
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Torgeir Sandnes Laurvik

Torgeir Sandnes Laurvik

Design process behind an
educational review system for
student submissions

Applying knowledge from professional code
reviews to an educational assessment setting

Master’s thesis in MLREAL
Supervisor: Hallvard Trætteberg
December 2021

M
as

te
r’s

 th
es

is

Torgeir Sandnes Laurvik

Design process behind an educational
review system for student submissions

Applying knowledge from professional code reviews
to an educational assessment setting

Master’s thesis in MLREAL
Supervisor: Hallvard Trætteberg
December 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Department of Computer Science

Master’s thesis

Design process behind an
educational review system for

student submissions
Applying knowledge from professional code reviews to an

educational assessment setting

Author: Torgeir Sandnes Laurvik

Supervisor: Hallvard Trætteberg

December 2021

Table of Contents

List of Figures v

1 Introduction 3

1.1 Thesis Question . 4

1.2 Target Courses . 5

1.3 Definition of code review . 5

2 Background 7

2.1 The courses . 7

2.1.1 Introduction Course to Programming 7

2.1.2 Object-Oriented Programming course 8

2.1.3 Software and Web Development Courses 8

2.2 Formative and Summative assessments 9

2.2.1 Formative assessment (assessment for learning) 9

2.2.2 Summative assessment (assessment for control) 10

2.2.3 Assessment types in our use case 10

2.2.4 The reviewer in formative and summative assessments 11

2.3 Current system for reviewing . 12

2.3.1 Introduction Course to Programming 12

2.3.2 Object-Oriented Programming 12

i

2.3.3 Software Development . 13

2.3.4 Web Development . 14

2.4 Value of Code Review-technique exposure for students 16

2.5 Motivation behind industrial CRs . 16

2.5.1 Motivation in Microsoft behind doing CRs 17

2.5.2 Actual use of Code Reviews in the industry 20

2.6 Industrial Code Reviews and Our Use Case 21

2.6.1 Motivations and Objectives 21

2.6.2 Source-code in review . 22

2.7 Features from industry tools . 23

2.7.1 GitHub . 23

2.7.2 GitLab . 25

2.7.3 Collaborator . 26

2.7.4 Bitbucket . 29

2.7.5 Review Board . 30

2.7.6 CodeFlow . 31

2.8 Features from educational tools . 33

2.8.1 CodePost . 33

2.8.2 HTML-report generated based on tests - currently in use . . . 34

2.8.3 CodeTour . 35

2.9 Why are there differences between the educational and professional

tools? . 38

3 Feature Selection 40

3.1 Priority of courses . 40

3.1.1 Web development . 40

ii

3.1.2 Introduction courses (ITGK and OOP) and Software develop-

ment course . 41

3.2 Industry-specific features . 42

3.3 Selection criteria for features . 42

3.4 Discussion of each feature . 43

3.4.1 ”Enable multiple reviewers to collaborate on the review” . . . 43

3.4.2 ”Write comments in the same view as the code is inspected” . 44

3.4.3 ”Streamline the review process” 45

4 Implementation considerations 49

4.1 Proposal for sprints . 53

4.1.1 Sprint 1 . 53

4.1.2 Sprint 2 . 54

4.1.3 Sprint 3 . 54

4.1.4 Subsequent sprints . 54

5 Discussion 55

5.1 Contribution . 55

5.2 Limitations . 56

5.2.1 Data base . 56

5.3 Implications and future direction . 56

Bibliography 58

Appendices 61

A Initial e-mail to the lecturers . 61

B C++ email . 62

iii

C Web development email . 63

D TDT4110 exercises description . 65

E TDT4110, exam 2020 . 66

F TDT4100, exam 2017 . 91

G TDT4102, exam 2019 . 97

H IT2810, exam 2018 . 105

iv

List of Figures

2.1 Developers’ motivations for CR (Bird and Bacchelli, 2013, Figure 3) . 17

2.2 GitHub: Source code changes presented in a split view 24

2.3 GitHub: Source code changes presented in a unified view 24

2.4 GitHub: Code quality annotations in review view (Github, 2021) . . . 25

2.5 GitLab: CR interface . 27

2.6 GitLab: Code quality indicators inside the review interface 27

2.7 Collaborator: CR interface . 27

2.8 Collaborator: Review interface for PDF-documentation file 28

2.9 Bitbucket: Source code view . 29

2.10 Bitbucket: Merge conditions . 30

2.11 Review Board: Review interface . 31

2.12 CodeFlow: Code quality feedback showing up in the GitHub pipeline 31

2.13 CodeFlow: Code quality overview at their web page 32

2.14 CodePost: Review interface . 33

2.15 Google Docs: Comment feature . 34

2.16 CodePost: De-emphasized template code 35

2.17 HTML-tool: Student written code and test results 36

2.18 CodeTour with added review comments 36

v

2.19 Overview of features from the studied tools 37

4.1 Mock-up: Showing the results from unit tests 50

4.2 Mock-up: The annotation from the static code analysis tool on hover 51

4.3 Mock-up: Toggle to write comments view 52

vi

Abstract

Senior review resources for student submissions are limited at NTNU, measures

which can streamline the review process are valuable. With a law change which

requires at least two senior reviewers per exam submission taking effect from 1.

August 2022, this need for streamlining will be even more pressing.

The goal is to present a design idea for a review tool, for student programming

submissions, building upon the tools which are already developed for an educational

use case by adopting techniques from how code inspection is done in the professional

programming industry.

A thorough examination of our use case, the existing educational assessment solu-

tions, and industrial review tools is conducted. Thereafter, comparisons between

each use case are made to identify relevant features that are transferable to the

proposed tool. These findings inform thesis’ final contribution, a design proposal for

the tool.

The contribution consists of a concrete sprint-based plan for how the desired review

tool should be developed to enable an early release of a viable product and maximize

the usability gained from each sprint cycle. In addition contributes the thesis by

filling a gap in existing research in the field, as the background research showed

that this use of knowledge transfer from industry to education, was not covered by

existing research.

1

Sammendrag

Vurderingsressursene p̊a NTNU er begrenset, tiltak som kan bidra til å effektivis-

ere tiden brukt p̊a vurdering er derfor verdifulle. 1. august 2022 trer en ny lov

i kraft som krever at minst to sensorer skal samarbeide om vurderingen av hver

eksamensbesvarelse. Denne lovendringen fører til en drastisk økning i behovet for

effektiviseringen av vurderingsprosessene.

Hensikten med oppgaven er å komme opp med en design-idé til et vurderings-

verktøy for studentkode. Dette verktøyet skal bygge p̊a eksisterende vurderings-

verktøy utviklet for bruk i utdanningssammenheng, samt l̊ane teknikker fra verktøy

for kodegjennomgang slik det er gjort i den profesjonelle programvareindustrien.

Det ble gjennomført en grundig undersøkelse av den tilsiktede bruken av et slikt

verktøy, eksisterende vurderingsverktøy for utdanningsbruk og industrielle verktøy

for kodegjennomgang. Deretter ble en sammenligning av karakteristikker ved bruks-

situasjonene og motivasjonene bak bruken av de to kategoriene av verktøy gjen-

nomført for å identifisere funksjonalitet hos de eksisterende verktøyene som vil være

nyttig å overføre til et verktøy designet for v̊art bruksomr̊ade. N̊ar vi til slutt frem-

mer et design-forslag for et vurderingsverktøy er det er informert forslag med tyngde

p̊a bakgrunn av disse analysene.

Bidraget fra oppgaven best̊ar av en konkret ”sprint”-basert plan, hvis mål er å

f̊a p̊a plass et brukbart vurderingsverktøy tidlig, deretter vil verdien inkrementelt

øke for hver sprint-syklus. I tillegg bidrar oppgaven ved å fylle forskningsgapet

p̊a omr̊adet, siden kartlegging av eksisterende kunnskap p̊a omr̊adet viste at denne

konkrete bruken av kunnskapsoverføring fra industri til utdanningsfeltet ikke var

dekket av eksisterende forskning.

2

Chapter 1

Introduction

Code reviews are an important part of system development. Code reviews are used

in the process of adding and updating source files in a software project. When

other developers inspect an author’s code, errors that the author had missed can be

spotted, through which the reviewing developers can help the code author learn and

improve their knowledge. Since code inspection takes time and resources that could

otherwise have been used for other important daily tasks, the professional industry

has developed measures to make this process more time efficient.

It can be relevant to let the code inspection processes used in the professional in-

dustry inspire the way the review process in education is conducted, whether for

feedback or for assessment. Since the professional industry is interested in stream-

lining a process that takes time from the developers daily tasks, it is expected that

through many years of continuous review of the used tools, the industry has come

up with tools of significant value and can therefore be beneficial for other fields to

borrow inspiration from.

Based on the assumption that industrial code reviews have undergone years of devel-

opment and streamlining, this thesis proposes that taking inspiration from industrial

code reviews may also help to streamline the feedback and review process in educa-

tional programs for programming. The motivation for this master thesis is based on

a wish from the lecturers at NTNU for such a system, that can help to streamline

the feedback process of student submissions for some of the bachelor programming

courses at NTNU.

3

1.1 Thesis Question

Given the potential value that code reviews tools developed for the industry could

have for the educational fields, while bearing in mind that there are differences in the

use-cases in the industry and in education, thesis will aim to answer the following

question:

”How can industrial code review-tools inspire the development of a tool

for streamlining the review process of student work at NTNU?”

Approach of the thesis

Our hypothesis is that the IT-industry has made well-considered choices when devel-

oping their tools used for reviewing of source code. By borrowing some knowledge

from these tools, we can avoid designing a tool from scratch, instead building on

existing knowledge. The goal of the thesis is hence to propose the development of an

assessment tool for use in an educational setting at NTNU. The process for reaching

this goal consists of multiple phases:

The first step is to understand the educational use case. This step consists of an

examination of the experiences that the teaching staff has with the current solution

for feedback and review, uncovering both the advantages and challenges associated

with this solution. Following the analysis of the current feedback and review solu-

tion, the requirements of the target courses that this tool is being developed for will

be examined.

The second step is to investigate the use case of code review in the industry, sub-

sequently comparing and contrasting this with our educational use case. Since the

educational use case may or may not share some characteristics with the professional

use case, understanding similarities and differences is important to guide adaptation

and customization of the knowledge gained from the industry code reviews to fit our

use case.

The third step is to examine the various features that are currently in use in code

review tools, both in the industry and in the educational use case.

The fourth step is to identify features being currently used in code review tools in

the industry that can be useful to adopt in our educational use case.

4

The fifth step is to put forth a design proposal for the review tool.

Summarizing the above phases, thorough research will first be conducted to gather

information from a range of relevant sources in order to answer the following ques-

tions:

• What is our use case, the actual problem we want to solve and current solutions

for assessment at NTNU which we aim to improve upon?

• What other tools do already exist which are aimed at an educational use case?

• What are the similarities and differences between the use cases of code reviews

in an industrial vs educational setting?

• What features are seen as valuable in an industrial code review tool?

• Are some of these features from the industrial code review tools also valuable

to implement for the educational use case?

Subsequently, this research will be used to inform a design proposal for a assessment

system.

1.2 Target Courses

The bachelor programming courses that we have in mind as targets for this reviewing

tool are rather different. The structure of the courses and the expected submissions’

form should play a role for the design decisions for the system. The target courses

range from simpler courses where the submissions are created by a single author

and consists of a single source code file, to courses with submissions that are more

similar to the software projects’ form used in the professional industry, which involve

a team of developers and a more complex code base.

1.3 Definition of code review

In this thesis, code review (CR), is defined as the practice of a set of developers

assessing an author’s code. There are several motivations for conducting CRs. These

motivations include correcting defects and knowledge transfer. CRs are proven to

5

be an effective tool for correcting defects (Silverthorne, 2021), while also being

applicable for a wide range of developer team structures. CRs are for these reasons

used as a tool for quality control in both commercial and open-source projects of all

sizes.

6

Chapter 2

Background

2.1 The courses

To be able to create a useful and relevant tool that can streamline the review process,

it is important to understand the full range of the various forms that the submissions

for which the tool is intended to assess can take. As a guideline, I have analysed

some of the courses where the use of a CR tool could potentially be relevant. This

analysis is based on five courses currently offered at NTNU, and was conducted by

inspecting the exercise descriptions for each of the courses and the exam for each of

the courses with an exam.

2.1.1 Introduction Course to Programming

The first programming course at NTNU is Introduction Course to Programming

(ITGK), where Python is used the programming environment (NTNU, 2021d),

which covers the fundamentals of programming upon which future courses build.

In this course, the submissions have a rather predictable form. The requirements

for the student submissions are a series of functions to be implemented, and the

input and output of the functions in the submission is controllable by the teaching

staff. The code is rather simple and the submission usually consist of only one source

code file.

7

2.1.2 Object-Oriented Programming course

The next two courses in line are two variations of courses in object-oriented pro-

gramming.

• ‘TDT4100 - Object-Oriented Programming’ using Java

• ‘TDT4102 - Procedural and Object-Oriented Programming’ using C++

. These two course carries the same characteristics as ITGK in the way that the

the input and expected output is controlled by the people that review the sub-

mission. The source code can often be more complex than in ITGK, and several

files will usually be dependent of each other. The Object-oriented programming

(OOP) course using Java has a smaller, more open ended project as its final exer-

cise, this project has the characteristics of the submissions of the courses in the next

paragraph, although being much smaller and less complex (H. Trætteberg, personal

communication, 28. October 2021).

2.1.3 Software and Web Development Courses

The last two courses in our scope are software development (TDT4140 using Java)

and web development (IT2810 using React.js). Compared to the other courses above,

where assessments involve solving predefined problems where the function signatures

are provided, the projects in these courses are more open-ended. For example,

students may be asked to create an application for use in a particular industry,

and have the freedom to define the scope of their own project. As a result, the

submissions for these assessments are less standardized, and the source code that

students produce differ greatly. The assessment of these submissions are therefore

more complex. A description of the kind of system is supplied by the staff, but it

is not possible to for the staff to write unit tests that can work for every project.

Usually the student teams are suppose to write their own unit tests. The projects

in these courses are done by teams of multiple students.

Comparing and contrasting the assessments used in the courses above, there are

differences in the nature of the submissions, and subsequently the complexity in-

volved in the assessment processes. Since the Introduction to Programming and

Object-Oriented Programming courses consists of a defined set of method specific-

ations, the behaviour of each individual function implemented in a student’s can be

8

checked using unit tests. On the other hand, the requirements for the submissions

in software and web development are only in regards to what technology to be used

and the type of industry the application is belonging to. The use of unit tests to

streamline the review process are therefore not applicable for these two courses.

While the analysis is based on the aforementioned five courses currently offered in

NTNU, it is worth considering that sometimes new programming courses are offered

at NTNU, and some of the old ones are changed. Bearing this in mind, building a

tool that can be helpful for a wide range of submissions could be beneficial in the

future.

2.2 Formative and Summative assessments

In the educational system, faculty and teaching staff conduct reviews for different

kinds of student work, with different motivations. This places a wide range of

different requirements for the various features in our proposed system. For example,

for most assessments and review of work throughout the semester (apart from review

of the final exam), the main objective is to facilitate the identification of knowledge

gaps and eventually knowledge transfer, in order to guide the student to achieve the

learning goals of the course. On the other hand, the reviewing of the final exam of

a course focuses on measuring the student’s knowledge and attainment of learning

goals at the end of the course. The former type of assessment is referred to as

formative assessments, while the latter type is termed summative assessments. The

following sections further explore the differences between formative and summative

assessments.

2.2.1 Formative assessment (assessment for learning)

The formative assessment is conducted during the learning period. The goal of the

FA is to facilitate learning (Helle and Burner, 2021). Pointing out what mistakes

were done during the assessment situation are not the end in itself, but instead a

means to helping the student see the path forward. The feedback from the formative

assessment needs to tell the student what remains to fill the gap between the current

level of knowledge shown, and the required level. In addition the feedback must

contain instructions on how to reach the required level.

9

2.2.2 Summative assessment (assessment for control)

Summative assessment is conducted at the end of a learning period. The goal of the

summative assessment is to control if the student possesses the necessary knowledge

to move on from a subject.

Taras (2005) states that an assessment can be purely summative, if it focuses solely

on assessing performance and identifying mistakes, without processes to bridge

knowledge gaps. On the other hand, an assessment can not be purely formative,

as a knowledge mapping of the student work has to be done before the instructor

can show the student the path forward. This summative assessment as part of an

formative assessment can either be available for the student, or it can be undisclosed

to the student.

2.2.3 Assessment types in our use case

Throughout the course semester, students undergo both summative and formative

assessments.

2.2.3.1 Formative

At NTNU most courses conduct mandatory weekly exercises, which are usually

not part of the final grading of the student. These weekly exercises are therefore

a formative assessment, whose goal is to help students improve their knowledge,

correct misconceptions and show them the path forward. As CRs bring a lot of

pedagogical value, and one of the main motivations for doing CRs is knowledge

transfer, it makes sense to use a tool inspired by professional CRs for a process like

formative assessment, where the goal is to facilitate learning.

2.2.3.2 Summative

In most courses at NTNU, the final exam is the only summative assessment upon

which the final course grade is based. Some courses do also conduct a mid-term

exam in addition to this final exam, which bears the same form as the final exam,

and can hence be grouped together with the final exam as the group of exams. Since

the goal of such assessments is solely to measure and assess the student’s knowledge

10

(Helle, 2020), these exams are summative assessments. Accordingly, the knowledge

transfer is not the focus for this group of exam submissions. Therefore, for such

settings, the aspects of the CR-tools that facilitate knowledge transfer are not in

the central focus. However, in addition to knowledge transfer processes, CR-tools

also have functionalities which streamline the review process itself, making it useful

to take inspiration from CR tools for this group of submissions.

2.2.4 The reviewer in formative and summative assessments

According to educational law, the person conducting the review of the exam must

meet certain qualification requirements. This means that while the weekly exercises

can be evaluated by the many teaching assistants (TAs), summative assessments

used in the grading of the course can only be reviewed by a limited number of

qualified people in the course staff. The proposed tool will therefore be intended

for summative assessments for use of course staff, since it is for these kinds of

submissions that there are a limited amount of reviewing resources and therefore

the need for streamlining is in highest demand.

