annual 

is dominated by flower and seed production (sexual reproduction), and the perennial is 

dominated by vegetative propagation (asexual reproduction) (Hori, Bayne and Kuwae, 

2019; Ackerman, 2006). The annual life cycle is believed to dominate in harsh environment 

and the perennial cycle in suitable environments (Hemminga and Duarte, 2000), e.g. in 

the littoral and sublittoral zone, respectively (Kuo and den Hartog, 2006).  

Zostera marina, Zostera angustifolia (Hornemann) Reichenbach, 1845 and the more 

uncommon Zostera noltei Hornemann, 1832 grow along the Norwegian coast (Lid et al., 

2005; Moore and Short, 2006). Zostera noltei has status as Endangered due to a limited 

geographical distribution in Norway (Solstad et al., 2021). Z. marina has (3)5-9(11) veins, 

grows from 0-10 m depth, 3-12 mm wide leaves, seeds are 3-4 mm long and a stigma-to-

style ratio of 2:1. Z. angustifolia has 3-5 veins, 1-3 mm wide leaves, 15-40 cm long, 

emarginated leaf apex and a stigma-to-style ratio ~1:1. Z. noltei has 0.5-1.5 mm wide 

leaves, 1 longitudinal vein with emarginated leaf apex, up to 5-20 cm long leaves and 

seeds 1.5-2 mm long (Moore and Short, 2006; Lid et al., 2005). The morphology varies 

greatly according to sediment type, temperature, location, light and nutrient availability, 

tides and wave regimes (Moore and Short, 2006). Typically, an increase of leaf width, 

length and above-to-belowground biomass with depth is seen. There is an ongoing debate 

whether Z. angustifolia is a distinct species or a morphological adaptation of Z. marina to 

the environment (D’Avack et al., 2019). Olsen et al. (2013) found no microsatellite loci 

that separate them, in agreement with Coyer et. al (2013) that found no genetic differences 

between the Z. angustifolia ecotype and Z. marina. Zostera angustifolia is not accepted as 
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a taxonomic name, and is still regarded a synonym of Zostera marina (Guiry and Guiry, 

2022). Nevertheless, Zostera angustifolia is referred to as a species by the Norwegian 

Biodiversity Information Centre to date. Depending on environmental factors influencing 

the development of characteristic traits, correct identification of the specimen is difficult. 

 

Figure 1.2: The life cycles of eelgrass (Zostera marina L.), with the annual life cycle to the left with 

flower production and perennial life cycle to the right dominated by vegetative growth. Reprinted 

from Hori, Bayne and Kuwae, (2019). 

As a marine aquatic plant, Zostera needs to be able to photosynthesize and grow 

submerged under water (Moore and Short, 2006). Light measurements are often reported 

as “photosynthetically active radiation” ranging from 400-700 nm (EPAR), i.e. the visible 

spectral range. Light intensity is usually measured as irradiance (E) or radiance (L), 

referring to photons received or emitted per unit area, respectively (Cohen et al., 2020). 

The photosynthesis of Zostera is located to chloroplasts restricted to the epidermal cells in 

the leaves (Larkum, Drew and Ralph, 2006; Zimmerman, 2006), and they have a high 

light demand, ranging from 10-37% of downwelling spectral irradiance (Ed(); 

Zimmerman, 2006) . Eutrophication is the main contributor to seagrass decline globally, 

which in turn increases phytoplankton and epiphytic algae biomass that reduce water 

clarity and light access (Short and Coles, 2001; Orth et al., 2006; Short et al., 2011; Ralph 

et al., 2006). Turf algae is a collective designation for filamentous macroalgae, belonging 

to the class Phaeophyceae (brown algae) and phyla Rhodophyta (red algae) and 

Chlorophyta (green algae), growing above the canopy of the seagrass (Han and Liu, 2014). 

One example is the invasive red turf alga Lophocladia lallemandii (Montagne) F. Schmitz, 

1893 (Deudero et al., 2010; Marba, Arthur and Alcoverro, 2014). Turf algae has been 

reported to a large extent in seagrass meadows in southern and western Norway 

(Gundersen et al., 2018). If there is eutrophication in an area, where excess nutrients like 

nitrogen and phosphorus are present (Green and Short, 2003), turf algae can increase its 

biomass heavily and attenuate ambient sunlight so that seagrass is unable to 

photosynthesize sufficiently and therefore withers (Han and Liu, 2014; Burkholder, 

Tomasko and Touchette, 2007; Marba, Arthur and Alcoverro, 2014). This leads to a 
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reduction of the world’s seagrass meadows. In Norway, eelgrass meadows have a total 

distribution of 62 km2, but large variations in abundance is present throughout the 

coastline, showing no systematic trends (Gundersen et al., 2018).  

Seagrass meadows fuels marine biodiversity, ecosystem services and resources (Orth et 

al., 2006; Short et al., 2011; Klemas, 2016; IPCC, 2022; Nordlund et al., 2016), including 

support for commercial fish species as an important nursing habitat (Nordlund et al., 

2018b; Green and Short, 2003; Hori, Bayne and Kuwae, 2019), protection of coastal 

erosion (Ondiviela et al., 2014), nutrient cycling (Marbà et al., 2006; Hemminga and 

Duarte, 2000), sediment sequestration and CO2-sequestration that incorporates HCO3
-
  

from seawater in biomass production (Orth et al., 2006; Duarte, 1989; Hemminga and 

Duarte, 2000; Marbà et al., 2006). These ecosystem functions provide services that benefit 

humans directly or indirectly (De Groot, Wilson and Boumans, 2002), whilst the loss of 

seagrass beds is a threat to the global environment and human society (Short et al., 2011).  

1.3 Benthic Habitat Mapping 

To obtain information of benthic habitats, current methods include grab samples, sonar 

surveys and underwater imagery (Holte and Buhl-Mortensen, 2020; Sheehan, Stevens and 

Attrill, 2010; Sture et al., 2018; Buhl-Mortensen et al., 2015). Traditionally, RGB cameras 

have been used for non-invasive underwater imaging of seafloor ecosystem (Montes-

Herrera et al., 2021; Schoening et al., 2012). There are several downsides with RGB 

imaging, including the propensity of being too large and time consuming data sets for 

efficient species identification in an area, the need for correction of the inherent optical 

properties (IOPs) of the seawater that reduce image quality, scale variation, image 

mosaicking, red channel information loss, elimination of subjective errors and time-

consuming manual sampling methods (Montes-Herrera et al., 2021; Schoening et al., 

2012; Blanchet et al., 2016; Horning et al., 2020). IOPs are defined as photon absorption 

and scattering by water molecules and particulate matter, typically consisting of colored 

dissolved organic matter (cDOM), total suspended matter (TSM) and phytoplankton 

biomass indicated as chlorophyll a (Chl a) concentration (Cohen et al., 2020). On the other 

hand, apparent optical properties (AOPs) depend on IOPs and the ambient radiance 

distribution affected by sun angle (intensity and spectral composition), surface waves, rain 

and cloud cover (Sakshaug, Johnsen and Volent, 2009). 

In recent years, new technology has been developed, enabling optical remote sensing 

techniques for benthic ecosystem mapping, i.e., satellites and unmanned aerial vehicles 

(UAVs) with RGB cameras (Duffy et al., 2018), LiDAR-sensors, multi- and hyperspectral 

imagers (HI; Velez-Reyes et al., 2006; Veettil et al., 2020; Volent, Johnsen and Sigernes, 

2009; Hossain and Hashim, 2019). Traditional methodology for seagrass distribution 

estimation includes pre-recorded grid patterns or collection of data from transects and 

sampling points (Short and Coles, 2001). Optical remote sensing techniques are the most 

applied methods for blue carbon ecosystem mapping, and Landsat time-series are most 

widely used for monitoring changes on larger scales (Pham et al., 2019). Remote sensing 

imagery with high spatial resolution can improve seagrass classification accuracy and 

create high quality maps of species distribution (Pham et al., 2019; Veettil et al., 2020). 

By submerging the hyperspectral imager under water, the spatial resolution can be 

amplified from 1-4 m to 0.5 cm per pixel (Volent, Johnsen and Sigernes, 2007; Summers 

et al., 2022; Klonowski, Fearns and Lynch, 2007), and reduce, for example, the challenges 

turbid waters have on airborne hyperspectral imagers (Vahtmäe et al., 2006).  
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1.3.1 Underwater Hyperspectral Imagery 

An underwater hyperspectral imager (UHI) is a push-broom sensor which records one pixel 

row at the time and renders a transect image in the across-track direction of the sensor 

(Johnsen et al., 2020). Each pixel contains optical information channels (wavelengths) 

ranging from 380-800 nm, with a maximum of 0.5 nm spectral resolution, and records the 

upwelling spectral radiance (Lu()) from an object of interest (OOI) on the seafloor with a 

maximum of 0.5 cm spatial resolution (Johnsen et al., 2013; Summers et al., 2022). This 

demands ample amounts of radiance sent back from the object (spectral reflectance) to 

the sensor in order to obtain a good signal-to-noise (dark current) ratio (Montes-Herrera 

et al., 2021). The Lu() are influenced by back-scattering from the bottom substrate, water 

column and surface reflectance (Mutanga, Adam and Cho, 2012). An active sensing 

approach includes an external light source added to the system, in contrast to a passive 

approach where solar irradiance is the only light source (Montes-Herrera et al., 2021). 

Figure 1.3 illustrates the deployment of an UHI on a sensor carrying platform, in addition 

to the main components in the UHI housing. Raw UHI data quality is dependent on ample 

light intensity, spectral resolution of the sensor, OOIs, vehicle movement and the IOPs of 

the seawater, whilst influence the absorption and scattering (attenuation) of the light signal 

as it passes the water column (Johnsen et al., 2020; Johnsen et al., 2013). The water 

attenuates wavelengths increasingly towards the red part of the electromagnetic spectrum 

(>550 nm), entirely absorbed at 15m depth in clear oceanic water (Cho, Kirui and 

Natarajan, 2008; Kirk, 2010; Horning et al., 2020). cDOM absorbs yellow light (575 nm; 

(Green et al., 2000). Additionally, phytoplankton absorb EPAR before the light reaches the 

seafloor due to their pigment content (Johnsen et al., 2013; Hurd et al., 2014). 

 

 

Figure 1.3: An overview of an underwater hyperspectral imager (UHI) deployed on a sensor carrying 

platform. The reflected optical signal from the object of interest passes a glass window in the UHI 

housing, then a narrow slit where the signal is spread by a spectral splitter (often a prism or grating) 

before detection by a detector (Liu et al., 2020). An active sensing approach uses an artificial light 
source, and a passive sensing approach utilizes only the ambient light from the sun. Modified from 

Liu et al. (2020). 
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The UHI provides a great magnification of spectral information (e.g. R() of 300 discrete 

wavelengths per image pixel) compared to traditional RGB cameras, which only use three 

broad information channels; Red, Green and Blue illustrated in Figure 1.4 (Johnsen et al., 

2013; Johnsen et al., 2020). This enables detection of small differences in intensity of 

reflected wavelengths, which comprise a spectral reflectance curve (optical signature) from 

the OOIs (Pettersen et al., 2014). The aforementioned differences are a result of 

characteristic optical properties of the OOI, which in a biological context is related to 

species-, group- or class-specific composition of pigments, chromophores and optical 

structures (Chennu et al., 2017). The relative spectral reflectance (R(); 0-1, where 1 

equals 100% reflection) at a given wavelength can be calculated by equation 1.1 (Johnsen 

et al., 2013). 

R(𝜆) =
𝐿𝑑(𝜆)

𝐸𝑑(𝜆)
      1.1 

Relative reflectance is usually the parameter utilized in hyperspectral data analyses for 

qualitative and quantitative mapping. Hence, UHI can be used as a bio-optical taxonomic 

tool, where spectral reflectance of an organism is the inverse of pigment absorption spectra 

(Pettersen et al., 2014; Volent, Johnsen and Sigernes, 2009; Dumke et al., 2018b). This 

enables the creation of quantitative and qualitative maps of benthic habitats (Johnsen et 

al., 2013). UHI technology has been demonstrated in creating biogeochemical maps of 

seafloor properties and sulphide exploration (Johnsen et al., 2013; Sture, Snook and 

Ludvigsen, 2019), underwater habitat mapping (Foglini et al., 2018; Foglini et al., 2019; 

Dumke et al., 2018b), mapping of coral health (Letnes et al., 2019), detection of sealice 

in aquaculture (Pettersen et al., 2019), and marine archeology (Mogstad et al., 2020).  

 

 

Figure 1.4: The optical signature of a red coralline algae represented using RGB (colored dots) and 
hyperspectral wavelengths (contiguous black line), which is the output from one digital camera 

pixel and one underwater hyperspectral imager pixel with 0.5 nm spectral resolution, respectively. 

Reprinted from Johnsen et al. (2020). 
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The UHI can be carried by numerous platforms, e.g. Diver-operated unit (Chennu et al., 

2017), electric rail (Chennu et al., 2013; Cimoli et al., 2017; Johnsen et al., 2013), under-

ice sled (Cimoli et al., 2019), fixed stationary platform (Dumke et al., 2019), remotely 

operated vehicle (ROV; Johnsen et al., 2016), autonomous underwater vehicle (AUV; Sture 

et al., 2017; Johnsen et al., 2013); Johnsen et al., 2013) and unmanned surface vehicle 

(USV; Mogstad, Johnsen and Ludvigsen, 2019). An USV is an autonomous sensor carrying 

platform with a wide range of applications (Sørensen et al., 2020; Specht, Switalski and 

Specht, 2017; Pieterkosky et al., 2017; Gu et al., 2018), including possibilities for seagrass 

habitat mapping. USV-based UHI enables mapping of shallow water ecosystems 

unavailable for ROVs, AUVs and diver operated HI, within an optimal depth range of 1-2m 

(Mogstad, Johnsen and Ludvigsen, 2019; Chennu et al., 2017; Sørensen et al., 2020). This 

is a non-intrusive mapping method that makes in situ species identification and 

simultaneous georeferencing possible when the receiver is above sea surface (Mogstad, 

Johnsen and Ludvigsen, 2019). 

1.3.2 Hyperspectral Image Analysis for Seagrass Mapping 

Machine learning techniques are useful for hyperspectral image analysis, e.g. Gausian 

models, support vector machine (SVM) and clustering algorithms (Bioucas-Dias et al., 

2013; Gewali, Monteiro and Saber, 2018; Johnsen et al., 2013). This eases the UHI data 

analysis and makes species detection and creation of distribution maps faster and more 

objective (Johnsen et al., 2020; Klemas, 2016). Machine learning can automatically learn 

the relationship between the wanted information and the reflectance curve, whilst being 

little affected by noise from the spectral and ground truth data (Gewali, Monteiro and 

Saber, 2018). There exist several kernels for SVM (ways to set the decision boundary that 

maximize the separation margin between data belonging to different classes), but the 

Gaussian radial basis function kernel is the most commonly used algorithm for 

hyperspectral image analysis (Gewali, Monteiro and Saber, 2018; Mountrakis, Im and 

Ogole, 2011). Other classifiers used for mapping of marine vegetation (seagrass and 

macroalgae) is unmixing, spectral angle mapper (SAM), principal component analysis 

(PCA) and ISODATA/CLUSTER classification (Ackleson and Klemas, 1987; Alberotanza et 

al., 2006; Pasqualini et al., 2005; Pe'eri et al., 2016; Peneva, Griffith and Carter, 2008). 

A simple alternative to SVM pixel classification is the utilization of ratios of the reflectance 

obtained by the hyperspectral imager. For seagrass mapping, spectral characteristics of 

the leaves (mainly due to chlorophyll a and b, but also geometric orientation of leaf 

(Zimmerman, 2006) can be used to create normalized vegetation indices (NDVI; Tucker, 

1979) incorporating several wavebands (including infrared wavelengths > 700 nm) using 

airborne HI (Peñuelas et al., 1993) or pigment specific simple ratios (PSSR) using ratios 

based on two absorption/reflectance centers (Bargain et al., 2012) from the optical 

signature belonging to seagrass. For instance, 550/670 nm (Broge & Leblanc, 2000), 

555/670 nm (Dierssen et al., 2003), and 547/630 (Pe'eri et al., 2016). Dierssen et al. 

