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Abstract 

Microorganisms have been studied extensively since the microscope was invented. Humans 

depend on microbes, whether we choose to utilise them in fundamental research, industry, 

and food production; or whether they are an unavoidable part of our lives, for instance 

through health and illness. Due to their relevance, there are numerous descriptions of how 

these small entities work. However, there are many missing pieces within these 

observations. Much may be due to a long-standing issue preventing us from being able to 

growth most of the world’s known microbes. Without their growth in the laboratory, our 

study of them is strictly limited. This was the case until genome sequencing was developed. 

Today, unfathomable amounts of data are generated on the building blocks of the genetic 

material of hundreds of thousands of organisms. The aim is to interpret the genetic code 

to predict which phenotypic features each organism will express. This may facilitate the 

cultivation of microbes by suggesting its preferred nutrients and conditions. Additionally, 

it can be used to indicate potential applications of the microorganisms. Such genotype—

phenotype association is however highly complicated due to the many levels of regulation 

and interactions happening in all cells. To recreate all these using models and mathematical 

equations is currently beyond our reach. In the meantime, we may use the knowledge we 

have on microbes that have been cultivated successfully to search for patterns between 

their genotypes and phenotypes. If a particular sequence is found often in organisms which 

all have one feature in common, it may imply that this sequence is related to the feature. 

If we then find this same sequence in the genome of another organism which we do not 

know as much about, perhaps it will express the same feature as the other organisms did. 

The aim of this thesis is to demonstrate how existing microbial data can be leveraged to 

predict the features of an organism based on associations made in previous observations, 

and the new organism’s genotype. Microbial data from ten sources is thereby assembled 

into a standardised trait dataset. It consists of 146,767 rows which cover about 126,000 

different microbes on the strain-level, which all have information on at least one of 17 

included traits. Examples are substrate, oxygen requirement, antibiotic resistance, and 

gram staining. Further, the genomes of a selection of organisms were functionally 

annotated. This marked sequences of interest though gene ontology and orthology. 

Genotype—phenotype association was conducted by assessing the relation between the 

annotations and the known outcome of the trait of gram staining. The association was 

quantified through Fisher’s exact tests. Any association with odds ratio over 10 and p-value 

less than 0.001 were considered significant. This means that with a given gram staining, 

the odds are 10 times higher that a particular annotation exists in the genome of the 

organism; and that maximum 1% of the instances may erroneously assume association. 

With these requirements, 4,444 annotation terms were found associated with a particular 

gram attribute. 2,974 terms were associated with gram-negativity, and 1,470 terms with 

gram-positivity. Of these, 1,562 and 159 terms were found exclusively for organisms with 

gram-negative and gram-positive staining, respectively. Several terms were found to 

represent characteristic features of each of the two cell types. These terms were tracked 

in the annotated genomes of three random organisms without a registered gram stain 

attribute in the assembled dataset. For all organisms, the correct gram staining was 

assumed based on the identified associations. Thus the thesis aim was achieved: the 

conducted methodology has demonstrated how existing data may be considered and used 

to form hypotheses for a broad group of microorganisms, and that the association may be 

applied to infer missing phenotypic observations for other microorganisms.  
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Sammendrag 

Mikroorganismer har blitt studert helt siden mikroskopet ble oppfunnet. Mikrober er svært 

viktige for mennesket, enten vi velger å bruke dem innen grunnforskning, industri og 

matproduksjon, eller om de er en obligatorisk del av livene våre, eksempelvis gjennom 

helse og sykdom. Som følge av deres relevans finnes det utallige beskrivelser av hvordan 

de små skapningene fungerer. Det er derimot store mangler blant disse observasjonene. 

Mye skyldes et langvarig problem som fører til at vi kun klarer å dyrke en brøkdel av de 

oppdagede mikrobene. Uten vekst i laboratoriet har vi svært begrensede muligheter til å 

studere dem. Dette var i alle fall tilfelle frem til gensekvensering ble utviklet og utbredt. 

I dag genereres det ufattelige store mengder data som gjengir byggesteinene i 

arvematerialet til hundretusenvis av organismer. Målet er å tolke den genetiske koden for 

å forutse hvilke fenotypiske egenskaper enhver organisme vil uttrykke. Det kan gjøre 

dyrking av mikrober lettere ved at vi kan anta hva slags næring og omgivelser de trives 

best i. I tillegg kan det brukes til å indikere potensielle anvendelser mikrobene kan ha. Slik 

genotype—fenotype-assosiasjon er derimot svært komplisert som følge av de mange 

nivåene av regulering og interaksjoner som skjer i alle celler. Å gjenskape alle disse med 

modeller og matematiske uttrykk er foreløpig utenfor vår rekkevidde. I mellomtiden kan 

vi bruke kunnskapen vi har om mikrober vi har klart å dyrke til å lete etter mønstre mellom 

deres genotyper og fenotyper. Dersom en spesifikk sekvens ofte blir funnet i organismer 

som alle har en egenskap til felles, kan det tyde på at sekvensen har noe med egenskapen 

å gjøre. Om vi så finner denne sekvensen i genomet til en organisme vi ikke vet like mye 

om, kan det antyde at den vil utrykke den samme egenskapen som de andre organismene. 

Målet med oppgaven er å demonstrere hvordan eksisterende mikrobielle data kan brukes 

for å forutse organismers egenskaper basert på mønstre i tidligere observasjoner, og de 

nye organismenes genotype. Mikrobielle data fra ti ulike kilder er dermed blitt satt sammen 

til et standardisert datasett. Det består av 146,767 rader som dekker omtrent 126,000 

ulike mikrober på stamme-nivå, og som alle har informasjon om minst én av 17 inkluderte 

egenskaper. Eksempler er substrat, oksygenkrav, antibiotikaresistens og gram-farging. 

Videre ble genomene til et utvalg organismer funksjonelt annotert. Dette markerte 

sekvenser av interesser ved hjelp av gen-ontologi og -ortologi. Genotype—fenotype-

assosiasjon ble utført ved å vurdere sammenhengen mellom de identifiserte annotasjonene 

og det kjente utfallet av en bestemt egenskap: gram-farging. Assosiasjonen ble tallfestet 

gjennom Fishers eksakte tester. Enhver assosiasjon med odds-ratio over 10 og p-verdi 

under 0.01 ble ansett som signifikant. Dette tilsier at om en gitt gram-farging er kjent, så 

er oddsen 10 ganger høyere for at en spesiell annotasjon finnes i genomet til organismen, 

og at det kun aksepteres feilaktig antakelse av assosiasjon i maksimum 1% av tilfellene. 

Med disse kravene ble 4.444 annotasjonstermer funnet assosiert med en spesiell attributt 

av gram-farging. 2.974 termer var assosiert med gram-negative organismer, og 1.470 

termer med gram-positive. Av disse ble 1.562 og 159 termer funnet eksklusivt for 

organismer med henholdsvis gram-negativ og gram-positiv farging. Flere av disse termene 

viste seg å representere karakteristiske egenskaper for de to celletypene. Disse termene 

ble så etterlyst i de annoterte genomene til tre tilfeldige organismer uten registrert gram-

farging i datasettet. Samtlige organismers gram-farging ble korrekt antatt basert på de 

identifiserte assosiasjonene. Dermed har prosjektets mål blitt oppnådd. Den gjennomførte 

metodikken har understreket hvordan eksisterende data kan sees i sammenheng og brukes 

for å forme hypoteser for en bred gruppe mikroorganismer, og at disse assosiasjonene kan 

anvendes for å utlede manglende fenotypiske observasjoner for andre mikroorganismer.  
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1. Introduction 

During the late half of the 17th century, Robert Hooke published a book in which he 

described observations he had made when studying a selection of objects under a 

microscope. They included plants, hair, a feather, fleas, and a mouldy leather-bound book 

[1]. Upon inspecting the mould under the microscope, Hooke observed: 

“(…) a very pretty shap’d Vegetative body, which (…) shot out multitudes of small long 

cylindrical and transparent stalks, not exactly streight, but a little bended with the 

weights of a round and white knob that grew on the top of each of them (…), but they 

seem’d most likely to be of the same nature with those that grow on Mushroms, which 

they did, some of them, not a little resemble.” 

[2, pp. 125-126] 

This would later be known as the first published description of a microorganism [1]. In his 

next sentence, Hooke goes on to describe the taste and smell of the mould, which were 

“active enough to make a sensible impression on those organs” and were “unpleasant and 

noisome” [2, p. 126]. Further, the vegetative bodies did not seem to catch fire after passing 

them through the flame of a candle “three or four times” [2, p. 126]. Despite these actions 

seeming odd or potentially dangerous today, they capture the essence of human curiosity 

and how it drives scientific endeavours. Almost 400 years later, we still strive to learn more 

about what we see, and in the case of microorganisms; that which we can’t see, in the 

world around us. Although, these days there are more regulations in place to protect the 

environment, health, and safety of involved parties. 

Scientific curiosity is thriving and seeing a steady increase in the number of contributors. 

This is not limited to microbiology, but is also true for fields such as biotechnology, ecology, 

statistics, genomics, and bioinformatics. An important addition to the world since the days 

of Hooke has been computers and the Internet. They enable the generation, analysis, and 

storing of immense amounts of information which is shared among individuals, research 

groups, and institutions. As a result of the availability of additional data, experiences, and 

ideas from all over the world, science is accelerated beyond what was envisioned possible 

just a few decades ago. For instance, we are able to identify cancers by the increased 

presence of a protein [3]; genetically engineer cells to produce desired compounds [4]; 

and acquire the full genome sequence of a human in less than six hours [5]. The limit for 

what is possible to achieve given the time, effort, and resources to do so, is seemingly 

decreasing at a fast pace. Still, there remains central limitations and challenges within any 

field, which cannot be solved simply by generating more data; supposedly. 

1.1. Motivation 

Other than having pretty shapes, weird smell, and some resembling mushrooms, 

microorganisms display many interesting features. They may be viewed as small factories 

that can generate a variety of products, ranging from building materials to nutrients, 

medicines, and even new factories. Some estimate the existence of millions [6], billions 

[7, 8], or even a trillion [9] different microbial species on Earth. Nevertheless, the immense 

variety within the microbiota that is already known, attests to the great diversity and 

potential that remain undiscovered. Learning more about these microscopic entities is of 

great advantage for many disciplines. Medicine, environmental sciences, food production, 

and fundamental research are just a few examples. 

Traditionally, microorganisms have been identified and classified on the basis of phenotypic 

descriptions of their capabilities. Taste and smell might not be as commonly used today, 
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but morphology, such as cell size, shape, and colour; substrates, aerobioses, and 

temperatures required for growth, and metabolic capabilities are all examples of microbial 

features of interest. The generation of these data may be a slow and uncertain process, 

however [10, 11]. A central issue is the instance where a microorganism fails to grow in a 

controlled environment, such as in the laboratory, which is required for their proper study. 

The great plate count anomaly (GPCA) is a notorious issue describing the phenomena that 

within a sample of cells, as few as 0.01% will form colonies when attempted grown by 

regular plating techniques [12]. With so many species still left to study, GPCA is a great 

limitation to the discovery of microbial species and their phenotypic features. 

An important facilitator for the discovery and research of microorganisms is the field of 

genomics. It encompasses approaches that study whole or partial genome sequences [13, 

p. 240]. The field is relatively young but has over the course a century grown from the 

basic concept of a gene as the determinant of inheritable traits, into a sophisticated area 

of research with several subfields and associated disciplines [14]. With modern technology, 

the entire collection of genes present in the deoxyribonucleic acid (DNA) of an organism 

can be determined by reading the order of its constituent bases. Furthermore, the 

development of next-generation sequencing (NGS) techniques enables massive parallel 

procedures that can be utilised to infer many sequences at once both faster, cheaper, and 

more accurately [13, p. 240]. 

Thus the genotype of an organism is remarkably accessible, and genome data for a 

multitude of species is rapidly accumulating. The data may be used to supplement the lack 

of microbial phenotypic descriptions caused by the issues in cultivation. After all, the entire 

organism is designed as per the instructions stored within its genetic code. Genotype—

phenotype association (GPA) denotes the efforts of relating the information contained in 

the genome of an organism to its expressed features [15]. However, we are still not sure 

how the myriad of instructions is expressed and regulated throughout the many levels of 

organisation and interaction present within a cell. Thus how to derive concrete phenotypic 

cues from the millions of bases within a genome remains mysterious. A good starting point 

for understanding the complex systems of cells however, is to refer back to what is already 

known: could we make sense of the already existing phenotypic descriptions of microbes 

and their genotypes? Could the patterns observed within these known species be applied 

to the unknown? 

To make the concept of the present work more intuitive, I would like to present an analogy 

to a seemingly unrelated topic. Most are familiar with what a typical Hawaiian pizza is made 

of: dough, tomato sauce, ham, cheese, and pineapple. Suppose a recipe is found, but its 

title and image are torn off. The recipe calls for dough, tomato sauce, ham, cheese, and 

pineapple. Some may think that this must be a recipe for an inventive new smoothie. Most 

will correctly assume that it is a recipe for pizza, however with some creative liberty 

regarding the addition of fruit. They’ve seen enough recipes for pizza before to recognise 

the dish by its ingredients. Moving from the culinary into the present theme. Most are 

familiar with what a typical gram-negative bacterium is made of: a cell membrane, a thin 

peptidoglycan layer, a large periplasm, and an outer membrane. Suppose a genome is 

found, but we don’t know what organism it is from, or what its characteristics are. The 

genome contains sequences known from other organisms to yield a cell membrane, a thin 

peptidoglycan layer, a large periplasm, and an outer membrane. Some may think this is 

the genome of an elephant, while most will recognise the constituents as characteristics of 

a gram-negative bacterium. They've seen enough such sequences to recognise this cell 

type by its genomic content. 
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To be able to make connections between what a genome contains and the phenotypic 

features it yields, observations from previous studies can be leveraged. Given the many 

contributors and hence the large amounts of data available, it could provide enough 

observations to infer statistically significant patterns between known features. However, 

caution must be expressed when choosing which ingredients to associate with the final 

outcome. For instance, tomato sauce can be used in many other dishes that do not quite 

resemble a Hawaiian pizza. Similarly, genomic contents encoding a cell membrane is not 

unique to gram-negative bacteria; they may be found in any type of cell. 

1.2. Project aim 

This project seeks to combine knowledge and methods from the fields of microbiology, 

systems biology, and bioinformatics, with the aim of exemplifying how existing microbial 

data can be leveraged to supplement the current lack of phenotypic descriptions seen for 

many microorganisms. By utilising known data, connections will be made between two 

feature levels: what is encoded in the organisms’ genome, and the traits they express in 

their phenotypes. 

Known traits of microbial organisms will be collected and regarded as phenotypic features, 

while genomic contents will be represented by the organisms’ functionally annotated 

genome in the form of FastA Amino Acid (FAA) sequences. With information on the two 

feature levels for a large selection of microbes, possible patterns can be inferred in the 

presence of particular genomic contents, and the organisms’ expressed traits. Any potential 

patterns may thus be used to suggest the manifestation of the same traits for other 

organisms displaying the same genomic content. These predictions may be of use in 

various ways, with examples of being early assessments of a cultured microorganism’s 

possible functions, prior to initiating resource-demanding examinations; characterisation 

of microorganismal traits present in an environment given an environmental DNA (eDNA) 

sample; and trait predictions for microorganisms that are yet to be cultured successfully. 