In some cases, our proposed tool would also be necessary to support the review of

formative assessments. Formative assessments at NTNU is usually in the form of

weekly exercises or longer running projects. Some of the courses use these weekly

exercises or projects as part of the final grading of the student for a course. Since

the law states that only the qualified staff can conduct reviews of assessments used

in grading, the reviewing conducted by the TAs throughout the course cannot be

directly used as part of the grading process, resulting in similar resource constraints.

However, the TAs’ reviews can on the other hand be utilized as data in the grading

of the submissions. By basing their review on a checklist of requirements for sub-

mission, there is little need and room for the TAs to exercise subjective judgment

in grading a submission. In this way, TAs’ reviews can be used by teaching staff as

data for the final course grading. This reviewing strategy saves scarce senior staff

resources while remaining inside the law.

2.2.4.1 Educational law change

From the 1st August 2022, a new law requiring two sensors for each exam will take

effect (Kunnskapsdepartementet, 2005). This gives rise to a need for a platform for

the sensors to collaborate on the reviewing of the exams. As the industrial CRs are

11

usually conducted by multiple reviewers asynchronously, this is yet again a use case

where it is relevant and useful to take inspiration from their practice.

2.3 Current system for reviewing

The reviewing process for programming submissions can vary between courses, and

between the reviewers of the same course.

Based on e-mail conversations with the lecturers and course coordinators in the

relevant subjects, how the reviewing process differs between the courses was mapped

out.

2.3.1 Introduction Course to Programming

In the introduction course to programming (ITGK) using Python as the program-

ming environment, the formative assessment of the weekly programming exercises

are conducted through a process where the student demonstrates the code to a TA.

This process bears resemblance to the CR technique called the over-the-shoulder

process (Cohen, 2006), as the student is explaining the workings of their program

while the TA is giving feedback. The student and TA then collaborate to find a

solution if it is needed.

Regarding the summative assessments in the course, there is only one, the final exam.

The exam consists of a series of multiple choice questions and as the main part - a

series of functions to be implemented from scratch. The multiple choice questions

are targeting both theory knowledge and code understanding (Appendix E). As the

programming tasks are rather not so complex, they are evaluated by just reading

the source code and the reviewer visualises the program flow in its head, with no

use of support tools. The multiple choice questions are automatically evaluated by

the exam system (H. Trætteberg, personal communication, 5. Dec 2021).

2.3.2 Object-Oriented Programming

In the object-oriented programming courses using C++ or Java as the programming

environment, the formative assessment of the weekly programming exercises are

conducted in the same way as in ITGK, being that the exercises are demonstrated

12

to a TA. The exam of the two courses consists mainly of a series of functions to be

implemented, but also some theory questions and code understanding (Appendix F

& Appendix G).

For the summative assessment, the students upload a zip compressed version of

their exam submission. The reviewer later downloads the zipped submission, and

the code is run through a series of unit tests. Subsequently, the submission then

achieves a score for each test. The reviewing solution currently in use then generates

a summarizing report in the form of a HTML-document (Appendix B). The HTML

solution is a bit different for the course using C++ and the one using Java, where

the former also displays the model answer (instructor’s intended implementation)

in the HTML-report along the student’s solution, while the latter does not. The

solution currently in use is explained more in detail in Section 2.8.2.

Feedback from the lecturer in the C++ course was that the system could also include

a process where the scores from each of the unit tests are gathered, and a letter grade

subsequently suggested based on these unit test scores (Appendix B).

2.3.3 Software Development

The assessment of a student in the software development course is solely based on

a single big project, as the course does not have a final exam. The assessment is

mainly based on the development team’s process, as agile software development is

an important part of the curriculum. The technical skills are also part of the course

content, ”...software process implementation, software evolution and maintenance,

software reuse, ..., software quality, ..., software verification and testing, software

architecture.” (NTNU, 2021e) In the software development course , the submis-

sions are usually examined by either cloning the students’ projects to the reviewer’s

machine, or reviewing the code directly through GitLab’s project interface (H. Træt-

teberg, personal communication). In both cases, current reviewing processes are not

supported by external tools that could help to streamline the reviewing process. In

addition, cloning repositories locally takes space and time. A process that allows

reviewers to avoid doing so would be beneficial and increase the efficiency of the

process.

Furthermore, since the comments from the reviewer are currently written in a sep-

arate file, there is no visual connection between the comment and the actual code

line(s). This current system for reviewing can be improved by implementing a way

13

to visually connect comments to the actual code line(s), which makes it easier for

the students to get learning outcome from the comments. By adopting some of

the choices made in professional CR tools for commenting on code, the reviewing

tool can be more intuitive and time saving for the reviewer than what is currently

employed (e.g through drag-select or select a single code line through click.)

The potential ways of streamlining the review process of this course is by make it

easier to navigate the project’s file structure, between the involved source code files,

as the projects submitted for this course is larger and more complex than the ones

in the courses mentioned above.

2.3.4 Web Development

For the web development course (NTNU, 2021a), the exam usually does not consist

of programming tasks, as the mandatory projects already cover the mapping of the

students’ programming knowledge and skills to a great extent. Instead, there is a

greater focus on mapping the students’ theoretical knowledge, familiarity with the

relevant tools, and ability to reflect and think critically about the choices to be taken

in the domain. The exam submissions therefore consist primarily of text answers

and, in some cases, drawn figures.

In this course, the students do peer reviews of the multiple projects throughout

the semester, as part of the mandatory course projects through the external service

”Eduflow” (Eduflow, 2021). The students deploy their web application to the ser-

vice ”Gitpod” (Gitpod, 2021), which is also the platform where the reviewers will

visit the application. The code will be inspected by either cloning the project re-

pository hosted by GitLab or inside the repository view in GitLab. The feedback

comments are then written in Eduflow. The current process is rather cumbersome,

involving a total of three services and platforms. In addition, an important weakness

of this solution is that the comments are not visually connected to the code lines tar-

geted. Based on e-mail communication with the lecturer from the web development

course, their need and wish is for a tool that supports the peer CR processes that

are currently employed in the course (Appendix C). In particular, this tool should

automatically assign peer reviewers and in an anonymous way. The senior staff for

the course should have reading access, so that they are able to follow and monitor

the review process. Since the students reviews are used as a data base for the final

grading of the course, it is important that the authors have the opportunity to flag

14

and respond to reviewers’ comments which they find to be unfair and/or wrong. In

addition, the lecturer for the course writes that they are mostly interested in features

that facilitates active student assessment forms (Appendix C). By active student as-

sessment forms, we mean forms of assessment were the students are assessing each

other (Burner et al., 2011).

The teaching staff have decided that peer review of other students’ projects is an

important part of the curriculum in the web development course, with the intention

of allowing students to be exposed to and engaged in the CR process. However,

following the change of law discussed in Section 2.2.4.1, in order to keep the peer

review component, the staff is planning to change the grading of the course to pass

or fail. By the course being pass or fail, the new law of two sensors will not be

required by law, and it will be easier to continue with the practice of using students’

peer reviews as data base for the final grading of the course.

The benefit of using our tool for the exam in this course is arguable, since the tasks

in the final exam of the web development course have historically been more focused

on the mapping of theoretical knowledge and knowledge of relevant tools, as well as

making reflective choices in the domain, while our tool on the other hand is aimed

at reviewing of source code.

For the peer review of the student projects on the other hand, the course can benefit

from gathering the inspection of source code, launching of the web application and

the reviewing interface in one application. The benefits this brings are that the

comments will be visually connected to the code, and the senior staff will have the

possibility to view all student reviews for a submission in one view.

There is therefore a huge potential for improvement in the current CR-process, which

steals time from the other important daily tasks. In order to help the teaching

staff to save time and other resources, which is particularly crucial since the senior

staff resources are limited, we can take inspiration from a professional industry in

streamlining this resource-consuming process.

15

2.4 Value of Code Review-technique exposure for

students

While our main motivation for bringing the CR techniques into the educational

domain is to streamline the review process, a side effect is that students are exposed

to such CR-tools. There is value in such exposure, since these are techniques which

the students will meet later - not only in later programming courses at NTNU but

also while working in the industry.

Individuals learn from experience, and experiential learning is a powerful pedago-

gical tool (Bradford, 2019 and Kolb, 2014). Kolb’s Experiential Learning Theory

(2014) highlights a four-stage learning cycle, where learners go through a concrete

experience, engage in reflective observation about the experience, formulate an ab-

stract conceptualisation or draw lessons from the experience, and finally engage in

active experimentation and applying these lessons (Kolb, 2014, p. 50-52). Early ex-

posure to CR-tools in their academic journey provides an initial concrete experience

for students in CR-tools, triggering subsequent processes of reflective observation

and abstract conceptualisation. When students encounter CR in their future courses

or in their professional careers, they can build upon the learning gleaned from their

prior experience with CR and engage in active experimentation, kick-starting the

experiential learning process. Even though the specific tools used in CR might dif-

fer, the objectives, functions, processes, and mindsets involved will be similar, and

learning from such exposure will be transferable to future settings to a significant

degree.

2.5 Motivation behind industrial CRs

It is meaningful to be aware of the motivations behind the design choices of the CR-

tools used in the industry. On one hand, some of the features in industrial CR-tools

are there because of motivations and objectives that are relevant in the industrial use

case, but not in our educational use case. On the other hand, some motivations and

objectives are relevant for both the industrial use case and the educational use case.

To understand which features implemented in industrial use cases are relevant for

us in the educational use case, I first analyse the specific motivations and objectives

behind the use of CRs in the industry in this section, subsequently comparing and

contrasting objectives between both use cases in the following sections, before finally

16

Figure 2.1: Developers’ motivations for CR (Bird and Bacchelli, 2013, Figure 3)

identifying the features that are most relevant to fulfilling these objectives.

2.5.1 Motivation in Microsoft behind doing CRs

Based on a report on motivation behind CRs (Bird and Bacchelli, 2013), we can see

that finding defects and improving software quality are the primary motivations for

conducting CRs, both for the managers and the developers. The report also brings

up secondary motivations for conducting CRs, including:

• Knowledge transfer

• Platform for suggesting alternative solutions

• Platform for enforcing code conventions

• Making the developers less protective about their code

• Team awareness and transparency

• Shared ownership of the code

2.5.1.1 Finding defects

Finding and correcting defects is an important reason for doing CRs. To be exact,

44% of the developers and managers interviewed ranked finding defects as their

number one motivation for implementing CRs (Bird and Bacchelli, 2013, p. 5).

17

Defects in this context includes bugs and mistakes in the design. According to

a developer interviewed, exactly what tool is used to support the code inspection

doesn’t matter so much for their team, as long as it can help the developer identify

defects. CRs are in some occasions even claimed to be a cheaper way of identifying

bugs, compared to regular testing (Bird and Bacchelli, 2013, p. 5).

2.5.1.2 Code improvement

Based on Bird and Bacchelli’s (2013) report, the effect of CRs on code improve-

ment is also an important benefit for many, with 39% of the interviewed developers

ranking code improvement as their main motivation. This proportion is slightly

lower amongst the managers, but still significant, at 31%. In this context, reviewers

highlight how the code can be improved, covering issues such as readability, con-

sistency in design and dead code (code that should have been removed since it is

not ran). The use of CR also improves code in an indirect way. Knowing that one’s

code will be subsequently be inspected by one’s colleagues can provide motivation

for developments to focus more on writing high quality code and explaining it to

others, adding a healthy pressure to produce quality, which is of value in itself (Bird

and Bacchelli, 2013, Chapter IV.B).

2.5.1.3 Platform for suggesting alternative solutions

While suggesting alternative solutions is very linked to both code improvement and

knowledge transfer. It is one of the motivations behind CRs which are not equally

emphasized by the developers and the managers. 17% of the developers saw CR

being a platform for suggesting alternative solutions as their main motivation, while

none of the managers had this as an motivation. Alternative solutions is in this

context solutions that leads to a better implementation (Bird and Bacchelli, 2013,

p. 5).

2.5.1.4 Knowledge transfer

Using CRs as a platform for sharing knowledge across the team was also a motivation

for all the interviewed (except one interviewee). CRs are known for being looked

at as mainly a way of teaching new developers code writing and the conventions

used in the team(Bird and Bacchelli, 2013, p. 5), and not so much as a tool for

18

teaching the more experienced. However, based on numbers from the report, we can

see that most developers appreciate the value that CRs have for their learning. As

an interviewee explains, ”If you do a CR and did not learn anything about the area

and you still do not know anything about the area, then that was not as good CR

as it could have been.”(Bird and Bacchelli, 2013, p. 5).

2.5.1.5 Team Awareness and Transparency

Fostering team awareness and transparency are closely linked to knowledge transfer,

but differs in an important way. While knowledge transfer is mainly a transaction

between the author and a reviewer, the objective of creating team awareness and

transparency involves creating access to the code for all, and notifying everyone

about any changes being made to the code. In this case, everyone gets the op-

portunity to learn techniques that can improve the entire code base, not just the

author. An example of this is cited in the report, where a developer was notified of

a CR that had been conducted on another author’s code. When reading this CR,

the developer was exposed to a smart solution that the reviewed had proposed, and

subsequently applied the solution in his own code (Bird and Bacchelli, 2013, p. 6).

Team awareness and transparency can also prevent people from making changes to

the code which could potentially break the code, for example by tracking changes

made by the team or notifying team members when a change has been made.

2.5.1.6 Shared Code Ownership

The reason why shared code ownership is a motivation is to make sure that mul-

tiple individuals are having knowledge of each part of the code base. CRs allows

developers to get to know parts of the code base that they usually don’t interact

with, which helps the company to prepare ”back-up” developers in addition to the

authors, who have knowledge of the code (Bird and Bacchelli, 2013, p. 6). In this

way, CRs can help avoid situations where only one person knows a part of the sys-

tem, so that in the event that this expert leaves the company, they are not left with

zero knowledge about that part of the system.

A side effect of creating shared code ownership highlighted by Bird and Bacchelli

(2013) is that developers tend to be less protective about their code and more open

to critique if there is an understanding that others will be reading and reviewing the

code (Bird and Bacchelli, 2013, p. 6). A total of 27% of the interviewed had shared

19

code ownership as one of their top three motivations for CRs, a much lower figure

than for the other motivations mentioned above.

2.5.2 Actual use of Code Reviews in the industry

As part of the report, the researchers analysed close to 600 comments from actual

CRs conducted by developers in the department in review. The analysis revealed

that even though defect identification was the biggest motivation behind CRs for

both the developers and managers, it was in fact not what CRs was mainly used

for. Just 78 of the comments were concerning code defects, while comments on code

improvement was the most frequent category with over twice as many comments at

165. Even though the authors argue for the knowledge transfer and other outcomes

of CRs as being abstract and social, they found in total 12 comments they classified

as knowledge transfer. The frequency of code improvement and knowledge transfer

comments reveal that CRs do in fact have an important pedagogical function in the

professional industry. While develops and managers expect to use these tools mainly

for identifying detects, these tools are being more frequently used for teaching better

code practice and improving readability (Bird and Bacchelli, 2013, p. 7).

Bird and Bacchelli (2013) also highlight a potential area for improvement for CRs,

where many of the comments were concerning breaking of code conventions, typos

and identifying dead code. All of these and other problems targeted in comments are

easily automatable by already existing tools for static code analysis. By using tools

like this, the reviewer saves time that can rather be used on focusing on problems

that are deeper and more difficult for the static code analysis tools to identify (Bird

and Bacchelli, 2013, p. 9).

The authors also assert that developers will benefit from having richer ways of com-

municating with their peers. They argue that asynchronous communication through

comments in a CR-tool is insufficient, and propose discussing the solutions face-to-

face or through other synchronous ways of communication (Bird and Bacchelli, 2013,

p. 9).

Finally, the authors highlight that when the reviewer is familiar with the code and

the context of the code from before, both the efficiency of the review and the value

of the comments are higher than if they did not have prior knowledge (Bird and

Bacchelli, 2013, p. 9). This points to importance of keeping the team updated on

each others work. This is relevant for our use case as well, as it implies that the

20

reviewers will do a better review for the tasks they know better.

2.6 Industrial Code Reviews and Our Use Case

Having explored the motivations and objectives behind CRs in the industry, the

next step is to compare and contrast the use cases of CR-tools in the industry and

the educational use case. Since our use case is quite different from the use of CR-

tools in the industry, it is important to first analyse the similarities and differences

in both the motivations and source code-in-review between our use case and those

in the industry. This will help us to identify which features of the CR-tools in the

industry are relevant for our educational use case. Therefore, the following section

will compare the two use cases.

2.6.1 Motivations and Objectives

Summarising insights from the software development industry, there are two main

motivations for conducting CRs. The most obvious reason is to assure code quality

and avoid bugs in published software. By having the code checked by another set

of eyes, mistakes that the original author missed may be revealed. Furthermore,

project requirements may be interpreted differently by each developer. By having

other members of the team go through your work, any misinterpretations can easily

be caught, ensuring that the code developed is aligned with the team’s unified un-

derstanding of the project. Furthermore, knowing that one’s colleagues are going to

review one’s code can motivate the developer to ensure that the code is well-designed

and that all of the tests are running (Bird and Bacchelli, 2013, Chapter IV.B). This

will benefit the team in the long run, since well-designed code will also encounter

fewer bugs (Radigan, 2021).

One key objective of the desired CR-tool in the educational use case is for the grad-

ing of examination submissions in summative assessments. Similar to the objectives

in the industry, this involves the identifying bugs and mistakes in the code to identify

knowledge gaps and assess whether the student has fulfilled the learning objectives.

In addition, it also involves ensuring that the student had understood the assign-

ment right, and that the code being developed fulfills the requirements of the task.

Features in the industry’s review tools that facilitate the identification of bugs and

mistakes, as well as the assessment of how appropriate the interpretation of the task

21

was, are relevant for our proposed tool.

