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Sammendrag: Gjennom de siste to tiårene har det blitt gjort stor fremgang rundt
identifisering og klassifisering av trekk og egenskaper i musikk,
gjennom bruk av fremgangsmåter som neural networks og
maskinlæring. Til tross for dette er feltet fremdeles under utvikling, og
det er en mangel på samlede implementeringer som dekker både
beat-identifisering og akkord-klassifisering. Som en del av denne
avhandlingen gjøres forsøk på å bruke og kombinere eksisterende
verktøy, bibliotek og modeller innen feltet for å trekke ut data rundt
tempo og akkorder i musikk.

Selv om perfekt identifisering og klassifisering ikke er
oppnåelig, gjøres en undersøkelse av fordeler og ulemper av
klassiske algoritmer, Hidden Markov modeller og neural networks.
Denne undersøkelsen har formålet å finne den beste løsningen gitt
begrensningene satt ut i oppgaven. Ideer for hvordan løsningen kan
forbedres utenfor slike begrensninger er også utforsket. En
algoritmisk tilnærming for analyse av onset styrke ble valgt for
identifisering av beats. For akkorder ble en randomisert
implementasjon av grid search gjort på et neural network som fødtes
med forprosessert lyddata uten vokaler. Gjennom denne
tilnærmingen ble top-1 nøyaktighet på 82% oppnådd for
akkord-klassifisering, klart overlegen det algoritme-baserte løsninger
klarte.
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Abstract: There has been significant progress made over the past two decades
regarding the identification and classification of traits and features in
music using neural network and machine learning approaches.
However, this field is still developing and there is a lack of unified
implementations covering detection of beats and classification of
chords. As part of this study, attempts are made at using and
combining existing tools, libraries, and models within the field to
extract data about tempo and chords from music.

Though perfect identification and classification is unreachable,
an examination of the comparable benefits and drawbacks of
classical algorithms, hidden Markov models and neural networks is
performed. This with the end goal of achieving the best solution given
initial constraints. Ideas on how to further improve on this solution
sans constraints are also explored. An algorithmic approach
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Glossary
Term Definition

Artificial Neural
Network

Computing systems inspired by the biological neural networks that
constitute animal brains. An ANN is based on a collection of connected
units or nodes. Simply called Neural Networks in this thesis.

Chord An aggregate of musical pitches or notes sounded simultaneously.

Chromagram Visualization closely related to the twelve different pitch classes.

Chromatic scale A set of twelve pitch classes used in tonal music, with notes separated
by the interval of a semitone.

Circle of fifths A way of organizing the chromatic scale as a sequence of perfect fifths;
pitches with intervals that match a frequency ratio of 3:2.

Constant-Q
Transform

A mathematical transform related to Fourier transform, it transforms a
data series to the frequency domain.

Fourier
Transform

A mathematical transform that decomposes functions depending on
space or time, into functions depending on spatial frequency or temporal
frequency. Frequently used for decomposing the waveform of a musical
chord into terms of the intensity of its constituent pitches.

Hidden Markov
model

A stochastic model used to model pseudo-randomly changing systems,
where the process is assumed to be a Markov chain with unobservable
states.

Hyperparameter A Neural Network parameter whose value is used to control the learning
process. Examples include the size and shape of a neural network.

Markov chain A stochastic, or random, model describing a sequence of possible
events in which the probability of each event depends only on the state
attained in the previous event.

Modulo
operation

In computing, the modulo operation returns the remainder or signed
remainder of a division, after one number is divided by another (called
the modulus of the operation).

Note (Music) A musical term with multiple meanings including pitch and pitch class; in
this report, it can be assumed that it refers to pitch classes.

Octave The interval between one musical pitch and another with double its
frequency.
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Onset strength A one-dimensional onset strength envelope can be calculated as a
function of time that responds to proportional increase in
energy summed across approximately auditory frequency bands (1).

Overfitting The production of an analysis which corresponds too closely or exactly
to a particular set of data, and may therefore fail to fit additional data or
predict future observations reliably.

Pitch class A set of all pitches that are a whole number of octaves apart.

Tone (Music) A steady periodic sound characterized by its duration, pitch, intensity (or
loudness), and timbre (or quality).

Waveform The waveform of a signal is the shape of its graph as a function of time,
independent of scale or displacement factors.
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1 Introduction
This is an introduction to our thesis. The product repository, provided by GitHub, can be
found here:
https://github.com/sindre0830/Neural-Network-for-Recognizing-Features-in-Music.

1.1 Background
The company EC-Play was founded in 2014, and specializes in musical education, in
particular for younger audiences. This is accomplished through a system of color-coding
chords and displaying these in step with the beat. This system is also intended to be ideal for
learning in groups, or as inexperienced musicians.

These color-coded chords are manually created and matched with the beat, using
EC-Play's proprietary tools. However, despite the quality of these tools, manually adding
each and every beat and chord to the song as well as organizing them into patterns is a
tedious and lengthy process. The purpose of this project therefore is to alleviate this process
somewhat through the use of machine learning and other tools. The idea is to produce a
product that can automatically collect the beats in the song, find their matching chords, and if
possible organize them in patterns. Then, these can be output to the user, who is able to edit
them using the existing tools in a hopefully much faster process.

1.2 Subject
The process of identifying features in music such as notes, chords, tempo and patterns
remains a challenging one to automate, as hard data such as sound frequencies and signal
strength must be paired with the subjectivity of the human ear and subtle differences
detected therein. In this paper, attempts to accomplish this process and implement it for
practical use will be presented, using various approaches rooted in existing algorithms and
libraries as well as neural network designs to find the optimal approach.

A large focus of this thesis relates to the processing and preprocessing of the
available data, as many different processing techniques are made in order to attempt to
isolate relevant data as much as possible. This includes dividing audio-files into beat-length
chunks, performing resampling so as to test for ideal sample rates, designing
uniform-padding algorithms to normalize the length of beat samples from songs at different
tempo, and using libraries to extract vocals and individual instruments from songs.

When performing chord classification, a comparison is made between algorithmic
approaches and neural network models which examines the potential of algorithmic
solutions, and whether neural networks can outcompete them. It also uses basic neural
model design principles to determine the ideal model design, as well as tuning said design
using randomized grid search.

A core element of this work was the practical application of the final solution. Thus,
design and coding of a web-app front-end with which to interface with the solution was also
implemented and deployed using Google Firebase and Docker.

1
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1.3 Delimitation
For this project, the work to be done was divided into four separate sections. First the beat
recognition solution. Second, a solution for chord recognition. Third, a method of performing
pattern recognition to group chords together. Fourth, a front-end user interface through a
web application. In addition to these solutions, an API connecting these separate sections
together with a database connection for periodic saving of data . The client made it clear that
they did not necessarily expect all three recognition solutions to be completed as the
workload might be too excessive, and supposed they might be worked on sequentially in the
order outlined.

At the outset, the group’s initial plan was to complete all four of these as can be seen
in attachment A. However, as work on the beat and chord recognition progressed it became
clear that attempting to also perform pattern recognition would be too ambitious. The scope
of the project was adjusted to focus on the other three sections instead. This was partly due
to the work involved in the pattern recognition itself, and partly due to uncertainty regarding
the achievable accuracy of the chord recognition solution at that point of the project.

As such the group did not implement any pattern recognition solution. The final
product includes solutions for recognizing beats and chords in music, a graphical user
interface in web-app form with which to use these solutions, a database to store results, an
API to control the interaction between these modules, and the deployment of these elements
to a docker container service.

1.4 Target audience

1.4.1 Product
The product is intended for internal use by the client, EC-Play. As such, it has been
developed in close concert with the client, in regards to input and output formatting and user
interface design.

The client adds new songs to their database through a proprietary interface which
allows for definition of beat timestamps, chords and patterns to be created manually. The
product has as a purpose to automate the first two of these three tasks to a certain extent.

As this is used internally, ease of use and reliability are important qualities of the
product to be delivered. The users will have musical expertise and can be expected to parse
and understand outputs easily.

While the client’s previous solution utilized the uploading of files, this product instead
parses Youtube links and automatically downloads links passed in for parsing, making the
process simpler and removing a step in the user pipeline.

1.4.2 Report
Here, the target audience is anyone who wishes to read and understand how this project
was approached and solved by the group. This includes the client, thesis advisor, examiners,
and any readers who stumble upon this report out of interest in music theory and machine
learning.

2
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1.5 Group background
The group has solid experience with the programming side of this project, with each team
member working with the tasks they are most familiar with. This includes machine learning
libraries and processes, frontend web development, API design and database management.

However, the group has no expertise in the field of music theory, and therefore relied
heavily on help and feedback from the client when such expertise was needed, in addition to
the various works cited throughout this thesis. As such, a lot of research and competence
acquisition was done especially in the early phases of this project, in order to better
understand and efficiently evaluate the beat and chord recognition tasks.

1.6 Group organization
The group broadly split work into three categories: front-end, back-end and report writing. All
members of the group were naturally expected to work on the latter.

- Maren Skårestuen Grindal worked on the front-end solution, including
web-development and user testing, as well as setting up the API, database, and
deployment.

- Rickard Loland worked exclusively on the back-end, with solutions for beat
recognition and chord recognition, and being responsible for evaluating the results
and batch results from training and testing.

- Sindre Eiklid also worked exclusively on the back-end, with solutions for beat
recognition and chord recognition, as well as setting up the internal NN API, and
deployment.

1.7 Thesis structure
The thesis is divided into the following chapters:

1. Introduction - This chapter introduces the client and background for the thesis, as
well as the task to be done and the group's approach to it.

2. Development process - Here, the process used to organize and work on the project
is described.

3. Requirements specification -  The requirements for the final products are defined
here.

4. Architecture - Describes the project and network structures and designs.
5. Technologies - Explains key libraries and technologies used during the project.
6. Implementation - This chapter covers how the key challenges and tasks of the

project were approached and solved.
7. Development Environment - Covers what tools were used to create the final

product.
8. Testing and Code Quality - Discusses what testing procedures and suites were

utilized for the project, and how quality of code was ensured and supported.
9. Deployment - In what form the final product is deployed and used.
10. Results and analysis - In this final chapter , the results of the project are discussed

in detail, and ideas for further work that could be implemented for future iterations are
outlined.

3
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Additionally, the thesis has a glossary and a list of abbreviations near the top. These
are intended to help understand the topics and concepts discussed. Internal references
within the document are formatted like so: “chapter 6.1.3”. References to external resources
are added to the reference list in chapter11 and added with brackets in the text like so:
“Lorem Ipsum (1)”.

4
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2 Development process

2.1 Scrum
For the project, a decision was made internally in the group to use an agile, scrum-based
development process based on scrum development principles (2). There were multiple
reasons for this. First of all, the nature of the project task as outlined by the client made the
scope of the project something which would likely be re-evaluated multiple times during the
development process. As mentioned in chapter 1.3, this re-evaluation did occur and resulted
in a reduced scope, thus somewhat vindicating this choice. Second, the client made it clear
that they were interested in close communication and input on the progress and nature of
the product during development, which suited the group well. Third, the flexible nature of
scrum development allowing for shorter sprints of work that could be quickly assessed and
changed between team-members as needed seemed to suit a small project like this quite
well. Finally, each member of the group has a lot of experience working with agile
development processes from our bachelor program, making it a natural fit.

The process was organized with weekly sprint meetings on Mondays, where work
done during the previous sprint was discussed and approved and plans for the following
sprint were made. Code done was reviewed through pull requests between sprints, and any
issues noted were brought up during the sprint as well as on the pull request itself, more on
this below in chapter 2.2.

As mentioned in chapter 1.5, the group started out with very little knowledge of
musical theory. Because of this, weekly meetings with the client in order to clarify issues or
questions related to musical topics were held, which also allowed the client frequent input on
the work being done.

5
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2.2 Version control

Figure 1 - Development process diagram

Figure 1 visualizes the trunk based development strategy and our QA assurance during the
development process. Trunk based development strategy is based on frequent merges
meaning each feature to be implemented are developed in a separate branch, then merged
with the main branch once no errors or issues are found (3). This allows the main branch to
be up-to-date with new features and fixes implemented quickly. When multiple developers
work on the same product, an up-to-date main branch reduces the likelihood of merge
conflicts which are time consuming and require multiple developers to perform.

6
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Once we have distributed tasks during the scrum sprints, the developer creates a
new branch named “module/feature” (I.e. api/diagnosis-endpoint). This makes it easy to
organize all the branches that are created during the development process.

The developer then pushes atomic commits to the branch, this means that each
change is pushed as separate commits. When unrelated changes are merged into a single
commit, it becomes harder to recover if a bug or an issue appears. For the commit message
format, we would add the related issue being worked on “[#issue_id] Brief description”. The
issues would then appear on GitHub with a hyperlink to the issue. This allowed us to give
each commit a broader context without writing large commit messages. For each commit,
the relevant workflow(s) would perform simple QA assurance automatically and publish
results to the developer, more on this under chapter 8.1.

Once the developer has implemented the feature into the branch, a pull request is
created. Here we write “closes #issue_id” to automatically close the related issue and move
it to Done in the kanban board once the pull request is merged. Upon creation of the pull
request, all workflows are notified to run regardless of relevance. This assures that
everything in the main branch will work once merged. Once all of the workflows are passed,
the developer assigns another team member to perform a manual code review. A positive
side effect of the trunk based development strategy is that the code reviews are short and
fast to perform.

If the reviewer denies the pull request, an explanation is given on what is desired to
change. If a large amount of changes are requested, we would do it over Discord or wait
until the next sprint meeting. If the reviewer approves the pull request, the developer merges
the branch with main and deletes the old branch, this keeps the repository organized and
less cluttered. The code reviews are explained in more detail under chapter 8.2.

7
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3 Requirements specification

3.1 Functional requirements
The purpose of our product is to simplify the addition of new compositions to EC-Play’s
database, and make the process faster and more efficient than the purely manual one they
have been using so far.

Figure 2 - Use case diagram

8
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3.1.1 High-level use case descriptions
In this subchapter, all use cases from figure 2 are described. Each action contains a goal
and a brief description of what it does. A precondition common for all actions is the need for
an internet connection.

Name Input song link

Actors User

Goal Analyze a new song.

Description The user inputs a YouTube-link they want analyzed and clicks
on the submit button.

Name View composition

Actors User

Goal View the result of an analyzed song.

Description The user can click the arrow button to display a specific song’s
result. The arrow button can be clicked again to hide the
result.

Name Delete composition

Actors User

Goal Delete the result of an analyzed song.

Description The user can click the trashcan icon to delete a song.

Name Approve composition

Actors User

Goal Approve the results of an analyzed song.

Description The user can click the approved button on a pending song to
mark it as approved. When a song is approved, it is no longer
possible to modify it.

Name Edit composition

9
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Actors User

Goal Mark the results of an analyzed song as not approved.

Description The user can click the edit button on an approved song to
reverse the approved mark. The result can now be modified
and approved again.

3.1.2 Low-level use case description
In addition to the high-level descriptions, we have created one low-level description for the
“modify composition” action. The reason it is only for this action, is because this is the most
complicated action the user can take. It involves more steps and input validation than all of
the other tasks.

Name Modify composition

Actors User

Goal Update the results of an analyzed song.

Description The user can modify a pending song. They can update some
of the values, and leave others as is, or update all of them.
The input from the user is validated, and they will get a
message if something they have inputted is invalid. The format
to input the values in, are described as text above the input
field.

Preconditions The song has to be marked as pending, and be opened
(viewed) for the user to be able to modify it.

Postconditions The user has updated and approved a song.

Main flow 1        User views the song
2        User fills in the fields they want to change
3        User clicks the approve button

Exceptions to
main flow

2.1     User inputs incorrect value(s) or format
2.1.1  The website tells the user what field is wrong
2.1.2  Retry step 2
3.1     Something is wrong the the API connection
3.1.1  The website tells the user that something is wrong
3.1.2  Updating of song is canceled
3.1.3  Retry step 3 or alert sysadmin

3.2 Product backlog
We utilized GitHub Projects for the product backlog which allowed for smart commits, labels,
and easy organization. Layout description and list of labels can be found in attachment A
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and a screenshot of the kanban board during the end of the development process with a
hyperlink can be found in attachment B.

3.3 Domain model

Figure 3 - Domain model

As shown in figure 3, the domain model is very simple, the only collection is results which
stores information about each song inputted to the API. Firebase is used to store this
database which EC-Play already has a lot of experience with. A fresh firebase project is
used during the development process to avoid any security risks or other issues which could
compromise the clients existing data. Table 1 describes each field's type and use case.

Field Type Description

id string YouTube video ID. This is unique and is used as the primary
key in the table.

title string Title of the YouTube video.

approved boolean Whether the results have been approved by the user or not. If
it is approved, the user can’t edit the results anymore.

processing boolean Whether the youtube video is still processing. Used to show
all the songs that are being analyzed on the status page.

failed boolean Whether the analysis failed. Will be listed on the status page.

beats array[number] Array of timestamps where the program found a beat.

chords array[string] Array of chords that the machine learning model outputted.

bpm number Calculated BPM.

Table 1 - Field description of domain model
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3.4 Operational requirements
Since this product will be used In-house, the client didn’t have any operational requirements.
We have implemented a simple solution which will start the program again upon server
restart or any crashes. This will keep the program up even with a few hiccups which should
automatically fix themselves. Since the client will host this on their own servers, we are not
responsible for the initial set-up, but have provided a guide on deployment provided in the
README. More on deployment under chapter 9.

3.5 Security requirements
As defined in the project plan we are not required to safeguard against attackers, but we
have taken user errors into consideration. This includes validating user input and proper
error handling. Input validation is done both client- and server-side. Users can modify a
song's title, BPM, beats, and chords. All of these are checked against allowed formats,
including a check to see if it is a valid chord or not. YouTube links that are inputted by users
are checked to be actual YouTube links before being sent to the API. Additionally, the
youtube-dl library will not permit invalid links, making it an additional protection. No database
changes will be performed if a field does not follow its given format.

4 Architecture

4.1 Project structure

Figure 4 - Project Structure
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As shown in figure 4, our project is divided into three separate modules. The core module is
our central API, which controls the flow of data between our other two modules as well as
the database and the Youtube API. The web application consists of our input, results, and
status pages, making up the front-end. Finally NN encompases all the neural network
aspects of our project, including model training and an internal API.

4.2 Network structure

Figure 5 - Network Structure

Figure 5 expresses how the modules communicate with each other. The entry point of the
system is the web application. The YouTube link inputted here is sent to the API, which
retrieves the title of the video and adds it to the database. The ID of the video is then further
passed to the internal API of the NN.

Preprocessing is performed here, first filtering out vocal data and then resampling
and fourier transformation are done. The result is passed to the neural network as
chromagrams, each chromagram covering the duration between successive beats as the
beat algorithm detects them.
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At this point we perform post-processing on the resulting outputs to get the results for
the song overall and represent it in the output format we want - separate lists for beat
timestamps and chords with the same length that can be matched on index.

The data obtained from the NN internal API is then updated in the relevant document in the
database. If any part of the process fails, the web page is notified and displays an error
message to the user. This will also mark the song as failed in the database, and the user will
be able to see it under the “Failed songs” section on the status page.
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5 Technologies

5.1 React
React is a JavaScript library for building user interfaces out of different components. A
component represents a segment of the website, and is reusable. Some examples could be
a button or a list of names.

There are two ways to define a component in React: function components and class
components. Function components are JavaScript functions, while class components are
classes (4). Earlier, only class components could use state, which is a core feature of React.
However, in React 16.8, hooks were introduced (5). Hooks allow the use of state in function
components as well. Function components also have a simpler syntax. For these reasons,
we decided to use function components in our application.

Some of React’s important features:
- Reusability: breaking down the UI into components makes development more

efficient as you do not have to write as much code.
- Efficiency: React only updates what is necessary for a change to happen. If only one

component in an application is changed, only this will be rerendered (6).

5.2 Tensorflow
Tensorflow is an end-to-end open source platform for machine learning (7). It touts itself as
an ecosystem for tools and other resources that facilitate the creation and design of machine
learning solutions, and is a mainstay library for many mainstream machine learning and
neural networking solutions. It is available for use in many different environments including
JavaScript and mobile devices, although the most complete and well-known implementation
is its Python API library.

Its key features include
- A large and robust library of machine learning functions.
- Simple and intuitive syntax.
- A plethora of documentation and examples.

5.3 Librosa
Librosa is a python package for music and audio analysis (8). This library includes functions
for performing evaluation and visualization of audio-based media including beat detection,
pitch shifting, feature extraction such as chromagrams and spectrograms, filtering and onset
detection. It can be installed as a library through pip or similar dependency management
tools, and also has significant integration with the scikit-learn python package.

Key features include:
- Built-in parsing of various audio-file extensions such as .wav, .mp3, etc…
- Integrates with matPlotLib to make visualization simple.
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5.4 Spleeter
To quote its github repository, Spleeter is a “Deezer source separation library with pretrained
models written in Python using Tensorflow (...)'' (9). This library, developed by the company
Deezer, can perform splitting of audio sources into separate stems, and can be run in three
different modes - 2-stem, 4-stem and 5-stem. All stems separate vocal performances from
instrumentals and other sources of audio, with the 4- and 5-stem modes also splitting
percussion, bass and optionally piano out.

Install is done as a normal Python package through pip or similar dependency
management tools. The library is simple to use both through the command line and included
as a library in Python code. Split audio files are saved as separate .wav files for each stem.
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6 Implementation
This chapter describes the implementation process of the product. It starts by describing the
development of beat and chord recognition from algorithmic solutions to the neural network
models. Then we describe the process of developing the API and, lastly, the graphical user
interface.

6.1 Algorithms

6.1.1 Beat algorithm
While researching alternative beat detection algorithms, it was discovered that most libraries
and repositories performing beat detection on GitHub and other public resources were
deprecated, often relying on outdated libraries that are no longer available, or require older
versions of Python. Because of this, it was difficult to perform comparative analysis between
multiple algorithms, in order to find the best performing algorithm.

We ended up finding two up-to-date libraries and implementing their algorithms into
our API: Aubio 2 and Librosa3. Aubio uses a variation of a two-state causal beat tracker
algorithm while librosa follows a three-step pipeline: measure onset strength, estimate tempo
from onset correlation and pick peaks in onset strength approximately consistent with
estimated tempo.

Figure 6 - Waveform of “Ain’t no sunshine” (48000 sample rate) with beats plotted

As shown in figure 6, the Aubio beat tracker gave inaccurate results and this was
consistent throughout the development process. Librosa would end up being more accurate
compared to our testing dataset provided by the client.

3 https://librosa.org/
2 https://aubio.org/
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Once we started looking at Spleeter, an algorithm for splitting audio based on vocals
and other instruments, we had problems with Aubio as they both required Numpy (a popular
library in Python) at different versions. Since the Aubio beat tracking algorithm gave worse
results compared to the Librosa beat tracker, we decided to remove Aubio from the API in
favor of Spleeter.

