
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Arinesalingam, Thomas
Bjerke, John Ole
Heksum, Endre
Karlsen, Henrik Markengbakken

DeskSim v2

Prototyping Train Simulation

Bachelor’s thesis in Programming
Supervisor: Tom Røise
May 2022

Ba
ch

el
or

’s
th

es
is

Arinesalingam, Thomas
Bjerke, John Ole
Heksum, Endre
Karlsen, Henrik Markengbakken

DeskSim v2

Prototyping Train Simulation

Bachelor’s thesis in Programming
Supervisor: Tom Røise
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Sammendrag av Bacheloroppgaven

Tittel: DeskSim v2

Oppgave nr. 19 - 2
Dato: 20.05.2022

Deltakere: Thomas Arinesalingam
John Ole Bjerke
Endre Heksum
Henrik Markengbakken Karlsen

Veileder: Tom Røise

Oppdragsgiver: Lokførerskolen
Kontaktperson: Isak Kvalvaag Torgersen, isator@jernbanedirektoratet.no

Nøkkelord: Simulasjon, Spillutvikling, Spillmotor, C++
Antall sider: 82
Antall vedlegg: 9
Tilgjengelighet: Åpen

Sammendrag: Norsk fagskole for lokomotivførere bruker en togsim-
ulator i utdanningen av nye togførere. Deres togsimu-
lator, DeskSim er skrevet i Java og andvender en ut-
datert og ikke lenger vedlikeholdt spillmotor ved navn
JMonkeyEngine laget i 2003. For å sikre at spillmotoren
kan oppdateres og brukes i fremtiden, har Lokfører-
skolen startet et langsiktig prosjekt for å migrere app-
likasjonen over til en annen spillmotor. Vår oppgave, for
å hjelpe til med denne overgangen, er å analysere ulike
spillmotorer og lage en prototype in den spillmotoren
som kommer frem som best i analysen. Denne bach-
eloroppgaven presenterer detaljene rundt analysen og
beskrivelse og diskusjon av utviklingen samt utvikling-
sprosessen av simulatoren. Den ferdigstilte prototypen
simulerer et tog som kjører på skinner, blir påvirket av
signaler og tilbyr en separat modus for redigering av
objekter i ulike scenarioer.

Summary of Graduate Project

Title: DeskSim v2

Project no. 19 - 2
Date: 20.05.2022

Authors: Thomas Arinesalingam
John Ole Bjerke
Endre Heksum
Henrik Markengbakken Karlsen

Supervisor: Tom Røise

Employer: The Norwegian Train Driver Academy
Contact Person: Isak Kvalvaag Torgersen, isator@jernbanedirektoratet.no

Keywords: Simulation, Game Development, Game Engine, C++
Pages: 82
Attachments: 9
Availability: Open

Abstract: The Norwegian Train Driver Academy (Lokførerskolen)
utilizes train simulation to educate locomotive drivers.
Their proprietary simulator, DeskSim, was written in
Java using the increasingly outdated game engine
jMonkeyEngine from 2003. To future-proof and mit-
igate any risk of obsolescence, Lokførerskolen started
their long-term project of migrating the project to a
modern game engine. To help with this, we were tasked
with analysing suitable game engines for the new sim-
ulator, as well as developing a prototype in the game
engine of choice. This thesis presents the details of ana-
lysing game engines, and train simulator development
using Unreal Engine with C++ . The resulting prototype
simulates a train driving on rails, manages train signals
and systems, and offers a separate mode for editing a
scenario.

Preface

We wish to thank everyone who was involved in our Bachelor’s project. Special
thanks to our supervisor, Tom Røise, for all the support and feedback you provided
throughout the project. We want to thank the Norwegian Train Driver Academy
for allowing us to contribute to their future simulator for educating new train
drivers. We owe a big thanks to the client representative, Isak Kvalvaag Torgersen,
for offering support, guidance, availability, and your interest in the project and
our development. Finally, we want to thank all our friends and family who have
supported us during the project.

v

Contents

Preface . v
Contents . vi
Figures . ix
Tables . xi
Code Listings . xii
Acronyms . xiii
Glossary . xv
1 Introduction . 1

1.1 Background . 1
1.2 Problem Area . 1
1.3 Delimitation . 2
1.4 Target Audience . 2
1.5 Group Background . 2
1.6 Project Goals . 3
1.7 Constraints . 4
1.8 Roles . 4
1.9 The Report . 5
1.10 Thesis Clarifications . 5

2 Choice of Engine . 6
2.1 Introduction . 6
2.2 Absolute Requirements . 8
2.3 Desired Requirements . 9
2.4 Learning Curve . 12
2.5 Existing Solutions . 15
2.6 Conclusion . 16

3 Requirements . 18
3.1 Functional Requirements . 18
3.2 Use Case Diagram: Game Engine . 21

4 Development . 24
4.1 Plan . 24
4.2 Process . 27

5 Technical Design . 36
5.1 System Architecture . 36

vi

Contents vii

5.2 Application module Architecture . 36
5.3 Network Architecture . 38

6 Product Overview . 40
6.1 Menus . 40
6.2 Simulator mode . 42
6.3 Editor mode . 43

7 Implementation . 45
7.1 Game flow . 45
7.2 Spline Tool . 47
7.3 Signal controller . 50
7.4 Signals . 51
7.5 Login and authentication . 54
7.6 Editor Gizmo . 55
7.7 Landscape . 57
7.8 Landscape Texturing . 57
7.9 Save Functionality . 58
7.10 User Interface / Heads-Up Display . 61
7.11 Plugins . 62

8 Deployment . 63
8.1 Packaging and release . 63
8.2 Setting up the project . 63
8.3 Deployment of documentation . 64

9 Testing . 65
9.1 Student User Testing . 65
9.2 Employee User Testing . 67
9.3 Hardware testing . 68
9.4 System Testing . 68

10 Discussion . 71
10.1 Evaluation of project goals . 71
10.2 Choice of Engine . 74
10.3 Development Plan and Process . 76
10.4 Version Control System . 78
10.5 Critique . 79
10.6 Further Development . 80

11 Conclusion . 82
11.1 Summary . 82
11.2 Final words . 82

Bibliography . 83
Appendices . 87

A Source Code . 88
B Project Agreement . 89
C Task Description . 96
D Project Plan . 99
E Clockify Summary . 119

viii Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

F Code Convention Document . 121
G Requirements Specification . 129
H Meetings and Notes . 142
I Work Logs . 176

Figures

2.1 Derail Valley (Altfuture) . 15
2.2 Libre TrainSim (GPL 3.0) . 16

3.1 Application use case diagram . 19
3.2 Game Engine use case diagram . 21

4.1 Issue status diagram . 26
4.2 Gantt chart . 27
4.3 Scrum board in Jira Software . 28
4.4 Overview of all sprints . 28
4.5 The documentation page for the ATrain class 33
4.6 The documentation for ATrain member function GetSpeed 34
4.7 Comparison of original project plan (purple) and actual project pro-

cess (orange) . 35

5.1 Hierarchy of application start up functionality 37
5.2 The module hierarchy for main menu mode 37
5.3 The module hierarchy for simulating mode 38
5.4 The module hierarchy for editor mode 38
5.5 A diagram for the network architecture 39
5.6 File hierarchy for Source and Content 39

6.1 Log in screen . 41
6.2 Main Menu . 41
6.3 Settings Menu . 42
6.4 Train Driver View . 42
6.5 Stop Signal . 43
6.6 Drone View . 43
6.7 Editor Mode HUD . 44

7.1 The module hierarchy for simulating mode 47
7.2 A selected spline deforming a railway mesh along itself. The white

squares indicate the spline points, and the white lines indicate the
tangent of the selected spline point. 48

ix

x Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

7.3 A railway conforming to the terrain height 49
7.4 Blueprint showing how a signal switches status 52
7.5 The material used for signal lights . 53
7.6 The translation gizmo on a selected signal 55
7.7 The translation gizmo far away, hovering the X-axis arrow 55
7.8 The rotation gizmo in the XY-plane . 56
7.9 Additional meshes around the arrows 56
7.10 Texture is blended based on angle of the landscape 57
7.11 Added texture variations to create realism 58
7.12 Texture details depends on the distance from the camera 58
7.13 Update Speed function for the train DMI in blueprint 61

10.1 Clockify - Overall time usage for project 76

Tables

2.1 Table of absolute requirements for game engine features 9
2.2 A matrix of file support for each engine 10
2.3 Scoring by G2 . 12

3.1 Use Case: Place objects . 19
3.2 Use Case: Delete objects . 20
3.3 Use Case: Operate drone . 20
3.4 Use Case: Move or rotate object . 20
3.5 Use Case: Operate Train . 21
3.6 Use Case: Add Level in Main Menu . 22
3.7 Use Case: Add new object . 22
3.8 Use Case: Add object in Content Browser 22

4.1 Overview of issue status at the end of sprint 3 30
4.2 Overview of issue status at the end of sprint 7 31
4.3 Overview of issue status at the end of sprint 10 32

9.1 User Test Case 1: Start the scenario named "Testing" 66
9.2 User Test Case 2: Drive the train . 66
9.3 User Test Case 3: Exit the game . 67
9.4 User Test Case 1: Place and edit objects 67
9.5 User Test Case 2: Save, exit and load level 68

xi

Code Listings

7.1 Changing menu mode . 46
7.2 Changing game mode at runtime. 46
7.3 UPROPERTY macro. 47
7.4 Getting the length of the mesh . 48
7.5 Calculating spline segments . 48
7.6 Initialization of spline points . 48
7.7 Applying spline point data . 49
7.8 Finds and stores all signals based on class 50
7.9 Updates signals based on ID and type 51
7.10 Creates dynamic instanced materials for each signal light 52
7.11 Decodes and stores info from userinfo JSON response 54
7.12 FActorData array that holds all data that is saved 59
7.13 Example of a class that inherits IsSaveableInterface 59
7.14 SaveGame function from SaveManager 59
7.15 LoadGame function from SaveManager 60
7.16 Update speed function in C++ . 61

9.1 Code displaying how to apply resolution changes 70

xii

Acronyms

3D Three Dimensional. 3, 8, 9, 22, 47, 57, 61, 72–74, 78

API Application Programming Interface. 8, 12, 14, 23, 77

AR Augmented Reality. 7

CPU Central Processing Unit. 23

DMI Driver-Machine Interface. 3, 23, 37, 62, 69, 71

ERTMS European Rail Traffic Management System. 1

HTML HyperText Markup Language. 33, 64

HUD Heads-Up Display. ix, 36, 37, 44, 61, 62, 75

IDE Integrated Development Environment. 64

JSON JavaScript Object Notation. 38, 55

JWT JSON Web Token. 38, 54

LFS Large File Storage. 79

MIT Massachusetts Institute of Technology. 8

MVP Minimum Viable Product. 29–31

NTNU Norges teknisk-naturvitenskapelige universitet. 2, 5

UE Unreal Engine. 59, 63, 64, 74, 75, 77

UI User Interface. 37, 61, 75

xiii

xiv Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

VR Virtual Reality. 1, 7–9, 13, 15, 73, 80

XR Extended Reality. 7

Glossary

actor A base class for any object that can be placed into a level in Unreal Engine.
15, 36, 50, 51, 59, 60

blueprint Unreal Engine’s own node-based programming language for visual script-
ing. 11, 14, 22, 45, 46, 61, 62, 74, 75

Clockify A third-party service for tracking time spent on tasks within a project.
26

CryEngine A 3D game engine developed by Crytek. 6, 8–14, 16, 17

DeskSim The current simulator used by Lokførerskolen today. 1, 3–5, 38, 73, 82

Doxygen Standard tool for generating documentation from C++ projects. 26, 33,
64

emissive light The model itself can act as a light source, without needing a sep-
arate light source. 53, 75

GitHub A service for hosting software repositories and version control using Git.
7, 25, 27, 29, 78, 79

gizmo An overlay with a functional purpose, providing contextually, visually rel-
evant options to the user. 55, 56, 80

Godot An open source, cross-platform game engine. 6, 8–14, 16, 17

Heads-Up Display Elements overlaying the screen, displaying information to the
user. 61

instanced dynamic material A material which is instance-editable and can be
edited during runtime. 53

xv

xvi Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Jira A web service for tracking and managing product development, developed
by Atlassian. 25–27, 29

jMonkeyEngine A 3D game engine written in Java by jME Core Team in 2003.
1, 6, 9, 16

Kanban A framework for agile software development which focuses on balancing
demands with available capacity. 24, 25

Lokførerskolen The Norwegian Train Driver Academy, a vocational school edu-
cating train drivers, and the client of this project. 1–6, 8, 9, 16, 23, 24, 32,
38, 41, 54, 63, 65, 67, 68, 71, 72, 80–82

mesh A graphic primitive, represented as geometric shapes when rendered. 22,
47–49, 55, 56, 77, 80

Open 3D Engine An open source 3D game engine managed by The Linux Found-
ation. 6, 8, 9, 16

open source Computer software released publicly and freely for anyone to modify,
use and/or publish. 8, 16

package Unreal Engine’s process of collecting files and resources and assembling
them into an executable software. 63

packaging Short for independent, here referring to developers without financial
support from a publisher. 7, 8

runtime A word to describe the time while a program currently running. 14, 22,
52, 53, 57, 62, 72, 77, 80, 81

Scrum An agile framework for project management within software develop-
ment. 4, 24, 25, 27, 34, 35, 79

solution A collection of one or multiple related projects developed in Microsoft
Visual Studio. 22, 64

spline A mathematical function for interpolating smoothly between multiple points,
creating a customizable curve. 14, 17, 47–50, 71, 72, 75

sprint A short period where a team aims to complete a set amount of work with-
ing the Scrum methodology. 24, 25, 27–31, 33, 35, 73, 77, 79

triggerbox A defined area detecting objects’ entries. 42

Tables xvii

Unity A cross-platform game engine developed by Unity Technologies. 6, 7, 9–11,
13–17

Unreal Engine A 3D game and computer graphics engine developed by Epic Games.
5–7, 9–11, 13–17, 22, 26, 29, 32, 36, 39, 45–47, 49, 52, 55, 57, 59, 61–64,
73–76, 78, 82

viewport The area on the screen visible to the user. 23, 38, 61

Visual Studio An integrated development environment developed by Microsoft.
22, 64

Chapter 1

Introduction

1.1 Background

The Norwegian Train Driver Academy, Lokførerskolen, is a public vocational school
part of The Norwegian Railway Directorate. The school educates locomotive drivers
over the course of a year. Their study program consists of learning an academic
curriculum and physical fieldwork, where they follow an experienced locomotive
driver and get to try driving and operating a train. As a part of their academic
learning, they use a train simulator called DeskSim. The simulator was originally
implemented as an extra tool for students to learn the new signal system ERTMS
when it first arrived. Their simulator is also used to simulate real-life scenarios,
especially high-risk situations that do not often happen [1]. Since then, Lokfører-
skolen has also implemented a VR mode where they simulate and practice switch-
ing train tracks and connecting different wagons to trains.

1.2 Problem Area

As a part of the student’s education, Lokførerskolen uses DeskSim, a self-developed
in-house train simulator. DeskSim builds upon JMonkeyEngine, a Java-based game
engine developed in 2003 that has recently become outdated in some areas. To
avoid irrelevancy, Lokførerskolen started their long-term project of changing the
game engine from JMonkeyEngine into a more modern one. This project is a com-
bination of two parts. The first part is an analysis and comparison of different
modern game engines. The second part of the project is to develop a train simu-
lation demo in the chosen game engine.

The project is a combination of two parts. The first part is an analysis and com-
parison of different modern game engines. The second part of the project is to
develop a train simulation demo in the chosen game engine.

1

2 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

1.3 Delimitation

We have compared different game engines for developing a simulator in this pro-
ject. While we were going to compare various game engines, we did not perform
a comprehensive technical analysis of each game engine and its features. We also
limited ourselves to about 4-5 different game engines.

Due to the technical nature of the simulator, we only implemented core function-
ality related to the movement of the trains and a basic signaling system. Therefore,
the project’s goal was not to provide a realistic, detailed, physics-based simulation,
but a tool which imitates real train movement. For this reason, the movement of
the train is not physics-based. The implementation of trains signals has basic logic
for controlling its statuses.

Improving the graphical fidelity was not a goal of the project but was accomplished
because the engine was newer and more capable. The task was not to develop
new content for the simulator, therefore the group reused assets from the existing
simulators when possible.

1.4 Target Audience

1.4.1 Product

The primary audience of the product is people using the simulator. These are
people connected to Lokførerskolen, such as students and teachers. To use the
product, you would need a computer that can run the simulator and an account
to log into the simulator.

1.4.2 Thesis

The target audience for the report is people wanting insight into our development
process from a project plan to deployment. The primary target audience for this
thesis is the development team and administrators at Lokførerskolen, people in-
terested in game development, simulator applications, project management, and
software engineering. The thesis, more specifically, the game engine analysis, can
be of interest to developers in the process of choosing a game engine. The thesis
is written in the context of computer programming and presumes the reader has
basic knowledge about computers and software development.

1.5 Group Background

All members of the group are students at NTNU in Gjøvik. We have attended
the same educational program for the past three years and therefore have sim-
ilar knowledge and experience with computer programming. During our time at
NTNU, there have been several courses that we deem highly relevant for this

Chapter 1: Introduction 3

project, teaching us the basics of programming and game logic and advanced
concepts within software engineering. These courses include, but are not limited
to, PROG1003 - Object-oriented Programming, PROG2002 - Graphics Programming
and IMT3603 - Game Programming.

In addition to programming, the group members are particularly interested in
computer games and graphics. The group member’s interest was a significant
factor when deciding the assignment for the bachelor project and has played a
substantial role in motivating the development.

1.6 Project Goals

The project will provide Lokførerskolen with our recommendation of a game en-
gine and develop a demo in our chosen engine.

1.6.1 Analysis Goals

Look into what game engines are available and compare and analyze them against
each other based on criteria given to us by Lokførerskolen:

• Must be a modern game engine.
• Must support functionality for virtual reality.
• Must be capable of reproducing all functionality of DeskSim.
• The game engine should be easy to learn.
• The game engine should be able to reuse existing 3D assets from DeskSim.

1.6.2 Main Goals

We were given a list by the client of various features they wanted us to implement
in the demo, and we managed to develop all of the main features, including most
of the optional features. The main goal is to create a demo scenario with the
following features:

• Must include at least one train, two signals, one train-DMI, a train track,
and a simple landscape.
• The train must be able to move using the controllers Lokførerskolen uses

today.
• The train must follow the railway in a realistically.
• Signals must be able to change colors based on specific events happening in

the game.

1.6.3 Part Goals

• Create a tool for placing, editing, and deleting 3D models in the game world,
such as trains, buildings, or signals.

4 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

• Make it possible to save the world after editing changes have occurred.
• Create a tool for creating, editing, and deleting train tracks.
• Train tracks must obtain curves and not only go in a straight line.
• Make it possible to place a train on the tracks and drive it.

1.7 Constraints

Because we developed the application for Lokførerskolen, they had some imposed
constraints and boundaries we had to follow. Any deviations had to be discussed
and clarified with the client first.

Since we did not have any previous experience or knowledge regarding train op-
eration, we were not responsible for the educational content of the simulator.
Although Lokførerskolen did teach us the basics, academic rightfulness was not a
requirement set by them.

We were only supposed to develop a demonstration of how some of their func-
tionalities from DeskSim would function in a different engine. The task was not
to develop all of the functionalities in DeskSim into our application but only a few
key features set by Lokførerskolen in the task description[appendix link].

We started working on the project on the 17th of January, with the deadline being
the 20th of May. The bachelor’s project lasted approximately four months. When
accounting for time spent on project planning, the game engine analysis, and
writing the thesis, the development period was limited to approximately three
months.

1.8 Roles

Thomas Arinesalingam was the Project Leader. His role specific responsibilities
were to ensure that all group members had equal right to express their thoughts.
He was the project’s "man of action", motivating the development. He also ensured
that all deliverables got the needed attention before the deadlines.

John Ole Bjerke was the Research Manager, overseeing all research and ensuring
the level of obtained knowledge is adequate before the development starts.

Endre Heksum was the Scrum Master for the project and was responsible for the
development of the product and took the role of sprint leader.

Henrik Markengbakken Karlsen was the Writer of Minutes, writing minutes from
all meetings and making sure all team members logged both time and work logs.

Tom Røise was our supervisor during the project, and provided guidance and
academic support to the group during the development process.

Chapter 1: Introduction 5

Isak Kvalvaag Torgersen represented Lokførerskolen, our client for which we
developed the train simulator.

1.9 The Report

The thesis is written using Latex and is based on a template provided by NTNU[2].
It is divided into eleven chapters:

1. Introduction contains an introduction to the thesis.
2. Choice of Engine contains the analysis of game engines.
3. Requirements contain all of the requirements formed for the development

of DeskSim v2.
4. Development describes the project’s development plan and process.
5. Technical Design contains the application’s system, application, and net-

work architecture.
6. Product Overview contains a description and visualization of the product

seen from a user perspective.
7. Implementation contains information, code, and design explanations for

some of the functionality present in DeskSim v2.
8. Deployment contains the required information on setting up the project,

packaging and releasing it and deploying the documentation.
9. Testing contains the user tests and system tests performed on the system.

10. Discussion contains a reflection regarding the game engine analysis, the
project process, and the final result.

11. Conclusion Summarizes the final result of the product and contains some
final words.

1.10 Thesis Clarifications

The game engine analysis found in Chapter 2 has been a considerable part of the
project. It was also a part of the requirements set by Lokførerskolen and included
in the project goals. The time usage of 17% in total (appendix E), and the effort
the group has put down to create the best possible analysis for Lokførerskolen
suggest that the weighting of the analysis in the context of the bachelor’s is about
15% of the total.

This thesis will address the final product as the application or DeskSim v2. The
train simulation functionality will be addressed as the application simulator, and
the editor functionality will be addressed as the application editor. The application
editor differentiates from the Unreal Engine editor, the environment in which we
have created the application. The application developed by Lokførerskolen will be
addressed as the existing solution, or DeskSim.

Chapter 2

Choice of Engine

The first part of the project was to analyse different game engines available and
compare their strengths and weaknesses. This game engine analysis was per-
formed in the beginning of the project, where we spent two weeks on testing
different engines and writing the analysis. In terms of grading and importance of
work, we put the weight of this analysis at around 15% of the total grade of the
thesis.

2.1 Introduction

We where asked to analyse different game engines by the Norwegian Train Driver
Academy, Lokførerskolen, since they have plans to migrate their existing simu-
lator1, which was created in jMonkeyEngine, to another game engine. This change
is mainly scheduled to prevent the risk of using an engine that no longer gets
maintained or updated. To help them make this transition smoother, we have
compared and analyzed different modern engines that is available today, and will
give an answer as to which engine we believe fits their requirements best.

It was a requirement by Lokførerskolen to include Unity and Unreal Engine in the
analysis, while Godot, Open 3D Engine and CryEngine were additionally chosen
based on their usage within game development. [3] We compared the game en-
gines based on both the absolute and desired functionalities set by Lokførerskolen,
code languages, expected learning curve for each engine and feedback from de-
velopers that has worked with each of the engines.

2.1.1 Thesis Statement

The increasing obsolescence of jMonkeyEngine, a game engine used by The Nor-
wegian Train Driver Academy, motivates the migration of their educational train

1Lokførerskolen’s current simulator: https://lokforerskolen.no/aktuelt/
simulatorsenteret/

6

https://lokforerskolen.no/aktuelt/simulatorsenteret/
https://lokforerskolen.no/aktuelt/simulatorsenteret/

Chapter 2: Choice of Engine 7

simulator to a modern game engine. To identify and decide upon a future-proof
game engine, the functionality and relevancy of several engines must be analysed
and compared.

2.1.2 Unity

The game engine was released by Unity Technologies in 2005 as a Mac OS-exclusive
software, but has later granted support for a variety of platforms including web,
mobile, console and Virtual Reality (VR). Unity proves itself as a capable engine
and displays its wide range through games such as the mobile hits Pokémon Go
and Call of Duty: Mobile, and large-scale games such as Cities: Skylines and Escape
From Tarkov.

Today, the engine is notorious for its ease-of-use and popularity among packaging
developers [4], and is commonly described as an effective and efficient platform.
[5] It is no secret that Unity is a popular engine, with their CEO John Riccitiello
claiming the engine is behind 60 to 70 percent of all extended reality1 applica-
tions. [6]

The Unity license model2 is split into Personal, Plus, Pro and Enterprise. Their Per-
sonal license makes the engine free to use if the annual revenue is below $100,000.
If revenue exceeds $100,000, their Plus license applies, starting at $40 per month.
Should annual revenue exceed $200,000, you are required to use the Pro or En-
terprise plans, costing $150 and $200 per month, respectively.

2.1.3 Unreal Engine

Created by Tim Sweeney in 1998, Unreal Engine was initially used during the de-
velopment of the first person shooter Unreal. It was designed for fast-paced, mul-
tiplayer shooters, but has opened up to a wider audience after its public release.
Today, the engine is maintained by Epic Games, the developers behind large-scale
games such as Fortnite and Gears of War, contributing to show off the engine’s cap-
abilities. It is known in the industry for its photo-realistic graphics, lighting, and
advanced functionality such as ray tracing and advanced physics. The engine’s full
source code is written in C++ and is available on GitHub3.

Unreal Engine offers two standard licenses4 for different uses, the Publishing Li-
cense and Creators License. The Publishing License allows for games and other
off-the-shelf interactive products to be sold, but with a 5% royalty after $1 mil-
lion in sales revenue. The Creators License has no royalties, but is for internal,
non-commercial, or custom applications. [7]

1Abbreviated as XR. Term referring to alternate reality mediums, including virtual reality (VR)
and augmented reality (AR).

2Unity license model: https://store.unity.com/compare-plans
3Unreal Engine source code: https://www.unrealengine.com/en-US/ue4-on-github
4Unreal Engine license model: https://www.unrealengine.com/en-US/download

https://store.unity.com/compare-plans
https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/download

8 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

2.1.4 Godot

Development of Godot started in 2007 by Juan Linietsky and Ariel Manzur. The
first release of the engine was in 2014. The engine was created because of the
the technological progress of hardware devices that the engine present at that
time did not account for. [8] There are no large-scale games created with Godot
yet. The majority of games created are by small packaging teams with restricted
budgets.

Today, the engine focuses on their new release of Godot; version 4. They are work-
ing on improving their own API, adding Vulkan’s graphics API and other features
to improve the engines overall performance. [9]

The engine is published under the MIT license making it free to use for any pur-
pose. [10] It is community driven and allows anyone to contribute to the engine
source code. [11]

2.1.5 Open 3D Engine

Open 3D Engine is the successor to Amazon Lumberyard, which itself is based
on CryEngine. The initial version of the engine was released on July 6, 2021.
Maintained by the Open 3D Foundation, an open source, umbrella organization
under the Linux Foundation. [12]

The engine is open source, and there are no fees or royalties for using the engine.
It is licensed under Apache 2.0. [13]

Given Open 3D Engine is the successor to Amazon Lumberyard, which featured
VR support, we expected Open 3D Engine to also have VR capabilities. However,
this seems to not be the case, as VR support is not included in Open 3D Engine.
As VR is an absolute requirement for this task, this eliminates the engine from
further analysis.

2.2 Absolute Requirements

All of the engines analysed has support for 3D and Virtual Reality development,
with the exception of Open 3D Engine not supporting VR. All engines has the cap-
ability to deploy the application on a Windows operating system. Input detection
is supported by all engines as long as Windows detects and recognizes the device.
The following table consist of each engine’s status for the absolute requirements
set by Lokførerskolen.

Chapter 2: Choice of Engine 9

Unity Unreal Engine CryEngine Godot Open 3D
Engine

VR
support

Yes, with
official
plugin [14]

Yes Yes, requires
manual
setup,
workflow
can be
tedious1

Yes, but not
as extensive

No

3D
support

Made for 3D
and 2D

Only supports
3D

Made for 3D Yes, but
better suited
for 2D [15]

Yes

Windows
support

Yes Yes Yes Yes Yes

External
input
support

Handled
in-engine,
and can be
mapped in
the editor

Handled
in-engine, and
can be mapped
in the editor

Yes, but
requires
manual
set-up
through code

Uses
universal
input
mapping,
advanced
input can be
challenging

Yes, but
requires
manual
mapping
with C++

Modernity Continually
updated, has
a large and
active
community

Active
development,
Unreal 5 in
early access.
Internal tools
used by Epic
Games are often
made public
[16]

Has planned
further
development
where
developers
are involved
in the
process [17]

Community
driven and
independent
develop-
ment. Does
not rely on
sponsor
opinion, only
developers.

Community
driven and
future-
oriented

Table 2.1: Table of absolute requirements for game engine features

Technological progress has a major factor when considering if engines can repro-
duce any functionality. We have to take Lokførerskolen’s claim that jMonkeyEn-
gine is obsolete into consideration. The probability of migrating any physics, user
interface or other functionality into a modern engine is high due to better, more
updated features.

2.3 Desired Requirements

Lokførerskolen stated a desire to reuse the assets from their current simulator.
The 3D file types currently used are Graphics Language Transmission Format
(.gltf), AC3D Files (.ac) and Standard 3D Image Format (.obj). The present
audio formats are Waveform Audio File Format (.wav) and MPEG-1 Audio Layer
3 (.mp3). The 3D file types are prioritized higher than the audio files because they

1Unlike the other engines, CryEngine requires rebooting in VR-mode for testing. https://docs.
cryengine.com/display/CEMANUAL/Oculus+Rift

https://docs.cryengine.com/display/CEMANUAL/Oculus+Rift
https://docs.cryengine.com/display/CEMANUAL/Oculus+Rift

10 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

would be more time consuming to convert or recreate. Of the 3D file types it is
the gltf-files that are the most prioritized because of it’s quantity in the current
simulator.

Unity[18] Unreal Engine[19] CryEngine[20] Godot[21]

glTF No Experimental No Yes

ac No No No No

obj Yes Yes No Yes

wav Yes Yes Yes Yes

mp3 Yes No No Yes

Table 2.2: A matrix of file support for each engine

2.3.1 Code Languages

C#

This compiled language, developed and maintained by Microsoft, is the only offi-
cially supported programming language of Unity. [22] It is also supported as an
optional language for Godot and CryEngine. Similarly to Java, the language has
features like automatic garbage collection, high-level syntax, and being a object-
oriented language.

C# is used either natively or optionally in several game engines, making it a good
choice as it gives the opportunity to change game engine without having to learn
new code languages, only new engine specific features in combination with the
code language.

C++

C++ is a low-level language and an extension of C. It is known for its performance,
flexibility and efficiency. All of the four compared engines are written in C++, while
Unreal Engine and CryEngine also use the language for scripting game logic.

C++ is widely considered the gold standard in game programming [23], and has
been used for blockbuster games such as Counter-Strike and World of Warcraft. Its
object-oriented style and manual memory management contributes to emphasize
good code practises and game development strategies such as design patterns and
optimization. When used correctly, the statically typed language boasts a perform-
ance and efficiency unlike any of the other candidates. Working in close proximity
to the hardware offers precise control over the environment, yet also introduces
room for human error.

Unreal Engine refers to its C++ as assisted C++ due to offering features such as class
wizard which sets up a class from scratch or a garbage collector for all classes.

Chapter 2: Choice of Engine 11

Unreal Engine also provides ways for Blueprints (2.3.2) and C++ code to work
together. [24]

GDScript

GDScript is an interpreted scripting language, meaning it gets interpreted at run-
time. It benefits when the program requires the code to be platform independent,
dynamically typed, and have a small executable size. GDScript is similar to Python
in the way that individual blocks are indented and many of the keywords are
similar. The language was created to be integrated and optimized with the Godot
Engine. [25] Choosing GDScript over Godot’s alternate language C#, results in up
to four times slower performance. [26]

2.3.2 Visual Scripting

Unreal Engine Blueprints

The Blueprint system in Unreal Engine is flexible and powerful, as it allows the
same concepts, logic and tools only available to programmers to be used by non-
programmers. Blueprints and code can be integrated with each other, and blue-
prints should often extend the functionality of baseline systems created by pro-
grammers. There are several types of blueprints for different use cases, such as
the “standard” Blueprint Class and the Level Blueprint which acts like a global
event graph on a level, among others. [27] Its ability to do almost everything C++
can in terms of scripting, means it is the most robust and powerful visual scripting
system of the engines in this comparison.

Unity Visual Scripting

Unity’s Visual Scripting system is quite new, and has been included since ver-
sion 2021.1. Earlier versions of the engine requires Bolt Visual Scripting, an ex-
ternal package, to enable visual scripting. Bolt started as a community project,
but was acquired by Unity to be integrated as the official visual scripting system.
[28] Visual scripts can be divided in two main categories, Flow Graphs and State
Graphs. [29] In order to use a visual script on a GameObject, a Script Machine
component is added, which can hold a Visual Script asset. This process decouples
the script from the machine. Visual scripts can be integrated with and use code,
events and properties from the engine, third party plugins and custom scripts.
[30]

CryEngine Flow Graph

Flow Graph is CryEngine’s main visual scripting tool. Its main uses include creating
mission logic and controlling entities and AI in a level. Flow Graph is also used
to prototype sound design, effects, and gameplay, as they allow rapid iteration
compared to code.

12 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Schematyc is a beta feature in CryEngine. It is designed to control objects in a
level, while Flow Graph is more geared towards scripting for the entire level and
mission. Another important design aspect is latency, determination and synchron-
ization, with a more distinct execution flow between nodes of different types. Due
to the beta status of this feature, it is not ready for production level projects, and
should only be used in test projects. [31]

Godot VisualScript

VisualScript in Godot is more closely related to GDScript in terms of setup and
functionality, compared to other visual scripting tools. Visual scripts are attached
to game objects the same way other scripts are, and provides one graph per func-
tion. [32] Because the Godot Engine API is the same across different script lan-
guages, and the library for VisualScript needs improvements, there seems to be
little to no benefit to using VisualScript.

2.4 Learning Curve

A learning curve is often used to present the relationship between someones pro-
ficiency and experience for a task. In this section, we will analyze and discuss the
game engines and their learning curves to form a holistic understanding of their
steepness. To compare the learning curves, we have chosen to review specific as-
pects we believe will be of great importance for this project.

Engine Score

Unity 8.5

Godot 8.22

CryEngine 7.92

Unreal Engine 7.42

Table 2.3: Scoring by G2

G2, the world’s largest marketplace for reviewing soft-
ware1, have ranked the four engines’ ease of use from
1 to 10, based on reviews from users. These ratings
from G2’s data [33], are as shown in 2.3.

2.4.1 Documentation

Software documentation should be structured, concise
and contain explanations, examples and tutorials to
trivial features everyone will encounter when develop-
ing in an engine. The engine documentations are set
up as tree structures, branching into pages containing
smaller topics, using hyperlinks to navigate to the de-
sired page.