The second reason for conducting CRs in the industry is knowledge sharing. Since

a software development team consists of team members with varying levels of ex-

perience and from different fields of expertise, CRs will in many cases be beneficial

for developing programming and other related skills by facilitating learning from

one another. Furthermore, the tech sector, and the IT sector in particular is a

field that is in constant development, and CRs are a great way to keep up with

the latest techniques. If an author has implemented a solution in an outdated way,

and the reviewer knows of a smarter solution which utilises the newest state-of-the

art one-liner, the reviewer is able to share this knowledge with the author, helping

him to stay up to date. The same goes vice versa, where the reviewer can also pick

up smart practices from reviewing code written by others. This will likely lead to

the team writing more efficient and more easily readable code - better code. In

addition, sharing of knowledge is not just about teaching new smart solutions for

problems, but also about incorporating a common coding style for the entire team.

Just as a written report should use the same ”voice” throughout the entire report, a

programmed project should also use the same voice for all parts of the project. This

makes it easier to understand each others code in the team, since everyone uses the

same style.

On the other hand, another key objective of the desired CR-tool in the educational

use case is to facilitate learning through the formative assessments. While this

involves highlighting to students the mistakes made in the code, it also involves ex-

plaining why it was a mistake and how these mistakes can be rectified. In addition

to identifying and correcting bugs, students will benefit from being shown how their

code can be improved or written in a better and more efficient way. These object-

ives bear similarities to those in the industry use case. Features in the industry

review tools that enable reviewers to highlight mistakes, explain the mistake and

communicate a right or better solution are relevant for our proposed tool.

2.6.2 Source-code in review

In the industry, CRs are usually done in connection to the event of updating or

adding to an existing code base (pull request) with new code. In this case, the

reviewers are usually already familiar with the code base, and it is therefore easier

for them to see how the new code fits into the existing code. In addition, changes to

22

the code are also performed incrementally. Furthermore, since reviews target merely

the latest changes to the code, the entire program is not inspected at each review.

In our use case on the other hand, students sometimes receive a code skeleton, but

the rest of the code is added by the student. Hence, a large fraction of the code is

new for the reviewer. For the subjects which have larger project and relatively few

submissions, this also means that a significant amount of code is written and has

to be reviewed during the same review. The way the source code (and belonging

documentation files) evolves in the educational context, from the time of skeleton

code being handed out to the time of review is different than in the industrial use

case. For most deliveries in the courses in scope is the entire student contribution

done in this one interval, with no incremental changes to the files to review.For some

submissions are the students asked to re-deliver a revised version of the original sub-

mission with corrections based on feedback from an ”en-route” assessment of the

initial version. These re-delivered submissions does hence a common characteristic

with the industry code-in-review, which is expected to be reflected in the need for

features which support this way of code evolving between two reviews in addition

to the more regular way of the code evolving entirely between hand out and review.

This rather important difference leads to a different need for features.

Since the CRs in the industry usually is concerned with just the parts of the

code that are altered, the need is for a (commenting) feature which facilitates

thorough/detailed communication with your co-developers about just a few small

changes. In our use case, the need is for a commenting feature that makes it easy

to comment on many changes / blocks of code.

2.7 Features from industry tools

2.7.1 GitHub

GitHub is the largest source code host in the world, and is hence an essential part

of the software development cycle for many development teams. GitHub has their

own implementation of a CR supporting tool, this functionality is usually in use

in connection to pull requests - updating the old source code version with the new

changes (GitHub, 2021). GitHub is aimed at development teams of all sizes. The

user has the choice to either show the code comparison / diff in a split view or a

unified view. In the split view, as shown in Figure 2.2, the modified or removed

23

Figure 2.2: GitHub: Source code changes presented in a split view

Figure 2.3: GitHub: Source code changes presented in a unified view

code lines is highlighted in red in the file representing the old version. Additions or

modifications from the old version has green highlighting in the file view representing

the new version.

GitHub does also support a unified diff view (Figure 2.3), where the changes are

shown in one file view, with both the red (old) and green (new) stacked on top of

each other. In this way, it is easy to see what code replaced the old code line. If an

GitHub App is added to the CI-pipeline as a ”Check”, the annotation from these can

be toggled so they show up inside the file view during a pull request (Figure 2.4).

Among these GitHub Apps are linting tools and other types of static code analysis

tools.

24

Figure 2.4: GitHub: Code quality annotations in review view (Github, 2021)

2.7.2 GitLab

GitLab is a source code hosting tool such as GitHub. GitLab is as of November 2021

the source code hosting tool used at NTNU as a default for most of the courses.

According to GitLab, from their own page (GitLab, 2021), the most important

features in an CR-tool depends on the use case. The motivation for using a CR-tool

is to ensure code-quality in the production code. In addition, another important

motivation for many is the learning aspect, where examining each others code in the

team makes a good opportunity to share knowledge across the team.

A good CR-tool, according to GitLab, is a tool that emphasises collaboration, not

only shipping quality code. The tool should implement a comment feature that

sparks discussion. If the team decides that the collaboration is particularly import-

ant, then implementing possibilities for taking notes and commenting on changes

can be used for fruitful discussions later. Since a team rarely has time to sit down

and discuss changes at the same time, it is important that the team members can

document their ideas for others to read at a later time. To get a team to use your

CR-tool, it is important that the tool can fit in in the ecosystem of tools used by

developers today. This means that integration of the most used tools for version

control and inspecting merged code is important. A tool should at least work seam-

lessly with Git, since Git is by far the most used version control system (VCS). A

CR-tool that wants to bring value should have the ability to collect and report key

metrics about the code. One should be able to see changes done from last iteration

25

(e.g though diff-file). A more advanced tool should also report on code violations

(linting mistakes, bad coding practices, etc.) If a team only has to use one tool for

conversations about the code, then this will save the team a lot of time.

GitLab’s philosophy is that a developer will save time by reducing the number of

tool used, based on this rule, GitLab has made an extension for Visual Studio

Code which enables the developer to conduct the CR directly in their code editor

(O’Leary, 2021). Since GitLab is responsible for the hosting of the source code and

continuous integration / -development (CI/CD), the CR part of GitLab does benefit

from everything happening in one system. If the team has configured code quality

requirements in the CI-pipeline, these will show up as indicators (Figure 2.6) next to

the code quality rule violating piece of code in the diff view, and can hence to easy

addressed by the reviewer and corrected. GitLab has multiple ways of showing the

diff files dependent on the user’s preference. Just as in GitHub, the user can decide

if it wants to show the new and old version side by side in two file views (split) or as

a unified view. Deleted code and added code is highlighted respectively in red and

green. GitLab does also have a setting for showing one file at the time. The default

setting is that all the files that are affected by changes is presented in a vertical list

view, but by changing this setting to showing one file at a time, it might be easier

to assure that no changes is left unnoticed. In the same setting view, the user does

also have the opportunity to display the file structure of the project in a flatter view,

such that the directory structure depth is shown as a string representation instead

of a tree view with a lot of indentations. The flattened file structure view is chosen

in Figure 2.5 GitLab has a simple check box (upper right corner in Figure 2.5) at

the top of each file that makes it easy for the reviewer to mark for themselves what

files they have inspected and which they have not.

2.7.3 Collaborator

Collaborator is a dedicated CR-tool made by SmartBear software. They claim to

have Adobe, Cisco, Citi, Oracle in their user base (Smartbear Software, 2021a).

Collaborator offers integration with IDEs including Visual Studio Code and Eclipse,

code hosting services such as GitHub, GitLab and Bitbucket, and a range of tools for

making documentation and diagrams including Microsoft Word, PowerPoint, Excel

and MathWorks’ Simulink and some bug trackers (Smartbear Software, 2021b).

In addition to the traditional red and green highlighting of source code changes,

Collaborator also implements the use yellow highlighter for code lines which are

26

Figure 2.5: GitLab: CR interface

Figure 2.6: GitLab: Code quality indicators inside the review interface

Figure 2.7: Collaborator: CR interface

27

Figure 2.8: Collaborator: Review interface for PDF-documentation file

modified. In Collaborator, the reviewer can leave two types of feedback comment -

discussion and defect. These comments are added in a pane at the left side of the file-

in-review. In Figure 2.7, both comment categories are shown, discussion comments

with a speech bubble-icon and defect comment with a lady bug icon. In most of

the other professional tools the comments are added inline. The presentation of the

comments in Collaborator does hence have closer resemblance to the presentation

of comments in a educational tool we explore later, CodePost (see Section 2.8.1),

than in the other professional industry tools.

The discussion comments are feedback that you as a reviewer want to leave, but you

do not require the author to respond with a change to that comment. Defects on the

other hand is comments that address issues that has to be resolved before the review

can be approved. This differs from the way reviews are done in GitHub, where the

entire review can be an issue that has to be responded with changes for the pull

request can be merged. In Collaborator the granularity in the review is higher, as

the reviewer can tell the author exactly what issues which has to be addressed before

the source code is at an acceptable level.

As explained earlier, Collaborator supports as wide range of documentation tools.

The tool is able to do file diff for files from Microsoft Word, PowerPoint, Excel

and PDFs (Figure 2.8) (Smartbear Software, 2021c). The users can then address

content in the documentation files by setting push pin, and write their comments in

28

Figure 2.9: Bitbucket: Source code view

the left pane in the same way as for comments on code. For the people concerned

with insight about the CR process, Collaborator does have metrics about how long

time each reviewer has used on the CRs and a measure for the inspection rate

(lines-of-code per hour).

2.7.4 Bitbucket

Bitbucket is Atlasssian’s solution for source code hosting (Atlassian, 2021a), and

serves in many ways the same purpose as GitHub and GitLab. Bitbucket is web

based. CRs are conducted in relation to merging source code branches. Comment

threads are displayed inline, and code changes are displayed in either an unified or

split file view. Bitbucket implementation of the split file view illustrates where the

new code lines are inserted in the original code, and where the removed lines would

have been in the new file (Figure 2.9).

By connecting a repository to another tool by Atlassian - Crucible, the user can

access a report on review coverage to determine if some parts of the source code is

not covered by reviews, potentially exposing weaknesses in the code. Bitbucket’s

premium tier subscription enables the team to configure what they call ”merge

conditions”, which for example can require a set number of reviewers to approve the

CR before the merging of code can happen (Atlassian, 2021b). As seen in top right

corner of Figure 2.10, the merge conditions are listed so it’s clear what remains before

the code merge can go through. To ease the workflow, Bitbucket has integration

with Visual Studio code through an extension. In addition to other functionalities,

this extension enables an author to create a pull request (change review) and the

reviewers to review the pull request all inside their IDE (Atlassian, 2021c).

29

Figure 2.10: Bitbucket: Merge conditions

2.7.5 Review Board

Review Board is another web based CR-tool. From their website they claim to be

used by big companies such as LinkedIn, Cisco, Twitter and many others (Beanbag,

Inc., 2021a). The author can upload attachment files along their code, all files types

are supported including multiple text and picture formats, PDF and audio. Files of

these types can be reviewed, but Review Board does not support change tracking

for binary file types (Beanbag, Inc., 2021b). The code changes are presented in a diff

view of both the old and new version. Deleted code is marked with red in the old

file, Added code is marked as green. Review board does also have a yellow marking,

which is code lines that are modified. Another feature in the diff files, is that code

that is not changed, but moved to another place in the code file will have a flag with

the new code line position besides it in the old file view and from where in the new

file view. This ”moved flag” is a feature not seen in any of the other studied tools.

Reviewers add comments by clicking either a line number or drag-select multiple

code numbers. The comments support markdown, and can hence be used to make

richer comments (hyperlinks, syntax highlighted code blocks, etc.) Comments from

the reviewers are accessible from the diffs view, but by switching to the ”reviews”

view, the comment threads are displayed in a more neat way, with only the code

changes and belonging comments taking the focus.

30

Figure 2.11: Review Board: Review interface

Figure 2.12: CodeFlow: Code quality feedback showing up in the GitHub pipeline

2.7.6 CodeFlow

CodeFlow is an example of a linting tool which support multiple languages. Being

a linting tool means that it is able to identify code errors, exercise language specific

code conventions and analyse the complexity of source code. Among the supported

languages are the ones used in the courses in our scope (CodeFlow, 2021). Code-

Flow has integration with GitLab, GitHub and Bitbucket, and can added to their

CI-pipeline. This leads to the results from the code quality analysis showing up in

the CI-pipeline section of the pull request, the results can by inspected on Code-

Flow’s website by clicking the CodeFlow icon in the pipeline. As Bird and Bacchelli

writes in ‘Expectations, Outcomes, and Challenges of Modern Code Review’, with

the support of automatic code analysis tools, the spared review resources can rather

be used to review other parts of the code projects, which can bring more value.

31

Figure 2.13: CodeFlow: Code quality overview at their web page

32

Figure 2.14: CodePost: Review interface

2.8 Features from educational tools

2.8.1 CodePost

The CodePost tool (CodePost, 2021a) is a web based CR-tool developed for an edu-

cational context. The goal of the tool is to improve feedback quality for the students

and lower response time from a student work is submitted until it’s assessed. The

use case is similar to our use case, and is hence a tool to naturally take inspiration

from. The students can submit their work through the platform directly, but the tool

does also have integration with the biggest learning management systems (includ-

ing Blackboard, Canvas and Moodle), anti plagiarism tools, GitHub, etc. through

an API ((CodePost, 2021a) (CodePost, 2021b)). The main features of codePost is

the commenting. The comment functionality is unlike the ones found in most of

the CR-tools for the professional IT industry, besides Collaborator. The comment

feature comes closer to the comment feature in Google docs. The comments are

displayed in a panel on the right side of the code file. Comments can be attached

to a part of the code by marking it with the cursor. The reviewer can then decide

if the comment should affect the scoring points for the submission. As part of the

autograder functionality of codePost, the teaching staff has the opportunity to write

unit tests which will automatically run for every student submission, these can be

set up to deduct or add points dependant on the correctness and efficiency of the

33

Figure 2.15: Google Docs: Comment feature

code. To further streamline the review process, CodePost has the ability to create

rubrics - reusable comments that can have a pre-set deduction or addition of scor-

ing points, these are accessible through a hot-key combination which makes them

time saving versus writing them manually each time. The rubrics does also make

it fair to the students, since a mistake of the same type and severity will deduct

the same amount of points for every student. If the instructor decides to change

the scoring point changing effect a rubric, the amount of points deducted or added

will automatically be updated for every submission the rubric was applied to. As

a last feature for directing the reviewer’s focus, is that skeleton code handed out is

de-emphasised in the review interface. This is hence CodePost’s implementation of

the industrial colorized diffs (e.g Figure 2.9) adapted for an educational use case.

2.8.2 HTML-report generated based on tests - currently in

use

The HTML reports are the support tool currently in use for reviewing of exams in

several of the bachelor programming courses at NTNU. This HTML-based solution

was developed by a research assistant at NTNU, and was suppose to be used tempor-

ary until a more robust solution was ready. It brought value in form of streamlining

the review process, and has hence been kept used. The value in the solution does

mainly come from the results from automatically ran unit tests, which efficiently can

tell the sensor what parts of the code that needs more attention and the ones that

passed the unit tests might need less attention. The tests are weighted with a point

34

Figure 2.16: CodePost: De-emphasized template code

score, the point score for each block of tests is then summarised and displayed to the

reviewer next to the file-in-review. To further streamline the code inspection, the

solution highlights the code lines added to the skeleton code written by the course

staff. This is helps the reviewer by directing their focus to the actual student written

code. Both the source code files written by the student and the test files written by

the course staff are presented in a list view which is possible to scroll through. This

makes it easy to switch back and forth between multiple files. The test files are by

default collapsed, but by being available, the reviewer is able to check why a test

failed if it’s not immediately clear just by reading the source code.

2.8.3 CodeTour

CodeTour is an extension to the code editor, Visual Studio Code (Jonathan Carter,

2021). Its intended use is to record guided tours of your code base, to in a better

way introduce or re-introduce a person to an unfamiliar code base. The user clicks

the line number(s) of a code snippet, it wants to explain, in its code file, and do then

write the comment explaining the code. In our use case, these attached comment

can rather be used by the reviewer to give the author feedback. The comments

allows markdown, and can there be used to explain the system in a richer way than

what simple comments could have done. The tour part of CodeTour is meant to

help the unfamiliar user get a though through introduction to the code rather than

exploring the code in a ”blind way” through documentation, docstrings and regular

35

Figure 2.17: HTML-tool: Student written code and test results

Figure 2.18: CodeTour with added review comments

comments.

Some of the value of CodeTour as a CR-tool is that it is lightweight and easy to

use. Both the reviewer and author can do the CR without leaving their code editor.

The review comments are saved in a separate folder inside the project folder and

can easily be shared with the students or other reviewers. The code tour comments/

steps can be interactive, and can even include code that once clicked will be ran.

Although CodeTour has never been used as a assessment tool at NTNU neither as

a CR-tool in the industry, we decided to include it as a tool for inspiration, as there

are similarities between our use case and CodeTour’s intended use.

36

Figure 2.19: Overview of features from the studied tools

37

2.9 Why are there differences between the edu-

cational and professional tools?

Both categories of tools is developed specifically for their respective use case. Hence,

differences between tools made for a educational use case and the professional tools

arise as a result of the motivations behind the use of each tool and the form of the

code-in-review, as explored in Section 2.6.

The motivations between CR in the educational and industrial setting are different

by overlapping. As we saw from Section 2.5, there are multiple motivations for

conducting CRs in the industry. The results from the research by Bird and Bacchelli,

2013 even showed that the primary usage of CRs in that department was not for

the reasons that developers and managers had expected and stated as their main

motivation. To sum up the motivations, they were mostly focused on improving the

product or code in different ways - through correcting defects, correcting bad code

or suggesting better alternative solutions. Although not being the top motivation

for almost any of the interviewed (only 8%), everyone (except one) did mention

learning or knowledge transfer as a motivation. Since preventing defects and bad

code to sneak into the code base is the number one priority, and the features of such

tools focus on making this less likely to happen. The code is inspected thoroughly,

and the reviewers and author must have a forum to discuss the changes proposed

by the author.