Figure 7 - Onset strength of “Ain’t no sunshine” with beats plotted

Figure 7 showcases the same results as figure 6, but with onset strength plotted in
the background and with the timeframe between 5 and 15 seconds. Onset strength shows
the change in pitch strength between frames and is used to find a pattern in the beat
algorithm (1). While it might look like the Librosa beat tracking algorithm is wrong, it’s
actually picking up the offbeat as well. An offbeat refers to something between normal beats
that could be seen as a beat but usually aren’t counted when calculating the BPM. While it
wasn’t a mistake by the algorithm to count it, we would prefer it without it. One solution to
this problem was to downsample the audio file. This would reduce the number of details and
keep only the most important pitch changes like beats.
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Figure 8 - Multiple plots of onset strength of “Ain’t no sunshine” with beats plotted to
compare different sample rate

When reducing the sample rate it was important to not lose too much information. As
showcased in figure 8, 10,000 in sample rate would keep enough information to pick the
beats while being able to filter out noise like offbeats. When reducing it to 5,000, there were
audible differences and the algorithm wasn’t able to properly detect where the beats
occurred. This can be seen on the graph bottom right in figure 8 where the important onset
strength spikes were missing compared to the other graphs.
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Figure 9 - Onset strength of “Ain’t no sunshine” with beats plotted, start and end of
song

Figure 9 showcases the start and the end of the song and one of the current issues
with the algorithm. When looking at onset strength it will often be wrong at the start of the
song as seen with the initial spike. Even though the spikes between the initial spike and the
first beat spike are noisy, the algorithm isn’t able to filter it out. The same issue is happening
at the end of the song where it slowly fades out. Since the client wants the ability to edit the
results, it will have to be fixed there. This could be fixed with a method that can pick the first
and the last beat through machine learning, more on this under chapter 10.2.2.

Figure 10 - Onset strength of “Let Her Go” with beats plotted
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Since the Librosa beat algorithm uses BPM to find the beat spikes, songs with a
varied BPM will be another issue for this algorithm. This can be seen in figure 10 where the
onset spikes are more random while the manual beat tracking has different spacing between
them. The algorithm tries to find one uniform BPM which won't work for these types of songs.
Songs with a varied BPM are rare and the few that might occur needs to be manually fixed.

Figure 11 - Onset strength of “Ain’t no sunshine” with bass (left) and drums (right)
splitted

When determining the beats in a song there are a few instruments that are more
relevant. For instance, both drums and bass often keep in tact with beats while piano is less
important. Through the Spleeter library we are able to get just the drums and the bass, but
the results were less than satisfactory and would often result in too little information for the
algorithm to function. As seen in the plot to the left in figure 11, there wasn’t enough
information to create any onset strength spikes from bass alone. Drums, as seen on the plot
to the right, did have enough information to generate spikes, but were inconsistent. When
listening to the splitted audio files, it is very easy to pinpoint where the Spleeter program lost
information when removing other instruments. It was usually around vocals, but other
instruments left their dent as well. Spleeter ended up not being used in the preprocessing
process for the beat algorithm, but is an important factor for the chord recognizer as
explained further below.

There were several challenges when assessing the beat algorithm’s performance.
First of all, the manually labeled dataset that must be used as ground truth is very
inconsistent in its accuracy. Songs with variable or unique tempo tend to be meticulously
labeled, and match well with the onset strength of the song. Songs that have more
consistent tempo are sometimes more sloppily labeled however. And all songs have the
issue of being labeled by ear, rather than by evaluation of the onset strength of the song.

As such, there is consistently a small offset between the manual plot of a beat and
onset strength peaks that poses a challenge in truly evaluating the beat algorithm
performance. For example, there were several songs where plotting the two against the
onset  showed that the algorithm found beats that more closely matched with plots of onset
strength. The reality is then, that even a result of 100% accuracy when compared to the
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manually labeled beats cannot be relied on to actually be a perfect match with the audio.
However, this fact cannot be easily accounted for when evaluating the overall performance -
other songs have their manual plots closer to the onset strength, and either way the dataset
is necessary to use as the ground truth for evaluating the algorithm.

In theory a new dataset made from manually evaluating the onset and matching the
peaks with the dataset beats might be closer to reality and make a more reliable ground
truth, but the amount of work this would take was not deemed feasible.

The next challenge was in determining what accuracy should look like for the
algorithm dataset. Say for example that manually plotted beats are found at 1, 2 and 3
seconds into a song. The algorithm finds a beat at 1.95 seconds. What %accuracy is given
to this observation?

Figure 12 - Aggregate accuracy results for the algorithm on dataset

One solution is to just use the distance between beats as the guide  - since there is
conveniently 1 second down to the previous beat in this example, it is 95% accurate. But this
has an obvious issue - if instead of 1.95 seconds, a beat was found at 1.15 seconds, it would
be evaluated as only 15% accurate. Since it is closer to the previous beat however, it is
reasonable to evaluate it compared to that beat at 1 second rather than the one at 2
seconds. If this is adjusted for, 0% accuracy could then be said to be at 0.5, 1.5, 2.5 seconds
in this scenario, making the 95% accurate example instead 90% accuracy. Using this
approach, it can be seen in figure 12 above that the overall accuracy of the algorithm is fairly
disappointing, most songs falling in the 40% - 70% accuracy range, with far more below that
than above.

This evaluation is in some ways better, but still brings with it a host of problems. First
off, it works well to evaluate songs with relatively consistent tempo, but makes the accuracy
look even worse than it is for songs where the algorithm struggles to identify beats because
of tempo changes. Second, because smaller differences between manual and algorithm
beats are now amplified, the previously mentioned issue where the manual dataset tends to
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not be extremely accurate compared to the onset strength is also made worse. For a real
example, one song analyzed with the algorithm was found to be 81% accurate with the first
approach, but only 40.5% after making the adjustment above.

The reason for this is because the algorithm results consistently fell ~0.15 seconds
off the manually labeled beats, a fairly big divergence for in particular faster songs where the
time between beats might be only about 0.6 seconds for example, and this is halved again to
define the space for 0 - 100% accuracy. But looking at the onset plot of the song, peaks in
frequency and offset-strength often tended to occur approximately right between the
algorithm and manual labels. In other words, if we used the onset itself as the ground truth,
each approach would be equally (in)accurate, at about 75 - 80% with the manual dataset
over- or undershooting the mark and the algorithm doing the opposite. But because the
manual labels have to be used as the ground truth, instead it is evaluated to 40%.

There is nothing we can do about this when extracting the accuracy data, but it can
be kept in mind when evaluating the overall performance. Unfortunately this means that it is
tough to separate what songs are being analyzed badly by librosa, and which songs are
simply victims of unfortunate evaluations because of issues like this - the noise is very large.
Furthermore, since offbeats detected could be considered inaccurate when evaluating the
algorithm accuracy, an argument could be made that the accuracy range should be even
smaller. In our example above, finding a beat at 1.5 seconds could be considered finding the
offbeat and simply discarded, in which case the 0% accuracy thresholds should be at 1.25
and 1.75 seconds. However, with such a narrow window for evaluation, the inaccuracies of
the manual labeling are simply amplified too much, and the analysis becomes practically
useless. For the purposes of this project, the client agrees that offbeat detection is no
problem.

Because of this issue where the beat dataset tends to be fairly imprecise, properly
evaluating the performance of the beat algorithm solution proved to be very difficult.
Similarly, due to lacking a solid dataset to use as baseline comparison, the librosa algorithm
solution was used as the final beat-algorithm solution. The primary reason for this was most
libraries with relevant music samples we were able to find were either no longer available, or
did not have any accompanying metadata outlining beat timestamps. Because of this, we
faced only one option for solving this using machine learning: using the fairly inaccurate
dataset from EC-Play as our ground truth.

After spending some time considering its performance versus the algorithm when
compared to onset-strength plots, we did not believe that the dataset available would result
in a well-trained neural network. Therefore we elected not to attempt to make one, and focus
our efforts on the chord classification instead. More on this under chapter 10.2.2.

6.1.2 Chord algorithm
Compared to beats, there are a lot more easily available options for performing chord
analysis using existing algorithms. In general, the process of finding the chords in a piece of
music can be divided into three steps. First is detecting the pitch classes in the audio file,
which can be identified as the frequency rate of any given frame (10).

Pitch classes are created using octave equivalence – a concept describing perceived
similarity of notes that are separated by whole octaves (11) – as compared to pitches, which
strictly separate these types of notes. While this is not ideal for all possible musical files in
terms of octave emphasis and position, Purwins (12, p.48) argues that octave equivalence is
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important in especially Western harmonies. For the purpose of analyzing popular music,
simplifying analysis by looking at pitch classes rather than pitches makes a lot of sense.

Once pitch classes are identified, chroma features can be extracted. This is done by
extracting the feature vector from the audio file using short-term fourier transform (STFT),
Constant-Q Transform (CQT) or similar.

With this, we can identify the pitch classes in each audio frame for a given file. Now,
all we need to do is identify what chords are most likely being played based on the strength
of each pitch class. Multiple chords can be present in any given frame, but accurately
identifying more than one is a daunting challenge.

The basic process of performing chord detection is to define what pitch classes make
up each chord, and from there matching the pitch class data for a frame of audio to the
chords. Through this process we find which chords potentially match the data. This is a
process known as Pitch Class Profiling (PCP), a process introduced in 1999 which according
to Helmholz et al (13) “has long been the prime feature on which chord detection algorithms
are based.” This basic approach to pitch class profiling has been iterated on since then,
accounting for different frequency representations such as STFT or CQT, as well as being
used as basis for machine learning and deep learning models (14).

Figure 13 - Pitch Class Profile for the song “Team”
A basic application of the pitch class profile algorithm includes a lot of noise. The

graph in figure 13 was generated from the song “Team” by the artist Lorde which visualizes
this. Each line represents one profile performed on a specific frame of the song. The y-axis
represents the strength of each pitch’s signal, with 4.0 being the strongest. What we can see
from this data is that the vast majority of the frames analyzed do not find any outstanding
dominant notes above 2.0, which is only 50% of maximum signal strength. And barely any
notes reach 3.0 or higher, at 75% strength.
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Figure 14 - Chord identification using 80% thresholding

Figure 14 is the result of a basic pitch class profile algorithm attempting to extract the
chords of this song from the data using thresholding, where only keys at or above 80% of
max signal strength are used. As can be seen, for a majority of the song’s duration, the
algorithm is unable to detect any dominant chord or chords and returns “no chord” from its
analysis. Only in a few short sections around seconds 75 – 100 and 120 – 135 as well as
once at second 176 was the algorithm able to identify any chords.

When this result is compared with the Pitch Class Profile above, the reason for no
chords being found is fairly obvious. As mentioned, most of the timestamps profiled have no
keys managing to reach 80% signal strength, which would be around 3.2 on the y-axis of the
graph. The threshold in this case is too strict to be able to identify any chords in a vast
majority of frames.

Figure 15 - 50% thresholding Figure 16 - 30% thresholding

By testing various different thresholds on this data, more reasonable results can be
obtained. Looking at the PCP, even 50% thresholding will exclude most timestamps from
identifying any chords, as no keys reach 50% signal strength. At 30%, however, a much
more detailed graph with comparatively fewer instances of “no chord” is achieved.
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This presents an obvious question when using PCP to find chords; what threshold is
the most appropriate? What process should be used to decide on this? Are there alternative
approaches besides grouping keys based on simple signal-strength thresholding that can be
used when determining the likely chord of a song? This is where post-processing algorithms
come in. These are used on the pitch class data before attempting to profile the chords using
said data. This step can be vital for extracting actually useful data during the pitch class
profiling process. Some examples of improved approaches to this algorithm includes Lee’s
Enhanced Pitch Class Profile (EPCP) (15), or finding chord patterns using binary intensities
through use of for example Hidden Markov Model (HMM) or nearest-neighbor approaches
(13).

By using a HMM approach, the Lorde song can be run through the process again,
and the results can be compared to the chord identification table for the basic PCP
algorithm. However, an issue here is that HMM relies on using only the previous result to
inform the following ones, rather than looking at past events as a whole. HMMs also require
large datasets in order to achieve good results (16). As such, with insufficient or poor data
this solution will perform quite poorly. This was observed during testing, as HMM approaches
performed initially quite poorly compared to other algorithms, as can be seen in figure 17. In
this case, the HMM solution ended up “stuck” on classifying each chord as a D# major.
Similar trends were observed with other songs attempted during algorithm testing. This is
most likely due to the small datasets attempted during this part of the process, as we were
testing non-machine learning solutions. In addition to this, it was noted that the HMM
approach was very slow and computing intensive compared to other tested algorithms.

Figure 17 - Chord identification on Lorde’s “Team” using HMM

As part of this process, a few different existing solutions were tried in order to find out
if any performed decently well on the sample dataset, and if so, which got the best results.
These included ones from the pyACA library, as well as several standalone solutions found
on GitHub from users such as Das4 and Navgire5.

5 https://github.com/salilnavgire/Chord-recognition
4 https://github.com/orchidas/Chord-Recognition
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These solutions approach the issue of classifying chords in different ways, but all use
the Viterbi algorithm as part of this process. This algorithm, first proposed by Andrew Viterbi
in 1967, is a popular algorithm within the subjects of speech- and audio-recognition, and
especially in the context of HMM (17). The Viterbi algorithm is an example of dynamic
programming, where calculations are based on the results of previous calculations, thus
saving time through reuse. In this way it is similar to a Markov process or chain, where the
probability of an event only depends on the state attained in the previous event.

By comparing the output of multiple algorithms, we have a sturdy base with which the
manually curated dataset can be compared.

During testing of the various chord-recognition algorithms, a trend where similarly
bad results were reached by multiple algorithms on the same parts of a song.
Post-processing of the data for better visualization confirmed this issue, as wrong or no
chords were being identified for some songs, typically the more challenging ones. Initially, it
was believed that this error rate might stem from difficulty with the actual profiling algorithms
trying to extract the chords using the notes identified. This would make sense since most
areas showing serious issues were songs considered “more difficult” to learn by the client,
and thus usually had strange time signatures, many chord changes, or other such features.

However, a thorough review of the data painted a different picture: consistently when
these results occurred, a look at the generated chromagrams for the song would display
different notes than expected for the frames in question.

An example shown here in figure 18; the Sia song “I’m still here”. For the timeframe
of 29 to 39 seconds into the song, multiple separate sources gave the chord progression D
major, F# minor, E major, B minor. However, the pitches detected in the chromagram for this
part of the song poorly matches up with these chords. Here we should probably explain the
makeup of a chord: a chord consists of three notes, the 1st, 3rd and 5th notes of its scale. If
the chord is minor, the 3rd is flattened, otherwise it is not (18).

The chord D major, which should start off this section of the song, consists in order of
the notes D,  F# and A. If we look between seconds 29.5 and 31, we can see that D and A
are both present but A only for about half the expected duration when compared with D.
Meanwhile, the note F# is not really present at all. Nevertheless, a D major chord could be
detected here.

Figure 18 - Chromagram from “I’m still here”
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Worse off is the next chord of F# minor, which is comprised of the notes F#, A# C#.
However, for this entire section of the song, neither F nor F# can claim to be the dominant
note, and indeed they rarely appear at all. It is clear that no algorithm looking at this
chromagram would be able to identify the chord F# minor, regardless of algorithm used.

Next up is the chord of E major, which consists of the notes E, G# and B. Here it can
be seen that E appears fairly strong from 34 to 35.5 seconds, but both G# and B are again
mostly missing.

The final chord is a B minor, consisting of notes B, D, F#. In this case, B, F# and D
are all present to some extent towards the end of the chromagram – but the noise is fairly
big, and it is somewhat difficult to tell exactly which keys to pick out when deciding the chord.

This level of performance is not acceptable for the purposes of reliably identifying
chords, and so further research had to be done. At a surface glance, it makes very little
sense why the chromagram would return very different pitches from what one would expect,
however in this case it is not the case that this chromagram is wrong. Rather, it is a result of
noise.

The source used for chords in this song from the client references specifically the
chords being played by the piano during this portion of the song – the dominant instrumental
chords. However, during research it was discovered that the vocals being sung by the artist
over this portion of the song uses different chords entirely. Furthermore, the vocal
performance dominates the signal data and therefore is what the chromagram primarily
picks up on.

This presents an obvious challenge for future development of this application. How
does one identify the relevant chords through this level of noise interference? The most
obvious answer here is using filters. By processing the signal data, unwanted frequencies
can be discarded and analysis can be performed on the remaining data. The hope then is
that this will be able to reduce the noise enough for the instrumental piano chords to come
through.

However, even if this works, it runs into another problem. Simply put, a filter that
discards unnecessary or unwanted signals and amplifies the signals wanted from this song
could perhaps be made. But how can this solution be scaled up so that it can work with all
kinds of songs from many different genres, with varying amounts of noise on different
frequencies? Even if it is assumed that instrumentals are always relevant and vocals should
always be discarded, the high-pitch vocals for a singer like Sia is very different from the deep
vocals of e.g. Johnny Cash.

There are a variety of purported vocal filters available to test. Initial work was done
using librosa’s vocal separation library. However, the results were not significantly improved
from the non-filtered audio – some vocal data was filtered out, but not a significant amount,
and the chromagram/algorithm results were not noticeably improved. By writing the audio
back to .wav files after processing is performed, manual verification of this could be
performed – vocals still clearly audible after masking is performed.

Similar results were had with a few other resources such as one solution from GitHub
user tsurumeso6. However, a breakthrough was had with the library Spleeter7. This library,
developed by the company Deezer, is provided freely under the MIT license to use by
anyone. Testing it on some troublesome songs revealed very good performance separating
vocals from instrumentals. Additionally, this library also provides the option to separate

7 https://github.com/deezer/spleeter
6 https://github.com/tsurumeso/vocal-remover
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instrumentals using its stem parameter. With 2 stems, only vocals are isolated and all
instruments are grouped; with 5, drums, bass and piano are all separately identified and
isolated as well. However, this process does mean significantly reduced quality – the
isolated piano is noticeably more distorted and noisy than the full grouped instrumentals.

Using this tool, interference caused by noise from instruments or vocals playing
separate chords can be minimized. Thus tests to find the best combination of instruments
and vocals for identifying chords in the song can be performed. Unfortunately, there is no
easy way to set up one “best” configuration for all songs, and in the end we settled on
removing vocals only. However further work could be done to also separate instrumentals.
For example, if the song was split into many different versions with different numbers of
instruments and vocals and then evaluated, the results could be plotted to show whether
some instruments are heavily featured in the chromagram or not – the typical example here
might be the percussion. In this case the percussion signals can be safely discarded when
finding the chords of the song. This principle could be used to find other instruments that
potentially are not contributing to the chord progression and discard them. However, this
does risk dropping important but rarely contributing instruments in some cases, and the
issue of significantly reduced fidelity and decreased efficiency of the library still remains. As
such, implementing this was not a priority for this work.

A plot of pyACA’s detected chords for the same section of Sia’s song can be seen in
figures 19 and 20, after using Spleeter to isolate the vocals. Note that the order of chords on
the y-axis is not the same, making it slightly difficult to parse. The first plot is performed with
the original sample rate of 48000Hz, and the second is downsampled to 22050 Hz. While
neither is ideal, a much better match with the expected chords can be seen – the start is
noisy, but D Major is fairly dominant. Next it detects F# major instead of f# minor - the only
difference between the two is whether the supporting A note is sharp or not, so this is not too
surprising. Third, it very clearly identifies the E major chord. Finally, it struggles with the B
minor chord, instead again detecting a lot of D Major – the only difference between the two
are the B and D notes themselves, so it is again fairly close. In this case, the non-normalized
audio results are slightly better than the results for normalized, 22kHz audio.

Figure 19 - Original sample rate Figure 20 - Downsampled to 22050 Hz

These results are significantly better than those of the native audio files, and
warranted further research. By running the dataset through Spleeter and comparing
algorithm results for both the original and split dataset, it was noticed that the performance of
normalized sampling rates varied wildly. Normalizing to 22kHz generally had very little effect
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compared to the original sampling rate. However, further halving of the samples could do
anything from amplifying the desired chords to halfway erasing them. As such, normalization
to 22kHz was decided on for this project.

At this point, work turned towards processing the results. One issue with the
algorithms as used is that they allowed for poor tuning of returned data. For example, it
hardly makes  sense to check individual frames for chords. Looking at the plotted chords of
“I’m Still Here” above, dozens and dozens of chords are being detected over just a short
10-second window. When discussing this with the client, they noted that songs do not
change chords nearly this often, and proposed the idea of looking at potential chord changes
around beats. This formed the basis for further processing work.

Since chords often change on a beat, only looking at chords around beat timestamps
makes some sense. However, this presented two notable problems. The first is one of
accuracy – in order to accomplish this, good accuracy is needed on the beat timestamps. If
these are significantly off, such an approach risks looking at offbeat timestamps and
inaccurately determining chords.

The second is identifying what data to use. For example, one song returned pitch
classes for 20 frames per second. To accomplish this goal of classifying a chord on every
beat, assuming there are two beats per second, we have 10 frames – 5 on each side –
“belonging” to that beat. However, does it make sense to use the data from all these frames
to determine the chord of this beat? Or should only for example the 2 closest frames be
used? How do we determine the answer to this?

For the first question, an evaluation of beat algorithm results was required. The first
evaluation performed was comparing the difference in milliseconds between the beat
timestamps returned by the chosen beat algorithm and the manually plotted dataset, with the
time-difference between beats at that point of the song. For example, if the difference was
0.01 seconds and the beats were separated by 0.6 seconds, an error of 0.01/0.6 = 0.0167 or
1.67% would be detected. However, this is not in itself sufficient to decide the accuracy of
the algorithm – after all, if the number of beats differs from the manually plotted beats, then
excess beats are simply discarded and not used in the comparison. Furthermore, the
discarded beats are going to be the least accurate beats detected as well.

An example here is a song which is a steady 60 BPM, but where the algorithm also
detects an offbeat or otherwise mistakes the tempo as 120 BPM – not super uncommon for
beat detection algorithms, though sample rate normalization can help alleviate this. In such a
scenario, the onbeats would be compared and probably achieve very low margins of error –
the result would look great. If the offbeats were evaluated as equivalent to the onbeats
however, the result would look awful. Which comparison is most fair? In this scenario where
the issue is purely detection of offbeats, it is reasonable to say the former is a fair evaluation.
After discussing this with the client they agreed – but there are other scenarios where beats
can be misidentified or off, in particular for variable-tempo songs.