(2003) demonstrated how this classification enabled a non-destructive quantitative 

measurement of leaf area index (LAI) useful for biomass and photosynthesis estimations, 

hence the health status of the seagrass meadows (Costa et al., 2021; Klemas, 2016; Wang, 

2009).   
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1.4 Research Objectives 

Since seagrass meadows are facing a continued threat due to anthropogenic activities (Tan 

et al., 2020), and to protect these marine ecosystems, policies that supervise effects from 

human activities need to be an international priority (Orth et al., 2006; Gumusay et al., 

2019; Brown, 2019). Effective management strategies are crucial to reverse seagrass 

decline, restore the seagrass meadows and strengthen their fundamental position in the 

ecosystem (Tan et al., 2020; Unsworth et al., 2018), where ecological information from 

undisturbed ecosystems provides the foundation (Johnsen et al., 2020). Currently, we lack 

knowledge of global seagrass ecosystem services, and the common acknowledgement of 

their importance is limited (Nordlund et al., 2018a). More long term and frequent 

monitoring of seagrass meadows are essential to understand rapid changes of seagrass 

distribution patterns, drivers of loss, find potential restoration sites and evaluate the 

restoration effect (Duffy et al., 2019). Remote sensing and enabling technology are ways 

to achieve this through species identification and high resolution maps of spatial seagrass 

distribution, which will provide up-to-date information on seagrass status and condition 

(Grech et al., 2012; Gumusay et al., 2019; Klemas, 2016; Unsworth et al., 2018). This is 

important for facilitating a substantial upscaling of restoration measures to successfully 

conserve this valuable ecosystem and the ecological and coastal communities they support 

(Barrell et al., 2015; Pham et al., 2019; Tan et al., 2020; Gumusay et al., 2019). 

The literature shows great promise of UHI as a non-intrusive and cost-efficient method to 

map benthic ecosystems and estimate biomass (Liu et al., 2020; Mogstad, Johnsen and 

Ludvigsen, 2019; Summers et al., 2022; Johnsen et al., 2013) but this has not been tested 

thoroughly and in a broader scale, covering many different ecosystems and organisms 

(Montes-Herrera et al., 2021). The main goal of this study is to map seasonal variation in 

a Zostera habitat using UHI and USV. Further, the study aims to evaluate and address 

challenges with USV as instrument carrier for UHI, machine learning and optical techniques 

for benthic habitat classification and consider the potential of this kind of survey to improve 

monitoring capabilities of marine ecosystems in shallow coastal waters.  

To test this methodology, three hypotheses have been established: (H1) USV-based UHI 

mapping is a time efficient and reliable method for mapping of seagrass distribution over 

a larger area. Following the assumption that the distribution map has an accuracy of ~90% 

using the SVM-classifier, the method is considered reliable if the resampling precision is 

high and match the ground truth, and time efficient if the data acquisition and analyses 

can be done in one day. (H2) The UHI will not be able to detect all species found during 

ground truthing. It depends on spatial resolution, environmental factors and size of a given 

organism of interest. (H3) The seagrass and macroalgae composition change throughout 

the year, and it is possible to detect changes in turf algae distribution.  
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2.1 Study Area 

A perennial seagrass meadow consisting of Zostera marina Linnaeus, 1753 (eelgrass) is 

located in Hopavågen (63°35’N 9°32’E) in Agdenes, Norway  (Duarte, Martı́nez and Barrón, 

2002; Lid et al., 2005). Hopavågen is connected to Trondheimsleia through a narrow 

channel, with water masses influenced by the Norwegian Coastal Current,  has a volume 

of 6.66 x 102 m3 (van Marion, 1996), maximum depth of 32 m and a total area of ~275 

000 m2 (Öztürk, Vadstein and Sakshaug, 2003). The seagrass has a patchy distribution on 

the southeastern shoreline, varying in depth (Duarte, Martı́nez and Barrón, 2002; Alvsvåg, 

2017), illustrated in Figure 2.1. Growing in and between the eelgrass patches, macroalgae 

belonging to the class Phaeophyceae (brown algae), Rhodophyta (red algae) and 

Chlorophyta (green algae) are prominent. Especially the red calcareous algae 

Lithothamnion glaciale Kjellmann, 1883 and Phymatolithon lenormandii (Areschoug) W.H. 

Adey, 1966 are dominating, covering organisms and substrate (Mogstad, Johnsen and 

Ludvigsen, 2019; Alvsvåg, 2017). The area investigated is a transect line of 37 m, 

subsetted from the area highlighted in red in Figure 2.1, chosen according to depth criteria 

(1 m; Johnsen et al., 2020), continuous submersion under water and high density of 

seagrass. Aerial photos from the Norwegian Mapping Authority (norgeibilder.no) shows the 

presence of seagrass here already in 1967, but the distribution has changed over the years 

(see Figure 4.1 in Section 4.5 for more details).  

 

 

Figure 2.1: The study area at the southeastern coastline in Hopavågen (63°35’N 9°32’E), Agdenes, 

Norway with the Zostera habitat transect line (T2; September) indicated in red. The green polygons 

represent seagrass distribution in the area in 2015, created using ArcGIS Pro (Esri Inc., Redlands, 

USA). Illustration: M. Søreng, ©norgeibilder.no.  

2 Materials and Methods 
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2.2 Data collection  

This study is a continuation of the work and mapping technique presented by (Mogstad, 

Johnsen and Ludvigsen, 2019) and the underwater hyperspectral imagery acquisition, 

processing and classification follows (with some alterations) the steps outlined in their pilot 

study. Ground truthing is also an important part of USV-based UHI mapping of the seagrass 

habitat. UHI data validation is performed by sampling of environmental data, visual 

seafloor surveys comprising snorkeling and RGB imagery, sampling of organisms of interest 

for species identification and in vivo spectral reflectance measurements. The Support 

Vector Machine (SVM) classification accuracy is expected to be ~90% (Mogstad, Johnsen 

and Ludvigsen, 2019) and forms the basis for correct mapping of spatial and seasonal 

distribution of marine vegetation in the area of interest. Table 2.1 includes the timeline of 

data collection and methods used.   

 

Table 2.1: Overview of data collection methods and dates (dd.mm.yy) of sampling. RGB includes 

pictures and videos from GoPro Hero 4, Hero 7 and Insta360-camera. 

 In situ  In vivo  

Date UHI Spectroradiometer CTD  RGB Grab  Spectrometer 

(QE Pro) 

 

05.05.21 x x      

06.05.21 x 

(T1) 

x  x x x  

07.05.21   x     

19.06.21    x    

07.09.21      x  

08.09.21 x x  x    

09.09.21 x 

(T2) 

x x x  x  

10.09.21     x   

08.12.21 x 

(T3) 

      

28.02.22 x 

(T4) 

      

01.03.22  x  x    

02.03.22  x      

 

2.2.1 In situ Acquisition of Underwater Hyperspectral Imagery 

To obtain in situ hyperspectral data from the Zostera habitat, an underwater hyperspectral 

imager (UHI4, #4-11; Ecotone AS, Trondheim, Norway) was used. The UHI is a push-

broom scanner recording spectral reflectance (R()) from objects of interests (OOIs) with 

a maximum spectral resolution of 2.2 nm (spectral range: 380-800 nm, 12-bit radiometric 

resolution) and across-track spatial resolution of 1936 pixels. Field of view (FOV) in 

transverse and longitudinal direction are ~60 and ~0.4 respectively. 

The UHI was deployed by an autonomous unmanned surface vehicle (USV), the Otter Pro 

USV #32 from Maritime Robotics AS (Trondheim, Norway), positioning the UHI in the nadir 

viewing position ~ 30 cm below the water surface as shown in Figure 2.2. The Otter Pro is 

a 200 x 108 x 81.5 cm electric twin hull USV with a run time of 20 hours. Max speed is 6 

knots, and it is equipped with a custom-made geopositioning system from NTNU/Senti 

Systems (Trondheim, Norway). Appendix 1 contains further details. An acoustic Impact 
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Subsea ISA500 altimeter (Impact Subsea Ltd., Ellon, UK) was mounted to and 

synchronized with the UHI and provided seawater temperature and distance between the 

UHI and seafloor (aft of the UHI in Figure 2.2 b.).  

The USV mission control was performed from a laptop (connected to the USV through 

Ubiquiti AirMax radio) with the software VCS (Vehicle Control Station; Maritime Robotics 

AS) for executing the preplanned USV mission (Figure 2.3 a.), and remote control of the 

UHI-build in software Immersion (Ecotone AS, Trondheim, Norway) for recording of UHI 

data. Waypoints was set to four steel wire frames of 50x50 cm (F1, F2, F3 and F4; 

Milchakova, 1999) evenly placed out in the area of interest, indicate the transect line 

subjected to resampling (Figure 2.3 b.). Additionally, an in situ spectral light beam 

attenuation sensor, the Viper #17SXXXXX0 from Trios (m-1; Oldenburg, Germany) was 

also mounted on the USV for measurements of the spectral light beam attenuation 

coefficient for IOP information.  

 

Figure 2.2: The Otter Pro prior to deployment at the study area in Hopavågen (a). Close up and 

positioning of the USV payload; Viper and UHI-4, attached by custom made metal brackets. Photo: 

M. Søreng. 

 

Figure 2.3: Screenshot from the Vehicle Control Station software showing the mission with 

predetermined waypoints (a). Frame F2 on the seafloor with the white reference plate used for 
correction of the inherent optical properties of seawater affecting the UHI data (06.05.2021; b). 

Photo: M. Søreng. 

b. a. 
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The UHI data acquisition was conducted in late spring (T1; 06.05.21), early fall (T2; 

09.09.21), winter (T3; 08.12.21) and early spring (T4; 28.02.22) to obtain the seasonal 

variation in the Zostera habitat throughout the year, and metadata for the UHI recordings 

is found in Table 2.2. The transects were recorded at 0.5-1 knots with a survey altitude of 

1-2 m, following the Norwegian standard NS-EN 16260:2012: Water quality – Visual 

seabed surveys using remotely operated and/or towed observation gear for collection of 

environmental data. The standard does not include USV and UHI, but this technology 

provides higher spatial and spectral resolution than the minimum demands for visual 

seabed mapping outlined by the standard and is assumed to be a valid method. Due to the 

area of known size, the steel wire frames also worked as spatial reference and ground truth 

for the UHI data, and were photographed by GoPro HERO7 and HERO4 (GoPro Inc., USA) 

and Insta360 camera One X2 (Insta360, California, USA). A 15x15 cm Spectralon 

reflectance standard (SRT-99-050; Labsphere Inc., North Sutton, USA) reflecting 99% of 

downwelling irradiance from 350-800 nm was placed out in the seagrass meadow next to 

F2 (Figure 2.3 b.) to correct for the inherent optical properties (IOPs) of the seawater and 

the intensity of downwelling spectral irradiance. 

 

Table 2.2: Metadata for the UHI recordings from Hopavågen used in the analyses. Weather 
conditions, recording settings in Immersion, time of day, average altitude above seafloor, length of 

recording in minutes, sun angle, exposure and speed of Otter above ground used are included. Frame 

rate is 25 for all recordings.  

 

 

 

 

 

Date Transect Weather Sun 

angle 

Time of 

day 

Average 

altitude  

Length 

[min] 

Exposure Otter 

speed 

above 

ground 

06.05.2021 T1 Low 

wind, 

cloudy 

42.63 12:37:50 1.93 m 00:06:10 45 0.5 ktp 

09.09.2021 T2 No wind 

or waves, 

cloudy 

27.50 11:14:53 1.72 m 00:06:16 35 0.5 ktp 

08.12.2021 T3 Windy, 

strong 

gusts and 

waves, 

cloudy 

3.72 11:42:37 1.63 m 00:01:19 40 1 ktp 

28.02.2021 T4 Cloudy, 

low wind, 

some 

waves 

and gusts 

17.97 14:26:22 1.75 m 00:03:24 40 0.5 ktp 
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2.2.2 Collection of Biological and Optical Information 

To assess the species detection level of the UHI, two grab samples were collected in May, 

and one in September 2021 to supplement the work of Alvsvåg (2017), and the species 

found were identified. Four Zostera marina specimens were collected in May and again in 

September for epigrowth investigation and size documentation. The individuals were 

pressed and included in the herbarium collection TRH at the NTNU University Museum. 

Additionally, further examination of morphological characteristics and species abundance 

was provided by RGB imagery and physical samples retrieved by snorkeling.   

Information about the IOPs of seawater at the time of UHI-recordings, was retrieved by a 

mooring with a SPEC spectroradiometer LPTBW (In situ marine bio-optics, Perth, 

Australia) measuring depth and downwelling spectral irradiance (summarized to EPAR; 400-

700 nm; Wm-2 nm-1), and an ECO Triplet-wB in situ fluorometer (WETLabs, Philomath, 

USA) measuring phytoplankton biomass as chlorophyll a fluorescence (Chl a; g/L), colored 

dissolved organic matter (cDOM; ppb) and optical backscatter (proxy for total suspended 

matter (TSM; m-1)) was placed next to the area of interest (Figure 2.4). Salinity data was 

retrieved from a Castaway CTD profile at the center of Hopavågen in May, September and 

March.   

 

 

Figure 2.4: The set-up of ECO Triplet sensor and the spectroradiometer at the examined seagrass 

meadow in Hopavågen. With the first sensor measuring the concentration of phytoplankton (Chl a), 

colored dissolved organic matter (cDOM), total suspended matter (TSM), and the latter measured 

depth and downwelling spectral irradiance (Ed()). The sensors ran for 24 hours. Photo: G. Johnsen. 

2.2.3 In vivo Spectral Reflectance of Collected Species in Hopavågen 

A diverse selection of fauna, brown, green and red algae was collected from the 

southeastern shoreline in May and September 2021, and the in vivo spectral reflectance 

(R()) of the organisms was measured by a QE Pro spectrometer (Ocean Insight Inc., 

Orlando, USA), with a HL-2000-HP high power tungsten-halogen light source (Ocean 

Insight Inc., Orlando, USA), a QR 400-7-VIS-BX reflection probe with optical fibers (Ocean 

Insight Inc., Orlando, USA) and the Ocean View software (Ocean Insight Inc, Orlando, 

USA), see Figure 2.5. This was done to verify R() for the OOIs in situ. To correct for 
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spectral irradiance from light source(s) the measurements were corrected for by dark 

current using Ocean View software, and a WS-1 reflectance standard (Ocean Insight Inc, 

Orlando, USA). The procedure outlined by Mogstad and Johnsen (2017) were applied, and 

the spectrometer measurements supplemented a reference library made by Aksel A. 

Mogstad (2021).   

The mean spectral reflectance for each taxa of interest was calculated using R (v4.1.2, R 

Core Team, 2021), Rstudio (v1.1.463, Rstudio Team, 2016) and the packages “pavo” (Maia 

et al., 2019) and “readxl” (Wickham and Bryan, 2019), using the reference library with 

spectral reflectance data (from 400-700 nm; n= 224) of Zostera marina (green tissue: 

n=17; withered tissue: n=8), henceforth referred to as seagrass in the UHI-analysis, and 

macroalgae (brown algae: n=86; red algae: n=75; green algae: n=38). Bio-optical 

characteristics as spectral absorption and reflectance relates further to pigment taxonomy 

(chemotaxonomy) and identification of different pigment types and the species-specific 

optical signatures (Pettersen et al., 2014; Johnsen et al., 2011; Volent, Johnsen and 

Sigernes, 2009). Pigment identification were based on literature (Mogstad and Johnsen, 

2017; Johnsen, Leu and Gradinger, 2020). This was used as a ground truth for in situ 

spectral reflectance data from the USV-based UHI and for the Band Ratio classification 

(Dekker, Brando and Anstee, 2005; Fyfe, 2003; Summers et al., 2022). 