In order to make such a GPA possible, data on species that have been cultured and 

described will be utilised. For this purpose, a dataset will be created to gather and store 

trait data from a variety of resources in a uniform manner. In addition to being of direct 

use in the present work, the assembled dataset aims to be a comprehensive source of 

microbial trait data and exemplify the utility of homogenous sources of biological data. 

Figure 1.1: Analogy of thesis motivation to recognising a pizza recipe: suggesting the final 

result of a recipe (genome) based on what its ingredients (sequences) have been known to make 

previously. 
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2. Background 

In an attempt outline the immense progression seen within scientific communities since 

the days of Hooke, this chapter will provide insight into the current statuses of fields, 

resources, and key techniques relevant for the present project. These include microbiology, 

genomics, and systems biology. Additionally, some current limitations within said fields 

and techniques will be identified in order to exemplify the versatility of the present work. 

2.1. Microorganisms in research 

As the microbiota of Earth has been subjected to study, the interest and appreciation for 

it has but grown. The impact microbes have on humans is immense. Hence the tireless 

efforts of learning more about them. Both the health and disease of humans heavily depend 

on microbes: some are vital to proper digestion, while others are potent pathogens. 

Microbes are important in agriculture, as they can produce key plant nutrients. An example 

is fixation of atmospheric nitrogen into ammonia. Fermentation has been used for 

preservation of cheeses, vegetables, and meats for thousands of years. Industrial 

microbiology sees the utilisation of naturally occurring microorganisms in large-scale 

production facilities for antibiotics, chemicals, and enzymes [16, pp. 44-45]. Hence a large 

diversity of microbes is already well-known and utilised today. Still, considering the 

estimated millions of microbial species existing on Earth [6-9], this known variety may be 

vanishingly narrow compared to the entirety of the undiscovered microbial diversity. 

For fundamental research, simpler microorganisms are often preferred for the study of 

universal cellular structures and functions such as gene expression and regulation. Many 

microbes are also used as tools for efforts like cloning and recombination [15]. There are 

several reasons why microorganisms are more beneficial for these endeavours than 

macroorganisms. Macroorganisms in this case refers to both cells and whole individuals of 

plants, insects, and animals; and even eukaryotic single-celled organisms like yeast. 

Perhaps the most obvious difference, when regarding microbes versus whole animals, is 

their size. Millions of microbes can be maintained on the same area as one larger organism. 

Secondly, the generation times of microbes are generally much shorter than that of cells 

from macroorganisms. A typical bacterial cell divides in less than one hour; yeast requires 

about 1.5 hours; while a mammalian cell may take 18 hours to divide [15]. Hence the time 

required to grow a sufficient number of cells for research purposes is generally significantly 

higher for more complex species. There are points raised regarding the potential rights and 

ethics of microbes, and how humans may not use them entirely as they please without 

concern [17], but the ethical perspectives of using microbes in research are in general 

lesser priorities than those for macroorganisms. Lastly, which is of particular relevance to 

the present work, is the accessibility of genome sequences for many microorganisms. With 

some exceptions, the genomes and number of genes are usually smaller in microorganisms 

than those of higher organisms [13 p. 96]. Their significance for human activities means 

that they are commonly studied, and their genomes often sequenced [18]. 

The very same features that promote the use microorganisms may simultaneously present 

several challenges and limitations to their versatility. The fact that they are small means 

that there is no way of observing their phenotypic features as readily as for 

macroorganisms. To study them, tools such as microscopes or imaging technologies must 

be utilised to magnify the microorganisms. Additional procedures are then required to infer 

any non-morphological information, such as whether the cells tolerate and utilise oxygen 

[19] and what metabolites they may produce [20]. Furthermore, the fast growth of many 

species may even be a disadvantage. The emergence of mutations that may alter the 
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research subject [21] and overgrowth preventing accurate colony counts [22] are two 

examples. Conversely, the GPCA is a prevalent issue in microbial cultivation that currently 

has no clear solution. It will be regarded further in Subsection 2.1.2 (p. 7). 

There are several matters of microbes that are irrelevant to macroorganisms. A central 

feature like this is the phenomena of horizontal gene transfer (HGT). It denotes the transfer 

of genes between cells through other means than the regular vertical inheritance from a 

mother cell to its daughter [16, p. 69]. HGT is facilitated by the presence of a mobilome: 

genetic elements which are not confined to the genome of an organism. Examples include 

plasmids, which are DNA molecules distinct from the main chromosome that usually 

harbour genes for non-vital functions [16, p. 40]; transposons: elements that uses 

transposase enzymes to relocate within and between DNA molecules; and prophages, 

which have sequences originating from a viral infection [16, p. 291]. Thus some sequences 

of DNA can relocate within the organism’s genome, but they may also spread to another 

cell entirely. As a consequence, the genetic material of the receiving microorganism can 

change dramatically without the need for a single cell division. 

To be able to accurately detect DNA originating from another source, the two organisms 

must be phylogenetically distant enough for there to exist notable differences in their 

genetic contents [16, p. 290]. HGT may not compromise the association of particular traits 

to genetic content, however. Even if an organism containing a transferred gene does not 

have the corresponding feature recorded, this is likely also the case for much of its 

vertically inherited genomic content. Rather, the prospect of HGT and derived phenotypic 

features as a result of it, challenges several existing definitions commonly used for 

macroorganisms. Thus before the remaining background on microbes in research may 

continue, select concepts and terminology must be approached with particular care. 

2.1.1. Terminology: traits and attributes 

In the simplest definitions of the word, a “trait” is a specific characteristic of an individual 

which may be determined by genes, environmental factors, or a combination of the two 

[23]. It is broad and seemingly covers all features of any organism as long as it is linked 

to the individual level. Hence originally, there is no room for referring to the traits of a 

community of species, or the traits of an environment. Still, this has been widely done 

throughout the past decades, for instance in the many subfields of ecology [24]. Examples 

include the use of “trait” for characteristics of both morphological features (individual level) 

and soil nutrients, canopy height, and vegetation cover (ecosystem level) [25, 26]. This is 

an unfavourable use of the term “trait” because the characteristic of the immediate 

environment is rarely due to the contributions of just the organism in question. While an 

organism, be it a plant or a bacterium, may affect its environment for instance by the 

depravation of some nutrients and the excretion of others, there are likely other organisms 

present that do the same through their own traits. By attributing all these ecosystem 

changes as a “trait” of just one organism, its capabilities are incorrectly suggested, thereby 

compromising its accurate description. Thus the term “trait” should be reserved for the 

characteristics limited to the organism itself, and not to any higher level of organisation. 

Furthermore, a distinction is made for a particular subcategory of traits. Already in 1859, 

Charles Darwin described that inherited variations of structure are important, whether they 

result in slight or considerable physiological changes [27, p. 12]. He goes on to suggest 

that not all features (“contrivances”) seen in nature will suit our “ideas of fitness” [27, p. 

472]. This is the basic notion of “functional traits”. These affect the physiology of an 

organism in such a way that it may change its ability to survive, namely its fitness relative 
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to other individuals [28]. Functional traits are therefore often of particular interest when 

regarding an organism’s phenotype, as it provides a direct way of measuring fitness. 

Despite these definitions generally being readily applicable, there are limitations to their 

adoption for microorganisms. Of the most pressing is that of HGT. As described in Section 

2.1 (p. 5), this feature enables microbes to derive new functionalities through lateral gene 

transfers from other cells. This challenges the current terminology due to the possibility of 

these additional features impacting the fitness of the receiving organism. For instance, a 

bacterium will increase its fitness if it acquires genes for antibiotic resistance through HGT 

[30]. Thus the organism’s inherited variations and its implied fitness is altered, effectively 

changing which traits should be considered functional within the course of just one cell 

generation and independently of vertical gene transfer. 

A potential solution to the issue of functional microbial traits is provided by Lajoie et al. 

[28]. They highlight that no trait is constant, attesting the need for further specification of 

the terminology. An example utilising their suggestion is that of a plant, which does not 

always have the trait of “green leaves”. The leaves are non-existent until the plant sprouts, 

and they may turn yellow during autumn. Still, it does not mean that the trait of having 

such leaves is non-existent in the plant. Rather, its current state or environment does not 

allow their manifestation. The same concept applies to microorganisms. A bacterium may 

be capable of nitrogen fixation, but the momentary phenotype of the cell will depend on 

whether there is atmospheric nitrogen available. If none is present, no fixation will occur; 

but the organism is still able to metabolise nitrogen if the environment changes. Hence a 

trait will manifest itself differently throughout an organism’s lifetime and in varying 

conditions. To account for the variations seen for any trait, the term “attribute” can be 

used to refer to its particular modality at any given time or place [28]. As a result, any 

derived functionality of a microorganism through HGT may merely pose a change in the 

attribute of a trait, for instance from “antibiotic-susceptible” to “antibiotic-resistant”. 

Summarising the possible terminology suitable for regarding the phenotypic characteristics 

of microorganisms, “trait” may be defined as a characteristic of an individual determined 

by its genotype and/or environmental factors. “Functional traits” are those that impact an 

organism’s ability to survive. Lastly, an “attribute” is the value or modality taken by a trait 

at a given time or place and may vary. Thus the study of microbial traits may be free of 

terminological limitations, so that its practical issues may be of focus once more. 

2.1.2. The great plate count anomaly 

Recalling the benefits of using microbes in research and other human activities, most such 

endeavours require the organisms of interest to grow. Examples include the isolation of 

potential food-borne pathogens from a product; maintaining a strain used in fundamental 

research; or growing colonies which can be used for phenotypic characterisation of a novel 

species. Failed attempts at cultivation of an organism of interest might be due to incorrect 

plating techniques; contamination and out-competing by other species [15]; or other 

human errors. Other instances of lack of growth are more difficult to explain. 

The GPCA is a phenomenon characterising the difficulty in growing microbes in controlled 

environments. It is estimated that only 1% of microbes are culturable [29], and even then, 

a sample containing a million cells may not yield more than 100 colonies [12]. There are 

several suggested reasons to the GPCA. A central one regards the conditions provided by 

the growth medium and how it may not successfully mirror the natural environment of the 

organism. This could for instance be by lacking essential nutrients and growth factors [30]. 

Still, there are documented instances where previously cultivated species present in a 
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sample still fail to grow into cultures [31, 32]. Thus despite the use of an appropriate 

medium, no growth may be achieved. Another possible reason to the GPCA is the presence 

of damaged or viable but non-culturable (VBNC) cells. These may be detected though 

various nucleic acid-based techniques but will not to form colonies when incubated [33].  

Nevertheless, the lack of growth as a result of GPCA limits our ability to study the expressed 

traits of many organisms. This issue diminishes discoveries of many microbes’ possible 

applications and utility. Introducing minuscule changes to the utilised media through trial-

and-error in an attempt to adjust the conditions to yield growth, is a time-consuming and 

resource-demanding process. It may not be feasible at all if the microorganismal source is 

limited due to only a few cells being isolated from an inconvenient location. Thus alternative 

approaches have been adopted to circumvent the issue of GPCA. Attempting to learn more 

about an organism without requiring its prior cultivation may, in some cases, eliminate the 

need for cultivation entirely. However, it is of most use if the inferred features could aid 

future efforts in cultivation. The next Subsection will thus regard some microbial traits that 

are of particular interest to investigate through culture-independent techniques. 

2.1.3. Microbial traits of interest 

By applying the terminology and considering the issue of GPCA presented in the previous 

Subsections, it is possible to more accurately infer microbial traits that are of particular 

interest. This is of direct relevance to the present work through the aim of creating a 

dataset of microbial traits. However, the dataset must contain other data categories, such 

as organism name, taxonomic classification, and other supporting information. These must 

not be confused with “traits”. Additionally, because traits are limited to the individual level, 

any characteristics detailing the features of the isolation source of an organism is not 

relevant in the present work. The isolation source itself is not a trait either, seeing as it is 

not determined by the organism’s genes or environment. Still, it is an important piece of 

supporting information that may be used to describe the currently known microbial 

diversity. Hence its relevance for the present work and its dataset. For the same reason, 

growth temperature has also been regarded as relevant supporting information. 

As suggested in Chapter 1 (p. 1), the motivation of the thesis is to exemplify the use of 

existing data to supplement the current lack of phenotypic descriptions due to issues in 

cultivation. Traits central to growth are therefore in high regard. An example is the 

nutrients an organism uses. These may be represented both by the substrates it needs for 

its main metabolic tracks, and essential compounds present in the culture medium, such 

as vitamins and cofactors [15]. Further, an organism’s tolerance and requirement with 

respect to oxygen is also pivotal, seeing as erroneous oxygen supply may prevent the 

growth of the desired species. By gathering information on these traits relevant for growth, 

the dataset may facilitate the identification of patterns between known genotypes and 

traits on growth requirements. The patterns may then be applied to the genotypes of 

uncultured organisms in order to make educated suggestions as to their preferred growth 

conditions; directly facilitating cultivation efforts and the further study of the organisms. 

In addition to facilitating their cultivation, the GPA methodology may also be utilised to 

infer on other traits not related to growth. Such trait attributes could supplement traditional 

assays for determining phenotypic features. Potential traits include metabolic capabilities 

such as trophy (generalising the organism’s source of carbon, nitrogen, energy, etc.), 

enzyme activity, and produced compounds; growth rates, and clinically relevant traits such 

as pathogenicity and antibiotic susceptibility. Learning more about these traits may indicate 
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whether the microbes have any particularly interesting features, thus aiding the decision 

of whether substantial efforts should be made to develop their cultivation procedures. 

In addition to traits on growth and metabolism, a good candidate trait for GPA is gram 

staining. It is a common way of classifying bacteria, enabling the differentiation between 

two main types of cellular envelopes based on their reaction to certain reagents. Being 

able to tell whether a cell is of either type reveals several details on their structure and 

functionality. A cell responding to the staining may be gram-negative or gram-positive. 

Fig. 2.1 conveys the central characteristics that differ gram-negative from gram-positive 

bacterial cell walls. Notably, both types contain an inner membrane and some 

peptidoglycan. This is a polymer structure providing mechanical strength to the cell. It is 

made by chained units of glycan tetrapeptide, which constitutes of two alternating residues 

made from glucose, in addition to various amino acids. The strength provided by 

peptidoglycan is due to peptide cross-links between the chains. Exactly how these links are 

formed varies between the two gram-stain attributes as well [16, p. 79]. 

 

  
 

Gram-positive cells usually contain several layers of peptidoglycan. The layers cross-link 

and yield an even stronger barrier between the cell’s interior and its environment. As a 

consequence, the space between the cell membrane and the subsequent layers is usually 

smaller in gram-positives. An additional feature of gram-positive cell walls is that they 

often contain teichoic acids embedded within them (not depicted in Fig. 2.1). These have 

several functions, for instance to anchor the prominent peptidoglycan layer to the 

underlying cell membrane [16, p. 80]. On the other hand, the gram-negative envelope 

contains other components that are absent from its gram-positive counterpart. The outer 

membrane is the most prominent such structure, acting as a second phospholipid bilayer 

with additional inserted components. Lipopolysaccharides is one such type of component, 

providing additional features to the cell, such as toxicity to many animals [16, p. 82]. 

A benefit of using gram stain to describe cells is the generalisation of a large group of 

organisms into either “positive” or “negative”. However, not all species have a gram-stain, 

and some do so variably, thus complicating the generalisation. Still, gram staining is a 

Figure 2.1: Differences between a gram-negative and a gram-positive cell envelope. The 

circles above the illustrations depict how each cell type appears after gram staining, as a 

consequence of their differing cell wall structures. Adapted from [75, 76]. 
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highly unambiguous phenotypic feature. Few other traits can be interpreted as clearly. This 

is often due to a trait’s high number of possible attributes and the lack of a well-established 

system for organising them. There are potential solutions to this limitation, which will be 

explored further in Subsection 2.3.4 (p. 14). 