There are even internal differences in the educational tool, between the tools in-

tended for reviewing of formative assessments and those intended for summative

assessments. In formative assessments, the learning outcomes or knowledge transfer

is main motivation (Helle and Burner, 2021), and hence is this reflected in the tools

intended for this kind of usage. The reviewer can still benefit from tools that make

it easier to identify defects and bad code, but mainly to have concrete examples

from the submission to base feedback on. CodePost is an example of a tool made

with the formative assessments in mind. The tool is made ”to help you give amazing

feedback, quickly” (CodePost, 2021a), this means that the quality of feedback is the

main focus of this tool. It does also lead to a streamlining effect, which is sought

after for both formative and summative assessments.

For the final exam and other summative assessments, the situation is a bit different.

The knowledge transfer effect is not the main motivation anymore. For this kind

of use case, the focus is rather on a tool that can streamline the review process.

38

Educational tools have a differing relative focus between these two motivations,

leading to the internal differences between them. For example, the HTML-based

tool was specifically made with reviewing of the final exam in mind. Based on unit

tests, the tool reports to the reviewer sections of the code that didn’t behave as

expected, so that the reviewer can prioritize inspecting this faulty code and not

the code that fulfilled the unit test requirements. The tool therefore emphasizes

different functions than CodePost.

Another key difference between educational and industrial tools are the form of the

code in review. In the industry, existing code is updated in small increments and

reviews are focused on the latest updates of the code. The code-in-review is therefore

usually a small amount of code, and the need is for features that allow thorough

and ongoing discussion of few lines involving multiple reviewers. On the other hand,

the educational assessment tools analysed for this thesis has mainly been designed

for use by one reviewer at a time, concerning larger blocks of code. The inline

discussion thread functionality may therefore be unnecessary for the educational

tool. Furthermore, since reviewers have to inspect large blocks of code, features

that allow the creation of inline discussion threads which visually split up the code

may prove disruptive for keeping an overview of the whole code.

However, with the new change of law (Kunnskapsdepartementet, 2005), the need for

a communication channel for the two reviewers inside the review tool will emerge,

and hence a feature that mainly was relevant for the industrial tools will also be

more relevant for our use case. Since the change of law is exclusive to Norway, it

is unlikely that this change of law will change the educational tools as they are not

targeted specifically at the Norwegian market.

39

Chapter 3

Feature Selection

The previous sections laid out a thorough mapping of the use cases of CRs in both

the industry and the educational setting, as well as the resultant features of the tools

currently in use in both settings. Based on this analysis, the features of current CR-

tools used in the industry which are most relevant for our education use case are

identified and outlined in the following section.

3.1 Priority of courses

3.1.1 Web development

When assessing the structure of the web development course (Section 2.3.4), it

becomes clear that this course bears significant differences compared to the other

courses in scope.

First, programming has traditionally not been part of the exam in the web develop-

ment course, while for the other four courses, programming is the main component.

This thesis’ objective is to streamline the reviewing of programming submissions.

The exam form of the web development course therefore falls outside the object-

ive of the thesis. However, the several development projects throughout the course

semester are still a relevant use case for a specialised review tool.

Second, even the projects in the web development course which may be a relevant

use case of a review tool have a different focus than the submissions for the other

courses. In these projects, it is the behavioral requirements of the student-written

40

program which is in review ((GeeksforGeeks, 2019), (Appendix C)), while in the

other courses, the focus is on streamlining the inspection process of the concrete

source code that students write. Hence these features are not as relevant even for

these projects.

Third, for the other four courses, the submissions are reviewed by senior staff and

TAs, while for the web development course, the wish is for a review system where the

students are the main users, and which facilitates student active assessment forms

(Appendix C).

Given these three differences between the web development course and the other

four courses, we believe that including this course’s requirements and needs would

pull the design in a direction that would compromise its usefulness for both use

cases. Hence, we have decided to rather prioritise the requirements in the other

four courses in our first conceptualization of the tool, upon which future work can

build to include the requirements of the web development course. Based on what T.

Aalberg writes about how peer reviews are conducted as of today’s practice in the

course, it is clear that a specially made review tool is beneficial for this use case.

3.1.2 Introduction courses (ITGK and OOP) and Software

development course

The submissions in the software development course have a closer resemblance to

the source code projects in the industry, for which there already exists a lot of high

quality CR-tools, some of which are discussed in this thesis. The courses based on

Python, Java and Python on the other hand, where the potential for streamlining

is the largest, as they have a structure which make it possible to use unit tests to

automate large fractions of the review work, is not covered by existing tools. These

three courses are the only courses with a programming based exam, which we based

on the existing practice in today’s tool (Section 2.8.2), the recommendation from

Bird and Bacchelli and the autograder features of CodePost being one of its main

selling points as a review tool for the educational use context. Based on the lower

existing supply of tools designed for these three courses than tools useful for the

software development course, it is natural to give the feature requirements from

ITGK and OOP a higher priority than the ones from software development.

41

3.2 Industry-specific features

Since the majority of the reviewed tools are made for use in the professional industry,

we expect several of the features they implement are industry-specific features, some

of which are unnecessary or even counterproductive for our tool to adopt. Through

the background we have mapped out the similarities and differences in motivations

and use case. In Why are there differences between the educational and professional

tools?, we have even seen what effect these differences have made on the tools made

for each of the two use cases. Some industry-specific features can be relevant for our

use case, even though their original implementation might not be the correct one

for our use case, these will be discussed in the next section. With web development

removed from the courses effecting the feature selection, the users for our system

are primarily senior staff and some students through the role of teaching assistants.

Features regarding supervision of the review process is therefore not relevant for

our use case. These features include ”Metrics about the reviewers” and ”Report on

review coverage”.

As a common use case for the industrial CR tools are in connection to pull requests,

the reviewer can decide to not approve this request. The author then suggest a new

version of its contribution with improvements based on the reviewers remarks for

why the pull request was not approved. This loop will continue until the reviewers

are happy and approved the code merging. This approval loop is not present in our

educational use case. A submission is submitted and then assessed. The features

regarding approval of a review / pull request is hence not relevant for our use case.

These features are the multiple comment types from Collaborator and the alternative

way reviews are approved or not approved in the other tools.

3.3 Selection criteria for features

The motivations for making such a tool is mainly to streamline the review process.

As a result of the change of law taking effect from 1. august 2022 (Kunnskapsde-

partementet, 2005), the need for a reviewing tool which enables the reviewers to

collaborate is even more pressing. The current HTML-based review solution in use

in several of the bachelor programming courses does not facilitate any form of col-

laborative review or shared comment threads. The current solution is also lacking

a way to write the review comment in the same application used to view the code

42

submission. This means that with the solution currently used today, the reviewer’s

comments are not visually connected to the code. By improving upon this, a greater

learning effect might be achieved.

Since there are limited resources available to realise the review tool proposal from

this master project, it makes sense prioritise the most important features for our

use case. While a long list of features might be potentially useful for our use case,

the resource cost to implement them may actually be greater than the benefit. It

is therefore critical to identify which features are must-haves, and which others are

just nice to have.

The selected features must:

1. Enable multiple reviewers to collaborate on the review

2. Write comments in the same view as the code is inspected

3. Streamline the review process

3.4 Discussion of each feature

The selection of features for the final design proposal will be based on whether a

feature contributes to the system’s three functional requirements. Both the first and

second requirement are possible to achieve just by making the choice of implementing

functionality which enables them, as neither of them are even present in today’s

support tool. The third requirement on the other hand is more open-ended, and

does always have room for improvement. We know that we want to streamline the

review process to be able to prioritise parts of the review which brings more value,

but the resources for developing a new tool is limited and each suggestion should be

considered based on cost / benefit.

3.4.1 ”Enable multiple reviewers to collaborate on the re-

view”

Collaboration on reviews as a feature is present in all of industrial CR-tools. This

means that the system must at least implement comment threads. Implementation

of a voting system in addition might contribute to keeping the interface clear as

43

opposed to the alternative which is a second reviewer showing support through a

comment.

3.4.1.1 Voting system

The motivation behind implementing an up- and downvote system as a feature is to

avoid duplicate comments and comments which just contains approval. This leads

to a cleaner interface for all of the users while giving the reviewers a quick way to

show approval or disagreement. Such a feature is a nice to have feature, but based

on the simplicity of implementing it, it should be considered.

3.4.2 ”Write comments in the same view as the code is in-

spected”

To meet this requirement, there is no concrete implementation choices to make other

than deciding to adopt a feature found in all the systems discussed in this thesis

except CodeFlow and the current system - the one we aim to improve upon. The

question is rather how we want to implement it.

The features connected to comments seen from the discussed tools are:

• Comment inline or in side pane

• Ability to attach point score to a comment

• Reusable comments - rubrics

3.4.2.1 Comments inline or in side pane

As described in Section 2.9, in our use case, we do not expect long discussions

for a single block of code. The need is rather for a comment feature that makes

it easy to keep overview of the submitted code without having to navigate a lot.

Based on this characteristic in our use case, it is natural to prefer a side pane

comment feature as it is implemented in Smartbear Collaborator (Section 2.7.3)

and CodePost (Section 2.8.1), rather than the inline comment feature found in

most of the other review tool. The comment feature must support threads where

multiple reviewers can communicate, as the tool is required to implement features

44

which ”Enable multiple reviewers to collaborate on the review”. A thing to consider

is that by implementing a side pane comment view, the application will increase in

width, which can result in less space for the source code view if the user’s screen is

too narrow.

3.4.2.2 Ability to attach point score to a comment

This feature is connected to Propose of grade based on test scores and does make

sense to implement together. This is the approach taken by codePost, it takes away

the need for the reviewer to keep track of the sum of points, as this is automatically

calculated by the system. This features does also make it possible for the review to

give partial score for task even if the belonging unit test(s) failed.

3.4.2.3 Reusable comments - rubrics

As many of the students do similar or identical mistakes, the review comments will

also be reused. By borrowing the implementation of a ”bank” of reusable comments,

this will streamline the writing of comments, freeing reviewer time. It does also make

it easier to show relevant examples or link the student to existing learning resources

which will increase the value of the formative for the formative assessments as well.

Connected to the latter paragraph, if the reusable comments have an attached point

score it will make it easier for the reviewer to be fair in regards to deducting the

same amount of point for the same mistake for each student.

3.4.3 ”Streamline the review process”

3.4.3.1 Integration with tests

In the HTML-based tool currently in use at NTNU (Section 2.8.2), the feedback from

the automatically ran unit tests is the main feature, and has a great impact one the

efficiency of the review. As Bird and Bacchelli writes in their paper, by automating

the parts of review process which doesn’t require human understanding, the scarce

review resources can rather be used to improve the formative assessment of the

students by reviewing the deeper defects. It does there makes sense to implement

feedback from the unit tests in our tool as well. Especially for the introduction

course, it can make great impact to implement some degree of automation of the

45

review through the use of unit tests, as the review is done manually as of today.

3.4.3.2 Highlighting in diff

The use of colorized diff in the industrial tools is present since it is only the new

proposed changes that are to be reviewed. The use of colors directs the reviewers

focus to the code-in-review, and away from the code that is not relevant for that

particular review. In our use case, the case is similar, the use of colors directs the

reviewers focus. The use of de-emphasising of handed out skeleton code in codePost

and highlighting in the current HTML-based solution, which is both designed with a

educational use case in mind, does further emphasise that such a feature is valuable

in order to streamline the review process for our use case.

De-emphasising of code in CodePost CodePost has taken another approach

than the other tools for guiding the reviewers focus to the changed lines of code in

the industrial tools or the student-written blocks of code in the educational tools.

While the other tools highlight the important code, CodePost de-emphasises the

code skeleton by making it contrasting less to the background than the code which

should get the focus. As we can see from Figure 2.16, is the skeleton code barely

visible both for light and dark mode. This is a problem, as it is important for the

reviewer have the ability to quickly identify what function the student code belongs

to. Our assessment is hence that this feature can be counterproductive in regards

of streamlining, and that highlighting of the code-in-review is the better approach.

In the researched industrial tools, the source code is constantly developing both in

the added and removed dimension from review to review. For those projects, it

therefore makes sense to use different colors of highlighting to make the changes

clear.

The submissions in the introduction course to programming and the two object-

oriented programming courses do take the form of student code added to a skeleton.

This means that code is never removed, just added, hence do we only need one color

for highlighting the additions. All of the work on the submission is done between

the time of tasks being handed out and the final review of the submission.

As mentioned in Section 2.6.2, we might encounter some submissions that has been

reviewed before and then revised before a new review is conducted. This means that

the use of multiple colors for highlighting of changes is relevant for these submissions.

46

By using a color for deleted code and one for added code, we can also make it easy

to identify the unexpected case of a student deleting code from the code skeleton, as

the reviewer of the submissions based on code skeletons is not suppose to encounter

any code highlighted as deleted. The decision is hence to implement highlighting of

added and deleted code lines.

3.4.3.3 Split and unified file view?

Another consequence of how the source code for most submissions goes from just

consisting of the code skeleton at the time of hand out to the finished state at the

time of review, is that it doesn’t make sense to consider a split view for inspecting the

changes. The ”old code” view does only serve a purpose when code is removed from

the old code version, while for our use case, this behaviour is not to be expected,

as removed code will mean that the student has modified the function signature in

the code skeleton. For the revised submissions, where changes build upon the last

reviewed version, the split file view can make sense to implement as a choice for the

user based on user preference. As the unified file view is capable of presenting the

types of changes for both types of submissions, the split file view is considered a

nice-to-have feature, giving it a lower implementation priority.

3.4.3.4 Propose of grade based on test scores

The wish for a system which proposes a grade based on the unit tests was originally

expressed by the C++ course staff. Such a feature does also make sense for both

ITGK and the Java-course, as both of these courses have submission which are easy

to review using unit tests. In an implementation were the system keeps track of the

scoring points, the proposal of a letter-grade is an addition which requires minimal

effort.

3.4.3.5 Linting tool feedback in the review view

As written in Section 2.9, the stylistic and code convention errors is not the knowledge-

in-review in the courses in our scope. Linting tools, such as CodePost (Section 2.8.1),

are though in addition able to detect the code line causing a defect, and having them

as support tool can hence to effective to cut down the to it takes to identify the

defect causing a unit test to fail, thus streamline the review process. To reduce the

47

number of elements fighting for the reviewers attention on screen, an idea can be to

make it optional to show these indicators. This option should be easy to toggle on

and off.

48

Chapter 4

Implementation considerations

To give a mental picture of how the system can look, we have made a mock-up of

a tool implementing some features from the backlog. The decision to display the

multiple supporting feature alongside the source code view, is for the reviewer to be

able view larger portions of the source code without have to zoom out or scroll, as

features taking up vertical screen space covers potential code-showing space. These

features include comment threads, code quality indicators, results from unit tests

and the rubrics comment menu. This means that it becomes important to reduce

the horizontal screen space occupied by these elements. Reflecting on the usage of

such a tool, it become apparent that one way to reduce the number of elements

on screen at a time is through switching between what elements are shown. The

unit test results are useful for directing the reviewer to what code needs a more

thorough inspection, but might not have to visually accessible all the time. When

the reviewer starts the review, it is the unit test-pane which is open, ready for the

guiding the reviewers focus to the When the reviewer has found code to comment

on, the comment view is toggled by a hotkey (or switching by pressing the button)

to show, and the unit test view is hidden. From Figure 4.1 we can see how the

use of bright colors to show the result of the tests is telling the reviewer what code

failed the unit tests, and which one that didn’t. Each test is worth 10 points, so the

total scoring points for this submission is 10 points before the further inspection of

the code is done manually. The total score is displayed inside the ”Finish review”-

button above the test result pane. We can also see from this figure, that all lines

are modified except for the function signature on line 8.

By switching on static code analysis annotations, we can see remarks on code show-

ing up as small icons in the left margin between the line number and the source code

49

Figure 4.1: Mock-up: Showing the results from unit tests

50

Figure 4.2: Mock-up: The annotation from the static code analysis tool on hover

51

Figure 4.3: Mock-up: Toggle to write comments view

52

line in line 1, 6 and 13 (Figure 4.2). By hovering over the indicator, the remark

shows up with an explanation of the problem. In Figure 4.3, the reviewer has added

five comments as the review of the submission. The commented code is highlighted

in light blue. The total of points for the submission is by this raised to 18.5. The

second comment is added by using one of the pre-made rubric comments.

4.1 Proposal for sprints

As discussed in Section 3.1.2, the impact of such a tool is greatest where it there

exists no alternatives, we propose prioritising the tool for the three courses where

the course staff has the advantage of knowing the function signatures for each of the

implementation task.

4.1.1 Sprint 1

All the essential features must be implemented in sprint 1. Essential features are all

the features required for the tool to be a better alternative to the existing review

tools. By following the principle of Minimum viable product (Becker, 2020), the

earliness of release of a better review tool (compared to today’s solution) is priorit-

ised. In addition to the reviewers having access to a viable product early, by choosing

this approach, it also brings the advantage of the reviewers being able to influence

the development of the tool in an early stage, guiding the further development in a

desired direction.

The two functional requirements: ”Enable multiple reviewers to collaborate on the

review” and ”Write comments in the same view as the code is inspected” must both

be implemented in the first sprint for the tool to have an edge over the current review

system. In addition, the presentation of feedback from unit tests and highlighting

of the student written code should be added in sprint 1 as these are features present

in today’s solution.

• Comments inside the review view

• Collaboration functionality

• Tests results in review view

• Diff highlighting

53

4.1.2 Sprint 2

In this sprint, the features further streamlining the review should be implemented.

This includes the scoring point tracking - based on tests and comments and the

letter grade proposal - based on the total amount of scoring points.

• Scoring points for unit tests and comments

• Letter grade proposal

• Syntax highlighting

4.1.3 Sprint 3

In these sprints, the features based on requirements from the software development

course should be prioritised. These include a flattened presentation of the directory

tree as well as a student user account, as this is the first use case where the system

must support both reviewer accounts and student accounts with their belonging

rights and restrictions.