 

Figure 2.5: Algae specimens collected 09.09.21 from the eelgrass meadow in Hopavågen. Reflection 

probe with the RPH-1 probe holder (Ocean Insight Inc, Orlando, USA) measuring Fucus serratus (a), 

Ulva intestinalis and the WS-1 reflectance standard (b), together with the QE Pro spectrometer (c), 

a QR 400-7-VIS-BX reflection probe with optical fibers (d) and the HL-2000-HP high power tungsten-

halogen light source from Ocean Insight Inc. I. Photo: M. Søreng, Ocean Insight (2022), Ocean 

Optics Launches QE Pro Spectrometer (2014), Ocean-Optics-HL-2000 (2022). 
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2.3 UHI Data Processing 

The processing of the UHI data collected in Hopavågen included georeferencing, 

radiometric processing and radiance conversion. By using the Geo-correct function in 

Immersion, the navigational data (latitude, longitude, pitch, roll and yaw of sensor) and 

altitude integrated in the HDF5 (Hierarchical Data Format) files extracted from the internal 

solid-state drive of the UHI, the pixels were georeferenced and put in a geospatial context. 

In the same processing step, raw digital counts were converted to upwelling spectral 

radiance (Lu(); W m2 sr-1 nm-1) and integral noise from the sensor was removed. This 

resulted in a spectral resolution of 2.2 nm and spatial resolution of 1 cm. Some altimeter 

measurements needed correction, and this was done prior to the georeferencing by finding 

the mean depth before and after the outlier.  

Furthermore, radiance processing was performed in ENVI (Environment for Visualizing 

Images, v.5.6.2; Harris Geospatial Solutions Inc., Broomfield, USA, 2021). First, the UHI 

data was mosaiced to one continuous raster with the Seamless Mosaic tool. Then a region 

of interest (ROI) from the reference plate was used to correct for the IOPs of the seawater 

by performing a flat field reflectance (FFR) correction of the data. This was achieved by 

the Flat Field Correction tool, which divide all spectra in the data set by a mean spectrum 

from the reference plate ROI, obtaining spectral pseudo-reflectance (post-processed 

reflectance from OOI). Smoothing of noisy data was performed using THOR Spectral 

Smoothing, which use the Savitsky-Goaly smoothing filter that removes random noise 

efficiently (Li, Chen and He, 2020). See Table 2.3 for the adjustable parameter used, 

comprising Filter Width (determines number of pixels adjacent to the data point, larger 

number gives smoother result), Order of Derivative (defines which derivative of the signal 

is smoothed, with default 0) and Degree of Smoothing Polynomial (with options 2-4, lower 

values produce smoother signal and introduce filter bias, and higher values reduce bias 

but can introduce more noise).   

 

Table 2.3: Smoothing parameters used in THOR Spectral Smoothing tool in ENVI for noise reduction 

of the flat field reflectance data from T2, T3 and T4, together with key SVM parameters from found 

in the SVM tuning of the smoothed UHI rasters.   

Smoothing parameters T2 T3 T4 

Filter Width 5 5 8 

Order of Derivative 0 0 0 

Degree of Smoothing polynomial 2 2 2 

SVM tuning    

Gamma in Kernel Function 1 0.0001 0.01 

Penalty Parameter 100 1 000 000 100 000 
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2.4 Classification of UHI Data 

There are several ways to perform supervised classification of UHI data. In the experiments 

reported on here, two types of feature vectors were used, Spectra (490-690 nm) and Band 

Ratios. ENVI and the built in Support Vector Machine (SVM) Classification is used for 

identification of macroalgae and seagrass in the habitat. The radial bias function (RBF) 

kernel was chosen for the SVM, considered to be fitting for data sets with high complexity 

and to be a robust classifier (Melgani and Bruzzone, 2004; Wu et al., 2008; Kavzoglu and 

Colkesen, 2009). Classification based on band ratios were implemented further in the 

Decision Tree (DT) Classification in ENVI, conducted as an alternative to the SVM 

classification. 

2.4.1 Support Vector Machine Classification 

The pixel classes: seagrass, red algae, brown algae, invertebrates and sediments were 

manually created with the Region of Interest function in ENVI. Each class contained 100 

pixels evenly selected from the transect to get a representative training data set of spectral 

reflectance from the OOIs. The R() data from these pixels were exported as xml-files to 

find the optimal settings for the SVM algorithm. The SVM tuning was done in Rstudio, using 

the packages “openxlsx” (Schauberger and Walker, 2021), “e1070” (Mayer et al., 2021) 

and “caret” (Kuhn, 2021), and a cross-validation sampling method. The resulting Gamma 

in the Kernel function parameter () sets how much one training pixel should influence the 

classification. A small value might lead to overfitting, while a large value might lead to 

over-smoothing (Mountrakis, Im and Ogole, 2011). The Penalty parameter (C) is the cost 

of misclassification, with a higher value resulting in low bias but high variance. The 

parameters used in the Support Vector Machine Classifier is found in Table 2.3.  

2.4.2 Band Ratio Classification of Seagrass 

The Band Ratio tool in ENVI was used to create a seagrass distribution map of the area of 

interest. Based on maximum and minimum reflectance values, and specific pigment 

characters for seagrass (chlorophyll a and b), a band ratio (BR) classification was executed 

using wavebands 549 nm and 663 nm. The algorithm is calculating the reflectance ratio 

between these two wavebands for every pixel, and the pixels are assigned a color on the 

grayscale ranging from black (lowest ratio) to white (highest ratio), according to how well 

the ratio match a pre-determined threshold. A threshold value of 1.28 was used with the 

assumption of seagrass having the highest ratio. This was repeated for transect T2, T3 and 

T4, and worked as a quick method to estimate how much seagrass and chlorophyll was 

present.   

2.4.3 Decision Tree using Band Ratio 

Based on the reflectance curves and group specific characters for seagrass, red algae, 

brown algae and invertebrates from the reference library, four band ratio classifications 

lead to a Seagrass Index: 549/663, Algae Index: 602/677, Red algae Index: 630/563, 

Brown algae Index: 645/666 and Invertebrate Index: 699/501. ROIs from the SVM training 

data set was used to extract pixel data from the BR classified images, which were used as 

input in an R-script to find DT threshold (Yes/No) using the package “cutpointr” (Thiele 

and Hirschfeld, 2021). The result is the optimum threshold for separation of the OOI 

compared to the other OOIs based on the band ratio data.   

A DT with five nodes was created with the New decision tree function in ENVI, see Figure 

2.6.  For each node (1-5) in the decision tree, the following expressions were used; Data: 
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B550 GT 0, Sea_I: B550/B665 GT 1.287, Alg_I: B602/B678 GT 1.177, Inv_I: B700/B500 

GT 2.371 AND B678 GT B602 and Red_I: B631/B564 GT 1.183. The pixel is assigned to a 

class by “Yes” or “No” based on if the pixel value is above or below the threshold, 

respectively. Due to the spectral resolution of 2.2 nm, the closest fit to the index 

wavebands were chosen. Color of each node corresponds to the classification result in 

Figure 3.5.  

 

Figure 2.6: The decision tree applied in the DT classification of the UHI data. Node 1 (Data) 

separates data from no data, Node 2 (Sea_I) separates seagrass from other pixels, Node 3 (Alg_I) 

separates red and brown algae from invertebrates or sediment, Node 4 (Inv_I) separates 
invertebrates from sediment, and lastly, Node 5 (Red_I) separated red algae from brown algae. 

Screenshot from ENVI. 

2.5 Estimation of Seasonal Coverage 

The distribution change of marine vegetation was assessed by comparing the SVM-

classified data from September, December, and February. The SVM-results were spatially 

compared by selecting a 4.5 m long area between two known geographic locations in each 

transect line (Figure 3.1), by creating an ROI using a brush size of 25 pixels and choose 

pixels from the corner of F2 to the tip of a recognizable stone on the seafloor in two parallel 

lines. These subsets were treated as equal areas, with a total pixel number of 22 500 (T2), 

21 250 (T3) and 22 500 (T4). Since each pixel is 1 cm2 and assigned to one spectral class, 

this was used to estimate areal coverage (%) of each OOI in the transect line. This gives 

a proxy for biomass. A screenshot of the T4 subset and respective pixel number for each 

class is given in Figure 2.7. The results from each season were compared and visually 

represented as a bar plot made in R using “ggplot2” (Wickham, 2016). 



   
 

18 

 

 

Figure 2.7: SVM classified subset from February (T4) in the Classification Statistics View in ENVI, 
with pixel number assigned to each spectral class (total of 22 500 pixels). This is further used to 

calculate pixel percentage from early spring. The Unclassified class is omitted. Screenshot from ENVI.   

2.5.1 Accuracy Assessment 

2.5.1.1 Algorithm accuracy 

The SVM classification accuracy of FFR data is here assumed to be ~90%, according to 

(Mogstad, Johnsen and Ludvigsen, 2019) with similar USV-UHI based mapping procedure 

in Hopavågen. Here, accuracy is defined as the ability to correctly assign a pixel to its 

respective class, and precision is the ability is to achieve the same classification of the pixel 

each time. Visual ROI class annotation was performed by hand picking pixels from each 

class based on examination of the RGB images and in vivo R() curves from the reference 

library (ground truthing/verification). An accuracy test based on comparison of a predicted 

pixel category against a known pixel category, as done by Chennu et al., (2017), involves 

validation based on hand-picked pixels not used in the training data. Since this resulted in 

a 95.7% accuracy of their SVM classification of UHI data, here, the SVM performance is 

believed to be similar when the training data is based on ground truthed pixels. The RGB 

photomosaic was visually compared the BR and SVM result, looking for and evaluating 

mismatches. Finally, the DT classification accuracy was assessed by using the SVM result 

as a ground truth image in the function Confusion Matrix by Ground truth Image in ENVI.  

2.5.1.2 Coverage estimation accuracy 

To evaluate the precision of the areal coverage estimation from the SVM pixel classification, 

an analogue method with a printed RGB image of frame F2 was performed. The RGB image 

was the ground truth compared to the SVM classified image, using data from T2. The paper 

was weighed prior to cutting out identified OOI, such as brown algae, seagrass, sediment, 

withered seagrass and invertebrates (red algae was not found). Each paper fraction (area 

of OOI) was weighed, and percent was calculated, further conveyed as percent coverage 

of each group of interest. The SVM classified image of F2 consisted of 2351 pixels, and 

percent pixels in each class were calculated. Lastly, the percent error of the SVM estimation 

was calculated by subtracting the ground truth value from the SVM value and dividing by 

the ground truth value.  
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3.1 In situ UHI data 

3.1.1 Transect Lines  

The three post-processed RGB photomosaic representations (Red: 641 nm, Green: 532 

nm, Blue: 459 nm) of the transect lines from September (T2), December (T3) and February 

(T4), with corresponding subsets, are shown in Figure 3.1. The transects are variable in 

terms of recorded seafloor area and georeferencing precision (see Appendix 1). This is 

evident in the different deviation from the attitude line set by the waypoints in the Otter 

mission, together with shape distortion of the square reference plate. The conditions for 

high quality UHI data acquisition were nearly optimal in September with no wind/waves, 

providing a slow and steady speed above ground for the USV. The total length of the 

transect line is 37 m, making a total sampled area of 55.9 m2, 57.4 m2 and 64.8 m2 for 

T2, T3 and T4, respectively. These areas were subsetted to 4.5 x 0.5 m (area in the pink 

rectangle), enlarged to the right in Figure 3.1. The subsets represent the same area on the 

seafloor, with pixel numbers T2: 22 500, T3: 21 250 and T4: 22 500, enabling a 

comparable percent coverage of the groups of interest in Section 3.3, and visual inspection 

of the seasonal variation. There are prominent turf algae in T2, which disappears in T3, 

together with a clear reduction of green seagrass from T2 to T4.  

3.1.2 In situ Spectral Reflectance 

Mean in situ spectral reflectance R() curves from 490-690 nm (wavelengths outside the 

selected range is considered too noisy to be included in the analysis) for seagrass, red 

algae, brown algae, invertebrates and sediment based on 100 hand selected pixels of 

identified OOIs belonging to each group of interest (validated by RGB imagery and in vivo 

reflectance) are found in Figure 3.2. The standard deviation is visualized in grey, and is 

largest for red algae and invertebrates all seasons, but nearly non-existent for seagrass 

and brown algae in December and February. The light conditions in December and February 

were low, compared to May (see Section 3.5.5), influencing the signal-to-noise ratio and 

R(). The reflectance from the February data set was overall lower than from the other 

data sets, with almost overlapping seagrass and brown algae curves around 5% 

reflectance. The maximum reflectance peak with corresponding wavelength for each curve 

in each transect can be found in Table A.2 in Appendix 2. Red algae had highest reflectance 

each season, with a maximum of 0.256% at wavelength 603 nm in September. The values 

for Invertebrates reflectance determined by the limits set in the R code, at 681 nm (T2, 

T4) and 685 nm (T3) where the curve continues the steep incline. Otherwise, the maximum 

reflectance for each group of interest is consistently found at the same wavelengths, except 

for the invertebrate and sediment maximum in December. 

 

 

3 Results 
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Figure 3.1: USV-UHI based RGB photomosaic representations (R: 641 nm, G: 532 nm, B: 459 nm) 
of total transect lines from September (T2), December (T3) and February (T4) in Hopavågen is shown 

to the left, and subset areas within the transects to the right, marked by a pink rectangle. The 

subsets are assumed to cover the same 4.5 x 0.5 m area on the seafloor. 
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Figure 3.2: Mean spectral reflectance from USV-UHI data calculated from 100 hand-picked pixels 

belonging to brown algae, red algae, seagrass, invertebrates and sediment from each transect, with 

line color of correspondingly brown, red, green, coral and grey. The waveband interval is 490-690 

nm on the x-axis, and relative reflectance on the y-axis (percent if multiplied by 100). 
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3.2 Classification of UHI data 

The results from the SVM classifier in ENVI is shown in Figure 3.3 and Figure 3.5 (T2 only), 

and a change in marine vegetation is evident. Training data pixels used in the algorithm 

was chosen from the total transect line, thereupon the classification result was subsetted. 

Figure 3.3 includes a table with pixel number assigned to each spectral class (seagrass, 

brown algae, red algae, invertebrate and sediment) from the SVM subsets. Subset T2 

contains most pixels classified as seagrass (78.15%) and T4 the least (16.66%). Brown 

algae had an increase from T2 to T3, followed by a slight decrease in T4. The decline in 

seagrass and brown algae together with an increase in classified sediment (from 3.1 to 

17.14%) implies a significant reduction in biomass. The invertebrates and red algae 

spectral class stayed low in pixel number for each data set, which is reasonable since 

invertebrates in the subsets were largely constituent of sessile Meritridium senile on a rock 

(top right) in the subsets. However, the T3 result only identified 10 invertebrate pixels, but 

the same individuals were observed in the area.  

The resulting image from the BR classification for each transect shows seagrass cover on 

the seafloor in the transect lines (Figure 3.4). The same band ratio (549/663 nm 

corresponding to reflectance maximum and minimum) is used on all UHI data sets, and 

the images show distinct differences in seagrass cover between the seasons. Each pixel is 

assigned a shade on the grayscale ranging from black to white. This depends on how close 

the reflectance difference at the two wavebands matches the threshold value of 1.28. 

Rocks are black, brown algae are grey and seagrass is white (covering 27.84 m2 of the 

total T2 transect). At the beginning of T4, there is probably green algae film on the seafloor 

due to the homogenous white shade without prominent structure matching the pigment 

absorption of seagrass.   

Figure 3.5 compares different UHI data analyses from September in terms of a RGB 

photomosaic representation of the data set, SVM classified image and DT classified image 

in the left panel. The SVM image shows a more homogeneous seagrass cover than the DT, 

which have classified more brown algae, sediment and invertebrate pixels scattered over 

the seagrass delimited area. (363 633 seagrass pixels and 83 399 brown algae pixels (SVM) 

compared to 188 713 and 214 224 (DT)). Notably, the SVM seems to classify the prominent 

turf algae in the middle of the transect line and match the RGB photomosaic well, while 

the DT classify the turf algae with less smooth and clear-cut edges. When compared to the 

BR classification (furthest to the right), a mix of the classification results from the SVM and 

DT would likely be a better representation of the actual coverage of spectral classes. The 

confusion matrix panel illustrates the estimated classification error of DT compared to SVM 

as ground truth, and this will be further explained in section 3.4.2.  