2.2. Databases 

With the exponential increase in available data on microorganisms, the past decades have 

seen the creation of several repositories for storing biological data. They have central roles 

in archiving, maintaining, and sharing information derived in the myriad of research efforts 

performed around the world. Although genome sequencing was a major motivator for the 

creation of the first big biological databases [34], more and more disciplines see the need 

for more sophisticated solutions for storing their growing collection of data. 

There are thousands of databases and datasets on biological information. They range from 

datasets of particular focus, such as single genera [35, 36] or metabolic functions [37]; to 

repositories aiming to collect data on a wide variety, such as features for many different 

types of organisms [38-40]. Thus the diversity of content available is immense, which is 

beneficial for the great variety of applications such data may have. However, a prominent 

issue is the varying ways the data may be presented. To be able to relate the information 

present in one database with that of another, it is central that an organism is identified 

similarly. The use of standardised naming conventions and identifiers, such as taxonomy 

identifiers, help this effort. Although not all sources or data entries follow these standards. 

This is especially true for organisms with sub-species classifications such as strain, biovar, 

and serovar. It is also affected by non-semantic differences, such as the inclusion of several 

strain designations or different symbols in the organism names [41, 42]. 

Another factor that may diminish the versatility of databases, is their varying data formats. 

This might be true both for continuous data categories, such as temperatures and growth 

rates; categorical fields, like trophy and metabolism; and some fields which are usually 

unstandardised, with isolation source and medium composition as examples. Subsection 

2.3.4 (p. 14) will present a potential solution to the issue of unstandardised biological data. 

2.2.1. Current databases on microbial data 

As the present work seeks to exemplify the use of existing microbial data for GPA, large 

amounts of phenotypic data must be accessed. A comprehensive overview of biological 

databases is provided by Nucleic Acids Research [43]. Of notable mention is also works 

such as that of Madin et al. [44], who in 2020 considered and integrated bacterial and 

archaeal trait data from 26 sources. This Subsection mentions a few prominent databases 

of microbial data in order to demonstrate how repositories may be structured and utilised. 

The Bacterial Diversity database (BacDive) [38] promotes itself as a leading database for 

standardised prokaryotic data. It utilises different data sources and methodologies for 

integrating microbial data, and thus contains many entries and a variety of information 

and trait fields. On October 11th 2021, the database contained 82,892 entries; a total which 

increased by an additional 6,653 entries until May 5th 2022. It is updated regularly and 

continues to grow to maintain its status as a prominent data source. Its data is readily 

available through a web interface. The data download process is less accessible, however. 

Bergey’s Manual of Systematics of Archaea and Bacteria [45] has been one of the main 

providers of descriptions on the known microbial diversity for almost a century. 

Nevertheless, the information is embedded in text descriptions for each organism and is 
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thus not readily accessible for computers and automated processes [44]. There have been 

previous efforts of extracting data from the manual [44, 46]. Still, such approaches do not 

capture all the information stored within the text-based entries. Until better text-mining 

approaches are developed, or human curation is applied, much of Bergey’s information is 

out of reach for simple data downloads and automated processes. 

The Joint Genome Institutes (JGI) Genomes OnLine Database (GOLD) [47] is a maintained 

collection of genome projects. JGI reports on more than 380,000 organisms from over 

350,000 sequencing projects and 45,000 studies [47]. Its main focus is genome 

sequences. However, the entries also contain metadata. These include select trait fields 

and supporting information, with gram staining, oxygen requirements, and isolation 

sources as examples. 

The Microbe Directory (TMD) [39, 48] is a relatively young repository for microbial 

information. It does not yet compete with the larger databases in terms of species 

coverage. However, the trait fields it reports are highly standardised and computer-

friendly. Several categories have only two attributes and are reported with binary values. 

This trade-off from particularity to generalisations may not be suitable for all endeavours. 

For the present work, it facilitated custom attribute selection and merging of trait fields. 

2.3. Leveraging biological big data 

The previous Sections highlighted the use of microorganisms in research, and how large 

amounts of their phenotypic data is made available through various repositories. This 

Section first draws attention to the genotypic information acquired through genome 

sequencing techniques. Further, it seeks to highlight some of the scientific fields and 

approaches that utilise this information to learn more about the cell as a complex biological 

system. Lastly, some central tools for the use and analysis of big biological data are 

detailed, and their relevance to the present work is disclosed. 

2.3.1. Sequencing and genomics 

Since the introduction of the concept of genes and genomes in 1909 and 1920, respectively 

[14]; and the determination of the double-helical structure of DNA in 1952 [49], the field 

of genomics has revolutionised our perception of the word and its living constituents. The 

fundamental processes of life are studied extensively. A few examples are genome 

replication for cell division; transcription and translation of genes into proteins following 

the central dogma of molecular biology [13, p. 79]; and the concepts that challenge the 

central dogma, such as reverse transcription [16, p. 312] and functional ribonucleic acids 

[13, p. 85]. Utilising the concepts and components from these basic cellular functions, 

techniques have been developed to remake genomes in vitro and infer the order of its 

building blocks, namely the nucleotides adenine, cytosine, guanine, and thymine. 

Following the age of the initial Sanger technique, new methods for sequencing have been 

developed. They have massively improved the time, cost, accuracy, and lengths of the 

inferred sequence reads. Next generation sequencing (NGS) such as Illumina [50] and Ion 

Torrent [51] allow for massive parallel sequencing using multiple copies of the fragmented 

target DNA. So-called third-generation techniques, with Nanopore [52] and SMRT [53] as 

examples, further improve on these techniques and can sequence a whole DNA strand in 

one go [13, p. 264]. Combined with development in data science and bioinformatics for 

processing and analysis of the generated data, the acquisition and study of genomes is 

now simpler and more accessible than ever. 
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With the study of genomes as a whole, rather than studying one single gene at a time, 

genomics seeks to deduce the functions of and interactions between stretches of the 

genome sequence. Examples include searches for related sequences in the genomes of 

different organisms; identifying coding and non-coding regions; and determining 

consensus sequences for common motifs, such as promoters and binding sites. The 

complexity of these concepts and their interactions have resulted in entire new research 

fields, with metagenomics and systems biology as prominent examples [13, p. 285-6]. The 

relevance of the latter field for the present project is explored in the next Subsection. 

2.3.2. Genotype—phenotype association 

As may be inferred, genomics has come a long way in unravelling how “life works”. Still, 

there are many questions left unanswered. One such pivotal question is whether the 

acquired genotypes can be used to predict an organism’s phenotype. A long sought-after 

approach has been to systematically collect data in order to sufficiently simulate how a cell 

processes information and gives rise to specific features through its responses [14]. This 

approach is convoluted by the complexity of biological systems. For instance, not all 

changes to a gene results in an altered phenotype. Further, the presence of a gene in the 

genome does not guarantee its expression. The many levels of regulation and organisation 

in a cell result in an intricate set of interactions where it is a rarity that one component 

single-handedly results in one specific outcome [13, p. 85]. 

Appreciation for this complexity is the essence of systems biology. According to this 

paradigm, it is not possible to model the behaviours of a complex system by a reductionistic 

approach of only considering the functions of individual constituents. Interactions between 

the components yield emerging properties which cannot be inferred from any one 

component alone [54]. Notably, this does not eliminate the prerequisite of knowledge on 

the system components [55]. Applied to the case of GPA, this entails that simply studying 

the genes present in an organism’s genome will not successfully capture the intricacy of 

its resulting phenotype. Studying biological systems is therefore no easy feat, and some 

refute the possibility of modelling such complexity altogether [56]. In essence, this might 

be true: a model may never equal the concept which it is based on, but this does not 

render them futile. Rather, they help increase understanding for the system until additional 

pieces of the jigsaw puzzle is uncovered; either that be information on the components 

themselves or the interactions between them [55]. 

Until these figurative jigsaw puzzle pieces have been located, the present work seeks to 

utilise data that already has been systematically collected to infer phenotypic features 

based on genomic contents. In its simplest approach, such an attempt at GPA does not 

seek to uncover the mechanisms that ultimately determine how an organism’s genotype 

results in its observed traits. Rather, it only needs to identify patterns between genotypes 

and phenotypes that have already been observed and reported on. These originate from 

the biological system and thus have applied these mechanisms themselves, independently 

of our understanding of them. Recalling the Hawaiian pizza analogy from Chapter 1 (p. 3), 

there was no mention of the instructions of the recipe. Acknowledged, the instructions are 

vital to a successful dish, and they would have helped identify the recipe. Still, the existing 

pattern of “pizza” inferred from the listed ingredients was so apparent that the instructions 

were unnecessary. Similarly, a GPA may be attempted on the basis of so many 

observations that the pattens between genotype and phenotype become equally apparent. 

The next Subsection details whether it is possible to ensure the correctness of any such 

inferred patterns. 
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2.3.3. Fisher’s exact test 

The motivation of the present work is to infer GPA patterns between genomic contents and 

phenotypic features of microorganisms. For this, Fisher’s exact testing can be used. The 

test is based on a hypergeometric distribution in which a population of individuals is divided 

depending on categorical data [57]. Given a feature which either is or isn’t present within 

an individual, the population is divided in two groups: those with (𝐴) and those without (�̅�) 

the feature. Another categorical feature is present in the same population, again dividing 

the population in two groups (𝐵 and �̅�). Considering both features at once, the population 

has effectively been divided into four: those with both features (𝐴𝐵), those with just the 

first (𝐴�̅�), those with just the second (�̅�𝐵), and lastly, the individuals with none of the 

features (�̅��̅�). The exact test may be used to see whether the distribution of individuals 

among the four groups indicate any dependencies between the two features. For instance, 

it will indicate whether an organism with known feature 𝐴 is more likely to also display 

feature 𝐵 [58]. The null hypothesis ℎ0 states that there is no such pattern, while the 

alternative hypothesis ℎ1, states that there is [59]. 

Odds ratio (OR) is an unconditional maximum likelihood estimate measuring association 

between an exposure (𝐴, �̅�) and an outcome (𝐵, �̅�). It is calculated as shown in Eq. 1 [60]: 

𝑂𝑅 =
𝑎𝑏/�̅�𝑏

𝑎�̅�/�̅��̅�
⁄       (1) 

where 𝑎, �̅�, 𝑏, and �̅� denote the number of individuals within the groups 𝐴, �̅�, 𝐵, and �̅�, 

respectively. The resulting OR informs on both the direction and magnitude of the 

association. It may be normalised by log10-transformation (further denoted as 𝑂�̃�) for more 

intuitive interpretation. Eqs. 2-4 [60] present the meaning of the test’s possible outcomes: 

𝑂𝑅 <  1 ↔    𝑂�̃� = log(𝑂𝑅) < 0:  𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑙𝑜𝑤𝑒𝑟 𝑜𝑑𝑑𝑠 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒    (2) 

𝑂𝑅 = 1  ↔    𝑂�̃� = log(𝑂𝑅) = 0:  𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑎𝑓𝑓𝑒𝑐𝑡 𝑜𝑑𝑑𝑠 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒     (3) 

𝑂𝑅 > 1  ↔    𝑂�̃� = log(𝑂𝑅) > 0:  𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑑𝑑𝑠 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒    (4) 

Thus the normalised 𝑂�̃� indicate the direction of the association by its sign, and the 

magnitude by its absolute value. Not all associations may be of interest, however, even 

with a non-null magnitude. To only consider the strongest associations, a minimum 

threshold such such as ||𝑂�̃�|| > 1 may be set. This means that for an association to be 

regarded, the odds of a particular outcome must be at least 10 times higher when a 

particular exposure is given. Whether the null hypothesis should be rejected in favour of 

the alternative, depends on the significance probability (p-value) of the association. Only 

if the chance of erroneously rejecting the null hypothesis with a similarly extreme 

distribution is sufficiently low, should the inferred association pattern be accepted [59]. 

The p-value is corrected by false discovery rate (FDR) to account for multiple testing [61]. 

For the present work, the population is represented by the microorganisms in the dataset. 

The categories dividing the population into groups is the presence of a given trait attribute, 

and the presence of a particular genomic sequence. In the case of gram staining, and by 

disregarding the gram-variable and non-gram staining organisms, the population is divided 

into gram-negatives and gram-positives. The four resulting groupings of microorganisms 

are thus gram-negatives with and without a particular genomic sequence; and gram-

positives with and without said genomic sequence. 

As an example, consider a dataset with 1000 organisms. 600 are gram-negative, and 400 

are gram-positive. Their genotypes reveal that 300 contain a sequence known to represent 
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a   particular  family of enzymes.   Of  these   300;   70  are   gram-negative   and  230  

are gram-positive. The distribution, represented in a contingency table, will be as follows: 

 𝒈𝒓𝒂𝒎 − 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒈𝒓𝒂𝒎 − 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆
𝒉𝒂𝒔 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 230 70

𝒍𝒂𝒄𝒌𝒔 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 170 530
 →     𝑂�̃� = log (

230

70

170

530
⁄ ) ≈ 1.011 

In the example, the odds of an organism having a genotype which includes the enzyme 

family in question is over 10 times higher when it is known that the organism is gram-

positive. The FDR-corrected p-value for this distribution is less than 0.001, thus the 

association is considered significant. This enzyme family may therefore be important for 

the phenotypic outcome of gram-positive staining. Thud the same sequence is found within 

any other genotype; it may indicate that this organism is gram-positive as well. 

The provided example highlights how known data for 1000 organisms could be utilised to 

associate genotype with a phenotypic trait. In the case gram staining, the interpretation 

of the test results is relatively straightforward due to only two unambiguous gram stain 

attributes being utilised. This may not be the case for other microbial traits, as was 

explored previously (Subsections 2.1.3 p. 8, and 2.2 p. 10). The next Subsection details a 

possible solution to this issue: namely with systems for organising biological concepts. 

2.3.4. Ontologies 

As the insight into molecular biology, genomics, and related fields have deepened through 

decades of unrelenting research, the amount of available biological information has 

increased exponentially. Along with the need for large databases to store the acquired 

data, efforts have also been needed to coordinate the acquired knowledge and concepts. 

Without some level of order, the myriad of information is hard to navigate and thus of 

limited use. Ontologies provide a way of systemising knowledge through hierarchies of 

terms: from generalised concepts and down branch nodes representing the most particular 

biological details. One such system is Gene Ontology (GO), which is exemplified in Fig. 2.2. 

 

GO serves as a controlled vocabulary and framework of biological concepts focused on the 

roles of genes and proteins [63]. In practice, it constitutes of three separate hierarchies: 

biological process (BP), cellular component (CC), and molecular function (MF). As of May 

13th 2022, there are just over 28,000 BP, 11,000 MF, and 4,000 CC terms in GO. Thus it 

is a well-established and extensive ontology, providing terminology which can be used to 

unambiguously refer to particular processes, functions, and components within cells, 

independently of which organism is regarded. The hierarchical structure also facilitates 

generalisation of concepts by referring to parent nodes. Of particular note is that a GO 

term may have several parent terms, as is true for “cell wall biogenesis”. GO is thus a 

Figure 2.2: Demonstration of a Gene Ontology network, using the example child term “cell wall 

biogenesis” (right), which is generalised up to the top node “biological process” (left) through several 

levels in the hierarchy. Adapted from [62]. 
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“loose” hierarchy. This entails that a term may appear at different distances from the top 

node depending on which path is taken. For instance, moving along the top path in Fig. 

