
Ba
ch

el
or

’s
 th

es
is The Development of

"Tempero Beregningsmodeller"
The digitalization of a service

May 2022

NTNU
Norwegian University of Science and Technology
Faculty of Architecture and Design
Department of Design

Lena Amdal-Larsen
Vilde Gunnes Bertelsen

Bachelor’s thesis

The Development of
"Tempero Beregningsmodeller"

The digitalization of a service

May 2022

NTNU
Norwegian University of Science and Technology
Faculty of Architecture and Design
Department of Design

Lena Amdal-Larsen
Vilde Gunnes Bertelsen

i

Abstract

Title: The Development of “Tempero Beregningsmodeller”

Date: 13.05.2022

Participants: Lena Amdal-Larsen and Vilde Gunnes Bertelsen

Supervisor: Lefteris Papachristos

Employer: Tempero Energitjenester AS

Keywords: BWU, Web Development, calculation models, digitalization, design,

development

Pages: 66

Number of attachments: 5

This project focuses on increasing efficiency through the digitalization of one of the

consulting company Tempero Energitjenester AS’s services: their calculation models.

Tempero’s current handling of this happens through their customers contacting them each

time they need their service. This project aims to give Tempero an application that will allow

their customers to use this service digitally, and consequently increase efficiency in both

Tempero’s and the customers’ workplace. This project is based on previous work, where

insights and research were gathered. In this report, the process of designing and developing

the minimum viable product named “Tempero Beregningsmodeller” is presented through a

design phase that follows principles of useability and accessibility, the concept of journey-

driven design, as well as a development phase using the MERN Stack. Tempero

Beregningsmodeller is an application that makes Tempero’s calculation models available to

their clientele.

ii

Sammendrag

Tittel: Utviklingen av “Tempero Beregningmodeller”

Dato: 13.05.2022

Deltagere: Lena Amdal-Larsen and Vilde Gunnes Bertelsen

Veileder: Lefteris Papachristos

Oppdragsgiver: Tempero Energitjenester AS

Stikkord: BWU, Webutvikling, beregningsmodeller, digitalisering, design, utvikling

Sider: 66

Antall vedlegg: 5

Dette prosjektet fokuserer på effektivisering gjennom digitalisering av en av

konsulentselskapet Tempero Energitjenester AS sine tjenester: deres beregningsmodeller.

Temperos nåværende håndtering av dette skjer ved at kundene deres kontakter dem hver gang

de trenger tjenesten deres. Dette prosjektet har som mål å gi Tempero en applikasjon som vil

tillate kundene deres å bruke denne tjenesten digitalt, og dermed øke effektiviteten på både

Temperos og kundenes arbeidsplass. Dette prosjektet er basert på et tidligere arbeid, hvor

innsikt og forskning ble samlet inn. I denne rapporten presenteres prosessen med å designe og

utvikle et minimumprodukt kalt “Tempero Beregningsmodeller” gjennom en designfase som

følger prinsipper om brukervennlighet og tilgjengelighet, konseptet Reisedrevet design, samt

en utviklingsfase ved bruk av MERN Stack. Tempero Beregningsmodeller er en applikasjon

som gjør Temperos beregningsmodeller tilgjengelige for deres kunder.

iii

Foreword

We would like to thank Tempero Energitjenester AS for giving us the chance to work on this

exciting project, our supervisor, Lefteris Papachristos, for his guidance, and each other for

being supportive and encouraging throughout the project.

Last but not least, we’d love to thank the cats in our neighborhood for bringing a smile to our

faces during challenging times.

Gjøvik, 13 May 2022.

iv

Table of Contents

1 Introduction ... 1

1.1 Project description .. 1

1.2 Problem statement .. 3

1.3 Structure of the report ... 3

2 Background .. 4

2.1 Results from earlier work ... 4

3 Project organization .. 5

3.1 Organization tools ... 5

4 Understanding ... 7

4.1 Interview and survey .. 7

4.2 Payment methods .. 8

4.3 Functional requirements ... 9

5 Design ... 12

5.1 Non-functional requirements .. 12

5.1.1 Journey driven design .. 12

5.1.2 Usability principles .. 13

5.1.3 Accessibility principles .. 13

5.2 User testing ... 13

5.3 Heuristic evaluation .. 14

5.4 Low-fidelity prototype .. 15

5.4.1 Iteration one and two.. 15

5.5 High-fidelity prototype ... 17

5.5.1 Iteration one and two.. 17

5.5.2 Iteration three ... 21

6 Development .. 25

6.1 Technology stack .. 25

v

6.2 Tempero’s Calculation models ... 26

6.3 Front-end ... 28

6.3.1 Folder structure .. 31

6.3.2 Sass .. 31

6.3.3 Redux ... 32

6.3.4 Axios .. 33

6.3.5 Toast ... 33

6.4 Back-end ... 34

6.4.1 Authentication and Authorization .. 34

6.4.2 API ... 34

6.4.3 Email system .. 35

6.4.4 Database ... 36

6.5 Stripe ... 38

7 The application “Tempero Beregningsmodeller” .. 41

7.1 User-guide .. 48

8 Discussion ... 50

8.1 A good user experience .. 50

8.1.2 Heuristic evaluation ... 51

8.1.3 Accessibility ... 52

8.1.4 Conclusion to sub question 1 ... 53

8.2 Guidance in the system ... 53

8.2.1 Conclusion to sub question 2 ... 53

8.3 Safe payment method ... 53

8.3.1 Conclusion to sub question 3 ... 54

8.4 Sustainability .. 55

9 Conclusion .. 57

9.1 Further development ... 57

vi

10 References .. 60

11 Figures .. 63

12 Tables .. 65

13 Appendix .. 66

1

1 Introduction

Digitalization is a term that has many different definitions. One definition can refer to social

life being reconstructed into a digitalized environment, another a business being moved into

the digital sphere (Bloomberg, 2018). In this report, the term is referred to as a business

utilizing technology in areas like the work process, so that they can become more efficient.

Some of the benefits of digitalization are increased efficiency, increased productivity, and, if

done correctly, a better user experience for the customer. The process of digitalization can

take a lot of time and money, and if done badly, the customers and employees that are going

to use the new system, may be unsure on how to use it and if they have the skills needed to do

so (Bossard, 2020).

The purpose of this project is to digitalize the consulting company Tempero Energitjenester’s

current way of doing calculations for their customers. This will be done by making a user-

friendly application where they have the ability to rent and use calculation models online.

1.1 Project description

This project's owner is Tempero Energitjenester AS. Tempero is a small consulting company,

founded in 2012, with customers in Norway, Sweden, and Denmark. Their largest business

area is finding solutions for energy supplies, efficient energy, and power use in buildings, as

well as indoor climate.

Tempero works with both new constructions and restoration of existing buildings. Their role

is to be the client's "competence" in meeting with contractors and consulting engineering

firms in construction projects. To do this Tempero has developed a number of calculation

models in Excel for calculating energy supply, heat, ventilation, and energy consumption in

buildings, as shown in Figure 1 (Amdal-Larsen et al., 2021).

2

Figure 1 - Example of one calculation model in Excel made by Tempero

In the current solution, if a customer needs to do a calculation, they have to ask Tempero for

the specific calculation model. The customer then gets sent the Excel sheet they need, or

Tempero will do the calculation for them, using the sheet, and give them the answer.

In the interview with the project owner, it was revealed that Tempero believes that with the

right input data, these models can be used directly by their customers without them needing to

consult with Tempero, especially for smaller projects. This way their customers' projects can

be completed much faster since the person responsible for gathering the information from

Tempero, alone can get the basic data needed to directly contact suppliers, electricians,

plumbers, etc. to finish their ongoing construction projects.

Tempero wants to digitalize its current solution and make the calculation models available

through an application. Tempero’s requirement for the application is that their current

customers should be able to rent calculation models and use them to get the answers they

need. They also want to display information that easily explains what each model calculates.

Some of the models are complex, so their last requirement is to implement a way for the

customer to contact Tempero through the application if they need guidance (Amdal-Larsen et

al., 2021). To begin with, there will only be three calculation models in the application, but if

it gets used, more can be added later.

3

1.2 Problem statement

The problem statement focuses on fulfilling Tempero’s and the end-users’ wishes for the

system. The statement is:

How can we design and implement a secure and user-friendly application that makes

calculation models from Tempero Energitjenester AS available for its clientele?

To better answer the problem statement, the group created three sub questions:

1. How can we create a good user experience for the users using the application?

2. What is the best way for the end-user to contact Tempero Energitjenester AS for

guidance when it comes to using the calculation models?

3. What is a safe way to implement a card payment method in the application?

Each sub question focuses on different aspects of the application. Sub question 1 focuses on

how to give the users a good user experience while using the application. Sub question 2 is

asked because some of the calculation models are very complicated, so a way for the

customers to ask Tempero for guidance is needed. Sub question 3 is asked because Tempero

does not want to give away these calculation models for free, the application needs a safe way

for the users to pay.

At the end of this project, we will have a minimum viable product (MVP) that Tempero’s

customers can sign up for and use. The product was established through interviews with the

project owner and a survey of the end-users.

1.3 Structure of the report

Chapter 1 introduces the project and the problem statement. Chapter 2 talks briefly about what

the group did in the previous semester relating to this project. Chapter 3 presents how the

project was organized. Chapter 4 shows the group's understanding of the project, and what

was required before starting with the design and development process, which is presented in

chapter 5 and 6. Chapter 7 shows the final product, and the result will be discussed in chapter

8. Lastly, chapter 9 will have a conclusion to the problem statement and proposals for further

development.

4

2 Background

This project was started in the fall semester of 2021, in the course IDG3101

Fordypningsprosjekt. The findings made during the course acts as the foundation of this

project. One of the members from the original group left, but the remaining group has gotten

permission to use their findings.

2.1 Results from earlier work

The goal of the course IDG3101 Fordypningsprosjekt (see appendix A of Amdal-Larsen et

al., 2021) was mainly to research the elements needed in order to develop a system for both

renting and using Tempero’s calculation models, and make a lo-fi prototype of that system.

The group focused on:

• How to give the users of the system a good user experience?