3.3 Seasonal Coverage of Marine Vegetation 

Based on the pixel number found by the SVM classification for each group of interest, the 

percent areal coverage in the transect subsets were calculated and represented in the 

stacked bar plot in Figure 3.3. There is a reduction in seagrass from 78.2% in T2, to 24.4% 

in T3 and 16.7% in T4. This coincides with visible biomass in the RGB images in Figure 

3.6. The brown algae are increasing from 17.6% in T2, to 72.8% and 65.2% in T4. The 

amount of exposed sediments had an increase from 3.1% in September to 17.1 % in 

February coinciding with the above-stated biomass decline exposing the substrate 

underneath. As has been noted, red algae did not change considerably, in agreement with 

slow growth of calcareous red algae. Furthermore, seeing a negligible percent of 

invertebrate coverage in the subsets, this group was omitted from the bar plot.   



   
 

23 

 

 

Figure 3.3: Total USV-UHI transect lines from September (T2), December (T3) and February (T4) 

in Hopavågen classified by Support Vector Machine (SVM). The transect subsets are shown to the 

right, above a table with number of spectrally classified pixels (each pixel cover 1 cm2 of the seafloor) 

assigned to each group of interest: seagrass, brown algae, red algae, invertebrate and sediment. 

The stacked bar plot shows the percent distribution of pixels in each transect subset (T2, T3 and T4) 

which is an estimation of percent areal coverage of each group. Data is retrieved from ENVI. 
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Figure 3.4: USV-UHI based photomosaics of seagrass distribution in Hopavågen. The maps are 
created in ENVI using the band ratio 549/663 nm on transects from September, December and 

February. The pixels are assigned to the black-white color gradient according to how well they match 

the band ratio threshold of 1.2, where the whitest pixels are the closest match and indicate seagrass. 
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Figure 3.5: Comparison of USV-UHI based photomosaic, Support Vector Machine (SVM) and 

Decision Tree (DT) classification of data from September, 2021, Hopavågen. From the left: RGB 

photomosaic (R: 641 nm, G: 532 nm, B: 459 nm), SVM and DT classified distribution maps with five 

classes; seagrass, brown algae, red algae, invertebrates, and sediment. The Confusion matrix output 

from ENVI compares DT to the SVM results, with seagrass pixels classification error (red), brown 

alga error (blue) and sediment error (green), and lastly, the BR classification result (549/663 nm). 
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3.4 Assessment of Classification Accuracy 

3.4.1 Comparison of SVM image to Ground truth RGB image  

The classification and coverage estimation accuracy are given as percent error for each 

spectral class in Table 3.1. Figure 3.6 illustrate the SVM result of F2, and the RGB image 

is found in Figure 3.7 e. The calculated classification errors were 21.9% for seagrass, -

77.9% for brown algae and -33.3% for sediment. This indicates a large misclassification 

of brown algae and sediment, where the negative sign represents underestimation of 

percent coverage in the frame. Further, the SVM algorithm did not identify any 

invertebrates or withered seagrass (not included as a spectral class), but they were 

identified in the ground truth. If the withered seagrass would have been included as 

seagrass in the ground truth, the overestimation of pixels by the SVM algorithm would be 

reduced, and the accuracy for seagrass classification would have been slightly improved.  

 

Table 3.1: Percent error for each designated spectral class used in the SVM classification. The areal 
coverage (%) of each class identified in the ground truth image is estimated using the paper weight 

of each fraction divided by total weight of the RGB image of the 50 x 50 cm frame F2. Data from 

September (T2) is compared.  

F2 from T2 Seagrass Brown 

algae 

Red 

algae 

Invertebrate Sediment Withered 

seagrass 

RGB (%) 70.9 4.97 - 0.224 18.9 5.19 

SVM (%) 86.4 1.1 - - 12.6 - 

% Error 21.9 - 77.9 0 -100 - 33.3 - 100 

 

 

Figure 3.6: Screenshot from the Classification Statistics View in ENVI with pixel number in each 

class in frame F2 from September (T2; total of 2351 pixels), used further to calculate pixel 

percentage delimited by the frame. The Unclassified class contains pixels with no data and is omitted. 

The colors in the left panel corresponds to the pixel colors to the right.     
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3.4.2 Confusion Matrix 

The output from the confusion matrix calculated in ENVI, comparing the DT classifier to 

the SVM classifier used on the UHI data set T2, is found in Table 3.2. The Overall 

Classification Accuracy is 53%, and the Kappa Coefficient is 0.3079, indicating no 

difference between the two classifiers and an eventual random chance. The producer 

accuracy (PA; total number of correctly classified pixels in a class by the DT, divided by 

the total pixel number belonging to the class identified by the ground truth (SVM)) is 

highest for invertebrates (75.94%) and lowest for red algae (11.71%). Thus, the DT and 

SVM were most in agreement concerning invertebrate classification, but least for red algae. 

The seagrass class PA was only 49.97%. However, the user accuracy (UA; total number of 

correctly classified seagrass pixels, divided by the total number of pixels assigned as 

seagrass by the DT) in the seagrass case was 96.09%, indicating that almost all pixels 

classified as seagrass by the DT was coinciding with the SVM. Then again, ~50% of the 

seagrass pixels found by the SVM were assigned to other classes by the DT. UA identifies 

false positives, and this is evident for brown algae with the lowest UA of 26.56%, and 

157 241 pixels were wrongly assigned to this class (assuming the SVM is correct).  

 

Table 3.2: Confusion matrix of Decision Tree (DT) classification compared to Support Vector Machine 

(SVM) classification of photomosaics of the UHI data set from T2 (Ground Truth).   

Predicted 

Spectral 

Class 

Ground Truth (Pixels)  Producer 

Accuracy 

(%) 

User 

Accuracy 

(%) 
Seagrass Brown 

algae 

Red 

algae 

Invertebrate Sediment Total 

Seagrass 181337 5823 9 0 1544 188713 49.87 96.09 

Brown algae 110511 56983 9552 0 37268 214224 68.22 26.56 

Red algae 0 3034 1839 0 59 4932 11.71 37.29 

Invertebrate 235 527 10 830 311 1913 75.94 43.39 

Sediment 71550 17122 4300 263 55430 148665 58.59 37.29 

Total 363633 83399 15710 1093 94612 558447   

Overall Classification Accuracy: 53.06%, Kappa Coefficient: 0.3079* 

 

3.4.3 RGB images of Seafloor 

A compilation of RGB camera images taken of frame F1, F2 and F3 from May (06.05.2021; 

GoPro Hero 7; Fig. 3.7 a-c), September (09.09.2021; GoPro Hero 4; Fig. 3.7 d-f) and 

March (01.03.2022; snapshots from Insta360 video; Fig. 3.7 g-i) visualize the seasonal 

distribution change of the OOIs, with variations in biomass and IOPs of the seawater. The 

Zostera was still growing in May, reaching its maximum length during the summer and the 

coverage in September was high. This contrasts with March, where the majority of Zostera 

had withered and the green leaves were short and more dispersed on the seafloor. Brown 

algae were also observed. The Metridium senile Linnaeus, 1761 on the rock in F3 where 

persistent, additionally, many Ophiocomina nigra Abildgaard, 1789 specimens inhabited 

the habitat in fall and early spring. 

 

*For comparison: smoothed DT vs. unsmoothed SVM: Overall Classification Accuracy: 64.40%, Kappa Coefficient: 0.4703 
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Figure 3.7: Revisited 50 x 50 cm areas on the seafloor for biomass comparison and ground truth. 
The first row from May (a-c; 06.05.2021), second row from September (d-f; 09.09.2021) and third 

row from March (g-I; 01.03.2022). Frame F1 is the first column, then F2 and F3 to the right. Photo: 

M. Thu, M. Bjerkvoll, G. Johnsen     

3.4.4 Effects of Smoothing on In situ UHI data 

Altogether, the differences caused by smoothing of spectral reflectance data augment 

uncertainties towards the classification accuracy. In the UHI data post-processing, different 

smoothing parameters were tested for each transect to find the best settings to reduce 

noise in the in situ R() data and the effect on SVM classification accuracy. As shown in 

Figure 3.8, there is an overestimation of brown algae in the unsmoothed transect compared 

to the photomosaic and the transect processed with Filter Width setting 5. The latter are 

the final settings used in the UHI-analysis (see Table 2.3). The unsmoothed classified 

image was run with SVM settings; Gamma in Kernel Function: 1, Penalty Parameter: 1000. 

The seagrass class was also consisting of more pixels in the smoothed data compared to 

unsmoothed. Lastly, when the unsmoothed SVM was compared to DT, the overall accuracy 

was higher (64.40%), and had a Kappa coefficient of 0.4703. 
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Figure 3.8: Transect subset from September (T2) with an RGB representation of the USV-UHI 
photomosaic in Hopavågen to the left, followed by the SVM classified subset smoothed with Thor 

Spectral Smoothing in ENVI and Filter width 5. The unsmoothed SVM subset is to the right. 

3.5 Ecological Information and UHI Data Validation 

3.5.1 Biodiversity in the Zostera habitat 

The Zostera habitat consists of Zostera marina (Figure 3.9 and 3.11 a) and several 

macroalgae species, including the green algae Codium fragile (Suringar) Hariot, 1889 and 

Ulva sp., the brown algae Fucus serratus Linnaeus, 1753, Chorda filum (Linnaeus) 

Stackhouse, 1797 and turf algae. Red algae were dominated by the calcareous 

Lithothamnion glaciale (Figure 3.11 b) and Phymatolithon lenormandii. The latter is a 

dominating epigrowth species growing on the Zostera leaves and the substrate. The sea 

urchins Echinus esculentus Linnaeus, 1758 and Strongylocentrotus droebachiensis O. F. 

Müller, 1776, the brittle star Ophiocomina nigra and the plumose anemone Metridium 

senile are dominating invertebrates found in the area. Additionally, Littorina littorea 

Linnaeus, 1758, Spirobranchus triqueter Linnaeus, 1758, Pagurus bernhardus Linnaeus, 

1758 and Carsinus maenas Linnaeus, 1758 are common. A selection of species found in 

the grab samples and by snorkeling can be found in Figure 3.10. Appendix 3 contains a list 

of all collected and identified species from the meadow.  
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Figure 3.9: Zostera marina collected 09.09.2021 with a grab, showing horizontal growth pattern 

with shoots emerging from the root system (a). Close up of leaf tip with emargination (b), three well-

defined veins in the leaf plate (c) and seed capsule with immature seeds (d). Photo: M. Søreng 

 

Figure 3.10: Selection of fauna found in the Zostera habitat 06.05.2021. Unsorted grab sample with 

sediment, organic matter and fauna (a), organisms picked from frame F1 at the start of the transect 
line (b), Littorina littorea with Phymatolithon lenormandii (c), Mimachlamys varia (d), Liocarcinus 

sp.(d), dead Mollusca found in the grab sample (e). Photo: M. Søreng 
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Figure 3.11: The Zostera habitat with dominating red and brown algae collected 09.09.2021. To the 
left: In situ close-up Zostera marina with Chorda filum from May (a) and September (c) with turf 

algae coverage (Phaeophyceae). To the right: Lithothamnion glaciale growing on a rock typically 

found in the habitat (b) and a close-up of the turf algae (d). Photo: M. Søreng 

3.5.2 Epigrowth and Withered Seagrass 

During collection of biological material, red calcareous algae was found growing on the Z. 

marina leaves in September (Figure 3.12 a). Old and withered leaves attached to a living 

specimen (Figure 3.12 b.) also had epigrowth, which will have an impact on the spectral 

reflectance of the OOIs. Green algae film is also covering organisms and substrate as seen 

on the Spirobranchus triqueter in Figure 3.12 c. 

 

 

Figure 3.12: Zostera marina specimen with red calcareous algae using the leaf as a substrate (a) 

and a specimen with withered leaf and Lacuna sp. eggs (b). A rock with red calcareous algae and 

Spirobranchus triqueter covered in green algae film is shown in panel c. Photo: M. Søreng 
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3.5.3 In vivo Spectral Reflectance 

Spectral reflectance data from the reference library collected by the QE Pro spectrometer 

is used in the graphs in Figure 3.13 and 3.14. The left panel in Figure 3.13 visualizes the 

mean spectral reflectance for seagrass, brown, red and green algae, with their standard 

deviation. The within group variance in reflectance is especially large around the 

reflectance peaks. Green algae and seagrass show similarities in reflectance maxima and 

minima, but green algae have a slightly higher reflectance. Further, seagrass pigments 

absorb almost all wavelengths from 400-485 nm before a strong reflection of green 

wavelengths causing an absorption escalation from ~550-665 nm. Red algae have two 

characteristic R() peaks at 600 and 650 nm, but also four noticeable dips at 440, 500, 

565 and 680 nm. The right panel contains the R() curves for withered seagrass and brown 

algae for comparison purposes. The reflectance peaks for withered seagrass are positioned 

at similar wavelengths as the peaks for brown algae, at ~600 and ~645 nm, and a 

reflectance dip at ~675. This, together with the two dips matching the red algae curve, 

indicate red algae epigrowth (see Figure 3.12 a). Additionally, a large variation in the 

measured spectra is present, believed to correspond to different stages of senescence and 

epiphytes. The maximum R() for withered seagrass is 8.67% at 599 nm, and 5.75% at 

597 nm for brown algae, see Table A.2.  

The most prominent group specific pigments are identified in Figure 3.14 based on 

available literature. Pigments characterized in the marine vegetation are chlorophyll a, b 

and c, carotenoids comprising lutein, zeaxanthin, antheraxanthin, neoxanthin, ,-

carotene, violaxanthin and fucoxanthin, and finally phycobiliproteins dominated by 

phycoerythrin. From 400-600 nm, all pigment groups are absorbing wavelengths, but from 

600-700 nm, there is only absorption from chlorophylls. The seagrass and green algae 

reflectance curves have two equally positioned reflectance shoulders from approximately 

590-630 nm, which can be linked with absorption by epigrowth. The in vivo absorption 

peak range for Chl a is from 663-680 nm, together with a pigment “absorption window” 

with unutilized wavelength ranging from 540-560 nm apparent in the seagrass curve.   

 

Figure 3.13: Left panel: Mean in vivo spectral reflectance for each group of interest with standard 

error; seagrass, brown algae, red algae and green algae illustrated with their respective color. The 
wavelength interval on the x-axis is 400-700 nm, with the mean relative reflectance on the y-axis 

corresponding to percent if multiplied by 100. Right panel: Comparison of mean spectral reflectance 

of withered seagrass and brown algae, with reflectance peaks at similar wavelengths. 



   
 

33 

 

 

Figure 3.14: The four panels to the left contains the mean in vivo spectral reflectance for brown 

algae, seagrass, red algae and green algae, with reference library data measured by the QE Pro 

spectrometer. Characteristic pigment absorption maxima, corresponding to reflectance dips, are 

identified and marked on the curves. The absorption from 400-600 nm is dominated by chlorophylls 

(Chl a, b, c), phycobiliproteins mainly consisting of phycoerythrin (PE), and the carotenoids lutein 

(Lut), zeaxanthin (Zea), fucoxanthin (Fuc), neoxanthin (Neo), violaxanthin (Viola), ,-carotene and 

antheraxanthin (Anth). Absorption from 600-700 nm comes from chlorophylls only. The colors refer 

to the hue of the wavelengths absorbed (Johnsen, Leu and Gradinger, 2020; Johnsen et al., 2011; 

Mogstad and Johnsen, 2017; Fyfe, 2003; Hurd et al., 2014; Alvsvåg, 2017).  
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3.5.4 Key Environmental Variables 

Seawater temperature values retrieved from the altimeter data from the UHI-recordings 

are included in Table 3.3, together with the measurement from the spectroradiometer and 

ECO Triplet sensor; salinity, total suspended matter (TSM; m-1), colored dissolved organic 

matter (cDOM; ppb), and Chlorophyll a fluorescens (g/L). The data from May and 

September is an average of two measurements at 1.5m below sea surface from the profile 

measurement in the middle of Hopavågen. The March data comes from the mooring placed 

on the seafloor next to the seagrass meadow. No environmental variables were measured 

during the data collection in December, except the seawater temperature of 4.8 C. The 

seawater contained more Chl a and cDOM in September (1.732 g/L and 2.843 ppb) 

compared to March, and had the highest temperature (13.4 C) measured. The high 

particulate matter coincides with the yellow hue seen in the frame images in Figure 3.6 d-

f, but interestingly the TSM and cDOM is higher in May with water appearing clearer.  