However, navigation isn’t the only factor regarding ease of use for documentation.
The intuitiveness of the documentation structure also impacts the ease of use. The
Information Architecture Institute defines information architecture as “The art and

1G2: http://company.g2.com/about
2Disclaimer: The rating may be inaccurate due to an insufficient amount of reviews for this

engine.

http://company.g2.com/about

Chapter 2: Choice of Engine 13

science of organizing and labeling web sites, intranets, online communities and
software to support usability and findability”. [34] With this definition, both Un-
real Engine and Unity scores high because their layout of preview images provides
a clear overview of the contents. CryEngine and Godot’s respective documentation
does not emphasize findability to the same degree.

As a proof of concept, we tried to find the documentation page for Virtual Reality
(VR) in each engine’s documentation, measuring the ease of use based on per-
ception and intuition. For Unity, the reference to VR is found in the main page of
the documentation. It contains how to get started, a pre-made VR template and
links to other relevant material. Meanwhile in Unreal Engine, the information for
VR was found in a subsection from the documentation main page. The inform-
ation found in the section was start-up guides and best practises for each of the
supported headsets. In CryEngine’s documentation, the VR section was located
in the main page. There was information on how to use the functionality, but no
structured guide or additional information. In Godot, the VR section is exposed
on the main page, but further navigation lacked intuitiveness for where to find a
start up-guide and general documentation.

2.4.2 Community Support

All of the engines have some sort of community support, with either forums, tutori-
als or community platforms. Unity and Unreal Engine has the biggest community
among the four due to their popularity and use in the industry [35], where Unity
is usually biggest within indie games while Unreal Engine is better suited for lar-
ger scale games. [36] CryEngine has a smaller community compared to Unity and
Unreal Engine, making it difficult to find solutions for related issues. There is also
less community created resources to learn from. Although its lack in size could
make it easier to come in contact with the developers. [37] Godot is very similar
to CryEngine in the sense that it has a small community compared to Unity and
Unreal Engine. [15]

2.4.3 Development Tools

All four engines include tools for editing materials. Unreal Engine, Unity and
Godot have the option to use a graph-based approach for editing materials from
the included editor features. CryEngine is limited to a drop-down menu for editing
materials.

Source code access lets developers change the code on which the engine is built.
This comes in hand when the developers wants to make noticeable changes to the
physics or other engine attributes. All of the engines offers their source code to be
viewed for free except Unity which requires the enterprise licence.

The only engine that offers VR editing mode is Unreal Engine, this is an approach
to game development which allows the developer to virtually edit games. [38]

14 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Unreal Engine and Unity offers dynamic occlusion culling 1 2, a trait of the ren-
dering pipeline deciding which game objects to exclude from the draw call at
runtime. This saves the graphics processor from drawing any vertices not seen by
the player, offering a great boost in performance.

In CryEngine, the culling is done by the graphics API, ignoring vertices not seen
on the final screen, although this gets done by default in all engines. Engine-level
culling would need manual setup. Godot’s occlusion culling requires manually
specifying which objects to be ignored by the draw call.

Both Unreal Engine, CryEngine and Godot have integrated tools for generating
splines called Blueprint Splines3, Spline Distributor4 and Path5, respectively. These
tools generate curved paths based on set points in the engine’s world-space, which
can be useful for generating train tracks. Unity has similar features through the
official package ProBuilder.

2.4.4 Scripting

The considered programming languages, disregarding visual scripting, have an
established order of difficulty.

GDScript’s resemblance to Python, a language well-known for being one of the
easiest to learn, makes it a strong candidate for the simplest coding language. It is
adequate for beginners due to being dynamically typed and syntactically friendly.
To add code logic in Godot, simply add a script to a game object, which gener-
ates a script template. Granted Godot becomes our engine of choice, the choice
of GDScript as the development language is not certain, due to C#’s advantages
(2.3.1).

Similarly, in Unity, C#-scripts are added as components to tell game objects how
to behave. The user can define the order of execution by implementing event
callbacks such as Start and Update, while the engine handles the code execution
loop. Unity offers several official code libraries for concepts such as math, physics
and debugging, to support the development.

Despite having a steeper learning curve, C++ has become an industry standard
for high-end game development. As if the language itself wasn’t hard enough to
grasp, CryEngine requires manually setting up the code framework, separating
the code from the engine, and has an insufficient amount of learning resources
due to the engine’s low popularity. Scripting game logic works similarly to Unity
and Godot, where scripts are added to entities.

1https://docs.unity3d.com/Manual/OcclusionCulling.html
2https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/

VisibilityCulling/
3https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/BlueprintSplines/
4https://docs.cryengine.com/display/CEMANUAL/Spline+Distributor
5https://docs.godotengine.org/en/stable/classes/class_path.html

https://docs.unity3d.com/Manual/OcclusionCulling.html
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/VisibilityCulling/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/VisibilityCulling/
https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/BlueprintSplines/
https://docs.cryengine.com/display/CEMANUAL/Spline+Distributor
https://docs.godotengine.org/en/stable/classes/class_path.html

Chapter 2: Choice of Engine 15

Due to the similarity to Java, and features mentioned in C#(2.3.1), the transition
from Java to C# should be straightforward.

C++ is the main scripting language of Unreal Engine. The engine’s base building
block is called UObject, and is used by the AActor class, among others. The lifecycle
of an AActor starts with BeginPlay, an event which is called when the actor is first
spawned into the game world. It then goes into the Tick life cycle, which is called
once per frame until EndPlay is called when the AActor leaves the world. [24].
Due to the complex functionality stated in C++(2.3.1), the language is commonly
defined as one of the more difficult languages to learn as a beginner.

2.5 Existing Solutions

To gather insight from the industry, we contacted developers behind relevant
games and simulators. The process included finding games made in the applic-
able engines, determining their relevance to trains, simulation or Virtual Reality,
and contacting their studio/author by email. All subjects agreed to having their
answers cited as part of our thesis.

When asked which engine they believe is best suited for VR game development,
Vankrupt Games, the developers of Pavlov VR, states it depends on the specific use
case:

“Unity is great for beginner devs and getting a project started,” they claim, adding
that “there is a lot of 3rd party support.”

Talking about Unreal Engine, the engine behind Pavlov VR, Vankrupt Games claim
that “support and documentation from 3rd parties can often come second class
due the the proliferation of Unity being a more popular engine.” But when asked
about the reason for choosing Unreal Engine, they justify by explaining that “[it]
uses a lower level language and has a great rendering pipeline.”

Figure 2.1: Derail Valley (Altfuture)

Slobodan Stevic, CEO at
Altfuture and developer
of Derail Valley, explains
they chose Unity “... be-
cause its VR support was
better than that of other
engines, back in 2016.”
When asked which engine
he believes is best suited
for VR simulators, he adds
“... it depends on the type
of the simulator, its scope
and style choice, as well
as prior team experience.”

16 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Figure 2.2: Libre TrainSim (GPL 3.0)

Similarly, HaSa, a contrib-
utor and developer of the
open source project Libre
TrainSim, states that “as
long as it supports ‘ba-
sic’ requirements it is a
matter of personal prefer-
ence.” Describing the sim-
ilarity of engine funnctio-
ality, they also conclude
that “the engine doesn’t
really matter.”

Godot, the engine used to make Libre TrainSim, gets praised by HaSa for its agility.
“Iteration speed is key to a good game in general. The more you iterate the better
the result is.” They also comment on some downsides of the engine, claiming
the renderer is “quite performance heavy out of the box which limits the creative
freedom”, and the audio tools are ‘basic’. “We have to develop a lot of features on
top to achieve good quality,” HaSa writes.

The developers we contacted behind CryEngine’s small list of titles relevant to
this analysis were unavailable for comment. When asking all subjects if they, in
retrospect, believe their respective engine was the right choice for their game,
everyone answered yes.

2.6 Conclusion

The jMonkeyEngine game engine, currently in use by The Norwegian Train Driver
Academy, has become primitive compared to modern technology. The importance
and frequent usage of their train simulator inspire the need to migrate their soft-
ware to a modern game engine. To mitigate this concern, several available solu-
tions must be considered and evaluated.

All engines, excluding Open 3D Engine, fulfills the Absolute Requirements (2.2)
set by Lokførerskolen. Godot and Unreal Engine supports gltf-files, the most pri-
oritized asset type. Meanwhile, CryEngine and Unity are at a disadvantage as they
support fewer and less prioritized assets. While all engines require a conversion
pipeline for assets, Unreal Engine and Godot can reuse more assets out of the box.
This decreases time spent on porting assets to the new engine.

The client being experienced with programming eliminates the need for GDScript
as its most significant trait is being beginner-friendly. C++, on the other hand, may
be unnecessarily advanced for the project. As for C#, because of its powerful and

Chapter 2: Choice of Engine 17

modern functionality and versatile usage across game engines, we fail to see any
relevant downsides, and we conclude it as a fitting language for the project.

The overall learning curve for the individual game engines sets Unity and Unreal
Engine apart from the competitors. The magnitude of the community and related
quantity of available material, together with their emphasis on standards in docu-
mentation, establishes their strong position in today’s game engine market. Godot
is still a relatively new engine without any major titles, causing both documenta-
tion and community resources to be inadequate in quality and quantity compared
to Unreal Engine and Unity. CryEngine initially limited its use to enterprise only,
resulting in less publicly available resources and documentation.

The majority of the developers we reached out to advocated the choice of engine
to heavily depend on the use case of the project. When developing an open world
train simulator, this favors Unreal Engine as their engine provides tools such as
dynamic occlusion culling, a dedicated spline tool and frequent release of tools
used for in-house games.

In conclusion, we believe all four engines are capable of producing virtually any
type of game. The difference lies in time and effort needed to achieve the same
result. Throughout the analysis it is evident that Unity and Unreal Engine comes
out as superior candidates, and would both be beneficial for this project. Des-
pite Unreal Engine’s steeper learning curve, we must consider the functionality
provided for the specific use case of the project. Based on the results of this ana-
lysis, we conclude by proposing Unreal Engine to be the most suited solution for
the migration of the current simulator.

Chapter 3

Requirements

With the conclusion of the game engine analysis, we could start working on the
specifics of development. We first had to assess what the client wanted us to de-
velop to do this. The client stated their initial requirements in the form of one
main goal and two sub-goals. The main goal was to create a demo that satisfied
the task requirements specified in the task description (appendix C). They also
presented two sub-goals, an in-game model placing tool and an in-game railway
builder. Our requirement document is based on these requirements but does also
extends further. This chapter goes over the specific requirements set for the project
by the client, the group itself, and the industry standards.

3.1 Functional Requirements

To display and visualize our simulator’s core functionalities, we have chosen to
utilize use cases. Use cases provide structure and overview of the functionality
and work as a tool to force awareness of the requirements in the development
phase.

There was an unanticipated issue with defining the use cases for the project. As
stated previously, our main goal is to make a demo in the chosen engine and make
the code applicable for further development. We discovered in the development of
the demo that the classes and structures we created often laid the groundwork for
further development. Therefore, we decided to include two separate groups of use
cases for our project, one for the application itself and another for the use cases
that we facilitated through development. Including this is for the client to under-
stand the functionality more easily. Including both groups of use cases also forces
us to focus on the project’s code quality and further development perspective.

18

Chapter 3: Requirements 19

3.1.1 Use Case Diagram: Application

The use case diagram illustrates all available actions for the two groups of users;
students and employees. Employees have access to all student functionality even
though it is not implied in the diagram to avoid cluttering.

Figure 3.1: Application use case diagram

High Level Use Case

Use Case: Place objects

Actors: Employee

Goal: To place the necessary objects such as a train and a railway
in a level.

Description: When a level is opened in editor mode the user is provided
a user interface which includes a content browser. The user
can click on a item in the content browser and drag it out in
the level. The content browser has different categories the
user can select in the top bar by clicking on the category
buttons.

Table 3.1: Use Case: Place objects

20 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Use Case: Delete objects

Actors: Employee

Goal: To delete an object in the level.

Description: When clicking on an object in a level the user will be given
the option to remove it. After the click, the user will get a
trash can symbol at the top bar, next to the transformation
options. After clicking on the trash can, the program will
prompt the user for confirmation before permanently
removing the object from the scene.

Table 3.2: Use Case: Delete objects

Use Case: Operate drone

Actors: Student

Goal: Maneuver the drone camera

Description: The student switches to drone view. This lets them move
around freely in all three dimensions, forwards/backwards,
horizontally, and vertically. The user can also use the mouse
to freely look around in the world, and adjust the
movement speed of the camera.

Table 3.3: Use Case: Operate drone

Low Level Use Case

Use Case: Move or rotate objects

Actors: Employee

Goal: To move a object or rotate it into the prosition and position
you want

Precondition: The user has successfully opened a scenario in editor-mode

Success
Scenario:

The employee selects an object by clicking on it. This
enables a gizmo, either in the form of three arrows for
translation along each of the three-dimensional axes, or a
wheel for rotation. The user can then grab the gizmo with
the mouse, and drag the arrows to move the object, or drag
the wheel to rotate the object around itself.

Table 3.4: Use Case: Move or rotate object

Chapter 3: Requirements 21

Use Case: Operate Train

Actors: Student

Goal: To drive the train in a scenario

Precondition: The user has successfully opened a level and the levers is
connected to the system through a USB port

Success
Scenario:

The user accelerates or decelerates the train using the levers
or the keyboard, as is provided with information about the
current speed in the Driver Machine Interface.. Depending
on the scenario, the user has to follow some rules:

The user should not exceed the speed limit. Doing so should
result in system regulated brakes turned on.

Rules regulated by signals:

Main signal: If this signal is red the user should stop. If
user don’t stop before the signal this should result in breaks
turned on.
Main signal: One green light means that the user can drive
with reduced speed.
Main signal: Two green lights means that the user can and
should continue with the set speed.

Table 3.5: Use Case: Operate Train

3.2 Use Case Diagram: Game Engine

Figure 3.2: Game Engine use case diagram

22 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

High Level Use Case

Use Case: Add Level in Main Menu

Actors: Developer

Goal: To add a level created in Unreal Engine to the simulator.

Description: The developer opens up the EditorHUD-blueprint, click on
the plus sign and fills in the level name, description, FName
level reference, and a preview image.

Table 3.6: Use Case: Add Level in Main Menu

Low Level Use Case

Use Case: Add new object

Actors: Developer

Goal: To add a new object to the game

Preconditions: The developer has Unreal Engine version 4.27.2 or higher,
and a 3D model they want to add to the game.

Success
Scenario:

The developer adds a new model to the "models" folder
inside Unreal Engine. This lets them register the new object
by deriving a new blueprint from the C++ class relevant to
the objects category. The model then needs to be
referenced by the blueprint’s static mesh, before the
blueprint is compiled and saved.

Table 3.7: Use Case: Add new object

Use Case: Add object in Content Browser

Actors: Developer

Goal: To successfully add a created object in the content browser
making it clickable and draggable in runtime.

Preconditions: The developer has created a new object as described in the
"Add new object" use case.

Success
Scenario:

Inside the EditorHUD-blueprint, the developer can add a
new item to be registered as an object by the application,
with a name, description, and relevant item category. The
actor asset needs to be referenced in the blueprint. It is
recommended to restart the engine and rebuild the
solution with Visual Studio for the object to show up in the
content browser.

Table 3.8: Use Case: Add object in Content Browser

Chapter 3: Requirements 23

3.2.1 Operational Requirements

These are the requirements which concerns the application at it’s operational
stage, this stage begins at the project’s deadline which is the 20th of May:

• The application must be able to interact with the existing Rest-API hosted
by Lokførerskolen.
• The system must operate on Windows devices.
• The system must manage privileges of users and only allow elevated users

to access the editor functionality.
• Must be transferable through a zip-file.
• The system must operate on computers which have 8 gigabytes of memory

and an Intel® Core™ i5-4460 CPU or better.
• Should not experience frame rate drops of lower than 60 frames per second.

3.2.2 Security and Misuse

To ensure the security of the users and avoid misuse of the application, it:

• Must require authentication of users.
• Should not contain bugs or security flaws that could potentially harm or

destroy hardware components. Such flaws include bad memory handling.
• Must not store any passwords in plain text.

3.2.3 Interface Requirements

Menus

• Menus should be intuitive and easy for a student at Lokførerskolen to nav-
igate the Main Menu.
• The Main Menu should have the same functionality as the previous simu-

lator and only deviate by design.
• All text must be available in Norwegian.
• Buttons should be intuitive to reduce the number of operations required for

a task.
• The DMI viewport in a game should be responsive to the gameplay.
• All numbers and measurements must be specified in the metric system.

Chapter 4

Development

This chapter describes the work methodology and the process used during this
project. We compare two agile software development models and describe our
implementation of the chosen model. We also explain three sprints by looking at
the sprint goals, results, and retrospective notes from the sprint meetings.

4.1 Plan

4.1.1 Development Methodology

The choice of methodology was mainly based on three facts. 1) The group has little
experience with game engines. 2) The group has little to no experience working on
a project of this scale. 3) One of the requirements of Lokførerskolen was that they
would be tightly connected to the development and emphasized this connection
in their task description.

Based on the three criteria stated above, the group concluded on using an agile
software development model because it allows for rapid change in these require-
ments. It also allows for changes in the project scope without necessarily having
significant impacts on releases or the planned progress.

4.1.2 Development model

When choosing the optimal model for our project, we looked at several different
models to see if they would fit our project. Two of the development models that
got evaluated were Scrum and Kanban.

Scrum is an agile development model. It is designed for teams of ten or fewer
members who divide their work into increments of work within iterations called
sprints, which are usually between two to four weeks long.[39] Development
teams utilizing Scrum meet once a day for 15 minutes or less to assess their pro-
gress and keep everyone updated. Two other meetings are essential when working

24

Chapter 4: Development 25

with Scrum; the sprint review, which is often held together with the project stake-
holder for feedback, and a retrospective meeting to reflect on the previous sprint
results.

Kanban is also an agile development model. The model visualizes the items or
tasks from start to finish, usually through a Kanban board.[40]. The main focus
for teams working with Kanban is reducing the time a project takes from start to
finish by continuously improving their workflow.

The model we chose as our development model was Scrum.Scrum allows and
emphasizes reflection and assessment at every step of the process and has a pre-
decided structure.Scrum is also the development model most known and used by
the group previously. The main reason for this was that although both methodo-
logies could be utilized and work in our project, we wanted the main focus to be
on creating the best application possible.

4.1.3 Our implementation of Scrum

We aimed to use the iterative nature of Scrum to ensure the quality of the imple-
mentation at every stage of the project and quickly adapt to any change in the
client’s specifications. We implemented Scrum strictly, with daily Scrum meetings
throughout the project. At the beginning of the project, we had one-week sprints
and continuously discussed if we needed to increase the sprint length based on
the upcoming tasks.

These meetings worked as a collaborative tool to identify problems if someone was
stuck, keep everyone up to speed on the project process, and create a professional
work environment where we kept in touch. We believe the latter was more im-
portant than it seemed because most of the project work will be done from home.
Although these meetings are important for the group, they could occasionally be
skipped if they are found unnecessary.

For managing the project, we utilized Jira integrated with GitHub. This integration
contributed to ensuring the professionalism of the project’s development process.
We used constrained and secure workflows to ensure that every issue followed
the correct workflow. In simpler terms, this is a set rules for how all issues could
be handled throughout the project. Figure 4.1 shows the direction and constraints
on how an issue can progress through the different statuses.

26 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Figure 4.1: Issue status diagram

4.1.4 Process Documentation

To log the time spent on the project, we planned to use the Clockify add-on for
Jira. The add-on would allow the group to manually start a timer from within
the issue in Jira, tracking all work time until it is manually stopped. The elapsed
time should get manually logged along with a short comment of what was done
that day. For planning the holistic overview of the project, we planned to use the
extension BigGantt. The extension to Jira allows the group to create a Gantt-chart
in the same environment as our issues.

4.1.5 Code Documentation

To ensure the quality and professionalism of the project, we searched for and
agreed upon some code conventions for C++ programming in Unreal Engine and
standards for development. These conventions can be found in the appendix F.
This document introduces Doxygen, a documentation generator we utilized for
automatically producing code documentation for the client. We saw this as a ne-
cessity, especially because we were writing code for a client.

4.1.6 Git Workflow

The group agreed upon some rules for working with git. these rules were made
to ensure that the code was well protected against human error. The workflow
consists of seven rules and it is mandatory for all group members to follow.

• Always create a new branch when starting work on a feature. No work
should be done directly on the main branch.
• This is, and should be the naming convention for branches:
<issue_number>-<branch_name>
• This is, and should be the only commit convention:
[#<issue-number>]-<description>
• When the work is completed on a branch, it must be deleted after the work

is merged into the main branch.

Chapter 4: Development 27

• Code should be committed often, either when a task is finished or the newly
written code is fully functional.
• Do not commit code that doesn’t compile. Code should be tested before it

is committed.
• When a feature is complete, its branch should be merged into the cur-

rent milestone branch. When the work for one milestone is completed, this
branch should be merged with main.

4.1.7 Gantt Chart

Figure 4.2 presents the milestones (found in appendix D) for the project and their
planned schedule. This chart is a visualization of the planned project process, and
it will be compared to the actual project process in section 4.2.4.

Figure 4.2: Gantt chart

4.2 Process

This section will describe our usage of development tools such as Jira. It will also
cover the estimation process, examples of weekly sprints, and an overview of the
changes and deviations from the original project plan.

4.2.1 Jira

The group used Jira to implement Scrum into our project. We created our product
backlog and kept track of all issues and sprints in the Jira software. To use Jira to
the full extent, we followed the git workflow. When a push was made to GitHub,

28 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

using the correct commit conventions provided a commit history available in the
software.

Figure 4.3: Scrum board in Jira Software

4.2.2 Sprints

Our project consisted of eleven sprints. Figure 4.4, contains a visualization of the
main focus area for each sprint. Sprint three, seven, and eleven are displayed
below to illustrate how the group approached and solved issues related to setting
up, developing, and testing the system. For each sprint, a table display the result
of the sprint with the estimations made.

Figure 4.4: Overview of all sprints

Chapter 4: Development 29

The sprint meeting notes are written with three different sections. A section about
the sprint Goals, a section discussing the sprint result, and a retrospective section
where the sprint is discussed and reflected with the sprint goals in mind.

Estimations
After sprint three, we hopefully decided to change the estimation strategy to estim-
ate more accurately. We started out estimating issues in T-shirt sizes, ranging from
1 to 4, which imitates small, medium, large, and extra-large issues. We changed
the estimations to be an exact number but tried to keep the task sizes low.

Statuses
The issues could have one of five statuses describing its current state in a sprint.
The statuses are:
Wishlist - The issues taken out of the project scope and in to a list of functionality
that we can decide to include if we have time later in the project.
To Do - This is the section for issues waiting to be developed.
In Progress - The issues that are currently being developed.
Review - The issues that is currently under review by peers.
Done - The issues that has been completed in the sprint.

Sprint 3
Date: 07.02.2022
Present: Endre, Henrik, John Ole and Thomas
Period: 07.02 - 14.02

Sprint Goal:

• Review and deliver Game Engine Analysis to the client and to our supervisor
• Integrate Jira with GitHub
• Setup the repository in GitHub with an Unreal Engine project

Sprint result:
“This is the first sprint where we managed to get all our goals finished in time. We
managed to finish the setup and integration with Jira on time, which resulted in
being able finish the MVP within two weeks.”

30 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Other statuses Done

Issues - Write Engine Analysis

Integrate GitHub and Jira

Setup Repository

Code Convension Document

Learning Engine Basics

Estimates 0 4 + 2 + 2 + 2 + 2

Table 4.1: Overview of issue status at the end of sprint 3

Retrospective:
“We finished all the tasks we had in mind and also managed to start learning
the engine basics as well. This means that we from next week can start working
towards the MVP. We discussed increasing the sprint length from one to two weeks
for the next sprint, but decided to keep the one week sprint because we want to
have a new retrospective meeting next week and evaluate the accuracy of the
story point estimates we made on the issues regarding the MVP to figure out if
we can finish the MVP in the allocated time. This decision was made because the
time we have set to be finished with the MVP and display it to the client is the
14th of March.”

Sprint 7
Date: 07.03.2022
Present: Endre, Henrik, John Ole and Thomas
Period: 07.03 - 21.03

Sprint Goal:

• Finish first draft of requirement specification and status report 1.
• Finish the MVP scenario

Sprint result:
“The MVP got finished and put together. We had some issues with the environment
creation and its time consumption, but the estimations we made for three envir-
onment creation tasks was more accurate than our previous estimations. All the
necessary functionality was there to display the MVP to the client except the basic
statuses which we only controlled by a timer instead of an controller. The basic
statuses was only missing a few hours of work and is therefore almost finished.”

Chapter 4: Development 31

Wishlist To do In Progress Done

Issues Editor mode:
- Generate
flat terrain
(14)
- Manipulate
terrain (20)
- Dynamic
buttons (10)

Place and edit
railway (28)

Load scenario
from file (14)

Save scenario
to file (14)
Static Buttons
on screen (7)

Main Goal:
- Signal
Controller
(21)
- Emergency
Breaks (7)
- Stop
Scenario (21)

In game
content
browser (25)

Save Object
to File (20)

Load Object
From File
(20)

Main Menu
(14)

Basic Statuses
(7)

Second
iteration
Requirement
Specification
(21)

Place 3D
Models (12)

Manipulate
3D Models
(25)

Estimates 44 63 114 79

Table 4.2: Overview of issue status at the end of sprint 7

Retrospective:
“The sprint goals was achieved, but the basic statuses was only implemented to
work with the MVP scenario and not finished to he extent we want in the final
product. We want the signals to be controlled by a controller and be able to trigger
events. New issues for this will come in the next sprint. We finished 93 work hours
in the sprint and we feel that our estimations on the different tasks are beginning
to get better and more accurate to how we progress in the sprints.”

Sprint 10
Date: 21.02.2022
Present: Endre, Henrik, John Ole and Thomas
Period: 18.04 - 01.05

Sprint Goal:

• Finish the demo test level
• Have the simulator ready for testing (all functionality ready)

Sprint result:

32 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

“We finished the demo test level and got the simulator ready for the student tests.
The process was challenging because it was important that the quality was ensured
because the simulator is going to be tested on students from Lokførerskolen next
Monday.”

Wishlist In Progress Done

Issues Place and Edit
Railways (28)

Write bachelor
Thesis (30)

Game integration
testing (30)

Basic Train cars
(10)

Convert in-game
menu to c++ (4)

Demo Test Level:
- Create
Environment (4)
- Add train and
wagon (1)
Add signal and
triggerboxes (2)
- Add railway (2)
- Add station (1)
- Possesion switch
between drone and
train (2)
Fix camera
possesion bug (4)

Delete editor
objects (5)

Estimates 28 60 21

Table 4.3: Overview of issue status at the end of sprint 10

Retrospective:

“Even though we only finished 21 of the story point estimates, we have spent
much time on writing the final thesis. All tasks we set out to do is finished except
the Place and Edit Railway-issue which got excluded from the project scope. This
particular task was taking up a lot of development time due to the unforeseen
difficulty of the task. After discussing internally and with the client, we concluded
that all the functionality we were developing in the in-game editor mode were
reflections of what offers in-engine. This made a hindrance to further development
of editor functionality, which was then removed from the project, as the client
agreed that it would be easier to utilize Unreal Engine itself for this functionality.

Chapter 4: Development 33

When planning the sprint we added an issue for game integration testing. This
issue would contain all the bugs, errors and code mistakes we could find when
trying to build and package the game. Since the scope of the issue increases when
working on it, we decided to not include as much issues to this sprint to ensure
that this issue gets the attention it needs.”

4.2.3 Documentation

To document the code, we had to follow Doxygen’s documentation standard.
When the development concluded, we generated a folder of HTML-files, which
can be hosted as a website to display the documentation. The location of the doc-
umentation is inside the /Documentation-folder in the project repository.

Figure 4.5: The documentation page for the ATrain class

The documentation contains all files, classes, functions, and variables used in the
project and presents the user with menus, lists, and a search bar for easy naviga-
tion. As shown in Figure 4.5, a class page displays all relevant information for a
class. Figure 4.6 is captured further down on the same page, showing an example
for a member function description.

34 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Figure 4.6: The documentation for ATrain member function GetSpeed

4.2.4 Deviation from the Original Plan

While developing the application, we encountered situations that forced us to
deviate from our original plan. This section will explain the main deviations, and
they will be addressed further in the discussion (chapter 10).

Deviations in Project Process Plan

Figure 4.7 shows the original milestones for the project and the actual project
process within its period. As the figure shows, the planned progress was reason-
ably similar to the planned process. There were some delays at the beginning of
the project. Some milestones were in progress simultaneously, such as basic train
mechanics and minimum viable project. There was also a new milestone (Testing
and Game Integration) we did not expect would take up as much time as it did.

Deviation in Estimation Process

As previously stated, the estimations were in T-Shirt sized estimations. We did
not find these estimations valuable when working with Scrum. After reviewing
the T-shirt-sized issues, the further estimation process was not more manageable
because they had offsets such as one to three hours, one day, and two to three
days. We wanted to change it to get an exact value we could utilize to set better
and more realistic estimations.

Chapter 4: Development 35

Figure 4.7: Comparison of original project plan (purple) and actual project pro-
cess (orange)

Daily Scrum Meetings

The daily Scrum meetings worked well at the beginning of the project. All group
members were sharing their experiences, letting the other group members know
what progress had done the previous day, and making sure everyone knew the
project’s current status. After one month of the development process, these meet-
ings began to feel forced and not very productive. They often went way over the
time limit, and noting them down seemed like a waste of time. Therefore, it was
decided to stop having these meetings as a forced, structural procedure. We did
not stop having the meetings, but the group only noted them down when any rel-
evant information needed to be addressed later in the development that had not
already been addressed in the retrospective meetings.

Sprint Lengths

The group started the project with a sprint length of one week. After sprint six, we
decided to increase the length to two weeks because of the magnitude increase
in the upcoming milestones with the model placing and train route tool.As previ-
ously stated in the retrospective for week six, this decision was to produce more
functionality and give the group more time to produce code before evaluating it.
The rapid time frame between development and planning also became more of an
obstacle than a benefit. It began to halt the process by only allowing us to finish
small sections of the functionality at a time.

The change in the sprint length also provided us with the opportunity to take a rest
day or a research day. This day was allocated at the beginning of each sprint after
sprint 7. This day was voluntary for each member of the group, and the different
group members used the day differently. Some used it to continue working on the
previous sprint, some used it to write about the implementations they had done
in the previous sprint, and some took an extra day of rest.

Chapter 5

Technical Design

This chapter describes the design and choices behind the technological systems
included in the application. The development environment is based around Unreal
Engine and C++ .

5.1 System Architecture

The code architecture is established around the object-oriented nature of C++
and patterns within game programming. Limited by the development environ-
ment, we had to implement all classes as derivatives from Unreal Engine’s base
classes. These classes enable standard functionality such as rendering, collisions,
and mathematical operations such as translation and rotation. We continued this
inheritance style, defining base properties for objects and deriving further into
special classes if needed. A prime example of this is in the editor mode of the
application. In this mode, each object in a level is treated as an EditorObject, in-
cluding trains and railways. An EditorObject is an interactable entity in a level.
These are manipulatable by the EditorController, which handles all user input and
level manipulation.

5.2 Application module Architecture

The application’s hierarchy has been divided into four figures for clarity. The mod-
els show all the actors, pawns, widgets, etc, and tries to visualize their inter-
connectivity in the system.

Figure 5.1 shows the different game modes a level can open as and what HUD is
used for the game modes. Both game mode and HUD will be explained in more
detail in chapter 7 and section 7.10, respectively.

The application’s hierarchy has been divided into four figures for clarity. These
models show all the actors, pawns, widgets, and so forth, and they try to visu-

36

Chapter 5: Technical Design 37

alize their interconnectivity in the system. Figure 5.1 shows the different game
modes a level can open and what HUD is used for the different game modes. Both
game mode and HUD will be explained in more detail in section 7.1 and 7.10,
respectively in chapter 7.

Figure 5.1: Hierarchy of application start up functionality

An Options string is sent with the new game mode to decide what HUD elements
should be displayed. This string could either be blank, which defaults to "Menu",
"Game" to draw the train’s DMI, or "Editor" to draw the editor UI elements. The
three following figures display the hierarchy of these three gamemodes, respect-
ively.

Figure 5.2: The module hierarchy for main menu mode

38 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Figure 5.3: The module hierarchy
for simulating mode

Figure 5.4: The module hierarchy
for editor mode

5.3 Network Architecture

Authentication is currently the only system that uses the network. While multi-
player is a feature used in the existing DeskSim solution, it is not a part of this
demo.

The authentication implementation uses the existing solution in use at Lokfører-
skolen. Their system uses two endpoints. The first receives a username and pass-
word and returns a JWT (JSON Web Token) on success. The JWT is then sent to
the second endpoint, which returns a JSON UserObject containing the user data
(ID, Username, Roles, etc).

A login screen is presented to the user when the program launches. The user can
then fill in their username and password to enter the application. The user must
authenticate in order to use the application. A successful authentication causes
the application to store the received information for the duration of the session.
The occurrence of errors connected to the authentication process will trigger an
error message in the viewport. Once the user authenticates, their info is stored for
the duration of the session. The user-info is never stored in any file, which means
the user needs to log in each time the application is restarted. Because neither
the username, password, or token is ever stored locally, they cannot be extracted
from local files to obtain private credentials.

Chapter 5: Technical Design 39

Figure 5.5: A diagram for the network architecture

5.3.1 File Structure

Unreal Engine separates files into two main folders, Source for code files and
Content for asset files. We decided to structure the code files into folders based on
their area of use in the context of the software. All other asset files were separated
based on their type inside the Content folder.

Figure 5.6: File hierarchy for Source and Content

Chapter 6

Product Overview

This chapter describes the product as seen from a user’s perspective. It focuses
on giving a holistic understanding of the simulator to provide context for further
chapters.

DeskSim v2 is a functional train simulator and a building tool. The following sec-
tion will provide a visual representation of both the simulator and the building
tool to show how they are presented to the user. All texts and buttons are repres-
ented in Norwegian.

6.1 Menus

When the application has started, the log-in screen displays a primary user in-
terface where users can enter their credentials to log in and gain access to the
simulator. Users must authenticate to use the application since no guest mode ex-
ists. If there is an error when logging in, such as an empty field or wrong username
and password, a small error text will be displayed to the user.

40

Chapter 6: Product Overview 41

Figure 6.1: Log in screen

The main menu allows the user to select the scenario they want to run. If the user
has admin or teacher privileges, they can start a level/scenario in editing mode
as well, as is shown with the "Editor" button in figure 6.2. The scenarios separate
into main categories displayed as tabs. The categories are the same as the ones
Lokførerskolen uses in their existing simulator.