• What is the best way for Tempero to give their customers guidance through the

system, when they need help with calculations related to their projects?

• What is a good and safe payment method for the system?

The group found answers to these questions through interviewing the project owner,

surveying the end-users, and by researching user experience, a variety of different payment

methods and Tempero’s current calculation models in Excel.

From this insight, the group made an “MVP vs nice-to-have” diagram and came up with the

functional requirements for the application. From this, a lo-fi prototype was made. Parts of

this report will include the findings and results from this earlier work.

5

3 Project organization

The group for this project consists of two members. The way the group worked was a mix of

physical and online meetings. Meetings with the project owner were held online, over Teams,

because he lives in another city, while the meetings with our supervisor were mostly in

person. Chapter 3.1 explains how the group worked together on this project, and what tools

were used to make it as smooth as possible.

3.1 Organization tools

Good communication and routines are crucial for such a big project, so the first thing the

group agreed on was a working schedule, Monday-Friday 10:15 - 16:00. The main way of

communication within the group has been over Discord, a platform both group members are

familiar with.

A server was made for this project (see Figure 2) where the group shared information in the

chat channels and held meetings using the voice channel. Discord is a great communication

platform, it lets the users store notes, videos and other helpful information organized in one

place, through channels in the server. Files and documents that was too large to store in

Discord got stored in a Google Drive. This let the group share documents and work on them

together when needed.

Figure 2 - Our Discord server for this project

The version control system GitHub was used to store the group's code. The way the group

collaborated on the code was using the Live share extension in Visual Studio Code. It lets one

person host the code while others can read and write the same files. The group members

6

mostly worked on different files, but if one person needed help the extension makes it easy to

help out.

A Gantt chart made with Team-Gantt was used to keep track of everything the group needed

to do (see Figure 3). The chart was filled with tasks, milestones, and deadlines, and in what

order they needed to happen. The chart also showed which group member was assigned to do

the task which helped the group keep track of who did what.

Figure 3- Screenshot of the Gantt chart for our project

7

4 Understanding

Before making an application, the group needed to gather information to better understand

what the project owner and end-users wanted. Chapter 4.1 will show the results from the

interview of the project owner and the survey taken by the end-users. Chapter 4.2 have

research of different payment methods the group considering using for the system. Based on

these findings chapter 4.3 have an MVP vs nice-to-have table, and a table with the functional

requirements for the application. These chapters contain content from the report written in the

previous semester.

4.1 Interview and survey

In the interview with the project owner, the group identified three user groups: Tempero

admins, Firm admins, and Under users. The Tempero admin is an employee from Tempero,

the Firm admin is a person from a firm that Tempero Energitjenester AS already has as a

customer, and the Under users is other people from the same firm.

Some other things the project owner wanted for the system was:

• The design of the application to correspond to professionals; it shouldn’t hinder the

efficiency of the user.

• The application should be in Norwegian.

• A way to give the users guidance if needed.

• A subscription-based renting system, where the user can rent the calculation models

for a limited time period.

Based on the information the group received from the interview, a survey was made and sent

out to Tempero's customers. This was done to figure out who the user group is, and what their

needs and preferences would be for a system like this. Seven people answered the survey.

The results were as follows:

• 7/7 of the respondents believed they would benefit from a system for renting and using

calculation models online.

• The majority of the users are in the age group 60+.

8

• 7/7 said that they would use the system on the computer, and one person also said they

would use it on a mobile phone (they could choose multiple options).

• Six people wanted guidance through face-to-face conversations, one through phone

calls, three through email, and no one through a chat (they could choose multiple

options).

• 7/7 felt safe using Vipps, card, and invoice as a payment method online.

• The majority wanted a light-colored website with minimal styling.

4.2 Payment methods

Being able to rent calculation models is a big part of this system, so some research into the

most common payment methods in Norway was done. Based on the answers from the survey,

four payment methods stood out from the rest: Vipps, Card payment (Stripe), PayPal, and

Klarna. Table 1 shows a summary of the different methods.

Vipps Stripe PayPal Klarna

Price * Payment only

for use

* 2.99% of the

purchase price

per transaction

* Payment only

for use

* 2 NOK fixed fee

per transaction

* 2.4% of the

purchase price for

Norwegian bank

cards

* 2.9% of the

purchase price for

international bank

cards

* Prices vary

based on

selected service

* 2.80 NOK

fixed fee

* 1.9% of the

purchase price

for buyers

without an

account

* 3.4% of the

purchase price

for buyers with

an account

* N/A Price

based on

company

agreement.

Businesses can

pay through the

service

No Yes (with a

company card)

Yes No

Open use

without an

agreement with

the company

No Yes No No

9

The customer

must register an

account via the

service

Yes No Yes/No* No

* Some of the solutions for PayPal do not require an account for payment, but the use of the

portal, etc. will demand it.
Table 1 - Summary of different payment methods made by Ida M. R Gjeitsund (Amdal-Larsen et al.,

2021).

Stripe (card payment) was chosen for the application because all the other methods had clear

problems the group could not overlook, such as businesses not being able to pay through the

service. Card payment was also one of the methods the end-users were comfortable using

(Amdal-Larsen et al., 2021).

4.3 Functional requirements

Based on the interview with the project owner and the answers from the end-users an “MVP

vs. nice-to-have” table of the system, shown in Table 2, was made. It differs what the system

must have to work, from extra functionalities that would be nice to have, and which type of

user it affects.

Users MVP Nice to have

Everyone *Authentication and authorization

*New firm request

*Navigation

*Responsive design

*Change language

*Change password

*Dark/light mode

*User Profile

*Information page

*Forgotten password

Tempero Admin *Overview of all the calculation

models

*Overview of firms in the system

*Accept/decline firm requests

*Inbox

*Change prices of the models

*Add more Tempero admins

All customers

(Under users

and

Firm admins)

*Contact form for guidance

*Ability to see and use the rented

calculation models

*History of the calculations

Firm Admins *Ability to rent models *Invoice

10

*Card payment

*Receipt

*Ability to add Under users

*Buy models in packages

*Preview of the models

*Edit firm information

Table 2 - MVP vs Nice-to-have (Amdal-Larsen et al., 2021).

From the MVP table, the group made a sitemap of the application (see Figure 4). This helped

visualize the information architecture of the system before the prototyping process started.

Figure 4 - Sitemap that shows what the different users have access

From the MVP table and the sitemap, the group came up with requirements necessary for the

system to work. Table 3 below shows a summary of them.

Requirements How it works

Registering of

customers

* The user needs to apply for permission to create a user before

registering. Tempero does not want to have unknown companies in the

system

* If Tempero approves; the user will get an email with a registering

link

Type of users * Tempero admin, Firm admin, Under user

Calculation models * Will show an overview of every calculation model available to rent

* The main page of the system will be “Dine Beregningsmodeller”

which shows the calculation models the firm is currently renting

11

Renting calculation

models

* Only Firm admins can rent calculations models, but the Under users

can see and use the models their firm is renting

* The Tempero admin can see and use all of the models

* The models will be available to rent in increments of weeks or

months

Payment method * Payments happen through card using the payment service provider

Stripe

Guidance * The guidance will happen through a contact page with contact

information and a form, so that the customers can contact Tempero in

different ways

* Tempero Admin have an inbox where the messages sent from the

contact form will be displayed

Administration * Administration page where Firm admins can invite Under users and

have an overview of all the users in their firm

* Administration page where Tempero admins can approve applying

firms the right to register and have an overview of all the firms in the

system

Table 3 – System requirements (Amdal-Larsen et al., 2021).

12

5 Design

After getting a better understanding of what the system should look like, the design process

started. Two types of prototypes were made, low fidelity, and high fidelity. The lo-fi

prototype is made in Balsamiq and the hi-fi prototype in Figma. During the prototyping

process, different iterations of the prototypes were made, based on the feedback from the user

tests held after every iteration.

The lo-fi prototype had two iterations and hi-fi had three. For the last two iterations of the hi-

fi prototype, a UX expert did a heuristic evaluation. By doing the user tests and evaluation

during the prototyping phase, the group saved time, because it’s more efficient to make

changes to a prototype than the coded application.

In this part of the report chapter 5.1 will show the design concepts the group used for the

project. Chapter 5.2 will explain how the group did the user testing, and chapter 5.3-5.4 have

the results of the different iterations of the lo-fi and hi-fi prototype.

5.1 Non-functional requirements

While designing the prototypes, the group had some design concepts in mind. Following these

helped making the prototypes better. They will be discussed in connection with the project in

chapter 8.

5.1.1 Journey driven design

In recent years, it has become very popular to design for "mobile-first", probably because

more than 3.8 billion people worldwide owns a smartphone in 2022 (Statista, 2022). One

reason for doing “mobile-first” is that a small screen forces the designer to prioritize the most

important content, which then can be scaled upwards when designing for tablets and desktops,

making a responsive design which provides the users a better experience (Morales, 2021).

An alternative to this method is “Journey driven design”. The first step in “Journey driven

design” is to uncover the journey, this starts with the research phase (Mesibov and Levin,

2017). The way this is done is by asking the end-users what device they would want to use the

application on and where they would use it.

The next step is to design the journey. Here the designer needs to ask:

13

• Have I designed for the most critical device?

• What other devices might come into play here?

• What is the context for this interaction? Where will the user physically be?

After each iteration of the prototype, one should do user testing to make sure it works as

intended.

5.1.2 Usability principles

Jakob Nielsen, one of the creators of the Nielsen Norman Group, has presented ten general

principles for good interaction design. They are heuristic, i.e., simple procedures or strategies,

and not specific rules you must follow (Nielsen, 2020b). These include among others:

visibility in system status, consistency and standards, error prevention, and aesthetic and

minimalist design. Following these heuristics will make the user experience better and less

confusing.

To assure the designer is doing it right, it is possible to have an interaction design expert do a

heuristic evaluation to reveal insight that can help the designer make the interface more usable

(Interaction Design Foundation, 2022).

5.1.3 Accessibility principles

In Norway, we have laws in place that will ensure that all web applications are adapted for as

many people as possible. «Regulations on universal design of information and communication

technology (ICT) solutions» (2019), requires that all network solutions must meet 35 specific

criteria in the standard "Guidelines for accessible web content (WCAG) 2.0" (W3C, 2011a).