 

Table 3.3: Data from a recording profile at the center of Hopavågen, the measurements are from 

1.5 m below sea surface. The data from 1st of March is from the mooring at southeastern shoreline 

in Hopavågen. Parameters are total suspended matter (TSM), chlorophyll a concentration (Chl a), 
colored dissolved organic matter (cDOM) and salinity. Seawater temperature is measured by the 

altimeter on the USV. 

Date Seawater 

temperature 

[C] 

Salinity 

[S] 

TSM 

[m-1] 

Chl a 

[g/L] 

cDOM 

[ppb] 

07.05.2021 7.8 32.10 0.00135 1.324 4.317 

09.09.2021 13.4 29.554 0.000915 1.732 2.843 

08.12.2021 4.8 - - - - 

01.03.2022 4.5 - 0.000725 0.456 0.867 

 

3.5.5 Downwelling Spectral Irradiance 

The spectroradiometer used to measure downwelling spectral irradiance next to the 

seagrass meadow logged every 2nd minute over 24 hours. Here, a time interval from 10:00 

to 15:00 is chosen to include the time of day the UHI data was recorded. The sun angle 

was approximately 42.6, 27.5 and 18.7 at the time of Ed measuring (mid-day) in May, 

September and March, respectively. The spectroradiometer data was averaged to EPAR 

(W/m2) and the measurements from May, September and March is given in blue, green 

and red lines, see Figure 3.15.  
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Figure 3.15: Average downwelling spectral irradiance, EPAR (W/m2), during 24 hours in the top panel, 
and between 10:00 and 15:00 at mid-day in the lower panel, with colored lines showing 

measurements with the spectrophotometer from 6th of May (blue), 9th of September (green) and 2nd 

of March (red). 
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In this study, UHI is used as a bio-optical taxonomic tool for species identification and 

percent coverage estimation in a Zostera habitat, as an application of the methodology 

introduced by Pettersen et al. (2014) and Johnsen et al. (2013). The UHI detects 

characteristic pigment signatures further related to pigment groups in marine vegetation 

(seagrass and macroalgae), given that reflectance spectra are the inverse absorption 

spectra from different OOIs (Volent, Johnsen and Sigernes, 2009; Thorhaug, Richardson 

and Berlyn, 2007), Other work have demonstrated this bio-optical method for e.g. micro- 

and macroalgae (Volent, Johnsen and Sigernes, 2009), Zostera noltei (Bargain et al., 

2013), coralline algae (Mogstad and Johnsen, 2017), sponges (Pettersen et al., 2014) and 

cold-water corals (Elde et al., 2012).  

To my knowledge, no previous mapping surveys have utilized USV-based UHI to map 

seagrass (Montes-Herrera et al., 2021; Liu et al., 2020). Here, different temporal UHI data 

sets are analyzed, which require stricter requirements of georeferencing and navigation to 

ease the areal comparison. Alvsvåg (2017) used an USV (Jetyak) to map the seagrass 

meadow in Hopavågen using RGB cameras, but image-analysis is time-consuming work 

(Schoening et al., 2012). With applying UHI, the amount of information collected regarding 

time use and workload have been amplified many times, aided by machine learning 

(Klemas, 2016). This study is also a contribution to the biological survey done by Teacă, 

Ungureanu and Mureșan (2017) and Duarte, Martı́nez and Barrón (2002), which 

investigated this seagrass meadow, and further an in situ application of the laboratory 

work from Thorhaug, Richardson and Berlyn (2007) that found distinct spectral reflectance 

spectra between seagrass species and macroalgae. The reflectance maximum of the algae 

and seagrass examined in this study coincides with the absorption minimum found in 

literature (Chennu et al., 2013; Fyfe, 2003; Volent, Johnsen and Sigernes, 2009), but little 

work is found on withered seagrass, implying an interesting finding worth further 

investigation.  

The main goal of mapping seasonal variation in a Zostera habitat using USV and UHI is 

achieved, and the hypotheses conclusions is briefly summarized below. These findings are 

further discussed. 

• Hypothesis 1: USV-based UHI mapping is a time efficient and reliable method for 

mapping of seagrass distribution over a larger area is confirmed, with some 

prevailing limitations.  

• Hypothesis 2: the UHI will not be able to detect all species found during ground 

truthing, and the hypothesis is confirmed. It depends on spatial resolution, 

environmental factors and size of a given organism of interest.  

• Hypothesis 3: states that seagrass and macroalgae composition change throughout 

the year, and it is possible to detect changes in turf algae distribution. This is only 

partly confirmed since the method was not able to detect changes in turf algae 

distribution, only brown algae as a group.  

 

 

4 Discussion 
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4.1 Mapping of Seasonal Variation in Zostera habitat 

There is seasonal variation in distribution of marine vegetation in the Zostera habitat at 

the southeastern shore in Hopavågen. The seagrass showed greatest extent in September 

with 78.2% coverage in the subsetted area of 2.25 m2 and was reduced to 16.7% in 

February, coinciding with previous work on seasonal variation (Costa, 1988; Duarte, 1989). 

Withered seagrass is probably included in the brown algae classification, as of similarities 

in their optical signature (Figure 3.13). Brown algae showed an increase from 17.6% 

coverage in September to 72.8% in December, and a small reduction again to 65.2% in 

February. This indicates that brown algae grow substantially during fall and winter 

compared to seagrass. The SVM classification compared to the ground truth RGB image 

resulted in a 21.9% error for seagrass, - 77.9% for brown algae and -33.3% for sediment. 

No invertebrates or withered seagrass was found by the SVM, and no red algae was 

detected in the ground truth image in frame F2. Physical samples show on the other hand 

calcareous red algae growing on the substrate, but too small to be detected by the UHI 

and RGB camera.   

4.2 Comparison of Different Classifiers 

To compare BR, SVM and DT algorithms for UHI data classification, the September UHI 

data set was used, and a confusion matrix compared pixel classification for DT and SVM. 

Both are common classifiers used for hyperspectral analysis (Mountrakis, Im and Ogole, 

2011; Gewali, Monteiro and Saber, 2018), and confusion matrices have formerly been 

demonstrated as accuracy assessments (Mogstad, Johnsen and Ludvigsen, 2019; Foglini 

et al., 2019; Bioucas-Dias et al., 2013), thus used here. The BR classification highlights 

seagrass distribution based on characteristic reflectance properties from Chl a and b at 

wavelengths 549 and 663 nm (similar to Broge and Leblanc (2001), giving an estimate 

coinciding with the RGB photomosaic and field observations. The DT classification assigns 

less pixels as seagrass (33.79%) compared to SVM (65.12%), giving a producer accuracy 

of 49.87% and user accuracy of 96.09% for seagrass classification indicating that the DT 

assigned seagrass pixels with high confidence, but missed almost half of the pixels 

identified as seagrass by the SVM. The BR classifier found 49.85% seagrass pixels 

(determined by an ROI with threshold 1.2), which is an intermediate result. The highest 

producer accuracy from the confusion matrix was evident for invertebrates (75.94%) 

mainly comprising Metridium senile and Echinus esculentus, which is reasonable when the 

optical signature for invertebrates is quite distinct from the others and noise are less of a 

distorting factor (Mogstad, Johnsen and Ludvigsen, 2019; Elde et al., 2012). The lowest 

producer accuracy was evident for red algae (11.71%), probably due to difficulties by 

separating red and brown algae in the DT classification. The confusion matrix results in an 

overall accuracy of 53%, and Kappa Coefficient of 0.307, implying that the classifiers are 

not in agreement, with most divergence in red algae identification. The classification error 

of seagrass, brown algae and sediment is highlighted by the colors red, blue and green, 

respectively in Figure 3.5.        

4.3 Biological Assessment 

4.3.1 Environmental Variables 

Most influential on the quality of the UHI data are the environmental variables related to 

seawater IOPs, hence the concentration of TSM, cDOM and phytoplankton Chl a, as stated 

by Johnsen et al. (2013), reducing the upwelling irradiance to be detected by the sensor 
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due to attenuation in the water column. The highest particulate content in the seawater 

was measured in May (TSM: 0.00135 m-1, Chl a: 1.324 g/L, cDOM: 4.317 ppb), 

presumably due to algae post bloom (Thu, 2022) and a heavy rainfall that increased runoff 

from land. The TSM concentration was 0.000951 m-1 in September and 0.000725 m-1 in 

March, Chl a was 1.732 and 0.456 g/L and cDOM 2.843 and 0.867 ppb, respectively. In 

contrast, the ground truth RGB images (Figure 3.7 d-f.) show a yellow hue of the seawater, 

indicating a higher cDOM content in September than May. It is unknown why the particulate 

content of the water is measured to be higher in May when this appears clearer. One 

explanation can be the formation of a pycnocline aggregating a higher cDOM concentration 

in the upper layer of the water column (similar to mechanisms observed for marine snow 

(Diercks et al., 2019) where the camera was positioned. When the CTD sampling point was 

at 1.5m depth at the center of Hopavågen, this could have been below the pycnocline, 

albeit this should be investigated further.  

Light conditions vary with seasons (Rayl, Young and Brownson, 2013), and the highest 

downwelling spectral irradiance (EPAR; ~60 W/m2 at 1 m depth) was measured in May, with 

sun angle 42.63. The EPAR curves in Figure 3.15 fluctuates, indicating changes in cloud 

cover and irradiance (Ahmad et al., 2003), thus effecting the strength of the signal 

detected by the UHI and R() (Johnsen et al., 2013). Low downwelling spectral irradiance 

in December and February leads to low signal-to-noise ratio in the in situ spectral 

reflectance, especially for dark (optically dense) seagrass and brown algae, which seems 

to almost overlap. Contrasting to the in vivo spectral reflectance curves for the two, that 

are quite distinct. Such differences are also found by (Pu et al., 2012). The in vivo R() of 

seagrass is at its maximum at 550 nm and minimum at 665 nm, with small reflectance 

peaks at 600 and 630 nm, most likely due to epigrowth of coralline algae commonly found 

on seagrasses (Borowitzka, Lavery and van Keulen, 2006). The R() for brown algae 

obtained a maximum at 597 nm and three dips with the minimum R() at 666 nm, with 

overall reflectance intensity lower than seagrass. However, similarities in brown algae and 

withered seagrass spectral reflectance curves (higher reflectance intensity for withered 

seagrass, Figure 3.13) are observed, both with maximum reflectance at ~600 nm. The 

seagrass has lost its characteristic Chl b dip at 650 nm (Johnsen, Leu and Gradinger, 2020).  

4.3.2 Biodiversity 

Prominent species in the investigated area are Zostera marina, Phymatolithon lenormandii 

and Lithothamnion glaciale (red coralline algae), turf algae, Fucus serratus and Chorda 

filum (brown algae), Echinus esculentus and Strongylocentrotus droebachiensis (sea 

urchins), Ophiocomina nigra (black brittle star), Metridium senile (plumose anemone). 

More extensive species list is found in Appendix 3. The abundant turf algae found in 

September is either Ectocarpus sp. or Pylaiella sp., but further taxonomic identification was 

not possible without seeing the cell structure using dissection microscope. Smaller species 

of Molluscs and Crustaceans, as well as other macrofauna, were detected by ground 

truthing (coinciding with Gullström, Baden and Lindegarth (2011), Hori, Bayne and Kuwae 

(2019) and Alvsvåg (2017), but the size range was below the detection limit of the UHI of 

1 cm. Green algae film was also present.     

The Zostera specimens collected had little epigrowth overall, but Phymatolithon 

lenormandii was found on the leaves during all field missions. Lacuna sp. eggs were also 

found attached to some of the leaves in May. The eelgrass grew taller from May to 

September (~ 20 cm, see Appendix 4), but a markedly dieback was observed in February, 

coinciding with a perennial lifecycle (Hori, Bayne and Kuwae, 2019). A quick leaf turnover 
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rate can function as a way to avoid the epigrowth challenges (Borowitzka, Lavery and van 

Keulen, 2006), believed to influence the degree of senescence observed in the habitat. 

Depending on environmental factors influencing the development of characteristic traits, 

correct identification of the Z. marina ecotype is difficult (Lid et al., 2005). 

4.4 Method Evaluation 

4.4.1 Time Efficiency 

USV-based UHI mapping is a time efficient method for standardized seagrass mapping and 

minimal observer bias in terms of using classification algorithms and preplanned mission 

(Sørensen et al., 2020). The method requires less work and post-processing than 

traditional RGB camera based mapping (Montes-Herrera et al., 2021; Johnsen et al., 

2020), and it is possible to cover large areas – here ~60 m2 was recorded in ~2 min. This 

shows a lower cost-reward ratio in terms of time use and amount of data collected, 

compared to e.g. underwater RGB imagery (Klemas, 2016; Alvsvåg, 2017), also supported 

by Barell et al. (2015). By deploying the USV from the shoreline, without the need for 

boats or lifting equipment, it is a time efficient and low effort mapping technique that can 

access the area of interest quickly. The field mission conducted in December only required 

4 people and 2 hours, thus enabling a higher revisit frequency compared to e.g. ROV-

missions that requires a ship and many people involved (Klemas, 2016; Johnsen et al., 

2016).  

However, the UHI data analysis, including the SVM classification in ENVI and learning of 

the software, is time consuming, and improvements by more efficient classification 

methods and algorithms are preferable (Klemas, 2016; Macreadie et al., 2019). Thus, the 

Band Ratio and Decision Tree classifiers were used in an attempt to create a general 

procedure for marine vegetation identification and areal coverage for different temporal 

UHI data sets. Instead of using hand-picked pixels of known class as training data set for 

the SVM algorithm (~4h), intrinsic pigment characteristics and R() can be implemented, 

and potentially eliminate the need for extensive ground truthing (Dumke et al., 2018b).  

4.4.2 Mapping Accuracy using USV-based UHI 

4.4.2.1 Classification using machine learning 

Seemingly, the DT classification is not accurate and consistent enough when used on noisy 

data sets (especially when applied to T3 and T4), thereupon discarded as areal coverage 

estimation method. The BR classification worked well for seagrass mapping, coinciding with 

the seagrass coverage identified by RGB photomosaic of the UHI data set and RGB camera 

images, but less for the other groups of interest. Seagrasses contain pigments with 

absorption maxima (Chl a; 440 and 679 nm, Chl b; 470 and 650 nm) producing the distinct 

reflectance maximum and minimum observed (Thorhaug, Richardson and Berlyn, 2007; 

Roy et al., 2011). Especially the Chl a absorption center at ~675 nm (Figure 3.14) can be 

utilized for detection and quantification of photosynthesizing biomass without influence by 

other pigments (Bargain et al., 2012). Here, the wavebands 549 and 663 nm was chosen 

for the BR classification to represent the in vivo R() peak from 540-560 nm and dip from 

650-680 nm with an R() ratio of 5. The other groups have a different pigment and 

phycobiliprotein composition, not producing the same distinct band ratio as seagrass 

(Peñuelas et al., 1993; Dekker, Brando and Anstee, 2005; Thorhaug, Richardson and 

Berlyn, 2007), see Figure 3.14. This, together with environmental conditions and 

similarities of the wavelengths at R() maximum and minimum between withered seagrass, 
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brown algae and red algae, are likely a major reason for wrong classification using DT. By 

performing a confusion matrix of the SVM classified image as ground truth, and the DT as 

input data, the two classifiers showed only 53% agreement regarding pixel classification. 