Figure 6.2: Main Menu

Pressing the "Innstillinger" button opens up a settings menu which allows the
user to change the screen resolution and the window mode for the application.
The settings menu is also available in the game’s pause menu, allowing users to
change these settings during scenarios.

42 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Figure 6.3: Settings Menu

6.2 Simulator mode

The in-game experience consists of a view that corresponds to a train driver’s view
from inside the front wagon of a train. The camera placement represents the train
driver looking forwards. The speedometer at the top left of the screen presents
the user with the train’s current speed.

Figure 6.4: Train Driver View

The user will encounter different signals when simulating a scenario. The signal
status and logic are pre-decided and controlled through invisible triggerboxes.
These triggerboxes react to the train’s position, check for certain conditions, and
update signal statuses accordingly.

Chapter 6: Product Overview 43

Figure 6.5: Stop Signal

The simulator allows the user to see the world in a drone mode, with free move-
ment and camera rotation. The movement of the drone is independent of the
train.

Figure 6.6: Drone View

6.3 Editor mode

The editor mode has buttons presented on the top of the screen, where the user
can save their changes, change the current tool mode and delete objects. The
editor mode interface also offers a window for adding new objects to the level.
Adding objects is done by dragging the object’s icon out of the content browser
and dropping it into the level.

44 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Figure 6.7: Editor Mode HUD

Chapter 7

Implementation

This chapter will look closer into the ideas, code, and structure behind various
parts of the application. The project group members have written shown code
except for the section about plugins. One crucial aspect of Unreal Engine is that the
order of axes might be different than other industry standards, as Unreal Engine
uses a Left Handed, Z Up-coordinate system. 1 In this three-dimensional space,
the X-axis points forwards, the Y-axis points to the right, and the Z-axis points
upwards.

When prototyping new features in the project development phase, it was com-
mon to do this using blueprints, allowing for rapid iteration of features without
focusing on code. Once the functionality or feature works as intended, we con-
vert the functionality of the blueprint into a native C++ class. The functionality is
then re-created and can be further improved, and a new blueprint is created by
deriving from the native C++ class. This implementation allows for the separation
of functionality. The computational heavy section runs as native C++ code, while
other info and variables such as models and materials are stored in the blueprint.
This separation combines the best of both methods, namely the performance of
native C++ with the flexibility of blueprints.

7.1 Game flow

The flow of the game is mainly handled within EditorHUD.cpp. The way Unreal
Engine handles level switching is by opening levels based on case sensitive FName
variables. Level changes happens when a user wants to start a scenario from the
main menu, and change back to main menu. To decide if the application should
open in editor or simulator mode there is a button in the main menu that allows
you to change the mode of the main menu. The implementation of this is displayed
below. All scenarios has a menu mode variable that gets updated when the button

1https://www.techarthub.com/a-practical-guide-to-unreal-engine-4s-coordinate-system/

45

46 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

gets pressed. This, together with a change in the application layout, is the logic
behind the applications ability to both play and edit a level.

The flow of the game is mainly handled within EditorHUD.cpp. The way Unreal
Engine handles level switching is by opening levels based on case sensitive FName
variables. Level changes in the application happen when a user wants to start a
scenario from the main menu and change back to the main menu. To decide if the
application should open in editor or simulator mode, a button in the main menu
allows the user to change the game mode view the main menu is displaying. The
implementation of this is displayed in code listing 7.1. All scenarios have a boolean
menu mode variable that gets updated when the button gets pressed. The boolean
variable change and a change in the application layout are the logic behind the
application’s ability to both play and edit a scenario.

1 void AEditorHUD::ChangeMenuMode()
2 {
3 bMenuMode = !bMenuMode;
4
5 // Changing the options for the Menu scenario
6 for (int i = 0; i < ScenarioWidgets.Num(); i++)
7 {
8 ScenarioWidgets[i]->SetMenuMode(bMenuMode);
9 }

10 // Changes layout for the menu
11 MainMenuWidget->ChangeLayout(bMenuMode);
12 }

Code listing 7.1: Changing menu mode

The game mode is set to its default on level openings if not specified in the option
string. Unreal Engine does not yet have a visually appealing approach for hand-
ling game mode changes during runtime, and this statement is supported and
discussed by the community [41]. The negative aspect of this is that creating the
functionality for this may, in some cases, look a bit messy, as shown in the code
listing 7.2.

1 FString GameMode;
2 GameMode = "?Game=/Game/Blueprints/UI/CDerivedEditor/BP_EditorGameMode.

BP_EditorGameMode_C";
3
4 UGameplayStatics::OpenLevel(GetWorld(), MapNameReference, true, GameMode);
5 }

Code listing 7.2: Changing game mode at runtime.

Another critical aspect of the game flow is how the level structure fits further de-
velopment. When developers have created a new level, they can easily add the
level to the main menu through a structure located in the EditorHUD blueprint.
This implementation works because the blueprint is derived from the EditorHUD.cpp
file and using the macros USTRUCT and UPROPERTY (shown in code listing 7.3)
exposes the variable to the editor and adds it to Unreal Engines memory system.
[42]

Chapter 7: Implementation 47

1 USTRUCT(BlueprintType)
2 struct FMMObjectStruct
3 {
4 GENERATED_BODY();
5
6 UPROPERTY(...)
7 ECategoryMM Category = ECategoryMM::

ATC;
8 UPROPERTY(...)
9 FString Name;

10 UPROPERTY(...)
11 FString Description;
12 UPROPERTY(...)
13 FName MapName;
14 };
15 UPROPERTY(...)
16 TArray<FMMObjectStruct> MMObjects; ///<

All objects
17 }

Code listing 7.3: UPROPERTY
macro.

Figure 7.1: The module hierarchy
for simulating mode

7.2 Spline Tool

One of the first goals specified by the client was to move the train along a straight
path. Seeing as a later goal was also to implement curvature, we decided that it
would be beneficial to begin work on curved train movement right away, as this
would likely save us some time. The railway is procedurally generated from a list
of points forming a spline in the existing simulator. A spline can be defined as a
mathematical function to interpolate and form a smooth curve between multiple
points. Each point is made up of a location vector and a tangent vector for spe-
cifying the curvature of the spline at the given position. We also looked into Bézier
curves, a similar alternative to splines, but Unreal Engine’s built-in spline compon-
ent made it an obvious choice.

The created SplineActor.cpp, is a class for handling all functionality related to
the railway. This class contains a USplineComponent, a powerful component with
functions for placing and deforming a mesh along a spline. In this context, a mesh
can be described as a 3D-model. The component initially works by looping over
all points in the spline, placing a sub-mesh that is stretched between points Pn
and Pn+1, and bending the meshes by the curvature of the tangents between Tn
and Tn+1. The spline points were defined by the user in the editor, and could be
placed freely. The results looked promising, but a major flaw of this method occurs
when any distances between each set of spline points aren’t uniform. The meshes
would stretch differently along the spline, making the railway look rather odd.
A good analogy to this anomaly is imagining a skyscraper with a single window,
stretched horizontally along the building instead of separate windows on each

48 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Figure 7.2: A selected spline deforming a railway mesh along itself. The white
squares indicate the spline points, and the white lines indicate the tangent of the
selected spline point.

floor. The solution to this was to split the spline into segments of equal length to
that of the mesh/model itself, and add a new sub-mesh at each segment. Essen-
tially cutting up the railway into pieces and replacing the existing spline points.
The mesh used in figure 7.2 is a small slice of a railway created with primitive
shapes in Asset Forge, a third party software.2

1 const FVector MeshSize = Mesh->GetBoundingBox().GetSize();
2 const float MeshLength = MeshSize.X;

Code listing 7.4: Getting the length of the mesh

After retrieving the length of the mesh in it’s forward axis, we split the spline into
segments based of this length. This segment splitting lets us iterate through all
the segments in the spline.

1 const int SplinePoints = FMath::CeilToInt(SplineLength / MeshLength);
2
3 for (int PointCount = 0; PointCount < SplinePoints; PointCount++)
4 {
5 ...

Code listing 7.5: Calculating spline segments

For each spline point along the spline, we create a new sub-mesh. Code listing
shows the position and tangent calculation for each sub-mesh in the spline.

1 USplineMeshComponent* SplineMesh = NewObject<USplineMeshComponent>(this,
USplineMeshComponent::StaticClass());

2

2Asset Forge, https://assetforge.io/

https://assetforge.io/

Chapter 7: Implementation 49

3 const float StartDistance = MeshLength * PointCount;
4
5 FVector StartPoint = GetLocationAtDistanceAlongSpline(
6 StartDistance, ESplineCoordinateSpace::Local
7);
8
9 FVector StartTangent = GetDirectionAtDistanceAlongSpline(

10 StartDistance, ESplineCoordinateSpace::World
11);

Code listing 7.6: Initialization of spline points

These values are also calculated for the position and tangent of the end for each
sub-mesh, before applying the vectors to the generated sub-mesh in code listing
7.7.

1 SplineMesh->SetStartAndEnd(
2 StartPoint,
3 StartTangent,
4 EndPoint,
5 EndTangent
6);

Code listing 7.7: Applying spline point data

Opting for a custom spline class instead of Unreal Engine’s own solution let us
create a railway from a spline. We added specific elements such as buffer stops,
and the metal bars at the end of a railway to stop trains, as seen in figure 7.2. We
added an optional parameter to the SplineActor.cpp, where the user can input
a separate mesh to be displayed as the first and the last sub-mesh of the spline.
However, if this field is left empty, the sub-mesh will default to the given railway
mesh. We also implemented a boolean flag which is set off if the spline extends a
desired angle or curvature to ensure the train is looking natural when traversing
the railway.

Figure 7.3: A railway conforming to the terrain height

One of the challenges with the tool occurred when manually placing the spline
points. The railway curved naturally in the horizontal plane, but if the terrain had

50 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

any height difference, the railway would disappear under the ground or hover
above the ground. To solve this, we perform a line cast in each spline point’s X-
and Y-coordinates, from the top to the bottom of the level. This is a way to see if
we hit any terrain along with the line cast. If there is a hit, the Z-coordinate of the
relevant spline point is set to the height value of the terrain hit. The line casting
gets more computationally expensive the longer a spline is but is only run once
when a spline changes, so any noticeable effects are minuscule.

7.3 Signal controller

The CentralSignalController class is responsible for signal and status communic-
ation between the signals and trains. The controller receives signal and status
updates from either TrainSignalTriggerBox or TrainStatusTriggerBox, which are
placed along the railway and are used to send signal or status updates depending
on configured conditions.

When the level is loaded, and the game begins, the CentralSignalController searches
for all actors inheriting from the BasicSignal class. Valid actors are sorted into lists
based on which their types, such as MainSignal or ForwardSignal. These different
lists are then used later to send signal updates.

1 void ACentralSignalController::FindAllSignals()
2 {
3 // Finds all actors of signal classes
4 UGameplayStatics::GetAllActorsOfClass(GetWorld(), DwarfSignalBP,

DwarfSignalActors);
5 UGameplayStatics::GetAllActorsOfClass(GetWorld(), MainSignalBP,

MainSignalActors);
6 UGameplayStatics::GetAllActorsOfClass(GetWorld(), ForwardSignalBP,

ForwardSignalActors);
7
8 int32 i = 1;
9

10 // Loops through all actors
11 for (AActor* DwarfSignalActor : DwarfSignalActors)
12 {
13 ABasicSignal* DwarfSignal = Cast<ABasicSignal>(DwarfSignalActor);
14 if (DwarfSignal)
15 {
16 FString TagName = FString::Printf(TEXT("Dwarf_%i"), i++);
17
18 DwarfSignal->Tags.Add(FName(TagName));
19
20 AllSignalActors.Add(DwarfSignalActor);
21 }
22 }
23 ...
24 }

Code listing 7.8: Finds and stores all signals based on class

When the controller receives a signal update, an new ID, signal state, and signal
type must be specified. The controller then searches through the specified signal

Chapter 7: Implementation 51

list to match the IDs, and when this happens, the new signal state is sent. If more
than one signal shares the same ID, the controller continues searching the list. .
Given that the list of signals is relatively short, the time spent searching the list is
insignificant even when the first match is found.

1 void ACentralSignalController::SendUpdatedSignal(FName SignalID, ESignalType
SignalType, ESignalStatus Status)

2 {
3 TArray<AActor*> Actors;
4
5 // Selects relevant actors to search based on signal type
6 switch (SignalType)
7 {
8 case ESignalType::Main:
9 Actors = MainSignalActors;

10 break;
11 case ESignalType::Forward:
12 Actors = ForwardSignalActors;
13 break;
14 case ESignalType::Dwarf:
15 Actors = DwarfSignalActors;
16 break;
17 default:
18 checkNoEntry();
19 break;
20 }
21
22 // Loops through all signals
23 for (AActor* SignalActor : Actors)
24 {
25 ABasicSignal* Signal = Cast<ABasicSignal>(SignalActor);
26 if (Signal && (Signal->ID == SignalID))
27 {
28 // If the signal matches the incoming id, update the status
29 Signal->UpdateSignalStatus(Status);
30 }
31 }
32 }

Code listing 7.9: Updates signals based on ID and type

As the Central Signal Controller is an actor, it needs to be placed in every level
that uses signals. One alternative would be to create a subsystem with the same
functionality. This alternative would allow the controller to both, work in any level
without placing an actor, and having a more predictable and stable lifecycle.

7.4 Signals

The class ABasicSignal is used for the three different types of signals. The three
signal types share the same functionality with the exceptions of the models used,
the number of lights used in each model, which colors are used, and how the
signal reacts to signal status updates.

Each signal type is stored as a blueprint that stores the model used and signal-type

52 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

specific information such as what colors are used and how the signal reacts to sig-
nal status updates. This way, only one C++ code file is used for all signals, making
it easier to implement new features, fix bugs, and improve the maintainability

Figure 7.4: Blueprint showing how a signal switches status

Because the different signals use different models, hard-coding the positions of
the signal lights is not an option. Instead, sockets are placed on the models in the
Unreal Engine Editor, which dynamically places signal lights at runtime. After a
level has loaded, spheres are created and placed according to the sockets on the
model. A standard naming convention is used for sockets and components. The
socket names need to match the socket names on the static mesh model in order
for the positioning to be correct.

When components are created at runtime it is essential to register them manually.
Otherwise, the components will immediately be garbage collected and disappear.
When components are created in the object’s constructor, they are automatically
registered.

1 void ABasicSignal::SetupLight()
2 {
3 RemoveLights();
4
5 // Create all lights in a loop
6 for (int32 i = 0; i < NumLights; i++)
7 {
8 FString SocketName = FString::Printf(TEXT("Socket_%i"), i + 1);
9 FString LightMeshName = FString::Printf(TEXT("LightMesh_%i"), i + 1);

10
11 UStaticMeshComponent* LightMesh = NewObject<UStaticMeshComponent>(this,

FName(LightMeshName));
12
13 // Creates a new light struct
14 FSignalLight NewLight(LightMesh);
15
16 NewLight.LightMesh->SetStaticMesh(BaseLightMesh);
17
18 NewLight.LightMesh->SetupAttachment(VisualComponent, FName(SocketName));
19
20 // Creates the instanced dynamic light material
21 NewLight.DynMaterial = UMaterialInstanceDynamic::Create(BaseLightMaterial,

this);
22
23 NewLight.DynMaterial->SetScalarParameterValue("Emissive_Strength",

MaxLightLevel);

Chapter 7: Implementation 53

24 NewLight.DynMaterial->SetVectorParameterValue("Emissive_Color",
FLinearColor(1.0f, 1.0f, 1.0f));

25
26 NewLight.LightMesh->SetMaterial(0, NewLight.DynMaterial);
27
28 NewLight.LightMesh->RegisterComponent();
29
30
31 Lights.Add(NewLight);
32 }
33 }

Code listing 7.10: Creates dynamic instanced materials for each signal light

A new Instanced dynamic material is created for each sphere, which uses emissive
lighting for the signal lights. The new dynamic instance of the material allows
material parameters to be changed during runtime for each different instance,
ensuring the lights can change independently of other light signals of the same
type.

Figure 7.5: The material used for signal lights

The material used for the signal lights is created from scratch in Unreal, using
its Material Editor tool. The material has two public parameters, which are used
to change the color of the material and the brightness of the Emissive light. The
material uses the same color for both base and emissive colors. The base color has
a constant low brightness, which is used for the off state. A parameter determines
the emissive color strength. All values used range from 0 to 1, except emissive light
strength, which can be any value above 0. Higher values result in brighter emissive
lights. Currently, the entire model using the material lights up as an emissive light
source, but a texture could be used to only use parts of the model as an emissive
light source.

54 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

7.5 Login and authentication

The ULoginWidget class contains the functionality to log in, which uses the VaRest
plugin to encode, decode, send, and receive web requests. The user data is stored
in a struct in UDesksimGameInstance. This class that is instantiated at the begin-
ning of the application and lives until it is closed, ensuring the user data is avail-
able for the entire duration of the application.

Our application connects with the existing login solution in use at Lokførerskolen.
Two endpoints are used, where the first takes a username and password and re-
turns a JSON Web Token (JWT) on success. The second endpoint takes this JSON
Web Token (JWT) and returns a user object containing various data. This data is
then decoded and stored in the gameinstance class, UDesksimGameInstance. The
application does not verify the JSON Web Token (JWT). It just passes the token
on to the following endpoint. While the JSON Web Token (JWT) is valid for a long
duration, it is not stored in any files, and a new token is requested each time the
user logs in.

1 void ULoginWidget::ReadUserData(UVaRestJsonObject* JsonObj)
2 {
3 UDesksimGameInstance* GameInstance = Cast<UDesksimGameInstance>(GetGameInstance

());
4
5 GameInstance->bIsLoggedIn = true;
6
7 // Set Userinfo in gameinstance
8 GameInstance->UserInfo.bIsAuthenticated = true;
9

10 GameInstance->UserInfo.bIsEnabled = JsonObj->GetBoolField(TEXT("isEnabled"));
11
12 GameInstance->UserInfo.id = JsonObj->GetIntegerField(TEXT("id"));
13
14 GameInstance->UserInfo.Username = FName(*JsonObj->GetStringField(TEXT("username

")));
15
16 GameInstance->UserInfo.SubscriptionID = JsonObj->GetIntegerField(TEXT("

subscriptionId"));
17
18
19 // Find info about subscription and user groups
20 UVaRestJsonObject* Subscription = JsonObj->GetObjectField(TEXT("subscription"))

;
21
22 TArray<FString> GroupNames = Subscription->GetStringArrayField(TEXT("

userGroupNames"));
23
24 // Checks which type the user is
25 if (GroupNames.Contains("Administrator"))
26 {
27 GameInstance->UserInfo.UserType = EUserType::Admin;
28 }
29 else if (GroupNames.Contains("Ansatte"))
30 {
31 GameInstance->UserInfo.UserType = EUserType::Teacher;
32 }

Chapter 7: Implementation 55

33 else //if (GroupNames.Contains("Student"))
34 {
35 GameInstance->UserInfo.UserType = EUserType::Student;
36 }
37 }

Code listing 7.11: Decodes and stores info from userinfo JSON response

The login functionality uses the VaRest plugin to handle common web-related
tasks like encoding and decoding JSON objects. The plugin was chosen to simplify
the use of REST communication.

7.6 Editor Gizmo

The goal of the editor mode was to give the client a simple tool for editing and
train scenarios. Our task was to implement the ability to place, move and rotate
objects such as trains and buildings and a way to lay a railway across the terrain.
We decided to design this tool based on the tools available in Unreal Engine’s
editor, as these would accomplish similar tasks. We created a gizmo for moving
objects around, consisting of one arrow for each axis, as seen in figure 7.6. A
square was added at the bottom for moving the object in the plane along the X-
and Y-axes simultaneously. Once an object is selected, this gizmo appears at its
position, utilizing custom depth rendering, which enables the gizmo always to be
visible even when another mesh covers it.

Figure 7.6: The translation gizmo
on a selected signal

Figure 7.7: The translation gizmo
far away, hovering the X-axis arrow

The user can move the object in the relevant axis by hovering the mouse over one
of the gizmoes arrows and dragging. This is done by casting a line from the camera
in the direction of the cursor’s position on the screen and processing the results
on hit. This is done in a separate collision layer for gizmoes, such that the line
is not obscured by any object. The selected arrow will change colors to indicate
interaction, as seen in figure 7.7. The tool includes two modes, translation, and
rotation. When switching mode to rotation, the arrow meshes are replaced by a

56 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

cogwheel in the XY-plane, as seen in figure 7.8, which rotates the object around the
Z axis when dragged. These gizmoes are made to be a part of the user interface,
and get scaled based on their distance from the camera to keep their size uniform.

When grabbing a gizmo arrow to move an object, the cursors position is saved as
a variable in the first frame of holding down the mouse button. This position is
used to get the offset between the gizmo’s center position (also the object anchor
position), and the cursor. While dragging the gizmo arrow, the objects position is
set to the location of the cursor minus the offset, resulting in the object moving in
parallel with the cursor. This behavior works fine in theory, but we found a lack
of user friendliness during testing due to the cursor being required to overlap the
gizmo during dragging. To combat this, we added secondary meshes to each arrow
that would inflate the area of interaction. These meshes were given an invisible
material, so the user could not see them but was able to interact with them. For
demonstration purposes, these secondary meshes were given a visible material in
figure 7.9.

Figure 7.8: The rotation gizmo in
the XY-plane

Figure 7.9: Additional meshes
around the arrows

During user testing with the client, it was made clear that the move object interac-
tion was still hard, as the cursor would, more often that not, exit the area of these
meshes. This was towards the very of the development, and there was not enough
time to iterate on this implementation. Nevertheless, due to the curious nature of
programmers, we were attracted towards finding a solution to this problem, even
if we did not have the time to finish the implementation of these ideas. We came
up with several possible solutions that could fix or recreate this system entirely.

One such idea was to spawn large collision planes when the mouse is dragging an
arrow at the object’s position. If the user moves the object, the plane should stretch
like a wall along the relevant axis. It should not be visible to the player but act as
a giant safety net, such as the ones seen at golf courts, to capture the depth of the
mouse cursor on the relevant axis. This implementation would provide a more
intuitive movement system, where the user could drag the object to its desired
position without keeping the cursor over the gizmo at all times. The plane would

Chapter 7: Implementation 57

then be removed when the user lets go of the mouse button. Another idea for
a solution would be to take the cursor’s two-dimensional position on the screen
and rotate the vector based on the angle between the camera and the object.
This implementation may also result in clunky movement, as 2D does not always
translate well to 3D when forced.

7.7 Landscape

All of the landscape is created using the Unreal Engine landscape editor. We tried
importing height-maps at first to generate the landscape automatically, which is
straightforward if the the height map is of good quality. However, most of the
height-maps we found had too significant height variations for a train track to be
placed, so we decided to make the landscape using the landscape editor.

We originally planned to create a runtime terrain editing tool for the simulator,
similar to the landscape editor in Unreal Engine. Although it became evident that
such functionality would take a considerable amount of time and was therefore
taken out of the project scope. This will be further discussed in chapter 10.

7.8 Landscape Texturing

We created our own landscape texture by combining multiple textures from the
Megascans Library[43] inside the material editor in Unreal Engine. The landscape
texture we created has multiple features such as a blend between the grass and
rock texture, which is based on the angle of the texture. This texture is done to
create realistic transitions from grass to the cliffs when the landscape gets steeper.

Figure 7.10: Texture is blended based on angle of the landscape

There was also implemented some texture variations to create a more realistic
texture to mimic more depth in the environment.

58 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Figure 7.11: Added texture variations to create realism

To increase performance distance blending was added to the textures. Depending
on the distance from the camera to the texture a different texture will be used.
The closer the camera gets to the texture the more detailed the texture becomes.

Figure 7.12: Texture details depends on the distance from the camera

7.9 Save Functionality

The concept of saving a game can vary from game to game, but the idea is to store
contextual information persistently. An example of this is allowing users to quit
and re-open a game, resuming progress where they last left off. In this project,
we have implemented an editor mode where the player can edit and change the
scenario they are playing. But for the editor mode to serve its purpose we need to
be able to save the changes we made to the level so we can open it in simulator
mode and simulate a train scenario with the saved changes.

Chapter 7: Implementation 59

The USaveLevel class inherits from UE’s USaveGame class which is used to preserve
information across multiple play sessions. We mainly save the transformation of
placed or edited objects in the scene, as well as identifiable data such as actor
name, class or level name into a struct FActorData. All the information from the
saved actors are stored inside an array in a .sav file which is the save file format
used by Unreal Engine.

1 ...
2 TArray<FActorData> SavedActors;
3 ...

Code listing 7.12: FActorData array that holds all data that is saved

An issue we encountered handling which actors to save, since some actors in a
scenario may remain unedited, and would be unnecessary to save persistently.
We explored different options, one of which was to create a base actor class which
every savable actor should inherit. This was not possible, as some actors already
inherited from different classes. Instead we created an interface the actors can in-
herit from if they are savable, giving every class the ability to be saved regardless
of their base class.

An example of how a class can be made savable by inheriting the interface in the
class declaration is shown in code listing 7.13.

1 UCLASS()
2 class DESKSIMV2_API ATrain : public APawn, public IIsSaveableInterface
3 {
4 ...

Code listing 7.13: Example of a class that inherits IsSaveableInterface

All the save functionality is handled by the SaveManager which has two main
functions, SaveGame and LoadGame. SaveGame handles all the functionality re-
lated to saving the current game state into a .sav file by checking for any actors
that inherits the IIsSaveableInterface interface.

1 void ASaveManager::SaveGame()
2 {
3 ...
4 // Loop through ALL Actors in Scene
5 for (TActorIterator<AActor> It(GetWorld()); It; ++It)
6 {
7 // Checks if the Actor inherits from IsSaveableInterface
8 if (It->GetClass()->ImplementsInterface(UIsSaveableInterface::StaticClass()

))
9 {

10 AActor* Actor = *It;
11
12 FActorData ActorData;
13 ...
14
15 // Creates a memorywriter and archive for Actor Data

60 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

16 FMemoryWriter MemWriter(ActorData.ByteData);
17 FObjectAndNameAsStringProxyArchive Ar(MemWriter, true);
18
19 // Only Saves Variables with UPROPERTY(SaveGame)
20 Ar.ArIsSaveGame = true;
21
22 // Serializes Actors UPROPERTIES into binary
23 Actor->Serialize(Ar);
24
25 SaveGameInstance->SavedActors.Add(ActorData);
26 }
27 }
28 ...
29 }

Code listing 7.14: SaveGame function from SaveManager

The LoadGame function in SaveManager reads and loads data from a .sav-file with
a matching file name to the name of the loaded level. Then it updates the data of
the existing actors with the matching data from the save file based on the actors
name, which is found through the custom function FindActorByName. If it doesn’t
find the actor from the savefile in the level it will create a new actor with the data
from the save file.

1 void ASaveManager::LoadGame()
2 {
3 ...
4 // Iterate through all actors in save and point to their corresponding

actor in scene
5 for (FActorData ActorData : SaveGameInstance->SavedActors)
6 {
7 AActor* Actor = FindActorByName(ActorData.Name);
8 if (Actor)
9 {

10 // Updates Actor found in scene
11 Actor->SetActorTransform(ActorData.Transform);
12 }
13 else
14 {
15 FActorSpawnParameters SpawnParams;
16 ...
17
18 // Creates a new Actor with data from save
19 Actor = GetWorld()->SpawnActor(ActorData.Class, &ActorData.

Transform, SpawnParams);
20
21 // Creates a memoryreader and FArchive
22 FMemoryReader MemReader(ActorData.ByteData);
23 FObjectAndNameAsStringProxyArchive Ar(MemReader, true);
24
25 // Only Filters the Variables with UPROPERTY(SaveGame)
26 Ar.ArIsSaveGame = true;
27
28 // Converts serialized binary into Actors UPROPERTIES
29 Actor->Serialize(Ar);
30 ...
31 }
32 }

Chapter 7: Implementation 61

33 ...
34 }
35 ...
36 }

Code listing 7.15: LoadGame function from SaveManager

7.10 User Interface / Heads-Up Display

In this application the Heads-Up Display or HUDs is used to describe all user in-
terface elements. It provides feedback to the user in the viewport.

The HUD consist of seven different user widgets. User widgets are Unreal En-
gine’s components that allows for placement of UI elements in the viewport for
3D games. This section will explain the development of the logic which displays
the user widgets.

In the first iteration of the user widgets they were created as blueprints. This meant
that all of the widgets and its logic was created as a collection of nodes. According
to the Unreal Engine forum, blueprints run between 10-40 percent slower than
C++ [44]. This was one of the reasons we felt that it was necessary to convert
the code from blueprint to C++ files. Another reason is that blueprint coding as a
practise, does not allow us as students to display our skills in both programming
and documentation to the same degree.

Figure 7.13: Update Speed function for the train DMI in blueprint

Figure 7.13 and code listing 7.16 contain the same functionality for updating the
needle and text of the speedometer displayed to the user. All of the widgets were
initially created as blueprints, but got converted to C++ at some point in the pro-
ject.

1 void UTrainDMI::Update(float Speed)
2 {
3 if (Speed >= 0.0)
4 {

62 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

5 float RenderAngleDriving = (Speed * 0.1) + (Speed - 144);
6
7 int Text = FMath::FloorToInt(Speed);
8 FString SpeedText = FString::SanitizeFloat(Text, 0);
9

10 UpdateDMI(RenderAngleDriving, FText::FromString(SpeedText));
11 }
12 else
13 {
14
15 int Text = FMath::FloorToInt(Speed);
16 FString SpeedText = FString::SanitizeFloat(Text);
17
18 UpdateDMI(Speed - 144, FText::FromString(SpeedText));
19 }
20 }

Code listing 7.16: Update speed function in C++

The file EditorHUD.cpp handles which user widget is displayed to the user. What
the HUD displays is based on the game mode the game is currently using, which
is decided by which part of the application the user is currently in. If the user is
in the simulator game mode, the train DMI will be displayed.

7.11 Plugins

The following functionality described in this section is not developed by us but
needs to be included as it is used in the simulator.

Unreal Engine did not support the usage of two similar input devices using raw
input. The solutions we found were to purchase and utilize a plug-in created by
Lemontmoon called VM Input Manager1 or to implement an input mapping system
to our own application. We chose to utilize the plug-in in our application. We
discuss this choice in 10.

The plug-in consists of 18 C++ classes and 31 blueprints. The benefit this had
to our project was that we could manually map the USB input peripherals dur-
ing runtime. The plug-in is used in the BP_GameplayGamemodeBase blueprint to
spawn the necessary widget as a red dot in the top left of the screen.

The VaRest plug-in handles common tasks related to performing REST calls. It sim-
plifies the process of working with requests and responses, by providing functions
to create and send requests. While the plug-in is designed to be used in blueprints
without any C++ code, all the functionality is available to be used in C++ . The
same results could be achieved without the use of the VaRest plug-in, however it
would require more work unrelated to the main goal.

1,
1https://www.unrealengine.com/marketplace/en-US/product/wm-input-manager

https://www.unrealengine.com/marketplace/en-US/product/wm-input-manager

Chapter 8

Deployment

This chapter will detail how the software can be deployed, both for development
and release as a packaged product. It will also present how you compile the code
to create and deploy documentation.

8.1 Packaging and release

Unreal Engine comes with a built-in package system. The system compiles source
code, cooks content and builds the game. The game is then packaged as an execut-
able file and game data is stored in .pak-files. The entire folder can be compressed
and uploaded to a server where users can download, extract and play the game
without any further installation. This is the simplest solution for deploying the
finished product, but requires re-downloading the entire software when updates
are packaged and released. A similar system is already in use at Lokførerskolen,
where the software is downloaded in its entirety and updates requires a complete
re-download. Due to its simplicity we will use this solution, however there are
more advanced options in Unreal Engine if a better updating system is required.

One option to improve the update process is to create an auto-updater and auto-
matically patch the game with new updates. Doing this would most likely require
more work than it is worth if the game is not updated often. In UE it is possible
to use clustering in the .pak files, which allows for easier streaming and patching
of game data.

8.2 Setting up the project

The project uses Unreal Engine 4.27. The engine can be installed on the Epic
Games Launcher, which is also used as a hub for various features related to UE.
After the engine is installed, it can be used to open any Unreal Engine 4 projects.

63

64 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Each UE project consists of some standard files and folders, most notably the
.uproject-file which contains some general info about the project, like engine
version, code modules and plug-ins used. User-made C++ code needs to be com-
piled before the editor can start, which is done by generating a Visual Studio solu-
tion for the project. Visual Studio is the default IDE to use with Unreal Engine,
but other options are available. After the project is compiled for the first time,
additional changes made during development can be compiled in the UE editor,
which hot-reloads the changed files.

Plug-ins can be installed in two ways. The first and easiest method is to get the
plug-in via Unreal Engine’s marketplace for assets and install it to the engine. The
second method requires some more work, but installs the plug-in in the project
itself, allowing it to be shared between team members. This is a good way to
share paid plug-ins within a project. Some manual work is required to set this up,
mainly involving copying either compiled or source files to the proper directory
in the project and adding files to source control to allow sharing.

There are three main directories shared in an Unreal Engine project, namely
Sourcewhich contains all the C++ code written for the project, Contentwhich con-
tains all assets like materials, models and blueprints, and Config which contains
extra configuration files used in various places. A Plug-in folder is also needed
if any plug-ins are shared in the project. These are the essential folders to track
using source control. During startup and use other intermediate folders are cre-
ated, such as Build, Binaries and Intermediate. These intermediate folders are
automatically generated and normally should not be included in source control.

8.3 Deployment of documentation

During the development we have used Doxygen for documenting code. It lets us
compile the source folder into generated HTML-files with a formatted document-
ation of all comments. The resulting webpage is self-contained and features links
between related classes and functions. We generated this using Doxywizard, which
offers a graphical user interface for Doxygen. To regenerate this documentation,
run Doxygen with /Source/DeskSimV2 as the source code folder input. The pro-
gram assumes all code to be commented using the Doxygen standard. 1

1Doxygen Manual, https://www.doxygen.nl/manual/docblocks.html

https://www.doxygen.nl/manual/docblocks.html

Chapter 9

Testing

This chapter explains and elaborates the testing performed on the developed sys-
tem.

9.1 Student User Testing

In collaboration with the client, we set up user tests towards the end of develop-
ment. We visited Lokførerskolen in Oslo and borrowed three students who have
previously used their current simulation software. The goal of user testing was
to further iterate on the software based on given feedback, but we didn’t have
a lot of time as the testing was done two weeks prior to the deadline. The tests
were done by prompting the user with a set of tasks. These were simple tasks, de-
signed to test the user interface, software structure and overall user experience.
The observer measured the time spent, while writing down notes from the user’s
performance. The user was also prompted with questions about the experience.