WCAG's goal is to “provide a single shared standard for web content accessibility that meets

the needs of individuals, organizations, and governments internationally” (Initiative (WAI),

2022).

5.2 User testing

According to Jacob Nielsen, testing on more than five people is enough to identify the

majority of usability issues, because you keep seeing the same things over and over again and

won’t learn anything new (Nielsen, 2000a). The group did user tests on five people, mostly in

the age range 60+ as the survey showed that this was the main target group. In addition, these

people had different technological skills.

14

The user testing was done after each new iteration of the prototype, through “scenarios”. Five

different scenarios were made, which together would guide the test person through a normal

use of the application. The testers were observed while they went through them. The feedback

from these tests helped the group improve the design.

The five scenarios consisted of tasks that were: realistic, actionable, and not too descriptive,

as this would be too leading (McCloskey, 2014). Table 4 below shows the five scenarios used

in the test.

Scenario

1 Send a request to have your company registered in the system. Then register a new user

(Firm admin) and log in

2 Find and rent the calculation model named “Lufthastighet i ventilasjonskanaler og støy”,

and rent it for 1 week

3 Find the calculation model you just rented (“Lufthastighet i ventilasjonskanaler og støy”)

and use the model to do a calculation

4 Find the contact form page and send a message to Tempero, requesting guidance

5 Add a user from your firm (Under user) into the system. After you have done this, log out

Table 4 – The five scenarios used in the user-tests

5.3 Heuristic evaluation

Heuristic evaluation is a process where a usability expert measures the usability of the user

interface. This evaluation is done by using already established heuristics, to reveal insight that

can help the designers make the product more usable (Interaction Design Foundation, 2022).

Since usability experts were not available to us, we used an interaction design student at

NTNU that was well versed in the usability heuristics to act as an expert. They did the

evaluation for this project on the two final iterations of the hi-fi prototype. The evaluation was

done by having the expert go through Nielsen’s 10 heuristics and as problems within each

heuristic were discovered, they were documented (Nielsen, 2020). These problems were also

given a level of severity ranging from 1 to 4, 1 being a “cosmetic problem” and 4 being a

“usability catastrophe”.

15

5.4 Low-fidelity prototype

The lo-fi prototype was made in Balsamiq, which is a web-based tool where the user can

make simple sketches. The first iteration of the prototype was made for a computer screen, as

this was the most critical device based on the feedback from the end-users.

The context the end-user will be in when they use the application is either in an office or at a

building site. It is easier to bring a phone to a building site, so a mobile version of the

application is needed. Having a responsive design, meaning a system that looks great on all

devices, is also very important for the user experience. The second iteration of the lo-fi

prototype is made for mobile devices.

5.4.1 Iteration one and two

Based on our understanding of the system, the lo-fi prototype was made (see Figure 5). The

first iteration, made in the previous semester, included the application’s main functions: The

request and registering pages, the overview of the available calculation models and the use of

a specific model.

Figure 5 - From the left: Add a new firm request form, register Firm admin form, an overview of all

the calculation models, using a specific model from the lo-fi prototype in Fordypningsprosjekt

After the first iteration was made, it was user tested. The group went through the feedback

received from the testers and the observations done under the tests and discussed which parts

16

of the prototype were good and bad. This was put into a simple diagram, shown in appendix

B.1.

Some of the changes made from iteration one to two (see Figure 6 below) were: to include a

back button on each page, add a logout button, change the name of the main page from

"Oversikt" to "Dine Beregningsmodeller" and create an indication in the menu so the user can

see which page they are at.

Figure 6 - Changes made from iteration one (left) to two (right)

The first iteration of the prototype was made to fit a computer screen because of the group's

choice of following the design principle "Journey driven design". The second iteration was

made for mobile to check if there was enough space for the most important content on a

smaller screen before starting hi-fi prototyping. Because of the already simple design, the

content had no problem fitting a mobile screen.

After the second iteration was done, the prototype was user tested once again. Appendix B.2

shows a diagram with feedback from the testers. The main things they wanted to change were

the text on the buttons of the models from “buy” to “rent”, the hamburger menu was too

small, the firm request needed to look like a link, and the most important text on the

application needed a bigger font. After two iterations of the lo-fi prototype, the next step in

the design process was to make a hi-fi prototype. The first iteration of the hi-fi prototype was

based on the feedback from the second user test of the lo-fi prototype.

17

5.5 High-fidelity prototype

To create our hi-fi prototypes, the group utilized the application Figma, which is a web-based

graphics editing and user interface design app. The colors of the prototype followed a simple

color palette of white and blue, the shade of blue being the same as the font color on

Tempero’s logo, as seen in Figure 7.

Figure 7 - Tempero’s logo, from 2012

“Arial” was chosen as the font for the site, as it is listed as being accessibility friendly

(Siteimprove, 2022). The font is kept well above the minimum font size of 12 pixels and 16

pixels for body text, recommended by WCAG (W3C, 2011a).

The design of the prototype follows the preferences of the target group, gathered from the

user survey carried out by the group in the fall semester of 2021. It gave some general insight

into what the target group preferred when it came to website design. They wanted a light-

themed site, with simple styling. In other words, a site for efficient work (Amdal-Larsen et al.,

2021).

5.5.1 Iteration one and two

The system has three types of users: Firm admin, Under user, and Tempero admin. These

users have access to different pages and see different things on the site. Because of this, one

prototype for each user was made. Figure 8 shows what content the different users have.

18

Figure 8 - The navigation bars of the different user types, from iteration one

The main pages in the hi-fi prototype are the login and register pages, an overview of the

calculation models the user owns and calculation models available to rent, the calculation

page where the model gets used, the user administration page, and the contact page.

The hi-fi prototype was tested through scenarios, same as with the lo-fi prototypes. Appendix

B.3 shows the diagram with the feedback from the first user test. The second iteration was

made based on this feedback. The following part of the report shows the results, and what was

changed from iteration one to two.

The biggest change made was to split “Beregningsmodeller” into two different pages: “Dine

Beregningsmodeller” and “Lei Beregningsmodeller” (see Figure 9). This made each page less

packed, and it is easier to see which models are owned by the user and which ones aren’t.

When the user logs in, they now land on the page: “Dine Beregningsmodeller”.

19

Figure 9 – Models page split into two; one for owned models, one for rentable models

Another big change was adding categories to both the model pages. Tempero has three

different groups of calculation models: Energy services, Productivity, and Projects. This

change makes it easier for the users to find what they need (see Figure 10). It will also make

the page less crowded since the user has the ability to collapse the categories and hide the type

of models they don’t want to see.

20

Figure 10 – Changes done to the model overview page

Some smaller changes included adding an email, phone number, and a job title in the Firm

admins registering page so the Tempero admin can see what kind of job the users have (see

Figure 11). These three things will be helpful to know for Tempero when guidance is needed.

Figure 11 - Added phone number, email, and job title input fields

21

The “history” button, used for getting to the calculation history of specific models, was

changed from grey to blue (see Figure 12), to make it more consistent with the rest of the site

since that was the only grey button anywhere in the design.

Figure 12 - Changed the history button from grey to blue

The trashcan icon, showing that something could be removed or deleted, was changed to a red

box with a white X in the middle, which made it take up less space on the page (see Figure 13

below).

Figure 13 - Changed trashcan to a red box with a white X

5.5.2 Iteration three

The third iteration was the final one the group made. After iteration two was done, it was user

tested once again. However, this time the testers didn't have much feedback. Instead of

22

making another iteration based on the small amount of feedback, the group arranged a

heuristic expert evaluation to see if the interface was usable enough.

Appendix C shows a table with the results from the heuristic evaluation of the second and

third iterations. All the problems that were found were on a severity scale of 1 and 2

(cosmetic problems and minor usability problems).

In the evaluation, there were found three problems about heuristic #4 - consistency and

standards, and six about heuristic #8 - Aesthetic and minimalist design.

5.5.2.1 Consistency and standards

The first two problems for heuristic #4 were some cosmetic inconsistencies. The first problem

was the top of the navigation bar and the second was the history button. The logo in the

navigation bar had the only rounded shape in all of the system and the history button was the

only button that wasn’t shaped like a rectangle. This was changed to match everything else in

the final iteration (see Figure 14 and 15).

Figure 14 – Changes in the logo design

The third problem was a minor usability problem. In the navigation bar, the page the user is at

is colored blue, but the history button was blue when the user was not on it. This could be a

23

reason for confusion for the users. The design was changed to be consistent with the

navigation bar.

Figure 15 - Changes on the history button

5.5.2.2 Aesthetic and minimalist design

The interview and survey showed that both the project owner and the end-users wanted a

simple and minimalistic design. A lot of information is needed to use the system and the

calculation models, but it takes up a lot of space, and it will also give the users a bigger

cognitive load, that can lead to information overload, making the user not want to read it at all

(Krug, 2014).

The heuristic evaluation showed that the information might not be as needed as first thought.

The first time a user uses the page, the information is good to have at hand, but when the user

comes back to the same page for the 10th time, they already know what the information box

says, and it will just be a distraction that takes unnecessary space.

To solve this problem the information was hidden behind an information icon or collapsible

element (see Figure 16). This way the user can read it if they want to, while it won’t take up a

lot of space on the page.

24

Figure 16 – Information box changes. The right picture shows an info icon the information is hidden

behind. The bottom picture shows a collapsible element with information

25

6 Development

After the final iteration of the hi-fi prototype was made, the development process could start.

In this phase, the group used the MERN stack and other technologies to develop the

application (see chapter 6.1). The group's focus was on implementing the minimum viable

product.

This phase was split into front-end (see chapter 6.3), back-end (chapter 6.4), and Stripe

(chapter 6.5). The front-end is the user interface with which the users will interact, the back-

end is the server-side, which the user can’t see, where data gets arranged and stored (Kenzie

Academy, 2020). Stripe is its own chapter as it requires both front- and back-end to be

explained together.