Interestingly, seagrass scores best in the confusion matrix, which is also indicated by the 

BR result. Since SVM is a well-accepted method for hyperspectral data analysis and 

assumed to be accurate and repeatable for multi-category classification (Mountrakis, Im 

and Ogole, 2011; Gewali, Monteiro and Saber, 2018), this was chosen as the classifier in 

the areal coverage estimations. With this in mind, a single category BR classification using 

549/663 nm shows promise of being a quick and easy way of seagrass mapping. 

4.4.2.2 Areal coverage 

The accuracy of the species distribution maps using SVM was assumed to be close to ~90% 

(Mogstad, Johnsen and Ludvigsen, 2019), but the areal coverage estimation accuracy of 

this study is lower and introduce uncertainty regarding correct classification of the OOIs. 

The seagrass estimation is best (% error: 21.9), and the brown algae estimation is worst 

(% error: -77.9). Firstly, this accuracy assessment should preferably be replicated several 

times to produce mean values giving a more confident result, but the main utility of this 

was to make the difference between an expert opinion and the classifier perceptible. An 

alternative would have been to assign each pixel in the subset manually, which is extremely 

time consuming (Johnsen et al., 2020; Mogstad, Johnsen and Ludvigsen, 2019). Secondly, 

the SVM classification do not include a withered seagrass class since the large standard 

deviation (Figure 3.13) indicate much variability in the optical signatures, believed to be 

due to stages of senescence and epigrowth (Thorhaug, Richardson and Berlyn, 2007; Fyfe, 

2003), and it was anticipated to result in misclassification. The ground truth estimation 

included withered seagrass to underline the presence of this biomass in the area of interest. 

Since very little brown algae is classified by the SVM in this assessment, the algorithm 

probably assigns most of the withered seagrass to the seagrass class, instead of the 

underestimated sediment class with % error of -33.3%. This is positive for the SVM 

classification of seagrass. However, since the BR classifier use reflectance characteristic in 

the photosynthesizing tissue (Thorhaug, Richardson and Berlyn, 2007; Broge and Leblanc, 

2001), this is evaluated as the best method utilized here for exclusively map distribution 

of healthy and photosynthesizing seagrass biomass, in agreement with Bargain et al., 2012 

and their work on Z. noltei. Other band ratios can be used for specific macroalgae groups 

with different pigment absorption (Hurd et al., 2014). 

4.4.2.3 Noise 

The fundamentals for mapping accuracy and species detection are good quality UHI data 

with a high signal-to-noise ratio (Johnsen et al., 2016). Noise-levels here were influenced 

by environmental and technological factors, including AOPs (especially sun angle, cloud 

cover and wave actions), IOPs (attenuation due to suspended particulate matter), UHI 

sensor properties (spectral and spatial resolution), physical disturbances (wind, waves) 

and georeferencing precision (positioning system of the Otter). This has also been outlined 

by (Johnsen et al., 2013; Berge, Johnsen and Cohen, 2020). The September data shows 

higher concentrations of TSM, Chl a and cDOM compared to February, but interestingly, it 

still has better data quality likely due to higher downwelling spectral irradiance (Ed()). The 

in situ spectral reflectance in September are more coinciding with the reference spectra 

and have a higher signal-to-noise ratio. This indicate that the UHI data processing can 

account for much of the noise introduced by the IOPs of the seawater and reduce the signal 

scattering, supported by (Mogstad, Johnsen and Ludvigsen, 2019). Noise in the UHI data 

is believed to mainly be introduced by low light conditions during winter and early spring 
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(Figure 3.15) being at the signal detection limit for the UHI, which reduces signal strength 

and obscures the spectral reflectance detection. This, in addition to the mixing of spectral 

reflectance from several OOIs (spectral mixing) delimited by each 1 cm2 pixel (Bioucas-

Dias et al., 2013; Qi and Wu, 1996) is introducing noise. The Z. marina leaves were only 

2-4 mm wide, so the surrounding or underlying matter reflected other parts of the light 

spectrum. Lastly, the Otter cruising speed and wave action distort the optical signatures 

obtained in the data set. Consequently, flat field correction and different smoothing 

parameters were used to compensate for the especially low signal-to-noise ratio in 

December and February, the water attenuation coefficient and smooth the curves (Veettil 

et al., 2020). This has also previously been done in ENVI by (Li, Chen and He, 2020), 

showing an effectively removal of random noise. 

To summarize, the hypothesis (H1) USV-based UHI mapping is a time efficient and reliable 

method for mapping of seagrass distribution over a larger area is confirmed. The method 

is reliable in terms of the ability to revisit the same area and record data all seasons, but 

it depends on high precision georeferencing, well-functioning technology, good light 

conditions and minimal wave and wind action to acquire good quality data. The seagrass 

estimation using band ratio classifier is evaluated as the most consistent, time efficient 

and robust method for seagrass distribution mapping, for the aforementioned reasons.  

4.4.3 Seasonal Distribution Change 

4.4.3.1 Change detection 

Mapping of habitat biodiversity is restricted by spatial resolution, movement of organisms 

(e.g. seagrass leaf orientation, mobile fish and sea urchins) and different species with 

similar optical characteristics that are not distinguishable (e.g. Fucus serratus and Fucus 

vesiculosus). This will be further discussed in section 4.5. Infauna (e.g. species in the 

sediment found by grab samples) is not possible to detect, and epigrowth will camouflage 

the optical signature belonging to the species they cover. For instance, coralline algae 

absorb more irradiant light than e.g. filamentous algae epiphytes (Borowitzka, Lavery and 

van Keulen, 2006). As a result, the UHI will not be able to detect all species found by 

ground truthing, and hypothesis 2 is confirmed. This is the reason for choosing five groups 

of interest over specific species in the supervised classification and creation of species 

distribution maps. Invertebrate and sediment were included in the classification to avoid 

them being misclassified as marine vegetation, which would affect the coverage estimation.  

Even though the SVM classification is not 100% accurate, it is an acceptable error for 

comparison purposes when concerning large submerged areas where there is presently no 

other methods with higher degree of information detail and accuracy level (Montes-Herrera 

et al., 2021; Johnsen et al., 2013; Liu et al., 2020; Veettil et al., 2020). If the same error 

is present in every transect analysis, and the same area is analyzed, the results will be 

comparable, and the change detected will be true. By mapping the seagrass habitat at 

three seasons and estimating the areal coverage for seagrass and macroalgae, the 

composition change has been shown. Similar results are found by (Dekker, Brando and 

Anstee, 2005) and (Pe'eri et al., 2016). Going from most coverage and biomass of Zostera 

in September to lowest in February, with a simultaneous increase of brown algae. Red 

algae stayed more or less the same.  
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4.4.3.2 Seasonal impacts 

Seasonal variation in the distribution maps, further explained in a biological context, 

include pigment concentration change throughout the year. For example with increasing 

concentrations towards summer, followed by a decrease for Z. marina (Alvsvåg, 2017) and 

Z. noltei (Bargain et al., 2013) with highest pigment content in July. Two studies on brown 

algae (Selvaraj, Case and White, 2021; Blain and Shears, 2019) found higher pigment 

concentrations during winter as a low irradiance acclimation strategy. Necessary growth 

factors compiling nutrient availability, competition, sufficient light conditions and 

temperature affects the physiological state of the OOIs, their pigment concentration, 

biomass density and R() across seasons (Plus et al., 2001; Milchakova, 1999; Short and 

Coles, 2001; Vahtmäe et al., 2006; Fyfe, 2003). Given these points, the in situ R() 

obtained by the UHI is changing with season, and forthwith the distribution change 

estimation.  

The dominating turf algae (Phaeophyceae) were to a large degree correctly identified as 

brown algae by the SVM algorithm. However, it is not possible to spectrally separate other 

brown algae and turf algae by this method due to similar pigmentation. When taking a 

closer look at the habitat with RGB camera, smaller turf algae are growing on the seagrass 

leaves and other substrate, not being detected by the SVM due to small size and low 

density. Thereupon, the underlying substrate absorbs light and pollute the optical signature 

in the pixel (Minghelli et al., 2021). For these reasons, hypothesis 3 is only partly 

confirmed. More work is needed to find a method to separate turf algae from other species.  

4.5 Assumtions and Limitations 

4.5.1 Corrections of raw UHI data 

The underlaying assumptions of this survey, concerning UHI data processing are flat 

seafloor, constant depth and downwelling spectral irradiance for all pixels. The 

geocorrection processing step take this into account and assign the pixels to the correct 

location in space, i.e. georeferencing the data (Mogstad et al., 2020; Wang et al., 2015). 

But high precision geolocalization is necessary to do this accurately. As seen in Figure A.1 

in Appendix 1, left corner of F2 had an offset ranging from 50-86 cm, due to low 

georeferencing precision for the USV (coincides with the results from Bjerkvoll (2022). 

This, together with varying area covered in each total transect line, makes it difficult to 

directly compare the data sets in terms of spatial distribution of the OOIs. This is the reason 

for subsetting the transect lines and make sure they cover the same seafloor area. 

Moreover, there is an assumption of constant IOPs in the transect and the same 

concentration of KEV-variables at the center of Hopavågen 1.5 m below the surface and 

1.5 m below the surface in the Zostera habitat, pertinent for the radiometric correction of 

UHI data. 

4.5.2 Species Detection and Coverage 

Further, I assume the SVM classifier has high accuracy and is the best classifier used in 

this thesis for seagrass and macroalgae distribution (Mogstad, Johnsen and Ludvigsen, 

2019; Dumke et al., 2018a; Foglini et al., 2019). Spectral Angle Mapping (SAM) based on 

the spectral reference library for random sampling of pixels of known class (as 

demonstrated by Bjerkvoll (2022) could have been implemented in acquisition of training 

data for the SVM (Mogstad, Johnsen and Ludvigsen, 2019; Summers et al., 2022; Foglini 

et al., 2019), but due to the low light conditions and low signal-to-noise ratio, hand picking 

pixels were considered the best option to reduce misclassification. Moreover, the hand 
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selected pixels for the SVM training data set are expected to be correctly assigned to its 

spectral class, as of a small number of mislabeled pixels will drastically reduce the accuracy 

(Mountrakis, Im and Ogole, 2011). A thorough biological assessment would be ideal, but 

due to the small abundance of seagrass in the area, sampling disturbance and time 

constrains, this was done by two grab samples, observations from RGB cameras and 

snorkeling, and previous biodiversity work from Hopavågen (Teacă, Ungureanu and 

Mureșan, 2017; Alvsvåg, 2017). For the seagrass classification, I assume there is no other 

green algae in the transect. This is not coinciding with the ground truthing, showing a few 

specimens in the habitat, but the SVM classifier was anticipated to not be able to separate 

them based on the in vivo R() spectra. The spectra show similarities in the 400-530 nm 

and 580-680 nm ranges as of Chl a is the prominent pigment in both groups (Thorhaug, 

Richardson and Berlyn, 2007; Johnsen, Leu and Gradinger, 2020).  

Lastly, to estimate the areal coverage, percent classified pixels in the subsets is used as a 

proxy with the assumption that pixels translate to biomass. This does not take into account 

overlapping leaves and algae, positioning of the specimens in the habitat (i.e. seagrass 

leaf orientation) or the depth dimension. Seagrass leaves standing up straight will only be 

detected in one pixel, contrasting leaves laying more horizontally detected in several pixels 

(further explained by Bjerkvoll (2022)). Also, the spatial resolution provided results in 

spectral mixing, implying a source for misclassification. Keeping this in mind, the pixels 

will give an objective estimation of areal coverage of biomass for each group. Albeit without 

quantifying the actual carbon stock or the natural variation throughout a Zostera habitat, 

which would need further calculations, e.g. using R() magnitude as a proxy for seagrass 

density and find the leaf area index (LAI) subsequently converted to standing biomass 

(Dierssen et al., 2003). 

4.5.3 Survey Altitude 

There are several limitations to this method, and the most protruding limitation, as 

mentioned previously, is too low species-specific mapping accuracy based on UHI data that 

detect pigment signatures of living specimens. Varying environmental conditions and bio-

optical properties are a substantial reason for this, together with technological limitations 

regarding UHI data acquisition soon to be discussed. Seagrass mapping require minimum 

1 m dept, but seagrass can grow from 0-90 m (Duarte, 1991). When the UHI is attached 

to the USV, submerged ~30 cm below the surface, it cannot adjust the altitude. Thus, 

USV-based UHI mapping is in general not recommended at deep seagrass locations (>2 m 

depth) or shallow locations (< 1m). Albeit the depth range may be expanded to 1-5 m if 

the environmental conditions are optimal (low IOPs and high Ed(); Vahtmäe et al. (2006). 

Tides influence the recording distance from seafloor to the sensor, further affecting the 

optical signals retrieved from the OOIs. Even though this is largely accounted for by the 

simultaneous altimeter measurements and georeferencing, the area covered when the 

habitat is resampled, given the USV drives the same route each time, will change with the 

tides. Increasing the distance from the seafloor gives a wider FOV, and an area recorded 

will differ (Chennu et al., 2017). This is a challenge for accurate comparison of areal 

coverage and species distribution change, although this is a less prominent problem for 

resampling in Hopavågen due to a narrow tidal window from 0.3-0.7 m (van Marion, 1996). 
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4.5.4 Effects of Wind and Waves 

The spatial resolution obtained by the UHI depends on the performance of the USV and 

sensor control, USV size, and physical disturbance (Sørensen et al., 2020). Waves and 

wind affect the UHI-recording by making the USV wobble (affecting pitch, roll and yaw 

combined with differences in speed) and alter the crab angle to compensate for the forces 

pushing it sideways. The crab angle is a specified angle between the sought USV heading 

and the tangential direction of the preplanned path (Li, Jin and Wang, 2022). This disturbs 

the sampling by compressing the UHI data in length-direction and distort the USV position 

(in the yaw-axis) so that the push-broom scan is unaligned with the heading, which makes 

the resulting UHI photomosaic undulate and intensify the motion blur (Mogstad, Johnsen 

and Ludvigsen, 2019; Johnsen et al., 2013; Johnsen et al., 2016). When the data is 

georeferenced, the algorithms will stretch the data, and often duplicate or average 

adjacent pixels in order to fill in the gaps (Mogstad et al., 2020). This influences the 

mapping accuracy and the SVM can identify pixels incorrectly, further influencing the areal 

coverage estimation. Under these circumstances, a gyro attachment of the UHI to the USV 

(e.g. a gimbal with motors; Johnsen et al. (2013)) would have been beneficial, together 

with better station keeping abilities of the USV. Wind and waves will also push the Otter 

off track, making it hard to resample the same area (here indicated by the frames) every 

time. Consequently, the current navigation and georeferencing system of the Otter is 

inadequate to compensate for these weather conditions. Base station for Real Time Kinetic 

Global Navigation Satellite System (RTK-GNSS) was available, and should be implemented 

next USV-survey, but unfortunately, several problems during field missions sabotaged this 

navigational set-up. There were also some data calculations regarding the Kalman filter in 

the positioning system lacking in order to get a proper geocorrection of the May transect, 

which is the reason for no UHI data analysis from May.    

4.5.5 Epiphytes 

Epigrowth is also a challenge for accurate mapping, inasmuch as in situ spectral reflectance 

are affected. E.g. the Zostera leaves and other substrates were covered by calcareous red 

algae throughout the transect, which influence the spectral reflectance in each pixel. 

Furthermore, green algae bio-film was observed covering organisms and substrate, seen 

as a Chl a R() dip at ~670 nm in the pixel spectrum (Summers et al., 2022; Dumke et 

al., 2018b). For instance, the top part of T4 in the band ratio map (Figure 3.4) probably 

shows green algae film covering the sediment due to the homogenous white hue in the 

image. Epigrowth can also affect the photosynthesis and pigment absorption of Ed() of 

OOIs (Borowitzka, Lavery and van Keulen, 2006). Interestingly, leaf fouling have little 

effect on Z. capricorni reflectance, but is evident by an increase in the 575-630 nm region 

(Fyfe, 2003).  