65

66 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Case 1: Start the scenario named "Testing"

Preconditions: The software is launched

Expected
execution:

The subject navigates to the correct tab, and clicks "Testing"

Actual
execution:

The first two subjects started by navigating through the
main menu tabs to search for "Testing", and clicked it once
they saw it. The third subject clicked the correct tab as their
first action, but the button did not respond, making the
subject believe the scenario was not placed under this tab.
This resulted in the subject launching the wrong scenario,
making them exit the application to try again.

Results:
The subjects complimented the look and feel of the
interface. In a later discussion, they all agreed when one of
the subjects said the interface was more user friendly than
the existing simulator.

Table 9.1: User Test Case 1: Start the scenario named "Testing"

Case 2: Drive the train

Preconditions: The subject is familiar with the controls from the existing
simulator

Expected
execution:

The subject accelerates the train, riding through the whole
map

Actual
execution:

The subjects, being used to the old simulator, quickly
resorted to the controls they were used to, and continued to
operate the train.

Results:
This case was less structured and more focused on the
general feedback from the subjects. We gave them freedom
to explore the simulator while asking for their impressions.
All three subjects commented on the train not properly
following the tracks, but experiencing a slight delay when
turning in curves, claiming that the camera falls a bit
behind. This was most likely due to a last minute fix we
implemented before testing, and will be discussed in
chapter 10.

Table 9.2: User Test Case 2: Drive the train

Chapter 9: Testing 67

Case 3: Exit the game

Preconditions: The subject has started a scenario

Expected
execution:

The subject presses the "escape"-button, then navigates to
the main menu before exiting the game

Actual
execution:

All subjects started by pressing the escape key, then clicking
"main menu", and "exit".

Results:
This went smoothly, as if all subjects had done it before. We
received compliments for the simplicity of the menu
navigation, and praise for designing it in such a way that
there is no need to exit the application when starting
another scenario.

Table 9.3: User Test Case 3: Exit the game

9.2 Employee User Testing

We also had a few tests with the client where we tested the editor mode, which is
only available to employees at Lokførerskolen.

Case 1: Place and edit objects

Preconditions: The subject has admin privileges and can open editor mode

Expected
execution:

The subject places an item from the editor menu and moves
it

Actual
execution:

The subject tried to drag and drop an item from the editor
menu but nothing happened. After a while they clicked the
item first then dragged it and it got placed in the level. They
then moved the item in the level with some issues were the
program stopped moving the item and they had to re select
the object again.

Results:
The subject managed to navigate the editor menu without
issue, but struggled with placing and moving the object.

Table 9.4: User Test Case 1: Place and edit objects

68 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

Case 2: Save, exit and load level

Preconditions: The subject have opened editor mode and placed an item in
the level

Expected
execution:

The subject clicks save, then main menu twice and opens
the "Testing" level

Actual
execution:

The subject finds and clicks save, then clicks main menu
and clicks on the warning. They then wait a bit before
trying to click main menu again, which returns them to the
main menu. Then they open the "Testing" level and sees the
changes made.

Results:
The subject had some issues were it took some time before
they understood they had to click the main menu button
again after being returned the warning prompt.

Table 9.5: User Test Case 2: Save, exit and load level

9.3 Hardware testing

During the visit to Lokførerskolen, we were able to deploy a build of the simulator
on the client’s hardware. These tests were conducted by confirming or disproving
whether the operational requirements (3.2.2) could be fulfilled. We acquired a
Windows computer, and successfully ran the simulator with over 60 frames per
second.

9.4 System Testing

Theese are the system tests performed by the developers on the packaged product.
It is important to note that the behaviour of a packaged project could be different
to the same project executed in the editor. This caused some confusion initially
for us, but also allowed the group to get a better understanding of the packaging
process and how unreal handles memory in the editor as well as in a packaged
project.

9.4.1 System test 02.05.2022

To ensure the quality and resilience of our system some basic tests were performed
on the system functionality. Thees tests were performed in accordance to the use
cases conformed for the simulator.

When the correct password was typed in the main menu of the simulator got
launched.

Chapter 9: Testing 69

Student use cases

Use case: Log in

The log in functionality worked correctly and in accordance to the use case de-
scription. The first test was performed by writing wrong password and the system
did not grant access to the program and allowed us to try authenticating again.

Use case: Log out

Logging out of the system worked correctly, when clicking the Log out button the,
the log in screen got launched.

Use case: Start scenario

Clicking on a level in the blueprint to start the level worked and the program now
gave the user the opportunity to control the train.

Use case: Operate train

Operating the train was handled exactly as expecting, but there was an issue when
switching to the drone view which caused the application to crash. The issue did
not give any relevant logs so we connected the application process to visual studios
to try to see where the crash occurred. As it turns out, the code that updates the
Driver-Machine Interface (DMI) is ran every Tick(). This is unnecessary use of
computational power and a system handled delay was added to fix the issue. After
updating this code the program ran as expected.

Use case: Operate drone

The drone camera did not spawn at the accurate position on the switch, and it
turned out that this was because of how the drone referenced the train. In earlier
iterations we linked the train to the drone through blueprint macros and UPROP-
ERTY(). The problem with this was that it only works if the train don’t get deleted
and added to the level again. To ensure that this wont be an issue in the future,
the drone got implemented to programmatic find the train actor when spawned in
a level. This solution doesn’t depend on manually assigning the train in the editor
and would therefore work even if the two actors were to be removed and added
again.

Employee Use Cases

Use case: Place objects

There was one issue found with this functionality and it was the ability to place
two of the same actors in a level. After a review of the code, and some debugging
of the system the issue was found. The drag and drop functionality actually drags
the widget (which is a representation for the actors) out of its position and garbage
collects it. Therefore, on the next occasion where drag and drop is performed on

70 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

the same widget it is no widget there to drag out. This was one of the examples
where the editor version and the packaged version behaved differently.

The solution became to change to spawn a new widget when drag was detected
and move this widget instead of the original one.

Use case: Move or rotate objects
The moving and rotating functionality in the editor mode worked as expected.
There are one issue we are aware about and that is the buggy movement of objects.

Use case: Delete objects The delete object functionality worked as expected.

Use case: Save scenario to file The functionality for saving objects that gets
added or deleted is working. This means that you could remove a signal in the
editor and it would not be visible in the same level when driving the simulator.

9.4.2 Other issues found by testing the system

Opening Pause menu Opening the pause menu could sometimes cause the pro-
gram to crash. The reason was an panhandled nullptr exception in the logic for
spawning the pause menu. It would try to spawn the menu without it being cre-
ated and therefore cause the program to crash. The only thing necessary to fix
was a null check.

Change resolution and window mode when updating the desired resolution and
window mode the actual settings would not open. The issue was that the code for
actually applying the resolution and window mode shown in code listing 9.1, was
not included in the functionality.

1 GEngine->GameUserSettings->ApplyResolutionSettings(false);

Code listing 9.1: Code displaying how to apply resolution changes

Chapter 10

Discussion

This chapter will discuss and reflect on the planning, development and adminis-
tration of the project, as well as the product.

10.1 Evaluation of project goals

To evaluate the result of the final product, the project’s initial goals should be
taken into consideration.

10.1.1 Main goals

The main goal of the project was to create a demo scenario with the following
features:

Must include at least one train, two signals one train-DMI a train track and
a simple landscape.

As shown visually in the Project overview (6) and more technical in the Imple-
mentation (7) chapter of the thesis, all of the stated elements is present in the
demo.

The train must be able to move using the controllers Lokførerskolen uses
today.

The train can be controlled using the external throttles used at Lokførerskolen
(Logitech Quadrant).

The train must follow the railway in a realistic way.

This was achieved early in the project, with the implementation of the spline.
However during user testing, we found that the train behaved abnormally and

71

72 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

would look like it derailed during turns. This was due to an optimization where the
spline’s level of detail was decreased in fear of having a big impact on performance
during testing. The original railway rendered a spline point every 5 meters, while
the railway in the user test used 50 meter increments. This caused dissonance
between the visible railway and the actual spline which the train followed, causing
the anomaly, but has since been reverted to the original version.

Signals must be able to change colors based on specific events happening in
the game.

The signals are implemented according to the goals set and with additional feed-
back from the client. The system works by having a central signal controller in
the level, which is responsible for receiving and updating signals. When discuss-
ing with the client early in the project the possibility of multiple signal controllers
was mentioned, however the current design and implementation of the applica-
tion uses only one signal controller per level. (7)

10.1.2 Part goals

The assignment also included part goals that could be necessary extensions if
there was any time to allocate for it. The group quickly figured out and planned
for the execution of this from the beginning of the project. These part goals were
as follow:

Create a tool for placing, editing and deleting 3D models in the game world,
such as trains, buildings or signals.

The functionality for editing 3D models in the game world is present in the current
simulator, these added objects are the ones stated above and some others.

Make it possible to save the world when it is edited.

Saving the edited objects was made possible through the save functionality de-
scribed in Implementation.

Create a tool for creating, editing and deleting train tracks.

We tried to make the functionality, but along the way we started to doubt the
necessity of the functionality we were trying to create. One of the reasons we
chose to develop the simulator using unreal engine was the fact that it provided a
state of the art spline tool. Trying to emulate this at runtime, and create our own
spline tool seems like a waste of time when you could do this more easily in the
Unreal editor. We would therefore argue that even though the runtime spline tool
did not get created, we have tested the development and provided documentation
and a dedicated branch with testing code for Lokførerskolen if they would like to
pursue this issue in the future.

Chapter 10: Discussion 73

Train tracks must contain curves and not only go in a straight line.

As shown in both Product Overview and Implementation, the train track can con-
tain curves, the goal is therefore achieved.

Make it possible to place a train on the tracks and drive it.

The program allows you to place a train next to, or on a track and the train will
then start driving from the nearest railway point.

10.1.3 Analysis goals

Must be a modern game engine.

Our analysis concludes on Unreal Engine being a modern game engine. The new-
est iteration of the engine, Unreal Engine 5, was launched during this project,
proving its own modernity. 1

Must support functionality for Virtual Reality

As stated in the analysis, Unreal Engine has native support for VR, with multiple
supported VR-headsets. Developing and testing Virtual Reality can easily be done
within the Unreal Engine editor, with minimal to no disruption of the workflow.

Must be capable of reproducing all functionality of DeskSim

This goal was the only one that still had some doubt after the analysis. we based
facts on the likelihood that this new, and maintained engine would have the same
opportunities as an outdated engine. After working with the project this was not
an issue. We have only implemented some of the functionality, but have not found
a single issue regarding this goal.

The game engine should be easy to learn.

The game engine was found by us to be moderately easy to learn. It took about
a month before the development got more coding than it was researching. This
change could also be visualised in the sprint planning meetings if you look at it in
the perspective before and after sprint 6.

The game engine should be able to reuse existing 3D assets from DeskSim.

The 3D asset formats used for the existing solution are a mix of file formats, some
of which are less used in modern game engines. The two primary file formats used
by Unreal Engine is .fbx and .obj, with a preference for .fbx due to its ability

1Unreal Engine 5 launch, https://www.unrealengine.com/en-US/blog/
unreal-engine-5-is-now-available

https://www.unrealengine.com/en-US/blog/unreal-engine-5-is-now-available
https://www.unrealengine.com/en-US/blog/unreal-engine-5-is-now-available

74 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

to store more types of data such as models, textures, animations, rigs, lights etc.
On the other hand .obj files only store model data with some basic material and
texture data. Of the file formats used for 3D models in the existing solution, only
.obj has native support in UE.

There are two options to import files of .gltf and .ac, the first is to find a plugin
for UE which adds support for these files. The second option is to convert these
files into either .fbx or .obj using external software such as Blender. The second
option is the preferred method, as all files would be of the same format, in addition
to native support by the engine to import them, rather than relying on external
plug-ins.

Adding and using sound in the simulator has not been a priority, and as such
we have not used any of the sound files from the existing solution. The existing
solution uses the formats .wav and .mp3. Unreal Engine has native support for
.wav, so converting sound files from .mp3 to .wav will be required to reuse all
sound assets.

10.2 Choice of Engine

In the game engine analysis we concluded that Unreal Engine was the most suited
option for this project. We can compare how the conclusion fits with our experi-
ence after working with Unreal Engine in this project.

10.2.1 Experience with Unreal

When we compared the different code languages we found C++ to be the language
with the steepest learning curve, due to its manual memory management and
low-level nature. When using C++ during development we found the language
to be easier than expected, due to the extensive use of Unreal Engine specific
C++ libraries. Almost all types and structures, apart from some basic types like
integers, floats and booleans, use a type made by and optimized for Unreal Engine.
Some examples are strings, which have three different types depending on use
and needed functionality, as well as custom arrays and map containers. We found
using these types to be easy, and scripting uses almost exclusively libraries made
for Unreal Engine. Almost all classes derive from the UObject class which features
garbage collection, so the developer usually does not need to worry about memory
management. Overall using C++ for this project has been an positive experience.

During this project the official documentation for Unreal Engine has been our
primary source of tutorials and knowledge when working in Unreal Engine. The
documentation is a mix between documents explaining and giving examples to
features, as well as tutorials for both C++ and blueprints for various features. This
combination means we could rely mostly on official documentation, but supple-
menting it with community guides or forums when needed.

Chapter 10: Discussion 75

Since Unreal Engine supports both C++ and blueprints for creating functionalities
within the game engine, it can feel like the community is split in two. Sometimes
we would finding a solution to an issue we had only to find out that it was solved
with blueprints. Although since the community is huge we did not run into any
issues were we did not find a solution to a problem.

Working with and customising the spline tool using Unreal Engine’s built-in spline
components was more intuitive in the context of blueprints, as all available func-
tionality was presented by the engine. When developing the spline in C++ , a lot of
time was spent on research and reading through the documentation for UE’s spline
component. But once the barrier of game engine context was passed, UE showed
just how powerful its developer tools are, making for an engaging development
experience.

When working with game related systems unrelated to programming, such as ma-
terials or landscapes, we were able to do all the work inside Unreal Engine. By us-
ing both textures and colors, then modifying them in the material editor we were
able to create several materials and customise them to our needs, which are used
in the simulator. While these materials are made using a node based system very
similar to blueprints, and therefore does not showcase any programming, they
can interact with scripts to influence the material. The best example of this is the
material used for signal lights, where both the color and emissive light strength is
controlled through code. Unreal Engine also comes with its own landscape editor
where you are able to sculpt and paint the landscape with textures. It also comes
with a foliage editor which automatically creates realistic terrain foliage as long
as you supplement it with the foliage models and the parameters for it. Both of
these editors are simple and powerful to use.

10.2.2 Learning curve

The learning curve can feel pretty steep in the beginning of the project, as we did
not have any previous experience with Unreal Engine and little experience with
other game engines. Once the basic layout and gameplay flow is understood, and
where functionality should be made and extended, working with the Engine and
creating new content and functionality became much easier. Learning different
aspects of the Engine, such as normal actor logic compared to Heads-Up Display
(HUD) and User Interface (UI) functionality, can provide developers with useful
perspective and knowledge.

In some areas of a game, like its UI, it is possible to create all the functionality
in C++ , but it may not be the optimal choice. The UI is usually made mostly
in blueprints, but we decided to do as much as possible in C++ for this project.
However we did combine scripts and blueprints by deriving a blueprint from the
finished script class, which provides the functionality while the blueprint contains
the models and materials.

76 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

10.3 Development Plan and Process

This section will discuss some key concepts of our development process and taking
the original project plan into consideration.

10.3.1 Time Usage

The original agreement stated in the project plan under the rules section states
that all group members should work approximately 30 hours per week and provide
documentation for the work that has been done. By looking at the overall num-
ber in figure 10.1 and dividing this on the number of group members and weeks
during the project, we get approximately 28 weekly hours. This is after taking
into consideration that approximately one week in total was dedicated to another
course and a week-long Easter break. This was a bit lower than expected, but we
figured out during the writing process of this thesis that some hours had not been
registered correct according to the log everyone filed each day of the project. We
therefore assume that the weekly time usage per person is a bit higher and closer
to what we agreed upon at the start of the project.

Figure 10.1: Clockify - Overall time usage for project

10.3.2 Issues Removed from the Scope

There were some trouble with issues we chose to extend the scope of the project.
The examples of this was the plan to develop an environment tool for editing the
environment in real-time. We had some discussions with the client on the subject,
and he stated that this functionality is not required and is viewed as a wishlist item
in their plan for the simulator. Although we did not finalize the editing of terrain,
we will provide the source code containing the progress made on the issue, as
a branch in the Git repository. The section below is an in-depth explanation and
overview of alternatives for creating the functionality in the future.

Unreal Engine already provides a tool for editing terrain in their editor. Modifying

Chapter 10: Discussion 77

or creating custom terrain needs to be done in the Unreal Editor, which needs to
be done during development. There are some alternatives to this. One option is
to utilize and understand a runtime complex mesh component, called Procedural
Mesh which uses the graphical API’s to create a component which is modifiable
though user input. After researching this opportunity and trying to implement a
prototype on how this functionality would turn out, we made a decision to exclude
this as a part of the development plan and excluded terrain manipulation as a part
of the project. Because the issue was not covered in the task description and client
the understanding the decision, the main story and related tasks was removed
from the project. The decision to exclude the task is taken because the group wants
the final product to highlight its magnitude as well as complexity, the general
impression is that this task would disrupt this balance.

In addition to the Procedural Mesh component there are other ways to handle
the issue. There are some available plug-ins which could be appropriate to use in
the simulator for handling the issue as well. Two plug-ins called Voxel Plugin2 and
Voxel Plugin PRO3 makes runtime landscape editing less overwhelming. There is
also a chance that UE will implement runtime editing as a plug-in or feature in
the editor. There are many in the community that wants a feature like this4 and
Epic Games are generous when it comes to creating and sharing features that their
users wants.

10.3.3 Estimation Process

The change in estimation strategy came from our desire to actually use the estim-
ations to something useful. We wanted to limit the overhead we had per sprint
by having the necessary knowledge and reflections on estimations done earlier.
After changing the estimation strategy it got easier to both estimate the issues
because we could provide an actual number of hours instead of a fixed size. The
change in estimation strategy made both the planning of the sprint easier and the
retrospective outcome of more useful for further sprint planning

10.3.4 The Group Cooperation

The collaboration and general group mood has been good throughout the project.
The only things that could be noted is the few occasions where group members
arrived late for the working session. We planned to meet every morning at 9 p.m.
from Monday through Friday and this has, with rare exceptions, been the the
group’s regular practise throughout the entire project.

The different tasks got assigned to the group members based on each group mem-
bers desire. The group had to ensure that all members got to display their compet-

2https://voxelplugin.com/
3https://www.unrealengine.com/marketplace/en-US/product/voxel-plugin-pro
4https://forums.unrealengine.com/t/terrain-editing-in-runtime/18271/125?page=9

https://voxelplugin.com/
https://www.unrealengine.com/marketplace/en-US/product/voxel-plugin-pro
https://forums.unrealengine.com/t/terrain-editing-in-runtime/18271/125?page=9

78 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

ence, and there was a shared responsibility to make sure that every group member
got the tasks and time needed to display their skills.

Disagreements has not at all been an obstacle in the development process. There
has been some discussions that has taken some time to agree upon, but the process
has not been hindered because of it. The group routine that states that the group
leader has the final word if the group can not agree were never practiced in the
project. Most of the disagreement were resolved by a factual discussion and in
some rare occasions they were resolved in a bit louder manner.

10.3.5 Other Interactions

We had supervisor meetings almost every week, and meetings with the project
client representative every other week. The feedback from both meetings was
used to guide for further writing and development. The client interaction was
especially helpful and allowed us to rapidly address concerns or issues we faced
during development and testing.

10.4 Version Control System

Version control or source control, is the practice of tracking and managing changes
to software code often within a development team. [45]

Before we started development we had to choose which version control system we
would use. On one side we have Perforce, often a standard choice for larger studios
and is favored within game development due to its handling of large binary files.
On the other side we have Git; a standard choice for developers all around due
to its many features for teams and how it supports multiple branches which helps
with cooperation within a team. The biggest structural difference is that Perforce
uses a centralized model unlike Git which uses a distributed decentralized model.
Deploying a Perforce server is also necessary before you can use it, unlike Git
which is ready to be used from a cloud service such as GitHub or Azure DevOps.
Throughout our bachelor program we have used Git as a version control system
and collaborative tool to help us keep the code base consistent and maintained,
and is one of the reasons for using it in this project as well. Git can also be hosted
on the cloud through for example GitHub, which we utilized in this project. Al-
though Perforce would probably be a better choice for bigger projects and teams
since it can handle bigger files more efficiently. [46]

The biggest issue we faced with Git was its single file size limit of 100 megabytes,
since Unreal Engine projects contain bigger files such as 3D models, textures and
maps. We had a few instances were a map file containing the level scene was big-
ger than Git’s allowed file size limit. As a fix we used the level layer tool in Unreal
Engine to split the level file into multiple smaller map files. This temporarily fixed
the issue and we were no longer hitting the max file size limit of git, additionally

Chapter 10: Discussion 79

this also made it possible for us to edit and work on the same level without having
to overwrite each others changes, since we could just work on different level lay-
ers. This is due to the maps being binary files which Git cannot merge. You either
have to pick the current one or the incoming file when merging, unlike cpp-files
which can be edited by multiple people and can be properly merged together after.

As a more permanent solution to the file size limit we tried using Git’s LFS at
the beginning. Although GitHub only provides a limited LFS storage capacity and
bandwidth of 1 gigabyte, which we quickly used up in a few commits. If we wanted
a more permanent solution with unlimited LFS storage capacity and bandwidth,
using Azure DevOps instead of GitHub might be a solution. Azure DevOps provides
unlimited LFS storage capacity and bandwidth and it is fully supported. [47]

10.5 Critique

10.5.1 Project Plan and Process

Although we changed the estimation strategy we did not use the estimations to the
full extent as planned. We should have created a visualization of the estimations
made per sprint to fully explain the importance it had for further development.

The group had a strong desire to finish the development of the final product, this
desire eventually led to down prioritizing both testing and thesis writing. This
made the last days of the project a bit stressful to complete in time. If we would
have done the process again we would have changed this process and taking the
advantages Scrum provides. As written in the Plan: "Scrum, in it’s nature, allows
and emphasizes reflection and assessment every step of the way". To downsize the
development portion of the project would have been fine as long as the decision
is made based on the importance of the bachelor thesis.

10.5.2 Thesis

During the project we were greatly inspired by earlier academic work within sim-
ilar fields. Especially when researching and analysing game engines, we appreci-
ated well-written and structured thesis’s enough to motivate our own writing. We
hope, and feel, that our own thesis may contribute to future graduate students
in search of guidance for writing. When searching for relevant subject matter for
our analysis, we struggled to find reliable sources that compare game engines, but
hope our contribution adds more foundation to this subject area. We believe and
agree that the contents of the Choice of Engine is thorough, and that it remains
objective up to the conclusion, with properly cited sources and citations.

As mentioned in The Group Cooperation, it may have been beneficial to allocate
more time for writing the thesis, as we are aware of its shortcomings. The time
before the deadline was spent adding the final content to the thesis, but the look
and layout of the content itself did not get enough work. We fear some of the

80 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

figures tables may be badly structured or unintuitive for the reader. We believe
this could have been avoided if we either allocated more time for final polish, or
had a better understanding of Latex.

10.5.3 Application

Although nobody is at fault, we do not feel that the development has created
something uniquely new or groundbreaking. The reason for this is that the as-
signment goal itself does not inherently introduce any new concepts or ideas by
migrating an existing application.

As with most software, the application was developed for a purpose and a target
audience, making testing an important part of the development. We feel as our
application could use not only more rounds of testing, but more time for iterations
after testing. This would increase the client and user satisfaction, and help our
application better fulfill its purpose. One thing that was made clear to us during
the Employee User Testing is that the gizmo tools needs to be reworked. This could
have been avoided if we did the tests more thorough and performed them earlier.

By the nature of time-limited software development, there are bugs and perform-
ance issues in our application that needed more attention. Possible optimizations
that would improve the application during both development and runtime in-
clude reducing the number of polygons in meshs used repeatedly, utilizing mul-
tiple threads for parallel operations, improving the visual look of the simulator,
adding more train-related functionality, and adding a VR mode. While some of
these are not part of the task, it would improve the application nonetheless.

10.6 Further Development

When developing the application we always had in mind that Lokførerskolen
should be able to continue the development after we were finished. Since they
plan to migrate their current simulator and should be able to migrate their func-
tionalities to this application. In that regard we have documented the process from
start to finish, both in and out of code. We made sure to make this process as easy
and simple as possible for Lokførerskolen.

Below is a list of features we would recommend Lokførerskolen to continue on:

• Improve the railway spline to be able to connect multiple railways into one
or split a railway into different ones.
• Improve the performance of editing the spline in the Unreal Editor, by of-

floading work on a different thread
• Improve the performance of the simulator, notably the railway mesh and

the texture distance blend.
• Add a multiplayer mode where players can play together and interact with

one another.

Chapter 10: Discussion 81

• Add a Virtual Reality mode where you can interact with world by for ex-
ample connecting wagons or switching railway tracks. Should also be able
to play with another player.
• Create an own input manager that is specialized to use the throttles used

by Lokførerskolen.
• Improve the physics of the train to be able to simulate going uphill and

downhill, by decreasing and increasing the train speed.

There are some functionality which we would recommend against spending more
time on, mainly the editor mode we created for runtime editing of maps. We highly
recommend using the Unreal Editor instead of spending time and resources recre-
ating an editor.

Chapter 11

Conclusion

11.1 Summary

Lokførerskolen is looking to migrate their existing DeskSim to a more modern
game engine. We hope that this project will help make this transition easier by
first providing them with a game engine analysis comparing 5 different engines
up against eachother. As a result of this we came to the conclusion that Unreal
Engine was the best choice for them. Which proved to be correct based on our
experience with the engine throughout this project. Secondly we also created a
train simulator demo in Unreal Engine with all of the main requirements set by
Lokførerskolen and also most of the desired requirements. We ended up pretty
happy with the results of the application with some minor roadblocks and issues
along the way.

11.2 Final words

We believe we have achieved the goal of enabling an easier migration of DeskSim
to a new game engine, even if Lokførerskolen does not choose Unreal Engine, as
the underlying concepts we have used and documented translates well between
engines. We are thankful for our thorough planning and administrative work dur-
ing the early phases, which have helped us maintain a certain level of structure
and quality of work throughout the project. Looking back, the scope of technolo-
gies for the development could’ve been bigger. Even though there was more than
enough work to do, a lot of it was rudimentary, and taking on more challenging
or ambitious tasks could’ve yielded more impressive results.

We have learned a lot about software development, working in a game engine,
working in a team, and working for a client, which is highly relevant in preparing
the group for further work. When all is said and done, we are happy with how the
project was planned, developed and documented overall.

82

Bibliography

[1] M. Dahl. ‘Simulert togframføring.’ (2019), [Online]. Available: https://
lokforerskolen.no/aktuelt/simulatorsenteret/ (visited on 07/02/2019).

[2] I. Farup, Copcse-ntnu/thesis-ntnu: An ntnu thesis latex document class for
bachelor, master, and phd theses. [Online]. Available: https://github.
com/COPCSE-NTNU/thesis-NTNU.

[3] G2 INC, Unity software vs. unreal engine vs. cryengine vs. godot | g2. [On-
line]. Available: https://www.g2.com/compare/unity- vs- unreal-
engine-vs-cryengine-vs-godot (visited on 08/02/2022).

[4] M. Dealessandri, What is the best game engine: Is unity right for you? Jan.
2020. [Online]. Available: https://www.gamesindustry.biz/articles/
2020-01-16-what-is-the-best-game-engine-is-unity-the-right-
game-engine-for-you (visited on 08/02/2022).

[5] S. Games, Unity pros and cons: Choose unity 3d: Why unity game studios use
it? Apr. 2021. [Online]. Available: https://stepico.com/why-choose-
unity-3d-engine/ (visited on 08/02/2022).

[6] A. Chaudry, A unity review: Pros and cons, Jul. 2020. [Online]. Available:
https://citrusbits.com/a-unity-review-pros-and-cons/ (visited on
08/02/2022).

[7] ‘Unreal licences.’ (2022), [Online]. Available: https://www.unrealengine.
com/en-US/download (visited on 21/01/2022).

[8] Apr. 2016. [Online]. Available: https://steamlug.org/cast/s04e05 (vis-
ited on 08/02/2022).

[9] R. Verschelde, Major milestone ready for testing: Godot 4.0 alpha 1 is out!
Jan. 2022. [Online]. Available: https://godotengine.org/article/dev-
snapshot-godot-4-0-alpha-1 (visited on 08/02/2022).

[10] ‘Godot licence.’ (2022), [Online]. Available: https://godotengine.org/
license (visited on 21/01/2022).

[11] Godot Engine, Introduction. [Online]. Available: https://docs.godotengine.
org/en/stable/about/introduction.html (visited on 08/02/2022).

83

https://lokforerskolen.no/aktuelt/simulatorsenteret/
https://lokforerskolen.no/aktuelt/simulatorsenteret/
https://github.com/COPCSE-NTNU/thesis-NTNU
https://github.com/COPCSE-NTNU/thesis-NTNU
https://www.g2.com/compare/unity-vs-unreal-engine-vs-cryengine-vs-godot
https://www.g2.com/compare/unity-vs-unreal-engine-vs-cryengine-vs-godot
https://www.gamesindustry.biz/articles/2020-01-16-what-is-the-best-game-engine-is-unity-the-right-game-engine-for-you
https://www.gamesindustry.biz/articles/2020-01-16-what-is-the-best-game-engine-is-unity-the-right-game-engine-for-you
https://www.gamesindustry.biz/articles/2020-01-16-what-is-the-best-game-engine-is-unity-the-right-game-engine-for-you
https://stepico.com/why-choose-unity-3d-engine/
https://stepico.com/why-choose-unity-3d-engine/
https://citrusbits.com/a-unity-review-pros-and-cons/
https://www.unrealengine.com/en-US/download
https://www.unrealengine.com/en-US/download
https://steamlug.org/cast/s04e05
https://godotengine.org/article/dev-snapshot-godot-4-0-alpha-1
https://godotengine.org/article/dev-snapshot-godot-4-0-alpha-1
https://godotengine.org/license
https://godotengine.org/license
https://docs.godotengine.org/en/stable/about/introduction.html
https://docs.godotengine.org/en/stable/about/introduction.html

84 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

[12] ‘Open 3d foundation.’ (2022), [Online]. Available: https://o3d.foundation/
(visited on 31/01/2022).

[13] ‘Open 3d engine.’ (2022), [Online]. Available: https://www.o3de.org/
(visited on 31/01/2022).

[14] Unity Technologies, Getting started with vr development in unity, Jan. 2022.
[Online]. Available: https://docs.unity3d.com/2022.1/Documentation/
Manual/VROverview.html (visited on 08/02/2022).

[15] M. Dealessandri, What is the best game engine: Is godot right for you? Apr.
2020. [Online]. Available: https://www.gamesindustry.biz/articles/
2020-04-14-what-is-the-best-game-engine-is-godot-right-for-
you (visited on 08/02/2022).

[16] ‘Unreal engine 5 early access.’ (2022), [Online]. Available: https://www.
unrealengine.com/en-US/unreal-engine-5 (visited on 31/01/2022).

[17] Crytek, Cryengine 5.7 roadmap update and future plans, Dec. 2021. [On-
line]. Available: https://www.cryengine.com/news/view/cryengine-5-
7-roadmap-update-and-future-plans (visited on 08/02/2022).

[18] Unity Technologies, Supported model file formats, Feb. 2021. [Online]. Avail-
able: https://docs.unity3d.com/2020.1/Documentation/Manual/3D-
formats.html (visited on 08/02/2022).

[19] Unreal Engine, Datasmith supported software and file types. [Online]. Avail-
able: https://docs.unrealengine.com/4.26/en-US/WorkingWithContent/
Importing/Datasmith/SupportedSoftwareAndFileTypes/ (visited on 08/02/2022).

[20] W. A. Haan, Asset types, May 2019. [Online]. Available: https://docs.
cryengine.com/display/CEMANUAL/Asset+Types (visited on 08/02/2022).

[21] N. Lovato, Importing 3d scenes, Oct. 2020. [Online]. Available: https :
//docs.godotengine.org/en/stable/tutorials/assets_pipeline/
importing_scenes.html (visited on 08/02/2022).

[22] Unity Technologies, Creating and using scripts, Feb. 2021. [Online]. Avail-
able: https://docs.unity3d.com/2020.1/Documentation/Manual/
CreatingAndUsingScripts.html (visited on 08/02/2022).

[23] S. Terziyan, What is the best language for game development? Jan. 2020.
[Online]. Available: https://game-ace.com/blog/best-language-for-
game-development/ (visited on 08/02/2022).

[24] Introduction to c++ programming in ue4, Aug. 2021. [Online]. Available:
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/
ProgrammingWithCPP/IntroductionToCPP/ (visited on 08/02/2022).

[25] Godot Engine, Gdscript basics. [Online]. Available: https://docs.godotengine.
org/en/stable/tutorials/scripting/gdscript/gdscript_basics.
html (visited on 08/02/2022).

https://o3d.foundation/
https://www.o3de.org/
https://docs.unity3d.com/2022.1/Documentation/Manual/VROverview.html
https://docs.unity3d.com/2022.1/Documentation/Manual/VROverview.html
https://www.gamesindustry.biz/articles/2020-04-14-what-is-the-best-game-engine-is-godot-right-for-you
https://www.gamesindustry.biz/articles/2020-04-14-what-is-the-best-game-engine-is-godot-right-for-you
https://www.gamesindustry.biz/articles/2020-04-14-what-is-the-best-game-engine-is-godot-right-for-you
https://www.unrealengine.com/en-US/unreal-engine-5
https://www.unrealengine.com/en-US/unreal-engine-5
https://www.cryengine.com/news/view/cryengine-5-7-roadmap-update-and-future-plans
https://www.cryengine.com/news/view/cryengine-5-7-roadmap-update-and-future-plans
https://docs.unity3d.com/2020.1/Documentation/Manual/3D-formats.html
https://docs.unity3d.com/2020.1/Documentation/Manual/3D-formats.html
https://docs.unrealengine.com/4.26/en-US/WorkingWithContent/Importing/Datasmith/SupportedSoftwareAndFileTypes/
https://docs.unrealengine.com/4.26/en-US/WorkingWithContent/Importing/Datasmith/SupportedSoftwareAndFileTypes/
https://docs.cryengine.com/display/CEMANUAL/Asset+Types
https://docs.cryengine.com/display/CEMANUAL/Asset+Types
https://docs.godotengine.org/en/stable/tutorials/assets_pipeline/importing_scenes.html
https://docs.godotengine.org/en/stable/tutorials/assets_pipeline/importing_scenes.html
https://docs.godotengine.org/en/stable/tutorials/assets_pipeline/importing_scenes.html
https://docs.unity3d.com/2020.1/Documentation/Manual/CreatingAndUsingScripts.html
https://docs.unity3d.com/2020.1/Documentation/Manual/CreatingAndUsingScripts.html
https://game-ace.com/blog/best-language-for-game-development/
https://game-ace.com/blog/best-language-for-game-development/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/IntroductionToCPP/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ProgrammingWithCPP/IntroductionToCPP/
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript_basics.html
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript_basics.html
https://docs.godotengine.org/en/stable/tutorials/scripting/gdscript/gdscript_basics.html

Bibliography 85

[26] Godot Engine, C# basics. [Online]. Available: https://docs.godotengine.
org/en/stable/tutorials/scripting/c_sharp/c_sharp_basics.html
(visited on 08/02/2022).