We have previously discussed the issues with the beat dataset, which presents us a
challenge in defining accuracy or error margin in this case. We did observe the error margin
being noticeably lower for songs with steady tempo, and larger for songs with large tempo
changes. Additionally, comparing the manual and algorithm timestamps with the onset
strength plot for the song, it was observed that the algorithm often matched up better for
songs which had steady tempo - reference figure 8 in chapter 6.1.1. As such, a distinction in
performance could be made where the algorithm was found more than sufficiently accurate
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for these songs with predictable beat patterns, but unreliable for less predictable music –
which was as expected.

For deciding what data to use, evaluating based on beat timestamps was the
approach used. Looping through an array of the timestamps for the song – both manual or
algorithm was tested – the current and next element was passed into a function, which
isolated the part of the song between those two timestamps and performed evaluation solely
on that. The result would be an array of chords, after which another algorithm picked out the
most dominant chord – first by simply looking for a plurality, and if none could be found,
using weighting to favor the first chords detected. This was done because after a note is
played on a piano or a guitar, its strength wanes slowly over time, and loses information.
Also tested was weighting later chords heavier, in case the beat-defining instruments
overpower the chord-defining instruments. This was tested on a small part of the dataset,
and neither approach revealed noticeable changes in results for the chord algorithm.
Weighting towards early notes chords performed slightly better – though not outside the
margin of error - as can be seen below.

Figure 21 - Chord algorithm results for sample dataset with weighting

Once this was done, a new and more readable output for chord classification was in
place – and could be more easily compared to the dataset directly. After evaluating the chord
algorithm results vs the manually plotted chords, results were sorted by accuracy% into 10
bins, to visualize the results in more easily readable format.

As can be seen in figure 22, the vast majority of songs passed through the song
algorithm achieved an accuracy between 40 and 80%, with smaller but still significant
numbers scattered through the other bins.

It is important to note here that due to the nature of what the algorithm needs to do –
correctly identify the same chord – the output from the algorithm is binary. Either it gets it
correct, or it is wrong. This approach was chosen for one simple reason, namely that the
algorithm is being evaluated for use in the final product, whose purpose is to reduce the
manual work done to identify and update chords.

In discussions with the client, the idea of using additional accuracy metrics for
neighboring chords was also considered. The reason for this is that neighboring chords are
very similar (sharing 2/3 notes) and can be tough to tell apart by humans. Thus finding a
neighboring chord instead of a completely unrelated chord can be considered more accurate
in a way, and would be useful for evaluating the algorithm on its own terms. This could be
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done by implementing an algorithm to find the neighboring chords to the chord algorithm’s
output chord, and seeing if any of those match the ground truth label as well.

Figure 22 - Aggregate accuracy results for the algorithm on dataset

In the end we decided against implementing this, as while it would be valuable and
interesting data for this thesis, it would also take time and effort away from the core elements
of the project, and in particular the final product for which it would have no use. After all,
whether the misidentified chord is very close to correct or a complete miss, the client will
have to manually correct it using the same amount of work either way.

Going back to the accuracy then, the performance of the chord algorithm definitely
leaves something to be desired. With the average accuracy between 50 and 60%, a majority
of chords are technically correctly identified, but with such a large spread and many chords
wrong, the manual reviewing process will still generally need to look at each chord and
evaluate them individually. The exception would be patterns where chord progressions are
clearly identified by the algorithm which does crop up, giving the manual review a simple
template to follow for correcting the missed chords.

It is tempting then to say that such accuracy would not reduce the workload for
manual review by 50 – 60% despite the accuracy, but even dummy data can be helpful as a
guideline for manual editing. Thus while the chord-identification itself is not as helpful as
would be preferred when using the algorithmic approach, it still has some use.

Nevertheless, the accuracy is not especially exciting, and it must be hoped that
improved performance can be seen with a machine learning approach.

6.2 Machine learning
After creating our pipeline and evaluating the initial algorithm results, attention was turned to
the machine learning portion of the work. At this point, it was already decided that machine
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learning would be used to create a NN for solving chord recognition, as we did not believe
the dataset was sufficiently accurate and precise to make a good NN solution for beat
detection. Additionally, the beat detection algorithm performed reasonably well when
compared to graphs of song onset strength - you can read more on this in chapter 6.1.1.

Thankfully where the beat-timestamp dataset was lacking, the chord dataset was
comparatively very reliable. Since the chords can be evaluated on a binary “correct/not
correct” scale, training a neural network to perform evaluation on this dataset would be
comparatively straightforward. The main challenge here related to subjectivity in human
classification as the human ear is not perfect, as well as occasionally the issue of separating
out only a single chord where multiple chords were present. This second issue manifested
most commonly where the instrumentals and the vocals of the song use different chords,
and as mentioned in chapter 6.1.2 the Spleeter library was introduced to help solve this
issue.

With this in mind, a process pipeline for creating this neural network was designed.
First, more preprocessing was needed, in order to pass the data into the Neural Network
correctly. Once that was complete, the design phase of the pipeline would begin, during
which the actual design of the model and its parameters would be determined.

6.2.1 Gathering training dataset

Figure 23 - JSON format for processed dataset

The training dataset is based on the dataset of the client. This is a JSON file called
songs.json and is required when running the functions to generate the training dataset. For
confidential reasons, the file won’t be available in the repository. As seen in figure 23 the
client dataset is processed into a simple JSON object with youtube id, chords, and beats so
it can be reproduced with any dataset that provides these raw values.
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Figure 24 - Chromagram with empty
frames as padding

Figure 25 - Chromagram with extended
initial frame as padding

Since neural networks require a uniform shape in the input data, it is crucial for the
training set to be properly padded to the same size. The training dataset will consist of
chromagram matrices between two beats, the x-axis (time) could be different for each matrix.
The first and simplest solution is to append empty frames until we reach the size of the
longest time frame. This will result in data with massive black bars as seen in figure 24.
Since neural networks try to find comparable features in each data point, these black bars
will skew the predictions towards initial length instead of the actual data gathered in the
chromagram.

The next solution would be to extend the first or last frame as shown in figure 25.
While this will be better than figure 24, the same issue applies where the results will be
heavily dependent on the initial length of the chromagram.

Figure 26 - Chromagram padded through even distribution

The best and final solution that ended up being used was padding through even
distribution as shown in figure 26. This solution keeps all the information without adding
anything new that might influence the predictions.
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Figure 27 - Code snippet of extendMatrix() - Extends the rows evenly in a matrix,
found in preprocessing.py under NN/API folder8

There were no solutions available that would evenly distribute the rows in a matrix so
we had to create our own function as shown in figure 27. First, we would calculate the
amount of times the rows would need to double (I.e. amount of times each frame would be
extended) as well as the remainder. To double the matrix we would simply copy a frame and
insert it after the copied frame n times. It was also important to check if the index in the
iteration was one of the inserted frames then skip it, this was done by a simple modulo
operation checking if the index of the double loop with an addition of 2 would return a

8

https://github.com/sindre0830/Neural-Network-for-Recognizing-Features-in-Music/blob/ec5e23588e1d
d3c4ef70995292552e2b0ffb05ce/NN/API/preprocessing.py#L228
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remainder or not. Once the matrix has been extended, we have to apply the remainder.
Here, a skip variable has to be calculated in order to pad in the proper location; if for
example the remainder is large, we will occasionally pad two frames in a row, whereas if the
remainder is tiny we might skip 8 - 10 frames.

When the normalization function was finished, we created a simple function that
iterates through each song in the JSON file. It downloads the song, generates and
normalizes chromagrams between each beat, and appends both the matrix and the label to
the dataset. In the end, it is saved as a file under the Model-training component in the project
folder for model training.

Major Amount Minor Amount

A 33774 A 1287

B 1525 B 10653

C 3717 C 146

D 29316 D 525

E 26777 E 2809

F 715 F 120

G 4810 G 116

A# 111 A# 69

C# 1352 C# 5701

D# 167 D# 174

F# 675 F# 23369

G# 154 G# 344

Table 2 - Amount of data points per label

We ended up with a total of 148,406 data points in the training set. As shown in table
2, there is a lot of inequality between the labels. This will be an issue further discussed in
chapters 6.2.1, 6.2.3, 10.1 and 10.2.1.

Once the dataset is gathered, we perform train-test-validation-split. This
splits up the database into 70% for training, 10% for testing, and 20% for validation. During
the model fitting, it uses the training data to get the initial weights. The model then uses
testing data to test the weights, then apply changes to improve the weights. This causes the
testing data to influence the model fitting and would be a poor choice while analyzing the
model after model fitting. This is where the validation data is used to get an unbiased
analysis of the model. While looking for the model design, tiny changes in the model are
tested to find the best layout. To reduce the difference between the models, the
train-test-validation-split is saved to file and loaded from there so the dataset is the
same for each run.
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6.2.2 Determining model layout
Once the proper input format and size had been determined, work on designing the model
could begin. First, the basic layout of the model was chosen. Since the input data would be
chromagrams between two beats a 2D convolutional input layer was chosen. The data
would also need to at some point be flattened, in order to be passed through the final dense
output layer properly. This meant the model would always need these three layers – a
Conv2D input layer, a flatten layer, and a dense output layer.

The input layer’s shape must be (12, 47, 1) where the tuple corresponds to the y-, x-,
and z-axis of a matrix (z-axis is used in color images for instance where the matrix is
multi-dimensional). The Dense layer has a size of 25 to match the 24 potential chords with
an extra output value where the model calculates the possibility of the input being none of
the labels it trained on. Sigmoid activation was chosen for the output layer, as this function
normalizes input values to fit between 0 and 1. This is ideal as the classification in this case
should return exactly one chord as the identified chord, and nothing for the other chords.
Since we only care about whether any given chord has been identified as the best fit for the
chromagram input or not, the actual values of the output have themselves no intrinsic value.
As such, a sigmoid function helps make the output more readable, as the normalization
removes noise from “runner-up” chords and clearly defines the identified chord.

At this point, a barebones skeleton of the model has been determined, which must be
iterated on and added to. This should be done in a scientific and – as much as possible –
unbiased way, and some way with which to evaluate the final model’s performance should
be decided. For this process, a search approach evaluating many different model
configurations was decided on. To evaluate the results, first a basic look at their resulting
accuracy on the validation data was done. Then for the best performing models, further
scrutiny was performed – more on this later.

A model search process consists of creating models with varying parameters and
running the train-test-validation-split dataset through these models. Then, the accuracy and
loss numbers for these models can be compared, in order to see which model-designs
achieve better results.

In order to perform such a search, Grid search and Random search were considered.
At first, attempts were made to use inbuilt Keras library functions9 to perform these, but here
problems with data types were encountered. Due to quirks in the most recent version of
Tensorflow, input data had to be formatted as lists rather than Numpy arrays so it would work
with the model. However, the built-in Keras library for searching automatically transforms the
label data to Numpy array as a part of the process, which leads to type mismatch errors.

Instead, designing search from scratch was the chosen method. At first, a grid search
approach was chosen, however this presented a large problem in terms of runtime. Even a
fairly modest set of parameters being adjusted for the search quickly resulted in thousands
of models, which would take upwards of a full week to run at an optimistic estimate. Because
of this, the decision was made to move to a randomized grid search instead. Where a grid
search methodically tests all possible combinations of search parameters, our randomized
grid search will instead run a set number of models – easily defined and controlled as
needed – on a random set of those possible combinations.

While not as exhaustive as regular grid search, nor having the potential for finding
unexpected and unaccounted for configurations the way a true random search can, this

9 https://scikit-learn.org/stable/modules/classes.html#hyper-parameter-optimizers
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approach suited the needs of the project well. It balanced having a good variety of
configurations with a reasonable runtime, while maintaining a sense of unpredictability and
spanning many different parameter combinations.

When deciding what parameters of the model to search on, the focus was primarily
on layers and nodes. For the former, having many different options for Conv2D layers and
Dense layers was the primary focus, and so multiple for loops running model.add() a
random number of times – from 0 to 2 – was the chosen approach. This way, anywhere from
0 to 6 layers of each type could be added to the model. Additionally, each loop would use a
random number of filters between 16, 32, 64 or 128 and the same for units with the
exemption of 16, this is because it isn’t recommended to have the output nodes on the
second to the last layer be less than the output layer.

Regularizer is the last parameter included in the random search. Regularization is
one of many techniques to help combat overfitting and is a necessity when dealing with an
uneven dataset. The possible regularizer values are 0.0001, 0.0005, 0.001, and 0.005.
Anything lower or higher than these values are extreme and not useful, while we could add
more between each number, the difference would be miniscule and increase the possible
combinations by a lot. In the end, we ended up with a total of 116,640,000 combinations
where we would pick n combinations at random to train and compare results.

Initially, variation in kernel size for Conv2D layers was also attempted. However, it
was discovered that this risked significant loss of data to the point where, once dense layers
were reached, the model could crash out with errors. Kernel size decides the 2D convolution
window size and helps reduce the training time as it looks at all the values within the window
and combines them. While this is very helpful in convolutional neural networks with input of
large matrices like images, it reduces the amount of data on both the x- and y-axis where the
y-axis can potentially reach ≤ 0 causing the program to crash. For this reason, a consistent
kernel size of 1 was chosen for all randomized convolutional layers in order to avoid this
issue – as well as a size of 3 for the static initial layer in order to significantly reduce the
amount of nodes for the model as a whole.

For activation of each layer, rectified linear unit (or ReLU) activation was used. This
simple activation method is well established for use in machine learning, because of its
useful property of outputting zero for any negative input. This is, essentially, all the function
does – and that is to its advantage, as this makes it fast, easy to understand and preserves
as much data as possible for the model. At the same time, it has been proven to work well.
While it is a piecewise linear function that cannot extrapolate in the way nonlinear functions
might, it is well suited for generalization – which is the purpose of a neural network.

As Andre Ye notes, “The strength of the ReLU function lies not in itself, but in an
entire army of ReLUs… when there are enough of them, they can approximate any function
just as well as other activation functions…” (19). All this with superior speed and efficiency.
Because of this, searching through different activation functions was decided against.
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With dropout Without dropout

# nr Accuracy Loss Accuracy Loss

1 81.68% 0.74 79.74% 0.94

2 81.32% 0.67 79.53% 0.88

3 81.23% 0.79 78.69% 0.73

4 80.52% 0.71 78.62% 0.94

5 80.07% 0.76 77.79% 0.83

6 79.43% 0.78 77.68% 0.78

7 78.75% 0.74 77.61% 0.76

8 78.39% 0.75 77.41% 1.19

9 75.23% 0.90 77.18% 0.87

10 74.88% 0.89 76.24% 0.96

Avg 79.15% 0.77 78.05% 0.89

Table 3 - Comparing accuracy (higher is better) and loss (lower is better) results from
10 models with dropout and 10 models without.

Our dataset is rather unequal with some chords being over represented, as shown in
table 2 under chapter 6.2.1. This can cause the model to overfit, making it biased towards
some chords. Applying a dropout layer is a good way to reduce bias as it randomly ignores
neurons in the layer reducing the strictness of the model (20). When deciding upon dropout,
we ran the random search with and without dropout, then compared the results. As shown in
table 3, the accuracy difference is miniscule, but the loss value is significantly lower. Using
these results, it was decided to implement dropout in all of the potential layers.
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Batch normalization
with dropout

Batch normalization
without dropout

# nr Accuracy Loss Accuracy Loss

1 82.60% 0.69 79.65% 1.02

2 82.30% 0.71 79.45% 1.07

3 82.28% 0.70 78.91% 1.12

4 81.36% 0.70 78.88% 1.00

5 79.57% 0.74 78.07% 1.19

6 78.62% 0.79 77.56% 0.96

7 78.56% 0.75 77.25% 1.13

8 77.79% 0.80 75.65% 1.01

9 77.42% 0.83 75.25% 1.09

10 76.75% 0.86 75.00% 1.26

Avg 79.73% 0.76 77.57% 1.08

Table 4 - Comparing accuracy (higher is better) and loss (lower is better) results from
10 models with batch normalization and dropout, and 10 models with batch

normalization without dropout.

Batch normalization is a technique used in deep learning where the contribution in
each mini-batch gets normalized. This helps reduce the amount of epochs required to reach
the optimal accuracy which reduces the amount of time model training takes (21). This is
especially helpful when running the random search where multiple models are trained in one
session being rather time consuming. Table 4 compared to table 3 shows similar results
except for the average loss value in Batch normalization without dropout in table 4 compared
to Without dropout in table 3. This could be the result of the normalization having a negative
impact on the model or just an anomaly. Either way, the result with batch normalization and
dropout gave similar results while being less time consuming to train so we ended up
implementing it in each potential layer alongside the dropout layer.

Once the base layout was structured and the random search functionality built, the
proper run could start. 70 combinations were trained and compared where the best
combination of parameters were decided on.
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6.2.3 Final design

Figure 28 - Model accuracy (left) and loss value (right) plots

From the 70 combinations that were trained, the best model ended up with an
accuracy of 82.64% with a loss value of 0.63 (See attachment H for the full report of the
random search). As seen in figure 28, the accuracy grew fast the first 4 epochs, then slowed
down with a small but steady increase throughout the training. While comparing figure 28
and figure 29, we can see that the model is overfitting somewhat, though it is not a severe
case and thus was deemed acceptable given its otherwise top results.

Figure 29 - Graph visualization of under and overfitting (22)
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Figure 30 - Model summary of the convolutional layers

As seen in figure 30, the model consists of an initial filter of 64 with a regularizer of
0.0005. The rest of the convolutional layer filters consist of 32, 64, 64, 16, and 16
respectably.
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Figure 31 - Model summary of the dense layers

As shown in figure 31, the first layer is a flatten layer which converts the data from a
matrix into a 1 dimensional array. There are only two dense layers with a unit size of 256
before the output layer. The model ended up with a total of 1,929,049 weights where 1,536
of them aren’t trainable (batch normalization).

Major Prediction Minor Prediction

A 98.79% A 0.30%

B 1.65% B 87.18%

C 0.00% C 0.01%

D 99.99% D 0.03%

E 25.38% E 0.08%

F 0.17% F 0.00%

G 97.29% G 0.03%

A# 0.00% A# 0.00%

C# 0.13% C# 38.59%

D# 0.02% D# 0.02%

F# 0.24% F# 97.64%
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G# 0.00% G# 0.33%

None 0.01%

Table 5 - Final model prediction results from a chromagram of D Major

Table 5 shows the prediction results from a chromagram of D Major picked at random
in the validation set. While the model correctly predicted D Major as the highest likelihood at
99.99%, other chords were very close. In the circle of fifths, G major, B minor, F#minor, and
A major are all somewhat similar to D major in the chromagram and could easily be
mistaken; more on the circle of fifths in chapter 10.1. None represents the output value
where the model predicts the input is none of the labels it has trained on.

6.3 API
To connect the web application and the neural network together, an API was created. We
decided to use Golang for the development, because we were already familiar with the
creation of APIs with it.

6.3.1 Endpoints

Name Method Description

Analysis POST Analyze a song and add the result to the database.

Results GET Get the results of all songs that have been analyzed.

Results DELETE Delete the result of a song from the database.

Results PUT Update the result of a song in the database.

Diag GET Get the status of the application.

Table 6 - Endpoints description

As shown in Table 6, the API is composed of three endpoints: analysis, results, and
diag. Analysis deals with sending of YouTube links and returning the result of their analysis.
The results endpoint is meant for retrieving, deleting and updating the songs that are already
analyzed. Diag is used for getting diagnostics of the whole application.

When the user inputs a YouTube link in the web application, a POST request is sent
to the analysis endpoint in the API handler. The title of the video is then retrieved, and stored
in the database along with a boolean that indicates that the song is currently being analyzed.
Then, the ID of the YouTube video is passed to the NN’s internal API analysis endpoint. If
everything went well, the database entry is updated with the result. If something went wrong,
a “Failed” boolean is added to the entry.

The web application also displays all results that are stored in the database. To
retrieve them, it has to send a GET request to the results endpoint. This endpoint fetches all
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songs that are not marked as “Processing” or “Failed” from the database. If the user wants to
update the result of a song, a PUT request to the same endpoint is sent.

Another feature of the web application is displaying the status of the whole
application. This information is retrieved from the diag endpoint. The API sends a request to
the NN internal API to see if it is up and running. It also gets all songs marked as
“Processing” and “Failed” from the database. All this information is then combined and sent
back for the web application to display.

6.4 Graphical User Interface
This subchapter will describe the design and implementation of the application’s front-end
module. It is developed using React and JavaScript.

6.4.1 Design
Before the UI was created, the design was discussed with EC-Play. They said it was up to us
to decide the design, but a simple one was desirable. To make the website as accessible
and easy to use as possible, we opted for a simple design that is easy to understand. We
were inspired by modern and minimalist websites as these are common nowadays. The
standard layout for each part of the web application consists of a navigation bar at the top,
and a space underneath allocated for the content related to the page.

Responsive web design is websites’ ability to adjust to and accommodate different
screen sizes (23). To improve the user experience of the application, we implemented this
concept. The website works for mobile and smaller screens, as well as larger ones. Another
concept that is closely related to responsive design, is the mobile first approach. As the
name implies, this is based on designing for mobile devices first. Instead of adapting the
desktop design to the mobile devices, the mobile design acts as a foundation that is built
upon for larger devices. Some benefits to this approach:

- The focus is put on the essential content that is needed. Designs for larger screens
tend to have more features and quirks to it that might transfer badly to smaller
screens (24). Keeping the mobile layout focused on the core functionality is therefore
desired.

- The website’s loading time is decreased because there is no need to load elements
and styling that is only used for larger screens (24).

With the use of media queries in the CSS, styling elements when a certain condition
is met is possible. We utilized this by adding the styling needed for the mobile design first,
and then adding additional styling when the screen width is increased. An example of this is
found in Figure 32, an excerpt from the AddSong component’s CSS file. The input field
covers a set percentage of the screen's width, and would cover an increasingly bigger
portion of the screen if not for these queries limiting it.
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Figure 32 - Example of media queries

6.4.2 Features
The web application is built up of three different pages: input, output, and status. The input
page is where users input the YouTube links for the songs they want analyzed. Only one link
can be inputted at a time. After the link has been parsed, the users get a message telling
them if everything went OK or not.

The output page displays all the songs that have been analyzed. The user can then
choose to manually update the results, in case there are any mistakes. Then they need to
approve the song. When a song is approved, it is no longer possible to edit the result values.
If the user had modified the result, this is updated in the database when the song is
approved. The user can also search for and filter (approved and pending) the songs for
easier navigation.

The last one is the status page. Here, the user is presented with the diagnostics of
the application. All songs that are currently being processed and the ones that failed the
analysis are displayed here. There is also a chapter that shows the status of the other parts
of the application, for example the API.