4.6 This Study in Context of Literature 

Current reviews by Montes-Herrera et al. (2021) and Liu et al. (2020), highlighted the 

need for further demonstration of UHI as a mapping technique, and this is the objective 

for this study by mapping a Zostera habitat. Previous work has shown successful mapping 

of seagrass by hyperspectral imagers deployed on satellites and UAVs (Pe'eri et al., 2016; 

Veettil et al., 2020; Duffy et al., 2019), and Klemas (2016) emphasize that the technology 

development aids high accuracy of the mapping and surveying of submerged aquatic 

vegetation. The main limitations of these techniques are the need for proper correction of 

distortion of the optical path through the atmosphere, air-water interface and the water 

column, surface reflectance and low spatial resolution (Chennu et al., 2017; Duffy et al., 
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2018; Castillo-López et al., 2017; Dierssen et al., 2010; Klonowski, Fearns and Lynch, 

2007). UHI carried by AUVs and ROVs have also been demonstrated, with the drawbacks 

of lower spatial resolution (Sture et al., 2017) and difficulties with controlling ROV 

movements (pitch, roll and yaw), access to sufficient ambient light, georeferencing and 

keeping a constant altitude (Johnsen et al., 2016). In this study, USV-based UHI is shown 

to be a better technique in terms of bio-optical taxonomy and distribution mapping of OOIs 

with 1 cm spatial resolution and less challenges regarding light attenuation, compared to 

satellite and airborne HI with pixel size range of 1-30 m (Duffy et al., 2018; Mutanga, 

Adam and Cho, 2012). By adding an altimeter to the UHI, enabling simultaneous altitude 

and upwelling irradiance recordings, the accuracy of the georeferencing have been 

improved, and thus the mapping accuracy, as recommended by the pilot study conducted 

by (Mogstad, Johnsen and Ludvigsen, 2019). In contrast to the pilot study, this work 

expanded the method application to include temporal variation in a given area of interest 

(exemplified by the Zostera habitat).  

4.6.1 Potential for Conservation 

The results indicate that USV-based UHI mapping have great potential as a tool for 

conservation and monitoring purposes, by amplifying the ecological information available 

for researchers and decision makers. Despite inaccuracies of the SVM classification 

highlighted here, this is still considered a species identification tool with advantages over 

traditional RGB imagery due to time efficient data analysis and identification using machine 

learning, and the ability of the UHI to record in remote areas without sufficient ambient 

light, e.g. deep sea fauna (Dumke et al., 2018a; Dumke et al., 2018b). Another major 

advantage is the ability to map without disturbing the ecosystem, which is necessary in 

many of the common seagrass research methods outlined by Short and Coles (2001). USV-

based UHI enables an in situ snapshot of the natural species distribution (Liu et al., 2020), 

and the area of interest can easily be revisited, which is useful for seagrass conservation 

and biomass estimation (Costa et al., 2021). Duffy and coworkers (2018) demonstrated 

mapping of intertidal seagrass meadows using optical imagery with 4 mm spatial resolution 

from a lightweight drone, but one main shortcoming with this method is low spectral 

resolution (only RGB), forthwith the lack of detailed optical information which enables rapid 

and comprehensive species detection. Pe’eri et. al (2016) conducted a hyperspectral study 

where they mapped two spectral classes (seagrass and macroalgae) using ENVI, DT and a 

band ratio of 547/630 nm, with promising results. Here I took this one step further and 

mapped 6 spectral classes with a more in depth macroalgae ground truthing, giving a 

higher level of species detection by applying USV-based UHI imagery with higher spatial 

resolution (pixel size of 0.01 m2 compared to 2.5 m2). With more work, this mapping 

technique could also possibly aid a confident separation of turf algae and withered seagrass 

from the other brown algae species.  

4.6.2 Pigment Absorption 

Further, several studies have identified different absorption maxima for chlorophyll a in 

different seagrass species (675 or 673 nm; (Bargain et al., 2012), 680 nm; (Han and Liu, 

2014; Pu et al., 2012), 670 nm; (Broge and Leblanc, 2001), showing a disagreement with 

my results of absorption maximum at 665 nm in a broad R() dip. Explanations could be 

species-specific proteins shifting the absorption maxima for Chl a, different light regimes 

during measurements (concerning both IOPs and AOPs) and corrections during data 

processing (Johnsen et al. 2013). Here, the in vivo R() of red, green and brown algae 

have an Chl a absorption centra spanning from 665-680 nm, and if the group specific 

spectral characteristics are sensitive to disturbances during UHI data acquisition (Johnsen 
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et al., 2016), this will infer identification challenges regarding differences in optical 

signatures from the in situ and in vivo measurements (Pu et al., 2012). For instance, if 

PSSRs and NDVI indices are used in mapping, which is dependent on a consistent 

absorption maxima for different OOIs (Bargain et al., 2012; Barillé et al., 2010; Peñuelas 

et al., 1993; Dierssen et al., 2003), ground truthing should be performed until a universal 

and robust method is established. 

4.6.3 Seasonal Change 

The seagrass extent in an area can change over time, both be reduced and increased 

(Barillé et al., 2010; Baden et al., 2003). The eelgrass meadow in Hopavågen (63°35’N 

9°32’E), shows seasonal variation in biomass, which is common for temperate seagrass 

communities, with maximum biomass between July and August (Duarte, 1989). In bays, 

the eelgrass beds present during the summer may be absent or strongly reduced in winter 

and spring (Costa, 1988), coinciding with my findings of little seagrass coverage (16.7%) 

in early spring compared to 72.8%, late summer in September. Considering the low light 

condition at these latitudes, one should have thought the eelgrass would have an annual 

lifecycle instead of a perennial life cycle. As discussed by (Duarte, Martı́nez and Barrón, 

2002), the eelgrass in Hopavågen has probably stored excess carbohydrates during the 

summer months, facilitating the continued growth and meet the metabolic demands during 

the winter months with almost complete darkness. New growth replaces older seagrass 

leaves, which dies/withers and becomes a resource for microbial communities (Klemas, 

2016), which has been observed in this habitat. Moreover, the seasonal variation in brown 

algae species distribution found during winter is supported by Selvaraj, Case and White 

(2021) and Blain and Shears (2019) that stated that brown algae can acclimatize to light 

conditions by changing their pigment composition in order to photosynthesize during the 

winter.   

On a larger time scale, the eelgrass distribution in Hopavågen has changed significantly 

from 1967 to 2015, as seen in the compilation of orthophotos and rasters with seagrass 

extent at 4 different years in Figure 4.1. The reason for the observed decline in Hopavågen 

is unknown, with physiological limitations suggested not to affect long term persistence 

(Duarte, Martı́nez and Barrón, 2002). However, the reduction is coinciding with reports 

from other parts of the world, as of a global decline of 110 km2 per year between 1980-

2006 (Waycott et al., 2009; Duarte, 2017), despite a reversal in European seagrass trends 

the recent years (de Los Santos et al., 2019). USV-based UHI have the advantage of 

mapping shallow coastal areas at ~1 m depth, which is otherwise unavailable for other 

sensor-carrying platforms like ROV, AUV and diver operated units (Sørensen et al., 2020; 

Chennu et al., 2017). Since the method demonstrated in this study is considered a time 

efficient and accurate mapping technique, by aforementioned reasons, it enables a higher 

temporal, spatial and spectral resolution of the UHI data sets than usually seen by airborne 

hyperspectral imagery (Sørensen et al., 2020; Veettil et al., 2020; Volent, Johnsen and 

Sigernes, 2007). This will aid the monitoring of seagrass meadows and has potential to 

detect small scale changes in e.g. sediment-water interface interactions, biogeochemical 

properties and phototrophic activity (Brandt et al., 2016; Bicknell et al., 2016; Johnsen et 

al., 2013) which can be important for inspecting seagrass health status and future research 

that look into drivers of seagrass distribution change. 
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Figure 4.1: Seagrass distribution change from 1967 to 2015 in Hopavågen (63°35’N 9°32’E), 

Norway, based on four orthophotos from the Norwegian Mapping Authority retrieved from 

geonorge.no and the respective areal coverage in that year (round panels). The color code represents 

how many times the seagrass is recorded at the specific location (lightest color: 1 time, darkest 

color: 4 times). Area examined 2021/2022 is indicated in purple. The map is created in ArcGIS Pro 

(Esri Inc., Redlands, USA) by M. Søreng (2021), ©norgeibilder.no. 
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4.7 The Way Forward 

The way forward would be to increase quality of the data set by improving the quality of 

the UHI data acquisition and analysis. This can be achieved by developing the technological 

aspects of the method, improving resampling abilities and UHI data processing. More 

specifically: better geopositioning system, better compensation for motion blur, and better 

classifiers. The incorporation of RTK-GNSS and the Viper-measurements would also be 

valuable add on´s to the UHI data processing (Mogstad, Johnsen and Ludvigsen, 2019), 

abolishing the need for a reference plate for radiance conversion, if E() measurements 

are also included. It is also possible to use an artificial light source, providing constant 

Ed() to enhance a higher and constant signal-to-noise ratio, demonstrated by several 

studies (Montes-Herrera et al., 2021; Dumke et al., 2018b; Summers et al., 2022). Larger 

rocks in the area of interest was a challenge for the USV mission planning, and obstacle 

recognition (Wang et al., 2012) would be helpful to avoid potential collisions and equipment 

damage.   

Improved precision of blue carbon ecosystem mapping and change detection of 10% or 

less is important for effective monitoring (Macreadie et al., 2019; Duarte, Martı́nez and 

Barrón, 2002). Maps are limited by the number of spectral classes they depict (Barell et 

al., 2015), forthwith the need for more robust and accurate classification methods, e.g. 

random forest classification or a multi-classifier approach (Blanchet et al., 2016). As shown 

in this study, the classification of pixels from the same data set vary according to smoothing 

settings in the UHI data processing step, classifier and settings used. Here the researcher 

needs to make a decision and execute the same data processing on each data set in order 

to get a comparable result between seasons. ENVI is a great software with many 

applications of use, but only a handful is necessary for UHI data classification and mapping. 

A program designed for macroalgae and seagrass classification which include cross-

validation of training data set, deep-learning and several classifiers would speed up the 

identification process and make the results more reliable and comparable every time. This 

is an ambiguous task since many factors have potential to introduce variability in optical 

signatures (Gewali et al., 2018), moreover an accessible database of reference spectra 

should be implemented.   

Turf algae are especially interesting to separate and quantify with high precision due to a 

prominent threat to seagrass meadows in Norway and other places (Gundersen et al., 

2018; Marba, Arthur and Alcoverro, 2014). Bringing in texture as a new factor in the 

classification could be useful, as proposed by Veettil et al. (2020). Seagrass and green 

algae species have similar pigment composition and shape of their in vivo R() curves, but 

they differ in reflectance intensity (Thorhaug, Richardson and Berlyn, 2007; Fyfe, 2003). 

Optical techniques in combination with acoustic data have potential to increase the level 

of biological information (Shao et al., 2021; Liu et al., 2020) by including e.g. height of 

seagrass canopy (for biomass and carbon stock estimations), detection of turf algae cover 

and species identification of marine vegetation. This was out of scope for this thesis but 

would be a useful next step in the development of a user-friendly and efficient mapping 

process for conservational purposes. More research is needed to identify the underlying 

reasons for distribution change of a seagrass population (Macreadie et al., 2019), and 

mapping with higher temporal resolution should be accomplished in order to detect rapid 

changes of growth and withering. The possibilities for using USV-based UHI to aid this work 

and assess the health status and biomass of seagrasses should be a topic of further 

research. 
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Here, the UHI-USV based seasonal mapping of a Zostera habitat have been demonstrated, 

showing great potential in reproducibility, efficiency, and capacity of being a reliable 

identification tool for organisms of interest. Eelgrass was shown to have highest areal 

coverage in September followed by a dieback in December and February. Withered 

seagrass leaves were probably classified as brown algae, due to similar optical signatures 

difficult to separate by the SVM-classifier in a noisy data set. This is also supported by the 

increase in brown algae cover in December and February. There are several shortcomings 

with this mapping technique regarding signal-to-noise ratio, depth limitations, 

georeferencing and classification. A high precision classification algorithm would increase 

the reliability of the methodology outlined here even further, by correctly identifying OOIs 

at a 1 cm2 resolution. Turf algae was not possible to separate from other brown algae. For 

temporal comparison, a standard for post-processing of UHI data should be established, 

taking into account the variability in environmental conditions related to light availability, 

IOPs and wind effecting the UHI data acquisition. However, the single category band ratio 

classification was a quick and easy way of estimating the areal coverage of seagrass with 

the least influence of external factors, by taking advantage of the distinct spectral 

characteristics of the inherent photosynthesizing pigments in the seagrass tissue. The take 

–home message is that by improving georeferencing and correction for variable 

environmental conditions, the USV-based UHI mapping of seagrass habitats with multi-

category classification would be a valuable high resolution (spatial, spectral and temporal) 

tool for seagrass monitoring and conservation.  
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Appendix 1: Navigation of the Otter Pro  

Positioning system 

Positioning data of the USV was logged using 2x Ublox F9P-ZED GNSS – receiver with each 

Harxon GPS1000 survey GNSS antenna for position, speed and heading, a ADIS 16495 

IMU logging acceleration, angular velocity at 125 Hz and a Sentiboard (NTNU/Senti 

Systems, Trondheim, Norway) for connecting and synchronizing the measurements 

regarding to time stamp. The measurements were integrated through a custom made 

Kalman filter (Senti Systems, NTNU, Trondheim, Norway) that estimates position, speed 

and orientation (attitude = roll, pitch, yaw) of the USV.   

Georeferencing precision 

The difference in position of frame F2 to the right between each transect subset (T2, T3, 

T4; Figure A.1), and the difference between the stone to the left are estimated and given 

in Table A.1. The numbers in the table are the difference between the stone/frame in each 

transect given by the column and row.  

 

 

                        Stone               

F2                             

T2 T3 T4 

T2  0.717 m 1.2510 m 

T3 0.616 m  1.8322 m 

T4 0.556 m 0.8615 m  

 

Figure A.1: The georeferenced position of the subsetted RGB photomosaics from September (T2), 

December (T3) and February (T4) viewed in ENVI.   

 

Table A.1: Offset from corner of frame F2 and top right tip of stone in the subsetted transects (T2, T3 and 

T4). 

  



   
 

 

 

Appendix 2: In vivo vs. In situ Spectral Reflectance Maxima 

Table A.2: Maximum reflectance at the respective wavelength (nm and corresponding relative 
reflectance value in brackets) for each group of interest from in vivo (Reference) and in situ (T2, T3, 

T4) spectral reflectance data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Data 

Source 

Brown 

algae 

Red 

algae 

Seagrass Invertebrates Sediment Green 

algae 

Withered 

Reference 

In vivo 

597 

[0.0575] 

600 

[0.133] 

550 

[0.128] 

- - 559 

[0.137] 

599 

[0.0867] 

T2 

In situ 

603 

[0.136] 

603 

[0.256] 

557 

[0.0993] 

681 

[0.269] 

603 

[0.171] 

- - 

T3 

In situ 

603 

[0.0712] 

645 

[0.231] 

557 

[0.0688] 

685 

[0.329] 

599 

[0.199] 

- - 

T4 

In situ 

603 

[0.0548] 

603 

[0.194] 

557 

[0.0502] 

681 

[0.180] 

603 

[0.128] 

- - 



   
 

 

Appendix 3: Species in the Zostera habitat in Hopavågen  

Species from the Zostera habitat and UHI study area collected 06.05.2021, 07.09.2021 

and 10.09.2021 by snorkeling and grab samples (noted with “ZH” in Table A.3). Species 

noted with “RL” are measured by the QE Pro Spectrometer (Ocean Insight Inc., Orlando, 

USA), but some of these specimens are not collected from an area delimited by the transect 

line.  