[27] ‘Blueprint overview.’ (), [Online]. Available: https://docs.unrealengine.
com/4.27/en- US/ProgrammingAndScripting/Blueprints/Overview/
(visited on 01/02/2022).

[28] ‘Unity technologies acquires bolt.’ (), [Online]. Available: https://ludiq.
io/blog/unity-acquires-bolt (visited on 04/02/2022).

[29] ‘Visual scripting.’ (), [Online]. Available: https://unity.com/products/
unity-visual-scripting (visited on 04/02/2022).

[30] ‘Avout visual scripting.’ (), [Online]. Available: https://docs.unity3d.
com/Packages/com.unity.visualscripting@1.7/manual/index.html
(visited on 04/02/2022).

[31] ‘Schematyc.’ (), [Online]. Available: https://docs.cryengine.com/display/
CEMANUAL/Schematyc (visited on 04/02/2022).

[32] ‘What is visual scripting.’ (), [Online]. Available: https://docs.godotengine.
org/en/stable/tutorials/scripting/visual_script/what_is_visual_
scripting.html (visited on 04/02/2022).

[33] Best game engine software in 2022: Compare reviews on ... - g2. [Online].
Available: https://www.g2.com/categories/game-engine (visited on
08/02/2022).

[34] [Online]. Available: https://www.iainstitute.org/sites/default/
files/what_is_ia.pdf (visited on 08/02/2022).

[35] D. Buckley, Unity vs. unreal – choosing a game engine, Jan. 2022. [Online].
Available: https://gamedevacademy.org/unity-vs-unreal/ (visited on
08/02/2022).

[36] T.-F. Evelyn. ‘Unity vs unreal engine: Game engine comparison guide for
2021.’ (2021), [Online]. Available: https://www.evercast.us/blog/
unity-vs-unreal-engine (visited on 12/07/2021).

[37] M. Dealessandri, What is the best game engine: Is cryengine right for you?
Jan. 2020. [Online]. Available: https://www.gamesindustry.biz/articles/
2020-01-16-what-is-the-best-game-engine-is-cryengine-the-
right-game-engine-for-you (visited on 08/02/2022).

[38] Unreal Engine, Unreal engine vr mode. [Online]. Available: https://docs.
unrealengine.com/4.27/en-US/BuildingWorlds/VRMode/ (visited on
08/02/2022).

[39] M. Rehkopf, Kanban vs scrum. [Online]. Available: https://www.atlassian.
com/agile/kanban/kanban-vs-scrum.

[40] Kanban (development), Mar. 2022. [Online]. Available: https://en.wikipedia.
org/wiki/Kanban_(development).

https://docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/c_sharp_basics.html
https://docs.godotengine.org/en/stable/tutorials/scripting/c_sharp/c_sharp_basics.html
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/Overview/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/Overview/
https://ludiq.io/blog/unity-acquires-bolt
https://ludiq.io/blog/unity-acquires-bolt
https://unity.com/products/unity-visual-scripting
https://unity.com/products/unity-visual-scripting
https://docs.unity3d.com/Packages/com.unity.visualscripting@1.7/manual/index.html
https://docs.unity3d.com/Packages/com.unity.visualscripting@1.7/manual/index.html
https://docs.cryengine.com/display/CEMANUAL/Schematyc
https://docs.cryengine.com/display/CEMANUAL/Schematyc
https://docs.godotengine.org/en/stable/tutorials/scripting/visual_script/what_is_visual_scripting.html
https://docs.godotengine.org/en/stable/tutorials/scripting/visual_script/what_is_visual_scripting.html
https://docs.godotengine.org/en/stable/tutorials/scripting/visual_script/what_is_visual_scripting.html
https://www.g2.com/categories/game-engine
https://www.iainstitute.org/sites/default/files/what_is_ia.pdf
https://www.iainstitute.org/sites/default/files/what_is_ia.pdf
https://gamedevacademy.org/unity-vs-unreal/
https://www.evercast.us/blog/unity-vs-unreal-engine
https://www.evercast.us/blog/unity-vs-unreal-engine
https://www.gamesindustry.biz/articles/2020-01-16-what-is-the-best-game-engine-is-cryengine-the-right-game-engine-for-you
https://www.gamesindustry.biz/articles/2020-01-16-what-is-the-best-game-engine-is-cryengine-the-right-game-engine-for-you
https://www.gamesindustry.biz/articles/2020-01-16-what-is-the-best-game-engine-is-cryengine-the-right-game-engine-for-you
https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/VRMode/
https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/VRMode/
https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://www.atlassian.com/agile/kanban/kanban-vs-scrum
https://en.wikipedia.org/wiki/Kanban_(development)
https://en.wikipedia.org/wiki/Kanban_(development)

86 Arinesalingam, Bjerke, Heksum, Karlsen: DeskSim v2: Prototyping Train Simulation

[41] Changing gamemode at runtime. Dec. 2016. [Online]. Available: https://
forums.unrealengine.com/t/changing-gamemode-at-runtime/81504.

[42] M. Romero, The uproperty() macro, Jun. 2020. [Online]. Available: https:
//romeroblueprints.blogspot.com/2020/10/the-uproperty-macro.
html.

[43] U. Engine, Megascanss marketplace. [Online]. Available: https://www.
unrealengine.com/marketplace/en-US/content-cat/assets/megascans?
count=20&sortBy=effectiveDate&sortDir=DESC&start=0 (visited on
20/05/2022).

[44] Blueprint vs c++ performance . Aug. 2016. [Online]. Available: https://
forums.unrealengine.com/t/blueprint-vs-c-performance/3398/17.

[45] Atlassian, What is version control: Atlassian git tutorial. [Online]. Avail-
able: https://www.atlassian.com/git/tutorials/what-is-version-
control (visited on 10/05/2022).

[46] Unreal Engine, Every project needs a version control system, Jan. 2021. [On-
line]. Available: https://unrealcommunity.wiki/every-project-needs-
a-version-control-system-qgpkrft2 (visited on 10/05/2022).

[47] V. Machiraju, B. Miller, K. Sharkey, andrey shuvalov, M. Jacobs, J. Parente,
S. Danielson, P. Berger and E. Batkoski, Manage and store large files in git,
Feb. 2022. [Online]. Available: https://docs.microsoft.com/en-us/
azure/devops/repos/git/manage-large-files?view=azure-devops.

https://forums.unrealengine.com/t/changing-gamemode-at-runtime/81504
https://forums.unrealengine.com/t/changing-gamemode-at-runtime/81504
https://romeroblueprints.blogspot.com/2020/10/the-uproperty-macro.html
https://romeroblueprints.blogspot.com/2020/10/the-uproperty-macro.html
https://romeroblueprints.blogspot.com/2020/10/the-uproperty-macro.html
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/megascans?count=20&sortBy=effectiveDate&sortDir=DESC&start=0
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/megascans?count=20&sortBy=effectiveDate&sortDir=DESC&start=0
https://www.unrealengine.com/marketplace/en-US/content-cat/assets/megascans?count=20&sortBy=effectiveDate&sortDir=DESC&start=0
https://forums.unrealengine.com/t/blueprint-vs-c-performance/3398/17
https://forums.unrealengine.com/t/blueprint-vs-c-performance/3398/17
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.atlassian.com/git/tutorials/what-is-version-control
https://unrealcommunity.wiki/every-project-needs-a-version-control-system-qgpkrft2
https://unrealcommunity.wiki/every-project-needs-a-version-control-system-qgpkrft2
https://docs.microsoft.com/en-us/azure/devops/repos/git/manage-large-files?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/manage-large-files?view=azure-devops

Appendices

87

A Source Code

The project repository contains assets owned by Lokførerskolen, and is kept private
as per an agreement between the group members and the client.

B Project Agreement

1 NTNU 10.12.2020

Norges teknisk-naturvitenskapelige universitet

Fastsatt av prorektor for utdanning 10.12.2020

STANDARDAVTALE

om utføring av studentoppgave i samarbeid med ekstern virksomhet

Avtalen er ufravikelig for studentoppgaver (heretter oppgave) ved NTNU som utføres i
samarbeid med ekstern virksomhet.

Forklaring av begrep

Opphavsrett
Er den rett som den som skaper et åndsverk har til å fremstille eksemplar av åndsverket og
gjøre det tilgjengelig for allmennheten. Et åndsverk kan være et litterært, vitenskapelig eller
kunstnerisk verk. En studentoppgave vil være et åndsverk.

Eiendomsrett til resultater
Betyr at den som eier resultatene bestemmer over disse. Utgangspunktet er at studenten
eier resultatene fra sitt studentarbeid. Studenten kan også overføre eiendomsretten til den
eksterne virksomheten.

Bruksrett til resultater
Den som eier resultatene kan gi andre en rett til å bruke resultatene, f.eks. at studenten gir
NTNU og den eksterne virksomheten rett til å bruke resultatene fra studentoppgaven i deres
virksomhet.

Prosjektbakgrunn
Det partene i avtalen har med seg inn i prosjektet, dvs. som vedkommende eier eller har
rettigheter til fra før og som brukes i det videre arbeidet med studentoppgaven. Dette kan
også være materiale som tredjepersoner (som ikke er part i avtalen) har rettigheter til.

Utsatt offentliggjøring
Betyr at oppgaven ikke blir tilgjengelig for allmennheten før etter en viss tid, f.eks. før etter
tre år. Da vil det kun være veileder ved NTNU, sensorene og den eksterne virksomheten som
har tilgang til studentarbeidet de tre første årene etter at studentarbeidet er innlevert.

2 NTNU 10.12.2020

1. Avtaleparter

Norges teknisk-naturvitenskapelige universitet (NTNU)
Institutt: Datateknologi og informatikk

Veileder ved NTNU:
tom.roise@ntnu.no, 97139769

Ekstern virksomhet:
Ekstern virksomhet sin kontaktperson, e-post og tlf.:

Studenter:1
Student: Thomas Arinesalingam
Fødselsdato: 21.11.1998

Student: John Ole Bjerke
Fødselsdato: 21.12.2000

Student: Endre Heksum
Fødselsdato: 29.05.2000

Student: Henrik Markengbakken Karlsen
Fødselsdato: 25.01.1999

Partene har ansvar for å klarere eventuelle immaterielle rettigheter som studenten, NTNU,
den eksterne eller tredjeperson (som ikke er part i avtalen) har til prosjektbakgrunn før bruk
i forbindelse med utførelse av oppgaven. Eierskap til prosjektbakgrunn skal fremgå av eget
vedlegg til avtalen der dette kan ha betydning for utførelse av oppgaven.

2. Utførelse av oppgave
Studenten skal utføre: (sett kryss)

Masteroppgave

Bacheloroppgave X

Prosjektoppgave

Annen oppgave

Startdato: 10.01.2022

Sluttdato: 20.05.2022

Oppgavens arbeidstittel er: DeskSim simulatoroppgave for Lokførerskolen.

1 Dersom flere studenter skriver oppgave i fellesskap, kan alle føres opp her. Rettigheter ligger da i fellesskap

mellom studentene. Dersom ekstern virksomhet i stedet ønsker at det skal inngås egen avtale med hver enkelt

student, gjøres dette.

3 NTNU 10.12.2020

Ansvarlig veileder ved NTNU har det overordnede faglige ansvaret for utforming og
godkjenning av prosjektbeskrivelse og studentens læring.

3. Ekstern virksomhet sine plikter
Ekstern virksomhet skal stille med en kontaktperson som har nødvendig faglig kompetanse
til å gi studenten tilstrekkelig veiledning i samarbeid med veileder ved NTNU. Ekstern
kontaktperson fremgår i punkt 1.

Formålet med oppgaven er studentarbeid. Oppgaven utføres som ledd i studiet. Studenten
skal ikke motta lønn eller lignende godtgjørelse fra den eksterne for studentarbeidet.
Utgifter knyttet til gjennomføring av oppgaven skal dekkes av den eksterne. Aktuelle
utgifter kan for eksempel være reiser, materialer for bygging av prototyp, innkjøp av prøver,
tester på lab, kjemikalier. Studenten skal klarere dekning av utgifter med ekstern virksomhet
på forhånd.

Ekstern virksomhet skal dekke følgende utgifter til utførelse av oppgaven: Dekker
transport til og fra skolen med buss, tog eller bil. Og dekker utgifter dersom det er avtalt
for utlån av utstyr til oppgaven.

Dekning av utgifter til annet enn det som er oppført her avgjøres av den eksterne underveis
i arbeidet.

4. Studentens rettigheter
Studenten har opphavsrett til oppgaven2. Alle resultater av oppgaven, skapt av studenten
alene gjennom arbeidet med oppgaven, eies av studenten med de begrensninger som følger
av punkt 5, 6 og 7 nedenfor. Eiendomsretten til resultatene overføres til ekstern virksomhet
hvis punkt 5 b er avkrysset eller for tilfelle som i punkt 6 (overføring ved patenterbare
oppfinnelser).

I henhold til lov om opphavsrett til åndsverk beholder alltid studenten de ideelle rettigheter
til eget åndsverk, dvs. retten til navngivelse og vern mot krenkende bruk.

Studenten har rett til å inngå egen avtale med NTNU om publisering av sin oppgave i NTNUs
institusjonelle arkiv på Internett (NTNU Open). Studenten har også rett til å publisere
oppgaven eller deler av den i andre sammenhenger dersom det ikke i denne avtalen er
avtalt begrensninger i adgangen til å publisere, jf. punkt 8.

5. Den eksterne virksomheten sine rettigheter

2 Jf. Lov om opphavsrett til åndsverk mv. av 15.06.2018 § 1

4 NTNU 10.12.2020

Der oppgaven bygger på, eller videreutvikler materiale og/eller metoder (prosjektbakgrunn)
som eies av den eksterne, eies prosjektbakgrunnen fortsatt av den eksterne. Hvis studenten
skal utnytte resultater som inkluderer den eksterne sin prosjektbakgrunn, forutsetter dette
at det er inngått egen avtale om dette mellom studenten og den eksterne virksomheten.

Alternativ a) (sett kryss) Hovedregel

 Ekstern virksomhet skal ha bruksrett til resultatene av oppgaven

Dette innebærer at ekstern virksomhet skal ha rett til å benytte resultatene av oppgaven i
egen virksomhet. Retten er ikke-eksklusiv.

Alternativ b) (sett kryss) Unntak

 Ekstern virksomhet skal ha eiendomsretten til resultatene av oppgaven og
studentens bidrag i ekstern virksomhet sitt prosjekt

Begrunnelse for at ekstern virksomhet har behov for å få overført eiendomsrett til
resultatene:

6. Godtgjøring ved patenterbare oppfinnelser
Dersom studenten i forbindelse med utførelsen av oppgaven har nådd frem til en
patenterbar oppfinnelse, enten alene eller sammen med andre, kan den eksterne kreve
retten til oppfinnelsen overført til seg. Dette forutsetter at utnyttelsen av oppfinnelsen
faller inn under den eksterne sitt virksomhetsområde. I så fall har studenten krav på rimelig
godtgjøring. Godtgjøringen skal fastsettes i samsvar med arbeidstakeroppfinnelsesloven § 7.
Fristbestemmelsene i § 7 gis tilsvarende anvendelse.

7. NTNU sine rettigheter
De innleverte filer av oppgaven med vedlegg, som er nødvendig for sensur og arkivering ved
NTNU, tilhører NTNU. NTNU får en vederlagsfri bruksrett til resultatene av oppgaven,
inkludert vedlegg til denne, og kan benytte dette til undervisnings- og forskningsformål med
de eventuelle begrensninger som fremgår i punkt 8.

8. Utsatt offentliggjøring
Hovedregelen er at studentoppgaver skal være offentlige.

Sett kryss

X Oppgaven skal være offentlig

5 NTNU 10.12.2020

I særlige tilfeller kan partene bli enige om at hele eller deler av oppgaven skal være
undergitt utsatt offentliggjøring i maksimalt tre år. Hvis oppgaven unntas fra
offentliggjøring, vil den kun være tilgjengelig for student, ekstern virksomhet og veileder i
denne perioden. Sensurkomiteen vil ha tilgang til oppgaven i forbindelse med sensur.
Student, veileder og sensorer har taushetsplikt om innhold som er unntatt offentliggjøring.

Oppgaven skal være underlagt utsatt offentliggjøring i (sett kryss hvis dette er aktuelt):

Sett kryss Sett dato

 ett år

 to år

 tre år

Behovet for utsatt offentliggjøring er begrunnet ut fra følgende:

Dersom partene, etter at oppgaven er ferdig, blir enig om at det ikke er behov for utsatt
offentliggjøring, kan dette endres. I så fall skal dette avtales skriftlig.

Vedlegg til oppgaven kan unntas ut over tre år etter forespørsel fra ekstern virksomhet.
NTNU (ved instituttet) og student skal godta dette hvis den eksterne har saklig grunn for å
be om at et eller flere vedlegg unntas. Ekstern virksomhet må sende forespørsel før
oppgaven leveres.

De delene av oppgaven som ikke er undergitt utsatt offentliggjøring, kan publiseres i NTNUs
institusjonelle arkiv, jf. punkt 4, siste avsnitt. Selv om oppgaven er undergitt utsatt
offentliggjøring, skal ekstern virksomhet legge til rette for at studenten kan benytte hele
eller deler av oppgaven i forbindelse med jobbsøknader samt videreføring i et master- eller
doktorgradsarbeid.

9. Generelt
Denne avtalen skal ha gyldighet foran andre avtaler som er eller blir opprettet mellom to av
partene som er nevnt ovenfor. Dersom student og ekstern virksomhet skal inngå avtale om
konfidensialitet om det som studenten får kjennskap til i eller gjennom den eksterne
virksomheten, kan NTNUs standardmal for konfidensialitetsavtale benyttes.

Den eksterne sin egen konfidensialitetsavtale, eventuell konfidensialitetsavtale den
eksterne har inngått i samarbeidprosjekter, kan også brukes forutsatt at den ikke inneholder
punkter i motstrid med denne avtalen (om rettigheter, offentliggjøring mm). Dersom det

6 NTNU 10.12.2020

likevel viser seg at det er motstrid, skal NTNUs standardavtale om utføring av
studentoppgave gå foran. Eventuell avtale om konfidensialitet skal vedlegges denne avtalen.

Eventuell uenighet som følge av denne avtalen skal søkes løst ved forhandlinger. Hvis dette
ikke fører frem, er partene enige om at tvisten avgjøres ved voldgift i henhold til norsk lov.
Tvisten avgjøres av sorenskriveren ved Sør-Trøndelag tingrett eller den han/hun oppnevner.

Denne avtale er signert i fire eksemplarer hvor partene skal ha hvert sitt eksemplar. Avtalen
er gyldig når den er underskrevet av NTNU v/instituttleder.

Signaturer:

Instituttleder:

Dato:

Veileder ved NTNU:

Dato:

Ekstern virksomhet:

Dato:

Student:

Dato:

Student:

Dato:

Student:

Dato:

Student:

Dato:

C Task Description

Kontaktperson: Isak Kvalvaag Torgersen

 Epost: isator@jernbanedirektoratet.no

Forslag til bacheloroppgave innen IT fra Lokførerskolen
Simulatorutvikling

Norsk fagskole for lokomotivførere, eller Lokførerskolen, er en offentlig statlig godkjent fagskole som
utdanner lokomotivførere til hele landet. Som en del av utdanningen bruker vi en selvutviklet
programvare kalt DeskSim for simulering av togframføring og andre relaterte oppgaver. Denne
programvaren er bygget med Java i spillmotoren jMonkeyEngine og 3D-modelleringsverktøyet
Blender brukes for å lage modeller.

Oppgaven
Spillmotoren jMonkeyEngine har eksistert siden 2003 og selv om det fortsatt er i bruk og
vedlikeholdes så er ikke engasjementet rundt dette prosjektet det samme som det har vært. Deler av
jMonkeyEngine begynner å bli utdatert og Lokførerskolen vil unngå å havne i den situasjonen at
verktøyene vi bruker ikke lenger er vedlikeholdt eller støttet. Dagens situasjon med tanke på
moderne spillmotorer som er åpent tilgjengelig for bruk er også en helt annen enn når utviklingen av
DeskSim ble startet. Vi har derfor startet et langsiktig prosjekt for å kunne overføre DeskSim til en
moderne spillmotor.

Oppgaven består av to deler:

1. Innledende del; undersøke hvilke alternativer som finnes med tanke på moderne
spillmotorer som er offentlig tilgjengelig og gjøre en faglig vurdering av fordeler og ulemper
med de forskjellige alternativene.

2. Hoveddel; gjenskape elementer av DeskSim ved hjelp av den spillmotoren som gruppen
vurderer som det beste alternativet. Denne delen vil være delt inn i et hovedmål og flere
delmål. Delmålene kan studentene jobbe med dersom de ser at hovedmålet er oppnådd.

Oppgavens mål
Målet med oppgaven er å gi Lokførerskolen et godt grunnlag for å vite hvilken spillmotor vi skal satse
på i framtiden.

Oppgavens krav
Innledende del

 Kartlegge og sammenfatte informasjon om moderne spillmotorer som kan være aktuelle for
Lokførerskolen å bruke.

o Spillmotorene må tilfredsstille følgende krav:
 Spillmotoren må være ‘moderne’.
 Spillmotoren må gjøre det mulig å gjenskape de eksisterende elementene i

DeskSim.
 Spillmotoren må være egnet for VR-utviling.
 Spillmotoren bør gjøre det mulig å gjenbruke eksisterende ressurser slik som

3D-modeller fra DeskSim.
 Spillmotoren bør være så lett som mulig å lære seg

o Funnene skal presenteres i en oversiktlig og lettfattelig rapport som inneholder
følgende:

Kontaktperson: Isak Kvalvaag Torgersen

 Epost: isator@jernbanedirektoratet.no

 Informasjon om viktige faktorer om spillmotorene slik som
programmeringsspråk, lisensmodell, osv.

 En begrunnet vurdering av hvordan de forskjellige spillmotorene etterlever
Lokførerskolens krav og hvilken spillmotor gruppa anser som det beste
alternativet.

o Vi ønsker at gruppa skal se på minst tre alternativer inkludert Unreal Engine og Unity.

Hoveddel
Hovedmål

 Lage en demo i den spillmotoren som gruppa anser for å være det beste alternativet.
Demoen må tilfredsstille følgende krav:

o Demoen må inneholde minst et tog, minst to signaler, en tog-DMI som ligner på den i
DeskSim, togspor og et enkelt landskap. Det er en bonus hvis man kan gjenbruke
ressurser fra DeskSim.

o Toget må kunne startes og stoppes av bruker ved hjelpe av spakene som
Lokførerskolen bruker i dag.

o Toget må kunne kjøre en kort strekning hvor det følger togskinnene på en realistisk
måte.

o Signalene må kunne endre seg underveis (for eksempel skifte fra rødt til grønt eller
vis versa) basert på forhåndsbestemte faktorer (slik som togets posisjon).

o All koden som brukes for å lage demoen må være veldokumentert og det bør være
mulig å bygge videre på den koden.

o Gruppen bør følge etablerte prinsipper for programvareutvikling/-design og gjøre
rede for valgene de tar.

o Det kan være nødvendig å justere eller tydeliggjøre kravene underveis og det
forventes at utviklingen skjer i tett samarbeid med Lokførerskolen

o Det bør være fokus på at verktøyet bør være så enkelt og intuitivt som mulig å bruke.

Delmål 1
 Lage et verktøy for å plassere ut 3D-modeller (tog, signaler, bygninger, osv.) langs

forhåndsdefinerte jernbanestrekninger.
o Det må også være mulig å flytte eller fjerne eksisterende modeller.
o Når nye modeller har blitt plassert langs en strekning må de være mulig lagre

endringene slik at de blir reflektert når man skal kjøre strekningen neste gang.

Delmål 2
 Lage en strekningsbygger. Med strekning menes en virtuell strekning med jernbanespor hvor

det er mulig å kjøre simulerte tog.
o Det må være mulig å opprette, redigere og fjerne strekninger.
o Strekningene må kunne inneholde kurver (ikke bare rett fram).
o Når en strekning er opprettet må det være mulig å plassere ut en togmodell og kjøre

strekningen.
o Det er ikke et krav at det er mulig å endre på landskapet i strekningen eller justere på

høydekurver i sporet o.l., men det må tas høyde for at dette skal bli mulig senere.

Video som illustrerer DeskSim finner du her; https://lokforerskolen.net/tmp/bachelor/

D Project Plan

PROG2900 - Bachelor Thesis

Project Plan

Lokførerskolen Sim v2

Authors:
Thomas Arinesalingam

John Ole Bjerke
Endre Heksum

Henrik Markengbakken Karlsen

January, 2022

Contents

1 Goals and Constraints 1

1.1 Background . 1

1.2 Project Goals . 1

1.2.1 Effect Goals . 1

1.2.2 Learning Goals . 2

1.3 Constraints and Boundaries . 2

2 Scope 2

2.1 Subject Area . 2

2.2 Delimitation . 3

2.3 Existing Solution . 3

2.4 Task Description . 4

3 Project Organization 4

3.1 Responsibilities and Roles . 4

3.2 Routines and Group Rules . 5

3.2.1 Group Rules . 5

3.2.2 Violation of Rules . 5

3.2.3 Group Routines . 6

4 Planning and Process 6

4.1 Work Methodology . 6

4.1.1 Scrum . 6

4.1.2 Process Documentation . 7

4.2 Weekly Schedule . 7

4.3 Technologies and Environment . 8

4.3.1 Version Control and Process 8

4.3.2 Reports, Documents and Logs 8

4.3.3 Meetings and Communication 8

i

4.3.4 Coding and Development . 8

5 Quality Assurance 9

5.1 Standards . 9

5.2 Documentation . 9

5.3 Configuration Management . 9

5.3.1 Git Workflow . 10

5.4 Risk Analysis . 10

5.4.1 Identification, Probability and Severity 11

5.4.2 Risk Matrix . 12

5.4.3 Mitigation and Measures . 12

5.5 Testing Plan . 12

5.5.1 Unit Testing . 12

5.5.2 Acceptance Testing . 12

6 Implementation Plan 12

6.1 Gantt Chart . 12

6.2 Product Backlog . 13

6.3 Development Milestones . 14

6.4 Administrative Milestones . 15

6.5 Decision Points . 15

Appendices 16

A Gantt Chart 16

ii

1 Goals and Constraints

1.1 Background

The Norwegian Train Driver Academy, Lokførerskolen, is a vocational school part of
The Norwegian Railway Directorate, educating locomotive drivers. As a part of the
education they use DeskSim, a software developed in-house to simulate operating a
train. DeskSim is built upon jMonkeyEngine, a Java-based game engine developed
in 2003 that has recently become outdated in some areas. To avoid irrelevancy,
Lokførerskolen have started their long-term project of changing game engines.

We are therefore tasked to initialize the long-term goal of migrating the simulator
between game engines. To begin with, we will look into different modern game
engines and find the one best matching the criteria. After that, we will create a
demo of the simulator in the game engine of choice.

1.2 Project Goals

The goal of the project is to look into different game engines and find the best
suited to develop the train simulator for Lokførerskolen. The specific goals required
by Lokførerskolen:

• Help Lokførerskolen decide which engine best fit their use

• In-depth analysis of at least three game engines fulfilling the requirements of:

– Supporting functionality for virtual reality

– Being a modern engine

– Being capable of reproducing all functionality of DeskSim

• Developing a working demo of a train simulator in the chosen game engine

• Developing a tool for placing additional 3D-models along predefined railway
lines

• Developing a tool for generating new train routes with railway lines

1.2.1 Effect Goals

Today Lokførerskolen uses DeskSim as a part of their educational program, where
our role is to lay the foundation of their long-term project of changing game engine.
Some effect goals are:

• Create a useful learning tool that Lokførerskolen can use in their educational
program

1

• Lay the foundation for further development in a new game engine, ensuring a
smooth transition from the old engine

• Prevent that their tools become irrelevant and outdated, such as their game
engine

1.2.2 Learning Goals

Through this project, we wish to focus on the learning outcome, and have defined
a list of goals we seek to achieve.

We aim to:

• Get a deeper understanding of game engines, their features, limitations and
overall role in a game development process

• Gain experience from a working methodology, roles and teamwork within pro-
fessional game development

• Apply relevant terminology to compare, discuss and present our decisions

• Gain experience in self-elected technologies, code languages and software

• Apply knowledge and skills gained through our studies

1.3 Constraints and Boundaries

Since we are creating an application for Lokførerskolen and not for ourselves, they
have imposed constraints and boundaries we must follow. Any suggestions from us
that goes beyond the specified project scope must be clarified with the client.

We do not have any previous experience related to train operation, and are not
responsible for the train-related knowledge and specifications needed in this project.
These specifications are provided by Lokførerskolen, as our only responsibility will
be developing the application itself.

The project has a deadline, which means we have to carefully schedule the work
according to the restricted time allocated for this project. We have to take this into
consideration when prioritizing which features to implement.

2 Scope

2.1 Subject Area

The use of simulators in an educational setting is very useful for training in specific
scenarios. Simulators allow students to train in a safe environment, where expensive

2

or dangerous environments or situations prohibit training with real equipment in the
real world.

Even though developing a simulator for a specific use case can be costly both in time
and resources, the value of such a simulator increases in the long run. Better, more
focused training combined with savings on teachers, rooms, equipment and other
resources can make simulators a worthwhile investment.

As the simulator runs on a computer with some extra peripherals used, a normal
game engine can be used for handling common tasks such as game loops, rendering,
loading assets, audio, input, etc. While there are many modern game engines avail-
able, choosing the right one for the project is important, both for implementing the
required functionality but also with future expansion in mind.

2.2 Delimitation

In this project we will compare a few different game engines for developing a simu-
lator. While we are going to compare different engines, we will not be performing a
comprehensive technical analysis of each engine and its features. We will also limit
ourselves to about 4-5 different engines.

Due to the technical nature of the simulator, we are only going to implement core
functionality related to movement of the trains, as well as a basic signaling system.
The train tracks need some complexity, such as curves and merging/splitting, to
allow for realistic train movement.

As the task is not to develop new content for the simulator, we will reuse assets
from the existing simulators when possible. Improving the graphical fidelity is not
a goal of the project, but this may be done as a part of using a newer, more capable
engine. We are planning to reuse the same style of user interface as the existing
simulator.

2.3 Existing Solution

An existing simulator for trains is in use at Lokførerskolen called DeskSim. The
simulator is used during classes and helps with teaching, allowing the students to
try out different scenarios during class. The simulators are also free to use outside
of class where students can train for the scenarios they want.

The existing simulator is written in Java using the jMonkeyEngine. Blender is used
to develop models for the game, and will also be in use for this demo. An external
flight throttle is used to control the speed of the train, which the demo is also going
to use.

3

2.4 Task Description

The goal of the project is to select a game engine and create a small demo of the
simulator. This demo is intended for future use as the foundation for migrating
the existing simulator to a new engine. The functionality of the simulator is to be
made from scratch, with guidance from the existing simulator and the client. The
simulator is going to use the same peripherals as the existing simulator. The demo
must run on Windows OS.

The project can be divided into two parts. The first part is to compare different game
engines, look at some of their strengths and weaknesses, and decide which engine
to use in the second part of the project. The different engines have to comply with
a few requirements by the client, as specified in the Project Goals. There are also
some goals which are important, but not required. These are reusing existing assets
and models from the simulator, and how simple it is to learn and use the engine.

The second part of the project is to make a demo of the simulator in the engine of
choice. As the train-specific knowledge required to make a simulator is outside of
the scope of our education and task, we are going to create a demo with some basic
key features. The demo should contain a scenario, with train tracks that can be
curved, at least two train signals which can change state based on in-game factors,
a train which can be moved along the tracks in a realistic fashion using the external
peripherals.

The intention for this demo is to become the foundation for the full simulator on a
new engine. Therefore it is important to document the code and choices we make.
It should be possible to extend the functionality of the code for more features as
needed.

3 Project Organization

3.1 Responsibilities and Roles

All group members have the roles of researchers, developers and designers of the
product. Everyone must ensure the quality and production of own work, as well as
the well-being of other team members. They must read and comply to the set of
rules and routines prepared by the group.

Thomas Arinesalingam is the Project Leader. His role specific responsibilities
are to ensure that all group members have equal right to express their thoughts. Be
the project’s ”man of action”, motivating the development. He will ensure that all
submissions are delivered on time.

John Ole Bjerke is the Research Manager, overseeing all research and ensuring
the level of obtained knowledge is adequate before the development starts.

Endre Heksum is the Scrum Master for the project and is responsible for the

4

development of the product and takes the role of sprint leader.

Henrik Markengbakken Karlsen is the Writer of Minutes, writing minutes from
all meetings and making sure all team members logs both time and work log.

Lokførerskolen is the product owner, overseeing the final product.

Tom Røise is our supervisor during the project, providing guidance and academic
support to the group in the development process.

All group members have the responsibility to read and comply to the set of rules
and routines prepared by the group.

3.2 Routines and Group Rules

The process of a large project requires structured and organized routines and rules.
These routines and rules should not be constraints, but provide guidance. They
should be used to dissolve conflicts in the group. The consequence of a rule breach
depends on both quantity and severity factor of the action.

3.2.1 Group Rules

• Each member of the group is expected to work approx. 30 hours per week,
and should provide documentation as proof if necessary.

• All group members must meet at the agreed upon time.

• If a group member is unable to attend a meeting, the group should be notified
the day in advance.

• The group members are expected to show up to each of the scrum meetings
listed in the Weekly Schedule.

3.2.2 Violation of Rules

1. By a breach of small rules the student will receive a verbal warning from the
group leader.

2. By several minor breaches the student will receive a warning by mail, stating
that a meeting will be scheduled with the supervisor, if the group member fail
to change their behaviour.

3. By a serious offense, the student will receive a notice about their behaviour and
a warning of their last chance before a formal request to dismiss the student
from the group is sent to the supervisor.