6.4.3 Components
A UI in React is built up of multiple components that each serves their own purpose. This
section breaks down the entire application, and goes more in depth of the components it is
composed of. All components are represented with their own border color and a number.
Each page has one main component that is built up from smaller ones. The Navbar
component, which serves as the navigation bar, is visible throughout the whole application.
This one is marked with a blue border and has the number 1. Some components are used in
several places, and have the same color and number throughout all illustrations. An example
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of a component that is repeated is the SongTitle component, which is represented with a
dark blue color and the number 5. This component displays a title and a colored line
corresponding to a specific status.

Figure 33 - Input page components

Figure 33 shows the layout of the input page which, aside from the Navbar
component, only consists of the AddSong component. This component is built up of three
elements: a paragraph for displaying messages to the user (not in the illustration), an input
field, and a submit button. For this reason it seemed sufficient to merge them into the same
component.

Figure 34 - Output page components
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The output page, shown in Figure 34, is more complex and includes these
components: Songs (purple and number 3), Song (brown and number 4), and SongTitle
(dark blue and number 5). Songs is the main component of the output page, and fetches and
manages all songs that have been successfully analyzed. It contains one Song component
for each song, where the actual results are displayed. Each Song component also consists
of a SongTitle component, which only shows the title and whether it is pending or approved.

Figure 35 - Status page components

The status page is described in Figure 35. It is composed of these components:
Status (red and number 6), StatusList (orange and number 7), and SongTitle (dark blue and
number 5). Status is the main component, and is built up of variations of the other
components. StatusList displays a list of values with a suitable heading. There are three of
these present on the status page. One that lists all songs that are currently being analyzed,
one for all songs that failed to be analyzed, and one for the API status. Each StatusList has
SongTitle components where a title and a status are shown.

6.4.4 Routing
The program’s navigation feature is developed with the React Router library, a routing library
for React. The web application is a single-page application. When the user navigates the site
the pages are not reloaded, but rewritten dynamically. This makes the application fast, as
most data is only loaded once. As the users do not have to wait for a whole new page to
load when navigating, the user experience is enhanced (25).
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Figure 36 - Excerpt from the App.js file

Figure 36 shows the App.js file, which is a container for the application’s
components. All available paths are listed in the “Routes” tag along with the corresponding
component. There is always a main component rendered along with the navigation bar.
When a user navigates from one path to another, the currently rendered component is
changed to the desired one. The default component to be rendered is AddSong, as this
gives easy access to inputting a new YouTube link.
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7 Development environment

Tool Purpose Usage

GitHub Handle hosting and distribution of code Project organization

Visual Studio
Code

IDE for development in Golang, React, and
Python

Front-end, back-end

Google Drive Documentation storage Project organization

Google Sheets Tool for designing the Gantt chart Project organization

Google Docs Cooperative writing and editing Project report

Toggl Time logging tool Project organization

GitHub issue
tracker

Git tool for scrum-organization and general
issue tracking

Project organization

GitHub
workflows

Quality assurance through linting and running
tests

Quality Assurance

Miro Online whiteboard for designing models and
diagrams

Design

Figma Tool for creating wireframes and user tests. Design

Discord Online communication app Project organization

Google Firebase Cloud storage Database

Docker Deployment tool for instancing and managing
processes in individual virtual machines.

Deployment

Table 7 - Tools

The tools used during the project are shown in table 7. For our IDE of choice we selected
Visual Studio Code, as we were all very familiar with it. Its flexibility also lets us use it for
both development in Python, Golang and React. We utilized GitHub tools for large parts of
our pipeline, including testing and linting through workflows as well as tracking issues and
planning our scrums. We found that using GitHub as a hub for our activities in this way
worked very well, as it allowed us to centralize these separate processes and more easily
track progress and how each person was doing.

Besides this, Miro and Figma were used to model and diagram our network, design
UI sketches and perform user testing. Google’s Drive services were used to store
documentation as they allow for simultaneous editing and input. We chose to deploy our final
product on Docker, as it is the VM deployment platform we have most experience with. Since
EC-Play was already using Firebase for their database needs, we also used it to store our
database.
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8 Testing and Code Quality

8.1 Workflows
The first step in our testing environment is manually checking that the code both builds and
runs on our own computer. The next step is automated workflows provided by GitHub.
Workflows allows us to automatically test the code on each commit through the use of virtual
machines and a set of commands. We would also wait until all workflows were finished
before merging the pull request with main as it would make sure the code would run on a
neutral machine (not just our own environment) and that it followed the linting style that we
picked for each programming language.

Package Language

flake8 Python

Golang checker Golang

NPM checker React

Table 8 - Linting checkers for each language

As shown in table 8, both Golang and React have an industry standard linting
checker already provided making it easy to implement. Python on the other hand required a
3rd party package. We decided on flake8 as it has a lot of interactions on their GitHub
repositories, and was rather easy to use.

All of the workflow files are saved in the github folder in the root directory of the
repository. The workflow for the internal API in the Neural Network folder is shown in figure
37. The pipeline is as simple as: choose the operating system to work on, setup the
programming language used, install dependencies, build code, and check linting style using
a lint-checker.
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Figure 37 - NN/API workflow

8.2 Code review
As part of the development process, we planned to perform code review on eachothers pull
request. Combining this with the Trunk-Based Development strategy and the workflows, the
pull requests were small and already checked for the basic linting mistakes which made it
faster and easier for us to conduct code reviews. These reviews, while making sure the code
quality was good, would also allow each team member to get a better understanding of the
entire code base.

8.3 User testing
After the first version of the web application’s design was created, we performed user
testing. We mainly wanted feedback on navigation and functionality, but asked about layout
and design as well. Considering how the Covid-19 situation was at that time, it seemed
safest to do the entire process online. New restrictions were suddenly introduced, which
made it difficult to plan in-person testing. EC-Play is not located near use either, which would
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have made physical testing more time consuming. On a positive note, this allowed for a
more flexible and effective process.

8.3.1 Subjects
The test subjects can be divided into two groups: average users and the client. We wanted
our UI to be accessible and easy to use for everyone. By testing on people outside of
EC-Play, we got to see if the layout and navigation made sense regardless of the test
subject’s connection to the task. EC-Play were the ones who created the task, and would
probably give different feedback than people that are not familiar with it. However, getting
EC-Play’s opinion was also important so we could see if we were on the same page
regarding the features.

We performed user testing on the average user group in the beginning of February.
The decision was made to test on friends and family because of Covid-19. As mentioned
earlier, there were strict restrictions at the beginning of the year. For this reason, testing on
random people would not have worked well. Since this group is close to us, their opinions
and feedback might have been unreliable in the sense that they are too positive of our
product. However, we asked follow-up questions if they appeared vague in their answers.

8.3.2 Process
The testing on EC-Play was more like a casual chat of what they thought of the design. It
was done over Discord during one of our weekly meetings. As it was a digital meeting and
they just watched a screenshare of the wireframes, it might have limited their impression.
They could not get a feeling on how it is to actually navigate the site. However, the testing
helped us with making sure we were on the same page as them when it came to the
features of the web application. They could see what we thought were important to include,
and could discuss it with us if there had been a misunderstanding during the planning phase.
It is important to uncover problems in the design phase, as it makes them easier to fix than
in the coding phase. Table 9 illustrates the problems discovered, and the action we took for
each one.

Feedback Action

Wrong JSON format displayed in the output
page.

We got an example of their JSON format,
and changed the wireframes to reflect this.

They liked that we had added a status
page. However, there should be a section

that shows all songs that are currently
analyzed.

We added a “Processing songs” section to
the status page.

Table 9 - Feedback from client

The testing on the other group was also done over Discord, but this time the subjects
got the link to the prototype so they could explore it themselves. They got multiple tasks
regarding navigation, and would show us how they would solve them by describing their
steps and thought process. After finishing the tasks, we asked them how they experienced
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the navigation and layout. We also got some general feedback on the design. All answers
and tasks can be found in attachment I. The problems uncovered while testing this group are
described in table 10.

Feedback Action

It is hard to know that failed songs show up
on the status page.

We added a sentence on the output page
that tells the user where they can find failed
songs.

Having API status on the top of the status
page might be a problem, because the
songs are the most important part. Not
everyone will know what it means.

We moved the processing- and failed songs
to the top of the status page.

There is a lot happening on the status page,
which makes it confusing.

When viewing results in the output page,
you can open and collapse a song. This
feature was also added to the status page.

Sorting the songs would be useful. Either
alphabetically or by upload date.

No action was taken here, but this could be
an improvement for the future. We have a
search functionality, which allows the user
to find specific songs without trouble.

Table 10 - Feedback from user testing

The before and after design of the prototype can be found in attachment J.
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8.4 React testing
React Testing Library was used for testing the functionality of the React components. An
important aspect of this type of testing is the focus on how the end user experiences the
application. The implementation details are not important (26). If a user wants to click a
button, they do not see the function that is called when the button is clicked. What they see
is the visual representation of the button, for example the button name. Figure 38 shows an
integration test of form submitting in a Song component. It checks if the input validation of
the “chords” field works correctly. To find the submit button of the form, text is used to query
for the button’s name. When the button is found, a click is also triggered. If we had called the
function name instead of finding the elements like this, the tests would be harder to maintain.
Implementation details may change, and renaming the button click function from
“handleClick” to “submitForm” would break the entire test.

Figure 38 - Testing of input validation

Most of the tests are unit tests, but there are also some integration tests to check if
different parts of the application works together. The unit tests revolve around the UI, and if
the elements are rendered correctly. An example can be found in figure 39. In a Song
component, there is either a button called “Approve” or a button called “Edit” displayed.
Which one is rendered is based on if the song is marked as approved or not. The tests
checks songs with different approved values, to verify that only the correct button is present.
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Figure 39 - Testing of buttons

The application contains several input fields. In the Song component, these fields are
supposed to be set with an initial value when the component is rendered. However, in the
AddSong component, no value is supposed to be present. A few of the tests, like the one in
figure 40, therefore confirms the initial value of an input field.

Figure 40 - Testing of inputs’ initial state

To limit calls to the database, the testing framework Jest was used to mock the
results in some of the integration tests. Figure 41 shows a test of the Songs component,
where fetching from the API would be necessary to display the results. Instead, the response
from fetch is mocked with the desired test results.
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Figure 41 - Testing of result displaying
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9 Deployment
Docker was used for the deployment of the application. Docker is a software used for
containerizing applications, and uses images and containers to accomplish this. An image
contains all essentials for running an application, such as dependencies and code. A
container is a runnable instance of an image, and combines the application’s code and
dependencies into a process that is isolated from its environment (27). Docker images can
run in every environment, and will be consistent throughout. This was a huge advantage for
our group. Since we are using different operating systems, having an easy way to run the
application was especially convenient.

A container should only focus on one thing, as this will ease both the updating and
scalability of each part of the application. Updating one container will not affect any of the
other containers, as they are all isolated. The different parts of the application might also
need to be scaled differently, which is why having them in separate containers is the best
solution (28). Because our application consists of three separate modules, it had to be a
multi-container application. This means each part has its own container.

The tool Compose is used for defining such applications so it can run as a whole in
an isolated environment. All that is needed is a file that contains the configuration of the
application’s services (29). Figure 42 shows the compose file, where each service is
configured with a name and which ports to use. However, to get the program to run properly,
the user has to create their own Firebase project and create a file called
“serviceAccountKey.json” in the API folder. This is used to authenticate the connection to the
database, and should not be shared.

Figure 42 - docker-compose.yml
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Each service has their own Dockerfile for container creation. All of these files follow
the same structure: a new folder for the application is created, dependencies are installed,
the source code is copied to the new folder, and lastly the application is started. Figure 43
shows the Dockerfile for the NN internal API, which illustrates the layout.

Figure 43 - Dockerfile for NN internal API

See README.md10 in the product repository for detailed instructions on how to
deploy the product utilizing the docker command line.

10 https://github.com/sindre0830/Neural-Network-for-Recognizing-Features-in-Music#readme
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10 Results and analysis

10.1 Results
As mentioned in chapter 6.1.1, we ended up implementing a solution using the librosa library
to perform beat detection. We found this library worked rather well for most songs, though it
was unreliable on variable-tempo songs. As we did not reinvent the wheel for this solution,
and the results in terms of accuracy are discussed during the implementation, we will not
spend more time on these results here.

Before we can discuss the overall results of the NN in recognizing and classifying
chords however, a definition of “good” and “bad” results need to be determined. Specifically,
how do we evaluate performance? In order to answer this, let’s look at a basic confusion
matrix in figure 44.

Figure 44 - Basic confusion matrix (30)

As can be seen, results can be divided into four categories. True positives are cases
where the network correctly identifies a data point as belonging to the correct class.
Similarly, true negatives correctly identify a data point as not belonging to an incorrect class.
False positives identify the data point as belonging to a class it does not actually belong to.
And finally, false negatives incorrectly identify a data point as not belonging to its true class.
With these definitions, we can check table 11 to visualize the different ways in which we
might evaluate our results.

Metric Description Formula

Precision Precision compares the correct
positive cases with the predicted
positive cases.

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
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Recall Recall compares the correct
positive cases with the overall
positive cases.

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

F1 The mean of precision and recall,
which gives better measurement of
incorrect classification - harmonic
mean is usually used to normalize
the results.

2 * (𝑅𝑒𝑐𝑎𝑙𝑙  * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 
(𝑅𝑒𝑐𝑎𝑙𝑙  + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

Accuracy Accuracy measures all correctly
identified cases vs total cases

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)

Table 11 - Evaluation metrics (31)

Due to the data we are working with and how we evaluate it however, things are
somewhat more complicated. This is because in our case we are looking at a set of 24
mutually exclusive labels in which a data point either belongs or does not belong to each
class, and the network attempts to classify it into one of these 24. If it fails to match any of
the 24 labels, it will classify the data point as a 25th none label - however, we consistently
observed not a single chord being identified as none while testing our various models. Since
the validation data only consisted of data that we had trained on, it makes sense for the
model to not determine any of it as none. If we were to input a blank matrix or something not
related to a chord, the none label would be output.

One thing to note is that the recall score is identical to the accuracy score in our
specific scenario. We can validate this by comparing with the neural network’s results. For
the model above using the same train-test-validation split, the results evaluation found an
accuracy of 82.64% and the same number for recall. If we look at the total accurate
classifications compared to total classifications in figure 49 further down, we get
24650/29829 which is True Positives over N or the full dataset which indeed equals 0.8264
or 82.64%!

The reason for this is a difference between what is called micro and macro
averaging. The difference between these approaches is especially relevant for multiclassed
datasets with imbalanced dataset sizes for each class - exactly the case we are working
with. To explain simply, micro averages weigh each sample in the dataset equally - thus
classes having more samples will have a greater impact on the average. Macro averages on
the other hand weigh each class equally, and will lead to each sample for smaller classes
having a larger impact than each sample for larger classes (32). Since we are weighting our
results based on datasize, we are looking at micro averages for our evaluation as this is
ideal when looking at overall accuracy (32).

If we go back up to table 11, we see that recall considers true positives and false
negatives in the dataset. Because our dataset is so skewed towards a handful of classes,
what is happening is that for these classes which contribute by far the most to our results,
the sample numbers for these two variables is many, many times higher than the numbers of
false positives and true negatives. And since these handful of classes massively outnumber
the remaining classes, these classes with larger sets for false positive and true negative
classification have little impact on the accuracy score. Thus, in the formula for accuracy, TN
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and FP become negligible, and the formula approximates the formula for recall as visualized
in figure 45.

Figure 45 - Recall and accuracy similarity - small datasets marked in red

While this helps explain the two results being extremely similar, the fact that recall
matches accuracy exactly is most likely a coincidence.

For this task, we decided that the model’s accuracy was the best parameter to
evaluate overall performance. However, precision, recall and F1 are still very useful
parameters for identifying trends or outliers, and will be discussed throughout this section.

When analyzing the success of the neural network in detecting chords, consultation
with the client, EC-Play, was done for their musical expertise. During these discussions, the
idea of looking at neighboring chords was suggested, an opportunity quickly grasped as it
seemed quite interesting as a method of evaluation. Three tiers of accuracy are defined -
top1 is perfectly accurate, top-2 includes the nearest neighbor, and top-4 would be the most
generous and include the three closest neighbors. Top-1 accuracy is thus identical to the
accuracy score we find by parsing the confusion matrix using the formulas above.

This is different from how top-N accuracy is usually defined - in conventional data
science, top-4 accuracy would mean that the correct chord is within the 4 top chords
guessed by the neural network for a specific data point (33). However, this is a much less
useful metric for the practical application of this product for EC-Play, as they are more
interested in specifically finding neighboring chords as explained below - having a good
top-4 accuracy for this makes it easier for them to check and edit the result manually, as they
know to listen for similar chords. Thus, we elected not to look for top-N accuracy in the
classical sense.

Figure 46 - Circle of fifths, visualization (34)
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The concept of neighboring chords was previously explained during the
implementation of the chapter 6.1.2 of the thesis, but to sum it up - each chord consists of 3
notes. It shares two of these notes with three other chords of the 24. The easiest way to
visualize this is using the circle of fifths, which can be seen in figure 46.

Take the D major chord for example - its neighbors are G major, A major, and B
minor. Of these, the B minor chord in the inner ring is its very closest neighbor, as it shares
the most important notes for the chord. Similarly, D major is B minor's most important
neighbor as well. G major and A major also share two notes, but they are not as impactful to
the makeup of the chord as those shared by B minor. Additionally several other chords share
one note - however, these are not so similar as to meaningfully qualify as neighbors for the
purpose of this analysis.

Through this method then, these neighboring chord pairs of the inner and outer
circles  were defined as closest neighbors, and matches between these would count as
“top-2 accurate”. In other words, if a D major chord was instead guessed as B minor, it would
not qualify as top 1 accuracy, but it would be included in top-2. Anything guessed as G major
or A major would count for top-4.

Due to the significantly different sample size for each chord, it was considered
interesting to divide these into three general groups - large sample size, medium sample
size, and small sample size. Since there are 24 total chords, and a little under 30000 total
samples in the validation dataset, a rough division on the number of digits was chosen. Any
chord with more than 1000 samples would have a roughly proportional or greater number of
datapoints in the set compared to the average, and considered large. 100 - 1000 samples is
less than average but still potentially significant, and considered medium - though this is
certainly the most volatile of the three groups. Any chord with less than 100 samples was
considered to be a part of the small sample size group. See table 12 for a list of which
chords fit into which group.

Small dataset Medium dataset Large dataset

A# minor 14 D minor 105 C# minor 1146

A# major 22 F# major 135 B minor 2141

G minor 23 F major 144 F# minor 4697

F minor 24 A minor 259 E major 5382

C minor 29 C# major 272 D major 5893

G# major 31 B major 307 A major 6788

D# major 34 E minor 565

D# minor 35 C major 747

G# minor 69 G major 967

Table 12 - Validation dataset sizes divided into three broad size categories
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In order to analyze the results when accounting for nearest neighbors in top-2 and
top-4 format, a comparison to some baseline improvement is needed. In order to do this we
first need to define a chord organization of the chromatic scale, similar to the circle of fifths
above. As can be seen in figure 47 below, ours is also a wheel or a circuit which starts at the
chord C major, and goes through all major chords, then goes back to C minor this time in the
minor scale and repeats the same chord progression but in minor instead.

Once we reach B minor at the end, we loop back and the next chord becomes C
major again, thus calling it a circuit. The exact order of chords is not important as long as the
relation between the chords remains consistent; thus, we know that we can always reach
chord one from chord two by applying the same consistent formula.

Figure 47 - Chord circuit visualization

Once we have established the chord progression, defining top-1, top-2 and top-4 can
be done fairly simply by applying mathematical formulas that identify neighboring chords in
the circuit above. The appropriate formulas for our circuit are laid out in table 13. Since these
chords loop, we can also move backwards - for example instead of x+15 for the top-2
accuracy of minor chords, we could do x-9 instead and land on the same chord.

Major chords Minor chords

Top-1 accuracy 𝑥 Top-1 accuracy 𝑥

Top-2 accuracy (𝑥 +  9) % 24 Top-2 accuracy (𝑥 +  15) % 24

Top-4 accuracy (𝑥 +  5) % 12
(𝑥 +  7) % 12

Top-4 accuracy (𝑥 +  5) % 12 +  12,
(𝑥 +  7) % 12 +  12

Table 13 - Formulas for finding chords for Top-2 and Top-4 accuracy in chord

Since this method adds additional data from different labels, we need a baseline
improvement to compare to as well. For each chord, we subtract the successful
identifications from the total dataset, to get the number of mislabeled data points for the
chord. Then, a division of this number by 23 is done to get the average number of datapoints
for each of the other 23 chords, assuming they were simply randomly distributed. For top 4,
multiply the result by 3, to account for the fact that the chord's 3 closest neighbors are added
to the accuracy assessment. Another approach could involve weighting the false positive
data points based on the size of the wrongly guessed label’s dataset size.

Before calculating the results, some predictions were performed. First, a general
trend observed and one that made sense with how training of neural networks is performed,
was that chords in the “small” dataset would likely be poorly identified, as a lack of data
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points makes it hard for the network to learn the features of these chords. For this reason
these would likely be fairly inaccurate in general, and the top-2 and top-4 accuracy should
perform poorly compared to the baseline improvement metric.

On the other hand, it was expected that the large dataset would perform quite well,
for all three tiers of accuracy. For the medium dataset, a trend is more difficult to guess at,
especially because as noted there is significantly more variation in viability of dataset size in
this group. Generally, it would be expected to lay somewhere between the two other groups.

Figure 48 - Aggregate results from accuracy analysis. P = Precision, R = Recall, F1

As predicted before numbers were run, the datasets for “small” chords performed
fairly poorly. As can be seen in figure 48, they had somewhat decent precision compared to
the other groups. This can most likely be explained by the fact that the neural network rarely
considered guessing these chords at all, due to lack of training on them. As such, whenever
one of these chords were identified, it was extremely likely to be accurate.

Figure 49 - Confusion matrix, x-axis = Predicted, y-axis = True

A closer look at the confusion matrix in figure 49 confirms this - when a datapoint was
misidentified as belonging to these chords, it was generally a point belonging to neighbor
chords, and not more than a couple. However there are some interesting outliers here, such
as the chord D# minor, which is guessed almost across the board.

A solid performance for precision was predictably let down by a much worse recall
score however, as many of the data points belonging to small samples were instead
identified as belonging to one of the chords with large sample size instead. Thus recall was a
full 10 percentage points worse than precision, giving an F1-score of 75.67%.
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Somewhat surprisingly however, despite this more than half of them managed to
outperform the baseline for top-2 accuracy improvement. For top-4 accuracy, this increased
to 2/3rds of the chords. As such, a weak trend of identifying chord features resulting in
neighboring chord identification can be seen.

For “medium” chords, the results were most surprising of all. Across the board for
precision, recall and F1, the medium sample-size group performed worse than not only the
“large” group, but also the “small” one. If sorting by top1 recall is done, it can be seen that
the worst recall scores are crowded by chords in the “medium”-size group, with “small”-size
chords more towards the middle, as in figure 50. A similar trend is clear for precision.