6.1 Technology stack

The group discussed different alternatives that made it possible to build a full-stack

application with only JavaScript and decided on using the MERN stack. The main reason for

doing this was efficiency through prior experience with the technologies it consists of. Other

similar stacks that were considered, was the MEAN stack which replaces React with Angular,

and the MEVN stack, which replaces React or Angular with Vue.

MERN was chosen as our group is small, and time-usage is a priority. Choosing to stick to a

familiar front-end framework, let us focus more on other parts of the project, like learning

how to implement the payment service provider Stripe.

The MERN stack includes MongoDB, Express, React, and Node. Figure 17 shows the 3-tier

architectural pattern MERN is made up of. It includes a front-end display tier, application tier,

and database tier.

26

Figure 17 – MERN 3-tier architecture pattern (MongoDB, 2021a).

The top and front-end tier of MERN is made by using React.js, which was the most

commonly used web framework in 2021 (Stack Overflow, 2021). It lets the developer make

dynamic client-side user interfaces from simple components, connect them to the backend

server and render them with HTML.

The middle level is the server tier with the server-side language Express running inside a

Node.js server. This tier handles the server-side logic of the application.

The bottom tier is the database MongoDB which is needed for storing data. In addition to this,

Mongoose was used to create a connection between the database and Express, and to make

different schemas for the data needed (MongoDB, 2021a).

6.2 Tempero’s Calculation models

The main function of the application is to use the calculation models. Tempero has a lot of

models in Excel with different variations of data inputs needed to use them. These Excel

sheets needed to be transferred to code, in a way that made them easy to use. To summarize,

the group's findings from the previous semester, this included error limitation, and research

into mathematical calculations in JavaScript.

Error limitation is part of making a good user experience. To limit the user's ability to make

mistakes while doing a calculation the group used already existing functions in HTML.

27

All the input fields need to be of the type “number”, which makes it impossible for the user to

input letters and other symbols into the fields. Each field also needs to have the attribute

“required” so calculations can’t be done without filling in all the fields. Each calculation

model has different minimum and maximum values that are logical for each field (see Figure

18). These values need to be set so the users can’t input data that is way off what it should be.

Figure 18 - Min and max inputs for each input calculation model made by Tempero

The group also found that JavaScript has a problem with floating point precision. Meaning it

is imprecise when it comes to decimals in mathematical calculation (w3schools, n.d.). Figure

19 shows an easy calculation that gives the wrong answer.

Figure 19 - Example of an easy calculation done in JS that gives the wrong answer

A solution to this problem, is to use some of JavaScript built-in functions in the calculation.

As shown in Figure 20 a combination of «parseFloat()», «toPrecision()», or «toFixed()» will

make sure the answer is correct. Having JavaScript do the math correctly is crucial for the

calculation models to work as intended. With all this figured out the real development could

start.

Figure 20 - Example of an easy calculation done in JS, with functions giving the right answer

28

6.3 Front-end

The first step in the development process was to identify what could be made into components

from the final iteration of the hi-fi prototype. The group identified what would be components

and what would be “pages” in the application.

Components are JavaScript classes or functions that accept inputs (e.g., props) and returns a

React element that describes how a section of the User Interface should appear (Kagga and

Atto, 2020). Functional components were used to make the application because of their

predictability and conciseness. Properties (props) are what make the React component

dynamic and reusable. They provide a way of passing data down from one component to

another (Kagga and Atto, 2020). Table 5 below shows the components the group has coded

and explains the functionality and usage of them.

Component Functionality Uses

Header User navigation Used on every page, except for

the pages where the user is not

logged in

Footer Displays contact information Footer is used on every page

Spinner Displays a spinner when a page is

loading information

Used on every page that needs to

use the API to load content

Collapsible A collapsible container that takes

in a label and children. The

children will be hidden when the

collapsible is clicked

Every page that holds

information has a collapsible

information container. An

exception is the contact page, due

to the other containers on the

page and design balance

DropdownModels Uses the Collapsible component.

Takes in a category, an array of

models and a type of either

‘dashboard’ or ‘catalogue’. Loops

through the array of models and

renders each one. Depending on

type, each model has a set of

buttons relating to renting or using

the model

Used in both the dashboard

(“Dine Beregningsmodeller”)

and the catalogue (“Lei

Beregningsmodeller”) pages

AdminReqs Fetches all new user requests from

the database and displays them.

Tempero admins can accept or

The first half of the

administration page for Tempero

admins

29

deny the requests in this

component

AdminFirms Fetches all firms from the

database and displays them

The second half of the

administration page for Tempero

admins

FirmAdminNav Navigation specific for Firm

admins

For when the role of the user is

Firm admin

TemperoNav Navigation specific for Tempero

admins

For when the role of the user is

Tempero admin

UnderUserNav Navigation specific for Under

users

For when the role of the user is

Under user

SuccessDisplay Displays a link to a Stripe hosted

site for managing the user’s

subscriptions, a link to the

dashboard, and a link to the then

purchased calculation model

For after a user has successfully

subscribed to a model

ProductDisplay Displays the prices (week, month)

and a short description of a model,

along with two buttons for

selecting a plan of either a weekly

or a monthly subscription. The

buttons take the user to a checkout

page hosted by Stripe

Displays when a user selects a

model to rent

Table 5 – The applications components and their functions and uses

The pages within the App component, renders based on React Router DOM routes. React

router is a fully featured client server-side routing library for React. It allows the developer to

display pages that the users can navigate (React Router, 2022). The components mentioned

above are used on different pages, as seen in Table 6 below. Together these make up the User

Interface of the application.

Page Functionality Components

Login Simple login form with links to the request new user

page

Request Form for requesting access to the system, for new

firms

Register Form for registering a new user. Only accessible

when a Tempero admin accepts a new firm’s request

30

for access to the system

Model

(Single model)

Fetches calculation model, displays calculation

model, and handles calculations done by the user, by

sending the input values to the backend for

calculation, and displays the results

*Collapsible

ModelInfo Fetches model information and displays it. Contains a

link in the form of a button, which leads to the page

for renting models

AdministrateT Administration page for Tempero admins.

Administrates new user requests. Overview over all

firms and the users listed under the firms

*AdminFirms

*AdminReqs

AdministrateF Administration page for Firm admins. Administrates

Under users in the firm, including adding and

removing users

Catalogue

(For renting models)

Page displaying models not owned by the user. Each

model has a link for more information, and another

for renting the model

*DropdownModels

ContactForm Contact page. Contains contact information and a

form for sending Tempero messages through the

system

Dashboard

(Owned models)

Page for displaying models owned by the user. Each

model has a link in the form of a button to use the

model

*DropdownModels

Profile User profile page, where the user can edit their

information, including name, phone number, job title

and their password

RentModel Page handling model renting. First renders the

ProductDisplay component, then on a successful

checkout, renders the SuccessDisplay component

*SuccessDisplay

*ProductDisplay

Messages Fetches and displays all messages sent by the users of

the system. Only Tempero admins has access.

Messages can be deleted from here. Each message

holds contact information from the user, along with

the message

All pages contain a Footer component and most contain a Header component. Pages that interact with the API,

use a Spinner component.

Table 6 – The applications pages with their components and functions

31

6.3.1 Folder structure

The folder structure is split into front-end and back-end. It is done like this because it makes it

easier to debug, and it gives the choice to host either the front-end and back-end separately or

both at the same time. Figure 21 shows the structure of the front-end folder.

Figure 21 - front-end folder structure

6.3.2 Sass

To make the application look visually pleasing, the group used Sass (Syntactically Awesome

Stylesheets). It is a “CSS pre-processor that lets you use variables, mathematical operations,

mixing, loops, functions, imports, and other interesting functionalities that make writing CSS

much more powerful” (Mauri, 2018).

The main reason for using Sass for this project is that its syntax and nesting ability makes it

easy to follow the HTML hierarchy. The syntax (see Figure 22) is also shorter than with

normal CSS because it doesn’t use brackets and semicolons. Sass is instead white space

sensitive (Giraudel, 2022) .

32

Figure 22 - Sass syntax

The style folder consists of sass files, the main files are organized so pages with similar

content share a file. In addition to this, one file has all the media queries needed to make

responsive design and another file has the most used variables in the application.

6.3.3 Redux

One important function in our application is authentication. The three types of users see

different things on the website (see chapter 5.5.1). The information about the different users

has to be shared with many different components that may or may not directly interact. Redux

creates a single data store that can be accessed from anywhere in the application, as shown in

Figure 23 (Castro, 2022). Redux makes it easier for the developer to pass the state to the

components that requires it.

Figure 23 - How Redux stores the state (Totla, n.d.).

33

6.3.4 Axios

Axios was used in the application, to get the front-end to communicate with the back-end.

Axios makes it easy to send CRUD (Create, Read, Update, and Delete) requests to the back-

end API. It is promise-based, which lets the developer use JavaScript async and await to make

a readable and asynchronous code. Figure 24 shows an example of how Axios is used in this

project to get all the available models for a user under a firm, from the backend.

Figure 24 – Screenshot showing a Axios get call

6.3.5 Toast

An important factor that makes the user experience better is to always inform the user of what

is going on. To do this the group used the notification library Toast. A toast is a customizable

non-blocking notification pop-up that shows the user a readable message and then disappears

after a few seconds. In this project, it was used to alert the user about information being sent,

updated, or errors when they occur, as shown in Figure 25.

Figure 25 - Toast that shows information to the user

34

6.4 Back-end

The group identified a variety of technologies needed to get the application to work as

intended. Authentication and authorization, APIs, a way to send emails with the links for

registering pages, and a database to store the data, are the main parts of the server-side of the

system.

6.4.1 Authentication and Authorization

The three types of users in the system have different access levels that are protected.

Authorization happens for various routes, to determine whether the user is supposed to see

data specific for Tempero users, Firm admins, or Under users.

Whenever a user’s password is involved, from creation to editing to usage, the npm package

“bcryptjs” is used. The package allows for creating hashed passwords and comparing that

hashed password to an input to check for matches. Hashing makes it so no one can see the

user's actual password, and only the hashed passwords get stored in the database. The “hash”

is impossible for a human to read and make sense of (Arias, 2019).