• Flatten file view (from GitLab)

• Checkbox for each file (from GitLab)

• Hide file-types and from what folder (course-specific preset)

4.1.4 Subsequent sprints

In the subsequent sprints, the remaining features are implemented. This includes

the features the developer finds to be relevant in addition to:

• Code quality indicators

• Voting system for comments

• Integration with LMS and Git

54

Chapter 5

Discussion

5.1 Contribution

Based on the research done as background for this thesis, it became clear that the

concept of using industrial CRs as inspiration for a educational review tool targeted

at assessments was not covered in existing research. Most of the papers on the use

of code review techniques in an educational context was concerned with peer review

- where the students review each others submissions. This was a different use case

than the one we had decided to explore.

This thesis serves to fill this gap in existing research in the field. The thesis’ first

contribution is gathering research on the motivations behind code reviews in the

industry, existing practices for code reviews in the industry and in the educational

setting.

Second, the thesis contributes by conducting a systematic comparison of the use case

of educational code reviews and code reviews in the industry, subsequently mapping

which features in industrial tools are of key relevance and suitable to be transferred

to an educational tool.

As the final contribution, and the core goal of the thesis, we have proposed a concrete

sprint-based plan for how the desired review tool should be developed to enable an

early release of a viable product and maximize the usability gained from each sprint

cycle.

55

5.2 Limitations

Information about most of the courses were gathered through direct correspondence

with the course staff, with the exception of ITGK, where the author was unable

to get in contact with the staff. In place of this, information about the review

process the course was gathered from my supervisor and course information pages

(NTNU, 2021d and Appendix D). The supervisor of this thesis is also the lecturer

for TDT4100 (OOP using Java) and has been part the course staff for TDT4140

(Software development). The information for these courses are hence based on oral

and written explanations from him.

5.2.1 Data base

Thesis’ goal and domain is definition of functional requirements. As a result of

this the knowledge background upon which the proposals are based, are less based

on theoretical sources, and more on analyses of the underlying use case conditions,

wishes from the course staff and by inspection of in total nine existing industrial

and educational tools for inspection of source code.

5.3 Implications and future direction

As mentioned in Section 5.1, this exact application of knowledge transfer from the

industrial code review practice to an educational non-peer review review setting had

yet to be covered in existing research. This thesis serves as an introduction to an

application where industry knowledge can make great impact.

For this thesis the focus has been on the streamlining effect the industry knowledge

could deliver to this use case, but further research is encouraged to investigate other

applications of the knowledge transfer from the industrial to the educational setting.

The concrete result of this thesis is the informed features proposal, and an order of

priority of these features in the form of a sprint plan is based on the principle of

minimum viable product (Becker, 2020). This ensures that the tool is useful in an

early stage by prioritizing the features needed for the tool to be useful enough for

the users to adopt it and it also leads to the developers having a source of feedback

which can help to guide the further design of the system in a direction according to

56

the users wishes.

As there are many commercial actors in the industrial code review market, a collab-

oration between the industrial actors and educational institutions could be beneficial

for both parties. Based on this thesis it has been proven that many of the features

from the industrial tools are relevant for the educational setting despite the motiv-

ational and use case differences discussed in Section 2.6.

The lack of existing systems specifically aimed at streamlining the process of as-

sessment of programming submissions, makes this a potentially valuable business

case.

57

Bibliography

Atlassian. (2021a). Retrieved 5th December 2021, from https://bitbucket.org/

Atlassian. (2021b). Retrieved 30th November 2021, from https : / /bitbucket . org/

product/features/code-review

Atlassian. (2021c). Jira and Bitbucket (Atlassian Labs). Retrieved 30th November

2021, from https://marketplace.visualstudio.com/items?itemName=Atlassian.

atlascode

Beanbag, Inc. (2021a). Retrieved 3rd December 2021, from https://www.reviewboard.

org/

Beanbag, Inc. (2021b). Retrieved 29th November 2021, from https://www.reviewboard.

org/#slide-pdf-review

Becker, R. (2020, August 14). Minimum viable product (mvp) (Techopedia, Ed.).

https://www.techopedia.com/definition/27809/minimum-viable-product-mvp

Bird, C. & Bacchelli, A. (2013). Expectations, outcomes, and challenges of modern

code review (Proceedings of the International Conference on Software En-

gineering). Proceedings of the International Conference on Software Engin-

eering. https://www.microsoft.com/en-us/research/publication/expectations-

outcomes-and-challenges-of-modern-code-review/

Bradford, D. L. (2019). Ethical Issues in Experiential Learning. Journal of Manage-

ment Education, 43 (1), 89–98. https://doi.org/10.1177/1052562918807500

Burner, T., Baraas, R. & Falkenberg, H. (2011). Studentaktive vurderingsformer i

norsk lærer- og optometriutdanning. University Pedagogics, 1, 44–57. https:

//doi.org/10.18261/ISSN1893-8981-2011-01-04

CodeFlow. (2021). Retrieved 8th December 2021, from https://www.getcodeflow.

com/#supported-platforms

CodePost. (2021a). Retrieved 18th November 2021, from https://codepost.io/

CodePost. (2021b). Retrieved 18th November 2021, from https : / / github . com /

codepost-io

58

https://bitbucket.org/
https://bitbucket.org/product/features/code-review
https://bitbucket.org/product/features/code-review
https://marketplace.visualstudio.com/items?itemName=Atlassian.atlascode
https://marketplace.visualstudio.com/items?itemName=Atlassian.atlascode
https://www.reviewboard.org/
https://www.reviewboard.org/
https://www.reviewboard.org/#slide-pdf-review
https://www.reviewboard.org/#slide-pdf-review
https://www.techopedia.com/definition/27809/minimum-viable-product-mvp
https://www.microsoft.com/en-us/research/publication/expectations-outcomes-and-challenges-of-modern-code-review/
https://www.microsoft.com/en-us/research/publication/expectations-outcomes-and-challenges-of-modern-code-review/
https://doi.org/10.1177/1052562918807500
https://doi.org/10.18261/ISSN1893-8981-2011-01-04
https://doi.org/10.18261/ISSN1893-8981-2011-01-04
https://www.getcodeflow.com/#supported-platforms
https://www.getcodeflow.com/#supported-platforms
https://codepost.io/
https://github.com/codepost-io
https://github.com/codepost-io

Cohen, J. (2006). Five types of review. ”Smart Bear Inc.” Retrieved 4th December

2021, from https : //www. ccs . neu . edu/home/ lieber / courses / cs4500/ f07/

lectures/code-review-types.pdf

Eduflow. (2021). Empower students to learn collaboratively. Retrieved 17th Novem-

ber 2021, from https://www.eduflow.com/higher-education

GeeksforGeeks. (2019, August 9). Retrieved 9th December 2021, from https://www.

geeksforgeeks.org/system-testing/

GitHub. (2021). Retrieved 5th December 2021, from https://github.com/#home-

collaborate

Github. (2021). Retrieved 13th December 2021, from https://docs.github.com/en/

pull - requests/collaborating-with- pull - requests/collaborating- on- repositories-

with-code-quality-features/about-status-checks#checks

GitLab. (2021). What are the most effective features for code review tools? Retrieved

22nd November 2021, from https://about.gitlab.com/topics/version-control/

what-are-best-code-review-tools-features/

Gitpod. (2021). Retrieved 17th November 2021, from https://www.gitpod.io/docs

Helle, L. (2020). Summativ vurdering. https://snl.no/summativ vurdering

Helle, L. & Burner, T. (2021). Formativ vurdering. https://snl.no/formativ vurdering

Jonathan Carter. (2021). Codetour. Retrieved 25th November 2021, from https :

//github.com/microsoft/codetour

Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and

development. FT press.

Kunnskapsdepartementet. (2005). Lov om universiteter og høyskoler (universitets-

og høyskoleloven). https : / / lovdata . no / dokument /NL / lov / 2005 - 04 - 01 -

15/KAPITTEL 1-5#%C2%A75-3

NTNU. (2021a). IT2810 - Web Development. Retrieved 17th November 2021, from

https://www.ntnu.edu/studies/courses/IT2810

NTNU. (2021b). TDT4100 - Object-Oriented Programming. Retrieved 9th Novem-

ber 2021, from https://www.ntnu.edu/studies/courses/TDT4100

NTNU. (2021c). TDT4102 - Procedural and Object-Oriented Programming. Re-

trieved 9th November 2021, from https://www.ntnu.edu/studies/courses/

TDT4102

NTNU. (2021d). TDT4110 - Information Technology, Introduction. Retrieved 9th Novem-

ber 2021, from https://www.ntnu.edu/studies/courses/TDT4110

NTNU. (2021e). TDT4140 - Software Engineering. Retrieved 9th November 2021,

from https://www.ntnu.edu/studies/courses/TDT4140

59

https://www.ccs.neu.edu/home/lieber/courses/cs4500/f07/lectures/code-review-types.pdf
https://www.ccs.neu.edu/home/lieber/courses/cs4500/f07/lectures/code-review-types.pdf
https://www.eduflow.com/higher-education
https://www.geeksforgeeks.org/system-testing/
https://www.geeksforgeeks.org/system-testing/
https://github.com/#home-collaborate
https://github.com/#home-collaborate
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/collaborating-on-repositories-with-code-quality-features/about-status-checks#checks
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/collaborating-on-repositories-with-code-quality-features/about-status-checks#checks
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/collaborating-on-repositories-with-code-quality-features/about-status-checks#checks
https://about.gitlab.com/topics/version-control/what-are-best-code-review-tools-features/
https://about.gitlab.com/topics/version-control/what-are-best-code-review-tools-features/
https://www.gitpod.io/docs
https://snl.no/summativ_vurdering
https://snl.no/formativ_vurdering
https://github.com/microsoft/codetour
https://github.com/microsoft/codetour
https://lovdata.no/dokument/NL/lov/2005-04-01-15/KAPITTEL_1-5#%C2%A75-3
https://lovdata.no/dokument/NL/lov/2005-04-01-15/KAPITTEL_1-5#%C2%A75-3
https://www.ntnu.edu/studies/courses/IT2810
https://www.ntnu.edu/studies/courses/TDT4100
https://www.ntnu.edu/studies/courses/TDT4102
https://www.ntnu.edu/studies/courses/TDT4102
https://www.ntnu.edu/studies/courses/TDT4110
https://www.ntnu.edu/studies/courses/TDT4140

O’Leary, B. (2021). How gitlab’s 5 new code review features will make life easier.

Retrieved 22nd November 2021, from https://about.gitlab.com/blog/2021/

09/09/5-code-review-features/

Radigan, D. (2021). Why code reviews matter (and actually save time!) Retrieved

6th December 2021, from https://www.atlassian.com/agile/software-development/

code-reviews

Silverthorne, V. (2021). The code review struggle is real. here’s what you need to

know. https://about.gitlab.com/blog/2021/09/03/the-code-review-struggle-is-

real-heres-what-you-need-to-know/

Smartbear Software. (2021a). Retrieved 10th December 2021, from https://smartbear.

com/product/collaborator/overview/

Smartbear Software. (2021b). Retrieved 5th December 2021, from https://smartbear.

com/product/collaborator/integrations/

Smartbear Software. (2021c). Retrieved 5th December 2021, from https://smartbear.

com/product/collaborator/features/artifact-review/

Taras, M. (2005). ASSESSMENT – SUMMATIVE AND FORMATIVE – SOME

THEORETICAL REFLECTIONS. British Journal of Educational Studies,

53 (4), 466–478. https://doi.org/10.1111/j.1467-8527.2005.00307.x

60

https://about.gitlab.com/blog/2021/09/09/5-code-review-features/
https://about.gitlab.com/blog/2021/09/09/5-code-review-features/
https://www.atlassian.com/agile/software-development/code-reviews
https://www.atlassian.com/agile/software-development/code-reviews
https://about.gitlab.com/blog/2021/09/03/the-code-review-struggle-is-real-heres-what-you-need-to-know/
https://about.gitlab.com/blog/2021/09/03/the-code-review-struggle-is-real-heres-what-you-need-to-know/
https://smartbear.com/product/collaborator/overview/
https://smartbear.com/product/collaborator/overview/
https://smartbear.com/product/collaborator/integrations/
https://smartbear.com/product/collaborator/integrations/
https://smartbear.com/product/collaborator/features/artifact-review/
https://smartbear.com/product/collaborator/features/artifact-review/
https://doi.org/10.1111/j.1467-8527.2005.00307.x

Appendices

A Initial e-mail to the lecturers

Laurvik (author):

”Hei, *navn*

Mitt navn er Torgeir Laurvik, jeg skriver masteroppgave for Hallvard Trætteberg.

Masteroppgaven handler om hvordan ”kodereview” slik det gjøres i industrien kan

inspirere et verktøy som kan brukes for å effektivisere (og forbedre) vurderings-

prosessen i grunnleggende programmerings- og systemutviklingsemnene p̊a NTNU.

Verktøyet jeg og Hallvard har i tankene skal alts̊a ligne en del p̊a hvordan kode

presenteres ifm. merge request i GitLab, enten kommentarer som i Google docs eller

merge request. Automatisk kjøring av tester hvis det er lagt inn av fagstab (ITGK

og OOP) eller studentene (mest aktuelt for programvareutvikling og webutvikling).

Unified diff-fil hvor studentenes kode f̊ar mest fokus, ikke kodeskjelett skrevet av

fagstab. Statisk kodeanalyse for brudd p̊a kodekonvensjoner, samarbeid om vurder-

ing mellom flere sensorer (aktuelt ifm. lovendringen om to sensorer fra august av)

etc. Vi har funnet ut at jeg ikke har tid til å realisere systemet, men jeg skal foresl̊a

et system, slik at en evt. master/phd-student senere kan ta opp tr̊aden.

Jeg ser at du st̊ar som emneansvarlig for *emnekode*.

I den forbindelse lurte jeg p̊a hvordan vurderingen av eksamen gjøres i *emnekode*

per n̊a. Lastes koden studentene skriver ned lokalt og kjøres? Inspiseres koden i

Insperia (er det det som brukes i *emnekode*?) uten å kjøre den? Eller gjøres det

p̊a en annen måte?

Hva tenker du om dette? Er det noen funksjoner du tenker kan være nyttige for

den bruken som er tenkt? Og som sagt, om jeg kunne f̊a en forklaring p̊a hvordan

vurderingen utføres i dag i *emnekode*?”

61

B C++ email

The following conversation took place via e-mail, it is included based on permis-

sion from R. Sætre, the lecturer of the course and M. Bruland, the student which

developed the HTML-based review supporting tool currently in use.

Sætre:

”Hei Torgeir,

Skulle gjerne hatt et slikt system du beskriver. Det er Martin som har laget den mest

nyttige ressursen for oss, nemlig interaktive HTML-rapporter som viser student-

koden sammen men LF og utlevert kode. Kanskje han kan fortelle litt mer om

systemet selv (hvis det ikke er fullt opp med eksamen n̊a?) Studentene v̊are leverte

en zip-fil i Inspera etter at de hadde løst kodeoppga VScode. Siden vi har mange

slike zip-filer og tilhørende karakterer ønsker vi å videreutvikle/trene og teste et

system som kan komme frem til riktige slike karakter automatisk... I praksis, før

august.”

Bruland:

”Hei Torgeir,

Dette høres ut som et veldig spennende prosjekt som jeg tror absolutt kan være

interessant. N̊ar det gjelder hva vi kunne f̊att bruk for av funksjonalitet er jeg helt

enig med Rune om at det hadde vært veldig bra med automatisert karaktersetting.

Jeg skal i hvert fall prøve å gi en oversikt over systemet vi bruker, men hvis det er

uklart kan jeg ogs̊a finne tid til en liten prat p̊a fredag eller neste uke. Studentene

f̊ar lastet ned en zip fra Inspera som inneholder p̊abegynt kodeskjelett, og s̊a løses

oppgavene lokalt i kodeeditor. Per n̊a bruker vi et Docker-containerbasert enhetst-

estingssystem hvor besvarelsene (.zip-fil av mappestrukturen) parses og gjennomg̊ar

tester og potensielt f̊ar en poengsum per oppgave (men ikke karakter) basert p̊a

hvor stor andel av testene som blir best̊att. Dette oppsummeres i en HTML-rapport

per besvarelse, hvor besvarelse, kodeskjelett og løsningsforslag vises side om side for

hver oppgave. Det er primært denne side-om-side visningen som har blitt brukt til

sensur, mens poengsystemet ikke (s̊a vidt jeg vet) har blitt testet og utviklet nok

til å kunne foresl̊a karakter automatisk. Vi har tilgjengelig tester fra noen tidli-

gere eksamener, s̊a jeg vil tro at det for eksempel vil være mulig å teste endringer i

systemet og sammenligne med faktisk sensur av besvarelser hvis det er relevant.

Testsystemet brukes til eksamen, mens de ukentlige øvingene leveres p̊a Blackboard

og godkjennes av studass p̊a sal hvor studenten demonstrerer koden.”

62

C Web development email

The following conversation took place via e-mail, it is included based on permission

from T. Aalberg, the lecturer of the course.

Laurvik:

”...I den forbindelse lurte jeg p̊a hvordan vurderingen av eksamen gjøres i webdev

per n̊a. Lastes koden studentene skriver ned lokalt og kjøres. Inspiseres koden i

Insperia (er det det som brukes i webdev?) uten å kjøre den? Eller gjøres det p̊a en

annen måte?”

Aalberg:

”webapplikasjonene blir deployet p̊a en vm s̊a de er kjappe å prøve ut, kode inspiseres

p̊a GitLab, eller repoet klones og kjøres lokalt.”

Laurvik:

”Jeg tok IT2810 for noen år siden, og da husker jeg øvingene ogs̊a talte p̊a karakteren.

Siden det kun er senior-fagstaben som kan utføre sluttvurderingen i et fag, hvordan

løses det med disse øvingene som det jo er et s̊a stort volum av (regner med at det

er mye mer ressurskrevende å vurdere enn eksamen)?”

Aalberg:

”I praksis er det jeg som gjør alle vurderinger, men jeg baserer meg en god del p̊a

tilbakemeldingene de f̊ar og etterprøver det meste. Reviewen de gjør handler mye

om å sjekke tekniske krav og i mindre grad om kvalitative vurderinger p̊a kodeniv̊a

(men handler litt om det ogs̊a)”

Laurvik:

”Hva tenker du om dette verktøyet og nyttigheten av det? Er det noen funksjoner

du tenker kan være nyttige for den bruken som er tenkt? Og som sagt, om jeg kunne

f̊a en forklaring p̊a hvordan vurderingen utføres i dag i webdev?”