2.2 (p. 14) leaves “cell wall biogenesis” at four edges away from the top node of BP. The 

bottom path counts only three edges. As a consequence, the generalisation may differ 

depending on the chosen network path. 

Other frameworks for conceptualising biological information are the Kyoto Encyclopaedia 

of Genes and Genomes (KEGG) Orthology (KO) [64, 65], and Clusters of Orthologous 

Genes (COG) [66, 67]. As their names indicate, they are not true ontologies. Orthology 

refers to the phenomenon in which genes found in different species have the same function, 

and where this is because they are descended from the same gene in the organisms’ last 

common ancestor [16, p. 427]. Because the genes have the same function, they can be 

described by the same term independently of which organism they are found in. 

KO terms focus on molecular functions that have been manually defined based on KEGG 

networks. It is a hierarchical system with several top nodes that branch down into over 

58,000 particular functions found within the database [64]. Notably, KO is a strict 

hierarchy, meaning that a node has no more than one direct parent. Additionally, there is 

only four levels to the KO hierarchy, which yield fewer and more generalised parent 

categories compared to those of GO. The COG system is even more extreme on this matter. 

It is the smallest terminology hierarchy of the three mentioned, with the official database 

listing about 5,000 terms. They are loosely organised into 26 parent categories, yielding 

just two levels in the hierarchy. Any generalisation will thus see the direct application of 

one of the 26 top nodes. Despite offering a simple way of summarising COG terms, all 

details are lost when considering that the vast diversity of cellular functions is generalised 

into only 26 terms; the largest two of which are “Function unknown” and “General function 

prediction only”. Thus the COG system is less established than the two former hierarchies. 

The ability to clearly define a vocabulary of terms simplifies the task of describing biological 

features. Miscommunication is limited and automated processes for data management is 

facilitated. Several commonly reported microbial data categories would benefit from the 

implementation of ontologies. Examples include isolation source, substrate, and growth 

medium. Many databases often see rather creative descriptions of these largely string-

based data fields. Examples include the reported isolation sources: “wastewater of an acidic 

water neutralization facility, Water temperature, salinity and pH of the wastewater sample 

were 18°C, absence of salinity and pH 7.0, respectively” [68], and “a bacterial mat 

dominated by Epsilonproteobacteria growing on a black smoker hydrothermal chimney 

within the Loki's Castle hydrothermal vent system at a depth of 2350 m” [69]. Such entries 

are very informative when read and curated by humans. However, because they do not 

follow any structure, the information is largely unavailable for other approaches. 

Additionally, there is no simple way of comparing such reports across data sources. With 

an ontology for isolation source however, these descriptive retellings could be represented 

by lists of standardised terms, increasing their accessibility. 

There are ontologies developed for reporting traits, such as Ontology of Biological 

Attributes [70], ecoCore [71], and Ontology of Microbial Phenotypes [72]. However, the 

benefits of established terminology may only apply if it is agreed upon and actively utilised 

by relevant parties. Currently, no such trait ontology is widely applied by microbial data 

repositories [72]. Thus until such ontologies are employed by the wider microbiology 

community, those seeking to gather homogenous microbial data must usually conduct any 

necessary standardisation procedures or conversions into ontologies themselves. 
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3. Methods 

This chapter details the methodology conducted in the present work. The first Section 

describes the creation of a microbial trait dataset. It includes the description of the 

downloading and preparation of multiple sources of microbial information; and their 

assembly into one homogenous dataset. The second Section regards how the genomes of 

a selection of the organisms included in the trait dataset, were accessed and annotated. 

The final Section regards the GPA analysis of the collected data and its demonstrated 

application for inferring phenotypic attributes for other microorganisms. 

3.1. Microbial trait dataset 

In order to circumvent the issue of microbial trait data being scattered across multiple 

sources and data formats, the first major task of the present work was to gather trait data 

from various data sources and present them in a homogenous manner. The following 

Subsections detail the procedures of accessing, cleaning, and reviewing the content of 19 

sources for microbial trait information. Further, a selection of these were assembled into 

one homogenous dataset. The final Subsection details how a selection of the organisms of 

this dataset was extracted to a reduced dataset for the subsequent GPA methodology. 

3.1.1. Data download and cleaning 

To assess which sources of microbial trait information to utilise in the present work, the 

number of organisms (coverage) and the relative number of data reports  of select 

categories (completeness) in various data sources were compared. All relevant data were 

therefore downloaded and partially cleaned so that their formats aligned sufficiently for 

this comparison. In addition to the conducted procedure detailed for each data source, 

select categories were standardised to ensure homogeneity across datasets. Table 3.1 

summarises the terminology applied to the datasets of the present work; listing the 

possible values each field could contain in their original datasets, and the standard to which 

they were formatted. 

 

Table 3.1: Data standardisation scheme. Select fields of reported data were changed to the 

presented standard to ensure homogeneity across datasets. 
 

Fields Original data values New data values 

Type strain, extremophile, 

antibiotic susceptibility 

yes, y, 1 yes 

no, n, 0 no 

Gram stain 

positive, positiv, pos, p, +, 1 positive 

negative, neg, n, -, 0 negative 

variable, var, +/-   variable 

Indecisive NaN 

Oxygen requirement (…)-ic      (…)-be (…)-ic 

Trophy (…)-troph, (…)-trophic (…)-troph 

Growth temperature 
x-y x,y 

x°C  x° x 

Incubation period 

x days x 

x-y x,y 

>x x, 

<x ,x 

 

The raw datasets from the utilised sources are all available in Supplementary information 

1 (Appendix A, p. 85), while Supplementary information 3 (App. A) contains the prepared 
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datasets. Scripts utilised in this Subsection are included in Supplementary information 2. 

If nothing else is specified, the datasets were prepared using terminal commands and 

Microsoft Excel (ver. 2203) [73] and its built-in functions. Semicolons are used as column 

delimiters in all files produced throughout the project work. 

3.1.1.1. BacDive 

BacDive [38] enables downloading of select data through their website interface. In lack 

of a setting for selecting all entries, a search querying “Type strain: no” or “Type strain: 

yes” in the Advanced Search was conducted. All entries (82,892 as of October 11th 2021) 

were then returned and could be added to the Download Selection in chunks. Custom 

export comma-separated value (CSV) files were generated by checking the fields in the 

Download Section of BacDive as indicated in Table 3.2. The files are included in 

Supplementary information 1 (App. A, p. 85). 

 

Table 3.2: Data fields from BacDive, which were downloaded and cleaned for assessment. 
 

Category Field Renamed field 

Name and taxonomic classification 

ID_strains bacdiveID 

genus genus 

Species name species 

Strain designation strain 

Type Strain typeStrain H 

Morphology Incubation period incubationDays H 

Culture and growth conditions 
Culture medium medium 

Temperature growthTemp H 

Physiology and metabolism 

Name of produced compound 

producedComp Metabolite (production) 

Production 

oxygen tolerance oxygen H 

Nutrition type trophy H 

Metabolite (utilization) substrate 

Metabolite (physiological) assay 

Enzyme, Enzyme activity R 

reducedEnzAct 

increasedEnzAct 

variableEnzAct 

Isolation, sampling, and 

environmental information 
Sample type/isolated from source 

Sequence information Genome seq. accession no. genomeAccNo 

External links Culture collection no. cultureNo 
H homogenised        R reformatted 

 

From the output files, the data columns mentioned in Table 3.2 were extracted. A new 

column with the full name was created from the combined genus, species, and strain name. 

Where no strain name was available, the culture collection number was used. To ensure 

homogeneity, data values in select categories (marked H in Table 3.2) were changed to 

follow the standard described in Table 3.1 (p. 17). 

Based on the BacDive entry IDs, rows representing the same organism were merged. For 

string-based fields (isolation source, growth medium, and produced compounds), all 

unique field values across rows with the same ID were combined with a vertical slash (“|”) 

delimiter. For instance, three entries of Acetobacter orleanensis (ID 8) had reports of 

respective isolation sources “beer”, “beer”, and “belgian bottle beer”. The combined cell 

thus reads “beer|belgian bottle beer”. For numerical fields such as incubation duration and 
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growth temperature, the merged cell displays the range of values represented in each 

column. For A. orleanensis, four rows reporting growth temperatures (in °C) of 28, 30, 25, 

and 30 yields a merged cell reading “25,30”. Notably, this is different from a report of 

“25|30”, which does not indicate a temperature range. 

The data fields enzyme and enzyme activity (marked R in Table 3.2, p. 18) were 

reformatted. In their original structure, one enzyme and its respective activity level was 

indicated per dataset row, yielding near duplicate entries for organisms registered with 

several enzymes. To reduce the number of rows to one per organism entry, and 

simultaneously eliminate dependency across columns, separate lists were made for the 

names of enzymes with each type of activity level: decreased, increased, and variable. For 

instance, Actinotignum schaalii (BacDive ID 145) had several original enzyme entries and 

activity levels, such as “decreased alkaline phosphatase”, “increased alpha-galactosidase”, 

and “variable pyrazinamidase”. The reducedEnzAct column for this organism thus reads 

“alkaline phosphatase”; the column increasedEnzAct contains “alpha-galactosidase”; while 

“pyrazinamidase” is found within the variableEnzAct column. 

Missing data entries were left as empty cells. Lastly, all instances of semicolons were 

substituted by commas as to not interfere with column delimitation.  

3.1.1.2. Bergey’s 

Microbial trait data from Bergey’s Manual of Systematic Bacteriology [45] were retrieved 

through the prepared data file “bergeys.csv” (Supplementary information 1, App. A, p. 85), 

originally acquired from Madin et al. [44]. The dataset was reported to have been extracted 

from text-based entries of the original repository. Table 3.3 details the data categories 

from the mentioned file utilised in the dataset of the present work. 

 

Table 3.3: Data fields from Bergey’s considered in the present work. 
 

Field Renamed field 

tax_id taxID 

genus genus 

species_name speciesStrain M 

source source 

doubling_h doublingH H 

metabolism oxygen H 

H homogenised      M modified 
 

All other data fields than those mentioned in Table 3.3 were removed. For 77 entries, part 

of the organism’s name was enclosed by square brackets to indicate classification 

uncertainty. The brackets were removed and a new column, named misclassified and data 

points set to “yes”, was created to indicate the uncertainty for the relevant entries. The 

full organism names from the speciesStrain field were utilised to create two new columns 

for the species and strain names, respectively. Data values in select fields (marked H in 

Table 3.3) were changed to follow the standard described in Table 3.1 (p. 17). Lastly, 

missing data entries across all columns were changed from “NA” strings to empty cells. 

3.1.1.3. Campedelli 

In Campedelli et al. of 2018 [35], growth conditions for 196 type strains of the Lactobacillus 

genus were studied. Madin et al. [44] manually extracted the growth data from the article 

and produced a standardised dataset, “campedelli.csv” (Supplementary information 1, 

App. A, p. 85). From this prepared file, data on organism names and oxygen requirements 
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was extracted. A separate field for the genus was created from the full organism names, 

and the oxygen requirements were ensured to follow the set standard of Table 3.1 (p. 17). 

3.1.1.4. Corkrey 

In 2016, Corkrey et al. [74] reported growth conditions and kinetics of 661 

microorganisms. Their data was accessed and prepared by Madin et al. [44], yielding a 

single dataset for the taxonomic, growth, and reference information for each entry. Table 

3.4 summarises the fields extracted from this prepared file and utilised in the present work. 

 

Table 3.4: Data fields from Corkrey utilised in the current dataset. 
 

Field Renamed field 

tax_id taxID 

org_name speciesStrain 

growth_temp growthTemp H 

metabolism oxygen H 

trophy trophy H 

doubling_H doublingH H 

reference ref 
H homogenised 

 

A separate field was created for the genus names extracted from the full organism names. 

The values in the four trait columns (marked H) were standardised according to Table 3.1 

(p. 17) to ensure homogeneity. Lastly, missing data points were left as empty cells. 

3.1.1.5. FAPROTAX 

The Functional Annotation of Prokaryotic Taxa (FAPROTAX) (ver. 1.2.4) [77, 78] was 

downloaded and reformatted through the script in the Jupyter Notebook (ver. 3.6.0) [79] 

“faprotax_reformat.ipynb” (Supplementary information 2, App. A, p. 85). Operations 

include the separation of metabolic function, organism names, and references from the 

original single column into three; adding and removing groups of organisms from select 

functions according to database entry instructions; and removing entries without 

taxonomic information at the species level. From the full organism names, separate 

columns for genus; genus and species; and stain names were created. Missing data entries 

were left as empty cells, and all semicolons were substituted by commas. 

3.1.1.6. IJSEM 

The International Journal of Systematic and Evolutionary Microbiology (IJSEM) phenotypic 

database (ver. 3) [80] was downloaded, and the data columns in Table 3.5 were extracted. 

 

Table 3.5: Data fields from IJSEM utilised in the current dataset. 
 

 

 

 

 

 

 

 

Field Renamed field 

Genus name genus M 

species name species M 

strain name strain M 

Habitat source 

article doi ref 

oxygen preference oxygen H 

Metabolism assays assays 

Sole carbon substrate use substrate 

reference ref 
H homogenised      M modified 
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In addition to data standardisation in accordance with Table 3.1 (p. 17), other modifications 

of the raw file were needed to ensure homogeneity in the dataset. Firstly, four organism 

names were changed. One entry with a digital object identifier (DOI) as its genus name, 

“10.1099/ijs.0.006320-0” , was changed to “Bradyrhizobium” [81]. Another entry had 

genus, species, and strain names of “10.1099/ijs.0.02424-0”, “Thalassolituus”, and 

“oleivorans”, respectively. The latter two were shifted to their correct taxonomic level, 

while the strain name was left blank. A third entry had genus and species names 

“Mycobacterium gordonae” and “Mycobacterium paragordonae”, respectively. The latter 

name was kept as per the entry reference [82]. Finally, the name of one entry was changed 

from “Plasticicumulans not yet known; article proposed: Plasticicumulans lactativoran YDT 

(=DSM 25287T=NCCB 100398T )” to the proposed name. 

Secondly, the genus name was included prior to the species name in the species column. 

Any mention of the genus and species names was removed from the strain column, leaving 

only the strain name. A separate column for the full organism names was created by 

combining the genus, species, and strain names. Based on the full organism names, 

matching rows were merged with “|” as a delimiter between unique trait data. Missing data 

points were left as empty cells, and semicolons within cells were substituted by commas. 

3.1.1.7. JGI GOLD 

JGI GOLD [47] in its entirety was provided by its authors to Madin et al. [44], yielding the 

file “gold.csv” in Supplementary information 1 (App. A, p. 85). Table 3.6 summarises the 

select trait categories from this prepared file that were utilised in the present work. 

 

Table 3.6: Data fields from JGI GOLD utilised in the current dataset. 
 

 

 

 

 

 

 

Entries on Homo sapiens and viruses were removed, as were entries without information 

on at least one of the three trait categories included in Table 3.6. Three rows (organisms 

Pseudomonas aeruginosa Habs 0, Stenotrophomonas maltophilia 810-2, and 

Stenotrophomonas maltophilia RH 1168) in the dataset were corrupted. Here, no taxonomy 

ID was reported, and other data points did not separate correctly due to the use of different 

delimiters. Taxonomy IDs were supplemented [83, 84] and the data points were manually 

distributed to the appropriate columns. Fields for genus, strain and full organism names 

were created. Using the full organism names as key, rows on the same organism were 

merged and unique datapoints joined in one cell was separated by “|” delimiters. Data 

values in the columns oxygen and gram were changed according to Table 3.1 (p. 17) for 

homogeneity across datasets. Finally, missing data points were changed to empty cells, 

and all semicolons were substituted with commas to avoid further delimitation issues. 