Authentication (the process of verifying who someone is) happens for most routes, in the form

of a middleware checking if the user has a bearer token. The npm package “jsonwebtoken”

generates a token for the user at login, which is set to expire three days after creation,

whereupon the user will be logged out automatically. This token is attached to the user and

stored in local storage. When a route is called from the front-end, the token is sent as a header

and verified in the middleware. The token is set to last for three days so the users don't have to

enter their login details every time they exit and re-enter the application, which again makes

for a better user experience.

6.4.2 API

When the front-end loads up certain pages that require dynamic and changing content, calls

are made to the API. Here, data is fetched from a database and sent back to the front-end to

render. Table 7 shows the five main API routes in the system.

Route Functionality

Calculations Handles CRUD interactions with the database, takes in values, and runs

calculations

Firm Handles CRUD interactions with database

35

Messages Handles CRUD interactions with database

User Handles CRUD interactions with database

Stripe Payment handling. Handles interactions with Stripe API

Table 7 - main APIs in the system and their functionalities

6.4.3 Email system

To make it possible for the customers to register Firm admins and Under users, they need to

be sent the links that take them to the registering pages. These URLs need a parameter which

holds a request id, allowing the front-end to make a call to the back-end, which uses the

request id to validate the user.

For this to work, the back-end of the system needs to be able to send emails. This was done

using Nodemailer. Nodemailer allows the developers to create their own email templates

using HTML, where style is added through style tags within the HTML. In this application,

four different email templates are needed:

• An email is sent to Tempero, informing them when a new firm is requesting access to

the system.

• Two different email templates are used with registration, whereas one handles a firm

being declined and the other when they are accepted. A link to the registration page is

only sent to those accepted.

• A last email is sent to a person when a Firm admin adds them under their firm as an

Under user, as shown in Figure 26.

36

Figure 26 - Screenshot of email template made with Nodemailer

The outlook account “Temperoberegningsmodeller@outlook.com”, specifically made for the

application, sends out these emails from the system to the email address provided by the back-

end.

6.4.4 Database

The database chosen for this project was MongoDB since it’s part of the MERN stack. It is a

database based on a non-relational document model, meaning that the data gets “stored in

documents similar to JSON objects. Each document contains pairs of fields and values. The

values can typically be a variety of types including things like strings, numbers, booleans,

arrays, or objects” (MongoDB, 2022b).

The MongoDB database is built using Mongoose schemas. The schemas in our applications

are as follows:

• User

• Firm

• Available models

• Calculation model

• Calculation model information

• Request

• Message

37

The user schema consists of a user’s name, job title, their role in the system, email, phone

number, password, firm id, and customer id if provided. All but customer id are required, and

both email and phone number are set as unique. The roles are enumerated, being “Tempero”

“Firm admin” or “Under user”, as per the roles in the system determining access levels. The

firm id binds the user to their firm.

The firm schema consists of information about a firm, including the firm’s name and

organization number.

The available model’s schema consists of a firm id and a model id, linking a model to a firm.

The calculation model schema consists of a model name, category, two price ids created by

Stripe (week plan, month plan), a short description of the model, and an array of inputs, which

is set in a subschema. The subschema consists of the label for the input, a shortened label,

min- and max values, and an output name for the calculation function, working as a reference.

All are required, and both the calculation model name and product id are unique.

The calculation model information schema consists of a model id to bind it to its relevant

model, and a full description holding an array of paragraphs.

The request schema consists of the requesting user’s firm name, organization number, the

user’s phone number, email, their role in the system, and a Boolean value specifying whether

the request is for a new firm or a new user under an existing firm.

The last schema, messages, consists of the sender’s name, email and phone number, their firm

name and id, and the message itself. The message schema can be seen in Figure 27.

38

Figure 27- Message schema

6.5 Stripe

Stripe is a payment service provider that accepts credit cards and other payment methods. It

supports many different currencies, including NOK, which was used for Tempero’s products.

Stripe has a subscription function that allows for different payment plans, and lets the

customer “make recurring payments for access to a product” (Stripe, 2022a).

The application has two payment plans. Customers can choose between paying for a week or

a month at a time. This is due to the differing projects they work on – Some projects only

require one or two uses of a model, meaning paying for a full month would be a waste of

money.

To implement Stripe into the project, both front- and back-end work was necessary. The

front-end handles the users’ interactions with the model subscription system, sending and

receiving calls and data necessary to process payments. The back-end handles i.e., a set of

webhooks and interactions with Stripe’s API.

When a Firm admin decides on renting a calculation model, they have to choose a plan of

either weekly or monthly payment from the application’s front-end. Before the user is sent to

the Stripe hosted checkout page (see Figure 28), the application’s back-end either generates a

customer object and ties the customer id within it to the user or finds the user’s customer

object if they already have a customer id tied to them. The customer id is sent with the

checkout call to Stripe’s API, so that Stripe can hold onto their information and automatically

fill out their details at checkout. This way, the user only has to fill out their card details once,

which enhances the user experience.

39

Figure 28 - Screenshot of Stripe’s checkout (Card details for testing).

Once a user has completed the checkout and successfully paid, Stripe sends a message to the

application’s back-end through a webhook. A webhook is an automated message sent from an

application when something happens (Guay, 2020), and the application runs different

functions depending on which event type Stripe’s webhook holds in its payload. For example,

the event type stating a subscription has been created and paid for, will take in the model id

tied to the metadata of the specific product (listed in Stripe), and use the email of the customer

to find the user and their firm id, both in order to bind the model to the user’s firm.

After this is completed, the user is sent to a success page with three links (see Figure 29). One

link takes the user to the calculation page for the model, another to the dashboard and the last

to a Stripe hosted subscription management portal, which works similarly to checkout.

40

Figure 29 - Screenshot of the application’s "successful payment" page

41

7 The application “Tempero Beregningsmodeller”

The goal of this project was to digitalize Tempero Energitjenester AS’ current solution by

making an application where their customers can rent their calculation models online, without

needing to talk directly to them.

All the functions in the MVP table (see chapter 4.3) were implemented in the application. In

addition to this, two of the nice-to-haves; profile and change password, also got implemented.

The final application is named “Tempero Beregningsmodeller”, and it can be reached through

this link: https://tempero-beregningsmodeller.herokuapp.com/.

Tempero Beregningsmodeller lets a person from each of Tempero’s customer's firms register

an admin user, which again can add Under users from their firm and rent calculation models

from three different categories. The rented models can then be used by anyone in that firm to

do calculations with. If they for any reason need help, the application has a contact form and

contact information so the user can get in touch with Tempero.

There are three different user types available, Firm admin, Under user, and Tempero admin.

Figure 30 shows what pages each type of user can access. The different color Post-its show

who has access to what.

• White - Unregistered users

• Yellow - All registered users

• Green - All registered customers (Firm admin and Under users)

• Blue - Firm admins

• Purple - Tempero admins

• Red - Links (sent over email)

https://tempero-beregningsmodeller.herokuapp.com/

42

Figure 30 - Overview of the different pages Tempero Beregningsmodeller has and who has access

After the user logs in, the first thing they see is “Dine Beregningsmodeller” (see Figure 31).

This page has an overview of the calculation models the firm has rented. For the Tempero

admin, the “Beregningsmodeller” page shows all the models Tempero owns, and they are

always available to use.

Figure 31 - Screenshot of overview of rented models

Each model has a button that takes the user to a calculation page for that model. The models

are sorted into three different categories: Energy services, Productivity, and Projects. This

makes it easier for the users to find what they need.

43

The calculation page for each model is the main functionality in Tempero

Beregningsmodeller. It consists of a collapsible element, with basic information about how to

use the model, input fields where the user inputs the data they have, and a result field where

they get the answers, which appears when they click the “Utfør beregning” button (see Figure

32 below).

Figure 32 - Screenshot of the models from the application. Left: Model with information. Right: Shows

a calculation being done with the result

The “Lei Beregningsmodeller” page looks a lot like “Dine Beregningsmodeller” (see Figure

33). The difference between them is that this page shows an overview of the models that the

user can rent. These models have two links, one takes the user to a page with information

about the model, and the other to the checkout where they can rent the model.

The Firm admin is the only one that can rent models, but Under users can use all the models

the admin has rented. This way, in case more than one person from the same firm is working

on a project that needs the same calculation models, the users don't have to rent more than

one.

The checkout page consists of a picture, the name of the model, and the price of renting it. It

works like a subscription, the user pays for a week or a month at a time, and when the time is

up, their card gets charged for another week/month if they don’t cancel it. The user will get an

44

email telling them their card will get charged a few days before it happens. If they cancel the

subscription, they lose the access to the calculation model. When the purchase is done the

model is available from the “Dine Beregningsmodeller” page.

Figure 33 - Screenshot of "Lei Beregningsmodeller" page from the application

Both Firm admins and Tempero admins have access to a page named “Administrer brukere”,

but these pages look different depending on what role the user has. The Firm admin's page

(see Figure 34) lets the admin add Under users from their firm into the system. The Firm

admin writes the email address of the person they want to add, and a link to a registration

page for Under users gets sent to that email. When the person has registered their account, the

Firm admin will see that on the same page. It is also possible for the Firm admin to delete

Under users from the system.

45

Figure 34 - Screenshot of the Firm admin page from the application

The Tempero admin page shows an overview of all the firms in the system and all the users in

each firm. The page also has an overview of requests from firms asking to join the system

(see Figure 35). It shows the name, organization number, email, and phone number of the

firm. It is possible to click the organization number to see if the firm is legitimate. It takes the

user to Brønnøysundregistrene which holds information about all firms in Norway. From this

information, the Tempero admin can choose to accept or decline the firm. If they accept, the

person that sent the request will get an email with a link that takes them to a Firm admin

registration page. When the Firm admin gets registered the firm will show up for the Tempero

admin in the firm overview.

46

Figure 35 - Screenshot of the Tempero admin pages from the application.

The “Profil” page has the same information for every type of user. It shows the logged-in

user's name, phone number, and job title, which they can edit (see Figure 36). In addition to

this they can also edit their password. Firm admins and Under users also have the possibility

to delete their own users.

Trying to change a password or delete a user will trigger an alert that asks the user if they

want to proceed. As a precaution, a Firm admin can only delete their user if there is more than

one Firm admin for the firm in the system.