Figure 50 - Detailed accuracy results by chord

Despite this, the trend for top-2 and top-4 accuracy improvement over baseline were
slightly better than for the “small” group. The “large”-size group meanwhile, performed well in
all three parameters. It did lose out to the “small”-size group in the metric of precision.
However, this itself is slightly misleading - the by far smallest member of this group, the
chord C# minor, is significantly dragging the average down in this case.

Using this methodology, it was determined that all of the large datasets significantly
overperformed the average expected improvement with top-4 accuracy, between 3.29% and
a full 9.59%. All these large datasets managed to perform better than the average in terms of
top 2 accuracy as well, though the improvement was not as significant. That said, the
distribution of erroneously identified data points is not evenly distributed, and a trend of
mistaken guesses between the four largest chords can also be seen. These are often larger
than the nearest neighbor as well, showing that the network is acquiring a certain amount of
bias based on the skewed size of the datasets for each individual chord.

Besides these trends, there is also a trend of a major chord being guessed as its
minor counterpart, and vice versa. These chords are only separated by one note - and not
the dominant note - so there is similarity between these two (19). Additionally, sometimes the
tone which separates the two chords is not played, which makes it difficult even for a trained
ear to tell the difference. This also goes a long way towards explaining why the chords with
medium-sized datasets performed worse than those with small datasets - every single chord
in the large dataset had its counterpart chord in the medium, rather than the small, dataset.
Thus the observed trend of chords from smaller datasets being mistakenly classified as
belonging to a chord from a much larger dataset is exacerbated by the chord similarities
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themselves. This can be seen if we look at the confusion matrix for the validation dataset
classification results in figure 51.

Figure 51 - Five worst-performing chords in medium dataset,  x-axis = Predicted,
y-axis = True

Here the correctly identified chords are marked in green, and their major/minor
counterparts are marked in red. Each row represents the total dataset for that chord, with
each column being guesses. As we can see, all five have a significant number of wrong
guesses for their counterpart major/minor chord relative to the total wrong guesses. And all
except for B major had more wrong guesses for their counterpart chords than any of their
neighbors on the chord progression wheel, which is very much opposite the trend for the rest
of the chords in this analysis.

Small and large-dataset chords trended to have mistaken guesses instead hit their
neighbors more often than their counterparts, which is shown with the chord C# minor in
figure 51 with blue and gray instead. C# minor was by far the worst performing chord from
the large dataset, and as we can see following its row it has many faulty guesses, including
other large datasets and its neighbors. In comparison, only 10 data points of C# minor were
mistakenly identified as C# major instead, a tiny portion of the total misclassifications.

Weighting the results of all chords evenly, the neural network manages 75% top1
accuracy score, which increases to 78% for top-2 and 82% for top-4. These numbers are not
ideal, but these numbers are being significantly hampered by the results for the “medium”
and “small”-size groups in such a scenario. The more interesting data can be seen when
weighting instead considers the number of datapoints for each chord, giving more weight to
chords with a plurality of data points. In this scenario, even top-1 accuracy reaches 82.65%,
top-2 85.57%, and top-4 hits a solid 91.18%.

There are drawbacks to looking solely at this weighted result and discarding the
results for chords with fewer data points as less important, some of which have been
previously mentioned. Simultaneously, while a neural network that excels at all music and all
chords would be ideal, the significant imbalances in the sample dataset is representative of
the imbalances in the music that EC-Play itself is adding to its website. If the hundreds of
songs they have added thus far include more than 25000 E major chords, and only a paltry
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150 or so D# minor chords, then odds are they will continue to process songs that are
overwhelmingly filled more with the former than the latter.

As such, a neural network which excels at finding the most common chords in exactly
this kind of music is not only perhaps a natural result of training on the dataset, but also
possibly a very good fit for the task required. A neural network solution which can fill in the
vast majority of “normal” chords and allow for manual editing and addition of more unusual
or uncommon chords is exactly what EC-Play were looking for when discussion of this thesis
first began. Ideas for how to improve the dataset and mitigate issues caused by imbalance
follows in chapter 10.2.1.

10.2 Recommendation and further work

10.2.1 Dataset preprocessing
Through our thorough analysis of the results from our neural network solution, it is clear that
the largest issue that can be observed throughout is a tendency for data points from chords
with smaller datasets to be mistakenly classified as belonging to one of the handful of largest
datasets. This is not too surprising, as these 4-5 chords have orders of magnitude more data
points than most of the others, and so the neural network is not trained in a balanced
manner, and there is a risk of overfitting even despite using stratification during
train-test-splitting.

The obvious solution then would be to better balance out the number of datapoints
for each chord in the dataset. This can be achieved in a few ways. The most intuitive
perhaps is to simply find more samples of the chords with fewer data points, but this will be a
very difficult and time-consuming process - not only will songs with unusual or uncommon
chords need to be found, but their chords will also need to be transcribed manually in order
to create the dataset. A more reasonable solution is to perform resampling on the dataset
(35). With some chords having a mere one or two hundred data points while others have
tens of thousands, a solution utilizing both oversampling and undersampling would likely be
a good solution (36).

Resampling involves simply changing the number of samples for each class in the
dataset. When undersampling, some samples are removed from classes with many data
points, while oversampling involves duplicating existing examples from classes with few data
points. Resampling should be done with care however - oversampling can result in
overfitting if performed excessively, which is definitely a significant risk in this particular case.
And undersampling can lose important information (36).

10.2.2 Improved beat detection
For the algorithm solution implemented, a basic improvement to be made could be
implementing a solution for better detecting the start and end of a song’s beat. Currently,
noise and denouement can cause issues for the beat algorithm solution, as it is unable to
properly parse and recognize such sections, leading to it finding beats before the beat of the
song properly starts, or after it is finished, as mentioned in chapter 6.1.1. One solution here
could be to apply the algorithm separately to only the start and end of the song, so that these
features are given more weight.

More obviously, a full transition to a Neural Network solution for this part of the
product would be a great next step. However, the challenges with this have already been
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outlined in chapter 6.1.1. If a reliable dataset of chromagrams or audio-files with
accompanying beat timestamps or similar can be found, this would be a fairly manageable
iteration to make. Faced with the prospect of manually creating such a dataset however, this
becomes a lot more difficult.

And if such a dataset was found, it would also beg the question: how reliable and
accurate is such a dataset? If it was created by hand it runs the risk of the same accuracy
issues that EC-Play’s dataset struggles with. If created by machine, it would either be
equally questionable, or that generator itself would be the beat detection algorithm we are
looking for, similar to librosa’s library currently being used. Further work here seems likely to
require the involvement of someone well educated and learned on the topic of audio
detection.

If a workable dataset was procured, a solution similar to that of for example Mullaney
(37) could be implemented for beat detection, using a convolutional neural network to
perform onset detection.

10.2.3 Model selection
For the chord recognition, the primary improvement we suggest would be iterating on the
model selection process. Here there are a few different things that could be tweaked or
improved. First, the search process itself could be improved by using Keras libraries in order
to implement true random searching, rather than our randomized grid search variant. This
would not only allow for true random searching if desired, but would also allow the usage of
keras tools such as scoring or refitting in order to better evaluate the parameters used and
improve accuracy on both types of search.

While there is discussion on what kind of search to use, Maladkar (38) argues that
randomized hyperparameter tuning is superior to a grid search approach due to being faster
and more efficient as it does not need to look at all combinations - an advantage shared by
our implementation - and it can find outliers and is more likely to reach the entire action
space, which our randomized grid search does not accomplish.

Alternatively, an approach that combines the two search methods is advocated by
Ismiguzel (39), where she suggests first performing randomized search in order to identify
the most interesting hyperparameters for tuning, and then performing grid search using
these parameters afterwards for optimization. This approach essentially uses the
randomized search to weed away uninteresting or low-impact parameters for the grid
search, making said grid search a lot more computationally affordable. Such approaches
would be very interesting to implement for this product in the future.

10.2.4 Implement pattern recognition
As part of the task as outlined during the thesis selection process, EC-Play suggested the
implementation of pattern recognition in addition to beat detection and chord classification.
We previously discussed in chapter 1.3 and others, we initially planned to attempt solving
this challenge, but this was abandoned somewhat early in the production process, due to a
combination of several factors.

It is, however, a natural next step for iterating on the product we created during the
course of our work. In order to accomplish this, some challenges related to inaccuracies in
the beat and chord recognition process must first be overcome however.
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We can imagine a scenario where our chord recognizer has identified a chord pattern
of 5-3-5-3 for example, where the actual chords involved should be 4-4-4-4. For a user to
manually correct these chords involves changing exactly two chords in the first and third
grouping above. However, if these were combined into patterns using a pattern recognizer, a
lot more work would need to be performed. In this case, rather than simply changing the
chords themselves, the user would also need to remove the extra chord from the first and
third group, as well as add them to the second and fourth. Even in this simple example
where the pattern recognition itself worked perfectly, we can see that a lot of extra work is
added. In worse-case scenarios, we risk a resulting pattern of something like
5-1-2-3-2-4-1-2-1. This would clearly do a very poor job of alleviating workload.

One alternative approach that could be taken, then, is to separate the beat and chord
recognition processes from the pattern recognition process. If the user was required to first
edit and approve the chords and beats before pattern recognition is performed, it would be
possible to guarantee correct input and eliminate issues relating to inaccuracies snowballing
as in the example above. This could be an interesting and worthwhile next step for the
product, and give the pattern recognizer a much better shot at improving the work process.

10.2.5 Web application and API requests
The requests between the web application and API could be improved, as they have not
been optimized yet. In our implementation, data is fetched from the API to the website each
time the relevant component is rendered. There is no system for caching the data. This
means that every time a request is sent to an endpoint, the handler retrieves data straight
from the database. We use firestore for storing data, which only allows 50 000 reads for free
every month. Because of this, constant calls to the database might become an issue. At the
end of the development period, implementing caching was originally planned, but finishing
the core features and bugs was deemed as more crucial.

The status page makes use of polling for getting a live update of the songs currently
being processed. An interval of 2 seconds is set between each call to the API. As stated in
the paragraph above, this can cause problems as it massively affects the database usage.
One fix to this issue could be the use of webhooks. Instead of the website actively polling the
API for new updates, the API could send the website a notification when an update occurred.

10.3 Conclusion

10.3.1 Product
At the end of this project, what has been produced is a quality application that we believe
fulfills all the requirements of the client at the outset of this thesis work. A web-app frontend
with three pages for passing in a song for processing, receiving the output in plaintext form
and uploading it to a database, as well as a page to see the status of the system and any
errors. An API to control communication between web, music processing and database.
Solutions for extracting beat timestamps and identifying chords in songs. And a system to
upload to and update the database through the results webpage.

As far as we are aware, EC-Play are quite satisfied with the work done, and are
understanding of the issues faced regarding the beat dataset. As communication with them
has been constant during the project, their input as to how to solve such issues and what
work to prioritize has been invaluable throughout the process.
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10.3.2 Self-evaluation
Overall, we are happy with our work done and the processes we used to accomplish it. We
are proud of the final product we created, and have learned a lot about programming, music,
development processes, deployment, testing and much more during our time working on our
thesis. However, this does not mean everything went perfectly. Indeed there are always
going to be things that could or even should be improved about any process.

Figure 52 - Time log for hours worked per week

Our first challenge was time management, as can be seen in figure 52. This
materialized in a few different ways. First the challenge of pouring all our work into a single
project for most of the semester was one we found surprisingly tough. This despite the very
prospect of doing so being something we had anticipated eagerly before starting. In
particular, the February period after finishing our project plan and starting work on the
programming solution for the product was a struggle from our side at times on this point.
Because of this, we were not quite as productive as we hoped to be, nor did we reach the
goal number of hours worked per week we had set ourselves during the planning stages. For
more details on hours worked, see attachment L.

While we are somewhat disappointed by this, we do not feel like the project overall
was harmed by this, though no doubt there would be some smaller changes or additions that
could be made had we managed to better stick with our ambitions on this point. It was a
learning experience that we will be sure to bring with us to future projects. Our hours spent
also grew throughout the project, partly due to learning better time management and partly
due to simply needing to complete the remaining work.

In addition, we had some struggles during late March and April due to illness, as
several members of the team came down with some sort of bug, including in one case
Coronavirus. We had acknowledged the chance of this happening during risk assessment,
and thankfully we did not have anyone out for long enough to harm overall progress.

Finally, we also had some time management issues due to being indecisive
regarding questions for the client and advisor at times. Multiple times we paused working on
some part of the product to await clarification or answers from these two parties, and waited
a day or two until the next scheduled meeting to bring it up rather than immediately contact
them. Certainly we usually had other work we could perform in the meantime, but in

71



Neural Network for Recognizing Features in Music⠀

hindsight this definitely contributed to poor time-management and was part of the reason
why our hours did not climb as high as planned. For the future, we have learned to be more
proactive in these scenarios. Indeed, we already significantly improved at this throughout the
semester, and by the final month we were generally on the ball about writing questions and
asking for support through channels like Teams and Discord immediately as issues cropped
up.

For our approach to the problems relevant to the task, we believe we overall solved
them well. The things we wish could have been improved or added to the product were
either outside the scope of what we worked on, or had to be cut or truncated due to the state
of the dataset available. The end result is a flexible product that should be easily iterated on
in the future if the client so wishes.

10.3.3 Gantt chart
If we evaluate our two Gantt charts for the project plan as seen in attachment A, and our
final Gantt chart in attachment G, we can see a general trend of work taking longer than
anticipated. This is in many ways to be expected, as it would be surprising if we were able to
accurately assess the amount of work each task in our chart would require. Indeed, research
has shown that humans consistently underestimate how long a task will take to complete, a
phenomenon known as the planning fallacy (40).

While some of this could potentially be attributed to the lower than planned
work-hours per week, we believe the majority can be blamed on poor estimation and
unforeseen issues and additional work cropping up during the work process. For example,
we had not planned for model search implementation during the project planning phase. Not
only did we add this, which took some time, but we also had to spend a long time debugging
the Keras library implementation and coming up with our own solution afterwards.

10.3.4 Risk assessment
Looking at the risk assessment performed during project planning (see attachment A), we
mostly hit the nail on the head. While we were not aware of the scope of difficulties with the
dataset, or how tough it would be to find good alternatives, we did correctly identify it as a
large risk for our thesis.

For our medium risks, it was more of a mixed bag. Illness did strike for multiple team
members as well as our advisor at various times, and did have some impact on progress.
Thankfully, the magnitude of this impact was mostly minimized. The issue where the API we
use to download songs from Youtube could stop working or change is also still a potential
future problem, though not one we can really affect. We implemented a simple editing
solution and provide the output data in an editable format from which it can be easily
transferred between EC-Play's proprietary editing tools - this is a large part of why we did not
spend time implementing a more user friendly tool for editing, as we kept our product
solution separate from EC-Play's website and agreed to let them handle the work of
connecting the two.

On the other hand, our lack of music-theory knowledge did not present
insurmountable barriers for creating the chord-recognition model. Nor did our worry
regarding frequency and resampling losing information end up panning out. Similarly, our
worries regarding the networking bottlenecks also seem unlikely to materialize after testing
our API design.
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At the end of the day, the main lesson we take away from our risk assessment in
hindsight is that we should have put more emphasis on process-related risks. We have
certainly learned to respect the challenges that a full product design and implementation like
this involves.

10.3.5 Final thoughts
The experience working on this thesis has been invaluable for all three of us, and we have
had a great time throughout. We have also outlined several areas where we believe further
work could be done, and give EC-Play the opportunity to pursue these should they so
choose. We would like to thank EC-Play for being amazingly cooperative and helpful during
the work, and for giving us the chance to take on this thesis work in the first place.
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Goals

Business case
EC-Play works with educational technology revolving around music. According to their
website, their goal is to change early-stage music education [1]. To do this, they create
dynamic, easy-to-follow compositions for music targeted especially at allowing young
children to follow along and learn.

Today the client has to analyze audio tracks by manually plotting beats, chords, and chord
patterns. This takes a lot of time to do and has a large risk of human error. They now want to
make this process mostly automatic through the use of AI.

Objectives

Goal Description

Effect oriented The user can get info about the composition of an audio file

Composition is easy to parse and follow

The client can reduce workload

The user can correct the output and help train the model to become
better

Results-oriented The model needs to be able to recognize beats, chords, and chord
patterns in an audio file.

The program needs to be able to receive audio files and deliver the
analysis results through an API.

UI to simplify the usage of the API and showcase the results in a
conceivable manner.

Database to store results from the analysis.

Function in the web application to correct results from the analysis.

Automatic training of model on an updated dataset.

Create a model with =>75% beat accuracy with a margin of error of
±5%, where the time spent fixing the errors will be less than
transcribing the audio track manually

Learning Gain experience working with SCRUM methodology.

outcomes Gain experience working with a large business-oriented project.

Acquire more knowledge and experience working with neural
networks and machine learning in the context of audio.
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Learn how to automatically compare two models where the best one
is used in the program.

Learn how to use modern solutions for web development.

Gain knowledge through advanced cloud development.

Table 1 - Goals

Concerning the accuracy specified in Table 1, the beat accuracy target is based on results
from other papers researching the extraction of BPM and other features using machine
learning. Here, an accuracy of 60 - 70% was achieved with a margin of error ±4%, and into
the 90s with a larger margin of error [4]. Designing a CNN with multifilter modules, Schreiber
& Müller achieved slightly better results [5]. Both papers also suggest potential
improvements to their models that we will research, to hopefully achieve better accuracy.

Scope

Description
As shown in Table 2, our task is to develop a full-stack system composed of a web
application, a cloud structure through the use of API, and a machine learning model. A
description of what each component should offer is listed in the table below.

Component Description

Web Application The web application needs to have these functionalities:
- Send a song to analysis.
- Get results from the song analysis.
- Correct the output of the song analysis to improve the model.

API The API interface needs to handle input and output from the web
application and the machine learning models.

- The web application input should cover the audio track while
the output should consist of the results from the models.

- The machine learning input should consist of an ID and audio
track while the output should consist of the ID and the results
from the models.

The cloud system also needs to track the new database entries and
signal the models to train on the new data to improve accuracy
automatically.

Machine
Learning

The artificial intelligence models need to cover beat recognition, chord
recognition, and chord pattern recognition.
The models also need preprocessing to handle the input.

Table 2 - Components
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Delimitation
Based on information from the client regarding their project specifications, we do not have
the responsibility of developing extensive security mechanisms or routines for our
application. We also are not responsible for facilitating the editing or QA of the AI-generated
compositions beyond providing simple JSON-based outputs.

Domain Knowledge
When creating a model to analyze features such as beats or chords, it is inevitable for music
theory to somewhat seep into the project. As such, this also becomes part of its domain to a
certain extent. It is important to note that the model should only analyze beats, chords, and if
possible chord patterns in music. Further elements of musical theory, such as scales, are
outside this domain and not relevant for our machine learning model.

For the front-end, we are creating a simple web page where users can pass in a youtube
URL, and receive the parsed output from our model in a simple JSON-compatible format.
Our primary focus is on the model itself, as well as the storage and transport of the resulting
data to the web app and cloud database, and not on how we display this data to the
end-user. As the app is meant to be used internally by EC-Play employees, an expansive
editing interface is not within the scope of this thesis as they already have a solution for this.

Table 3 is an overview of the domains and describes how we are going to use each of them.

Domain Description

AI Music analysis.

Web Application to send songs for analysis and
present the results.

Cloud Communication between web application
and AI.

Databases Store results of the analysis.

Table 3 - Domains
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Project organization

Responsibilities and roles
Figure 1 is a diagram of how the roles are divided. The connection between the Scrum
Master and the Product Owner represents communication between the client and the Scrum
Team.

Figure 1 - Project Organization Diagram
Table 4 describes what is expected of each role.

Role Tasks

Product Owner Represents EC-Play’s interests in the project, concretizes their vision,
and is our main point of contact with the stakeholder.

Scrum Master Ensures other team members understand their role and is
responsible for mediation, tracks progress, and calls meetings when
needed. Has the responsibility to implement process adjustments if
the project lags behind schedule and is responsible for the
communication between the Product Owner and the Scrum team

Developers Perform their work as agreed, according to the rules set out in this
document and industry standards.

Recordkeeper Writes meeting minutes.

Table 4 - Roles
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Planning

Development process
For our development process, we had to consider the requirements of the project. The
specifications we received from EC-Play are somewhat fluid, for example in that EC-Play
does not demand success in identifying chord patterns to high precision, compared to
identifying beats. How good our network needs to be, and how many things it must detect, is
subject to change during the course of the project. Similarly, different ways for the user to
upload music, such as directly through URL, has also been discussed.

During the initial phase of the project we were discussing which development method to use,
we narrowed down our options to the more linear waterfall methodology and the agile
SCRUM framework. Due to the nature of our project, we valued continuous feedback from
the stakeholders on our application and wanted to ensure that we could adjust our plans
based on their feedback. In this way, the waterfall model did not suit our needs [2]. This is an
area where SCRUM excels [3], and we also have previous experience working with the
SCRUM development process. Therefore it became clear to us that this would be the best
framework for our project.

Due to the scope and duration of the project, our experience made us confident that a
two-week sprint duration is the best fit for our SCRUM process. We have previously worked
with one-week sprints and found that organizational work related to the sprint process
involved too much overhead with such short intervals. At the end of each sprint, we will have
meetings with the client and discuss the progress during the sprint, and our plan for the
following one.

Meetings
We plan to arrange weekly meetings internally in the group and hold sprint review meetings
every other week. We will also have weekly meetings with the client, as well as with our
supervisor. We might change the frequencies of the meetings to biweekly during the
development process.

Product backlog
We will use GitHub Projects for product backlog since it can be used with smart commits and
will be easily organized within our repository. We decided to have a project called Product
Backlog with a basic kanban structure with review columns added. What each column refers
to is shown in Table 5. The columns are automated for ease of use.

6

https://docs.google.com/document/d/1MfuNLjjLFEfmnZ-y30PvHwCa0bqQqFOjoVecuQMR_iM/edit#bookmark=id.jej4vgllz6m0
https://docs.google.com/document/d/1MfuNLjjLFEfmnZ-y30PvHwCa0bqQqFOjoVecuQMR_iM/edit#bookmark=id.6ibbbalgqsk7


Board Description Automation

To do Issues that haven’t been started
on

New issues will be automatically
added here

In progress Issues that are being worked on Reopened issues will be automatically
added here

Review in
progress

Issues that are under review by a
team member

Issues pending for approval will be
added here

Reviewer
approved

Issues that have been approved
by the reviewer

Issues approved will be added here

Done Issues that are completed Closed issues will be automatically
added here

Table 5 - Columns in product backlog

To organize the kanban board, we have decided to use labels. This allows us to easily filter
the kanban board and will make it easier for us to keep track of everything. The labels are
described in Table 6.