Scientific names and authors are retrieved from the World Register of Marine Species 

(www.marinespecies.org) on 01.05.2022, and the nomenclature has followed the 

guidelines from (Horton et al., 2021). Norwegian names are retrieved from 

“Artsnavnebasen” hosted by the Norwegian Biodiversity Information Centre 

(www.artsdatabasen.no). Algae are identified mainly using Alger i farger (Rueness, 1998).  

Table A.3: Species identified from the Zostera habitat at the southeastern shoreline in Hopavågen 

by field observations and samples in May and September 2021.  

Phylum Scientific name Norwegian name Author Note 

PLANT     

Tracheophyta      

 Zostera marina Vanlig ålegras Linnaeus, 1753 ZH, RL 

 Zostera marina, 

withered 

Vanlig ålegras Linnaeus, 1753 ZH, RL 

ALGAE     

Chlorophyta     

 Chlorophyta indet  Pascher, 1914 ZH, RL 

 Cladophora rupestris Vanlig grønndusk (Linnaeus) Kützing, 

1843 

RL 

 Codium fragile Pollpryd (Suringar) Hariot, 

1889 

ZH, RL 

 Rhizoclonium tortuosum 

inc. 

Viklesnøre (Dillwyn) Kützig, 

1845 

RL 

 Ulva intestinalis Tarmgrønske Linnaeus, 1753 RL 

 Ulva sp.   Linnaeus, 1753 RL 

     

Phaeophyceae 

(Class) 

    

 Ascophyllum nodosum Grisetang (Linnaeus) Le Jolis, 

1863 

RL 

 Chorda filum Martaum, åletang (Linnaeus) 

Stackhouse, 1797 

ZH, RL 

 Dictyosiphon 

foeniculaceus inc. 

Finsveig (Hudson) Greville, 

1830 

RL 

 Ectocarpus inc.  Lyngbye, 1819 ZH, RL 

 Fucus serratus Sagtang Linnaeus, 1753 ZH, RL 

 Fucus spiralis Kaurtang Linnaeus, 1753 ZH, RL 

 Fucus vesiculosus Blæretang Linnaeus, 1753 ZH, RL 

 Mesogloia vermiculata Bruntrevl (Smith) S.F Gray, 

1821 

RL 

 Scytosiphon lomentaria Fjæreslo (Lyngbye) Link, 

1833 

ZH, RL 

 Phaeophyceae indet  Kjellman, 1891 ZH, RL 

     

Rhodophyta     

 Corallina officinalis  Krasing Linnaeus, 1758 ZL, RL 

 Hildenbrandia rubra Fjæreblod (Sommerfelt) 

Meneghini, 1841 

RL 

http://www.marinespecies.org/
http://www.artsdatabasen.no/


   
 

 

 Lithothamnion glaciale Vorterugl Kjellmann, 1883 ZH, RL 

 Mastocarpus stellatus Vorteflik (Stackhouse) Guiry, 

1984 

ZH, RL 

 Phymatolithon 

lenormandii 

Slettrugl (Areschoug) 

W.H.Adey, 1966 

ZH, RL 

ANIMALS     

Annelida     

 Hesionidae indet.   Grube, 1850 ZH 

 Nereimyra punctata inc.    Müller, 1776 ZH 

 Pherusa plumosa inc. Skjeggbørstemark Müller, 1776 ZH 

 Pryonospio cirrifera  Wirén, 1883 ZH 

 Scalibregna inflatum   ZH 

 Spirobranchus triqueter Trekantmark Linnaeus, 1758  

 Terrebellidae sp.    

     

Arthropoda     

 Balanus balanus Steinrur Linnaeus, 1758 ZH, RL 

 Carsinus maenas Strandkrabbe Linnaeus, 1758 ZH, RL 

 Liocarcinus sp. Svømmekrabbe Stimpson, 1871 ZH 

 Pagurus bernhardus Bernakeremittkreps Linnaeus, 1758 ZH, RL 

     

Chordata     

 Stiela rustica Tornsekkdyr  ZH, RL 

     

Cnidaria     

 Metridium senile Sjønellik Linnaeus, 1761 ZH, RL 

     

Echinodermata     

 Asterias rubens Vanlig korstroll Linnaeus, 1758 ZH, RL 

 Echinus esculentus Svabergsjøpiggsvin Linnaeus, 1758 ZH, RL 

 Ophiocomina nigra Svartslangestjerne Abildgaard, 1789  ZH, RL 

 Ophiopholis aculeata Kameleonslangestjerne Linnaeus, 1767 ZH 

 Ophiothrix fragilis Skjørslangestjerne Abildgaard in O.F. 

Müller, 1789 

ZH 

 Strongylocentrotus 

droebachiensis 

Drøbakksjøpiggsvin O.F. Müller, 1776 ZH, RL 

     

Mollusca     

 Callochiton septemvalis 

inc. 

Flekkleddsnegl Montagu, 1803 ZH, RL 

 Gibbula sp.   ZH 

 Heteranomia squamula Sadelskjell  Linnaeus, 1758 ZH 

 Peringia ulvae inc.  mudderfjæresnegl Pennant, 1777 ZH 

 Lacuna sp.  W. Turton, 1827 ZH 

 Littorina littorea Storstrandsnegl Linnaeus, 1758 ZH, RL 

 Macoma calcarea  Gmelin, 1791 ZH 

 Mimachlamys varia Urskjell Linnaeus, 1758 ZH, RL 

 Mya truncata Butt sandskjell Linnaeus, 1758 ZH, RL 

 Pododesmus 

patelliformis 

Sadelskjell Linnaeus, 1761 ZH, RL 

 Rissoa parva  da Costa, 1778 ZH 

 Rissoidae indet Tangsnegl Gray, 1847 ZH 

 Steromphala cineraria Glatt kjeglesnegl Linnaeus, 1758 ZH, RL 

 

  



   
 

 

Appendix 4: Pictures of Species from the Zostera habitat in Hopavågen 

 

Figure A.4.1: Zostera marina specimens collected 06.05.2021 (top row) compared to 09.09.2021 

(bottom row). Photo: M. Søreng 

 

Figure A.4.4: Macroalgae species collected from the Zostera habitat, measured in vivo with the QE 

Pro Sprectrometer. Ascophyllum nodosum (a; 07.09.2021), Fucus spiralis (b; 09.09.2021) and 

Codium fragile (c; 09.09.2021). Photo: M. Søreng 



   
 

 

 

Figure A.4.2: From top left: Zostera marina with turf algae covering the canopy (a), Ascidiacea stet. 

(b), Echinus esculenta and Littorina littorea (c) and Metridium senile (d). Photo: M. Søreng, G. 

Johnsen.  

 

Figure A.4.3: Ophiocomina nigra (a; 07.09.2021) and Zostera marina with Rissoidae indet (b; 

09.09.2021). Photo: C. Marnor, M. Søreng  



   
 

 

Appendix 5: R Scripts 

SVM tuning 

library(“openxlsx”) 

library(“e1071”) 

library(“caret”) 

df = read.xlsx(“ROISept.xlsx”, sheet = 3) 

dat = df 

dat$Class = factor(dat$Class) 

svm_tune = tune(svm, Class ~ ., data = dat, kernel = «radial», 

                ranges = list(cost = 10^(-3:6), gamma = 10^(-6:3)), 

                scale = FALSE) 

plot(svm_tune, transform.x = log10, transform.y = log10, xlab = «log(C)», 

ylab = «log(gamma)», 

     main = “SVM grid search cross-validation (classification error)”) 

dev.off() 

print(svm_tune) 

svm_tune$performances 

 

DT-thresholds 
### Example of September data and seagrass index 

install.packages(“cutpointr”) 

library(ggplot2) 

library(cutpointr) 

library(openxlsx) 

 

### Seagrass threshold ### 

df_seagrass = read.xlsx(“September.xlsx”, sheet = 1) 

cp = cutpointr(data = df_seagrass, x = Value, class = Class, 

               method = maximize_metric, metric = acc_constrain, 

constrain_metric = ppv, min_constrain = 0.99, 

               use_midpoints = TRUE, break_ties = mean) 

g = ggplot(df_seagrass, aes(x = Value, fill = Class)) + 

  scale_fill_manual(values = c(“white”, “gray”), 

                    labels = c(“Other”, “Seagrass”)) + 

  geom_density(aes(y = ..scaled..), alpha = .3) + 

  labs(fill = “Seafloor class”) + geom_vline(xintercept = 1.39197) + 

  ylab(“Scaled probability density”) + xlab(“Seagrass index”) 

ggsave(plot = g, filename = “Seagrass_index.jpg”, units = “in”, height = 9, 

width = 12, dpi = 1000) 

 

Creating in vivo spectral reflectance curves  
install.packages(“pavo”) 

library(pavo) 

library(readxl) 

library(openxlsx) 

TotalReference <- read_excel(“Reference4groups.xlsx”) 

rspecdata <- as.rspec(TotalReference, whichwl=”WL”, interp = FALSE) 

spp <- gsub(“\\.[0-9].*$”, “”, names(rspecdata))[-1] 

table(spp) 

 

Average spectra for each class and round numbers  
sppspec <- aggspec(rspecdata, by = spp, FUN = mean) 

round(sppspec[1:7, ],5) 

 

Plot using mean and standard error, in colors 
par(mfrow=c(1,2)) 

colClass <- c(“darkorange4”,”mediumseagreen”,”hotpink3”,”yellowgreen”) 

colMeanSd <- aggplot(rspecdata[-1:-4,], spp,   



   
 

 

                     ylim = c(0, 0.20),   

                     FUN.error = function(x) sd(x) / sqrt(length(x)), 

                     lcol = colClass, shadecol = colClass,  

                     alpha = 0.3, legend=FALSE) 

legend(“topleft”, legend=c(“Brown algae”,  “Seagrass”, “Red algae”,”Green 

algae”),col=colClass, lty=1, cex=0.8,box.lty=0) 

 

Find reflectance peak and wavelength 
spec.sm <- procspec(sppspec, opt = “smooth”, span = 0.2) 

peakshape(spec.sm, select = 2, lim = c(400, 600), plot = TRUE)  

peakshape(spec.sm, select = 3, lim = c(400, 600), plot = TRUE)  

peakshape(spec.sm, select = 4, lim = c(400, 600), plot = TRUE)  

peakshape(spec.sm, select = 5, lim = c(400, 600), plot = TRUE)  

 

Plot brown algae and withered seagrass 
TotalReference <- read_excel(“Reference4groups.xlsx”, sheet = 2) 

rspecdat <- as.rspec(TotalReference, whichwl=”WL”, interp = FALSE) 

sPP <- gsub(“\\.[0-9].*$”, “”, names(rspecdat))[-1] 

table(sPP) 

 

Average spectra for each class and round numbers  
sppspec <- aggspec(rspecdat, by = sPP, FUN = mean) 

colCla <- c(“darkorange4”,”yellow4”) 

colMeanSd <- aggplot(rspecdat, sPP,   

                     ylim = c(0, 0.20),   

                     FUN.error = function(x) sd(x) / sqrt(length(x)), 

                     lcol = colCla, shadecol = colCla,  

                     alpha = 0.3, legend=FALSE) 

legend(“topleft”, legend=c(“Brown algae”, “Withered seagrass”), 

       col=colCla, lty=1, cex=0.8, 

       box.lty=0) #, title = “”, title.adj=0.6)         

 

Find reflectance peak and wavelength 
spec.sm <- procspec(sppspec, opt = “smooth”, span = 0.2) 

peakshape(spec.sm, select = 3, lim = c(400, 600), plot = TRUE) 

 

In situ reflectance data 

Example from September data 
library(pavo) 

library(readxl) 

TotalReference <- read_excel(“ROISpectraSept.xlsx”) 

rspecdata <- as.rspec(TotalReference, whichwl=”WL”, interp = FALSE) 

spp <- gsub(“\\.[0-9].*$”, “”, names(rspecdata))[-1] 

table(spp) 

 

Graph with different colors and standard error 
colClass2 <- 

c(“darkorange4”,”indianred1”,”lightcyan4”,”mediumseagreen”,”hotpink3”) 

aggplot(rspecdata, spp, 

        ylim = c(0, 0.3),   

        FUN.error = function(x) sd(x) / sqrt(length(x)), 

        lcol = colClass2, shadecol = “grey”,  

        alpha = 0.5, lwd= 2, legend=FALSE, xaxt = “n”) 

axis(1, at = c(1, 15, 29, 45, 58),  

     labels = c(“490”, “540”, “590”,”640”, “690”)) 

legend(“topleft”, legend=c(“Brown algae”, “Invertebrates”, “Red algae”, 

“Seagrass”, “Sediment”),col=colClass2, lty=1, cex=0.8,  

       box.lty=0, title = “September”, title.adj=0.7) 



   
 

 

Find reflectance peak and wavelength  
spec.sm <- procspec(sppspec, opt = “smooth”, span = 0.2) 

peakshape(spec.sm, select = 2, lim = c(1, 55), plot = TRUE)  

peakshape(spec.sm, select = 3, lim = c(1, 55), plot = TRUE)  

peakshape(spec.sm, select = 4, lim = c(1, 55), plot = TRUE)  

peakshape(spec.sm, select = 5, lim = c(1, 55), plot = TRUE)  

peakshape(spec.sm, select = 6, lim = c(1, 55), plot = TRUE)  

 

 

Bar plot of percent coverage  

library(RcolorBrewer) 

library(readxl) 

data <- read_excel(“Percent.xlsx”) 

DF2 <- data.matrix(data) 

coul <- brewer.pal(4, “Pastel2”) 

colClass4 <- c(“mediumseagreen”,”lightsalmon4”,”hotpink3”,”lightcyan4”) 

barplot(DF2[-4,-1], width=c(0.5,0.5,0.5), col=colClass4 , border=”white”, 

xlab=”Transect”, ylab=”Percent coverage”, ylim=c(0,100)) 

legend(“topleft”, legend=c(“Seagrass”, “Brown algae”, “Sediment”, “Red 

algae”),bty = “n”, pch=15 , pt.cex = 1, pt.bg = 1, pt.lwd = 5, cex = 0.8, 

horiz = FALSE, inset = c(0.05, 0.05), col= colClass4)  

 

Downwelling spectral irradiance curves 

Same code is used for 24h curves, only changed the scale_x_continuous to include 

wanted time 
library(readxl) 

library(ggplot2) 

Average <- read_excel(“Mooring Average Epar Modified.xlsx”, sheet = 4) 

### Plot three months, from 10:00 to 15:00 ### 

figure <- ggplot(data = Average, aes(x = time…1)) +  

  geom_line(aes(y = Epar…2, colour = “May”)) +  

  geom_line(aes(y = Epar…4, colour = “September”)) +  

  geom_line(aes(y = Epar…6, colour = “March”)) +  

  xlab(“Time”) + ylab(“Epar [W/m2]”) + labs(colour=NULL) + 

  scale_color_brewer(palette = ‘Set1’) + 

  scale_x_continuous(breaks = c(0,100,200,300),labels = c(“10:00”, “11:40”, 

“13:20”,”15:00”)) + 

  theme(panel.grid.major.y = element_line(color = “grey”, size = 0.5, 

linetype = 2),  

        panel.grid.major.x = element_blank(),  

        panel.background = element_blank(),  

        axis.line = element_line(colour = “black”),  

        axis.text.x = element_text(color = “grey20”, size = 15, angle = 0), 

        axis.text.y = element_text(color = “grey20”, size = 15, angle = 0),   

        axis.title.x = element_text(margin = margin(t=10), color = “black”, 

size = 18, angle = 0), 

        axis.title.y = element_text(margin = margin(r=10), color = “black”, 

size = 18, angle = 90),  

        legend.key = element_blank(), 

        legend.position = c(.05, 1.02), 

        legend.justification = c(“left”, “top”), 

        legend.box.just = “left”, 

        legend.margin = margin(2, 2, 2, 2), 

        legend.key.size = unit(5, ‘line’),  

        legend.key.height = unit(1, ‘cm’),  

        legend.key.width = unit(1, ‘cm’),  

        legend.title = element_text(size=16),  

        legend.text = element_text(size=14)) +  

  guides(color = guide_legend(override.aes = list(size=1.5))) 
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