47

Figure 36 - Screenshot of the profile page from the application

Firm admins and Under users have access to the “Kontakt oss” page where they can find

Tempero’s contact information and a contact form. Through the contact form, the users can

tell Tempero what they need help with and how they want to get guidance (email, phone, or

in-person) and Tempero will respond, in the customers preferred way, as soon as possible.

Figure 37 - Screenshot of the contact form from the application

48

Tempero admins have a “Melding” page where all the guidance requests from the users in the

system are sent to. Tempero admins will also be sent an email notifying them that they have

gotten a new message.

A message holds information about the name of the sender, what firm they are from, their

phone number, email address, and the message text. This way the Tempero admin can easily

contact them.

Figure 38 - Screenshot of the message inbox from the application

7.1 User-guide

This guide will demonstrate how the reader can use the application with all three user types. It

will showcase the main functionalities of Tempero Beregningsmodeller, which can be reached

from here: https://tempero-beregningsmodeller.herokuapp.com/.

The application is set to test mode, meaning both the payment method and actual calculation

models are fake. Stripe does not charge the user, and the calculation models return only the

inputted values added together, due to these models being actual products, Tempero don’t

want anyone to use for free.

To make the process simpler, three users are already registered in the system, they are

available in Table 8 below.

https://tempero-beregningsmodeller.herokuapp.com/

49

Role Email Password

Tempero admin ellinorr@fake.no sNH9Xp2s7QJJ98zKMfEG

Firm admin ovep@fake.no 2yVJBxBVQrfaVuaNzYFq

Under user davidl@fake.no bENhR9k7Mk8T2LaUKrAX

Table 8 - Login information

Some functionalities depend on other user types doing something, so following the guide is

crucial to try every functionality. The guide will be split into multiple parts where different

user types are used.

Part 0 will demonstrate how to make a request to Tempero asking for your firm to get added

to the system. Make sure to fill in an email you have access to, so you can receive the

registration link. You might receive the email in your spam folder.

Part 0 - Request to add a new firm

Step 1 Click the link: “Ny bruker? send forespørsel”

Step 2 Fill in your firm's information

Org.nr: Any 9 digits

Phone nr: Any 8 digits

Table 9 - User guide part 0

Part 0.1 - Tempero admin

Step 1 Log in as Tempero admin

Step 2 Go to “Administrer brukere” and accept the new firm request

Step 3 Log out

Table 10 - User guide part 0.1

A new firm has now been accepted to the system, and you will get an email with a link that

takes you to the Firm admin registration page. As a Firm admin, you can now add Under users

to the firm. For the full user guide, see appendix D.

50

8 Discussion

At the beginning of the project the following problem statement was asked:

How can we design and implement a secure and user-friendly application that makes

calculation models from Tempero Energitjenester AS available for its clientele?

To better answer the problem statement, three sub questions were made. These questions were

built on the previous questions asked in our report for the class IDG3101

Fordypningsprosjekt. In this part of the report, we will discuss our research and the results we

have gotten from this project to answer the problem statement.

The main reason for making “Tempero Beregningsmodeller” was to digitalize the way

Tempero helps its customers with the calculations needed for their building projects. The

problem Tempero have with their current approach is that it takes them a lot of time to do

something for their customers, that the customers could be able to do themself if they had

access.

The survey done by the end-users showed that they were very interested in getting a

digitalized system, but for an application to be better than the current approach, it needs to be

safe and user-friendly. Without a good user experience, people wouldn't want to use it.

8.1 A good user experience

To make a good user experience you have to focus on the users, how they complete their tasks

and goals, and what their strengths and weaknesses are when it comes to technology (Miller,

2005). Not everyone thinks the same, so a good user experience is subjective depending on

the person.

Concepts like “Journey driven design”, usability and accessibility principles, as well as user

testing, and the group's survey of the end-users contribute to answering sub question 1: How

can we create a good user experience for the users using the application?

8.1.1 Journey driven design

Today “mobile-first” is the most popular design method because of how many people have a

mobile phone. In this project, however, we are making a system for Tempero’s existing

customers, which in the big picture is a small number of people. The best way to make a good

51

user experience for them would be to ask what they want. This is the first step in an

alternative design method called “Journey driven design”.

The end-user survey showed that the most critical device to make the application for was PC

and that the users wanted a simple design. This was the main focus when designing Tempero

Beregningsmodeller. We prioritized finishing a desktop version first, then adjusted the design

to fit for mobile afterwards.

8.1.2 Heuristic evaluation

We wanted to make the task of using a calculation model as simple as possible while still

fulfilling Tempero's requirements. During the prototyping phase, a heuristic evaluation of our

prototype was done by a UI expert. It followed Jakob Nielsen's ten principles for a good

interface design (Nielsen, 2020), to see if Tempero Beregningsmodeller had a good user

interface. The main heuristics focused on was visibility in system status, consistency and

standards, error prevention, and aesthetic and minimal design.

Visibility in system status refers to always keeping the user informed of what is going on

through feedback. We implemented Toasts (see chapter 6.3.5) to do this. It gives the user

information about the result when an action is performed.

After using Tempero Beregningsmodeller, we found that a potential problem with the

consistency of the design is that it might become too consistent. “Dine Beregningsmodeller”

and “Lei Beregningsmodeller” looks pretty similar, in fact they are almost identical. The only

way to differentiate them from one another is to read the main heading and the highlighted

part of the navigation bar, which shows which page they are on. If the users just skim the

page, they might not notice if they are on the wrong page or not. This wouldn’t create any real

problems except maybe losing the users some time, because after a few click they would

either see a calculation model or a payment page, but it is something to take into consideration

if the application gets developed further.

Error prevention is very important for this project because of how complicated some

calculation models can be. If the user gets the wrong answer from the calculation it can lead

to a number of bad events. In the chapter 6.2 we looked at different things that could help

prevent human errors. Simple HTML functions like “number”, “required” and logical

min/max values in each input field drastically decrease the user's possibility to input the

52

wrong data. For other parts of the application, simple alert pop-ups will show before a user

can do drastic changes like deleting something or changing a password.

The heuristic: aesthetics and minimalist design, say that “Interfaces should not contain

information which is irrelevant or rarely needed. Every extra unit of information in an

interface competes with the relevant units of information and diminishes their relative

visibility.” (Nielsen, 2020).

While the design started very minimalistic, the large number of information boxes needed

made for a very packed site. We couldn't just remove the information text because it is

important to prevent human errors, so we found that hiding the text behind a collapsible

element was a good solution. It lets the user choose what they want to see while making the

page look clean.

8.1.3 Accessibility

By following the Web Content Accessibility Guidelines (WCAG) (W3C, 2019b), Tempero

Beregningsmodeller should be accessible to as many as possible. Accessibility makes for a

great user experience. Because most of the end-users where over 60 years old, having easily

readable text and good contrast on the site was something the group focused on.

As mentioned in chapter 5.5 all our font sizes are at minimum 12 pixels and generally above

16 pixels, making the text readable for the users.

The contrast of the pages follow guideline 1.4.3 Contrast (Minimum) that say the visual

presentation of text and images of text should have a contrast ratio of at least 4.5:1. The web

accessibility tool Wave (WebAIM, 2022) shows that the blue on white color Tempero

Beregningsmodeller uses, passes both the AA and AAA requirements, with a contrast of

8.59:1.

We also made sure to follow guideline 1.1.1 Non-text Content and provide alternative text to

pictures and input fields. Tempero Beregningsmodeller has pictures on the calculation model

overview, and all of these have “alt tags” that describe the picture. All the input fields in the

calculation models also have corresponding labels to show what they are. In addition, buttons

with Sass-rendered text have aria-labels explaining what the button does. All this is done so

that users who can’t see these elements will have alternatives that lets them use the

application.

53

8.1.4 Conclusion to sub question 1

To answer sub question 1, the group has focused on creating a good user experience through

surveying the end-users, running user tests, and focusing on accessibility and usability

through the entire design process. All this was used in the development of the application.

8.2 Guidance in the system

Sub question 2 asks: What is the best way for the end-user to contact Tempero Energitjenester

AS for guidance when it comes to using the calculation models? The answers we got from the

user survey showed that 100% were happy with the current guidance system, which included

emailing Tempero or meeting with them face to face.

In our report from the previous semester (see appendix A) we concluded with keeping the

current way of guidance, but also adding a contact form in the application. This way the users

can chose if they want to contact Tempero the old way or through the new application.

We didn’t want to complicate the process further by adding e.g., a chatbot. It would have been

a bad solution because of the complexity of the questions that might be asked. Getting any

complex question answered face to face is more efficient, because the conversation will be

more detailed. By making the application the way we have, we hope that the need for help

might not be as big as before, making both Tempero and the end-user’s jobs easier.

8.2.1 Conclusion to sub question 2

To answer sub question 2, the best way to contact Tempero for guidance would be to keep

doing what they currently do; let the user contact them through email or phone. In addition to

this, the application has a contact form so the customers can send messages to Tempero

through the system if they wish. Adding this provides them another option for asking minor

questions, without having to leave the page.

8.3 Safe payment method

Our MVP vs nice-to-have table (see chapter 4.3) shows that we needed to implement a card

payment method in the system, and that invoice would be nice-to-have. The current

application only takes card payment, but if this application gets developed further, we will

also add an invoice option, because not all firms necessarily have a company card available to

54

use. Sub question 3 asks: What is a safe way to implement a card payment method in the

application?

Implementing a payment method into the system was a big and daunting task. People are

going to use real money to pay for the calculation models, so the payment method must be

safe. We could not do this on our own, so we started researching the four different payment

systems that we knew the end-users were familiar with (see chapter 4.2). We wanted to only

look into familiar payment methods because it is logical that people feel safer paying in a way

they have done earlier on other websites.

Based on the system’s needs and how well it was documented, our choice on payment system

ended up being Stripe. Some of Stripes users are large companies like Ford and Lyft (Stripe,

2022b), so we believed Stripe was a very secure service to use.