Label Description

ui Relates to front-end user interface

nn Relates to the neural network

cloud Relates to our cloud storage solution

report Reflects all written requirements within this project

competence acquisition Topics we need to research

bug A problem that needs to be worked on

wontfix Issues that will not be fixed within the deadline

high priority Must be solved for the project MVP

medium priority Should ideally be implemented

low priority Not very important for the project

Table 6 - Labels in product backlog
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Milestones
We divide our project into three modules as shown in Figure 2. The first part is the user
interface, the second part consists of our cloud architecture and the database, and the third
and final part is our neural networks. This division comes naturally, as our application will be
full-stack with front-end, back-end, and cloud computing elements.

By dividing our project into modules in this way, we also simplify the development process
somewhat by allowing us to more easily work simultaneously on different modules without
clashing. This is because each module can be kept strictly separate from the others during
development, and combined only during later stages of the project with thorough integration
testing.

Figure 2 - Product sketch
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Quality Assurance

Routines

We will use trunk-based development to ensure that new code can be smoothly and
painlessly integrated with our master branch.

New tasks should be added to the project backlog as an issue with relevant tags.

Commits must contain a relevant issue ID number or numbers, to more easily parse and
follow each issue. The format of the commit message should look like this: [#number
indicating issue if applicable] Short summary of changes

Commits should be performed regularly and not be too large.

Merging to master should only be done after the code review is finished. If the reviewer
finds mistakes in the code, it will have to be communicated back to the developer and be
addressed before a new code review.

Code should be properly documented through the use of comments before merging.

Documentation, source code, and storage
Our focus for this project will be on properly following coding conventions in regards to
security and quality assurance for the relevant tools and languages used during our project.
To aid with this, we are making extensive use of linting tools for our code during the process.

GitHub Workflows

Workflows is a free GitHub tool that allows us to run jobs in a virtual machine on every
commit, to ensure that our codebase is running properly and new code is compatible with
the existing codebase. This can help us catch unforeseen issues with our work as it
potentially impacts other modules or environments. This tool can for example perform linting
checks, which allows us to continuously ensure that our code is up to standards.

Additionally, we plan to utilize GitHub Workflows to run our tests on each commit, to ensure
that testing is consistent and frequent, rather than simply write-and-forget.

Testing

Where possible, we plan to perform thorough testing of our project code. We plan for unit
testing, integration testing and regression testing to all be a part of our process, and
implemented appropriately using the tools available for each language.

Code reviews will be run regularly, both to ensure that code is up to standards and to ensure
that each member of the group is knowledgeable and comfortable with the full codebase,
and not just their contribution.

Documentation and storage

Our code is stored in a Git repo hosted by the client. Reports and documentation are hosted
on Google Drive.
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We plan to store the composition data for each song in a fresh database, hosted by Google
Firebase. This creates a separation between existing solutions used by the client and the
results from our newly developed model. This has several advantages, including
security-related (no need to worry about tampering with client’s existing data) as well as
organizational as we can be sure what data has been generated through our model, and
what has been meticulously handcrafted.

Risk assessment
Table 7 defines the risks we think are relevant to this project. We divided the risks into
categories to make the table more readable.

Nr Risk Category Likelihood Ramificati
on

1 The training dataset contains mistakes
(chords), leading to a poorly performing
neural network.

Product Likely Severe

2 The training dataset is not big enough at
~400 songs, leading the model to perform
poorly on new music.

Product Very likely Moderate

3 Training model on new data from users
could create networking bottlenecks, leading
potentially to app timeouts or similar.

Product Likely Moderate

4 API used for downloading songs from
youtube ceases to work.

Product Likely Severe

5 Audio files have different frequencies and
would need to be changed which could lead
to poor quality.

Product Likely Slight

6 Some of the editing tools for the user to
correct AI-generated results will not be
implementable due to scope.

Product Very likely Slight

7 Lacking knowledge of musical theory leads
to difficulties designing and evaluating the
results of our model.

Product Likely Moderate

8 Server downtime. Product Unlikely Severe

9 Drastic delay in the development process. Product Unlikely Moderate

10 A team member is unable to work on the
project for a long time due to illness, quitting,
or similar.

Team
dynamics

Unlikely Severe

11 The scrum master is sick or unavailable and Team Unlikely Slight
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is not able to do his tasks. dynamics

12 Conflict in the group. Team
dynamics

Unlikely Slight

Table 7 - Risk Assessment

Risk evaluation matrix

The columns of Table 8 describe the magnitude, while the rows describe the likelihood.

Slight Moderate Severe

Unlikely 11, 12 9 8, 10

Likely 5 3, 4, 7 1

Very likely 6 2

Table 8 - Risk evaluation matrix

Planned controls for handling risks

While we do not have controls for all risks, the selected risks shown in Table 9 have various
controls that can be applied to reduce the magnitude of impact and/or likelihood of
occurrence. The selected risks are those in the red zones of our matrix or without a clear
solution.

Nr Control

1 Find another public dataset or use an algorithm to get the chords instead of a Neural
Network.

2 Similar to nr. 1, we can find and use public datasets to train our model,
supplementing the existing dataset.

3 We can perform training of new models at set times during the day where traffic is
likely to be low, based on network traffic logs.

4 This will most likely happen in the future because APIs change and have downtime.
There is no real way to avoid these interruptions in service as the client wants to use
youtube-URLs to pass songs in, and they must be managed during maintenance of
the codebase. If it occurs during the timeframe of our project, we will have to find a
new API or potentially allow users to upload mp3 files to skip the external APIs
altogether.

7 We do not have any experience with music theory, but EC-Play has stated several
times that they can help us with this aspect. If needed, we do not think it would be too
hard to research this on our own, as the knowledge we need seems basic.

9 We can fall back to the MVP and focus on the important aspects of getting the
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product in a usable state.

10 To minimize the impact of such an event, we will utilize code reviews and sprint
meetings to make sure each team member familiarizes themselves with the work
done by the rest of the team so that in a crisis they can take over the work of other
members. Other than sticking to a 30 hour/person schedule and doing our best to
finish work ASAP, there is little that can be done to make up for the workload lost.

11 The member with only one role will take over the responsibilities until the Scrum
Master is able to do their tasks again.

Table 9 - Planned controls for handling risks

Tools
The tools we are planning to use during the project are shown in Table 10.

Tool Purpose Usage

GitHub Handle hosting and distribution of
code

Project organization

Visual Studio Code IDE for development in Golang, PHP,
and Python

Front-end, back-end

Google Drive Documentation storage Project organization

Google Sheets Tool for designing the Gantt chart Project organization

Google Docs Cooperative writing and editing Project report

Toggl Time logging tool Project organization

GitHub issue tracker Git tool for scrum-organization and
general issue tracking

Project organization

GitHub workflows Quality assurance through linting and
running tests

Quality Assurance

Miro Online whiteboard for designing
models and wireframes

Design

Discord Online communication app Project organization

Google Firebase Cloud storage Database

Table 10 - Tools
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Progress plan
As shown in Figure 3, the Gantt chart is divided into three stages with a red line representing
the deadlines. Each sprint is divided into two weeks and each week contains only workdays.
The first stage is an accurate description of how we have worked with the project until now,
while the other stages are only estimates. This will be updated as we continue working and
will be accurate in the final report. We decided to split up the more important tasks to make it
easier for us to keep track of the development process.
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Figure 3 - Gantt Chart
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B Kanban Board

Link to dynamic kanban board (changes during development process):
https://github.com/sindre0830/Neural-Network-for-Recognizing-Features-in-Music/projects/1
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C Group Rules
Our group has decided on these rules:

- Scrum Master will keep in contact with the product owner and schedule/cancel

meetings.

- Each team member will work approximately 30 hours per week. 1

- Have a physical meeting at least once each sprint, but preferably once each week. 2

- Hours should be properly logged for auditing and reporting.

- Each member has an obligation to show for all planned meetings, or else give

advance notice that they will miss the meeting.

- The recordkeeper should keep a record of all scheduled meetings.

- Any costs incurred during the project not covered by the client should be split evenly

within the group.

If these rules aren't followed the following measures will be taken (in the order stated):

1. Group discussion with all members discussing the rule(s) broken and attempting to

solve the issue. These discussions must be logged for auditing.

2. Discussion involving group advisor with attempts at mediation.

3. Through unanimous voting from the other members, the person will be excluded from

the project.

1 This doesn’t apply to the planning phase of the project as there is a limited amount of work that can

be done between each meeting with the advisor/client, while the delimitations of the process are still

being defined.

2 This will be delayed for the first few weeks of the project where some members aren’t in Gjøvik.
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E Status Report
Status Report 21.02.2022

API
We have planned all API endpoints, and are currently developing them. Out of three
endpoints, two are almost done. The rest is estimated to be finished this week.

Web Application
We have the wireframes ready and have done user testing to get feedback. We have also
gotten feedback from the client on these designs and improved them based on the
response. We will start creating the web application by next week (Week 9).

NN
We decided to change our original plan written in the project plan document and went with
algorithms first to have something to compare our models with, as well as allow us to set up
and test our full pipeline as early as possible. We are implementing algorithm solutions for
beat and chord recognition, and then designing and implementing our pattern recognition
NN. Once this is completed, we plan to go back and design NN solutions, using the client’s
dataset as ground truth and comparing the results with our algorithms.

So far, a lot of our work on this area has been done in planning and research/competence
acquisition. Additionally, the general framework for our system has been designed and we
have implemented preprocessing steps such as converting youtube-files to WAV extension.
We also have ensured that the library we are using for downloading videos works, though
this has not been added to our API yet. We have completed and tested the implementation
of beat analysis algorithm and started work on the chord recognition algorithm.

Report
We have made an outline of the final report, and have started writing about user testing. We
have kept notes about our process for the other parts of the project, but nothing more has
been added to the report as of 21.02.
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Status Report 25.04.2022

API
All endpoints are completed, only minor adjustments and finishing the main file is needed.

Web Application
The main features of the web application have been developed. The application has been
tied together with routing. Some improvements regarding fetching data are needed: caching
and real-time update of the data.

NN
In accordance with our changed plans as of status report 1, we implemented algorithm
solutions for chord and beat accuracy, in order to have a basis of comparison for our Neural
Network performance, and to implement our general pipeline. At this point, the algorithms
are finished, and work has also finished performing analysis and evaluation of the results.

We have also worked on the neural network solution. We decided to focus our efforts in this
field on the chord identification portion of the task, as this seemed the area where neural
network was the most natural implementation, and where we judged other solutions would
not have much success.

In order to find good model parameters, a randomized grid search approach was
implemented in order to evaluate the impact of various parameters and find a solid
combination. After running this for a couple of days, we ended up with an accuracy of 82%
with little overfitting.

Deployment
Now that our solution is nearing completion, we are starting to look closer at our deployment
environment, and bringing it into focus.

Report
A lot more work has gone into the report. We have primarily focused on two tasks here - first,
planning the general contents of the report and outlining the contents of each section,
whether we have something written for it or not. Second, writing about our actual
implementation process and the work we have done directly. A lot of supporting information
such as the process and the environment is still missing, as are the results.

Our progress on the report has been going well, and we have written about 40 pages, albeit
a lot of revision is needed.
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F Meeting Notices
Messages sent as email to client and adviser with the status reports attached, see
attachment E.

Meeting Notice - Client
Attendees Maren Skårestuen Grindal

Rickard Loland
Sindre Eiklid
Kristoffer Skare
Joakim Skare

Date and time 24.02.2022, 10:00

Place Discord (Digital)

Subject of discussion Status Report 1 (See attachment)

Attendees Maren Skårestuen Grindal
Rickard Loland
Sindre Eiklid
Kristoffer Skare
Joakim Skare

Date and time 26.04.2022, 10:00

Place Discord (Digital)

Subject of discussion Status Report 2 (See attachment)
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Meeting Notice - Adviser
Attendees Maren Skårestuen Grindal

Rickard Loland
Sindre Eiklid
Ali Shariq Imran

Date and time 25.02.2022, 10:00

Place Teams (Digital)

Subject of discussion Status Report 1 (See attachment)

Attendees Maren Skårestuen Grindal
Rickard Loland
Sindre Eiklid
Ali Shariq Imran

Date and time 29.04.2022, 10:00

Place Teams (Digital)

Subject of discussion Status Report 2 (See attachment)
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H Random Search Results - Raw Data
In total, 70 models were run over four iterations where each iteration was sorted by
accuracy. The best model is from the first iteration.

First iteration

Model # Parameters

1 val_accuracy: 0.8292601108551025    | val_loss: 0.6497218012809753  |
initial_filter: 64    | conv_layer_1: 1   | conv_filter_1: 32     | conv_layer_2: 2   |
conv_filter_2: 64     | conv_layer_3: 2   | conv_filter_3: 16     | dense_layer_1: 2
| dense_units_1: 256    | dense_layer_2: 0  | dense_units_2: 256    |
dense_layer_3: 0  | dense_units_3: 128    | regularizer: 0.0005

2 val_accuracy: 0.8218176960945129    | val_loss: 0.7915952205657959  |
initial_filter: 128   | conv_layer_1: 2   | conv_filter_1: 128    | conv_layer_2: 1   |
conv_filter_2: 256    | conv_layer_3: 0   | conv_filter_3: 256    | dense_layer_1: 0
| dense_units_1: 256    | dense_layer_2: 2  | dense_units_2: 256    |
dense_layer_3: 0  | dense_units_3: 32     | regularizer: 0.0005

3 val_accuracy: 0.8216835856437683    | val_loss: 0.7047683596611023  |
initial_filter: 32    | conv_layer_1: 2   | conv_filter_1: 256    | conv_layer_2: 1   |
conv_filter_2: 64     | conv_layer_3: 2   | conv_filter_3: 128    | dense_layer_1: 0
| dense_units_1: 64     | dense_layer_2: 1  | dense_units_2: 128    |
dense_layer_3: 1  | dense_units_3: 256    | regularizer: 0.0001

4 val_accuracy: 0.8202085494995117    | val_loss: 0.6928550004959106  |
initial_filter: 128   | conv_layer_1: 2   | conv_filter_1: 32     | conv_layer_2: 0   |
conv_filter_2: 256    | conv_layer_3: 1   | conv_filter_3: 256    | dense_layer_1: 0
| dense_units_1: 128    | dense_layer_2: 1  | dense_units_2: 256    |
dense_layer_3: 1  | dense_units_3: 32     | regularizer: 0.0005

5 val_accuracy: 0.819169282913208     | val_loss: 0.6805905699729919  |
initial_filter: 16    | conv_layer_1: 2   | conv_filter_1: 16     | conv_layer_2: 0   |
conv_filter_2: 32     | conv_layer_3: 1   | conv_filter_3: 32     | dense_layer_1: 2
| dense_units_1: 256    | dense_layer_2: 1  | dense_units_2: 32     |
dense_layer_3: 1  | dense_units_3: 256    | regularizer: 0.005

6 val_accuracy: 0.8126655220985413    | val_loss: 0.7009409070014954  |
initial_filter: 256   | conv_layer_1: 0   | conv_filter_1: 256    | conv_layer_2: 2   |
conv_filter_2: 32     | conv_layer_3: 0   | conv_filter_3: 64     | dense_layer_1: 2
| dense_units_1: 128    | dense_layer_2: 0  | dense_units_2: 32     |
dense_layer_3: 0  | dense_units_3: 32     | regularizer: 0.0001

7 val_accuracy: 0.8088772892951965    | val_loss: 0.7361435294151306  |
initial_filter: 128   | conv_layer_1: 2   | conv_filter_1: 32     | conv_layer_2: 0   |
conv_filter_2: 64     | conv_layer_3: 2   | conv_filter_3: 128    | dense_layer_1: 0
| dense_units_1: 32     | dense_layer_2: 1  | dense_units_2: 128    |
dense_layer_3: 2  | dense_units_3: 128    | regularizer: 0.005
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8 val_accuracy: 0.8075363039970398    | val_loss: 0.8547020554542542  |
initial_filter: 64    | conv_layer_1: 0   | conv_filter_1: 256    | conv_layer_2: 0   |
conv_filter_2: 128    | conv_layer_3: 1   | conv_filter_3: 256    | dense_layer_1: 2
| dense_units_1: 256    | dense_layer_2: 0  | dense_units_2: 256    |
dense_layer_3: 1  | dense_units_3: 64     | regularizer: 0.001

9 val_accuracy: 0.8075027465820312    | val_loss: 0.74879390001297    |
initial_filter: 128   | conv_layer_1: 1   | conv_filter_1: 64     | conv_layer_2: 2   |
conv_filter_2: 64     | conv_layer_3: 2   | conv_filter_3: 64     | dense_layer_1: 2
| dense_units_1: 128    | dense_layer_2: 1  | dense_units_2: 256    |
dense_layer_3: 2  | dense_units_3: 32     | regularizer: 0.001

10 val_accuracy: 0.8043514490127563    | val_loss: 0.7247094511985779  |
initial_filter: 16    | conv_layer_1: 2   | conv_filter_1: 16     | conv_layer_2: 2   |
conv_filter_2: 128    | conv_layer_3: 2   | conv_filter_3: 16     | dense_layer_1: 2
| dense_units_1: 128    | dense_layer_2: 0  | dense_units_2: 32     |
dense_layer_3: 2  | dense_units_3: 32     | regularizer: 0.001

11 val_accuracy: 0.8027758002281189    | val_loss: 0.8015375137329102  |
initial_filter: 16    | conv_layer_1: 1   | conv_filter_1: 128    | conv_layer_2: 0   |
conv_filter_2: 256    | conv_layer_3: 2   | conv_filter_3: 64     | dense_layer_1: 1
| dense_units_1: 128    | dense_layer_2: 1  | dense_units_2: 64     |
dense_layer_3: 0  | dense_units_3: 32     | regularizer: 0.005

12 val_accuracy: 0.8009990453720093    | val_loss: 0.7394174337387085  |
initial_filter: 256   | conv_layer_1: 2   | conv_filter_1: 256    | conv_layer_2: 1   |
conv_filter_2: 64     | conv_layer_3: 0   | conv_filter_3: 256    | dense_layer_1: 0
| dense_units_1: 256    | dense_layer_2: 0  | dense_units_2: 256    |
dense_layer_3: 2  | dense_units_3: 64     | regularizer: 0.0005

13 val_accuracy: 0.7989540100097656    | val_loss: 0.8501062989234924  |
initial_filter: 128   | conv_layer_1: 0   | conv_filter_1: 256    | conv_layer_2: 0   |
conv_filter_2: 128    | conv_layer_3: 1   | conv_filter_3: 128    | dense_layer_1: 0
| dense_units_1: 64     | dense_layer_2: 2  | dense_units_2: 128    |
dense_layer_3: 1  | dense_units_3: 32     | regularizer: 0.001

14 val_accuracy: 0.7964397072792053    | val_loss: 0.6908913850784302  |
initial_filter: 64    | conv_layer_1: 2   | conv_filter_1: 32     | conv_layer_2: 2   |
conv_filter_2: 32     | conv_layer_3: 2   | conv_filter_3: 64     | dense_layer_1: 1
| dense_units_1: 32     | dense_layer_2: 0  | dense_units_2: 128    |
dense_layer_3: 0  | dense_units_3: 256    | regularizer: 0.0005

15 val_accuracy: 0.7947299480438232    | val_loss: 0.804892361164093   |
initial_filter: 256   | conv_layer_1: 0   | conv_filter_1: 16     | conv_layer_2: 0   |
conv_filter_2: 128    | conv_layer_3: 0   | conv_filter_3: 256    | dense_layer_1: 2
| dense_units_1: 256    | dense_layer_2: 2  | dense_units_2: 256    |
dense_layer_3: 0  | dense_units_3: 128    | regularizer: 0.005

16 val_accuracy: 0.7871869802474976    | val_loss: 0.7791540622711182  |
initial_filter: 64    | conv_layer_1: 2   | conv_filter_1: 16     | conv_layer_2: 1   |
conv_filter_2: 256    | conv_layer_3: 1   | conv_filter_3: 256    | dense_layer_1: 2
| dense_units_1: 32     | dense_layer_2: 1  | dense_units_2: 256    |
dense_layer_3: 2  | dense_units_3: 64     | regularizer: 0.0005
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17 val_accuracy: 0.7867511510848999    | val_loss: 0.7888417840003967  |
initial_filter: 256   | conv_layer_1: 0   | conv_filter_1: 256    | conv_layer_2: 0   |
conv_filter_2: 64     | conv_layer_3: 2   | conv_filter_3: 64     | dense_layer_1: 2
| dense_units_1: 32     | dense_layer_2: 1  | dense_units_2: 32     |
dense_layer_3: 2  | dense_units_3: 128    | regularizer: 0.001

18 val_accuracy: 0.7809178829193115    | val_loss: 0.8763098120689392  |
initial_filter: 64    | conv_layer_1: 0   | conv_filter_1: 64     | conv_layer_2: 0   |
conv_filter_2: 64     | conv_layer_3: 1   | conv_filter_3: 256    | dense_layer_1: 0
| dense_units_1: 64     | dense_layer_2: 2  | dense_units_2: 32     |
dense_layer_3: 0  | dense_units_3: 128    | regularizer: 0.0005

19 val_accuracy: 0.7669047117233276    | val_loss: 0.7597916126251221  |
initial_filter: 16    | conv_layer_1: 1   | conv_filter_1: 64     | conv_layer_2: 2   |
conv_filter_2: 16     | conv_layer_3: 0   | conv_filter_3: 32     | dense_layer_1: 0
| dense_units_1: 256    | dense_layer_2: 0  | dense_units_2: 128    |
dense_layer_3: 0  | dense_units_3: 64     | regularizer: 0.005

20 val_accuracy: 0.7666700482368469    | val_loss: 0.7683956027030945  |
initial_filter: 32    | conv_layer_1: 2   | conv_filter_1: 16     | conv_layer_2: 1   |
conv_filter_2: 16     | conv_layer_3: 2   | conv_filter_3: 16     | dense_layer_1: 0
| dense_units_1: 64     | dense_layer_2: 1  | dense_units_2: 32     |
dense_layer_3: 1  | dense_units_3: 128    | regularizer: 0.0001

Second iteration

Model # Parameters

1 val_accuracy: 0.8197056651115417    | val_loss: 0.7174391150474548  |
initial_filter: 32    | conv_layer_1: 2   | conv_filter_1: 128    | conv_layer_2: 0   |
conv_filter_2: 32     | conv_layer_3: 1   | conv_filter_3: 32     | dense_layer_1: 2
| dense_units_1: 256    | dense_layer_2: 0  | dense_units_2: 64     |
dense_layer_3: 1  | dense_units_3: 256    | regularizer: 0.0005