5

3.2.3 Group Routines

• Any work started, developed or finished must follow a workflow as described in
the Git Workflow. It is important to adhere to these protocols for an efficient
workflow.

• When a work day is finished it is important to log the total work time and
write a note of what was done.

• Should any disagreement disrupt the group’s work, a factual discussion will
be held, taking all parties into consideration. If the dispute is not resolved by
discussion, the opinion of the majority will decide. If a majority vote is not
possible, the group leader should have the deciding vote regarding the matter.
Should the problem still persist, a discussion between the group leader and
the project supervisor will conclude the final decision.

4 Planning and Process

4.1 Work Methodology

The choice of work methodology is crucial in the beginning of software development
to ensure reaching the desired product in the project period. The methodology we
think works best for this project is Scrum. The reasons for this are several, but the
most important are that the client stated in the project proposal that they expects
that we have a development process where they are heavily involved in case they
see the need to clarify or adjust the requirements.

We are choosing an agile development methodology we want to make sure the client
is satisfied with the demo.

4.1.1 Scrum

We aim to use the iterative nature of Scrum to ensure the quality of the imple-
mentation at every stage of the project, and quickly adapt to any change in the
client’s specifications. In the beginning of the project we will have one week sprints
and continuously discuss if wee need to have bigger sprints as we go based on the
upcoming tasks. We are going to implement Scrum in a strict way where we have
daily scrum meetings throughout the project.

These meetings should be used as a collaborative tool to identify problems if someone
is stuck, keep everyone up to speed on the project process and create a nice work
environment where we keep in touch. We believe the latter is more important than it
may seem, because most of the work is done from home, so it is nice to keep in touch
with the group at least once every day. Although these meetings are important for
the group, we can skip them occasionally if they are not needed.

6

For managing the project, we are using Jira integrated with GitHub. This integ-
ration contributes to ensuring the methodology professionalism we aim for in the
project. We will be using constrained and secure workflows to ensure that every
issue gets handled with care. In simpler terms, this sets the rules for how all work is
to be handled throughout the project. Figure 1 shows the direction and constraints
on how an issue can progress through the different statuses.

Figure 1: Issue status diagram

4.1.2 Process Documentation

To log the time spent on the project, we use the Clockify add-on for Jira. When
starting work on an issue, a timer is manually started from within the issue, tracking
all work time until it is stopped. This time is manually logged along with a short
comment of what was done that day. For planning the holistic overview of the
project, we use BigGantt. This is an extension to Jira which allows us to create a
Gantt chart in the same environment as our issues.

4.2 Weekly Schedule

We plan on working Monday through Friday, from 9:00 a.m. to 4:00 p.m. every
week during the project period. The only exception is during a planned Easter break
from the 13th of April to the 17th of April.

Meeting Type Time

Daily Scrum Meeting 9.00 a.m.

Supervisor Meeting 1:30 p.m. every Wednesday

Sprint Planning Meeting 2:00 p.m. every Monday

Client Meeting 9:00 a.m. every other Monday

Table 1: The current meeting schedule

7

4.3 Technologies and Environment

4.3.1 Version Control and Process

The project files are hosted as a repository on GitHub, explained further in Config-
uration Management. We utilize Jira for keeping track of the development process,
with the extensions BigGantt and Clockify, as specified earlier in Process Docu-
mentation.

Figure 2: The logos of GitHub, Jira, BigGantt and Clockify, respectively

4.3.2 Reports, Documents and Logs

All reports and submissions are written in LaTeX, using Overleaf as the collaborative
writing environment. Overleaf is also used to document and log work time and
minutes of meetings.

Figure 3: The logos of Overleaf and LaTeX, respectively

4.3.3 Meetings and Communication

The group communicates via Discord for internal meetings, and Microsoft’s Teams
for external meetings.

Figure 4: The logos of Discord and Microsoft Teams, respectively

4.3.4 Coding and Development

The game engine and the tools used for writing code are not yet decided. As further
explained in Documentation, we will utilize a tool for generating code documentation
depending on which programming language we will choose. Seeing as the file type
of the assets from the existing simulator may be outdated, the group might have to
utilize a 3D-modeling software such as Blender for file conversion.

8

5 Quality Assurance

5.1 Standards

As the assignment requires a professional assessment of game engines prior to the
development phase, it is unclear which technologies, software and coding languages
we will be utilizing as of the time writing. We have decided to set general standards
which can be modified at a later date to fit the direction of the project.

For standardizing the format of our code, we aim to respect coding conventions
defined as industry standards by most programming languages. These standards
and coding conventions, when specified, will be available as a separate document.

In general, all variables, functions and methods must be named accordingly to their
function or context. All code and comments must be written in English.

5.2 Documentation

As the software is to be developed for a client, it is crucial to produce intuitive and
understandable source code by documenting all code functionality. This will also
increase the groups common understanding of the code. In-line commenting should
only be applied where needed in order to reduce the amount of unnecessary text.

We plan to introduce a tool for documentation generation after the group has decided
on a programming language. All classes, functions or methods must be commented
sufficiently and formatted to the standards of the selected tool. This will let us
generate a separate document explaining the functionality of the source code, making
it easier for the client to continue the development. Example of such tools are
Doxygen for C++ and DocFX for C#.

5.3 Configuration Management

The project will be hosted in a GitHub repository, where all features should be
developed on separate branches, such that the main branch always consists of a
working version with fully implemented features. Before any feature is merged to
the main branch, it should be reviewed by another group member. Small or critical
fixes such as spelling errors may be edited directly on the main branch.

Each developer is responsible for the quality of the code they add to the project, but
the group has a shared responsibility of the project as a whole. To ensure a certain
degree of quality, completed issues from the product backlog are to be reviewed by
the rest of the group before they are marked as done, as part of the weekly sprint
planning meetings.

9

5.3.1 Git Workflow

To ensure good code quality and project management it is important to have a Git
workflow that allows you to find the commits and branches you are looking for. The
workflow stated below is mandatory for all group members.

• Always create a new branch when starting work on a feature. No work should
be done directly on the main branch.

• This is, and should be the naming convention for branches:
<issue_number>-<branch_name>

• This is, and should be the only commit convention:
[#<issue-number>]-<description>

• When the work is completed on a branch, it must be deleted after the work is
merged into the main branch.

• Code should be committed often, either when a task is finished or the newly
written code is fully functional.

• Do not commit code that doesn’t compile. Code should be tested before it is
committed.

• When a feature is complete, its branch should be merged into the current
milestone branch. When the work for one milestone is completed, this branch
should be merged with main.

5.4 Risk Analysis

Identifying and eventually mitigating risk is important to avoid problems in software
development. During the project process, the agility of scrum helps to identify risk
in the development process. The weekly sprint planning meetings makes it possible
to address the problems quickly.

10

5.4.1 Identification, Probability and Severity

After determining the probability and severity of each risk, it is categorized into a
range Low, Medium or High in their structural level..

Technological Level

Title P S Description

GitHub Incidents H L In 2021, GitHub reported1 4 severe incidents
that had an average respond time of 3 hours and
25 minutes

Jira unavailability L L Jira only reported2 two incidents in 2021

Functionality
migration

L H If not all functionality can be migrated it would
break with the clients requirements

Steep learning
curve

L M The group has experience with different
programming languages and game engines, but
mostly in 2D

Table 2: The probability for technology level risks where P is Probability and S is Severity

Business Level

Title P S Description

Misunderstanding
and setbacks

L M Every other week there will be meetings with
the client to review the progress

Productivity issues L M Sickness, stress or other issues that can disrupt a
group member’s workflow

Insufficient Risk
management

M M Incorrect estimation of risks leading to issues, or
failure to identify important risk

Table 3: The probability for business level risks where P is Probability and S is Severity

Project Level

Title P S Description

Scope creep M M Unforeseen expansion of scope due to lack of
knowledge and experience in train simulation

Poor quality of
code

L H The groups shared academic competence in
documentation and quality testing should
benefit the code quality

Table 4: The probability for project level risks where P is Probability and S is Severity

1Source for GitHub status: https://www.githubstatus.com/history?page=1
2Source for Jira status: https://status.atlassian.com/history

11

5.4.2 Risk Matrix

We have decided to mitigate the identified risk that has both severity and probability
higher or equal than medium. As for the rest, we accept the risk.

Severity

Low Medium High

Low 1 3 2

Medium 0 2 0
P
ro
b
ab

il
it
y

High 1 0 0

Table 5: Risk assessment matrix

5.4.3 Mitigation and Measures

Poor risk management can be mitigated by analyzing the possible risks, making
sure we plan for mitigation.

Scope creep can be mitigated by having a tight connection to the client, sharing
any concerns about possible scope expansion. It will also help to inform the client
if the new work environment is taking more time than expected, and to evaluate
whether we should deprioritize the projects minor tasks.

5.5 Testing Plan

5.5.1 Unit Testing

After a feature is implemented on a branch, the feature must be treated as a unit
and pass a Unit Test before it is merged into the next branch. These tests are done
by each developer, and are only documented as the relevant testing code itself.

5.5.2 Acceptance Testing

We plan to conduct acceptance tests done by the client during client meetings after
each milestone is reached. This will ensure the project going in the right direction.

6 Implementation Plan

6.1 Gantt Chart

The Gantt chart is available as an appendix.

12

6.2 Product Backlog

Issues are divided into epics, stories, tasks and bugs. An epic is a milestone or
collection of issues, which can contain stories, tasks and bugs. A story tracks features
or functionality, while a task tracks a small distinct piece of work. Stories and tasks
can have child issues if needed. Bugs track errors and problems which needs to be
fixed. We are estimating the time required to finish each product by the scale of
1-4, where 1 is up to a half day’s work, 2 is up to a days of work, 3 is up to three
days of work to complete. The estimate 4 is used for the major issues like report
writing and big deliverable where the epic or story are part of many subissues.

Issue ID Issue Type Estimate

LK-4 Project Plan Story 4

LK-6 Game Engine Analysis Story 4

LK-7 Research Game Engines Subtask of LK-6 4

LK-8 Write Game Engine Analysis Subtask of LK-6 4

LK-10 Status Report 1 Story 3

LK-12 Status Report 2 Story 3

Lk-13 Code Convension Document Story 3

LK-14 Requirement Specification Subtask of LK-10 3

LK-16 Fundamental Engine Setup Epic 3

LK-17 Basic Train Mechanics Epic 4

LK-18 Minimum Viable Product Epic 4

LK-19 Model Placing Tool Epic 4

LK-20 Train Route Tool Epic 4

LK-21 Polish and Bug Fix Epic 3

LK-21 Project Planning Phase Epic 4

LK-23 Final Report Epic 4

Table 6: All issues of the product backlog as of the time of writing

13

6.3 Development Milestones

1. Feb. 07, 2022 - Fundamental Engine Set-Up
Set up the project in our game engine of choice, learn how to use the game
engine. This includes importing assets, basic user interface and setting up the
collaborative work space.

2. Feb. 28, 2022 - Basic Train Mechanics
Have a train moving from input. Have two of the required train signals imple-
mented1. Added the necessary libraries, code and bindings to get any external
peripherals working.
Implement train mechanics, signals and game controls

3. Mar. 14, 2022 - Minimum Viable Product
It should be possible to operate a train, bug-free, on a predefined train route.
The train should be able to start and stop using the external peripherals
provided by Lokførerskolen. Train based logic should translate to in-engine
components and user interface, such as signals and speed. We consider this to
be the minimum viable product.

4. Apr. 22, 2022 - Model Placing Tool
The simulator includes a map editor where 3D-models such as signs or build-
ings can be added, placed, moved and deleted from the map. These changes
to existing train routes should be saved persistently.

5. Apr. 22, 2022 - Train Route Tool
It should be possible to edit, delete and create new train routes. Creating a
route should generate tracks which the user can ride as a part of the simu-
lator. These tracks must be able to curve, and should be developed to support
dynamic height levels.

6. Apr. 29, 2022 - Polish and Bug Fix
As the final milestone, the simulator should fulfill all requirements set by the
client, and should be optimized without any bugs.

1Subject to Change. At the time of writing we have not received a proper demonstration of
train signal functionality from the client, and cannot assume the workload for this task.

14

6.4 Administrative Milestones

1. Jan. 31, 2022 - Analysis, Project Plan and Client Contract
Analyse and write a descriptive comparison between the game engines and
conclude on what engine is best suited for our project. Finish the project plan
and set up a collaborative agreement contract with the client.

2. Feb. 07, 2022 - Simulator Demonstration and Code Convention
Visit The Norwegian Train Driver Academy on Oslo to experience the current
simulator, gaining an understanding of any train-specific functionality, and
the expectations for the final product. And writing a document defining the
group’s rules and guidelines for the layout and style of coding, after the coding
language is decided.

3. Feb. 28, 2022 - Status Report 1 and Requirements Specification
A report of the current progress and group status, together with a document
of the software requirements specification.

4. Mar. 28, 2022 - Status Report 2
A second report of the current project’s progress and status.

5. May. 20, 2022 - Final Graduate Report
The final bachelor thesis report is finalized and delivered.

6.5 Decision Points

1. Jan. 31, 2022 - Game Engine Decision
An in-depth analysis is performed, and which game engine to use is decided.

2. Feb. 14, 2022 - 3D-Asset Recycling
If the file types of the existing assets might be incompatible with the new
engine, and we may have to create new 3D assets.

3. Mar. 14, 2022 - Additional Tools
At this stage we should have an overview of our progression, and must decide
if it is be possible to develop the additional tools specified by Lokførerskolen.

15

Appendices

A Gantt Chart

16

E Clockify Summary

Henrikmk's workspace Created with Clockify 1

Summary report
16/01/2022 - 20/05/2022

Total: 1766:57:20 Billable: 1749:11:17 Amount: 23,175.06 NOK

Tag

Bug, Development 02:26:20 0.14%

Development 825:26:32 46.72%

Development, Research 01:31:18 0.09%

Game Engine Analysis 306:59:58 17.37%

Research 46:08:01 2.61%

Testing 35:08:38 1.99%

Testing, Development 21:43:41 1.23%

Write Project Documents 169:14:55 9.58%

Write Thesis 358:17:57 20.28%

F Code Convention Document

PROG2900 - Bachelor Thesis

Code Convention Document
Lokførerskolen Sim v2

Authors:
Thomas Arinesalingam

John Ole Bjerke
Endre Heksum

Henrik Markengbakken Karlsen

February, 2022

Contents

1 Introduction 1

2 Naming Conventions 1

2.1 Classes . 1

2.2 Methods . 1

2.3 Variables . 2

3 Documentation 2

3.1 Commenting . 2

3.2 Doxygen . 3

4 Code Formatting 4

i

1 Introduction

With the goal of producing a highly understandable and intuitive code base, we
declare this document to define the standard coding practices used in this project.
Consistent naming conventions, documentation standards and layout formatting are
essential for ensuring and maintaining professionalism with emphasis on readability.
The standards defined in this document are inspired by the established standard
documentation for Unreal Engine, as written by Epic Games1.

2 Naming Conventions

2.1 Classes

All classes should follow the PascalCase naming convension where each word in the
variable name should start with a capital letter. Example:

class PlayerAbilities {

}

The only exeptions to this is the special Unreal Engine Class inheritance naming
listed below:

• Classes which inherits from UObject are prefixed by U.

• Classes which inherits from AActor are prefixed by A.

• Classes which inherits from SWidget are prefixed by S.

• Classes that are abstract interfaces are prefixed by I.

2.2 Methods

The naming of methods should be used to describe the effect of the method. Or
describe the return value if the method has no effect. Methods should follow the
PascalCase naming convension.

One exeption is for functions that returns boolean variables. these methods should
always ask a true/false question such as:

HasScored();

ShouldEndGame();

1https://docs.unrealengine.com/4.27/en-US/ProductionPipelines/DevelopmentSetup/
CodingStandard/

1

2.3 Variables

Variable names should follow the camelCase naming convension, meaning the first
word of the variable name should be all lower case letters, all following words in
the name should start with a capital letter. The words used should be nouns and
descibe the variable. This practise supports the variable names:

// Good naming

int scoredGoals = 3;

string playerName = "Maradonna";

but not the variable names:

// Bad naming

int scored_goals = 3;

string PlayerName = "Maradonna";

The letters in constant names should be all upper case:

const int MAXGOALS = 32;

3 Documentation

3.1 Commenting

• Comments should be written in U.S. English.

• All code should be self-documenting. If code is considered unclear or bad, it
should be rewritten.

• If there is a need for inline comments, they should be simple and descriptive.

Example:

// Good:

velocity = acceleration * time;

// Bad:

v = a * t; // calculate velocity

2

3.2 Doxygen

Doxygen1 is a tool for generating formatted code documentation. The tool reads a
folder of source code as input, and generates a document formatted as in readable
markdown format including HTML, PDF and LATEX. The generator interprets com-
ments that have been formatted in a standard fashion, such that the compiler can
convey the comments as explanation or definition of the relevant class or method.

We plan to integrate this commenting standard in all C++-code we produce, to
generate documentation of our source code.

Classes and methods should be introduced by a comment block starting with
two *’s:

/**

* ... text ...

*/

void myMethod();

Classes must include the author(s) and the date of writing. Both classes and methods
must include a brief description of its own functionality, and that of any parameters
or return value.

Variables should be explained by a single line comment prefixed with “///<”:

float gravity; ///< A constant downwards force

The syntax for commenting is similar to Javadoc2, containing various tags prefixed
with “@”:

@author is the author of a class or interface, repeatable if authors exceed one.

@date is the author(s) of a class or interface.

@brief is a short one-line description of a method.

@param is the definition of any parameter for a method or constructor.

@return is the return value from a method.

@see is a reference to a cross-referenced class or method.

1https://www.doxygen.nl/index.html
2https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html

3

Example of commenting:

/**

* @brief Represents a train.

* @author John Doe

* @date January 2022

*/

class Train {

public:

/**

* @brief Check if the train has enough fuel.

*

* Checks if the train has enough fuel,

* by comparing its amount of fuel to

* the fuel needed.

*

* @param fuelNeeded The amount of fuel needed.

*

* @return True if the train has enough fuel, false if otherwise

* @see FuelManager::fuelBurnRate

*/

bool HasEnoughFuel(float fuelNeeded);

private:

float fuel; ///< The current amount of fuel for this train

}

4 Code Formatting

• nullptr should be used instead of NULL.

• auto shouldn‘t be used, except for:

– binding a lambda to a variable.

– iterator variables, where iterator‘s type is verbose.

– template code.

• Curly braces should be places before the line break.

// Use This

void MyMethod() {

...

}

// Not This

void MyMethod()

{

...

}

4

• enum classes should be used instead of namespaced enums.

// Old enum

UENUM()

namespace Thing

{

enum Type

{

Thing1,

Thing2

};

}

// New enum

UENUM()

enum class Thing : uint8

{

Thing1,

Thing2

}

• Floating point literals should always have a radix point:

// Good

float scale = 0.5f;

// Bad

float scale = .5f;

• Control flow using nested if-statements should be implemented as guard clauses:

// Good

if(player == nullptr) return;

if(!player->isAlive) return;

player->Destroy();

// Bad

if(player != nullptr) {

if(player->isAlive){

player->Destroy();

}

}

5

G Requirements Specification

PROG2900 - Bachelor Thesis

Requirements Specification

Lokførerskolen Sim v2

Authors:
Thomas Arinesalingam

John Ole Bjerke
Endre Heksum

Henrik Markengbakken Karlsen

March, 2022

Contents

1 Introduction 1

2 Functional Requirements 1

2.1 Use Case Diagram - Application . 2

2.2 High Level Use Case - Application . 2

2.3 Low Level Use Case - Application . 5

2.4 Use Case Diagram - Game Engine . 6

2.5 High Level Use Case - Game Engine 7

2.6 Low Level Use Case - Game Engine 8

3 Operational Requirements 9

4 Security and Misuse 10

4.1 Interface Requirements . 10

1

1 Introduction

This is a requirement spesification document for DeskSim v2. It is developed as part
of a bachelor thesis by students at the Norwegian School for Science and Technology
in cooperation with The Norwegian Train Driver Academy. The general purpose of
the project is, as described in the game engine analysis, a migration of an educa-
tional train simulator to a modern game engine. The software itself is implemented
as a prototype of the aforementioned simulator, with the main purpose of operat-
ing a train through a scenario. The simulator provides the user with information
such as speed limits and train signals along the railway, to simulate a real-world
exercise for locomotive driver students. It also includes an editor mode for teachers
and administrators, which includes functionality for creating and customizing these
scenarios.

2 Functional Requirements

The client has stated a list of requirements for not only the main section of the
software, but also additional functionality if the group deem this possible. We have
decided to pursue these extra features, and have included them as a part of our
project roadmap. The simulator should be able to:

• Read input from external throttles for acceleration and breaking.

• Move trains along a railway in a realistic fashion.

• Curve and conform railways to the terrain height.

• Display the current speed of the train through a driver machine interface.

• Display warnings and messages to the user.

• Simulate the behaviour of train signals automatically by predefined conditions
and scenario configurations.

1

2.1 Use Case Diagram - Application

The following diagram presents the possible use cases of the software. The system
contains two actors; a student and an employee. Even though it is not implied in
the diagram, the employee acts as an upgraded version of the student role, and has
access to everything included in the student role.

Figure 1: Use case diagram - Application

2.2 High Level Use Case - Application

Use Case: Place objects

Actors: Employee

Goal: To place the necessary objects such as a train and a railway in
a level.

Description: When a level is opened in editor mode the user is provided a
user interface which includes a content browser. The user can
click on a item in the content browser and drag it out in the
level. The content browser has different categories the user
can select in the top bar by clicking on the category buttons.

Table 1: Use Case: Place objects

2

Use Case: Delete objects

Actors: Employee

Goal: To delete an object in the level.

Description: When clicking on an object in a level the user will be given
the option to remove it. After the click, the user will get a
trash can symbol at the top bar, next to the transformation
options. After clicking on the trash can, the program will
prompt the user for confirmation before permanently
removing the object from the scene.

Table 2: Use Case: Delete objects

Use Case: Start Scenario

Actors: Student and Employee

Goal: To initialize a simulator scenario.

Description: In the Main Menu wigdet view, the user should select a
scenario and then left click the mouse button on that object.
This will open the correct level and start the scenario.

Table 3: Use Case: Start Scenario

Use Case: Save scenario to file

Actors: Employee

Goal: Save scenario details to file

Description: When a teacher has created or edited a scenario. The details
of the scenario file should get updated. When the teacher
presses the save button in the editor, the scenario details will
be saved to a file.

Table 4: Use Case: Save scenario to file

Use Case: Log in

Actors: Student and Employee

Goal: To authenticate user and receive correct access level

Description: When the program starts a login screen is shown to the user.
The user then inputs a username and password, which is sent
to a server to authenticate the user. The response contains
whether the user successfully authenticated and what level of
privilege the user has. The user is then sent to the main
menu, and the authenticated level is stored in the program for
use. If the authentication fails, the user can try again.

Table 5: Use Case: Log in

3

Use Case: Log out

Actors: Student and Employee

Goal: To log user out of program

Description: When the user wants to exit or log out of the game, the info
of the logged in user is not saved to any file. If the player
chooses to log out of the game without closing it, the previous
user data is removed and the user can log in again.

Table 6: Use Case: Log out

Use Case: Operate drone

Actors: Student

Goal: Maneuver the drone camera

Description: When the student clicks the drone view button ”2”, the
student can freely move around in the scenario using W, A, S
and D for forwards, backwards and horizontal movement, Q
for downward and E for upward movement. The user can also
use the mouse to freely look around in the scenario, and
change the movement speed with the scroll wheel.

Table 7: Use Case: Move or rotate objects

4

2.3 Low Level Use Case - Application

Use Case: Move or rotate objects

Actors: Employee

Goal: To move a object or rotate it into the prosition and position
you want

Precondition: The user has successfully opened a scenario in editor-mode

Success
Scenario:

1. The employee clicks on the object he wants to edit.

2. The object will display a gizmo, either in the form of
arrows the move it along either it’s x, y or z axis, or a
wheel to rotate.

3. The user changes the mode to the one he want from the
top bar icons.

4. For translation:

(a) The user hovers the mouse over the gizmo arrow to
select one axis, or in the middle of two gizmos to
select a plane and presses the gizmo.

(b) The user drags the mouse to the position he wants
the object to be located

6. For rotation

(a) The user presses the wheel and drags the mouse
around the wheel to get the desired rotation.

Table 8: Use Case: Move or rotate object

5

Use Case: Operate Train

Actors: Student

Goal: To drive the train in a scenario

Precondition: The user has successfully opened a level and the levers is
connected to the system through a USB port

Success
Scenario:

1. The user pushes the left lever or ”w” key to accelerate
the train.

2. The user pushes the right lever to apply break force on
the train.

3. Depending on the scenario, the user has to follow some
rules:

• The user should not exceed the speed limit. Doing
so should result in system regulated brakes turned
on.

• The user is provided information about the current
speed in the Driver Machine Interface.

• The user should follow the rules regulated by
signals:

– Main signal - If this signal is red the user
should stop. If user don’t stop before the signal
this should result in breaks turned on.

– Main signal - One green light means that the
user can drive with reduced speed

– Main signal - Two green lights means that the
user can and should continue with the set
speed.

Table 9: Use Case: Operate Train

2.4 Use Case Diagram - Game Engine

The following diagram presents the use cases of the game engine which got facilitated
by the development of the application. The system has one actor; a developer.

6

Figure 2: Use case diagram - Game Engine

2.5 High Level Use Case - Game Engine

Use Case: Add Level in Main Menu

Actors: Developer

Goal: To add a level created in unreal engine to the simulator..

Description: When the developer has created a scene he wants to be a part
of the simulator he must know the name of the level. The
level name is stored as a FName, and the content browser
only need its value. The FName’s are immutable and case
sensitive so it’s important to have the right name. Open the
MMObjects inside BP EditorHUD blueprint located in
”DeskSimV2/Source/DeskSimV2/Editor/UI ”. The developer
now clicks the + button to add the new level and fills in the
name, description and the FName reference to the map.

Table 10: Use Case: Add Level in Main Menu

7

2.6 Low Level Use Case - Game Engine

Use Case: Add new object

Actors: Developer

Goal: To add a new object to the game

Preconditions: The developer has a working version of Unreal Engine version
4.27.2 or higher. The developer has a 3D model he wants to
be added in the game.

Success
Scenario:

1. The developer uploads the model to the ”models” folder
inside unreal engine

2. The developer navigates to ”C++ classes” in the
content browser.

3. The developer right clicks on either
”BasicStaticObject”, ”Train” or ”BasicSignal” or
”wagon”, based on what item type the object is.

4. The developer clicks on ”Derive blueprint from c++
class...” in the drop-down menu and selects the
appropriate place to store the blueprint.

5. The developer opens the blueprint and drags the
imported model from step 1 into the ”Static mesh”
variable in the details panel for the object.

6. The developer compiles and saves the blueprint

Table 11: Use Case: Add new object

8

Use Case: Add object in Content Browser

Actors: Developer

Goal: To successfully add a created object in the content browser
making it clickable and draggable in runtime.

Preconditions: The developer has created a new object as described in the
”Add new object” use case.

Success
Scenario:

1. The developer open the BP EditorHUD blueprint
located in ”DeskSimV2/Source/DeskSimV2/Editor/UI ”.

2. The developer clicks on the + icon for the CBFObjects.

3. The developer adds the category the actor should be a
part of.

4. The developer writes a suitable name and description for
the object

5. The developer adds the reference to the actor he wants
to include.

6. Close unreal engine desktop and visual studios and
navigate to the file system for the project. Right-click
on the DeskSimV2.uproject files and select ”generate
visual studios project files” from the dropdown menu.

7. The item should be visible and draggable in-game in the
content browser.

Alternative
Scenario: 7. Open visual studio and right click on DeskSimV2, select

”rebuild” and let the solution rebuild.

8. When its built, open DeskSimV2.uproject and check if
the object is added.

Table 12: Use Case: Add object in Content Browser

3 Operational Requirements

These are the requirements which concerns the application at it’s operational stage,
this stage begins at the project’s deadline which is the 20.th of May:

9

• The application must be able to interact with the existing Rest-API hosted
by Lokførerskolen.

• The system must operate on Windows devices.

• The system must manage privileges of users and only allow elevated users to
access the editor functionality.

• Must be transferable through a zip file

• The system must operate on computers which has 8GB of ram and a Intel®
Core™ i5-4460 CPU or better.

• Should not experience frame rate drops of lover than 60 frames per second.

4 Security and Misuse

To ensure the security of the users and avoid misuse of the application the applica-
tion:

• must require user authentication for usage. The authentication process should
be a token based system where you receive a token. The token has an expira-
tion and should be used to authenticate the user up to its expiration. When
the token expires the user will be asked to authenticate again and recieve a
new token.

• should not contain bugs and/or security flaws that potentially could lead to
harm or destruction of hardware components. Such flaws include bad memory
handling.

• must not store any passwords in plain text.

4.1 Interface Requirements

Menus

• It should be intuitive and easy for a student at Lokførerskolen to navigate the
Main Menu.

• The Main Menu should have the same functionality as the previous simulator
and only deviate by design.

• All text must be available in Norwegian.

• Buttons should be intuitive to reduce the number of operations required for a
task.

• The DMI viewport in a game should be responsive to the gameplay.

• All numbers and measurements must be specified in the metric system.

10

H Meetings and Notes

PROG2900 - Bachelor Thesis

Meetings and Notes

DeskSim v2

Authors:
Thomas Arinesalingam

John Ole Bjerke
Endre Heksum

Henrik Markengbakken Karlsen

May, 2022

Contents

1 Client Meetings 1

2 Supervisor Meetings 5

3 Sprint Planning Meetings 13

3.1 Statuses . 13

4 Daily Scrum Meetings 26

i

1 Client Meetings

Date: 17.01.2022
Present: Endre, Henrik, John Ole, Thomas the other group and Client.
Agenda: Going through the project description with the client and ask questions.
Meeting Log:

• Everyone shortly presented themself before we went through the project de-
scription.

• There will be two weeks between every client meeting, we must have our sprint
goals ready for this.

Questions

What is meant by reproducing the elements in desksim?
You should be able to recreate all the functionality in desksim.

What format is the 3D object?
gltf files, some are in ac3D, when new models are created is is gltf.

What operative system is used?
Windows.

How should we ensure the external throttle support?
It is best to develop the controllers as the one they will be using. The client
will check the possibility for us to borrow some of their used damaged ones.

Could we visit the School and get a tour of the simulator?
They are also scheduling for us to come and get a tour of the school and get a
proper demonstration of the current simulator with covered expenses.

How will their code be shared with us?
The client has uploaded to a git repository to share with us after the contract
is finished.

How should the game engine research be performed?
Comparison of 2-3 pages, but it could go beyond that.

Date: 24.01.2022
Present: Endre, Henrik, John Ole, Thomas and Isak (Client representative)
Agenda: No Idea
Questions: Ask what they think about the user testing perspective. Scheduled

1

meeting times and update project plan. Do you see the need now or in the future
to use networking (multiplayer cross devices) in the application? Do you want in-
ternalization? How to implement VR? Would you like to get a overview on how we
plan to work for the ongoing period.
Description:

• We must fill in the confidentiallity agreement.

• The title of the project is not yet decided but could be something like: DeskSim;
Simulator for Lokførerskolen.

• Lokførerskolen will cover travel expenses for the students to and from their
facility in Oslo.

Arbeidstittel: Desksim simulatoroppgave for lokførerskolen. Eksterne virksomheter
sine plikter: Dekker transport til og fra skolen med buss elle tog (Mulighet for bil?).
Og dekker utgifter dersom det er avtalt, utl̊an av spaker. Opphavsrett: Diskusjoner
om det n̊a internt, tror de lander p̊a at de har bruksrett og at vi har eiendoms-
rett, alternativ A. Trenger ikke å være unndratt offentligheten og signere avtalen.
Fysisk møte hos lokførerskolen den syvende februar 2022. Relevanthet med testing:
Brukertesting muligens ikke relevant fordi det ikke kan læres intuitivt. Meetings
with client every other week from week starting this week from 9.am-10.am. The
existing software has some scenarios using shiftin, drive trains back and fourth and
changes equipment. One in VR (the changer), and one on the screen. A local server
starts on the pc, two instances. In the future they want to use networking to get
the functionality. One vr one on pc. Per idag s̊a tas ingen hensyn til spr̊ak, det er
et krav for å komme inn p̊a lokførerskolen at du har gode norsk kunnskaper.

Date: 07.02.2022
Present: Henrik, John Ole, Thomas and Isak (Client representative)
Agenda: Tour of the school and demonstration of the current simulator.
Questions:
Description:
We went to Lokførerskolen and got to try the simulator in use today at the school.
We got some answers to trivial questions about the simulator and our implementa-
tion.

Date: 21.02.2022
Present: Endre, Henrik, Thomas and Isak (Client representative)

2

Agenda: Feedback on the game engine analysis, train signal explanation and show-
ing off our progress
Description:
The client said that the analysis was way above what he expected from us. We got
a fifteen minute explanation on how three different train signals work and tips on
how to implement them. We also showed our progress so far and the client seemed
pleased with the amount of progress we have at this point. We informed the cli-
ent that our MPV will be ready for the next meeting and we agreed to send the
executable before the meeting.

Date: 07.03.2022
Present: Endre, Henrik, John Ole, Thomas, Tom (Supervisor) and Isak (Client
representative)
Agenda: We sent the MVP to the client on last week. He has now tested it and
will give feedback.
Questions: What in the MVP would you like us to change or further develop? ask
what they want us to develop now, regarding the MVP. how will the sub goals will be
implemented, as in-game functionality, or in-editor features.? If we get sort of free
reigns, ask their thoughts of implementing height maps for generating environment?
Description: Feedback on MVP
He thought that the MPV was good, and was impressed with the amount of work
we had done in the time we had.

The aspect missing from the main goal from the MVP is a running scenario where
at least one signal is working. The client said that idealy, the tool should be able
to define curvatures for the landscape and strech a spline along that curvature in
a natural way. The client said that in the long term they want their own runtime
editor. The client desired manually changing the landscape rather than a heightmap.
The client also emphezised that they want a dynamic scenario builder where they can
take sections from different landscapes and combine dirrerent to create a scenario.

The cient said that they must have way of running different scenarios. That could
be for example reading a pre-configured .xml file.

Date: 21.03.2022
Present: Endre, Henrik, John Ole, Thomas and Isak (Client representative)
Agenda: Discuss alternatives to the terrain editing task. Those alternatives could
be: A log in system, communicating with the existing API. Teacher/Student multi-
player. Logging of relevant user data from a scenario or to add more functionality
to the existing work.
Description:

3

We discussed what task would be most relevant to choose from from the client’s
perspective and found out that sign in functionality would be the most relevant.
The client explained to us how the system they are using are working and descibed
it like this:

• User types username and password in the software

• The system send an api call to Lokførerskolens api.