Stripe can be used without Tempero having an agreement with them and the customers do not

need to register a user to pay through the service. All the payment methods we looked into

had an additional fee that the user need to pay in order to use it. Stripe’s fee is a fixed amount

of 2 NOK per transaction. This seemed worth it for how secure the system is.

In the interview with Tempero, we were told that they wanted a subscription-based system in

the application. Stripe has a subscription function that let the user pay in increments of days,

weeks, or months, depending on what the developers choose. In this application we saw it

best to let the customer choose if they wanted to rent the models in increments of weeks or

months. Giving both these options will make the products more appealing. If they only need

the model for a short amount of time they can chose a week, and then pay again the week

after if they didn’t finish the work in time. If they need the model for a long time, paying each

week would become annoying, so then it’s better to choose the monthly option.

The payment system is functional in the application, but Stripe is a very complex system for

beginners, so there are better ways to implement it, such as adding more webhooks to keep

better track of events, like a user changing their payment plan. This is something we will look

into if the application gets developed further.

8.3.1 Conclusion to sub question 3

To answer sub question 3, a safe way to implement a card payment system is to use the third-

party service Stripe. The reason for this is that the security surrounding the payment system

55

will be handled by a well-trusted software, instead of our application. As displayed in Figure

28, what the user sees is a standardized checkout page, which is familiar to them and can

consequently make them feel safer when paying.

8.4 Sustainability

Since sustainability is more important than ever, NTNU wanted their students to reflect on

how their projects could contribute to a “better world”. Sustainability is the concept of

development being able to satisfy the needs of the current human population, while not

damaging the world for the future generations to come. In other words, sustainability refers to

developing something in a way where it can be sustained over a long period of time

(Tjernshaugen, 2022).

A potential positive impact our project might have, is augmenting Tempero’s work, as their

largest business area is finding solutions for energy supplies, efficient energy, and power

usage in buildings, as well as indoor climate. By digitalizing their work, the consulting they

do could reach out to more people and firms, thus increasing the amount of new or restored

buildings that could become more sustainable in terms of resource use, like energy

consumption. This applies to UN’s sustainability goal nr. 12: “Ensure sustainable

consumption and production patterns” (UN, n.d.).

Looking at it from a development point of view, different strategies could be used to make the

application itself more sustainable. Transmateralization is one strategy for sustainable website

design. It is the process of transforming a product into a service, making it less resource

intensive (Frick, 2016). This is exactly what we have done with Tempero

Beregningsmodeller, it takes Tempero’s product; the calculation models, and make them

available through a subscription-based service.

Before this application was created, Tempero would receive a request for a calculation model

through one email then return the answer through another. With this application, emails are

required in order for the users to register, but when they are in the system, the uses of emails

for getting the calculation models will decrease, and thus decreasing energy consumption.

Sending and receiving emails uses electricity, most likely produced through methods which

releases CO2 (Abdallah and El-Shennawy, 2013). Say Tempero sends and receives in total 10

56

emails per day, this would equate to 2500 emails a year which would create around 12kg of

CO2. This equates to driving 27km in an average nonelectric car (CwJobs, n.d.).

Another sustainability strategy is demateralization, meaning simplifying websites to have just

enough content to achieve their goal (Frick, 2016). Tempero Beregningsmodeller is a very

simple website, but it has a few pictures it might not need. If we test the application further,

we can see if the users actually need the pictures. If they don’t, removing them would make a

very small change, but would still improve the sustainable of the application.

As this is the first version of the application, our focus was to get it online and functioning, to

test how it performs among Tempero’s clientele. Due to this, it is hosted through a free

hosting service, but in the future, choosing the right service would make the application more

sustainable. One option is the company GreenGeeks (2022), who emphasize on leaving a

positive energy footprint on the environment.

57

9 Conclusion

Efficiency is vital in any work environment and is something that can be enhanced by

digitalizing certain tasks. This project was created in collaboration with Tempero, in order to

augment their work in the form of digitalizing their services. This would allow for more

people and businesses to utilize their services, as well as removing Tempero as the middleman

when they are not specifically needed.

We chose to design and implement a secure and user-friendly application that would make

Tempero Energitjenester AS’ calculation models digitally available for their clientele. To do

this, we created three sub questions. Chapter 8, which discusses the questions asked for this

project, shows how, in the process of designing and developing the application, we focused on

the end-users’ needs, and the application’s security, usability and accessibility.

We concluded that the best way for the users to ask for guidance would be by contacting

Tempero through email, a phone call or the application’s contact form. Through this, they can

personally decide on the best way for them to receive guidance.

The security surrounding the application’s payment system is handled by Stripe. This allows

the customers to feel safer when putting their card details into an unfamiliar website in order

to rent the calculation models.

These three sub questions together contribute to answering the problem statement. Our

solution is the application, Tempero Beregningsmodeller. It is a user-friendly application

which makes Tempero’s calculation models available to rent and use online, for their

customers. Tempero Beregningsmodeller’s easy access to calculation models gives their

customers the ability to do the calculation needed for their project on their own, making the

process move faster and more efficient.

9.1 Further development

The current application is a good starting point, but we have some suggestions for further

development. However, before any big changes are made, it would be smart to check if the

application gets used by the customers.

58

Whether digitalization is a success or not can be measured through Key Performance

Indicators (KPI) (Marr, 2012). These indicators can measure, among other things, the

customer perspective: how often the application is used, and the change in productivity due to

this. This is something that happens over a longer period of time, but Tempero should be able

to use this method to see if the digitalization of the calculation models is a success or not.

Chapter 8.4 discussed some future changes for the application surrounding sustainability.

Further development of the application would include adding the functions mentioned in the

nice-to-have part of Table 2, renting models in packages, model history, invoices, enhanced

Stripe functionalities, choice of language and a dark/light theme.

The current application only has three working calculation models, so a package deal won’t

make much sense at the moment. However, Tempero has a lot of calculation models, so if

they decide they want more of them added to the system, it would be nice for the users to be

able to rent similar models in packages, instead of one at a time.

Implementing the calculation models’ “history function” would also be a nice touch. The final

iteration of the hi-fi prototype has a history button, as mentioned in chapter 5.5, but the

function was never development in the current application, as it was not a required

functionality. This function would let anyone that owns a model see previous calculations

saved to that specific model. This way the users can look up old answers instead of doing the

same calculation over again. It would also be useful if errors arise, as the user can check what

data was put in previously, to see if any input contributed to the faulty result.

Invoice is another thing that would be good for the application. As mentioned, all of

Tempero’s customers might not have a company card that can be used to rent models. An

invoice system would make it possible to pay in another way, making the application

accessible to more users. The way we’d go about adding invoice is through Stripe, as it

provides many payment options for businesses, such as invoicing and receipts.

In addition, we would improve our application’s webhooks for communication with Stripe, as

it is currently in its simplest form. For example, there are many different types of events, such

as “subscription has been updated”, “subscription has been paused”, etc., all of which should

be covered by the application’s back-end to some degree.

59

Some smaller changes that could improve the application are the choice to change languages

and a dark-/light-mode switch. The project owner informed us that some of Tempero’s

customers are from other Scandinavian countries. Adding a second language like English,

could make the application more usable for people whose main language is not Norwegian.

Dark-/light-mode would also be good because different users might prefer one over the other,

or their surroundings might call for different brightness levels to see properly on their screens.

If Tempero’s customers like the application and use it regularly, a final touch would be to

integrate the system into Tempero’s future website.

60

10 References

Abdallah, L., El-Shennawy, T., 2013. Reducing Carbon Dioxide Emissions from Electricity

Sector Using Smart Electric Grid Applications. Journal of Engineering 2013,

e845051. https://doi.org/10.1155/2013/845051

Amdal-Larsen, L., Bertelsen, V.G., Gjeitsund, I.M.R., 2021. Webløsning for Tempero

Energitjenester AS.

Arias, D., 2019. How to Hash Passwords: One-Way Road to Enhanced Security. Auth0 Blog

Available at: https://auth0.com/blog/hashing-passwords-one-way-road-to-security/

(accessed 4.27.22).

Bloomberg, J., 2018. Digitization, digitalization, and digital transformation: confuse them at

your peril. Forbes. August 28.

Bossard, 2020. The Pros and Cons of Digitalization. Available at:

https://provenproductivity.com/the-pros-and-cons-of-digitalization/ (accessed

1.17.22).

Castro, S., 2022. Why and When You Should Use Redux. Jobsity, April 29. Available at:

https://www.jobsity.com/blog/why-and-when-you-should-use-redux (accessed 4.1.22).

CwJobs, n.d. The Email CO2 Calculator. Available at:

https://www.cwjobs.co.uk/insights/environmental-impact-of-emails/ (accessed

5.13.22).

Frick, T., 2016. Designing for Sustainability: A Guide to Building Greener Digital Products

and Services. O’Reilly Media, Inc.

Forskrift om universell utforming av IKT-løsninger (2019) Forskrift om universell utforming

av informasjons- og kommunikasjonsteknologiske (IKT)-løsninger. Available at:

https://lovdata.no/dokument/SF/forskrift/2013-06-21-732 (accessed 2.16.22).

Giraudel, K., 2022. Sass Guidelines. Available at: https://sass-guidelin.es/ (accessed 3.29.22).

GreenGeeks, 2022. Fast, Secure and Eco-friendly Hosting. Available at:

https://www.greengeeks.com/ (accessed 5.13.22).

Guay, M., 2020. What are webhooks? Zapier, September 12. Available at:

https://zapier.com/blog/what-are-webhooks/ (accessed 5.10.22).

Initiative (WAI), 2022. WCAG 2 Overview. Available at: https://www.w3.org/WAI/standards-

guidelines/wcag/ (accessed 4.29.22).

https://doi.org/10.1155/2013/845051
https://auth0.com/blog/hashing-passwords-one-way-road-to-security/
https://provenproductivity.com/the-pros-and-cons-of-digitalization/
https://www.jobsity.com/blog/why-and-when-you-should-use-redux
https://www.cwjobs.co.uk/insights/environmental-impact-of-emails/
https://lovdata.no/dokument/SF/forskrift/2013-06-21-732
https://sass-guidelin.es/
https://zapier.com/blog/what-are-webhooks/
https://www.w3.org/WAI/standards-guidelines/wcag/
https://www.w3.org/WAI/standards-guidelines/wcag/

61

Interaction Design Foundation, 2022. What is Heuristic Evaluation? Available at:

https://www.interaction-design.org/literature/topics/heuristic-evaluation (accessed

2.16.22).