2 val_accuracy: 0.8150122165679932    | val_loss: 0.7279840111732483  |
initial_filter: 16    | conv_layer_1: 1   | conv_filter_1: 64     | conv_layer_2: 2   |
conv_filter_2: 64     | conv_layer_3: 1   | conv_filter_3: 32     | dense_layer_1: 0
| dense_units_1: 128    | dense_layer_2: 1  | dense_units_2: 256    |
dense_layer_3: 2  | dense_units_3: 32     | regularizer: 0.0005

3 val_accuracy: 0.8142076730728149    | val_loss: 0.7118219137191772  |
initial_filter: 32    | conv_layer_1: 2   | conv_filter_1: 16     | conv_layer_2: 0   |
conv_filter_2: 16     | conv_layer_3: 1   | conv_filter_3: 64     | dense_layer_1: 1
| dense_units_1: 128    | dense_layer_2: 0  | dense_units_2: 32     |
dense_layer_3: 1  | dense_units_3: 256    | regularizer: 0.0001

4 val_accuracy: 0.8122967481613159    | val_loss: 0.7611275911331177  |
initial_filter: 32    | conv_layer_1: 0   | conv_filter_1: 128    | conv_layer_2: 1   |
conv_filter_2: 128    | conv_layer_3: 2   | conv_filter_3: 128    | dense_layer_1: 0
| dense_units_1: 32     | dense_layer_2: 0  | dense_units_2: 32     |
dense_layer_3: 2  | dense_units_3: 128    | regularizer: 0.005
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5 val_accuracy: 0.8102182149887085    | val_loss: 0.7144971489906311  |
initial_filter: 16    | conv_layer_1: 2   | conv_filter_1: 16     | conv_layer_2: 0   |
conv_filter_2: 256    | conv_layer_3: 2   | conv_filter_3: 32     | dense_layer_1: 1
| dense_units_1: 256    | dense_layer_2: 0  | dense_units_2: 128    |
dense_layer_3: 0  | dense_units_3: 256    | regularizer: 0.0005

6 val_accuracy: 0.806698203086853     | val_loss: 0.7357587218284607  |
initial_filter: 256   | conv_layer_1: 0   | conv_filter_1: 128    | conv_layer_2: 1   |
conv_filter_2: 16     | conv_layer_3: 1   | conv_filter_3: 32     | dense_layer_1: 2
| dense_units_1: 128    | dense_layer_2: 2  | dense_units_2: 64     |
dense_layer_3: 2  | dense_units_3: 128    | regularizer: 0.005

7 val_accuracy: 0.8060277104377747    | val_loss: 0.7321142554283142  |
initial_filter: 32    | conv_layer_1: 0   | conv_filter_1: 32     | conv_layer_2: 2   |
conv_filter_2: 128    | conv_layer_3: 0   | conv_filter_3: 256    | dense_layer_1: 1
| dense_units_1: 128    | dense_layer_2: 2  | dense_units_2: 256    |
dense_layer_3: 1  | dense_units_3: 256    | regularizer: 0.0001

8 val_accuracy: 0.801535427570343     | val_loss: 0.7104081511497498  |
initial_filter: 128   | conv_layer_1: 2   | conv_filter_1: 16     | conv_layer_2: 0   |
conv_filter_2: 256    | conv_layer_3: 1   | conv_filter_3: 256    | dense_layer_1: 1
| dense_units_1: 64     | dense_layer_2: 2  | dense_units_2: 128    |
dense_layer_3: 1  | dense_units_3: 128    | regularizer: 0.0001

9 val_accuracy: 0.7991887331008911    | val_loss: 0.8399752378463745  |
initial_filter: 16    | conv_layer_1: 2   | conv_filter_1: 256    | conv_layer_2: 1   |
conv_filter_2: 256    | conv_layer_3: 1   | conv_filter_3: 128    | dense_layer_1: 0
| dense_units_1: 256    | dense_layer_2: 2  | dense_units_2: 256    |
dense_layer_3: 2  | dense_units_3: 32     | regularizer: 0.001

10 val_accuracy: 0.792819082736969     | val_loss: 0.7686797976493835  |
initial_filter: 256   | conv_layer_1: 2   | conv_filter_1: 32     | conv_layer_2: 2   |
conv_filter_2: 256    | conv_layer_3: 1   | conv_filter_3: 128    | dense_layer_1: 2
| dense_units_1: 32     | dense_layer_2: 0  | dense_units_2: 64     |
dense_layer_3: 1  | dense_units_3: 64     | regularizer: 0.0005

11 val_accuracy: 0.7901371121406555    | val_loss: 0.8707634210586548  |
initial_filter: 16    | conv_layer_1: 1   | conv_filter_1: 128    | conv_layer_2: 0   |
conv_filter_2: 32     | conv_layer_3: 1   | conv_filter_3: 128    | dense_layer_1: 2
| dense_units_1: 256    | dense_layer_2: 1  | dense_units_2: 256    |
dense_layer_3: 2  | dense_units_3: 64     | regularizer: 0.005

12 val_accuracy: 0.7899024486541748    | val_loss: 0.7642438411712646  |
initial_filter: 128   | conv_layer_1: 2   | conv_filter_1: 32     | conv_layer_2: 2   |
conv_filter_2: 64     | conv_layer_3: 2   | conv_filter_3: 128    | dense_layer_1: 1
| dense_units_1: 32     | dense_layer_2: 2  | dense_units_2: 128    |
dense_layer_3: 2  | dense_units_3: 32     | regularizer: 0.0001

13 val_accuracy: 0.7898018956184387    | val_loss: 0.7580240964889526  |
initial_filter: 16    | conv_layer_1: 2   | conv_filter_1: 32     | conv_layer_2: 2   |
conv_filter_2: 64     | conv_layer_3: 1   | conv_filter_3: 128    | dense_layer_1: 2
| dense_units_1: 32     | dense_layer_2: 0  | dense_units_2: 64     |
dense_layer_3: 1  | dense_units_3: 32     | regularizer: 0.0001
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14 val_accuracy: 0.786851704120636     | val_loss: 0.7991734147071838  |
initial_filter: 32    | conv_layer_1: 2   | conv_filter_1: 32     | conv_layer_2: 0   |
conv_filter_2: 128    | conv_layer_3: 0   | conv_filter_3: 128    | dense_layer_1: 2
| dense_units_1: 128    | dense_layer_2: 0  | dense_units_2: 32     |
dense_layer_3: 2  | dense_units_3: 32     | regularizer: 0.005

15 val_accuracy: 0.7856783866882324    | val_loss: 0.7295673489570618  |
initial_filter: 64    | conv_layer_1: 2   | conv_filter_1: 256    | conv_layer_2: 2   |
conv_filter_2: 32     | conv_layer_3: 2   | conv_filter_3: 16     | dense_layer_1: 0
| dense_units_1: 32     | dense_layer_2: 2  | dense_units_2: 64     |
dense_layer_3: 0  | dense_units_3: 64     | regularizer: 0.005

16 val_accuracy: 0.785007894039154     | val_loss: 0.8131935000419617  |
initial_filter: 16    | conv_layer_1: 1   | conv_filter_1: 64     | conv_layer_2: 2   |
conv_filter_2: 128    | conv_layer_3: 0   | conv_filter_3: 256    | dense_layer_1: 1
| dense_units_1: 64     | dense_layer_2: 2  | dense_units_2: 64     |
dense_layer_3: 0  | dense_units_3: 64     | regularizer: 0.005

17 val_accuracy: 0.7811525464057922    | val_loss: 0.72502201795578    |
initial_filter: 256   | conv_layer_1: 1   | conv_filter_1: 64     | conv_layer_2: 2   |
conv_filter_2: 32     | conv_layer_3: 1   | conv_filter_3: 32     | dense_layer_1: 0
| dense_units_1: 256    | dense_layer_2: 0  | dense_units_2: 256    |
dense_layer_3: 0  | dense_units_3: 64     | regularizer: 0.001

18 val_accuracy: 0.775688111782074     | val_loss: 0.7885745167732239  |
initial_filter: 256   | conv_layer_1: 1   | conv_filter_1: 32     | conv_layer_2: 2   |
conv_filter_2: 16     | conv_layer_3: 2   | conv_filter_3: 32     | dense_layer_1: 1
| dense_units_1: 32     | dense_layer_2: 2  | dense_units_2: 32     |
dense_layer_3: 2  | dense_units_3: 256    | regularizer: 0.005

19 val_accuracy: 0.7719668745994568    | val_loss: 0.748751163482666   |
initial_filter: 256   | conv_layer_1: 2   | conv_filter_1: 32     | conv_layer_2: 1   |
conv_filter_2: 16     | conv_layer_3: 0   | conv_filter_3: 64     | dense_layer_1: 0
| dense_units_1: 128    | dense_layer_2: 0  | dense_units_2: 64     |
dense_layer_3: 0  | dense_units_3: 128    | regularizer: 0.0005

20 val_accuracy: 0.7655637264251709    | val_loss: 0.8058105111122131  |
initial_filter: 32    | conv_layer_1: 2   | conv_filter_1: 16     | conv_layer_2: 1   |
conv_filter_2: 256    | conv_layer_3: 0   | conv_filter_3: 16     | dense_layer_1: 0
| dense_units_1: 128    | dense_layer_2: 0  | dense_units_2: 128    |
dense_layer_3: 2  | dense_units_3: 32     | regularizer: 0.0005

Third iteration

Model # Parameters

1 val_accuracy: 0.8209460377693176    | val_loss: 0.6701213121414185  |
initial_filter: 256   | conv_layer_1: 2   | conv_filter_1: 16     | conv_layer_2: 0   |
conv_filter_2: 16     | conv_layer_3: 1   | conv_filter_3: 256    | dense_layer_1: 0
| dense_units_1: 64     | dense_layer_2: 1  | dense_units_2: 256    |
dense_layer_3: 2  | dense_units_3: 64     | regularizer: 0.001

2 val_accuracy: 0.8193368911743164    | val_loss: 0.7029942870140076  |
initial_filter: 32    | conv_layer_1: 1   | conv_filter_1: 128    | conv_layer_2: 2   |
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conv_filter_2: 64     | conv_layer_3: 0   | conv_filter_3: 32     | dense_layer_1: 1
| dense_units_1: 256    | dense_layer_2: 1  | dense_units_2: 64     |
dense_layer_3: 2  | dense_units_3: 128    | regularizer: 0.0005

3 val_accuracy: 0.8149116635322571    | val_loss: 0.7142208218574524  |
initial_filter: 64    | conv_layer_1: 0   | conv_filter_1: 256    | conv_layer_2: 0   |
conv_filter_2: 64     | conv_layer_3: 2   | conv_filter_3: 32     | dense_layer_1: 0
| dense_units_1: 128    | dense_layer_2: 1  | dense_units_2: 256    |
dense_layer_3: 2  | dense_units_3: 64     | regularizer: 0.001

4 val_accuracy: 0.8058265447616577    | val_loss: 0.900017261505127   |
initial_filter: 64    | conv_layer_1: 0   | conv_filter_1: 128    | conv_layer_2: 1   |
conv_filter_2: 256    | conv_layer_3: 0   | conv_filter_3: 128    | dense_layer_1: 2
| dense_units_1: 256    | dense_layer_2: 2  | dense_units_2: 64     |
dense_layer_3: 2  | dense_units_3: 128    | regularizer: 0.001

5 val_accuracy: 0.8050554990768433    | val_loss: 0.684587299823761   |
initial_filter: 32    | conv_layer_1: 2   | conv_filter_1: 16     | conv_layer_2: 2   |
conv_filter_2: 16     | conv_layer_3: 0   | conv_filter_3: 32     | dense_layer_1: 0
| dense_units_1: 32     | dense_layer_2: 1  | dense_units_2: 128    |
dense_layer_3: 1  | dense_units_3: 256    | regularizer: 0.0005

6 val_accuracy: 0.8005967140197754    | val_loss: 0.9978362917900085  |
initial_filter: 32    | conv_layer_1: 0   | conv_filter_1: 64     | conv_layer_2: 0   |
conv_filter_2: 64     | conv_layer_3: 1   | conv_filter_3: 256    | dense_layer_1: 1
| dense_units_1: 256    | dense_layer_2: 1  | dense_units_2: 128    |
dense_layer_3: 2  | dense_units_3: 64     | regularizer: 0.005

7 val_accuracy: 0.7932884097099304    | val_loss: 0.7681880593299866  |
initial_filter: 32    | conv_layer_1: 2   | conv_filter_1: 64     | conv_layer_2: 0   |
conv_filter_2: 256    | conv_layer_3: 1   | conv_filter_3: 256    | dense_layer_1: 1
| dense_units_1: 32     | dense_layer_2: 2  | dense_units_2: 256    |
dense_layer_3: 1  | dense_units_3: 32     | regularizer: 0.005

8 val_accuracy: 0.782191812992096     | val_loss: 0.7846401929855347  |
initial_filter: 128   | conv_layer_1: 2   | conv_filter_1: 32     | conv_layer_2: 1   |
conv_filter_2: 64     | conv_layer_3: 1   | conv_filter_3: 64     | dense_layer_1: 2
| dense_units_1: 32     | dense_layer_2: 0  | dense_units_2: 256    |
dense_layer_3: 2  | dense_units_3: 128    | regularizer: 0.005

9 val_accuracy: 0.7809178829193115    | val_loss: 0.7320871353149414  |
initial_filter: 32    | conv_layer_1: 0   | conv_filter_1: 256    | conv_layer_2: 2   |
conv_filter_2: 16     | conv_layer_3: 1   | conv_filter_3: 32     | dense_layer_1: 0
| dense_units_1: 256    | dense_layer_2: 1  | dense_units_2: 32     |
dense_layer_3: 0  | dense_units_3: 128    | regularizer: 0.0001

10 val_accuracy: 0.747728705406189     | val_loss: 0.9129321575164795  |
initial_filter: 32    | conv_layer_1: 0   | conv_filter_1: 32     | conv_layer_2: 0   |
conv_filter_2: 32     | conv_layer_3: 1   | conv_filter_3: 128    | dense_layer_1: 0
| dense_units_1: 64     | dense_layer_2: 0  | dense_units_2: 64     |
dense_layer_3: 0  | dense_units_3: 256    | regularizer: 0.001

Fourth iteration
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Model # Parameters

1 val_accuracy: 0.8183311820030212    | val_loss: 0.6953126192092896  |
initial_filter: 256   | conv_layer_1: 0   | conv_filter_1: 128    | conv_layer_2: 0   |
conv_filter_2: 32     | conv_layer_3: 2   | conv_filter_3: 64     | dense_layer_1: 2
| dense_units_1: 128    | dense_layer_2: 0  | dense_units_2: 64     |
dense_layer_3: 0  | dense_units_3: 256    | regularizer: 0.0005

2 val_accuracy: 0.8179959058761597    | val_loss: 0.6887810826301575  |
initial_filter: 32    | conv_layer_1: 1   | conv_filter_1: 32     | conv_layer_2: 1   |
conv_filter_2: 16     | conv_layer_3: 1   | conv_filter_3: 128    | dense_layer_1: 0
| dense_units_1: 64     | dense_layer_2: 2  | dense_units_2: 256    |
dense_layer_3: 1  | dense_units_3: 32     | regularizer: 0.0001

3 val_accuracy: 0.812095582485199     | val_loss: 0.8223552703857422  |
initial_filter: 128   | conv_layer_1: 1   | conv_filter_1: 256    | conv_layer_2: 2   |
conv_filter_2: 256    | conv_layer_3: 0   | conv_filter_3: 256    | dense_layer_1: 1
| dense_units_1: 128    | dense_layer_2: 0  | dense_units_2: 256    |
dense_layer_3: 2  | dense_units_3: 32     | regularizer: 0.005

4 val_accuracy: 0.809950053691864     | val_loss: 0.7144642472267151  |
initial_filter: 256   | conv_layer_1: 0   | conv_filter_1: 16     | conv_layer_2: 1   |
conv_filter_2: 16     | conv_layer_3: 1   | conv_filter_3: 256    | dense_layer_1: 0
| dense_units_1: 128    | dense_layer_2: 0  | dense_units_2: 128    |
dense_layer_3: 2  | dense_units_3: 64     | regularizer: 0.0001

5 val_accuracy: 0.8067987561225891    | val_loss: 0.7662034630775452  |
initial_filter: 32    | conv_layer_1: 0   | conv_filter_1: 256    | conv_layer_2: 1   |
conv_filter_2: 64     | conv_layer_3: 0   | conv_filter_3: 256    | dense_layer_1: 2
| dense_units_1: 256    | dense_layer_2: 2  | dense_units_2: 128    |
dense_layer_3: 1  | dense_units_3: 128    | regularizer: 0.005

6 val_accuracy: 0.8038486242294312    | val_loss: 0.7643226385116577  |
initial_filter: 64    | conv_layer_1: 0   | conv_filter_1: 16     | conv_layer_2: 2   |
conv_filter_2: 256    | conv_layer_3: 0   | conv_filter_3: 256    | dense_layer_1: 2
| dense_units_1: 128    | dense_layer_2: 0  | dense_units_2: 256    |
dense_layer_3: 2  | dense_units_3: 64     | regularizer: 0.005

7 val_accuracy: 0.7996915578842163    | val_loss: 0.9513117074966431  |
initial_filter: 128   | conv_layer_1: 1   | conv_filter_1: 128    | conv_layer_2: 0   |
conv_filter_2: 256    | conv_layer_3: 0   | conv_filter_3: 32     | dense_layer_1: 1
| dense_units_1: 256    | dense_layer_2: 0  | dense_units_2: 64     |
dense_layer_3: 2  | dense_units_3: 256    | regularizer: 0.005

8 val_accuracy: 0.7987529039382935    | val_loss: 0.7738701105117798  |
initial_filter: 128   | conv_layer_1: 2   | conv_filter_1: 256    | conv_layer_2: 1   |
conv_filter_2: 256    | conv_layer_3: 0   | conv_filter_3: 128    | dense_layer_1: 1
| dense_units_1: 32     | dense_layer_2: 1  | dense_units_2: 64     |
dense_layer_3: 1  | dense_units_3: 256    | regularizer: 0.001

9 val_accuracy: 0.7978812456130981    | val_loss: 0.7402510046958923  |
initial_filter: 128   | conv_layer_1: 1   | conv_filter_1: 32     | conv_layer_2: 0   |
conv_filter_2: 32     | conv_layer_3: 1   | conv_filter_3: 64     | dense_layer_1: 1
| dense_units_1: 128    | dense_layer_2: 0  | dense_units_2: 64     |
dense_layer_3: 1  | dense_units_3: 256    | regularizer: 0.0005
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10 val_accuracy: 0.7978141903877258    | val_loss: 0.6967147588729858  |
initial_filter: 256   | conv_layer_1: 0   | conv_filter_1: 128    | conv_layer_2: 2   |
conv_filter_2: 16     | conv_layer_3: 1   | conv_filter_3: 128    | dense_layer_1: 1
| dense_units_1: 32     | dense_layer_2: 0  | dense_units_2: 256    |
dense_layer_3: 2  | dense_units_3: 128    | regularizer: 0.0001

11 val_accuracy: 0.7977806925773621    | val_loss: 0.7775613069534302  |
initial_filter: 256   | conv_layer_1: 2   | conv_filter_1: 256    | conv_layer_2: 0   |
conv_filter_2: 16     | conv_layer_3: 1   | conv_filter_3: 256    | dense_layer_1: 0
| dense_units_1: 256    | dense_layer_2: 1  | dense_units_2: 32     |
dense_layer_3: 0  | dense_units_3: 256    | regularizer: 0.0005

12 val_accuracy: 0.7972778081893921    | val_loss: 0.6859294772148132  |
initial_filter: 32    | conv_layer_1: 2   | conv_filter_1: 128    | conv_layer_2: 1   |
conv_filter_2: 32     | conv_layer_3: 0   | conv_filter_3: 16     | dense_layer_1: 0
| dense_units_1: 128    | dense_layer_2: 0  | dense_units_2: 64     |
dense_layer_3: 1  | dense_units_3: 64     | regularizer: 0.001

13 val_accuracy: 0.7957357168197632    | val_loss: 0.6842451691627502  |
initial_filter: 64    | conv_layer_1: 2   | conv_filter_1: 32     | conv_layer_2: 1   |
conv_filter_2: 32     | conv_layer_3: 0   | conv_filter_3: 256    | dense_layer_1: 1
| dense_units_1: 32     | dense_layer_2: 2  | dense_units_2: 256    |
dense_layer_3: 0  | dense_units_3: 128    | regularizer: 0.0001

14 val_accuracy: 0.7945288419723511    | val_loss: 0.7235530018806458  |
initial_filter: 256   | conv_layer_1: 1   | conv_filter_1: 64     | conv_layer_2: 1   |
conv_filter_2: 16     | conv_layer_3: 1   | conv_filter_3: 128    | dense_layer_1: 2
| dense_units_1: 64     | dense_layer_2: 0  | dense_units_2: 64     |
dense_layer_3: 0  | dense_units_3: 256    | regularizer: 0.005

15 val_accuracy: 0.7924167513847351    | val_loss: 0.744037389755249   |
initial_filter: 32    | conv_layer_1: 0   | conv_filter_1: 64     | conv_layer_2: 2   |
conv_filter_2: 16     | conv_layer_3: 0   | conv_filter_3: 128    | dense_layer_1: 1
| dense_units_1: 256    | dense_layer_2: 1  | dense_units_2: 128    |
dense_layer_3: 1  | dense_units_3: 64     | regularizer: 0.0005

16 val_accuracy: 0.7877233624458313    | val_loss: 0.7196337580680847  |
initial_filter: 256   | conv_layer_1: 0   | conv_filter_1: 64     | conv_layer_2: 0   |
conv_filter_2: 256    | conv_layer_3: 1   | conv_filter_3: 64     | dense_layer_1: 2
| dense_units_1: 64     | dense_layer_2: 0  | dense_units_2: 128    |
dense_layer_3: 0  | dense_units_3: 128    | regularizer: 0.005

17 val_accuracy: 0.7860136032104492    | val_loss: 0.719147264957428   |
initial_filter: 16    | conv_layer_1: 1   | conv_filter_1: 256    | conv_layer_2: 2   |
conv_filter_2: 32     | conv_layer_3: 2   | conv_filter_3: 32     | dense_layer_1: 1
| dense_units_1: 32     | dense_layer_2: 1  | dense_units_2: 128    |
dense_layer_3: 0  | dense_units_3: 128    | regularizer: 0.0001

18 val_accuracy: 0.7817559838294983    | val_loss: 0.7723918557167053  |
initial_filter: 16    | conv_layer_1: 1   | conv_filter_1: 128    | conv_layer_2: 1   |
conv_filter_2: 32     | conv_layer_3: 0   | conv_filter_3: 32     | dense_layer_1: 1
| dense_units_1: 32     | dense_layer_2: 1  | dense_units_2: 64     |
dense_layer_3: 1  | dense_units_3: 256    | regularizer: 0.001
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19 val_accuracy: 0.7800797820091248    | val_loss: 0.7519169449806213  |
initial_filter: 256   | conv_layer_1: 0   | conv_filter_1: 128    | conv_layer_2: 2   |
conv_filter_2: 64     | conv_layer_3: 2   | conv_filter_3: 16     | dense_layer_1: 0
| dense_units_1: 64     | dense_layer_2: 2  | dense_units_2: 32     |
dense_layer_3: 0  | dense_units_3: 256    | regularizer: 0.001

20 val_accuracy: 0.7456166744232178    | val_loss: 0.8871795535087585  |
initial_filter: 16    | conv_layer_1: 0   | conv_filter_1: 256    | conv_layer_2: 0   |
conv_filter_2: 64     | conv_layer_3: 0   | conv_filter_3: 64     | dense_layer_1: 0
| dense_units_1: 256    | dense_layer_2: 2  | dense_units_2: 32     |
dense_layer_3: 1  | dense_units_3: 32     | regularizer: 0.0001
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I User Testing
The user testing is translated from Norwegian to English.