3.1.1.8. Kremer 

In 2017, Kremer et al. [85] quantified and reported growth conditions and kinetics for 194 

phytoplankton species, including growth rates at specified temperatures. The dataset 

“lno10523-sup-0008-suppinfo8-1.csv” (“kremer_data.csv”, Supplementary information 1, 

Field Renamed field 

tax_id taxID S 

org_name species 

STRAIN strain 

metabolism  oxygen H 

gram_stain gram H 

isolation_source source 
H homogenised       S supplemented 
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App. A, p. 85) contains several data categories, with accompanying descriptions in the file 

“lno10523-sup-0005-suppinfo5-1” (“kremer_description.txt”, Supplementary information 

1). The fields specified in Table 3.7 were extracted from the data file. 

 

Table 3.7: Data fields from Kremer considered for the current dataset. 

 

 

 

 

 

A separate column was created for the genus names. Using the full organism names as 

key, rows were merged and observations for each column were joined in one cell separated 

by “|”. No data points were missing; thus any particular set of growth rates and 

temperatures have the same index in their respective cells. 

3.1.1.9. Mason 

Growth rates of various bacterial species was reported by Mason [86]. From the original 

publication, Madin et al. [44] extracted the data and updated the organism names to the 

current standard of National Centre for Biotechnology Information (NCBI) (raw file in 

Supplementary information 1, App. A, p. 85). For the present work, the updated names 

were mapped to the original Mason dataset. Where no updated NCBI name was found, the 

original report was used. Data on growth medium, temperature, generation time, and entry 

references were extracted and changed to follow the standard of Table 3.1 (p. 17). The full 

organism names were used to create separate columns for genus; genus and species; and 

strain names. The generation times (minutes) were reformatted to doubling time (hours) 

by division with 60. Identical organism entries (true for two organisms in the dataset, 

Corynebacterium pseudodiphtheriticum and Pseudomonas syringae) were merged with “|” 

as a separator between unique trait attributes. Missing data points were left as empty cells. 

3.1.1.10. MediaDB 

From the “growth_data” table in the MediaDB database [87, 88], the columns described in 

Table 3.8 was extracted. 

 

Table 3.8: Data fields from MediaDB considered for the current dataset. 
 

 

 

 

 

 

 

The genus name was added prior to the species name in the species column. A new column 

combining the genus, species, and strain names was created. With the full organism names 

as key, rows for the same organism were merged and unique data values in each column 

were joined in one cell with “|” as a separator. One entry, Escherichia coli B834(DE3), was 

deleted due to having no reports for either trait. Growth temperature data were changed 

Field Renamed field 

Name speciesStrain 

Environment source 

Temperature growthTemp 

R growthRate 

Ln_rT growthRateLnCorr 

Field Renamed field 

Genus genus 

Species species M 

Strain strain 

Growth_Rate growthRate 

Temperature_C growthTemp H 

H homogenised     M modified 
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to follow the same standard as previous datasets (see Table 3.1, p. 17). Missing data points 

were left as empty cells. 

3.1.1.11. Moore 

The growth data from the study of Moore et al. [36] was provided to Madin et al. [44], in 

which the observations were standardised (Supplementary information 1, App. A, p. 85). 

From this prepared dataset, organism names and doubling time (hours) were extracted for 

the present work. From the full organism names, separate columns were created for genus; 

genus and species; and strain names. 

3.1.1.12. The Microbe Directory 

From the full database of TMD [39, 48], the categories listed in Table 3.9 were extracted. 

 

Table 3.9: Data fields from TMD utilised in the current dataset. 
 

 

 

 

 

 

 

 

All entries with names containing “virus” were removed. From the full organism names in 

speciesStrain, the genus; genus and species; and strain names were inferred and placed 

in three separate columns. The binary columns indicating extremophiles and antibiotic 

susceptibility were standardised as specified in Table 3.1 (p. 17). The columns of animal 

and plant pathogenicity were merged into one, and the original binary values were replaced 

by categorical values “plant” or “animal” in accordance with the reported pathogenicity. 

3.1.1.13. Nielsen 

In 2006, Nielsen [89] studied and reported on size dependency of growth rates for species 

of cyanobacteria and green algae. The data is not publicly available, but was provided to 

Madin et al. [44], from which a dataset was produced (Supplementary information 1, App. 

A, p. 85). From this file, a separate column with the organism genus names was created. 

Ten unique organism entries without a specified species name were removed. Lastly, rows 

representing the same organism were merged with “|” as a separator between data entries 

for each cell in the columns reference, type, growthRate (d−1), and size (μm). Associated 

data across the three columns thus kept the same index, enabling extraction of particular 

sets of observations from the combined rows. 

3.1.1.14. Pasteur 

The Biological Resource Centre of the Pasteur Institute provides a catalogue of 

microorganisms [40]. From their web interface, entries on Bacteria were queried and 

exported. The columns listed in Table 3.10 (p. 24) were extracted for use in the present 

work. 

  

Field Renamed field 

genus genus 

species speciesStrain 

gram_stain gram H 

microbiome_location source 

extreme_environment extremophile H 

antimicrobial_susceptibility abSusceptible H 

animal_pathogen R 
pathogenicity 

plant_pathogen R 
H homogenised        M modified        R reformatted 
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Table 3.10: Data fields from Pasteur utilised in the current dataset. 
 

 

 

 

 

 

 

 

 

Entries with no data for any of the selected traits were removed. From the full organism 

names in the speciesStrain column, the genus and species names were inferred and copied 

to two new, separate columns. Changes in data values to ensure homogeneity across 

datasets (see Table 3.1, p. 17) were conducted in the columns on growth temperature and 

oxygen requirement. Additionally, data points which only informed on carbon dioxide (CO2) 

conditions within the oxygen column were deleted. Lastly, entries with the same full 

organism names were merged, and unique data points from each row were joined in a 

single cell with “|” as data separators. 

3.1.1.15. PATRIC 

The Pathosystems Resource Integration Centre (PATRIC) [90] provides a dataset file 

named “genome_metadata” in the resource’s FTP server [91]. This file was downloaded 

and the organism taxonomy ID, name, gram stain and oxygen requirement (columns 

indices 4, 2, 55, and 62, respectively) were extracted using terminal commands as listed: 

 

 $ wget ftp://ftp.patricbrc.org/RELEASE_NOTES/genome_metadata 

 $ awk -F ‘\t’ ‘{print $4";"$2";"$55";"$62}' genome_metadata > patric.csv 

 

The resulting raw data file “patric.csv” is provided in Supplementary information 1 (App. 

A, p. 85). The full organism names were cleaned for heading and tailing special characters. 

Names enclosed by square brackets, indicating classification uncertainty, were resolved 

through literature searches: [Clostridium] mangenotii TR was updated to Clostridioides 

[92]; [Eubacterium] cylindroides ATCC 27803 to Faecalitalea [93]; while [Scytonema] 

hofmanni UTEX 2349 was not updated [94]. All brackets were subsequently removed from 

these entries. The full organism names were utilised to create separate columns for genus; 

genus and species; and strain names. Gram and oxygen requirement fields were changed 

to follow the standard of Table 3.1 (p. 17). Missing data entries were reformatted to empty 

cells and lastly, rows without trait information were deleted. 

3.1.1.16. PhyMet2 

From the Phylogeny and Metabolism of Methanogens (PhyMet) database (ver. 2, PhyMet2) 

[37] of Michał et al. [95], the columns described in Table 3.11 (p. 25) were exported into 

a CSV file. 

  

Field Renamed field 

Taxonomic name speciesStrain 

Reference équilibre cultureNo 

Type strain typeStrain H 

T° of incubation in C° growthTemp H 

Bibliography ref 

Isolated from source 

Genotype genes 

Atmosphère incubation oxygen H M 

link medium composition medium 
H homogenised     M modified 
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Table 3.11: Data fields from PhyMet2 considered for the current dataset. 
 

 

Separate columns were made for the genus and full names of the organisms. Gram stain 

data were homogenised as indicated in Table 3.1 (p. 17). The substrate growth 

requirements were merged into one column. For this purpose, the values in the 19 columns 

on specific nutritional compounds were first modified from “1” to the compound name. A 

similar substitution of “1” values by category name and subsequent column merging was 

conducted for the six isolation environment columns. Lastly, missing data points were 

changed from “no data”, “not applicable”, and “not indicated” to empty cells. 

3.1.1.17. ProTraits 

The atlas of Prokaryotic Traits (ProTraits) [96] allows downloading of its database from a 

web interface [97]. Table 3.12 summarises the columns extracted for use in the dataset. 

 

Table 3.12: Data fields from ProTraits utilised in the current dataset. 
 

 

The speciesStrain column was utilised to create separate fields for genus; genus and 

species; and strain names. A column indicating misclassification was created and assigned 

“yes” for 33 entries with bracket-enclosed names, from which the brackets were 

subsequently removed. For the column gramStain, instances of “1” were changed to 

“positive", and “0” to “negative”, as per the standardisation procedure in Table 3.1 (p. 17). 

For other columns with binary data values, instances of “1” were substituted by the column 

Field Renamed field 

Name species 

Type strain strain 

Gram reaction gram H 

Min. growth requirements 

substrate Additional growth requirements 

19 compounds * R 

5 environments ** R 

source 
Other environment R 

Main publication ref 
H homogenised       R reformatted 
 

* 1-butanol, 2-butanol, isobutanol, 2-propanol, acetate, butanol, carbon monoxide, cyclo-pentanol, 

dimethylamine, dimethyl sulfide, ethanol, formate collections, H2+CO2, H2+methanol, methanol, 

methylamine, propanol, propionate, and trimethylamine. 
 

** Intestinal tracks, reactor, soil, volcanic, and water. 

Field Renamed field 

Organism_name speciesStrain 

Tax_ID taxID 

109 compounds * R substrate 

2 ecosystems * R 

source 

14 ecosystem categories * R 

18 ecosystem types * R 

20 ecosystem subtypes * R 

5 specific ecosystems * R 

44 known habitats * R 

7 habitats* R 

11 hosts * R 
R  reformatted 

* see columns in the raw data file protaits.csv with prefix identical to each respective field name 
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name, such as “ethanol” and “hostAssociated”. Instances of “0” and “?” were substituted 

by empty cells. Lastly, columns were merged as indicated in Table l, with “|” as a separator 

between values from the included cells. 

3.1.1.18. RefSeq 

From the GenBank [98] flat files stored in the assemblies of The Reference Sequence 

(RefSeq) FTP (file transfer protocol) server [99, 100], Madin et al. [44] extracted select 

data categories into a CSV file (Supplementary information 1, App. A, p. 85). From this 

prepared file, the organisms’ taxonomic identifiers, names, and isolation sources were 

extracted for use in the present work. Separate columns were created for the full; genus; 

genus and species; and strain names, and entries without isolation source data were 

removed. 

3.1.1.19. Vieira-Silva 

Vieira-Silva et al. [101] reported data from their study on generation times  for 214 

microbial species in their Supplementary Table S1, available in Supplementary information 

1 (App. A, p. 85) of the present work. From the table, columns on organism names, 

minimum generation time (d), and optimum growth temperatures (OGT) were extracted 

and changed to follow the standard detailed in Table 3.1 (p. 17). The full organism names 

were used to generate separate columns for genus; genus and species; and strain names. 

3.1.2. Comparison of source datasets 

Following the download and initial cleaning of the data sources described in the previous 

subsection, the coverage of the 19 datasets were compared. The notebook 

“initial_overview.ipynb” (Supplementary information 2, App. A, p. 85) assembles an output 

file with the same name (Supplementary information 4) that lists the fields present in each 

dataset; the number of non-NaN entries for each field; and their completeness relative to 

the coverage of the relevant dataset. Based on a visualisation of the dataset coverages 

with Tableau Desktop (ver. 2021.3.1) [102], the largest datasets were selected for further 

utilisation. 

3.1.3. Trait dataset assembly 

To join the selected datasets, the notebook “dataset_assembly.ipynb” (Supplementary 

information 2, App. A, p. 85) was utilised. First, all column headers were standardised to 

the same naming convention. The datasets were concatenated, and a new column named 

‘database’ indicated the source dataset for each entry. Four new columns were introduced 

to standardise the full, genus, species, and strain names of the entries. Indicators of 

taxonomic level (“sp.”, “subsp.”, and “str”.), special characters (|!"#%&/()[]{}=+?'*-

_.:,~^°), and spaces spaces were removed, and all letters were adjusted to lowercase. 

In the same script, the content of the assembled dataset was plotted in three ways. First, 

the output file “assembledDataset_fieldCoverage_plottable.csv” (Supplementary 

information 4) was used to create a stacked bar chart to convey the total number of non-

NaN data entries for each field within the dataset, and how many entries each source 

dataset contributed with. Secondly, the unique data values and their frequencies in each 

data category were inferred and saved to the file “assembledDataset_statistics.csv” 

(Supplementary information 4). Tableau Public was used to create the visualisations, using 

both pie charts and histograms. Third, the standardised organism names were used as 

keys to plot the overlap between datasets on genus-, species-, and strain-level 

organisation using the UpSetPlot package (ver. 0.6.0) [103, 104], based on the prepared 

file “category_coverages.csv” (Supplementary information 4). Similar figures were used to 
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plot overlapping trait data entries between datasets, measured on strain-level 

organisation. The visualisations of category overlaps were considered when a selection of 

trait dataset rows was merged, as will be described in the next Subsection. 

3.1.4. Preparing a reduced trait dataset 

To limit the scope of the subsequent GPA methodology and reduce the amount of genotypic 

data to gather and process, both the number of organisms and included trait categories 

were reduced in a copy the assembled dataset. In order to qualify for this “reduced dataset” 

that would be used in the second part of the project, any entry had to fulfil two 

requirements. Firstly, the entry had to contain data for at least two of three traits of 

particular interest: gram stain, oxygen requirement, and substrate usage. Secondly, the 

entry had to have an annotated genome in FastA amino acid (FAA) format available within 

the NCBI FTP server through either the GenBank [98] or the RefSeq [100] repository. 

Hence the column genomeAccNo, functioning as an identifier for a particular organism and 

its genome assembly, was also included in the reduced dataset. 

To ensure that trait reports from all data sources were considered for each organism, select 

rows within the reduced dataset were merged prior to filtering the dataset by the two 

described conditions. Entries on the same organism from different datasets were merged 

based on the standardised full organism names, with unique trait values originating from 

different rows being merged into one cell with “|” as a delimiter. From the genomeAccNo 

column, the first GCA (GenBank) or GCF (RefSeq) accession number was extracted to a 

separate column to increase accessibility. No additional changes were introduced in the 

cells of the substrate column. For the trait columns on gram stain and oxygen requirement, 

conflicting reports from different data sources required resolving before proceeding. 

As an example, three datasets reported on the gram staining for Lactobacillus rhamnosus: 

two reports of gram-positive staining, and one report of gram-negative. The value was 

changed to the observation which a majority of reports agreed on. In the instance of L. 

rhamnosus, the value was thus set to “positive”. Where no majority was present, literature 

searches were conducted to decide the gram stain. For oxygen requirements, the 

observation with majority amongst the reports was also utilised. Where no majority was 

present, but all reports agreed on either aerobic- or anaerobic-related terms, the most 

general of the included terms was chosen. If both aerobic- and anaerobic-related terms 

were reported for an organism, the oxygen requirement was marked as “conflict”. In the 

example of L. rhamnosus, the reported oxygen requirements were “aerobic”, 

“microaerophilic”, and “facultative aerobic”. These are all terms indicating aerobicity. 