Kagga, J., Atto, E., 2020. Understanding React Components. Available at:

https://medium.com/the-andela-way/understanding-react-components-37f841c1f3bb

(accessed 4.27.22).

Kenzie Academy, 2020. Front End vs. Back End: What’s the Difference? Kenzie Academy,

August 17. Available at: https://kenzie.snhu.edu/blog/front-end-vs-back-end-whats-

the-difference/ (accessed 3.31.22).

Krug, S., 2014. Don’t Make Me Think, Revisited. A common sense approach to web usability.

New Riders.

Marr, B., 2012. Key Performance Indicators (KPI): The 75 measures every manager needs to

know. Pearson UK.

Mauri, C., 2018. 7 benefits of using SASS over conventional CSS. Mugo Web, March 14.

Available at: https://www.mugo.ca/Blog/7-benefits-of-using-SASS-over-

conventional-CSS (accessed 3.29.22).

McCloskey, M., 2014. Task Scenarios for Usability Testing. Available at:

https://www.nngroup.com/articles/task-scenarios-usability-testing/ (accessed 2.2.22).

Mesibov, M., Levin, J., 2017. Mobile First Is Just Not Good Enough: Meet Journey-Driven

Design. Available at: https://www.smashingmagazine.com/2017/02/mobile-first-is-

just-not-good-enough-meet-journey-driven-design/ (accessed 11.25.21).

MongoDB, 2022b. What Is NoSQL? NoSQL Databases Explained. Available at:

https://www.mongodb.com/nosql-explained (accessed 5.4.22).

MongoDB, 2021a. What Is The MERN Stack? Introduction & Examples. Available at:

https://www.mongodb.com/mern-stack (accessed 3.30.22).

Morales, J., 2021. Mobile First Design Strategy: The When + Why. Adobe XD Ideas,

February 16. Available at: https://xd.adobe.com/ideas/process/ui-design/what-is-

mobile-first-design/ (accessed 11.25.21).

Nielsen, J., 2020b. 10 Usability Heuristics for User Interface Design. Available at:

https://www.nngroup.com/articles/ten-usability-heuristics/ (accessed 10.4.21).

Nielsen, J., 2000a. Why You Only Need to Test with 5 Users.Available at:

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/ (accessed

2.2.22).

https://www.interaction-design.org/literature/topics/heuristic-evaluation
https://medium.com/the-andela-way/understanding-react-components-37f841c1f3bb
https://kenzie.snhu.edu/blog/front-end-vs-back-end-whats-the-difference/
https://kenzie.snhu.edu/blog/front-end-vs-back-end-whats-the-difference/
https://www.mugo.ca/Blog/7-benefits-of-using-SASS-over-conventional-CSS
https://www.mugo.ca/Blog/7-benefits-of-using-SASS-over-conventional-CSS
https://www.nngroup.com/articles/task-scenarios-usability-testing/
https://www.smashingmagazine.com/2017/02/mobile-first-is-just-not-good-enough-meet-journey-driven-design/
https://www.smashingmagazine.com/2017/02/mobile-first-is-just-not-good-enough-meet-journey-driven-design/
https://www.mongodb.com/nosql-explained
https://www.mongodb.com/mern-stack
https://d.docs.live.net/a4acc8b2c4b95b22/Documents/Forelesning%203%20år/%20https:/xd.adobe.com/ideas/process/ui-design/what-is-mobile-first-design/
https://d.docs.live.net/a4acc8b2c4b95b22/Documents/Forelesning%203%20år/%20https:/xd.adobe.com/ideas/process/ui-design/what-is-mobile-first-design/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

62

React Router, 2022. React Router | Tutorial. Available at:

https://reactrouter.com/docs/en/v6/getting-started/tutorial (accessed 4.27.22).

Siteimprove, 2022. Accessible fonts: How to choose a font for web accessibility. Available at:

https://siteimprove.com/en-us/accessibility/most-accessible-fonts/ (accessed 2.16.22).

Stack Overflow, 2021. Stack Overflow Developer Survey 2021. Available at:

https://insights.stackoverflow.com/survey/2021/?utm_source=social-

share&utm_medium=social&utm_campaign=dev-survey-2021 (accessed 3.29.22).

Stripe, 2022a. How subscriptions work. Available at:

https://stripe.com/docs/billing/subscriptions/overview (accessed 4.5.22).

Stripe, 2022b. Stripe Customers. Available at: https://stripe.com/en-no/customers/all

(accessed 5.3.22).

Tjernshaugen, A., 2022. bærekraft. Store norske leksikon.

Totla, J., n.d. The Advantages of Using Redux along with React. Synergy Available at:

https://synergytop.com/blog/the-advantages-of-using-redux-along-with-react/

(accessed 5.12.22).

UN, n.d. Sustainable consumption and production. United Nations Sustainable Development.

Available at: https://www.un.org/sustainabledevelopment/sustainable-consumption-

production/ (accessed 5.10.22).

W3C, 2019. How to Meet WCAG (Quickref Reference). Available at:

https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=111#contrast-

enhanced (accessed 4.28.22).

W3C, 2011. Retningslinjer for tilgjengelig webinnhold (WCAG) 2.0 Available at:

https://www.w3.org/Translations/WCAG20-no/ (accessed 12.2.21).

w3schools, n.d. JavaScript Numbers. Available at:

https://www.w3schools.com/js/js_numbers.asp (accessed 5.3.22).

WebAIM, 2022. WebAIM: Web Accessibility In Mind. Available at: https://webaim.org/

(accessed 4.28.22).

https://reactrouter.com/docs/en/v6/getting-started/tutorial
https://siteimprove.com/en-us/accessibility/most-accessible-fonts/
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://stripe.com/docs/billing/subscriptions/overview
https://stripe.com/en-no/customers/all
https://synergytop.com/blog/the-advantages-of-using-redux-along-with-react/
https://www.un.org/sustainabledevelopment/sustainable-consumption-production/
https://www.un.org/sustainabledevelopment/sustainable-consumption-production/
https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=111%23contrast-enhanced%20
https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=111%23contrast-enhanced%20
https://www.w3.org/Translations/WCAG20-no/
https://www.w3schools.com/js/js_numbers.asp
https://webaim.org/

63

11 Figures

Figure 1 - Example of one calculation model in Excel made by Tempero 2

Figure 2 - Our Discord server for this project .. 5

Figure 3- Screenshot of the Gantt chart for our project ... 6

Figure 4 - Sitemap that shows what the different users have access .. 10

Figure 5 - From the left: Add a new firm request form, register Firm admin form, an overview

of all the calculation models, using a specific model from the lo-fi prototype in

Fordypningsprosjekt ... 15

Figure 6 - Changes made from iteration one (left) to two (right)... 16

Figure 7 - Tempero’s logo, from 2012 ... 17

Figure 8 - The navigation bars of the different user types, from iteration one 18

Figure 9 – Models page split into two; one for owned models, one for rentable models 19

Figure 10 – Changes done to the model overview page .. 20

Figure 11 - Added phone number, email, and job title input fields ... 20

Figure 12 - Changed the history button from grey to blue ... 21

Figure 13 - Changed trashcan to a red box with a white X .. 21

Figure 14 – Changes in the logo design ... 22

Figure 15 - Changes on the history button .. 23

Figure 16 – Information box changes. The right picture shows an info icon the information is

hidden behind. The bottom picture shows a collapsible element with information 24

Figure 17 – MERN 3-tier architecture pattern (MongoDB, 2021a). .. 26

Figure 18 - Min and max inputs for each input calculation model made by Tempero 27

Figure 19 - Example of an easy calculation done in JS that gives the wrong answer 27

Figure 20 - Example of an easy calculation done in JS, with functions giving the right answer

 .. 27

Figure 21 - front-end folder structure ... 31

Figure 22 - Sass syntax ... 32

Figure 23 - How Redux stores the state (Totla, n.d.). .. 32

Figure 24 – Screenshot showing a Axios get call .. 33

Figure 25 - Toast that shows information to the user ... 33

Figure 26 - Screenshot of email template made with Nodemailer ... 36

Figure 27- Message schema ... 38

64

Figure 28 - Screenshot of Stripe’s checkout (Card details for testing). 39

Figure 29 - Screenshot of the application’s "successful payment" page 40

Figure 30 - Overview of the different pages Tempero Beregningsmodeller has and who has

access .. 42

Figure 31 - Screenshot of overview of rented models ... 42

Figure 32 - Screenshot of the models from the application. Left: Model with information.

Right: Shows a calculation being done with the result .. 43

Figure 33 - Screenshot of "Lei Beregningsmodeller" page from the application 44

Figure 34 - Screenshot of the Firm admin page from the application 45

Figure 35 - Screenshot of the Tempero admin pages from the application. 46

Figure 36 - Screenshot of the profile page from the application .. 47

Figure 37 - Screenshot of the contact form from the application ... 47

Figure 38 - Screenshot of the message inbox from the application ... 48

65

12 Tables

Table 1 - Summary of different payment methods made by Ida M. R Gjeitsund (Amdal-

Larsen et al., 2021). .. 9

Table 2 - MVP vs Nice-to-have (Amdal-Larsen et al., 2021). ... 10

Table 3 – System requirements (Amdal-Larsen et al., 2021). ... 11

Table 4 – The five scenarios used in the user-tests .. 14

Table 5 – The applications components and their functions and uses 29

Table 6 – The applications pages with their components and functions 30

Table 7 - main APIs in the system and their functionalities .. 35

Table 8 - Login information ... 49

Table 9 - User guide part 0 ... 49

Table 10 - User guide part 0.1 .. 49

66

13 Appendix

Appendix A: The report from IDG3101 Fordypningsemnet

Appendix B: Overview of feedback from all user-tests

Appendix C: Results from the heuristic evaluation

Appendix D: User guide for the system

Appendix E: The source code of Tempero Beregningsmodeller