Person A
Tasks
Send a new song to analysis

1. “Add song”
2. Paste in a YouTube-link in the input-feltet
3. Click «Submit»

Check the result of the newly added song
1. Click “Results”

Find out if any songs failed the analysis
1. Click «Status»
2. Look at the «Failed songs» section

Questions
Did you encounter any challenges during the execution of the tasks?

- Could have been redirected to the «Results» page when the song was uploaded.

How was your experience finding information if you encountered something you did not
understand?

- There is no way to know what the purpose of the «Status» page is. That this is the
place where failed songs show up.

What is your overall impression?
- Looks fine except for the points mentioned about the «Status» page.

Do you have any general feedback? (Design, navigation, layout, functionality, etc.)
- API Status does not make sense for people who do not know what it is. The songs

should be displayed at the top of the page, as this is the main point.

Person B
Tasks
Send a new song to analysis

1. Find a YouTube link
2. Paste it in the input field on «Add song» page
3. Click «Submit»

Find out if any songs failed the analysis
1. Click «Results»
2. Would assume that the song at the top is the newest one. If not: search for it

Finn ut om noen sanger har feilet
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1. Search for the songs on the «Results» page
- If no results occured I would assume they were not uploaded

2. Possibly go to the «Status» page if nothing happened

Questions
Did you encounter any challenges during the execution of the tasks?

- If I did not accidentally click the «Status» button, I would have never seen the «Failed
songs» section. Usually I would have tried to input the song again.

How was your experience finding information if you encountered something you did not
understand?

- Only the things mentioned above.

What is your overall impression?
- Most things make sense.

Do you have any general feedback? (Design, navigation, layout, functionality, etc.)
- There is a bit too much going on on the «Status» page. Maybe a closing functionality

could be added so you could collapse an entire category. If there are 100 processing
songs, and you want to get to the bottom of the page it is a bit time consuming.
Sorting the results would also have been nice, but searching is also good.

Person C
Tasks
Send a new song to analysis

1. Paste a YouTube link in the input field
2. Click «Submit»

Check the result of the newly added song
1. Click «Results»

Find out if any songs failed the analysis
1. Check the «Status» page

- Would assume they were located at the bottom of the «Results» page

Questions
Did you encounter any challenges during the execution of the tasks?

- The only thing I can think of would be the «Status» page. I would not have checked
that page if the last task was not to find the failed songs. I would have assumed they
were located at the bottom of the «Results» page.

How was your experience finding information if you encountered something you did not
understand?

- The things mentioned earlier. I thought «Pending» and «Processing» were the same
thing because of the yellow color that is used. I believe it makes more sense to give
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«Pending» a more orange color.

What is your overall impression?
- Somewhat confusing because of the lack of information.

Do you have any general feedback? (Design, navigation, layout, functionality, etc.)
- The layout of the filtering feature is not like expected. It only looks like a description

of the colors, and not something you can click. Maybe «Approved» and «Pending»
could be placed at the bottom of the page as an explanation, and a bigger version of
the squares at the top. Alphabetical or chronological sorting of the results would have
been helpful.

Person D
Tasks
Send a new song to analysis

1. Input a link in the input field
2. Click «Submit»

Check the result of the newly added song
1. Click «Results»

Find out if any songs failed the analysis
1. Click «Status»
2. Look at «Failed songs»

Questions
Did you encounter any challenges during the execution of the tasks?

- I would have liked it if «Failed songs» were at the top of the «Status» page, or on the
«Results» page. I would not have thought about visiting the «Status» page. Maybe
an alert could be displayed on the «Results» page.

How was your experience finding information if you encountered something you did not
understand?

- The only thing I found difficult was the «Status» page.

What is your overall impression?
- It is ok and simple.

Do you have any general feedback? (Design, navigation, layout, functionality, etc.)
- It is a bit confusing that the color of «Pending» and «Processing» is the same. One of

them should have been orange.
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J Prototypes of Web Application
Before user testing

Input page

Input page - When user clicks submit

Input page - The link is not valid

Input page - The link was successfully parsed
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Output page

Output page - Database error
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Status page

121



After user testing

Output page

Status page
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K Meeting Minutes
07.01.2022 - Group meeting
Participants:

● All group members
Content:

● Scheduled meeting with client.
● Created a list of questions to ask both client and supervisor.

11.01.2022 - Group meeting
Participants:

● All group members
Content:

● Initial setup of project planning phase.
● Discussed tools to use for project management (time tracking, gantt).

13.01.2022 - Meeting with EC-Play
Participants:

● All group members
● EC-Play

Content:
● Got an overview of the task.
● Scheduled future meetings: Thursdays every other week at 10. In the planning

phase, we will also have an additional meeting 20.01 to get more time to discuss the
planning.

● Looked over their dataset and got the format explained.
○ We are getting a better example of the format later.

● Asked about their expectations in relation to software security:
○ Not extremely important as the product we are creating is only going to be

used in-house, and is not connected to an important database.
● Discussed the UI:

○ Input: YouTube link
○ The design can be simple, but ultimately we can choose the complexity.
○ What technologies are going to be used: They use React, and it is therefore

great if we use it.
● Decided channel for meetings and communication: Discord

14.01.2022 - Meeting with supervisor
Participants:

● All group members
● Ali Shariq Imran

Content:
● Scheduled future meetings: Friday every week at 10.

○ We need to create an event in our calendar and invite Ali.
● Asked about the poster point in the follow-up document posted on Blackboard. Ali will

ask Tom.
● Got clarification about public vs private repository.
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● Important to get requirements from the client at the beginning. Make an agreement,
so we can get the functional requirements to get a working project. Also get the non
functional requirements for additional features. For example which file types the AI
will handle.

○ High level overview of data flow
○ Interaction between the different components
○ Should be part of the architecture part of the development, put it in the final

report
● Got feedback on the network model:

○ Keep it high level, it is too complicated and not easy to understand
○ Clear starting and ending point
○ One level in, and divide into blocks. For example pre-processing. What

happens in this block?
○ We can make a simpler model before, so this is more understandable

● Got feedback on the risk assessment:
○ Break down into categories:

■ Team dynamics
● If we get sick
● If the project is delayed
● What happens if the leader is sick

■ Other categories related to development
○ Explain why we are not making a mitigation plan for each risk

● Asked about how to get access to SkyHiGh:
○ We should ask Tom.

20.01.2022 - Meeting with EC-Play
Participants:

● All group members
● EC-Play

Content:
● Clarification about the repository: it can be public.

○ We are going to create it, and invite them to it.
○ After the meeting we decided to buy Github Pro. This allows us to use

features like “Projects” and “Wiki” even though the repository is private. The
cost was split among all group members.

● We are going to fix the cooperation agreement and send it to them.

Because of illness, the meeting was kept short.

25.01.2022 - Meeting with supervisor
Participants:

● All group members
● Ali Shariq Imran

Content:
● Got feedback on Gantt chart

○ We need to justify why it is correct
○ Is it ok if the blocks are not connected?
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■ Makes sense because of all the subtitles
● Accuracy/precision in the “Objectives” section

○ Do not recommend to use a specific number unless we support it with a
source or if it is a request from the client

● What should we include in the “Delimitation” section?
○ Depends on the client, if they have not given any delimitations, it is up to us.
○ UI

■ Folder, file or link as the input.
■ “We only need a minimalistic UI”

● Public or private repo
○ Should keep it private until we are finished with the project.

● License
○ It is not important to use EC-Play’s license.

● Should we add the product backlog to the project plan?
○ Not required in the project plan.

● Should we keep a log separate from meeting minutes and time tracking?
○ Can be risky to have a lot of appendices, more important to have a more

extensive final report.
○ Spend little time on things that are not important for the project.

27.01.2022 - Meeting with EC-Play
Participants:

● All group members
● EC-Play

Content:
● Standard agreement

○ We need to find out if the person who signs it (client) also needs to be set as
the contact person:

■ If so: change contact person from Kristoffer til Joakim.
● Model performance:

○ Clarified what the % means.
○ Not sure if we should define the performance?

● Million Song Dataset:
○ Not great that it is only one bpm value.

● Should the input take several YouTube links?
○ Not necessary.

● Should be a page where all the results from all inputted links are shown
○ If you do not have time to correct it right away, it is still there later.

● 1 bpm per tempo.
● Time limit when training on corrected songs:

○ If there are, for example, only 7 songs waiting for a long time it should happen
anyway.

04.02.2022 - Meeting with EC-Play
Participants:

● All group members
● EC-Play
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Content:
● Nines notation - what is the goal?

○ We can decide.
● Output (JSON format):

○ {
■ beats: [number (timestamps in seconds)],
■ parts - description of a part: []

● {
○ bars: bokser [{

■ length: antall slag
■ chords: [{

● chord: 0-11
● minor: bool
● length: antall slag

■ }]
○ }]

● }
■ arrangement: the order of the parts, and how many times they are

repeated each time.
■ startTime: first timestamp in beats.

○ }
● We go feedback on the UI:

○ We need to change the output page so it corresponds with the correct JSON
(discussed earlier in the meeting).

○ Status page is good:
■ However, adding a “Processing songs” section where all songs that

are currently analyzed would be nice.
■ If an error happens (for example problems with saving results to the

database), this can also be shown here.
● Feedback on use case

○ Can expand “See YouTube video”.

07.02.2022 - Meeting with supervisor
Participants:

● All group members
● Ali Shariq Imran

Content:
● Status on the agreement and project report:

○ Everything OK
● Licensing of libraries used - can we only use libraries with license for commercial

use?
○ As long as the project is not used commercially, we can use it.
○ If the client wants to use it after the project, we should be more concerned

about it.
● Status report and meeting notice:

○ We can decide the dates and how many meetings.
● Got feedback on requirements specification.
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● Got feedback on architecture.
● Clarification on weekly meeting:

○ Friday at 10 is still good.

11.02.2022 - Meeting with supervisor
Participants:

● All group members
● Ali Shariq Imran

Content:
● Discussed the requirement specifications:

○ The starting point of the architecture is not clear.
● We should create a list of all features we are going to implement.
● Talked about dataset:

○ We should ask EC-Play for theirs.

14.02.2022 - Group meeting
Participants:

● All group members
Content:

● Looked at code reviews on Github.
● Invited all members to the Firebase project.
● Fixed Gantt chart.
● Planned API endpoints.

17.02.2022 - Meeting with EC-Play
Participants:

● Sindre Eiklid
● Rickard Loland
● EC-Play

Content:
● Talked about changes in plans (MVP).
● Talked about current status (What we have done):

○ Rickard shared screen showcasing beat algorithm and chromagram.
○ Kristoffer said that they don’t know exactly how many beats they need, but no

point in being super accurate.
○ Wonders how BPM is calculated (found the way the algorithm does it to be

good).
○ Kristoffer said that we should compare the chords with the beats to verify

■ Chords often switch with beats.
■ Chordify assumes 4-beat.

● Talked about needing their dataset:
○ Kristoffer will try to copy over the dataset into a new project that we can get

access to.
○ Might be some mistakes: they suggested double checking
○ Newest songs are definitely correct (tested through metronome)

■ Date created label
■ last updated
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● For pattern recognition we should look at beats + chords:
○ The same pattern can happen at two different tempos.
○ 4 beats per bar - akkord varer en hel bar (Ikke alltid):

■ Patterns often happen within a length of 4 (or 8, 12, 16) bars
■ hvis pattern 1 følger alltid etter pattern 2, bør det legges sammen? må

finne en gunstig lengde
● 4 - 12 bars er en god løsning
● chords that was left over was added to its own pattern
● hvis bare en takt er forskjellig blir det sin egen pattern
● if only one chord is different then it will be added to its own

pattern
● leftovers: its own pattern

○ They suggested using the EC-Play player to look for easy songs.
○ They said that grouping them together like they have done programmatically

would be difficult and said that human correction would be fine here.
● We informed them about the incoming status meeting next week.

18.02.2022 - Meeting with supervisor
Participants:

● All group members
● Ali Shariq Imran

Content:
● Validate algorithm to check if it is consistent: check if the beats are occuring on the

same timestamps every time it is run
○ Find another algorithm and look at the output.

● We should try to visualize the beat data.
● Informed him about the status meeting next week.

21.02.2022 - Group meeting
Participants:

● All group members
Content:

● Created status report 1.
● Sent a meeting notice (with the status report attached) to the client and our

supervisor.

24.02.2022 - Status meeting with EC-Play
Participants:

● All group members
● EC-Play

Content:
● Informed client about the current status:

○ Added additional information to what was written in the status report, as we
have made progress since it was written.

● Asked about their dataset again:
○ They are going to send it.
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25.02.2022 - Status meeting with supervisor
Participants:

● All group members
● Ali Shariq Imran

Content:
● Feedback on status report and list of requirements:

○ Everything is fine for now.
● Status on algorithms

○ The research has to be documented:
■ Write down the different algorithms
■ Weaknesses and strengths
■ Try to understand how they are working

○ Find an additional dataset.
● We should show Ali some of our outputs and visualizations next week.

28.02.2022 - Group meeting
Participants:

● All group members
Content:

● Updated Gantt chart.
● Status on algorithms

○ Beats algorithm ready for feedback:
■ Aubio and librosa comparison
■ Potentially use outputs for NN training
■ Ask how to handle offbeats detected

○ Chord algorithm working, but want to improve it:
■ Currently getting chord data for every frame, want only on beats
■ Getting the raw PCP data from pyACA - how?
■ Simpler but worse alternative is just getting the calculated chord for

the timestamps.
● Status on API

○ Good progress so far.
○ On hold for now.

03.03.2022 - Meeting with EC-Play
Participants:

● All group members
● EC-Play

Content:
● Showed and discussed the visualization of both beats and chords.
● Got feedback on issues with chords - problem is different chords in vocals and

instrumental.
● New idea: filtering out specific frequencies to get the chords we want.

03.03.2022 - Meeting with supervisor
Participants:

● Rickard Loland
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● Sindre Eiklid
● Ali Shariq Imran

Content:
● Showed and discussed the visualization of both beats and chords.
● Feedback on beats - get MSE, test on songs that change tempo, research the

algorithms for report.
● Feedback on chords - filter out frequencies to get right chords, use preprocessing to

pass in only timestamps on beats.

28.02.2022 - Group meeting
Participants:

● All group members
Content:

● Updated Gantt chart.
● Status on what everyone has done since last time:

○ Rickard has worked on separating vocals and instruments.
○ The first version of the input page has been developed.

03.03.2022 - Meeting with EC-Play
Participants:

● All group members
● EC-Play

Content:
● Status on algorithms:

○ The chord part is going great, but there is a problem with differentiating some
chords.

○ Some problems with beat algorithm:
■ Når de ikke er samme over hele, går det ikke.
■ Problems with numpy

● Splitting of songs (vocals and instruments) requires another
version of numpy than Aubio does. It has the worst result, but if
we do not use it we only have Librosa for testing at the
moment.

● Should probably split the songs even more:
○ Bass and drums have the most even rhythm, so these

might be interesting.

18.03.2022 - Meeting with supervisor
Participants:

● All group members
● Ali Shariq Imran

Content:
● Started on neural network:

○ No point in doing it for beats, probably not gonna get a better result with the
algorithm.

○ Process of chords.

21.03.2022 - Group meeting
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Participants:
● All group members

Content:
● We need to test the Dockerfile on Windows.
● What everyone is going to work on this week:

○ Rickard: continue working on batch processing.
○ Sindre: neural network.
○ Maren: continue developing the API.

● Created initial outline of the report.

24.03.2022 - Meeting with EC-Play
Participants:

● All group members
● EC-Play

Content:
● Status on batch processing:

○ Discussed problem with beat timestamps being after the song is over. We
might just have to cut the end of the array.

● How to evaluate beat algorithm performance?
● Training set: has to be the same matrix size. But the x-axis will be varying. Have to

normalize for the same length.
○ Add empty frames to get the length of the biggest one for now.
○ Exclude things over 50, threshold.

25.03.2022 - Meeting with supervisor
Participants:

● All group members
● Ali Shariq Imran

Content:
● Algorithm comparison:

○ Pretty good accuracy for chords, but don't know how to compare beat
performance. If it finds offbeats between the beats, not a problem in terms of
what they need, and it is also not inaccurate. But it would only be 50% really.

■ Make assumptions. Manually labeled.
■ If new song, it is hard to separate offbeat

● Threshold?
○ Can vary a lot between songs and in one song

● Practical vs academic neighboring chords:
○ Analysis point of view, the more we dive down into these kinds of things, the

more value in terms of research. If we think it is worth exploring, we should go
for it.

● 4 chords that will be trained a lot:
○ Talked about transposing the data with EC-Play. Will that help or make the

neural network worse?
■ Neural network might overtrain on those particular chords.
■ Either train model as is, and see the result.
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■ Or oversample the data. make them balanced by reusing the chords
that are missing.

■ See side by side result.
● In the report: write about the different solutions we have looked at. Even if they did

not work.

01.04.2022 - Meeting with supervisor
Participants:

● All group members
● Ali Shariq Imran

Content:
● Training set for model finished, run through once.Accuracy improved with

preprocessing. Still issues with overfitting.
● Plot the data as heatmaps so it is easier to identify.
● Chord algorithm result:

○ Average is around 60%.
● When should we try to have the first edition of the report finished?

○ Ali wants to see the structure/outline, and how we plan to fill them, as soon as
possible. The end of Easter is ok.

○ Whatever we are doing, put it in the report. Write about/rewrite it later.
● Comparison of chord and beat algorithms.

07.04.2022 - Meeting with EC-Play
Participants:

● Rickard Loland
● Maren Skårestuen Grindal
● EC-Play

Content:
● Status on the neural network.
● Transposing of the songs:

○ Looked at it, but prioritized preprocessing for now.
● Planned status meeting after easter break:

○ April 28th does not work for EC-Play.

08.04.2022 - Meeting with supervisor
Participants:

● Rickard Loland
● Maren Skårestuen Grindal
● Ali Shariq Imran

Content:
● Issue with latest issue of tensorflow:

○ Problems with numpy arrays, so had to use lists.
● Dynamically change the number of layers or kind of layers?

○ Ali will take a look at it.
○ Automatically change the architecture with configuration file.

● Important to test different architectures for research purposes.
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22.04.2022 - Meeting with supervisor
Participants:

● All group members
● Ali Shariq Imran

Content:
● Random search model:

○ Tried different combinations.
○ Do not need to do anything with the activation functions.
○ Not much details, number of layers and nodes are enough.
○ I henhold til rapporten er det som har blitt gjort bra nok.

● Status:
○ Important with literature.

25.04.2022 - Group meeting
Participants:

● All group members
Content:

● Update on random search.
● Send out status report in preparation for the status meetings this week.
● Plan for upcoming week, we are trying to finish all code related tasks by sunday.
● Next week we are going to update all figures in the report.

26.04.2022 - Status meeting with EC-Play
Participants:

● All group members
● EC-Play

Content:
● Random search: best model with 82% accuracy

○ Change of dataset to improve model (or transposing, but no time).
● This week will mostly be used for deployment.

28.04.2022 - Group meeting
Participants:

● Rickard Loland
● Sindre Eiklid

Content:
● Discussed progress on neural network code and results analysis.
● Plan second meeting 29.04 to coordinate work for the following weekend.
● Starting to look at deployment options, potential barriers.
● Plan to look closer at licensing to see if non-commercial license on repo can be used.

29.04.2022 - Status meeting with supervisor
Participants:

● All group members
● Ali Shariq Imran

Content:
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● Ali will read the report draft soon.
● Updated him on the neural network.
● Presentations:

○ More emphasis on scope, conclusions and work that have been done.
○ Be short and precise.
○ Should a demo be included?

■ Maybe not too interesting.
■ Create an interface in python and showcase some of the functionality.

For example the different algorithms with an image.

02.05.2022 - Group meeting
Participants:

● Rickard Loland
● Sindre Eiklid
● Maren Skårestuen Grindal

Content:
● Merged the branches containing the remaining dockerfiles to main.
● Created docker-compose file.
● Set a final deadline for coding: thursday 5th of May
● Created issues for all remaining parts of the report.

05.05.2022 - Meeting with EC-Play
Participants:

● All group members.
● EC-Play

Content:
● Rickard showed result of naboanalyse.
● Description of EC-Play in the report:

○ They are gonna write some notes and send it to us.

13.05.2022 - Meeting with supervisor
Participants:

● All group members
● Ali Shariq Imran

Content:
● The flow does not make sense all of the time (section 8 and 10).
● Everything, even the simple things, should be explained with references and

arguments.
● The table of attachments can be put near the table of content.
● Try to have less subsections, especially in the “Further work” section.

○ We have written more since the version we sent Ali, so he will look at it again.
● When PDFing our report, make sure the links are still there. Do not use the print

version.
● Glossary - are we supposed to have the source to the common definitions?

○ May not need to put a source there, as we are not claiming it is our own
definition.
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● When he is done going through the report, we can change the things and send it to
him again.

15.05.2022 - Group meeting
Participants:

● Rickard Loland
● Sindre Eiklid
● Maren Skårestuen Grindal

Content:
● Went through the comments on section 1 to 5 from Ali.
● Wrote down all things to be done before, and on, monday.
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L Time Log
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Rickard Loland

Maren Grindal

Sindre Eiklid

Other time entries include: Testing 2:57:00, Front-end 2:15:00, and Back-end: Cloud 0:30:00

137



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Sindre Eiklid
Rickard Loland
Maren Skårestuen Grindal

Neural Network for Recognizing
Features in Music

Bachelor’s thesis in Programming
Supervisor: Ali Shariq Imran
May 2022Ba

ch
el

or
’s 

th
es

is