Aalberg:

”Jo, har jo snakket med Hallvard om det og er helt enig i behovet. Prøvde å foresl̊a

noe i dene gaten for egne masterstudenter, men ingen som tok oppgaven. Det jeg

ville likt å se var et kodereview-system som tar hensyn til utdanningskonteksten:

i praksis ting som automatisk fordeling av review, anonymisering, at faglærer kan

inspisere og følge med. N̊ar studenter vurderer hverandre trenger vi ogs̊a features

som flagging og kommentarer tilbake til reviews de mener er feil, student-reviews er

bare p̊alitelige hvis det er 4+ vurderinger som gjøres etc.

63

Jeg er vel egentlig mest interessert i features som gjør at en kan motivere til ≪student-

aktive vurderingsformer≫. N̊ar det gjelder webutvikling s̊a er planen å g̊a over til

best̊att/ikke-best̊att fordi den typen vurderinger vi gjør ikke vil la seg gjennomføre

med eksterne sensorer. Ved bruk av best̊att/ikke-best̊att er det jo ogs̊a andre mu-

ligheter for å lage seg et vurderingssystem hvor en benytter studentenes vurderinger

av hverandre i faglærers endelige vurdering.”

64

Øvinger

Totalt 10 øvinger, hvorav 2 er auditorieøvinger
Minst 8 av 10 øvinger, hvorav minst én auditorieøving må gjøres
og bli godkjent for å kunne ta eksamen i emnet
Øvingene er todelt, hvor begge deler må gjøres:

1. Teori
2. Programmering

Oppgavene og informasjon om hvordan de gjøres og leveres inn
ligger på BlackBoard
Øvingene kan godt gjøres i grupper, men godkjennes individuelt.
Hvis du har øvingsopplegget godkjent i et tidligere år vil det
fortsatt telle som godkjent øvingsopplegg i år.

Dette gjelder også på tvers av Python-fagene TDT4109 og
TDT4110 (og det gamle TDT4105). Det vil si at hvis du har
godkjent øvingsopplegg i ett av fagene, slipper du å gjøre
øvinger i det andre.
Det gjelder derimot ikke for Numerikk, TDT4127. Har du
godkjent øvingsopplegg fra TDT4109 eller TDT4110 må du
fremdeles gjøre øvingene i TDT4127, og motsatt.
Dersom du ønsker å ta eksamen på nytt må du huske å
opprette vurderingsmelding i studentweb, dette skjer ikke
automatisk.

Godkjenning / veiledning av øvinger

Øvinger godkjennes på følgende måte:
1. Lever følgende på Blackboard:

(i) Teori (50% korrekt kreves for godkjenning)
(ii) Programmeringsoppgaver

2. Demonstrer programmeringsoppgavene for din
læringsassistent

Under godkjenning må det redegjøres for hva som er
gjort. Man må også kunne svare på spørsmål knyttet til
øvingen

D TDT4110 exercises description

Taken from the course’ page at Blackboard LMS which is only accessible for students

and employees at NTNU.

65

10/01/2020, 11:25Eksamen2 TDT4110

Page 2 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printParam…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

Hva står CPU for?

Hva er cache?

Hvilke 5 steg er med i “Fetch/Execute Cycle”?

Hva er pipelining?

Hvilken av disse lagringsenhetene er IKKE en sekundærlagringsenhet?

Central processing unit

Circuit processing unit

Control programming unit

Forgjengeren til dagens internett.

En metode for å printe ledninger på chiper i flere lag.

En veldig rask minneteknologi.

Instruction Fetch(IF), Instruction Execute(EX), Instruction Decode(ID), Data
Decode(DD), Result Return(RR)

Instruction Fetch(IF), Data Fetch(DF), Instruction Decode(ID), Result Return(RR),
Instruction Execute(EX)

Instruction Fetch(IF), Data Fetch(DF), Instruction Decode(ID), Data Decode(DD),
Result Return(RR)

En teknikk der en CPU kan utføre flere instruksjoner parallelt.

En teknikk som fungerer som en sikker tunnel mellom din maskin og en tjener.

En teknikk der man sender data mellom de forskjellige delene i maskinen i «pipes».

Hurtigbufferet i datamaskinen.

En minnepinne

En SSD satt rett i PCI Expressbussen

E TDT4110, exam 2020

66

10/01/2020, 11:25Eksamen2 TDT4110

Page 3 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printParam…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

Hvilket heksadesimalt tall representerer (100111)₂?

Navnet “Bob” skrives som “0100 0010 0110 1111 0110 0010” i Extended ASCII. Hvilket
alternativ representerer ordet “obo” i Extended ASCII?

Informasjon som beskriver informasjon er kalt:

Et bilde har 800*600 piksler, i 16 bit fargeformat. Hvor mye plass trenger det
ukomprimert?

Hvilken av følgende komprimeringer er loss-less?

27

43

39

0110 1111 0100 0010 0110 1111

0110 1111 0110 0010 0110 1111

0110 0010 0100 0010 0110 0010

Collating data

Metadata

Special data

Omtrent 1 MB

Omtrent 2 MB

Omtrent 500 kB

Run-length coding

MP3

JPEG

10/01/2020, 11:25Eksamen2 TDT4110

Page 4 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printParam…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

Hva er phishing?

Hva er scams?

Hvordan fungerer replay-angrep?

Hva skjer når en melding krypteres?

At uvedkommende tar kontroll over en brukers datamaskin.

Å opptre som en kjent nettside (f.eks. nettbank) for å få tak i personlig informasjon
som f.eks. aksesskoder, kontonummer, etc.

Å fiske etter personlig informasjon ved å late som om maskinen er under virusangrep.
Angriperen lover brukeren at feilen skal rettes opp dersom brukeren først oppgir
kontonummeret sitt.

At uvedkommende tar kontroll over en brukers datamaskin.

Bevisst blokkering av tilgang til en nettside eller tjeneste

Å lure brukere av f.eks. en nettside eller en tjeneste til å investere penger eller gjøre
noe ulovlig.

Pakker fra tidligere sesjoner fanges opp og sendes. For eksempel passord-pakker fra
tidligere pålogginger.

Bruker blir oppringt fra en tjeneste som ber brukeren ringe tilbake. Hvis brukeren
ringer tilbake blir hun eller han belastet for store beløp for en ringetjeneste som koster
mye å bruke.

Chat-bot som svarer brukere på nettsider feilaktig for å innhente sensitiv informasjon.

Dataene i meldingen endres, slik at kun riktig mottaker kan rekonstruere den
opprinnelige meldingen.

Dataene i meldingen deles i små pakker slik at mottaker er den eneste som får tak i
dem alle.

Meldingen må gå gjennom en brannmur, slik at det blir vanskeligere for angripere å få
tak i dataene.

10/01/2020, 11:25Eksamen2 TDT4110

Page 5 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printParam…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

Hva er riktig om Payload encryption?

Hva er sant om transportlaget?

Hva står forkortelsen WAN for i forbindelse med nettverk?

Hva vil universal service si i forbindelse med nettverk?

Hva er masken til IPv4-addressen 255.255.128.0 i CIDR-notasjon?

Krypterer både pakkehodet og meldingsinnholdet i pakken.

Krypterer kun meldingsinnholdet i pakken og ikke selve pakkehodet.

Krypterer kun pakkehodet og ikke selve meldingsinnholdet i pakken.

Transportlaget inneholder alle spesifikasjoner relatert til radiofrekvenser.

Transportlaget består blant annet av spesifikasjoner om nettverksadressering og det
maksimale antallet pakker som et nettverk kan støtte.

Transportlaget sørger for at all data blir levert slik den ble sendt; komplett og i riktig
rekkefølge.

World Area Network

Wired Area Network

Wide Area Network

Å tillate kommunikasjon mellom datamaskiner uavhengig av hvilken type nettverk de
sitter på.

Å tilby streaming-tjenester for alle koplet til internett.

Å tilby tilgang til skytjenester for alle datamaskiner.

/36

/256

/17

10/01/2020, 11:25Eksamen2 TDT4110

Page 6 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printParam…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

Hva står TCP for i nettverkssammenheng?

Transmission Control Protocol

Transmission Channel Protocol

Transport Channel Protocol

Maks poeng: 20

10/01/2020, 11:25Eksamen2 TDT4110

Page 14 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

! Kodeforståelse (30%)
Velg det svaret du mener er mest riktig av alternativene. For hvert spørsmål gis det poeng
på følgende måte:

Korrekt avkrysning 3 poeng.
Feil avkrysning 0 poeng
Ingen avkrysning 0 poeng

2 Oppgave 2a
Hva skrives ut fra følgende kode?

Velg ett alternativ

('Anne', {'Anne': '73.00'})

('Anne', {'Per': '82.50', 'Anne': '73.00', 'Svein': '93.50'})

{'Per': 82.5, 'Anne': 73.0, 'Svein': 93.5}

'Anne' {'Per': '82,50', 'Anne': '73,00', 'Svein': '93,50'}

('Anne', {'Per': 82.5, 'Anne': 73.0, 'Svein': 93.5})

{'Anne': '73.00'}

Maks poeng: 3

10/01/2020, 11:25Eksamen2 TDT4110

Page 15 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

3 Oppgave 2b
Hva skrives ut fra denne kodebiten?

Velg ett alternativ

[82,65,19,17,99]

[17,82,65,19,99]

[99,19,65,82,17]

[65,19,17,99,82]

[17,99,82,19,65]

[17,19,65,82,99]

Maks poeng: 3

10/01/2020, 11:25Eksamen2 TDT4110

Page 16 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

4 Oppgave 2c
Hva skrives ut fra denne koden?

Velg ett alternativ

3

4

1

2

5

6

Maks poeng: 3

10/01/2020, 11:25Eksamen2 TDT4110

Page 17 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

5 Oppgave 2d
Hva skrives ut fra denne koden?

Velg ett alternativ

00001001

01000010

00110010

00010010

0010010

100010

Maks poeng: 3

10/01/2020, 11:25Eksamen2 TDT4110

Page 18 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

6 Oppgave 2e
Hva skrives ut av denne koden?

Velg ett alternativ

1

6

2

48

37

5

Maks poeng: 3

10/01/2020, 11:25Eksamen2 TDT4110

Page 19 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

7 Oppgave 2f
Hva skrives ut av denne koden?

Velg ett alternativ

32

100

69

68

132

36

Maks poeng: 3

10/01/2020, 11:25Eksamen2 TDT4110

Page 20 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

8 Oppgave 2g
Hva skrives ut av denne koden?

Velg ett alternativ

01110

11001

11100

10010

0010

1100

Maks poeng: 3

10/01/2020, 11:25Eksamen2 TDT4110

Page 21 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

9 Oppgave 2h
Hva må a og b være for at programmet skal skrive ut MARTIN?

Velg ett alternativ

a = 3, b = 5

a = 3, b = 6

a = 3, b = 7

a = 0, b = 6

a = 1, b = 5

a = 1, b = 6

Maks poeng: 3

10/01/2020, 11:25Eksamen2 TDT4110

Page 22 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

10 Oppgave 2i
Hva skrives ut av denne koden?

Velg ett alternativ

IndexError: list index out of range

['e',8]

['e',7]

['e','7']

['e',9]

['e']

Maks poeng: 3

10/01/2020, 11:25Eksamen2 TDT4110

Page 23 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

11 Oppgave 2j
Hva skrives ut av denne koden?

Velg ett alternativ

[18. 19. 20. 21. 22. 23. 24.]

[18 19 20 21 22 23 24 25]

[18. 19. 20. 21. 22. 23. 24. 25.]

[18., 19., 20., 21., 22., 23., 24., 25.]

[18., 19., 20., 21., 22., 23., 24., 25.,26.]

[18. 19. 20. 21. 22. 23. 24. 25. 26.]

Maks poeng: 3

10/01/2020, 11:25Eksamen2 TDT4110

Page 31 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

! Programmering (50%)
Førerkortprikker og botbetaling
I denne eksamenen skal du lage et system for registrering av prikker som norske borgere får
når de begår trafikkforseelser. Du skal lage et sett funksjoner, som oppfyller en del krav til
systemet, disse blir beskrevet under hver oppgave. Dette er et oversiktsbilde av systemet,
så følger en beskrivelse av datastrukturen som skal lages og modulen som allerede
eksisterer. Merk for øvrig at dette oppgavesettet kun er inspirert av det faktisk
prikkbelastningssystemet som finnes i Norge.
Modulen nameregister.py
Alle personer som registreres i systemet må registreres med fødselsnummer og navn
(fornavn etternavn). Begge disse er av type strenger. Modulen nameregister inneholder tre
funksjoner som hjelper deg med å registrere denne koblingen. Modulen ligger i den samme
folderen som koden du skal skrive, du skal altså bruke disse i koden din. De tre funksjonene

10/01/2020, 11:25Eksamen2 TDT4110

Page 33 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

12 Oppgave 3a - Datosjekk (7%)
Nye førere må registreres (mer om det senere), og da må en legge inn folks fødselsnummer
(streng med 11 siffer). Vi ønsker ikke å legge inn verdier som er feil i systemet. Derfor må
det kontrolleres at datoer som legges inn i alle fall er reelle.
Skriv funksjonen check_date

Funksjonen skal ta inn en streng som skal verifiseres som en reell dato. Strengen er
hele fødselsnummeret til føreren, der de seks første dekker fødselsdatoen. Disse er
på formatet ddmmyy - 12 mars 1979 blir da '120379'. Litt informasjon og krav:
Alder: år personen er født (kun de to siste sifrene). Du kan se bort fra alder på
personene, altså ingen sjekk om på om de gamle nok til å ha førerkort.
Måned: tallet må være mellom 01 og 12, og alltid med to siffer (mars blir '03')
Dag: dag passer inn med måneden brukt.
Det finnes allerede en funksjon days_in_month(month). Denne ligger i modulen
nameregister.py i den samme mappen som programmet ditt. Denne må du gjerne
bruke, og du finner en beskrivelse av den nederst på funksjonsarket.
Du kan også se bort fra alt som har med skuddår å gjøre.
Hvis datoen er reell skal funksjonen returnere True, ellers skal den returnere False.

Eksempel:

10/01/2020, 11:25Eksamen2 TDT4110

Page 34 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

Skriv ditt svar her...

Maks poeng: 7

13 Oppgave 3b - Registrer ny fører (8%)
Når en ny person begår en trafikkforseelse må denne registreres. Her er det to ulike
systemer dette skal registreres i - people og register.
Skriv funksjonen register_person
Funksjonen tar fire parametre:

people: En dictionary som gir kobling mellom fødselsnummer og navn.
register: En dictionary som har fødselsnummer (streng) som nøkkel og en liste over
prikker som verdi.
fnr: En streng som inneholder fødselsnummeret til den som skal registreres. Du kan
forvente at datoen her er korrekt, og at det ikke finnes noen med dette
fødselsnummeret fra før.
name: En streng som inneholder navnet til den som skal registreres.

Funksjonen skal gjøre følgende:

I people skal du legge til et nytt innslag med fnr og navn. register_name i
modulen nameregister bør være til hjelp.

1

10/01/2020, 11:25Eksamen2 TDT4110

Page 35 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

I register skal det registreres et nytt innslag med nøkkel fnr, verdien skal være en tom
liste.
Variablene people og register kan du forutsette at du har tilgang på allerede - du
trenger altså ikke lage dem. Dette gjelder også seinere oppgaver.

Eksempel:

Skriv ditt svar her...

Maks poeng: 8

14 Oppgave 3c - Telle prikker (7%)
Personer får registrert prikker i en dictionary kalt register. Denne har som nøkkel et
personnummer (streng med 11 siffer). Verdien er en liste som inneholder alle prikkene

1

10/01/2020, 11:25Eksamen2 TDT4110

Page 36 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

personen har fått, den første først.
Skriv funksjonen count_dots

Du kan forvente at du har tilgang til variabelen register
Funksjonen skal ha to parametre:

Den første er register (dictionary), som er nevnt over.
Den andre er fnr (streng, 11 siffer), fødselsnummeret til føreren man skal finne
antall prikker til.

Funksjonen skal returnere summen av prikker (som heltall) denne personen har fått.
Du kan forvente at fødselsnummeret som oppgis finnes i register.

Eksempel:

Skriv ditt svar her...

Maks poeng: 7

15 Oppgave 3d - Legg til prikker (7%)

1

10/01/2020, 11:25Eksamen2 TDT4110

Page 37 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

Prikker legges inn som verdi i dictionary register, knyttet til nøkkelen fødselsnummer (streng
med 11 siffer). Prikkene er lagret i listeform, og nye prikker registreres på slutten av den
eksisterende listen. Listen består av heltall, og kan se slik ut: [2, 2, 3]. Når nye prikker har
blitt lagt til må en sjekke om totalt antall prikker er 10 eller mer. Hvis de er det skal det
skrives ut en beskjed om at føreren har gått over grensen, og førerkortet skal beslaglegges.
Her holder det å skrive ut en beskjed til brukeren som legger inn prikkene.
Skriv funksjonen add_dots

Funksjonen skal ha tre parametre
register - dictionary som inneholder fødselsnummer og prikker for alle, som før.
fnr - fødselsnummeret til den som har kjørt i grøfta. Du kan forvente at dette
fødselsnummeret allerede er registrert.
dots - antallet prikker som skal legges til i slutten av denne førerens liste.

Hvis antallet prikker for føreren etter innlegging av nye prikker er 10 eller mer, skal det
skrives ut en beskjed. Se eksempelet under. Husk funksjoner som er laget før selv om
du ikke har skrevet dem selv.
Du kan forvente å ha tilgang til variablene people og register.

Eksempel:

10/01/2020, 11:25Eksamen2 TDT4110

Page 38 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

Skriv ditt svar her...