Hence the observation was changed to the most general term, “aerobic”. Following the row 

merging, the first condition for inclusion in the reduced dataset was enforced by removing 

entries which did not contain data in at least two of the three trait columns. 

The second condition of having an genome sequence in FAA format in NCBI was enforced 

using the genome accession numbers of the trait-filtered entries. The accessions were used 

to map each dataset entry to their respective assemblies by referring to NCBI’s overview 

of prokaryotic entries within their FTP server (“ncbi_prokryotes.txt”, Supplementary 

information 5, App. A, p. 85) [105]. The GCA FTP address matching an entry’s accession 

number was added to a new column in the dataset. The corresponding GCF FTP address 

was added to a second column by copying the GCA column and substituting the links’ two 

instances of “GCA” with “GCF”. All links were given the suffix “_protein.faa.gz” so that they 

led to the direct download page of the assembly’s zipped genome FAA file. The FTP links 

were extracted to text files “protein_links_all_GCA.txt” and “protein_links_all_GCF.txt” 
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(Supplementary information 6). With the scripts “protein_links_check_GCA.sh” and 

“protein_links_check_GCF.sh”, the links in each file were sorted depending on whether 

they led to an existing genome file, with successful links being saved to the files 

“protein_links_GCA.txt” and “protein_links_GCF.txt” (Supplementary information 6). The 

dataset was thus filtered to only keep entries with successful FTP links. Finally, the entries 

meeting both criteria were exported to the final reduced dataset, “reducedDataset.csv” 

(Supplementary information 7). 

3.2. Genome sequence annotation 

The previous Section described the assembly of a trait dataset of microbial phenotypic 

information from several data sources, and the extraction of select entries and data fields 

to a reduced dataset which would be used in the second part of the project. The next step 

of the present work was to gather data on genotypic contents. The next Subsections 

describe the methodology for obtaining the genomes and their functional annotations. 

3.2.1. Genome downloads 

With the reduced trait dataset containing direct links to the NCBI assembly genome FAA 

files, the scripts “get_proteins_GCA.sh” and “get_proteins_GCF.sh” (Supplementary 

information 6, App. A, p. 85) were utilised to download the FAA files from the FTP servers 

of GenBank and RefSeq, respectively. The two sets of downloaded genomes, each with 

files numbered from 1 to 3307, are available in Supplementary information 8. The script 

“compare_protein_counts.py” utilises BioPython’s SeqIO package (ver. 1.76) [106] to 

compare the number of sequences included in the GCA- and GCF-retrieved genomes, and 

returns the results in the file “comparison_GCA_GCF.csv”. For genomes where the 

sequence count was at least 15% larger for GCF-entries, the RefSeq-acquired genomes 

were utilised rather than their GenBank GCA equivalent. The preferred genome for each 

organism was kept for functional annotation. The same key used for the genomes (1-3307) 

was introduced to the corresponding entries in the reduced trait dataset, in order to 

facilitate the subsequent connection between collected traits and annotation results. 

3.2.2. Functional annotation 

Following the downloading of the genomes for the entries of the reduced trait dataset, 

functional annotation was conducted to discover genomic characteristics stored within the 

FAA files. The annotations were conducted using the eggNOG mapper (ver. 2.1.7) [107] 

based on eggNOG orthology data [108] and sequence searches utilising DIAMOND protein 

alignment [109]. Through submission of a job array (“slrm_prot_anno.sh” in 

Supplementary information 9)  to NTNU’s high performance computing cluster Idun [166], 

the annotation process was automated so that each job in the array handled one genome. 

Each FAA file was unzipped, submitted to eggNOG for annotation, and rezipped. The 

annotation output (emapper.annotations files) were placed in a separate directory 

(raw_annotations in Supplementary information 9) for subsequent processing. 

The script “anno_extract.sh” (Supplementary information 9) was used to obtain select 

columns from the eggNOG-generated annotations: COG, GO, and KO terms. For each 

annotated genome, the term columns were extracted into three respective files along with 

the genome key (1-3307). The result was thus three two-column files (“COG_extract.csv”, 

“GO_extract.csv”, and “KO_extract.csv” in Supplementary information 9) listing the 

genome key and its associated annotation terms. The three lists were further prepared 

with the notebook “annotation_term_overview.ipynb”. Included in the tasks within this 

script is the cleaning of annotation terms and column reformatting to yield one term per 
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dataframe row, producing the final annotation overviews “terms_COG.csv”, 

“terms_GO.csv”, and “terms_KO.csv” (Supplementary information 9). With Matplotlib (ver. 

3.3.4) [110], the notebook plots the frequencies of terms across the annotated genomes. 

3.3. Genotype—phenotype association 

Previous Sections within this Chapter detailed the assembly of a dataset of microbial traits, 

and the functional annotation of genome sequences representing the genotypes of a 

selection of these organisms. Knowing what genomic contents are present within the 

organisms and which phenotypic traits they exhibit; the remaining methodology seeks to 

exemplify how these data can be used to infer patterns between the two feature levels. 

Of focus for demonstrating GPA was the trait of gram staining. The reasoning behind this 

choice is based on its number of reports in the dataset (sample size) and limited number 

of possible attributes (simplicity). This choice is detailed further in Subsection 5.3.1 (p. 

61). The notebook script “fisher_gram.ipynb” (Supplementary information 10, App. A, p. 

85) was utilised to first filter the reduced trait dataset by removing organism entries with 

“variable” or no registered gram strain. The filtered dataset was merged with each of the 

three annotation files containing COG, GO, and KO terms, respectively. In the resulting 

dataframes, terms with frequencies in less than 5% or more than 95% of the genomes 

were removed. Contingency tables were subsequently created and assigned to a new 

column in each dataframe. For each entry, the 2x2 contingency table listed the number of 

entries with each possible gram stain value (positive p or negative n) that either had (h) 

or lacked (l) the given annotation term: [[𝑝ℎ, 𝑛ℎ], [𝑝𝑙, 𝑛𝑙]]. 

To test the null hypothesis stating hypergeometric distribution among the four groups in 

the contingency table; meaning there is no association of a particular term for any 

particular gram stain trait, Fisher’s exact tests were utilised. With the SciPy statistical 

functions module (ver. 1.6.2) [111], the contingency tables were submitted to the exact 

tests. Resulting OR were normalised by log10-transformation (denoted 𝑂�̃�), and values with 

infinite magnitudes were set to a threshold outside the 𝑂�̃� range (‖3‖). The p-values were 

FDR-corrected using Statsmodels (ver. 0.12.2) [112]. Volcano visualisations (ver. 2.0.8) 

[113] were created for each of the three term classes, plotting 𝑂�̃� against corrected p-

values with respective significance thresholds of 1.0 and 0.01. The resulting dataframes 

(“fisher_*.csv” files) are available in Supplementary information 10 (App. A, p. 85). 

Different procedures were conducted to increase the readability of the produced results, 

and all are contained in part in “term_visualisation.ipynb” (Supplementary information 11, 

App. A, p. 85). Firstly, the three term classes were all divided into four based on whether 

the terms were significantly associated with either gram stain attribute (“significants”); 

and whether they were found exclusively in genomes of organisms with a particular 

attribute (“exclusives”). An overview of the distribution across these four categories 

(“significant_count.csv”, Supplementary information 11) was plotted in the same 

notebook. 

Each COG term was generalised into its parent category using the overviews provided by 

NCBI’s FTP COG server: “cog-20.def.tab” [114], and “fun-20.tab” [115] (both included in 

Supplementary information 12). The generalisation was plotted using Tableau Desktop. 

For GO terms, the four categories were submitted to separate queries in the tool REVIGO 

(ver. 16.11.21) [116]. Default options were used, except for the value representation for 

𝑂�̃� included in the submitted list for all significant terms for either attribute. For 𝑂�̃� of gram 

negative-associated terms, the “Lower value is better” setting was opted. “Higher value is 
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better” was used for 𝑂�̃� of gram positive-associated terms. The outputs files are included 

in Supplementary information 13. Lastly, KO terms were submitted to the KO database 

[117] and mapped to KEGG modules. The lists of modules and their matched KO terms 

were extracted (“ko_mapper.csv”, Supplementary information 14), and a column with the 

terms’ associated 𝑂�̃� values  (“ko_or.csv”) was added. Tableau Desktop were used to plot 

the KO modules for all four term categories. 

Based on the produced figures representing the associations between annotation terms 

and gram attributes, their biological connotations were inferred. The identified pattens 

were attempted applied to demonstrate the use of the collected data. For three random 

organisms which lacked gram stain reports in the assembled dataset, the genome 

accession numbers were used to access and download their genomes in FAA formats. 

EggNOG was again used to functionally annotate the genomes, and the terms indicative of 

the inferred GPA were searched for in the annotation files of these new organisms. The 

files used for this test are found in Supplementary information 15 (App. A, p. 85). 
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4. Results and analysis 

This chapter will provide the results of the present work and their immediate analyses. Its 

Sections follow the structure of the methodology in the previous Chapter, starting with the 

assembled dataset of microbial traits. This is followed by the generation of genomic 

contents through functional annotation. Using the traits and functional annotations, the 

third and final Section presents the connections found between the two feature levels. 

Observed patterns were applied to test organisms from the dataset to demonstrate the 

use of the conducted method for inferring new trait attributes based on genomic contents. 

4.1. Microbial trait dataset 

The discovery of sources for microbial trait information saw the consideration of 19 

databases, repositories, and datasets from different authors. The first of the following 

Subsections summarises the relative impressions given by these source datasets’ outputs. 

Secondly, the condition of the dataset formed by their assembly is regarded. This includes 

statistics on the dataset as it is presented, and the organismal overlap seen between the 

utilised data sources. 

4.1.1. Microbial trait data sources 

An overview of the relative coverage (number of organisms) of the 19 refarded data 

sources for microbial traits is given in Fig. 4.1. The datasets range from 24 entries in Moore, 

to 58,169 in JGI. Campedelli reports on the fewest traits by only containing only oxygen 

requirements. On the other end of the spectrum is BacDive with 12 trait fields. 

 

An observation from the overview in Fig. 4.1 is that there is no clear connection between 

dataset coverage and the number of traits it reports on. Rather, the diversity of data 

categories seems highly connected to the aim and area of focus of each respective data 

source. For example, FAPROTAX seeks to gather data on microbial metabolic functions, 

which it does utilising only one trait field. In contrast, BacDive aims to be the largest 

database of standardised bacterial information. Hence its broad range of data categories. 

Figure 4.1: Coverage comparison of the source datasets. Bar lengths represent the number of 

entries in the source, given on a log-transformed scale. Colours and labels indicate the number of 

traits fields each data source contains. 
 

https://public.tableau.com/app/profile/jenny.merkesvik/viz/dataset_comparison/initial_overview  
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Upon reviewing sources of microbial trait data, the great variation between them was 

apparent. The differences are related to dataset coverage and the trait fields they include, 

but also in terms of format and accessibility. While some provide large datasets covering 

thousands of organisms, such as BacDive and JGI, others are highly specialised and only 

cover species within particular genera or select metabolic functions. Examples include 

Lactobacillus in Campedelli, Prochlorococcus in Moore, and methanogens in PhyMet2. Some 

sources provide web-interfaces for accessing and downloading data, like BacDive and 

Pasteur. Others require programmatical or command-line approaches, with examples being 

FAPROTAX and PATRIC. On the other hand, not all datasets are publicly available, such as 

Nielsen and Moore. The varying format and accessibility are one of the main challenges 

tacked by the present work and will be regarded further in the Chapter 5 (p. 54). 

4.1.2. Dataset assembly 

From the 19 gathered datasets, the ten largest were selected for assembly. Together, they 

yield a dataset with 147,676 entries (“assembledDataset.csv”, Supplementary information 

4, App. A, p. 85). Fig. 4.2 summarises the constituents of the assembled dataset, noting 

by colour the origin of the data in each included category. The elements within top bar of 

Fig. 4.2 are equivalent to the bars represented in Fig. 4.1 (p. 33) before log-transformation. 

The contrasts between data source coverages are most clear within this section of Fig. 4.2, 

with the combined efforts of BacDive (purple) and JGI (yellow) comprising 74.2% of the 

assembled dataset’s total entries.  

  

Figure 4.2: Data category overview of the assembled dataset comprising of ten sources of 

microbial trait information, indicated by colourations. The top bar represents the number of entries 

from each data source. The main histogram shows the number of non-NaN data entries within the 

included data categories, represented on a log10-transformed scale. The exact sizes are noted as 

white data labels on each bar. Category names marked with asterisks are considered as identifiers 

or supporting information, rather than strict “traits” as per the defined terminology. 
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As to the data categories represented in the bottom section of Fig. 4.2 (p. 34), BacDive 

asserts itself as a major source of trait information in most categories. Notably, it is the 

only source reporting on enzyme activities, produced compounds, and incubation time 

measured in days. For this latter trait, other data sources report similar categories but 

utilise doubling time in hours. Additionally, the non-trait field genome accession number is 

solely included in BacDive entries. The accession numbers are central for the later 

functional annotation. This possible limitation will be regarded in Chapter 5 (p. 53). 

The charts in Fig. 4.3 (p. 36) show the attribute variety found in the assembled dataset. It 

is based on the overview provided in “assembledDataset_statistics.csv” (Supplementary 

information 4, App. A, p. 85), where all possible attributes and their frequency within the 

dataset is provided for each field. Fig. 4.3 panel A (p. 36) shows that the eight most 

common genera comprise just over a third of the dataset, which contains 565 unique 

genera in total. These genera are all common organisms that have prominent applications 

and roles: Staphylococcus, Streptococcus, and Mycobacterium are all common pathogens 

[118-120]; Escherichia is a well-known constituent of the human microbiome [121]; and 

Bacillus, Pseudomonas, and Streptomyces are often utilised for industrial purposes [122-

124]. These genera are studied extensively due to their relevance for human activities, 

hence the many reports on their expressed features. 

When combining the information provided by Fig. 4.3 panels A and B (p. 36), it can be 

derived that for five of the eight most frequent genera in the dataset, many of the entries 

are of the same species. For the 8,882 entries in the Streptococcus genus, over half are of 

S. pneumoniae. Filtering the assembled dataset for this species returns 5,506 different 

strains reported by eight different data sources. Thus there are duplicate rows in which 

different sources report on the same strain, which likely due to their particular relevance 

in various applications. This observation will be discussed further in Chapter 5 (p. 56). Still, 

most entries are identified as separate strains, corroborating the great microbial diversity. 

Panels D-V in Fig. 4.3 (p. 36) provide insights into the most common attributes within each 

trait. Most entries with known gram stain (panel D) are gram-negative. Indole testing is 

the most frequent metabolic assay (panel E) with positive outcome, an observation which 

is complimented by the high frequency of indole production (panel L). About three fourths 

of the known oxygen requirements (panel F) indicate oxygen tolerance (comprising the 

attributes aerobic, facultative, microaerophilic, or aerotolerant). For the registered entries, 

panel H reveals that carbon is most commonly acquired through organic sources 

(heterotrophy); and energy is more often obtained by electron donor oxidation 

(chemotrophy) than by solar energy (phototrophy, within “other”). 

The incubation times (Fig. 4.3 panel T, p. 36) range from 0 to 56 days, with most entries 

requiring less than two weeks of incubation. For doubling time (panel U), most reports are 

of growth rates below 10 hours per cell division. There are instances of significantly higher 

doubling times, with the maximum of 4566.1 hours (approximately 190 days) for 

Methylococcus capsulatus. This seemingly low growth rate is explained by referring to the 

named reference of this particular entry: a study of growth at low temperatures [125]. 