• The user recieves an json web token which is valid a certain amount of time.

The client was open to suggestion and for us to research different merhods and
industry standards on the functionality. Our plan is to research and find out the best
way to solve it and then discuss this with the cient and later implement teh agreed
upon solution to our application. After the meeting we got an Email saying that we
are allowed to use the client’s api to test the solution through their endpoint’s.

Other functionalities that could be relevant if we have time are: More complete
demo, a savestate, amking pausing and rewinding scenarios possible.

We discussed user testing options and found out that lokførerskolen was open for
usto come and test the application of their computer and to test it on some of their
students.

Date: 19.04.2022
Present: Endre, Henrik, John Ole, Thomas and Isak (Client representative)
Agenda: Show the progress and ask some questions to the client
Questions: User testing of scenario and the editor. Dates? between the 27Th and
the 6Th of May.
Description:
We displayed the current progress so far, where the new functionality was the object
placing tool and saving a scenario. We also displayed the progress of the spline
editing tool. The client seemed happy with the amount of progress.

id, username, status, operator (eget brukerobj), subscription id, usergroupnames
(brukergrupper), voippassword,

Showed the editor mode and the

Log in - Can log in but not saving the user.

Can send a password and username and recieve a json webtoken.

User testing: føste uka i mai, skal høre n̊ar det passer. den uka skal vi kjøre det.
Editor modus

Deployment: Per n̊a er det enkleste at den kan innosetup. Drømmescenario, kjøre
det i nettleseren!

4

Oppdateringer er å innstalere p̊a nytt per n̊a. Burde skrive i rapporten noe om
dette.

Planen v̊ar videre er å fullføre editor, spline og log inn.

Brukertesting, kjører gjennom et scenario: Tips: gjør det enkelt, kjøre et stykke,
stopp signal før det blir grønt ogs̊a kjøre videre. Kjøre et stykke, du er i mål. Startog
mål burde være et. 2.May 10:00

Date: 09.05.2022
Present: Endre, Henrik, John Ole, Thomas and Isak (Client representative)
Agenda:
Questions:
Description:

brukertesting med klienten

slet bittelitt med translation, mista ”grepet” p̊a gizmoen venta p̊a at den skulle
tilbake til menu etter advarsel om du har saved kom opp, skjønte ikke at man måtte
trykke p̊a menu igjen ca 40-50fps(lavt?)

legge til isak til github, slik at han kan forke prosjektet n̊ar vi er helt ferdig med dev

2 Supervisor Meetings

Date: 12.01.2022
Present: Endre, Henrik, John Ole, Thomas and Tom (Supervisor)
Agenda: Some questions we had regarding the project and just a casual discussion
with the supervisor
Description:
The fact that the project is split into an analytical part and a developing part does
not necessary change how we should look at the work methodology because of this,
although different methodologies can be used if we find it sensible. There is no
problem writing the report in English if we want to from the NTNU’s side, but
we should take into consideration what the client thinks about this. We will get
a walk through on the integration project in the next supervisor meeting to get
to know what we could have done differently and better. We got advise on some
other bachelors that we could reed which relates to our assignment or just good
assignments. With regards to Latex, we got told that this is a good tool to use
and something that is great to have experience with.Them that wants, should use

5

Latex. The source control versioning program we choose is kind of irrelevant. The
only note is that if we don’t use the school provided GitLab, we are responsible if
the service is down or out of service, but this rarely or never happens. Should also
take the client preferences on this matter. Both of the technologies have been used
earlier. We got told that we should, early on, write down and have discussions on
some of the choices we make, not all, but a selected amount. We will have weekly
meetings with the supervisor at 13:30 - 14:00, otherwise we have to plan exceptions.
The referential style we choose is not important if we use it consistently throughout
the project. We should ask the client if they are willing to pay for the visit. the
contract between us and the client must be printed out and signed on.

Date: 19.01.2022
Present: Endre, Henrik, John Ole, Thomas and Tom (supervisor)
Agenda: Going through our delivery in the integration class. Going briefly through
the project plan, and ask about all the questions we had after the meeting with the
client.
Description:
The Integration Project
The demo was good, the report was a bit weaker. It was good that we had a lot of
tests and covered many cases. Negative that we heavily relied on known resources,
should have challenged us self more and made some parts more complicated. The
implementation was a bit easy, and not maybe the most relevant. We were a bit
defensive on how to do stuff, asking the supervisor and not having opinions ourselves.
Should focus on making more of our own choices. Should have discussions with focus
on the specific objective details. We had overall too few references, so we should
focus on references in the bachelor. Missing discussion around code, and time. Make
sure that all requirements are right.

Project plan: What does lokførerskolen want to get out of this? This is an example
of an effect goal. Be concrete on roles, who does what? More clarity on group rules,
specify what happens. Git workflow should be on Quality assurance. It is regular
to plan vacations, but mention it in the plan. We should decide when the status
reports should have due date. Decision points is the time we need to make some
key decisions. The confidentiality agreement can be signed between only us and the
client. But also needs the standard agreement between client, us and NTNU.

The game engine analysis: Make it objective and reference based! It should be
a deep analysis, but short report.

The question round and answers: We decide on when and how to deliver the
status reports. The decision points are when we will make the major decisions
that will impact the project further The project agreement should be in the NTNU
standard. If the client has the need to require a confidently agreement they should
make that separate and be just between the developing team and them.

6

Date: 26.01.2022
Present: Endre, Henrik, Thomas, John Ole and Tom (Supervisor)
Agenda: Get feedback on the project plan. And a question round.
Questions: What should be the text size and line spacing? Any notes on testing?
Should the length of the meetings be documented in the meeting log? Should we
reference the task description from the client in the analysis? How should we write
meeting notices? Estimating issues. 1day, 1 week, 1 month, is that good? We want
physical supervisor meetings from next week.
Description:
Project Plan: Fewer administrative milestones if possible. Decided to remove the
first effect goal into result goal and
Line spacing: 12, 1.5 - You could deviate a little but not ¡8 or ¿16, just to fit with
the requirements.
Testing aspect: Ask lokførerskolen if there is an option to get the software tested on
some of their students for user testing
Length of meetings: Not required, document the decisions made instead.
Reference Description: Just state what requirements were provided from Lokførerskolen
and not reference the actual document.
Meeting Notices: Made some meeting notices for important meetings, thees should
be in the project’s appendix..
Estimation of issues: In our project, the sprint is the object for the estimation. hour
and days. S M L XL, take theese on the issue, in a normal sprint we should. Do
planning poker.
Physical meeting from next week: We have planned i physical meeting with the
supervisor for Thursday 03.02.2022 if he is able to come to campus. The supervisor
will inform us about this in Tuesday. If there’s no physical meeting we will have the
meeting on teams at the usual time on Wednesday.

Date: 03.02.2022
Present: Endre, Henrik, John Ole, Thomas and Tom (Supervisor)
Agenda: Feedback on the project plan. Asking questions we have. Going through
the analysis
Questions: Should we have a section about developer feedback? How to write
objective about the Documentation for each engine?
Description:
On the physical meeting on Monday 07.02.2022 we should clear out the relationship
our report should have to the other group’s report. Should we do things differently?
Have different focus points. Important what the client opinions are. We should also
find a name for the product we are deeloping.

The Project Plan It is not necessary to have three point numeration in documents
that is only 15 pages long. The first goal section should be named result goals
because we name the other categories. We should state in the plan and in the
bachelor report what the distribution between the different tasks stated in the task

7

description. Analyse vs Implementation and Implementation features vs each other.
The last effect goal is not necessary as it it a bit far fetched to include. Include the
date in which the deadline is in the constraints. The goals and the task description
should be consistent with each other, if you have stated the thing as a goal, the
task description should not diverge from that. The role Research Manager should
be considered renamed to Analysis Manager. We should describe the role our client
has in the project with more detail. How are they going to be present in the
project? Should they take part in the scrum meetings and how will they review
in the development process. In the section about methology we should talk about
more details like kanban vs scrum. More kandidates and the criteria of why we
choose scrum instead. Describe what we will do to migrate poor risk mqanagement
- allocate time for it each sprint and other aspects. We should plan and descibe how
were going to perform the acceptance testing.

Questions We were encouraged to include the material we have gathered from
developers in the analysis of the engines. Writing objective about documentation
could be performed by looking at aspects like overall structure and quantity/quality.

Date: 10.02.2022
Present: Endre, Henrik, John Ole, Thomas and Tom (Supervisor)
Agenda: The Game Engine analysis
Description:
We got feedback on game engine analysis is that we should decide how much it should
count on the grade and how we should reference the analysis. If we should have it in
the assignment. We should also have a section for describing what approach we had
to writing the analysis. The most important aspect is t figure out how to incorporate
the analysis in the bachelor thesis.

Date: 23.02.2022
Present: Endre, Henrik, John Ole, Thomas and Tom (Supervisor)
Agenda: Show jira and general questions
Description:
We showed jira and the supervisor thought the issues and layout of the project
looked good. We talked about the estimations should be included mostly to be used
in planning the next sprints and knowing how many tasks you can do in one sprint.

We should always state plug-ins and solutions we borrow from others and discuss
whether these solutions is good. We should also state in the final report if we used
forums. The supervisor informed us about the upcoming course hosted by NTNU
on the report writing.

8

Date: 17.03.2022
Present: Endre, Henrik, John Ole, Thomas and Tom (Supervisor)
Agenda: General progress discussion and feedback on the status report and re-
quirement specification document
Description:
The first order of business was the group bringing up some concerns about one of
the tasks we have started on in the project. The task it refers to is the editing tool
of the landscape we started working on in sprint 7. The feedback we got is that it
could be a risk trying to use much effort in a task like this in the project. Because of
it’s complexity and magnitude its possible that it could cause the group to get stuck
and/or use most of the time left in this single task. Because of this uncertainty
the group find it reasonable to approach the client with the issue and discuss an
alternative solution. After all, the task is not a part of the initial goals from the
client.
We should document, and host at least three retrospective meeting where the agenda
is the most recent sprints and discuss the progress so far, the issues and their es-
timations and always try to elevate the quality of our process by learning from the
good and bad things we did.

Status Report It seems like we have a good connection to the client and the
supervisor stated the importance of this. He told us that if we use different plug-ins
in the project that we should always try to give some quality assurance for this. Is
the plug-in sustainable, will it be maintained and all the other factors that may affect
the client when they take over the development and maintenance of the application.
The supervisor re-stated his advise that we should code as much as possible, even
though some design must be performed to create the application it is important to
get as much quality code as possible.

Requirement Specification The introduction was nice, the only thing missing is
an introduction to how the different requirements were made. Was them there in
the beginning of the process or has the project gradually expanded and occurred
over time? We should also introduce the use case diagram. The extended use of the
”extend” keyword in our second iteration was addressed. The supervisor informed
us that the usage of this should be when an already created system gets extended
with some additional functionality for some users.

The most crucial aspect of the feedback we got was that we should broaden the
requirement specification. There are some missing parts about various system details
and user types that is not included in this iteration. The missing users are the admins
and teacher. We got told that many of our use cases missed details. For example
the ”Place Object” use case did not specify what the objects are nor the way we
access the objects. Does they get created by the user, are they pre-made and stored
in a file system? Those aspects of the use case should be described. In the ”Fail
Scenario” we should also list the system response to the scenario failing.

The non-functional requirements should be more testable. We should also list the
deployment requirements for the application. Should the application be ran on all
computers, or only the ones at Lokførerskolen. Should also discuss the security

9

aspects of the application.

The requirement specification document should in general be filled in with much
requirements over the entire system and we should prioritize the tasks we do. We
should bring this subject up with the client to discuss the progress and what to
include in the scope.

In the next meeting we will discuss what was considered as optins with Lokførerskolen
and how we have decided to expand the project.

Date: 21.03.2022
Present: Endre, Henrik, John Ole, Thomas and Tom (Supervisor)
Agenda: Talk about the plan to tackle multiple users. Admin, User. Evt the
thesis.
Description:

Date: 24.03.2022
Present: Endre, Henrik, John Ole, Thomas and Tom (Supervisor)
Agenda: Free meeting where we asked some general questions
Description:
We asked the supervisor about testing and what he thinks of our plan to perform
users tests on some students at Lokførerskolen. The supervisor said that it is im-
portant to make sure that the tests are objective and focuses on the parts of the
simulator we want feedback on. We wand the feedback for further development so
we should make sure the test’s can give us some feedback on this.

We should discuss with Lokførerskolen how they want us to deploy the simulator
at the end of the project. If they want it as a zip-file or other solutions and then
update the requirement specification.

The abstract and ”Sammendrag” section in the report should be the same text, not
directly translated, but include the same information.

The supervisor empathised on using figures to illustrate what we talk about in the
final report.

Date: 31.01.22
Present: Endre, Henrik, John Ole, Thomas and Tom (Supervisor)
Agenda: Feedback on status report 2 and the requirement specification document
Description:
Status report 2 The section about the terrain generation was a bit narrow, at

10

least to use in the final report. We said that the original discussion and alternative
solution was included in the status report but excluded because of it’s length. Its
important to not only say that we excluded a planned task, but explain why, and
provide alternative solutions in the final report.

In the plug-in’s section we have to provide information about the quality, mainten-
ance and future plans of the plug in. We should reason on why we use it and ensure
that it will be maintained.

The status report sais that we stopped with daily scrum meetings, but the supervisor
missed the part about why we stopped with them, when we stopped and how it is
better without them.

We should have more retrospective meetings, we have had some and although we
have not called them retrospective, we have always after a sprint discussed the
progress and where we are. It could be an option to go back in the scrum planning
meeting and change the layout to ensure that readers know that the retrospective
aspect of the project are present and to highlight their place in the report.

The supervisor will have a full Easter brake so the next meeting will be onWednesday
the 20Th at 15:00.

The Requirement specification

The operational requirements are missing and could include such requirements as log
in requirements, cpu requirements and software crash requirements. The functional
requirements was good, the only note was that some of them could be merged
together, maybe not that important for us since the diagram and information does
not include extensively amounts.

The use case should be clearer on the object description. ”Place an object” - what
does it mean, in editor, runtime, give better descriptions. The use cases should
display all the work we have done, it may be necessary to include the facilitating
work we have done in editor to make further development easier for the client. If
Lokførerskolen will further progress the project we must describe the engine specific
use cases. The supervisor thought that the ”Operate drone” use case did not need a
low level description and that maybe create scenario would be better to include as a
low level. It was also emphasized that the use cases should be a guide for developers
in the development phase of the project.

We should include a update plan. If the software will be updated how will this be
done. We discussed on this for a while and figured that since we are creating editor
functionality without networking functionality we cant include it in the project
scope, but we should show in the report that the distribution issue is discussed and
what solutions we finds to be the best.

Date: 20.04.2022
Present: Endre, Henrik, John Ole, Thomas and Tom (Supervisor)

11

Agenda:
Description:

We showed off what we have been working on since the last meeting, including
loading levels, the editor mode with the content browser and gizmos, saving and
loading of scenarios. We spoke about the relevancy on creating elements that emu-
late already existing functionality from Unreal Engine. We have prioritized creating
this functionality as it is a goal set by the client, but we are considering conclud-
ing that it is a waste of effort, and are prepared to reallocate our time to work on
something else.

Notes:

Remove the third level of chapters in the table of contents. Should the theory part
contain a discussion about using games/simulators in education. Lokførerskolen
should be introduced before the engine analysis. Explain the sizing/importance of
the analysis. End the game engine analysis less abruptly. ”Br̊aslutt, bør ha 3.1.7
anbefaling og konsekvenser anbefalingen har for b̊ade lokførerskolen p̊a lang sikt,
Selve utviklingen dere gjør og Innholdet i prototypen dere utformer.” Use cases:
write more about the content browser ”has different categories” Move or rotate
objects: try and fail scenarios, error messages

Add new object: nærmere brukermanual Use cases, write more about what the user
can do, not how they do it

More specific requirements, measurable numbers instead of vague wishes

Add more screenshots and figures, show the game to people reading. Display trains
and context before delving into code and technicalities. Read from the point of view
of an outsider that hasn’t seen the software running.

Not ER, but class diagram diagram to show all classes made by and used by us
ingame

Keep system architecture on a holistic level, explain technicalities such as protocols
and code later in the report

Design choices; we chose to use c++ instead of blueprint? how actors communicate,
why actors and stuff inherit from the stuff they do,

placement of development process can be changed

Talk about what Unreal does for us, and what we have made what can they use to
build further on, what is just for demo

weighting in the report

smart to look at other thesis papers

its ok to fix stuff for demo after thesis paper deadline, focus on paper then fix

13:15 4. Mai

12

11.05.2022

Tips: - Les emnebeskrivelse - Leser kjenner ikke caset - Tittel? - Lage abstract -
nummerering holder med 2 eks: 3.3 ikke: 3.3.3 - Legge ved timeliste - Diskutere
rundt avik fra plan - fordele figurer jevnt rundt i rapporten - Sjekke for konsistente
referanser - Sjekk spr̊ak! - ung̊a å skrive ”at vi gjorde det... ”Vi jobbet fulle dager
tirsdag, onsdag, torsdag, dette fungerte fint for oss” heller ”GRuppen valgte å ha
tre dager i uken dedikert til arbeid med bacheloroppgaven” - F̊a frem det som vi er
stolte av, ikke s̊a mye om hva som gikk feil

Theory - eller bakgrunn rundt spill - hva er spillets rolle for lokførerskolen? - hva
skal de bruke det til?

Trimme rapporten, ikke ha med tomme sider Vite mer om arbeidsgiver

Game engine analysis - er informasjonen riktig?

Mer diksjon gjennom rapporten Product backlog - knytte det med use casene, er
vært case ett issue?

Hvorfor valgte vi scrum, fortelle casen bak valget Methodology - hvorda vi brukte
scrum

sette implementation før deployment gi et oversiktig bildet over modulene i produk-
tet

Editor mode - kilder? oppsummere hvor mye kode er skrevet, hva er gjort fra bunn
og hvor lett kan loførerskolen bygge videre op produktet

sjekk kravspekk n̊ar vi tester

Disussion - hente resultat mål

Kilder, sjekk at det er konsistent

3 Sprint Planning Meetings

The scrum meetings are written with three different section. A section about the
Goals we have for the sprint. A section we write when the sprint is completed, which
covers the result of the sprint. And a retrospective section where we will discuss
and reflect on the result of the sprint with the goals in mind.

3.1 Statuses

The issues in a sprint can be set to one of five different statuses. The statuses are
respectively: Wishlist - The issues that is taken out of the project scope and in
to a list of functionality that we can decide to include if we have time later in the
project. To Do - This are the section for issues that are waiting to be developed.
In Progress - The issues that are currently being developed. Done - The issues

13

that has been completed in the sprint.

Sprint 1
Date: 18.01.2022
Present: Endre, Henrik, John Ole and Thomas
Period: 17.01 - 31.01

Sprint Goal:

• Finish the project plan and the initial product backlog.

• Finish the game engine analysis

• Deliver client contract to NTNU and sign Lokførerskolen’s confidential agree-
ment.

Sprint result We finished the product backlog and got feedback on the delivered
project plan. The project plan is good for now and only small changes needs to be
done with it. Not neccesary to deliver it again. We started to write the game engine
analysis, but did not finish it. We have to move the issue to the next sprint.

In progress Done

Issues Write Engine Analysis Project Plan

Client Contract

Research Engines

Estimates 4 4 + 1 + 2

Table 1: Overview of issue status at the end of sprint 1

Retrospective The Game Engine Analysis did not get completed in the planned
amount of time. The reason for this was that we did not have the neccesary know-
ledge on the complexity of the task. We though that it would be many references
and other papers we could base our analysis on, but found out that we have to do
most of the work our self if we want the quality and objectiveness we want to give
Lokførerskolen and our group the best starting point for selecting the game engine.

Sprint 2
Date: 30.01.2022
Present: Endre, Henrik, John Ole and Thomas

14

Period: 31.01 - 07.02

Sprint Goal:

• Finish writing the game engine analysis

• Start on the code convension document

• Set up a Unreal project with git

Sprint result: The game engine analysis is only missing the conclusion and a round
of reviewing, so we expect finishing it in on next Tuesday. The code convention
document was started, but not finished because of the focus put to finish the analysis.
We have to move the setup of unreal to the next sprint.

To do In progress Review

Issues Setup Repository

Integrate Git and
Jira

Code Convension
Document

Write Engine
Analysis

Estimates 2 + 2 2 4

Table 2: Overview of issue status at the end of sprint 2

Retrospective The sprint went worse than expected. We actually though we would
finish all the three tasks, but it was the game engine analysis that is the reason for
the delay. We have now written 14 pages and every page is consistently written to
ensure the integrity and objectivity of the paper. The good news is that very little
are remaining and that we probably will be able to start learning the engine and
begin the basic implementation next week. O of the milestones we had set was the
engine setup, we will most likely save time on this milestone because the analysis
has given us the knowledge we need to do this.

Sprint 3
Date: 07.02.2022
Present: Endre, Henrik, John Ole and Thomas
Period: 07.02 - 14.02

Sprint Goal:

• Review and deliver Game Engine Analysis to the client and to ur supervisor

15

• Integrate Jira with GitHub

• Setup the repository in GitHub with an Unreal project

Sprint result:
This is the first sprint that we actually managed to get all our goals finished in
time. We managed to finish the setup and integration with Jira and this results in
a decrease of time delay from our original plan to be finished with the MVP within
two weeks.

Other statuses Done

Issues - Write Engine Analysis

Integrate GitHub and Jira

Setup Repository

Code Convension Document

Learning Engine Basics

Estimates 0 4 + 2 + 2 + 2 + 2

Table 3: Overview of issue status at the end of sprint 3

Retrospective:
The sprint seen in perspective of the sprint alone went well. We finished all the tasks
we had in mind and also managed to start learning the engine basics as well. This
means that we from next week can start working towards the MVP. We discussed
increasing the sprint length from one to two weeks for the next sprint, but decided
to keep the one week sprint because we want to have a new retrospective meeting
next week and evaluate the accuracy of the story point estimates we made on the
issues regarding the MVP to figure out if we can and will finish the MVP in the
allocated time. This decision was made because the time we have set to be finished
with the MVP and display it to the client the 14.Th of March has been shortened
down with a week because of the setbacks with the game engine analysis

Sprint 4
Date: 14.02.2022
Present: Endre, Henrik, John Ole and Thomas
Period: 14.02 - 21.02

Sprint Goal:

16

• Finish the basic train mechanics

• Finish the first MVP level environment

• Finish the Basic spline railway

Sprint result:
We set out the sprint with very high expectations because of the delays we have
had in previous sprints. All the basic train mechanics and the railway got finished
as well as some of the environment and signals.

To do In progress Done

Issues Railway
integration (7)

Curvature
warnings (7)

Environment:
- Modeling (7)
- Texturing (3)
- Foliage (3)

Basic statuses (3)

Input Handling (7)

Calculate acceleration (3)

Move along Path (7)

Signals:

Add Models (3)

Railway:

- Procedural mesh (7)

Spline Formation (14)

Estimates 14 16 41

Table 4: Overview of issue status at the end of sprint 4

Retrospective:
One of the group members lost some work days because of sickness. We underes-
timated the time it takes too model, texture and set up foliage for the environment.
Thees tasks should each have been estimated as a 3 and is together with the sickness
the reason we did not finish all tasks this sprint. We decided to re-estimate the tasks
left from the previous sprint and therefore all of the environment tasks will be set as
3 and the basic statuses will also be set on 3. Basic statuses involves more complex
functionality than first expected.

We had a plan to use the estimations of 1 = 3 hours, 2 = 7 hours and 3 = 14 hours,
but we decided to change this. The reason we want to change the estimation is
because we feel that it is not accurate enough and we should not restrict our estima-
tion process to only three categories. We therefore decided that further estimations
should be done by hours alone and not by a predetermined scale.

17

Sprint 5
Date: 21.02.2022
Present: Endre, Henrik, John Ole and Thomas
Period: 21.02 - 28.02

Sprint Goal:

• Finish Main Menu in game menu and pop-up messages

• Finish basic statuses

• Finish The environment creation

Sprint result:
All the initial UI got finished in blueprints. The environment creation is nearly
finished. The basic statuses task was increasing in size because...

Wishlist To do In progress Done

Issues Curvature
Warnings (10)

Speed Limit
Indicator (10)

Signals:
- Railway
Integration (4)

Basic Statuses
(20)

Environment:
- Modeling
(14)
-
Texturing(12)
- Foliage(12)

Add
Speedometer(8)

Drone Mode
(7)

Spline Terrain
Adaptation
(10)

Main Menu (7)

Popup
Message (3)

In Game Menu
(4)

Options Menu
(10)

Estimates 10 14 66 41

Table 5: Overview of issue status at the end of sprint 5

Retrospective:
The sprint was set to contain 121 work hours, this is all the time we as a group
has for a full week since every group member should have 30 hours of work each
week.We only finished work hours of about 41 estimated hours. And we estimate
that half of the in progress tasks are finished. This puts our completed work to
74 hours. We have underestimated both the time and complexity of several tasks.

18

We have to use this knowledge on further estimations meaning we have to estimate
issues with a larger margin of error

Sprint 6
Date: 28.02.2022
Present: Endre, Henrik, John Ole and Thomas
Period: 28.02 - 07.03

Sprint Goal:

• Finish first draft of requirement specification and status report 1.

• Finish the MVP scenario

Sprint result:
The MVP got finished and put together. We had some issues with the environment
creation and it’s time consumption, but the estimations we made for three envir-
onment creation tasks was more accurate than our previous estimations. All the
necessary functionality was there to display the MVP to the client except the basic
statuses which we only controlled by a timer instead of an controller. The basic
statuses only misses a few hours of work and is therefore almost finished.

19

Wishlist In progress Done

Issues Speed Limit
Indicator (10)

Basic Statuses
(5)

Environment Creation:
- Moddeling (10)
- Texturing (10)
- Folaige (10)

Add speedometer (4)

Requirement specification (20)

Status report 1 (10)

Signals:
- Railway integration (4)

Gravel Mesh Under Spline (10)

Bug:
- Spline hovering above ground
(15)

Estimates 10 5 93

Table 6: Overview of issue status at the end of sprint 6

Retrospective:
The sprint goals was achieved, but the basic statuses was only implemented to work
with the MVP scenario and not finished to he extent we want in the final product.
We want the signals to be controlled by a controller and be able to trigger events.
New issues for this will come in the next sprint. We finished 93 work hours in the
sprint and we feel that our estimations on the different tasks are beginning to get
better and more accurate to how we progress in the sprints. We decided after this
retrospective meeting to increase the size of the sprints from one to two weeks for
the upcoming sprints. We are now going to work on two milestones simultaneously
and feel that a two week sprint will give us time to produce more and that the
development will be more efficient.

Sprint 7
Date: 07.03.2022
Present: Endre, Henrik, John Ole and Thomas
Period: 07.03 - 21.03

Sprint Goal:

20

• Finish first draft of requirement specification and status report 1.

• Finish the MVP scenario

Sprint result:
The MVP got finished and put together. We had some issues with the environment
creation and it’s time consumption, but the estimations we made for three envir-
onment creation tasks was more accurate than our previous estimations. All the
necessary functionality was there to display the MVP to the client except the basic
statuses which we only controlled by a timer instead of an controller. The basic
statuses only misses a few hours of work and is therefore almost finished.

Wishlist To do In Progress Done

Issues Editor mode:
- Generate flat
terrain (14)
- Manipulate
terrain (20)
- Dynamic
buttons (10)

Place and edit
railway (28)

Load scenario
from file (14)

Save scenario
to file (14)
Static Buttons
on screen (7)

Main Goal:
- Signal
Controller (21)
- Emergency
Breaks (7)
- Stop
Scenario (21)
In game
content
browser (25)

Save Object to
File (20)

Load Object
From File (20)

Main Menu
(14)

Basic Statuses
(7)

Second
iteration
Requirement
Specification
(21)

Place 3D
Models (12)

Manipulate 3D
Models (25)

Estimates 44 63 114 79

Table 7: Overview of issue status at the end of sprint 7

Retrospective:
The sprint goals was achieved, but the basic statuses was only implemented to work
with the MVP scenario and not finished to he extent we want in the final product.
We want the signals to be controlled by a controller and be able to trigger events.
New issues for this will come in the next sprint. We finished 93 work hours in the
sprint and we feel that our estimations on the different tasks are beginning to get
better and more accurate to how we progress in the sprints.

Sprint 8
Date: 22.03.2022

21

Present: Endre, Henrik, John Ole and Thomas
Period: 22.03 - 04.04

Sprint Goal:

• Finish the editor mode, meaning the content browser and all the tools for
saving, placing and the UI.

• Finish the third iteration of the requirement specification.

• Finish the Main Goal which is a working scenario with a controller for the
signals.

Sprint result:
We finished the third iteration of the requirement document and the main goal. The
editor mode is about halfway done.

Wishlist To do In Progress Done

Issues Editor mode:
- Save
Scenario to
File (14)
- Load
Scenario from
File (20)

Static Buttons
on Screen (7)

Place and Edit
railways (28)

Save Object to
File (20)

Load Object
From File (20)

Log In:
- Add User
Types (10)
- Restrict
functionalities
(10)

Main Goal:
- Signal
Controller (21)
- Emergency
Breaks (7)
- Stop Scenario
(21)

In game
content
browser (15)

Third Iteration
Requirement
Spesification
(10)

Estimates 34 35 60 74

Table 8: Overview of issue status at the end of sprint 8

Retrospective:
The estimations we made was not very accurate to the workload. the content browser
for example has been challenging to get working. This is because it introduced many
problems that we did not account for when estimating. This issue which we thought
initially would take approximately 4 days to complete has now been a work in
progress for about two weeks. Because of the troubles we have had we will use the
next sprint (which includes the easter) to continue working towards finishing up the
editor mode.

22

Sprint 9
Date: 04.03.2022
Present: Endre, Henrik, John Ole and Thomas
Period: 04.04 - 13.04

Sprint Goal:

• Finish the editor mode, meaning the content browser and all the tools for
saving, placing and the UI.

• Finish the fourth iteration of the requirement specification and deliver a draft
of the thesis.

Sprint result:
We finished both the requirement specification and the requirement specification.
The place and edit railway issue was started but there was some issues with the
relevancy and meaning of including it in the project.

In Progress Done

Issues Place and Edit railways (28) Save Object to File (5)

Load Object From File (5)

Log In:
- Add User Types (7)
- Restrict functionalities (7)

Static buttons on screen (25)

Fourth iteration Requirement
Specification (10)

Bachelor Thesis draft (20)

Estimates 28 79

Table 9: Overview of issue status at the end of sprint 9

Retrospective:
On our meeting with the supervisor he brought up that it may be necessary to
cut out the railway editing tool. Our discussion on the subject. We figured that
because of the problems we have had with it and the fact that the functionality we
can produce would not be better than using the original spline tool in the UE4 editor

23

we decided that Thomas will work on the issue for one more day to see find out if the
issue is worth resolving or if it’s smarter to cut out the functionality and focus on
other parts of the project. Update, the place and edit railways issue will be excluded
from the backlog because we want to focus on other parts of the assignment.

Sprint 10
Date: 21.02.2022
Present: Endre, Henrik, John Ole and Thomas
Period: 18.04 - 01.05

Sprint Goal:

• Finish the demo test level

• Have the simulator ready for testing (all functionality ready

Sprint result:
We finished the demo test level and got the simulator ready for the student tests.
The process was challenging because it was important that the quality was ensured
because the simulator is going to be tested on students from Lokførerskolen next
Monday.

24

Wishlist In Progress Done

Issues Place and Edit
Railways (28)

Write bachelor
Thesis (30)

Game integration
testing (30)

Basic Train cars (10)

Convert in-game
menu to c++ (4)

Demo Test Level:
- Create

Environment (4)
- Add train and
wagon (1)
Add signal and

triggerboxes (2)
- Add railway (2)
- Add station (1)
- Possesion switch
between drone and

train (2)
Fix camera possesion

bug (4)

Delete editor objects
(5)

Estimates 28 60 21

Table 10: Overview of issue status at the end of sprint 10

Retrospective:
Even though we only finished 21 of the story point estimates, we have spent much
time on writing the bachelor. All tasks we set out to do is finished except the Place
and edit railway issue which got excluded from the project scope. This particular
task was taking up a lot of development time due to the unforeseen difficulty of
the task. After discussing internally and with the client, we concluded that all
the functionality we were developing in the in-game editor mode were reflections
of what offers in-engine. This made a hindrance to further development of editor
functionality, which was then removed from the project, as the client agreed that it
would be easier to utilize Unreal Engine itself for this functionality.

When planning the sprint we added an issue for game integration testing. This issue
would contain all the bugs, errors and code mistakes we could find when trying to
build and package the game. Since the scope of the issue increases when working on
it, we decided to not include as much issues to this sprint to ensure that this issue
gets the attention it needs.

25

Date: 22.04.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda:
Description:
Sprint goal:
Create a demo level that students can test the simulator functionalities on. Demo
test level

Place and edit railways: On our meeting with the supervisor he brought up that it
may be necessary to cut out the railway editing tool. Our discussion on the subject.
We figured that because of the problems we have had with it and the fact that
the functionality we can produce would not be better than using the original spline
tool in the UE4 editor we decided that Thomas will work on the issue for one more
day to see find out if the issue is worth resolving or if it’s smarter to cut out the
functionality and focus on other parts of the project.

4 Daily Scrum Meetings

Date: 19.01.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Review last days writing
Description:
Went through and quality assured everyone’s writing and planned the work for
today. Took 3 hours to go through everything, was a bit more time consuming that
we had imagined.

Date: 20.01.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Plan further work, and how to proceed with the engine analysis .
Description:
We need to find the different alternatives and maybe find some working demonstra-
tion with trains in the different engines. When finding alternatives it is important
that they are modern, are VR supported and can reproduce all functionality in
DiskSim. Some other features it would be great if the engine has are the ability to
re-use gltf and ac3d files and that it it easy to use. John will start on the analysis
today, while the three other group members will continue on the project plan.

Date: 21.01.2022

26

Present: Endre, Henrik, John Ole and Thomas
Agenda: Status for progress
Description:
We discussed the missing and/or unfinished parts in the project report and found it
to be the responsibility and roles (small), the gantt chart (medium), product backlog
(small, takes all group members), testing (small, needs both supervisor and client
input) decition point (small) and overall fixup (Big). We are planning on doing the
overall fixup after the client meeting to have a first draft to show the supervisor the
26.th of January.

Date: 24.01.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Work progress for the day
Description:
Continue working on the game engine analysis.

Date: 25.01.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Discussion on the key aspects of the game analysis.
Description: We discussed what to write in the analysis. We decided that we
would have an introduction for each game engine. We would then have 5 different
subsections where we compare the different engines abilities. The 5 subsections are:
Absolute requirements, Code language, DeskSim and Learning curve.