Maks poeng: 7

16 Oppgave 3e - Manuell innlegging av prikker (7%)
Funksjonene som er skrevet til nå har alle basert seg på at informasjon som skal legges inn
allerede er definert. Nå har vi kommet til delen der brukeren av systemet må skrive inn ting.
Skriv funksjonen manual_registration

Funksjonen har to parametre - register og people. De er like som i oppgavene før.
Brukeren skal først skrive inn et fødselsnummer (streng med 11 siffer).
Det må sjekkes om fødselsdatoen i fødselsnummeret er en reell dato. Hvis ikke -
avbryt funksjonen. Fødselsdatoen er de seks første sifrene i fødselsnummeret.
Hvis dette fødselsnummeret ikke allerede er registrert må denne nye personen
registreres i både people og register, i tråd med funksjonsbeskrivelsene gitt i tidligere
oppgaver. Husk å spørre om navn!
Til slutt skal funksjonen spørre om hvor mange prikker denne føreren har fått, og
registrere dem.

Eksempel:

1

10/01/2020, 11:25Eksamen2 TDT4110

Page 39 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

Skriv ditt svar her...

Maks poeng: 7

17 Oppgave 3f - Betale seg ut av problemer (7%)
Det er alltid mulig å betale seg ut av problemer i dette systemet. En fører har mulighet til å
betale for å redusere antallet prikker som er registrert på seg.
Skriv funksjonen pay

1

10/01/2020, 11:25Eksamen2 TDT4110

Page 40 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

Funksjonen pay har en parameter:

register: Registeret over fødselsnummer og nåværende prikker.

Den fungerer på følgende måte:

Brukeren skal bli spurt om å skrive inn fødselsnummeret og summen føreren skal
betale.
Funksjonen skal legge inn negative prikker. 1 prikk per 10 000 kroner. Hvis en fører vil
betale 35 000 kroner skal tallet -3 legges til på slutten av listen, som i eksempelet
under. Husk tidligere funksjoner.
Hvis føreren ikke er registrert skal meldingen 'Fører ikke registrert' skrives ut og
funksjonen avsluttes.

Eksempel:

Skriv ditt svar her...

1

10/01/2020, 11:25Eksamen2 TDT4110

Page 41 of 42https://ntnu.inspera.no/static/player?viewMedia=print&printPara…%22%7D&locale=no_no&context=preview&contentItemId=48457184#/all

Maks poeng: 7

18 Oppgave 3g - Lagring til fil (7%)
Vi ønsker å lagre informasjon om førerne som er registrert på fil.
Skriv funksjonen save_to_file

Funksjonen tar to parametre, register og people
Filen det skal skrives til skal hete 'dots.txt'.
For hver av de registrerte førerne skal det lages en linje der følgende streng står (uten
' foran og bak): '11010154321 (Terje Rydland) har 7 prikker.'

Eksempel:

Etter at koden over har kjørt, vil dots.txt inneholde følgende:

11010154321 (Terje Rydland) har 10 prikker.
23056644521 (Børge Haugset) har 3 prikker.

 Side 5 av 15
 Eksamen i TDT4100 – Objektorientert programmering tirsdag 16. mai 2017 Eksamen i TDT4100 – Objektorientert programmering tirsdag 16. mai 2017

If you feel necessary information is missing, state the assumptions you find it necessary to make. If
you are not able to implement classes and method that a part asks for, you may still use these classes
and methods later.

An overview of classes and methods for all the parts are provided in appendix 1. The comments
contain requirements for the various programming tasks, that must be considered when you solve
them. Feel free to define extra methods, in addition to those provided, to make your solution tidier.
Useful standard classes and methods can be found in appendix 2.

The topic is a diner (Diner) and the problem is seating (Seating) groups (Group) of guests at the
tables (Table).

Part	1	–	The	Group,	Table	and	Seating	classes	(15%)	

The Group, Table and Seating classes (appendix 1) are so-called value classes, with data that must
be provided when objects are created and cannot be changed later. Group must contain data about the
number of guests in the group, Table must contain data about the number of seats (capacity) and
Seating must keep track of the table a group is seated at.

a) Finish the Group and Seating classes, including necessary encapsulation methods.

b) It should not be possible to have Seating objects for tables without enough seats for the whole
group seated there. Write the code needed for enforcing this rule.

c) Assume Group had a method for changing the number of guests. Explain with text and/or code

what changes you would need to enforce the rule in b).

d) In addition to the number of seats, a table must have a table number. This number must be a
unique counter that is not provided, but is automatically set by code in the Table class itself
when Table objects are created. The very first table that is created should have number 1, the
second have number 2, and so forth. Implement the constructor and other necessary code,
including the getNum method!

Part	2	–	The	Diner	class	(40%)	

The Diner class (appendix 1) keeps track of tables and seatings, i.e. which groups are seated at which
tables.

a) Write the necessary field declarations and constructor(s), given that the diner has more than one
table. Also write the methods for adding and removing tables.

b) Write the isOccupied and getCapacity methods.

c) Tables can be merged, typically to make room for large groups of guests. Tables can

correspondingly be split, to avoid that a small group occupies a large table. Write the
mergeTables and splitTable methods. At this point, you don’t need to represent which tables
are actually merged, they just disappear, and must be re-created when split.

d) Draw an object state diagram that illustrates the behavior of mergeTables.

F TDT4100, exam 2017

91

 Side 6 av 15
 Eksamen i TDT4100 – Objektorientert programmering tirsdag 16. mai 2017 Eksamen i TDT4100 – Objektorientert programmering tirsdag 16. mai 2017

e) When guests are seated you must find the smallest, available table with enough capacity. Write
the hasCapacity and findAvailableTables methods. Also write other code necessary for
ensuring return value of findAvailableTables is sorted.

f) A new seating of guests is registered in a Seating object. Write the createSeating, addSeating

and removeSeating methods.

Part	3	–	The	Table,	SimpleTable	and	CompositeTable	classes	(15%)	
A problem when merging and splitting tables is that the table numbering becomes wrong, when the
logically same table is re-created and is assigned a different number. One way of handling this is to
have two table types, simple tables (SimpleTable) and composite tables (CompositeTable), where
the latter keeps track of the tables that are merged. This requires a new version of the mergeTable
method that must create a CompositeTable containing the two tables that are merged, and the
splitTable method must be re-written so it splits the a CompositeTable into the same two tables that
were merged. The splitTable method does not need the two capacity arguments any more because
the tables know their capacity.

a) Explain with text and/or code how who will use inheritance and/or interfaces, so Table still can
be used as a general table type and SimpleTable and CompositeTable can handle respective
special cases. Also explain the behavior of SimpleTable and CompositeTable.

b) Write new versions of Diner’s mergeTable and splitTable methods. Note that the new

splitTable method only takes a CompositeTable argument.

Part	4	–	The	GuestManager	class	(20%)	
Guests arriving at a Diner are received by a corresponding GuestManager (see appendix 1), that
tries to seat them. If it fails, the guests must wait for a table with enough seats to become available.
Hence, GuestManager needs to track how the capacity of the Diner object changes. This is done by
making Diner’s capacity property, as returned by a call to getCapacity(false), observable.

a) What does observability entail? Briefly explain with text and/or code how to make a (property
of a) class observable.

b) Explain with text and/or code how you would modify Diner so GuestManager can listen to

changes to the capacity property (by implementing the CapacityListener interface).

c) Explain with text and/or code how you would write the GuestManager class. We don’t expect
automatically merging and splitting of tables, but those arriving first should preferably be
seated first.

Part	5	–	Misc.	(10%)	

a) Is CapacityListener a functional interface? Explain your answer!

b) (Re)write one of isOccupied or getCapacity in Diner so it uses the Stream technique and the
function syntax of Java 8 (if you haven’t already, that is!).

c) Explain with text and/or code how you would test the isOccupied method in Diner in a

separate DinerTest class, and mention which methods in Diner you would use and how Diner
if necessary must be modified for isOccupied to be easily testable.

 Side 10 av 15
 Eksamen i TDT4100 – Objektorientert programmering tirsdag 16. mai 2017

Appendix	1:	Provided	code	(fragments)	

// part 1

/**
 * A group (of people) dining together, and should be seated at the same table.
 * We currently only need to handle the size.
 */
public class Group {

 /**
 * Initializes this Group with the provided guest count
 */
 public Group(int guestCount) {
 ...
 }
}

/**
 * A table with a certain maximum capacity.
 */
public class Table {

 /**
 * Initializes this Table with the provided capacity.
 * The table is also assigned a unique number.
 * @param capacity
 */
 public Table(int capacity) {
 ...
 }

 /**
 * @return the table number
 */
 public int getNum() {
 ...
 }
}

/**
 * Represents the fact that a Group is seated at and occupies a Table
 */
public class Seating {

 /**
 * Initializes this Seating ...
 */
 public Seating(...) {
 ...
 }
}

 Side 11 av 15
 Eksamen i TDT4100 – Objektorientert programmering tirsdag 16. mai 2017

// part 2

/**
 * A place where groups of guests can buy a meal
 */
public class Diner {

 /**
 * Tells whether a Table is occupied.
 * @param table the Table to check
 * @return true if anyone is sitting at the provided Table
 */
 public boolean isOccupied(Table table) {
 ...
 }

 /**
 * Computes the guest capacity,
 * either the remaining (includeOccupied == false) or total (includeOccupied == true).
 * @param includeOccupied controls whether to include tables that are occupied.
 * @return the guest capacity
 */
 public int getCapacity(boolean includeOccupied) {
 ...
 }

 /**
 * Adds a table to this Diner
 * @param table
 */
 public void addTable(Table table) {
 ...
 }

 /**
 * Removes a Table from this Diner.
 * If the table is occupied an IllegalArgumentException exception should be thrown.
 * @param table
 * @throws IllegalArgumentException
 */
 public void removeTable(Table table) {
 ...
 }

 /**
 * Merges two tables, i.e. replaces two tables with one table.
 * lostCapacity is the difference between the old capacity and the new.
 * This number is typically positive, since seats are lost when moving two tables
 * close to each other.
 * @param table1
 * @param table2
 * @param lostCapacity
 * @throws IllegalArgumentException if any of the tables are occupied
 */
 public void mergeTables(Table table1, Table table2, int lostCapacity) {
 ...
 }

 /**
 * Splits a table into two, i.e. replaces one tables with two tables.
 * The two capacities are the capacities of the two new tables.
 * @param table
 * @param capacity1
 * @param capacity2

 Side 12 av 15
 Eksamen i TDT4100 – Objektorientert programmering tirsdag 16. mai 2017

 * @throws IllegalArgumentException if the table is occupied
 */
 public void splitTable(Table table, int capacity1, int capacity2) {
 ...
 }

 /**
 * Tells whether a table has the provided capacity,
 * i.e. if that number of new guests can be seated there.
 * Note that a table cannot be shared among different groups.
 * @param table
 * @param capacity
 * @return true of capacity number of guests can be seated here, false otherwise.
 */
 public boolean hasCapacity(Table table, int capacity) {
 ...
 }

 /**
 * Returns the tables that has the provided capacity.
 * The tables should be sorted with the one with the least capacity (but enough) first.
 * @param capacity
 * @return the tables that has the provided capacity
 */
 public Collection<Table> findAvailableTables(int capacity) {
 ...
 }

 /**
 * Finds a suitable, existing table for the provided group, and creates
 * (but doesn't add) a corresponding Seating.
 * The chosen table should be the one with the least capacity.
 * @param group the group to be seated
 * @return the newly created Seating
 */
 public Seating createSeating(Group group) {
 ...
 }

 /**
 * Creates and adds a Seating for the provided group, using the createSeating method.
 * @param group
 * @return true if a Seating was created and added, false otherwise.
 */
 public boolean addSeating(Group group) {
 ...
 }

 /**
 * Removes the seating for the provided table (number), if one exists
 * @param tableNum the number of the table to be removed
 */
 public void removeSeating(int tableNum) {
 ...
 }
}

 Side 13 av 15
 Eksamen i TDT4100 – Objektorientert programmering tirsdag 16. mai 2017

// part 3

public class SimpleTable ... Table {

 public SimpleTable(int capacity) {
 ...
 }

 ...
}

/**
 * A table that consists of two other tables.
 */
public class CompositeTable ... Table {

 public CompositeTable(Table table1, Table table2, int lostCapacity) {
 ...
 }

 ...
}

// part 4

/**
 * Interface for listening to changes in Diner capacity
 */
public interface CapacityListener {
 /**
 * Called to inform that a Diner has changed capacity
 * @param diner
 */
 public void capacityChanged(Diner diner);
}

/**
 * Handles guests arriving at and departing from a Diner.
 */
public class GuestManager ... {

 public GuestManager(Diner diner) {
 ...
 }

 /**
 * Handles arriving groups, by either seating them immediately
 * (if possible) or putting them in queue. Those enqueued will
 * be seated when the Diner's (change in) capacity allows.
 * @param group
 */
 public void groupArrived(Group group) {
 ...
 }

 /**
 * Handles departing groups, by removing their seating.
 * @param tableNum the table where the group was seated
 */
 public void groupDeparted(int tableNum) {
 ...
 }

 ...
}

Page 3 of 10

Assignment 1: Reading code (20 %)

Answer as follows on a regular answer sheet:
1a) ... your answer here
1b) … your answer here … and so on

1a) What is printed?

int a = 20;
float b = a * 2 + 1;
int c = b++;
b += b / 100;
cout << a << " " << b << " " << c << endl;

1b) What is printed?

int i = 1;
int j = 1;
while (j < 10) {
 j += i;
 i = j ‐ i;
 cout << j << " ";
}
cout << endl;

1c)
int f(char h, char *e, char &i) {
 h++;
 *e = h;
 i += 2;
 return h;
}

char h = 'h';
char e = 'e';
char i = 'i';
h = f(h, &e, i);
cout << h << e << i << endl;

 Given the function f to the left, what is printed by the program to the right?

1d)
int safe(int n, int d) {
 if (d == 0) {
 throw d;
 }
 return n / d;
}

try {
 for (int n = 4; n > 0; n‐‐) {
 cout << n;
 cout << safe(n, n ‐ 2) << " ";
 }
}
catch (int e) {
 cout << "! ";
}
cout << endl;

 Given the function safe to the left, what is printed by the program to the right?

1e)
string apply(string s,
 map<char, string> &rules) {
 string s2 = "";
 for (int i = 0; i < s.length(); i++) {
 s2 += rules[s[i]];
 }
 return s2;
}

map<char, string> rules;
rules['A'] = "AB";
rules['B'] = "A";
string s = "A";
for (int i = 0; i < 4; i++) {
 cout << s << " ";
 s = apply(s, rules);
}
cout << endl;

 Given the function apply to the left, what is printed by the code to the right?

G TDT4102, exam 2019

97

Page 4 of 10

1f) What is printed?

string a = "trol";
string b = "rolo";

char c = 't';
for (int i = 0; i < 7; i++) {
 int k = a.find(c);
 cout << a[k];
 c = b[k];
}
cout << endl;

1g)
char rot13(char c) {
 if (c >= 'a' && c <= 'z') {
 c ‐= 'a';
 c = 'a' + ((c + 13) % 26);
 }
 return c;
}
string rot13(string s) {
 for (int i = 0; i < s.size(); i++) {
 s[i] = rot13(s[i]);
 }
 return s;
}

string msg = "catz";
cout << rot13('a') << rot13('n')
 << rot13('z') << " ";
cout << rot13(msg) << " ";
cout << rot13(rot13(msg)) <<
endl;

Given the function rot13 to the left, what is printed by the code to the right? (Here you need
to know that the 26 lowercase letters in the English alphabet come after each other in the
ASCII table, as «abcdefghijklmnopqrstuvwxyz».)

1h)
class S {
public:
 S() {}
 char f() { return 'S'; }
};

class U : public S {
public:
 char f() { return 'U'; }
};

S s;
U u;
S& r = u;
S* p = &r;
cout << s.f() << u.f() << r.f()
 << p‐>f() << endl;

 What is printed by the code to the right given the classes declared to the left?

Page 5 of 10

Assignment 2: Linear regression (25 %)
Linear regression is an analytical technique which was employed as early as the beginning of the

1800s. The technique attempts to find a linear relationship between variables x and y on the form

 𝑦 ൌ 𝑎𝑥 ൅ 𝑏
The starting point is a collection

of data for x and y, and in simple

linear regression we calculate the

straight line which best describes

the relationship between x and y.

An example is shown in Figure 1.

This is a statistical method and

we will describe the mathematics

you need to program solutions to

the assignments. (Linear

regression has many applications

and is used together with other

more advanced methods in e.g.

"new" fields such as "data

science" and artificial intelligence

(AI).)

2a) Implement the function

double sum(vector<double>& x) which returns the sum of all the numbers in a vector x.

2b) Implement the function double mean(vector<double>& x) which returns the mean of the

numbers in the vector x.

2c) Comma‐separated values (CSV) is a common file format used to store data in table form (rows

and columns). A CSV‐file has one row per line, and each line is divided in columns separated by

comma or space. An excerpt of a CSV‐file used for this assignment is shown in

Figure 2. Implement the function void read_csv(string filename,

vector<double>& x, vector<double>& y) which reads data from a CSV file

with columns x and y. Here filename is the name of the CSV file and x and y are

references to vectors of double which should be filled with data from the file,

where the first column is x and the second column is y. You can assume that the

columns in the CSV‐file are separated by a space. If the file cannot be opened,

the function should throw an exception as a single string consisting of «Couldn't read file» and

the filename filename.

Figure 1. Example of linear regression. The blue dots are (x, y)
pairs plotted in a regular x‐y coordinate system. By using linear
regression, we have calculated the orange line which is the line
which best fits these points (our dataset). The formula for the
line is shown in the upper left.

70 152
85 214
83 203
77 219
56 152
90 215

Figure 2.

Page 6 of 10

2d) We are now going to implement code for linear regression. Given two vectors with data x and y,

we wish to find a straight line which best describes the relationship between x and y. From

mathematics we know that a straight line is given by the formula 𝑦 ൌ 𝑎𝑥 ൅ 𝑏 where a is the slope
and b is the point where the line crosses the y axis (i.e. when x=0). (For linear regression we are here
using the "method of least squares" invented by Gauss: the line should be drawn through the given

points such that the sum of the squared distances from the points to the line is minimized, where the

distance is measured in the y direction.) Below are the formulas you should use for this case:

Here  means sum over all

indices 𝑖 ൌ 0 . . 𝑛 െ 1,
where 𝑥௜ is an element in

the vector x. Furthermore,

�̅� is common notation for

the mean value of x. The

same for y. Note that you do not need to understand the mathematics behind the formulas, and you

can solve the later sub‐assignments without solving this particular sub‐assignment.