Panel V shows that most of the registered growth temperatures fall under the mesophilic 

range (20-45°C), with the most frequent reports at 28°C, 30°C, and 37°C. Of note in this 

panel is the possible bias towards round and “common” values, such as the average human 

body temperature. Similar biases are likely present within other trait categories and thus 

may challenge the representativeness of the attribute distributions indicated in Fig. 4.3 (p. 

36). This topic will be explored further in Chapter 5 (p. 56). 
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Figure 4.3: Trait content overview of the assembled dataset. Panels  A-C cover taxonomic 

levels and identifiers, while panels D-V represent traits included in the dataset. For panels A-S, the 

most common attributes are displayed as slices with sizes relative to their frequency, whose 

numerical value is found in the legend. The attributes in panel H have been reduced to consituents 

of combined terms, so that “chemolitoautotroph” contributes to frequencies of three attributes. In 

panels T-V, numerical traits have been presented as categorical bar charts. Their colours follow a 

linear gradient scaled to each value range. The horizontal axis of panel U is log10-transformed to 

increase readability of the most frequent doubling times. 
 

 

https://public.tableau.com/app/profile/jenny.merkesvik/viz/dataset_comparison/mergedDataset_statistics_1 
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With the standardised organism names excluding taxonomic level indicators, capital 

letters, and species characters, the entries across datasets could be compared more 

readily. For instance, Acidovorax sp. NO-1 (from JGI) and Acidovorax sp. NO 1 (from TMD) 

would be considered the same entry; as would Vibrio cholerae O1 str. EC-0009 (PATRIC) 

and Vibrio cholerae O1 EC-0009 (JGI). Based on these standardised names, the number 

of unique organisms in the dataset is 126,763. The panels in Fig. 4.4 show the overlap 

between data sources, using these standardised organism names as keys. 

Each panel presents the organismal coverage of the ten datasets across the taxonomic 

levels of genus, species, and strain. They indicate the coverage by the vertical bars in left 

part of each panel, while the coloured dots below the histograms convey which datasets 

overlap, indicating which sources may contain information on the same organisms. For 

example, Fig. 4.4 panel A tells that BacDive contains a total of 3,037 genera, of which 844 

are found only in BacDive, as indicated by the vertical bar and the filled-in dot beneath it. 

It thus follows that 2,193 genera in BacDive must be found reported by other data sources 

as well. For instance, the third column in panel A shows that BacDive and JGI have 207 

genera in common which are not found in any other datasets. 

  

Figure 4.4: Dataset overlaps on three 

taxonomic levels: A genus,  B species, and 

C strain. Each vertical bar in the histogram 

represents the number of entries found 

uniquely in the combination of datasets 

specified by the highlighted dots in the same 

column. The vertical bars left of the dots 

indicate the total number of unique entries of 

the specified taxonomic level in that data 

source. The bars are sorted by size, and the 

13 largest combinations have been included. 
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In accordance with the interpretations from Figs. 4.1 (p. 33) and 4.2 (p. 34), JGI and 

BacDive appear in Fig. 4.4 (p. 37) as the largest data sources within the assembled dataset. 

The relative heights of their bars do however indicate some notable differences between 

them. Fig. 4.4 panel B (p. 37) shows that BacDive contains 20,298 species, which exceeds 

JGI’s count of 15,640. Still, JGI reports on 7,000 organisms more than BacDive when 

regarding the strain-level overlap in panel C. This indicates that BacDive has a broader 

range, while JGI provides more total entries on a narrower selection of microbial species. 

Given that BacDive collects microbial data from a variety of databases and scientific 

publications [38], it is expected that its range is broader than that of JGI, whose entries 

originates from genome projects registered to the repository [47]. 

There is relatively little overlap between the datasets. The level of uniqueness increases 

with taxonomic specificity, which is evident due to the top one category for genus; top 

three for species; and top four for strain, all being single datasets. This observation is 

believed to be due to the organisms actually being different, however missed overlaps is 

also a possible explanation of the high level of uniqueness across datasets. The matter of 

false negatives within organism name matching is discussed further in Chapter 5 (p. 55). 

 

  

Figure 4.5: Dataset overlaps for nine data categories, measured on strain-level. Each panel 

A-I represent one data category. For panels G-I, only the largest 13 combinations have been 

included. See explanation of plots in Fig. 4.4 (p. 35). 
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Panels A-I in Fig. 4.5 (p. 38) indicate the overlaps found within the assembled dataset’s 

data categories on eight traits (panels A-H), and the supporting information isolation 

source (panel I). All are measured on strain-level organisation with the standardised 

organism names as key. Notably, only the traits present within at least two datasets have 

been included. Thus enzyme activities, produced compounds, and incubation time from 

BacDive; extremophile, pathogenicity, and antibiotic susceptibility from TMD; metabolism 

from FAPROTAX; and genes from Pasteur are not included, as no overlaps with other data 

sources would occur. 

Using the plots in the panels of Fig. 4.5, it is possible to infer the biggest contributors to 

any particular data category within the assembled dataset. For instance, panel G shows 

that JGI is the main contributor to gram stain with 25,089 reports, of which 20,434 are not 

covered by any other data source. Additionally, the plots indicate which data sources report 

information on the same data category for identical entries in the assembled dataset. In 

the instance of JGI and gram stain, almost 5,000 of its reports are covered by other data 

sources (approximately 25,000 total and 20,000 unique reports). Referring to the fourth 

column in panel G, it becomes apparent that 3,330 of these are organisms for which 

PATRIC also reports gram stain. If the assembled dataset is merged to yield only one entry 

per unique full organism name, ensuring that these reports agree should be a priority. Row 

merging and conflict resolutions between trait reports is regarded in the next Subsection. 

In summary, 19 data sources were considered for inclusion in an assembled dataset of 

microbial traits. After data cleaning and standardisation, the ten largest sources (Fig. 4.1, 

33) were joined to form a dataset with 147,676 strain-level entries. The dataset includes 

17 trait fields and 14 columns of Supplementary information (such as taxonomy, 

identification, isolation source, and genome accessions). JGI and BacDive are its biggest 

contributors to organism coverage, and the latter is also prominent in most included trait 

fields (Fig. 4.2, p. 34). An overview of attribute frequencies for selected fields in the dataset 

(Fig. 4.3, p. 36) displays the great diversity of the recorded microbes, both in terms of 

taxonomy and phenotype. There are less overlaps between the sources than expected (Fig. 

4.4, p. 37), with as many as 51,329 unique strains found in BacDive alone. The diversity 

of fields included in different sources is also accentuated (Fig. 4.5, p. 38): many data 

sources report on gram stain, oxygen requirement, and isolation source, while traits like 

trophy and doubling time have a smaller coverage, even within large data repositories. 

4.1.3. Reduced dataset for genotype—phenotype association 

To delimit the scope of the GPA methodology utilising the collected trait data, a copy of the 

assembled dataset was reduced to organism entries which met certain requirements. 

Additionally, only the most complete data categories were considered for inclusion in the 

reduced dataset: isolation source, growth temperature, oxygen requirement, gram stain, 

medium, and substrate. Both isolation source and growth medium contain several 

thousand different attributes; and the former is not strictly a microbial trait. Growth 

temperatures are reported as a mix of temperature ranges and discrete points. Thus the 

categorical values of oxygen requirement (with seven different attributes), gram stain (four 

attributes), and substrate (3,472 attributes) were selected for the reduced dataset and 

thus were candidate traits for the following GPA. 

Of the 147,676 entries in the assembled dataset, 32,137 contain reports for at least two 

of the three selected traits. At this stage however, the dataset still contains multiple rows 

for many organisms. These originate from different data sources and thus may only report 

sufficient data on the organism when joined. For example, Anaerobaculum mobile (tax ID 
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97477) has four entries from different data sources, and none report on more than one of 

the traits of interest: two report gram stain, and a third on oxygen tolerance. Joined, the 

entries will however meet the requirement of at least two trait reports. Similar observations 

were made for 20,912 additional entries. By merging the rows reporting on the same 

organism, 3,402 additional entries met the trait coverage criteria. This effectively increased 

the sample size of organisms with sufficient coverage for inclusion in the reduced trait 

dataset that would be used for the GPA. 

For substrate, varying attribute reports from different sources could be merged without 

further action, seeing as the ability to utilise one specific compound does not necessarily 

exclude the utilisation of other substrates. For gram stain and oxygen tolerance however, 

conflicts between reports may occur, and did for 178 and 2,971 organisms, respectively. 

With the conflict resolution based on majority and generalisation described in Chapter 3 

(p. 27), 145 conflicts remained for gram stain (equal number of negative and positive 

reports), and 589 for oxygen tolerance (equal number of reports indicating oxygen 

tolerance and -intolerance). The gram stains were resolved by manual literature searches, 

while the oxygen requirement conflicts were marked as “conflict”. This solution was 

adapted due to gram stain information being readily available, which was true to a lesser 

extent for oxygen requirements. 

Of the entries in the dataset with merged rows and with at least two trait reports, 4,491 

organisms had genome accession numbers with corresponding assemblies registered in 

the NCBI overview of sequenced microbes. Among these, 3,307 assemblies contained a 

FAA file. Mapping the assembly links and genome keys (1-3307) back into the merged 

dataset filtered for trait completeness, narrowed the selection from 4,491 to 3,409 

organisms. However, given that there were only 3,307 unique accession numbers, there 

are organisms which are regarded as separate by standardised strain name that have 

identical accession numbers. This is true for 37 accessions in total, of which most are 

repeated once. The effect of this overlap will be further regarded in Chapter 5 (p. 58). 

4.2. Genome sequence annotation 

The previous section detailed the outcome of the assembled trait dataset and its reduced 

counterpart which were prepared for being utilised in the association of genomic contents 

with phenotypic traits. This Section considers the acquisition of this genomic content. 

Firstly, the choice of genome data and sources is presented, followed by the immediate 

impressions from the conducted functional annotation. 

4.2.1. Genome sequence comparisons 

Most genome assemblies have genome entries both in the GenBank (GCA) and the RefSeq 

(GCF) repositories of NCBI. The entries might be identical, but some vary greatly in terms 

of quality and completion. Therefore, a procedure was required to decide which assembly 

to use as the genome sequence source for each of the entries in the reduced dataset. 

Comparing the FAA files downloaded from GenBank and RefSeq for each of the 3,307 

genomes, yielded the results included in “comparison_GCA_GCF.csv” (Supplementary 

information 8, App. A, p. 85). Summarised, the genomes from GenBank contained more 

proteins than its equivalent from RefSeq in 67% of the assemblies. They were the same in 

3% of instances, while the remaining 30% saw more proteins found within the RefSeq-

acquired genome. The genomes for which the RefSeq protein count exceeded that of 

GenBank by at least 15%, have been included in Table 4.1 (p. 41). 
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Figure 4.6: Term frequencies across annotated genomes, from the three classes A COG,   

B GO, and C KO. Bar heights indicate how many terms belong in the frequency categories on the 

horizontal axis. These denote how many genomes a term is associated with out of the 3,307 possible. 

Example in panel A:  about 100 COG terms have been associated with about 1,500 genomes. 

Table 4.1: Comparison of GenBank and RefSeq genome assemblies. Excerpt from 

“comparison_GCA_GCF.csv” with increases of at least 15% in favour of RefSeq. 
 

 

For the instances included in Table 4.1, the number of proteins found within RefSeq-

registered FAA genomes were reasonably higher than its GenBank equivalent. Thus for 

these 15 genomes, RefSeq was seen as the preferred source of genome sequence data. In 

all, 3,292 GenBank accessions (GCA) and 15 RefSeq accessions (GCF) were utilised to 

access and download microbial genomes submitted to the following functional annotation. 

4.2.2. Functional annotation 

After the selection of which assemblies to utilise as the genome sequence source for each 

entry of the reduced dataset, the genomes were submitted to eggNOG for functional 

annotation. Across the 3,307 annotated genomes, the terms within the classes COG, GO, 

KO were extracted. These were chosen due to their high coverage across the annotation 

files, and their facilitation of comparison of genome contents across species and genera. 

Fig. 4.6 shows the frequencies of terms within the annotation classes, in addition to the 

counts of unique and total annotations found across all genomes for each term class. 

  

Key Organism 
Protein counts Increase 

GenBank RefSeq # % 

2882 Altererythrobacter insulae BPTF-M16 13 2,598 2,585 19,885 

1302 Corynebacterium aquilae S-613 356 4,990 4,634 1,302 

2530 Corynebacterium frankenforstense ST18 244 2,561 2,317 950 

1565 Corynebacterium sphenisci 38 1,164 1,532 368 32 

901 Dietzia maris DSM 44904 1,827 2,283 456 25 

880 Elstera litoralis Dia-1, Nil 1,801 2,159 358 20 

268 Haloechinothrix halophila 2,968 3,517 549 18 

872 Hankyongella ginsenosidimutans W1-2-3 2,013 2,381 368 18 

1027 Hydrogenibacillus schlegelii MA-48 3,346 3,934 588 18 

3131 Lawsonella clevelandensis CCF-01, X1036 1,453 1,705 252 17 

1080 Nocardioides daphniae D287 3,310 3,883 573 17 

1388 Paracoccus sphaerophysae Zy-3 2,082 2,415 333 16 

2317 Prevotella oryzae KB3 2,822 3,244 422 15 

1354 Sphingomonas jaspsi TDMA-16 1,993 2,291 298 15 

2124 Thermodesulfobacterium commune YSRA-1 2,853 3,276 423 15 
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All bars within each panel in Fig. 4.6 (p. 41) constitute the total number of unique terms 

of that class, indicated above the panel. It can be derived from these data that COG was 

the least diverse annotation class with 9,744 unique terms distributed across 5,129,520 

total annotations. KO terms were slightly more diverse but saw the fewest number of total 

annotations within the genomes. Lastly, GO terms were the most numerous class, both 

with respect to unique (14,002) and total (5,750,532) number of annotations found for the 

submitted genomes. Chapter 5 (p. 60) will see a more thorough investigation into the 

relative coverage and diversity of the three annotation classes. 

The frequency distributions of all three annotation classes display similar patterns. The 

most numerous term categories (the highest bars) are those with low frequency across the 

3,307 annotated genomes. This indicates that most of the terms within all three classes 

represent highly particular functions. As the frequency increases, the number of instances 

generally decreases. This pattern suggest that fewer terms are commonly found within 

several genomes, while still attesting the presence of more conserved functions. The 

negative correlation between frequency category and number of instances does not 

continue across the full frequency range, however. For COG and KO in particular, their final 

frequency categories see an increased number of instances. These could be representations 

of highly conserved functions, which would be expected to be found in many of the 

genomes. If they in fact are particular and thus rarer functions however, their high 

frequencies could indicate over-enrichment of specific features in the reduced dataset. As 

a consequence, the current selection of entries used for GPA might not be sufficiently 

representative to infer potential patterns between annotated genome contents and 

observed phenotypes. This matter will be discussed in Chapter 5 (p. 60). 

Overall, the annotation term distributions in Fig. 4.6 (p. 41) suggest that the functional 

annotation of the 3,307 genomes yielded a variety of terms in all three annotation classes. 

Most terms are highly uncommon, as indicated by the prominent bars for low frequencies 

in all three panels of Fig. 4.6. The more common terms are at this point assumed to 

represent conserved features, which are expected to be found within many of the genomes. 