Date: 26.01.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Continue analyzing engines
Description:
We have changed what engine each of us are analyzing and will work on today.

Date: 27.01.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Continue on the engine analysis
Description:
We changed the analysis rotation and started working.

27

Date: 28.01.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Go quikly through the project plan and check if it’s ready. Continue on
the engine research.
Description:
Fixed up the last TODO’s and correction’s of the project plan, and started on the
last engine each had to analyse.

Date: 30.01.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Plan todays progress.
Description:
Started to write the analysis of game engine. Each got their own parts.

Date: 03.02.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: What are the remaining parts of the game engine analysis?
Description:
Write the introduction for the analysis. [x] Double check and add all graphics api’s
used in the different game engines. [] Review open3D engine. [x] Review C++ in
code language. [x] Finish CryEngine and Godot in visual scripting and review the
two others. [] See what that can be removed from Code languages and Scripting:
similarities. [x] Rewrite learning curve introduction. [x] Write about documentation,
use guidelines. Review community Support. [] Final Walkthrough []

Date: 04.02.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Agree upon a name for the product
Description:
We came up with some name suggestions for the solution: DeskSim v2, Simulator-
utvikling for lokførerskolen, DeskSim v2 Demo, Trainsimulator Demo, DeskSim,
Simulator Development for Lokførerskolen. Sent a mail to the supervisor to get
some feedback on our suggestions.

28

Date: 08.02.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: What work each person should focus on? And a status update on the
group.
Description:
Should finish the game engine analysis

Date: 08.02.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Find out what standards to use in our code convension document and
finish the document.
Description:
Everyone was pleased with the progress yesterday and is ready to start working on
the code convension document and start the implementation process.

Date: 11.02.2022
Present: Henrik, John Ole and Thomas
Agenda:
Description:
We decided to continue working on learning the engine.

Date: 17.02.2022
Present: Henrik, John Ole and Thomas
Agenda: Demonstration of each persons progress so far
Description:
Everyone showed their progression throughout the week.

Date: 18.02.2022
Present: Henrik, John Ole and Thomas
Agenda: Demonstration of each persons progress so far
Description:
Everyone showed their progression throughout the week.

Date: 22.02.2022
Present: Endre, Henrik, John Ole and Thomas

29

Agenda: Each person are showing off their progress from the week.
Description:
It turned out one of the group members went outside the project scope for their
task. This was due to misunderstanding and it got sorted out what should be the
objective for the person.

Date: 23.02.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Each person are showing off their progress from the week.
Description:
Thomas showed the progress in the menu development. Had implemented some
basic screen scaling. John Ole had progressed in creating the environment. Henrik
and Endre has been working on importing their assets correctly and therefore has
little to show.

Date: 07.03.2022
Present: Endre, Henrik and Thomas
Agenda: Plan the meeting with lokførerskolen
Description:
If not commented about: What in the MVP would you like us to change or further
develop? We should ask what they want us to develop now, regarding the MVP.
Ask how the subgoals will be implemented, as in-game functionality, or in-editor
features. evt: If we get sort of free reigns, aks their thoughts of implementing hight
maps for generating environment.

Date: 15.03.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Everyone will show the sprint progress and plan the work for the remaining
time.
Description:
Some of us showed the result of work with a content browser that 3D objects could
be dragged out from and a tool for moving and rotating them. One showed the plan
and current process regarding the signaling controller.

Date: - 18.03.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Discuss the client meeting on Monday and what we should address.

30

Description:
What we want to address: The terrain editing tool task will be a large task and
doesn’t seem feasible to include in the bachelor. wee feel that we want to show more
knowledge in other subjects. Our suggestions for the other functionality we can
make: - Log in system (Communication with your API’s); - Teacher-student and
student-student multiplayer. (Samkjøring) - Logging of relevant data for simulator.
(For example quizzes) - More train functionality, multiple tracks and wagons?

Date: 04.04.2022
Present: Endre, Henrik, John Ole and Thomas
Agenda: Plan the writing process for the upcoming sprints. And plan how to do
scenarios.
Description:
Divide the writing tasks for the first iteration of the graduate project. - Start writing
3a Engine choice (John Ole), 3b Requirements (Henrik) , 3c Design (Thomas),
Development Process (Endre), Implementation (Everyone), Deployment (Endre or
later), Testing (Henrik og Thomas).

Scenarios: What to include in the files: Depends on what will be in the scenario.
Want to have an editor which don’t require us to use separate configuration files for
scenarios, but have them stored in the map instead. We had a discussion on this,
and our understanding is that it would be less complex, easier and more efficient to
utilize the functionality provided by unreal to solve this.

31

I Work Logs

PROG2900 - Bachelor Thesis

Work Logs

DeskSim v2

Authors:
Thomas Arinesalingam

John Ole Bjerke
Endre Heksum

Henrik Markengbakken Karlsen

May, 2022

1 Work Log

Date: Monday 17.01.2022

Name Description Duration

Endre Met with the client and started setting up the
project plan, GitHub and Jira

04:27

Henrik Met with the client and started setting up the
project plan, GitHub and Jira

04:27

John Ole Met with the client and started setting up the
project plan

01:00

Thomas Met with the client and started setting up the
project plan, GitHub and Jira

04:27

Date: Tuesday 18.01.2022

Name Description Duration

Endre Wrote about the scope of the project in the project
plan

05:35

Henrik Wrote about the work methology, and finished risk
identification and started writing risk analysis in the
project plan

06:45

John Ole Wrote about Goals and Constraints in the project
plan

06:15

Thomas Wrote about quality assurance 06:56

Date: Wednesday 19.01.2022

1

Name Description Duration

Endre Worked some more on project scope, went over the
project plan with the group. Meeting with our
supervisor

06:55

Henrik Watched videos, and learned about Jira and wrote
the section about it in the project plan (not done).
Removed unnecessary details in risk assessment and
overall fixes

06:50

John Ole Went over the project plan and had meeting with
Tom. Also finished Effect Goals under Goals and
Constraints

06:30

Thomas Finalized the milestones and overall fixes 7:12

Date: Thursday 20.01.2022

Name Description Duration

Endre Finished writing scope section of project plan,
reviewed other parts of the plan

05:32

Henrik Finished the writing about risk assessment and work
methology, and reviewed other peoples work

06:15

John Ole Started working on research for the game engine
analysis, Started writing on it, as well as going over
changes made to the project plan

06:17

Thomas Worked on formatting, tables and figures for the
project plan

6:49

Date: Friday 21.01.2022

2

Name Description Duration

Endre Reviewed project plan with group, started
researching different game engines

06:47

Henrik Finished the project plan and started on the game
engine analyse. And migrated all minutes of meeting
documents and work logs to Latex

07:25

John Ole Finalized the project report with the group, and
continued working on the game analysis

07:10

Thomas Finalized the project report, its layout, content and
appendices

07:29

Date: Monday 24.01.2022

Name Description Duration

Endre Downloaded Unreal and started some tutorials. Had
a meeting with the client. Set up a plan for
analyzing the different engines

07:22

Henrik Read about the godot engine and had a meeting
with the client. After the meeting we planned the
structure for the game engine analyze

07:22

John Ole Worked and did research on the game engine
analysis and had meeting with Lokførerskolen

07:20

Thomas Met with the client, finished the project plan, sent
mails to developers about VR engine choices,
research

06:52

Date: Tuesday 25.01.2022

3

Name Description Duration

Endre Reading about and looking at some tutorials for
CryEngine, downloaded and tested basic use of
CryEngine

07:01

Henrik Read about the Unity engine and noted down the
things I found relevant to include in the analysis
with it’s references.

07:17

John Ole Read and did research on the Godot engine and took
notes regarding inportant info

07:06

Thomas Researched Unreal Engine 4, its pros and cons for
simulation and VR

7:10

Date: Wednesday 26.01.2022

Name Description Duration

Endre Researched Unreal and looked at some tutorials.
Downloaded and tried the engine a bit

06:04

Henrik Researched Godot and wrote down the things
relevant to the analysis

06:50

John Ole Researched Cry Engine and noted down important
info

06:51

Thomas Researched Unity, its cons and pros 6:22

Date: Thursday 27.01.2022

Name Description Duration

Endre Researched the strengths and weaknesses of Unity,
downloaded and tried a VR demo to look at vr
integration

06:27

Henrik Analysed CryEngine, pros and cons and wrote down
the things I found relevant for the analysis

06:14

John Ole Researched Unreal Engine and noted down
important info

06:50

Thomas Analyzed Godot as a game engine for simulation and
VR

6:16

4

Date: Friday 28.01.2022

Name Description Duration

Endre Researched Godot, both the current version (3.4)
and a bit about 4.0. Downloaded the engine and
looked at a VR demo.

06:06

Henrik Analyzed Unreal Engine with the requirements in
mind

06:05

John Ole Researched Unity and noted down important info 05:36

Thomas Analyzed CryEngine, and took notes 06:07

Date: Monday 31.01.2022

Name Description Duration

Endre Started writing the engine analysis, and comparing
game engines with the group.

06:22

Henrik Wrote introduction about Godot and contributed
many places in the game engine analysis

06:36

John Ole Started writing the analysis and wrote about
Cryengine

06:31

Thomas Compared notes and summarized our findings into
paragraphs for the analysis document

07:06

Date: Tuesday 01.02.2022

5

Name Description Duration

Endre Did some research, testing and writing about both
Unreal Blueprints and Unity Visual Scripting

06:24

Henrik Wrote about GDScript and other parts in the Game
Engine analizes

06:36

John Ole Wrote on the analysis about C++ as well as started
with community support

06:58

Thomas Wrote about C# and it’s use in game engines, and
the learning curve of the engines

07:03

Date: Wednesday 02.02.2022

Name Description Duration

Endre Finished writing about visual scripting in Unity,
almost done with research and writing about
Cryengine

06:22

Henrik Wrote about additional development tools and
contributed to quality checking others work. Small
cleanups in some parts.

05:58

John Ole Continued with writing about community support in
the analysis as well as some small changes to other
parts

05:52

Thomas Wrote about scripting, development tools and
learning curve

6:56

Date: Friday 04.02.2022

6

Name Description Duration

Endre Finished visual scripting, reviewed parts of engine
analysis with group.

06:54

Henrik

John Ole Started on conclusion, went over and rewrote some
section in the analysis with group and finished the
introduction

06:39

Thomas Wrote about existing solutions and the conversations
with developers, and started on the conclusion

06:59

Date: Monday 07.02.2022

Name Description Duration

Endre Sick 00:00

Henrik Had a meeting at Lokførerskolens location where we
got a walk through of the simulator and got the
joysticks.

06:00

John Ole Went to the client for a demonstration of their
current simulator

06:00

Thomas Went to the client for a demonstration of their
current simulator

06:00

Date: Tuesday 08.02.2022

Name Description Duration

Endre Sick 00:00

Henrik Wrote the finalized version of the game engine
analysis

06:47

John Ole Went over the analysis and finished it 04:26

Thomas Finalized the game engine analysis 06:33

7

Date: Wednesday 09.02.2022

Name Description Duration

Endre Sick 00:00

Henrik Wrote the naming convension on the code
convension document. Finished integrating Jira with
GitHub and started on creating the template for the
Unreal Engine project in GitLab

05:43

John Ole Started and finished the code convention document
as well as wrote some issues for MVP

05:35

Thomas Finished the code convention document 05:44

Date: Thursday 10.02.2022

Name Description Duration

Endre Sick 00:00

Henrik Had a meeting with the Supervisor, set up the
Unreal Engine project in GitLab and explored with
the engine by trying to implement some input
detection and movement from the USB controller

05:31

John Ole Started with Supervisor meeting, then started with
setting up the game engine and trying it out

05:32

Thomas Supervisor meeting + explored Unreal Engine,
trying to implement simple train movement

05:32

Date: Friday 11.02.2022

Name Description Duration

Endre Sick 00:00

Henrik Researched unreal engine and learned the basics 05:15

John Ole Researched and tested Unreal Engine and how it
works

06:34

Thomas Researched Unreal Engine basics 2:13

8

Date: Monday 14.02.2022

Name Description Duration

Endre Started catching up on group work, learning about
unreal

03:33

Henrik Implemented the basic input mappings and
movement

John Ole Setup Git with Unreal and started working on
environment creation

06:52

Thomas Finished setting up Unreal with Git and started
coding a spline mesh component

06:50

Date: Tuesday 15.02.2022

Name Description Duration

Endre Fixed issues related to unreal project and git,
started some work on signals

04:13

Henrik Implemented acceleration and breaks for the train. 06:34

John Ole Fixed some issues with Git and unreal, as well as
implemented some terrain based on heightmaps

06:05

Thomas Fixed technical issues with Git and Unreal, and
finalized the procedural mesh part of the railway tool

06:36

Date: Wednesday 16.02.2022

9

Name Description Duration

Endre

Henrik Started on implementing train movement along
spline

04:14

John Ole

Thomas Worked on the spline generator, so it snaps the mesh
to the terrain/heightmap

03:21

Date: Thursday 17.02.2022

Name Description Duration

Endre Imported basic train signal model, learned about
materials and emissive light

03:03

Henrik Cleaned up train movement and started importing a
new plugin for input handling

03:00

John Ole Researched how to create your own texture 03:00

Thomas Worked on the tangent to improve the curving of the
railway spline

03:11

Date: Friday 18.02.2022

Name Description Duration

Endre Added working emissive light in code for train signal 08:19

Henrik Finished the input handling for now and closed the
train movement story. Merged train movement and
railway creation to form the first milestone branch

7:09

John Ole Created a our own texture and added a blend
between grass and dead-grass texture

07:09

Thomas Added rotation to the railway spline around its
forward axis

05:48

10

Date: Monday 21.02.2022

Name Description Duration

Endre Finished signal timer to switch signal states, did
some research for central signal controller, about
events and delegates

06:27

Henrik Had a meeting with the client. Merged and set up
the first milestone branch and started on the
speedometer. I did only set up the class and research
the approach for making it.

05:46

John Ole Had some trouble with git lfs with reaching the max
bandwidth, so I had to revert the changes and
reduce the sizes of the files to max 100MB for now.

04:30

Thomas Had a meeting with the cliend and worked on
detecting angle and height change in the railway

06:56

Date: Tuesday 22.02.2022

Name Description Duration

Endre Did some more research about events and actors.
Started work on signal system with different signal
types. Tried helping with 3d model problems

06:44

Henrik Tried to fix problems with the imported train
models. Created a new issue regarding this. Worked
on the speedometer after that.

06:48

John Ole Added macro variations of the dry grass and cliff
textures, and landscape materials now depend on
the slope and sharpness of an angle as to create
rocky hills with grass on top(greentop)

06:57

Thomas Implemented a main menu level, with buttons to
start the game and a settings menu, which is able to
change the resolution and window mode

06:53

Date: Wednesday 23.02.2022

11

Name Description Duration

Endre Worked on base signal and light functionality 04:46

Henrik Worked a bit on trying t fix the train model files.
Started on the drone class because the model
problem got very frustrating

05:35

John Ole Created a custom specular channel for the landscape
material

05:21

Thomas Worked on the main menu and settings menu 05:55

Date: Thursday 24.02.2022

Name Description Duration

Endre Reworked basic signal to allow for better
customization

06:37

Henrik Finished movement, camera, and possesion changes
between the train and the drone. Small bug in drone
movement needs to be fixed

07:15

John Ole Created a new level with mountains and ocean 06:24

Thomas Added a popup blueprint for warnings and messages,
added a scenario select to the main menu, and added
a pause menu

06:26

Date: Friday 25.02.2022

Name Description Duration

Endre Sick 00:00

Henrik Fixed a movement issue with the drone and started
on the DMI HUD for the train. Got a adequate
design prototype ready and next step is to add
functionality to the speedometer

05:48

John Ole Continued modelling the level and fixed the
landscape texture to work properly

05:13

Thomas Worked on the main menu, adding scenarios and
tabs for different types of scenarios

06:25

12

Date: Tuesday 01.03.2022

Name Description Duration

Endre Started work on central controller for signals, worked
on status rapport

06:22

Henrik Sick 00:00

John Ole Worked on status report 1 as well as did some minor
changes to the textures

04:08

Thomas Implemented signals snapping to the nearest railway,
and wrote towards finishing status report 1

06:18

Date: Thursday 03.03.2022

Name Description Duration

Endre Finished setting up the different statuses for
different lights, researched delegates/events,
interfaces, actor communication

05:02

Henrik Finished the train DMi and wrote a bit in the
requirements specification.

3:54

John Ole Worked on requirement specification 04:10

Thomas Formatted status report 1 and created the
requirements specification document

06:32

Date: Friday 04.03.2022

13

Name Description Duration

Endre Finished writing status rapport and requirements
specification, helped with technical issues, made
lights cycle statuses for MVP

07:47

Henrik Finished status report 1 and requirement
specification

07:03

John Ole worked on Status rapport and required specification,
as well as finished MVP where i extended the level
and added more foliage and terrain

07:22

Thomas Finished status report 1, the requirements
specification, and collectively finalized the MVP to a
buildable executable

07:58

Date: Monday 07.03.2022

Name Description Duration

Endre Client meeting about MVP, scrum planning
meeting and planning work ahead

05:50

Henrik Had a client meeting and had scrum planning
meeting where we created new issues and
discussed the further development. Wrote
about the implementation of train, drone and
dmi.

07:00

John Ole Client meeting scrum
planning
meeting

05:50:

Thomas Client meeting, scrum planning for the next
milestone, and research for future functionality

06:05

Date: Tuesday 08.03.2022

14

Name Description Duration

Endre Started work on central controller, added box trigger
to change signal status

06:41

Henrik Finished the Main Menu widget and started working
on the Static on-screen buttons for the editor mode.

05:00

John Ole Started working and researching how to implement
procedural generated terrain

05:52

Thomas Created the camera movement and gizmos for
translation of objects in the in-game editor mode

06:32

Date: Friday 11.03.2022

Name Description Duration

Endre Learned more about ticking and fixed ticking bug
with TrainTriggerBox, reworked and improved some
logic in signal controller, added triggers to MVP
level

06:49

Henrik Worked on the in game content browser, currently
implementing asset selection and dragging

06:53

John Ole Started researching how to save and load levels 06:31

Thomas Started converting the editor blueprints into C++,
achieving movement and gizmo component
structuring for the translation and rotation tools

06:57

Date: Monday 14.03.2022

Name Description Duration

Endre Added emergency stop to train and signal controller,
needs some bugfixing

06:48

Henrik Finished the first iteration of the content browser
and started on terrain generation

07:16

John Ole Research and taking care of personal things 06:51

Thomas Worked on converting the editor controller into
C++, adding gizmo meshes and tool mode switching

06:57

15

Date: Tuesday 15.03.2022

Name Description Duration

Endre Testing train emergency stop, worked on
requirements specification with group

03:05

Henrik Wrote the second iteration of the requirement
specifications and started on the terrain generation.

05:00

John Ole Worked on Savelevel function 04:19

Thomas Iterated on the requirements specification and
worked on the editor controller code

03:12

Date: Wednesday 16.03.2022

Name Description Duration

Endre Train improvements and bugfixes, reimported train
model properly in fbx format, turned the train into a
blueprint so others can easily be added later

06:27

Henrik Worked on creating a flat square from code when
generating a new scenario in editor mode. You can
now create a 100x100 to 10000x10000 flat area. Next
task is to connect it to the other editor functionality

06:03

John Ole Worked on save and load level, and now saves train
position to file for testing purposes

07:14

Thomas Worked on the gizmos for the editor controller 07:14

Date: Thursday 17.03.2022

16

Name Description Duration

Endre Restructured some c++ code to improve
organization, split functionality of traintriggerbox
into two new classes for better usage

06:33

Henrik Was in a meeting with the supervisor and is
currently moving the content browser functionality
from blueprints to c++

06:40

John Ole Supervisor meeting as well as worked on Moving
save and load functionalities from the train class

06:50

Thomas Implemented line casting for interaction with editor
objects and gizmos in c++, supervisor meeting

06:58

Date: Friday 18.03.2022

Name Description Duration

Endre Almost finished working on split trigger box
functionality and central controller emergency stop

06:18

Henrik Have read about game control flow for the game
mode and started to implement the content browser
in c++.

06:11

John Ole Started working on a new SaveManager which
handles all save and load functionalities

06:10

Thomas Finished the editor controller with movement and
gizmos for transforming objects, started working on
the spline gizmo

05:51

Date: Monday 21.03.2022

Name Description Duration

Endre Meeting with client about progression of project,
talked about which tasks to focus on

01:32

Henrik Client meeting and small meeting afterwards 1:25

John Ole Client meeting 01:30

Thomas Client meeting and project planning 1:30

17

Date: Tuesday 22.03.2022

Name Description Duration

Endre Added new issues and started new sprint with
group, finished emergency trigger box, started
research on networking

05:21

Henrik Worked on converting the content browser and
object placement tool to c++

06:30

John Ole Continued working on SaveManager 06:14

Thomas Porting spline behaviour into in-game editor,
working on collision for mosue interaction in C++

06:34

Date: Wednesday 23.03.2022

Name Description Duration

Endre Added doxygen comments to signal related code
files, did more research on multiplayer and online
identity system to handle logins

06:44

Henrik All of the content browser functionality is set up
exept the dragging of object to the scene

06:50

John Ole Mostly research into how to best store objects and
its values within SaveManager

06:49

Thomas Researched and read documentation for collisions 2:26

Date: Thursday 24.03.2022

18

Name Description Duration

Endre Spent most of the day on lecture and meeting with
supervisor, spent some time on requirements
specification

00:46

Henrik Iterated over the requirement specification 01:13

John Ole Supervisor meeting and worked on requirement
specification

01:00

Thomas Had a lecture and supervisor meeting before quickly
iterating on the requirements specification

01:14

Date: Friday 25.03.2022

Name Description Duration

Endre Fixed weird bug with doxygen file comments,
continued researching various online and multiplayer
systems in unreal

06:46

Henrik Continued on the browser content, but encountered
issues with the drag and drop functionality, had to
make additional files for this

06:40

John Ole Implemented ways of storing Actor data into
save-manager

05:58

Thomas Fixed the bug where the railway did not register
collisions, and started implementing in-game
manipulation of spline points

05:45

Date: Monday 28.03.2022

19

Name Description Duration

Endre Merged MVP branch into main, helped team with
some programming bugs and issues, found plugin for
REST calls from unreal, started learning about UIs
and menus to create login screen

06:50

Henrik Worked on the raycast from the viewport to the
ground, encountered several problems with this

07:00

John Ole Worked on loading data from the save files and
updating their respective object/Actor

03:16

Thomas Made the railway interactable in the editor mode,
started working on manipulating spline points

06:37

Date: Tuesday 29.03.2022

Name Description Duration

Endre Did some research about online authentication,
worked on requirements specification and status
rapport 2

06:19

Henrik Finished raycasting and placing objects, plus cleaned
up the code

John Ole Added a SaveableActor class which is inherited by
Actors that is being saved, and is done to filter out
which actors is saved

05:37

Thomas Worked on implementing exposed spline points for
railway manipulation

06:02

Date: Tuesday 31.03.2022

20

Name Description Duration

Endre Mostly finished with login ui, started testing
VaREST plugin and how to use it properly, had
meeting with supervisor

04:29

Henrik Merged funtionality from editor mode, savestate and
content browser together. Bug fixed, and made it
work together

07:30

John Ole Supervisor meeting and Worked on merging save and
load level with model placing tools and continued
working on Spawning saved Actors

06:57

Thomas Supervisor meeting, had to research about collisions
in Unreal and worked on gizmo handling

06:43

Date: Friday 01.04.2022

Name Description Duration

Endre Continued work on auth api in unreal, working on
gameinstance to store data, encountered and tried to
fix unreal engine crash

06:54

Henrik Continued working on integrating the functionalities.
Got done with the editor mode, and savestate
needed more work from own branch

07:47

John Ole Loadgame now spawns actors from savegame into
the scene and fixed an issue where the game would
crash when saving after running for a while

06:55

Thomas Reworked the system for handling multiple gizmos
along the railway

06:22

Date: Monday 04.04.2022

21

Name Description Duration

Endre Spent a lot of time trying to fix error with unreal
engine and corrupted blueprint which stopped
progress, tried downloading and compiling the
engine from source, eventually found a backup to
corrupted file. Finished prototyping auth, can log in
to Lokfører servers

06:18

Henrik Integrated both editor mode and savegame into the
milestone branch and bug fixed

06:40

John Ole Can now save and load variables from Actors using
SaveGame tag in UPROPERTY(SaveGame)

02:28

Thomas Continued working on interactable points along the
railway, spawning a selectable mesh at each point to
place the gizmo tools

06:29

Date: Tuesday 05.04.2022

Name Description Duration

Endre Had a short scrum meeting before working on other
subjects

00:31

Henrik Cleaned up and commentated the HUD 01:32

John Ole Short Meeting before working on other subjects 00:47

Thomas Worked on another course 0:00

Date: Wednesday 06.04.2022

22

Name Description Duration

Endre Started writing about the development process on
the thesis paper, downloaded and looked around
Unreal Engine 5 for a bit

06:13

Henrik Started writing the fouth iteration of the
requirement specification and continued on the HUD

07:03

John Ole Started working on the Choice of engine section in
the bachelor thesis

06:00

Thomas Wrote about technical design and architecture,
creating ER-diagrams, and helped debugging some
code for the HUD

07:04

Date: Thursday 07.04.2022

Name Description Duration

Endre Converted most auth functionality to c++, should
work but not yet tested

06:37

Henrik Converted main menu to c++ and started to
integrate all functionality and create a basic game
flow. Had some problems with changing the
pawn/controller that controlls the game. Got it sort
of working, but contains small bugs

07:18

John Ole Worked on saving the MapName and to load the
correct save relative to the map opened. Had a
couple of issues where it sometimes would crash on
load but it would only happen in rare occasions.

06:10

Thomas Worked on the editor tools, converting functionality
from blueprint to c++, and worked on system
architecture and entity relationship in the thesis

07:23

Date: Monday 11.04.2022

23

Name Description Duration

Endre Gameinstance now stores data received from login,
can be used across the game to check info about the
logged in user, added comments and some polish

05:56

Henrik Converted the train DMI to c++, added a
gamemode base for the editor and in game playing
mode for the simulator and is currently working on
the game flow.

06:05

John Ole Worked on the bachelor thesis and fixed merge issues 05:36

Thomas Worked on the gizmo tool for working with both
spline points and actors, spawning gizmo meshes for
each spline point to manipulate the spline itself

05:56

Date: Tuesday 12.04.2022

Name Description Duration

Endre Continued writing on the thesis paper 05:49

Henrik Sick

John Ole Worked on bachelor thesis 06:16

Thomas Worked on the editor mode and gizmo tools for the
spline

06:26

Date: Wednesday 13.04.2022

Name Description Duration

Endre Continued writing on the thesis paper 03:12

Henrik

John Ole

Thomas Worked on the first draft of the thesis 02:10

Date: Tuesday 19.04.2022

24

Name Description Duration

Endre Meeting with client 01:37

Henrik Client meeting and wrote logs 03:00

John Ole Had Client Meeting and fixed a bug with loading a
saved train in editor mode. Rest of the day spent
working on other subjects

02:20

Thomas Client meeting and small fixes 02:14

Date: Friday 22.04.2022

Name Description Duration

Endre Started merging functionality between login and
editor branches, usertype from login can now restrict
access to editor functionality

06:00

Henrik Started writing about the methodology in the
bachelor report

07:00

John Ole Started creating a new demo landscape which is
longer than MVPlandscape

07:50

Thomas Wrote on the thesis 05:52

Date: Monday 25.04.2022

Name Description Duration

Endre Writing on the thesis paper and reading other thesis
papers

05:51

Henrik Converted the settings UI to c++ and wrote about
the sprints in the project report. Will create the
ingame menu and change the creation of levels as
well as continueing on the report tomorrow. 05:47

John Ole Finished landscaping the new demo level 05:55

Thomas Worked on writing testing documentation and
adding functionality for deleting objects

06:02

25

Date: Tuesday 26.04.2022

Name Description Duration

Endre Writing on the thesis paper, assisted with creating
the demo level for testing

06:18

Henrik Converted the in game pause menu to c++ and set
up the train and railway for the user testing
scenario. We made a collective decition to drop the
create new scenario use case. Reasoning for this will
be stated in the report.

06:15

John Ole Started adding foliage to the demo level 06:21

Thomas Implemented deletion of objects in the editor mode,
debugged spline bugs

06:35

Date: Wednesday 27.04.2022

Name Description Duration

Endre Added comments and formatting to login code files,
reading other papers

06:10

Henrik Packaged the game, and fixed errors, missing camera
placement for the train on packaging and several
other bugs.

08:03

John Ole Worked on Foliage, packaging the game, fixing errors
and landscaping

07:12

Thomas Worked on debugging the spline a bit, then wrote
about implementation in the thesis

06:42

Date: Thursday 28.04.2022

26

Name Description Duration

Endre Worked on debugging camera problems with
packaged builds

05:11

Henrik

John Ole Wrote about the analysis and helped debugging 06:19

Thomas Wrote about splines, the railway tool and
implementation, helped with debugging

06:30

Date: Friday 29.04.2022

Name Description Duration

Endre Fixed problem with train camera in packaged builds,
system testing and several bugfixes, working on
spline mesh performance

06:02

Henrik Bug fixing editor mode and wrote abour user testing 06:01

John Ole Worked on optimizing the game and finished the
game engine analysis part

04:43

Thomas Wrote on the bachelor thesis, read through some
previous work and other theses, added more images
and code

06:33

Date: Monday 02.05.2022

Name Description Duration

Endre Reintegrated and fixed joystick input to work with
keyboard, merged login branch and started
bugtesting

06:30

Henrik working on fixing the editor mode bug and wrote
about testing and development process in the
bachelor..

06:04

John Ole Worked on the introduction in the thesis 07:01

Thomas Visited the client and performed user tests, wrote
about testing and formatted test results

06:55

27

Date: Tuesday 03.05.2022

Name Description Duration

Endre Did some research into splines, instanced splines and
optimisation, started working on bugfixing

06:09

Henrik Bug fixing and testing the system 06:02

John Ole Worked on the introduction 06:20

Thomas Debugged the latex document errors and wrote more
about user tests

06:26

Date: Wednesday 04.05.2022

Name Description Duration

Endre Countinued debugging, started writing about signal
controller and authentication

06:05

Henrik Bug fixing and system testing 06:00

John Ole Worked on the introduction 06:09

Thomas Debugged editorcontroller and wrote more on testing 06:33

Date: Thursday 05.05.2022

Name Description Duration

Endre Wrote about authentication design, started writing
about signal controller. Reviewed progress on
debugging the upcoming usertests

06:17

Henrik Bug fixing, system testing and writing about
development process

06:30

John Ole Started working on the discussion part, with why we
chose to use git

06:33

Thomas Finished writing about user testing and wrote about
the editor and gizmos in the thesis

06:56

28

Date: Friday 06.05.2022

Name Description Duration

Endre Wrote about central signal controller and packaging.
Debugged latest changes on test build

06:12

Henrik Wrote about system testing 03:30

John Ole Wrote about other substitutes for git we considered
in the discussion

06:51

Thomas Read through implementation and system
architecture in other theses, and wrote about gizmo
implementation

04:09

Date: Monday 09.05.2022

Name Description Duration

Endre Had meeting with client where they tested the
software, wrote about implementation on the thesis
paper

06:41

Henrik Client meeting and wrote about the system testing 03:20

John Ole Client meeting and worked on the thesis, discussion
part

06:33

Thomas Client meeting, and wrote on the thesis 04:19

Date: Tuesday 10.05.2022

29

Name Description Duration

Endre Writing about implementation on thesis paper 06:23

Henrik Wrote about the development process and system
testing

06:20

John Ole Merged foliage changes into LK-19 and continued on
discussion on thesis

06:54

Thomas Worked on figures and models for the thesis paper,
wrote some

06:36

Date: Wednesday 11.05.2022

Name Description Duration

Endre Wrote about implementation of signals, had meeting
with supervisor

06:57

Henrik Changed latex document and corrected errors in the
document. Rewrote some requirement specification
and had a client meeting

07:05

John Ole Supervisor meeting, and worked on the thesis 05:56

Thomas Supervisor meeting, wrote on the thesis and worked
on diagrams

05:58

Date: Thursday 12.05.2022

Name Description Duration

Endre Added missing pictures to implementation, started
writing about login

06:05

Henrik

John Ole

Thomas Worked on another course

Date: Monday 16.05.2022

30

Name Description Duration

Endre Finished writing about implementation of login,
polished some images and code format styling, got
an overview of what work remains with group

07:01

Henrik Wrote about process, HUD implementation and time
usage

07:30

John Ole

Thomas Wrote about code documentation, abstract and
worked on formatting for images, tables, code
snippets and overall structure

07:09

Date: Wednesday 18.05.2022

Name Description Duration

Endre Finishing writing the thesis paper 11:04

Henrik Writing bachelor thesis 11:12

John Ole

Thomas Went through the whole thesis and wrote on the
missing elements

11:46

31

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Arinesalingam, Thomas
Bjerke, John Ole
Heksum, Endre
Karlsen, Henrik Markengbakken

DeskSim v2

Prototyping Train Simulation

Bachelor’s thesis in Programming
Supervisor: Tom Røise
May 2022

Ba
ch

el
or

’s
th

es
is

	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Background
	Problem Area
	Delimitation
	Target Audience
	Group Background
	Project Goals
	Constraints
	Roles
	The Report
	Thesis Clarifications

	Choice of Engine
	Introduction
	Absolute Requirements
	Desired Requirements
	Learning Curve
	Existing Solutions
	Conclusion

	Requirements
	Functional Requirements
	Use Case Diagram: Game Engine

	Development
	Plan
	Process

	Technical Design
	System Architecture
	Application module Architecture
	Network Architecture

	Product Overview
	Menus
	Simulator mode
	Editor mode

	Implementation
	Game flow
	Spline Tool
	Signal controller
	Signals
	Login and authentication
	Editor Gizmo
	Landscape
	Landscape Texturing
	Save Functionality
	User Interface / Heads-Up Display
	Plugins

	Deployment
	Packaging and release
	Setting up the project
	Deployment of documentation

	Testing
	Student User Testing
	Employee User Testing
	Hardware testing
	System Testing

	Discussion
	Evaluation of project goals
	Choice of Engine
	Development Plan and Process
	Version Control System
	Critique
	Further Development

	Conclusion
	Summary
	Final words

	Bibliography
	Appendices
	Source Code
	Project Agreement
	Task Description
	Project Plan
	Clockify Summary
	Code Convention Document
	Requirements Specification
	Meetings and Notes
	Work Logs