Implement the function pair<double, double> linreg(vector<double>& x, vector<double>& y)

which calculates values for a and b as described above. The function should return both values as a

std::pair p where p.first is a and p.second is b.

2e) Now that we have found a line which best fits our dataset, we can use the line to predict a value
for y given an arbitrary x value. Implement the function vector<double> linpred(vector<double>&

x, double a, double b) which returns a vector with all y values given by using 𝑦 ൌ 𝑎𝑥 ൅ 𝑏 for
each of the x values in the vector x.

2f) Although we have found a straight line, it is not necessarily a good fit. A measure for how well the

line fits our dataset is 𝑅ଶ which is a number between 0 and 1 where 0 means worst and 1 means

perfect. 𝑅ଶ is calculated using the formula:

𝑅ଶ ൌ 1 െ
∑ ൫𝑦௜ െ y_pred

i
൯

ଶ௡ିଵ
௜ୀ଴

∑ ሺ𝑦௜ െ 𝑦ത ሻଶ௡ିଵ
௜ୀ଴

Where y_pred୧ is element no i from the vector returned by the function linpred() in the previous

sub‐assignment. Implement the function double r2(vector<double>& y, vector<double>&

y_pred) which compares y (the observed values) and y_pred (the predicted values, from linpred)

by calculating 𝑅ଶ given by the formula above.

2g) We are now ready to use linear regression to find a relationship between two vectors of data x

and y. Write a main‐function which:

1. Reads x‐ and y‐data from the file "data.csv"

2. Computes a and b using linear regression

3. Calculates 𝑅ଶ for the line 𝑦 ൌ 𝑎𝑥 ൅ 𝑏

4. Prints to the console the values for a, b, og 𝑅ଶ

𝑣𝑎𝑟 ൌ
1
𝑛

෍ሺ𝑥௜ െ �̅� ሻଶ

௡ିଵ

௜ୀ଴

 𝑐𝑜𝑣 ൌ
1
𝑛

෍ሺ𝑥௜ െ �̅� ሻሺ𝑦௜ െ 𝑦തሻ

௡ିଵ

௜ୀ଴

𝑎 ൌ
𝑐𝑜𝑣
𝑣𝑎𝑟

 𝑏 ൌ 𝑦ത െ 𝑎�̅�

Page 7 of 10

Assignment 3: City Bikes (25%)
NTNU is focused on both the environment and students' health
and has, together with cycle‐general Ricardo, placed city bikes
at different stations in Trondheim. You are employed by the
Rector to program an application GunnarBikes to help Ricardo
know where the bikes are and to organize transport of bikes so
that all stations have a suitable number of bikes every morning.

3a) The program uses a data type named Location shown in

Figure 4, where name is a unique name for the location and p is
its position on a
map. The data type
Point is from the textbook graphics library (see
appendix). Implement the constructor for Location
(declared in Figure 4) outside the class declaration and
use initializer list.

3b) Define a class BikeStation which contains the following private member variables: loc of type

Location, capacity and bikes which both should be unsigned int, and display which should be a
Vector_ref<Shape> and is used for the graphics part of the assignment. Furthermore, the class
should contain declarations for a set‐ and a get‐function for the member variables bikes, and an
inline implementation of a function getName() which should return loc.name. (The final version of
this class will contain more, but here you should only focus on what is mentioned in this sub‐
assignment.)

3c) Implement the set‐ and get‐functions for bikes which you declared in the previous sub‐

assignment.

3d) Write a member function string BikeStation::status() which should return a string

containing a short textual report with the status of a bike station. The format of the string is shown in

Figure 3 as "10 out of 30" where the first number is the value of bikes (how many bikes are in the

station) and the other number is the value of capacity (number of parking spots for city bikes).

3e) Write the constructor for BikeStation
BikeStation::BikeStation(Location where, unsigned int cap, unsigned int numBikes)

The constructor should initialize loc, capacity and bikes with values from the parameter list.

Furthermore, the constructor should add pointers to the following graphical elements into the

member variable display:

1) a pointer to a Rectangle object whose upper left corner is the point given by the member

variable loc (see sub‐assignment 3b). The width and height are given by two constants

dispWidth and dispHeight which are available from your code. The rectangle should be

filled with the color Color::white.

2) a pointer to a Text object with the name of the station, positioned at the same point as the

rectangle, with the color Color::blue. The text should have font‐size 20.

3) a pointer to a Text object which shows the status of the station, by showing the string

returned by status() from the previous sub‐assignment in the white rectangle, positioned 2

pixels from the rectangle's left edge and 15 pixels below the rectangles upper edge. The text

should have the color Color::black, and you do not need to worry about the font‐size

(standard/default is fine).

See also Figure 3 and use the information from the appendix.

Figure 3. Part of screenshot
from the assignment City Bikes. struct Location {

 string name;
 Point p;
 Location(string str, Point pt);
};
Figure 4. The data type Location

Page 8 of 10

3f) To test the application GunnarBikes, we wish to simulate a day of cycling. You shall write a

function simulateOneDay() which takes as argument a vector of pointers to all the city bike stations

(vector<BikeStation*>). The function should do the following:

 Attempt to perform ridesPerDay number of bike trips, where ridesPerDay is a given

constant.

 For each potential bike trip, a random station should be selected where one wishes to take

out a bike. Use rand() from the standard library (see the appendix) to select a random station

to take out a bike and a random station to park it. This represents a desired bike trip.

 To ensure that a cyclist is guaranteed that he or she can leave the bike at the detsination

station, it should be possible to reserve an available parking spot at the destination station

when you take out a bike. This ensures that a bike trip can be performed. A sufficient and

necessary condition for a successful bike ride is hence that there exists at least one available

bike at the departure station and that there is at least one available parking spot at the

destination station. For each desired bike ride (from the previous point), we need to check

this condition, and would like to collect statistics on the number of unsuccessful bike rides.

This number is counted in a map<string, int> which is returned by the function. Here the

key is the unique name of the desired departure station, and the integer is the number of

unsuccessful bike rides from that station.

 You can assume that BikeStation also has a get‐function unsigned int getCapacity() to

read the variable capacity.

3g) Write a function printStats() which prints to the

console an overview of unsuccessful bike rides as

shown in Figure 5. The function takes as input a map of

the same type as the previous sub‐assignment, and the

lines should be alphabetically sorted by the name of

the station ("Festningen" comes before "Marinen" etc.)

Assignment 4: Ring buffer and testing (30%)
A buffer is an area in memory used to temporarily store data

before it can be processed further. In a circular buffer, or a

ring buffer, you return to the beginning when you write (or

read) past the last element. Figure 6 shows one possible state

of such a buffer with 5 positions, see also the table below. A

ring buffer is often used when data is to be transferred

between two different devices and processed by the receiver

in the same order it is received (like a queue). Computer

memory is linear, so in order for it to "look" as it is circular, we

need some extra program logic.

Unsuccessful rides:
70 bike trips refused at Festningen
101 bike trips refused at Marinen
180 bike trips refused at Pirbadet
62 bike trips refused at Samfundet

Figure 5.

Figure 6. The ring buffer in state 4.
The beginning of the buffer (position
0) is at the top of the figure and the
buffer goes clockwise. "start" points
at the first valid element in the buffer
(here start=4), and "size" denotes the
number of valid elements stored
(here size=2).

Page 9 of 10

In a ring buffer we need to keep track of where in the buffer valid data begins (start), as well as how

much valid data is stored (size). In addition, we need to know the maximum capacity of the buffer

(capacity). In the table below, we have shown 5 different states for a buffer with space for 5

elements (capacity=5).

In the beginning (state no. 1) the buffer is empty and start = 0 and size = 0. If we write three

elements A B C to the buffer, the result is shown in state 2. The operation (code) to do this is shown

in the last column. Note that the position in the buffer is numbered from 0 and up to size – 1. If we

now write three new elements D E F to the buffer, we will write past the end of the buffer and

return to the beginning, as shown in state 3. We will thus overwrite the first element. Since we

overwrite the start of valid data, start is incremented to point at the next element B (which is stored

in position 1). Notice that now size = capacity since the buffer is full.

Reading from the ring buffer will free space corresponding to the number of elements read. If we

read 3 elements, the buffer returns B C D. After the read, the buffer is in state no. 4, and this is the

state shown in Figure 6. If we read the remaining 2 elements (E and F), the buffer becomes empty

and we get state no. 5. Note that start = 1 even though the buffer is empty, since the start of valid

data can be anywhere in the underlying buffer.

Below we have declared the class RingBuf which is a ring buffer whose elements are of type char. In

this assignment, you shall implement parts of this class.

class RingBuf {
private:
 char *buf; // The underlying buffer
 int capacity; // Capacity of underlying buffer (max size)
 int start; // Start of valid data
 int size; // Size of valid data (0 if empty)
public:
 RingBuf(int capacity);
 RingBuf(const RingBuf &other); // copy constructor
 RingBuf(RingBuf &&other); // move constructor
 ~RingBuf();
 RingBuf& operator=(RingBuf rhs); // assignment operator, copy assignment
 void write(char c); // write a character to the buffer
 void write(string s); // write a string of characters to the buffer
 char read(); // read a char from the buffer
 string read(int count); // read a number of chars from the buffer
 string peek();
 friend void testRingBuf();
};

4a) Implement the constructor for RingBuf. The constructor should allocate the buffer buf with

space for capacity number of elements. Remember to initialize capacity, start and size as
described in the introduction.

4b) Implement the copy constructor.

State no. Buffer contents Value of start and size Next operation on the ring buffer rb

1 [_ _ _ _ _] start=0, size=0 rb.write("ABC");

2 [A B C _ _] start=0, size=3 rb.write("DEF");

3 [F B C D E] start=1, size=5 s = rb.read(3);

4 [F _ _ _ E] start=4, size=2 s = rb.read(‐1);

5 [_ _ _ _ _] start=1, size=0

Page 10 of 10

4c) Implement the destructor.

4d) Implement the move constructor.

4e) Implement the assignment operator (copy assignment).

4f) Implement the function void RingBuf::write(char c) which writes an element c to the buffer.

Remember to update both start and size as described in the beginning of the assignment.

4g) Implement the function char RingBuf::read() which reads an element from the buffer. If the

buffer is empty, the function should throw an exception (a string). Remember to update start and

size as described in the beginning of the assignment. You do not need to zero the element which

was read.

4h) Implement the function void RingBuf::write(string s) which writes a string to the buffer.

4i) Implement the function string RingBuf::read(int count) which reads up to count number of

elements from the buffer. If count is larger than capacity or count is ‐1, the function should read all

the valid elements stored in the buffer.

4j) Implement the function string RingBuf::peek() which returns the contents of the buffer
without removing elements. It is especially useful to be able to test that RingBuf behaves as
expected. peek() returns a string with all the valid elements in the buffer, i.e. from start to (but
not including) start + size.

4k) Testing is an important part of programming. Write a function testRingBuf() which checks that

RingBuf behaves as expected. The test should create a ring buffer and perform the operations which

were described in the table from the introduction. After each operation, you should check that the

values of the member variables start and size are correct and that peek() returns the correct

values. Check also the return value of read() when testing the read functionality. Use assert() as

described in the appendix.

…‐‐‐oooOooo‐‐‐…

IT2810	Webutvikling	H2018

1/10

Forside
Institutt	for	Datateknologi	og	Informatikk
	
Eksamensoppgave	i	IT2810	Webutvikling
	
Faglig	kontakt	under	eksamen:	Trond	Aalberg
Tlf.:	97631088
Eksamensdato:	18/12	2018
Eksamenstid	(fra-til):	09-11
Hjelpemiddelkode/Tillatte	hjelpemidler:		E:	Ingen	hjelpemidler	tillatt.
	
I	vurderingen	honoreres	korte	og	presise	svar.	
	
Merk!	Studenter	finner	sensur	i	Studentweb.	Har	du	spørsmål	om	din	sensur	må	du	kontakte	instituttet
ditt.	Eksamenskontoret	vil	ikke	kunne	svare	på	slike	spørsmål.

1 Variabler	deklarert	med	var	og	let
Forklar	kort	hvilket	scope	som	gjelder	for	variabler	som	er	deklarert	med	nøkkelordet	var	og	hvilket
scope	gjelder	for	variabler	deklarert	med	nøkkelordet	let?
Skriv	ditt	svar	her...

	
Words:	0

Maks	poeng:	1

H IT2810, exam 2018

105

IT2810	Webutvikling	H2018

2/10

2 Arrow-funksjoner
Forklar	kort	hvordan	arrow-funksjoner	skiller	seg	fra	vanlige	funksjoner	i	Javascript,	med	tanke	på	this
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	1

3 CSS-grid	og	Flexbox
Forklar	kort	hva	CSS-grid	er	og	CSS-flexbox	er.	Beskriv	hvilket	problem/behov	de	løser	og	hva	som
skiller	disse	to	løsningene.
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	1

IT2810	Webutvikling	H2018

3/10

4 SVG	og	HTML5	Canvas
SVG	og	HTML5	Canvas	kan	begge	brukes	til	å	lage	interaktiv	grafikk	på	websider.	Forklar	kort	hva
begge	er	og	gi	et	eksempel	på	(og	argumen)	for	en	anvendelse	hvor	SVG	er	godt	egnet	og	en
anvendelse	hvor	HTML5	Canvas	er	godt	egnet.	
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	1

5 jQuery
Hva	er	selector-mekanismen	i	jQuery.	Gi	et	eksempel	og	en	kort	forklaring.
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	1

IT2810	Webutvikling	H2018

4/10

6 Single	Page	Application
Hva	kjennetegner	en	SPA	(Single	Page	Application)	?
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	1

7 Responsiv	webdesign
Hva	er	responsiv	web	design?	Nevn	forskjellige	teknikker	som	brukes	for	å	implementere	responsiv
webdesign.
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	2

IT2810	Webutvikling	H2018

5/10

8 React
Lag	en	React-komponent	kalt	HelloWorld	for	et		H1	element	med	teksten	"Hello	World!".

Komponenten	skal	ha	følgende	import-statement
import	React,	{	Component	}	from	'react’;
	
og	skal	kunne	importeres	av	andre	javascript-filer.
Skriv	ditt	svar	her...

	

Maks	poeng:	1

1

IT2810	Webutvikling	H2018

6/10

9 React	props	og	state
Forklar	kort	hva	props	og	state	er	i	React
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	2

10 React	dataflyt
Forklar	hvordan	du	må	implementere	dataflyt	oppover	i	et	React	komponenthierarki.
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	1

IT2810	Webutvikling	H2018

7/10

11 Web	storage
Hvilken	funksjonalitet	tilbys	gjennom	HTML5	Web	storage	api'et	(og	det	tilsvarende	AsyncStorage
api'et	i	React	native)?
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	1

12 React	vs.	React	native
Beskriv	hva	som	typisk	kan	gjenbrukes	og	hva	som	typisk	ikke	kan	gjenbrukes	hvis	du	skal	gjøre	om
en	React	for	web	applikasjon	til	React	native.
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	1

IT2810	Webutvikling	H2018

8/10

13 State	management
Hva	er	og	hvorfor	bruker	vi	state	management	som	Redux	og	Mobx?
Gi	eksempel	på	hvordan	disse	brukes	i	implementasjonen	(dvs.	vis	litt	kode).
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	2

14 Snapshot-testing
Forklar	hva	snapshot-testing	er?
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	1

IT2810	Webutvikling	H2018

9/10

15 REST/GraphQL
Forklar	kort	hva	REST	er	eller	hva	GraphQL	er	(velg	en	av	disse).	Vis	eksempel.
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	2

16 End	to	end	testing
Forklar	hva	end	to	end	testing	er?
Skriv	ditt	svar	her...

	

	

Words:	0

Maks	poeng:	1

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Torgeir Sandnes Laurvik

Torgeir Sandnes Laurvik

Design process behind an
educational review system for
student submissions

Applying knowledge from professional code
reviews to an educational assessment setting

Master’s thesis in MLREAL
Supervisor: Hallvard Trætteberg
December 2021

M
as

te
r’s

 th
es

is

	List of Figures
	Introduction
	Thesis Question
	Target Courses
	Definition of code review

	Background
	The courses
	Introduction Course to Programming
	Object-Oriented Programming course
	Software and Web Development Courses

	Formative and Summative assessments
	Formative assessment (assessment for learning)
	Summative assessment (assessment for control)
	Assessment types in our use case
	The reviewer in formative and summative assessments

	Current system for reviewing
	Introduction Course to Programming
	Object-Oriented Programming
	Software Development
	Web Development

	Value of Code Review-technique exposure for students
	Motivation behind industrial CRs
	Motivation in Microsoft behind doing CRs
	Actual use of Code Reviews in the industry

	Industrial Code Reviews and Our Use Case
	Motivations and Objectives
	Source-code in review

	Features from industry tools
	GitHub
	GitLab
	Collaborator
	Bitbucket
	Review Board
	CodeFlow

	Features from educational tools
	CodePost
	HTML-report generated based on tests - currently in use
	CodeTour

	Why are there differences between the educational and professional tools?

	Feature Selection
	Priority of courses
	Web development
	Introduction courses (ITGK and OOP) and Software development course

	Industry-specific features
	Selection criteria for features
	Discussion of each feature
	"Enable multiple reviewers to collaborate on the review"
	"Write comments in the same view as the code is inspected"
	"Streamline the review process"

	Implementation considerations
	Proposal for sprints
	Sprint 1
	Sprint 2
	Sprint 3
	Subsequent sprints

	Discussion
	Contribution
	Limitations
	Data base

	Implications and future direction

	Bibliography
	Appendices
	Initial e-mail to the lecturers
	C++ email
	Web development email
	TDT4110 exercises description
	TDT4110, exam 2020
	TDT4100, exam 2017
	TDT4102, exam 2019
	IT2810, exam 2018