The functional annotation is thus believed to have yielded sufficiently specific genomic 

contents for the reduced dataset. The following Section sees the association of the two 

levels of microbial information acquired thus far: phenotypic trait attributes, and genomic  

contents in the form of genome annotations. 

4.3. Genotype—phenotype association 

This Section regards the association of the collected phenotypic features of gram staining 

with the annotated genomic contents of the 3,409 organisms in the reduced dataset. Only 

the annotations present in between 5% and 95% of the genomes were regarded for this 

purpose. This disregarded the rarest and the most conserved annotations, which are not 

expected to be of significant relevance. Thus 3,653 COGs, 4,718 KOs, and 5,100 GOs were 

associated to the known phenotypes of the organisms. The contingency tables within the 

result files “fisher_COG.csv”, “fisher_GO.csv”, and “fisher_KO.csv” summarise the 

distribution of organisms with respect to gram stain attribute (positive p or negative n) 

and whether they have (h) or lack (l) each annotation term. The resulting 𝑂�̃� and p-values 

from the conducted Fisher’s exact tests were used to determine which associations were 

statistically significant. Fig. 4.7 (p. 43) presents an overview of the number of significant 

associations found for each annotation class and the two gram stain attributes. 
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In total, 4,444 terms were found significantly associated with either gram stain attribute. 

All annotation classes see significantly more annotations associated with gram-negativity, 

an observation which is regarded further in Chapter 5 (p. 63). Most of these terms are 

exclusives, meaning they have not been annotated in any genome from a gram-positive 

organism. It may thus be a candidate for unambiguously determination of gram attributes 

for other organisms. Possible reasons for this distribution are considered in Chapter 5 (p. 

63) but nevertheless, the subsequent interpretations will not differentiate strictly between 

exclusive and non-exclusive associations. Another observations inferred from Fig. 4.7 is 

that for both gram attributes, COG sees the fewest significant terms, while GO is the most 

prominent. This is concurrent with the observations from Subsection 4.2.2 (p. 41), where 

GO was asserted as the most numerous annotation class. 

The next Subsections regard the annotation classes one by one in order to discover possible 

patterns inferred from the terms found significantly associated with gram stain, and their 

immediate biological interpretations. The fourth and final Subsection will combine the 

impressions from each annotation class in order to examine the overall connotations of the 

conducted GPA. Lastly, an attempt is made to determine the gram stain attributes of a few 

organisms, based on their annotated genomic contents and the patterns inferred from the 

organisms with known gram attributes. 

4.3.1. Clusters of orthologous genes 

The volcano plot in Fig. 4.8 (p. 44) shows the association between annotated COG terms 

and the phenotypic feature of gram staining. Each non-grey mark represents a term which 

is found significantly associated with gram-negativity (red) or gram-positivity (blue). For 

instance, COG3599 has an 𝑂�̃� of around 2.2, equivalent to an OR of 173.1. Based on the 

observations in the reduced trait dataset, the odds of an organism being associated with 

this term is 173.1 times higher when the trait of gram-positivity is given. This COG 

represents the cell division septum initiation protein DivIVA, which indeed is highly confined 

to gram-positives [126, 127]. DivIVA is involved in homeostasis of the peptidoglycan layer 

found in the gram-positive cell wall [127]: hence a gram-negative bacteria lacking this 

prominent layer of peptidoglycan may not depend on DivIVA to the same extent. 

Another example is COG4105, representing the outer membrane protein assembly factor 

BamD, located in the upper left corner of Fig. 4.8. It has an 𝑂�̃�  of -2.7 and an OR of 0.002. 

Hence the odds of an organism being associated with BamD is 500 times higher when the 

organism is known to be gram-negative. A literature search reveals this protein’s function 

in incorporation of 𝛽-barrel membrane proteins in the cell wall [128, 129], which is 

essential for the viability of the double membrane-enclosed gram-negative cell [130]. Thus 

the COG’s association with gram-negativity is coherent. 

Figure 4.7: Distribution of significantly associated annotation terms with the two attributes 

of gram stain  “negative” and “positive”, across the three annotation classes COG, GO, and KO. A 

term may have been found only for organisms with a particular gram stain attribute: these are called 

“exclusive” terms for that gram attribute. 
 

     https://public.tableau.com/app/profile/jenny.merkesvik/viz/dataset_comparison/significant_count  
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In addition to COG terms strongly associated with a particular gram stain attribute such as 

the two previous examples, there are 273 COG terms that are exclusively found in 

organisms expressing a specific gram stain attribute. These terms are placed in the 

columns of 𝑂�̃� with magnitude 3, which were truncated from infinite magnitudes to be 

included in the plot. Among these are seven terms exclusively found associated with 

sequences from gram-positive organisms, and 264 found exclusively in gram-negative 

organisms. The importance of these exclusive terms relative to the other data points is 

discussed in Chapter 5 (p. 63). 

To facilitate the interpretation of the significantly gram-associated COGs, the terms were 

grouped into their parent categories for the visualisation in Fig. 4.9 (p. 45). Through Panels 

A+B and C+D, COG categories which differentiate gram-negative from gram-positive 

organisms may be inferred. Notably, the category “Function unknown” is the most 

prominent COG parent in all four panels. This may attest to the relatively limited vocabulary 

of this annotation class, a topic which is discussed in Chapter 5 (p. 60). 

Overall, the parent terms suggest candidate functions which differ between gram-negative 

and -positive types of microorganisms. The cell wall structures used to differentiate 

between the gram attributes impose varying requirements for the cell, implying that cell 

wall biogenesis is an obvious feature which will deviate between the two types. 

Appropriately, “cell wall, membrane, and envelope biogenesis” (“Cell” in Fig. 4.9, panel A) 

is  the biggest defined category within gram negative-associated COGs, containing 73 

terms with an average 𝑂�̃� of -2.091. Its children terms include the outer membrane 

lipoprotein LolB (COG3017), the lipoprotein subunit MlaA (COG2853), and the periplasmic 

Figure 4.8: COG terms significantly associated with gram stain: negative (red) and positive 

(blue). Significance thresholds are set to 1.0 for 𝑂�̃� [log10(OR)], and 0.01 for FDR-corrected p-values. 

Any 𝑂�̃� with magnitude 3 is manually truncated from infinite magnitude, representing annotation 

terms found uniquely for one gram stain attribute. 
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subunit MlaC (COG2854); the  latter  two  are both  members  of  the  ABC-type 

intermembrane phospholipid transporter Mla. For gram-positive organisms, the same 

parent category is present as a grey circle directly north-east of “General Function” in panel 

C. It contains only seven COG representatives however, with an average 𝑂�̃� of 1.535. Its 

children terms include the spore coat protein CotF (COG5577), the poly-D-alanine transfer  

protein DltD (COG3966), and the anionic cell wall polymer biosynthesis enzymes 

TagV/TagU (COG1316).  

Several other parent terms are found significant in both gram-negative and gram-positive 

associations. Examples are “intracellular trafficking, secretion, and vesicular transport” 

(right-most blue circle in panel A, and beige circle north-east of “Carbohydrate transport” 

in panel C), and “signal transduction mechanisms” (left-most beige in panel A, “Signal” in 

panel C). Their presence is immediately interpreted as appropriate, seeing as the differing 

cell wall structures in gram-negative and gram-positive cells necessarily will require 

different mechanisms for metabolite transport in- and outside the cell [131], for instance 

for vesicles to be created from or fuse with the cell membrane. 

The category most strongly associated with gram-negativity (lowest 𝑂�̃�, thus coloured blue 

in panel A) is “chromatin structure and dynamics”, representing COG5531: the DNA-

binding SWIB/MDM2 domain. A literature search supports the observation of this domain 

only being found in gram-negative representatives of bacteria [132, 133]. For gram-

positive organisms, the strongest associated COG (highest 𝑂�̃�, thus coloured yellow in 

panel C) is “RNA processing and modification” with COG5180: PAB1-binding protein. This 

Figure 4.9: COG term categories 

significantly associated with 

gram stain. 
 

A: significantly associated with 

gram-negative organisms, 

comprises all reds in Fig. 4.8. 
 

B: exclusively associated with 

gram-negative organisms, left-

most reds in Fig. 4.8. 
 

C: significantly associated with 

gram-positive organisms, 

comprises all blues in Fig. 4.8.  
 

D: exclusively associated with 

gram-positive organisms, right-

most blues in Fig. 4.8. 
 

Panels A and C: circle sizes 

represent the number of COG terms 

within the category; colour 

indicates average 𝑂�̃� of COG terms 

in the category, from blue (low) to 

yellow (high). 
 

Panels B and D: both circle size and 

colour represent number of COG 

terms within the category, 

increasing from blue to yellow. 
 

https://public.tableau.com/app/profile/jenny.merkesvik/viz/dataset_comparison/COG_overview  
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Figure 4.10: GO terms significantly associated with gram stain: negative (red) and positive 

(blue). Significance thresholds are set to 1.0 for 𝑂�̃� [log10(OR)], and 0.01 for p-values. Any 𝑂�̃� with 

magnitude 3 is manually corrected from infinite magnitude, representing annotation terms found 

uniquely for one gram stain attribute. 

COG is however also found registered for gram negative-staining bacteria, such as the 

Bacteriodetes species Tenacibaculum dicentrarchi [134]. Despite T. dicentrarchi being 

present in the trait dataset as a gram-negative bacterium, its exclusion from the reduced 

dataset used for the annotation erroneously indicates that the COG is unique to gram-

positive bacteria. A similar issue is seen for COG3953, representing the SLT domain protein 

and comprising the category “Mobilome” in panel D (p. 45). It is found annotated uniquely 

for gram-positive organisms in the reduced dataset, however it is also found present within 

the genomic content of five gram-negative bacterial species [135]. 

Overall, there are many COGs found associated with either gram stain attribute. Some 

associations appear reasonable given biological context, while others have been revealed 

as erroneous. Thus although some of the COG terms highlighted in the present work may 

represent features that could be used as indicators of particular gram attributes, close 

consideration of the association is needed to ensure its genuineness. 

4.3.2. Gene Ontology 

A volcano plot over the annotated GO terms is presented in Fig. 4.10. It displays 2,046 

significant terms: 758 for gram-negative organisms, and 1,288 for gram-positives. The 

plot may seem to suggest that there are few GO terms significantly associated with gram-

negative organisms relative to for gram-positives. This impression is adjusted by the 

consideration of the ratios vidualised in Fig. 4.7 (p. 43): most terms associated with gram-

negativity do so exclusively and are thus populating the column of data points with  

𝑂�̃� = −3. Exclusivity is seen for 67% of the gram negtive-associated terms, contrasting the 

corresponding 12% rate seen for gram positive-associated terms. The rate of 67% far 

exceeds those seen for any other attribute and term class. 
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A comprehensive overview of the significant and exclusive terms for both gram stain 

attributes were produced by submitting the four lists of GO terms to REVIGO. Figs. B1-6 

(App. B, p. 87) show the signifiant terms associated with gram-negativity and gram-

positivity, respectively, in each of the three main GO hierarchies: BP, CC, and MF. Similar 

to the COG term parent categories in Fig. 4.9 (p. 45), the REVIGO plots cluster related 

terms and use circle sizes and colours to indicate the number of terms included within a 

category and the associated 𝑂�̃�. 

An example of a GO category found significantly associated with sequences from gram-

negative organisms is the BP “gram-negative-bacterium-type cell wall biogenesis” (Fig. B1, 

panel A, App. B, p. 87), along with related terms “membrane biogenesis” and “membrane 

organisation”. Similarly, “gram-negative-bacterium-type cell wall” is a significant CC term 

as well (Fig. B2, panel A, p. 88). Thus there are several categories within cell wall structure 

and mainentance present in the significant GO terms, which aligns with similarly significant 

COG terms seen previously. Additionally, terms related to chromatin and DNA packacking 

is found exclusively for gram-negatives (Fig. B2, panel B, p. 88). These GOs may be related 

to the DNA-binding domains SWIB/MDM2, whose COG was exclusive to gram-negatives. 

For gram-positive organisms, terms like “mycolate cell wall layer assembly” (Fig. B4, panel 

A, p. 90), “cell division site” and “spore wall” (Fig. B5, panel A, p. 91) all represent term 

categories which are likely to differ between cells with different gram attributes. Some 

terms indicating exclusivity however seem to do so erroneously. “Protein—pyridoxal-5-

phosphate linkage” (bottom left, Fig. B4, panel A, p. 90) designates binding of the cofactor 

pyridoxal-5-phosphate (PLP) to various proteins. However, this function is not exclusive to 

gram-positive bacteria, but is in fact seen in all kingdoms of life [136]. Thus it may be 

inferred that despite the small size of this circle, it is the child term that is exclusively 

associated with gram-positivity, and not the more general function of PLP binding. 

Overall, The REVIGO plots are more difficult to use for comparison of term categories 

across gram stain attributes. Most include a signinificantly higher number of circles even 

after related terms have been condensed into their parent term. This is likely due to the 

high number of GO terms and its loose hierarchy structure. This will be explored further in 

Chapter 5 (p. 60). Furthermore, the plots do not have an interctive counterpart like the 

Tableau-generated plots. Thus disables simple identifiction of which GO terms each circle 

represent. Further, this might lead to the issue of erroneously assuming that a narrow 

parent category is a single term which is significantly associted with a gram attribute. In 

addition to the protein—PLP interaction for gram-positives, a prominent example of this is 

“response to virus”, found exclusively in gram-negative organisms in Fig. B1, panel B (p. 

87). Its presence as a circle in this plot does not mean that gram-positive organisms do 

not respond to virus infections, but rather that there are significant differences between 

the processes involved in the viral response of the two bacterial types. Chapter 5 (p. 65) 

will further explore this discussion on the use of generalised parent terms for interpretation 

of characteristic features. 

4.3.3. KEGG Orthology 

The volcano plot of the association between KO terms and gram stain attributes is provided 

in Fig. 4.11 (p. 48). There are 1,514 terms significantly associated with either gram stain 

attribute: 480 for negative and 1,034 for positive. Examples of prominent gram positive-

associated KOs are K09762 (top right, Fig. 4.11) for the cell division protein whiA, which 

is found conserved in most gram-positives [137]; and K09772 for the cell division inhibitor 

SepF, which indeed lacks a known homolog in gram-negatives [138]. On the other end of  
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the spectrum is K05807 (top left, Fig. 4.11), representing BamD which was previously 

discovered as essential for gram-negative cell viability (Subsection 4.3.1, p. 43). K03113 

is returned as exclusive to gram-negative organisms: it represents the translation initiation 

factor 1 EIF1/SUI1, which is also found in gram-positive organisms such as Streptococcus 

mutans [139]. Despite being in the reduced dataset as a gram-positive bacterium, S. 

mutans did not yield an observation for gram-positives associated with K03113. Similar 

cases are seen for other terms across annotation classes, and possible reasons for this are 

discussed in Chapter 5 (p. 63). 

The significant and exclusive KO terms for both gram stain attributes were submitted to 

the KO Database mapper, organising the KOs into KEGG modules. The results of this 

mapping, found in its entirety in “ko_mapper.csv” (Supplementary information 14, App. A, 

p. 85), have been plotted with Tableau Desktop in Fig. 4.12 (p. 47). A total of 194 modules 

are represented by the KO terms significantly associated with gram-negativity (panel A), 

while its gram-positive counterpart (panel C) sees 72 modules. Of these are 73 and 7 

exclusive to gram-negative and gram-positive entries, respectively, and have been 

included in separate panels (B and D, respectively). 

One of the modules found exclusively for gram-negatives is “arginine succinyltransferase 

pathway” (marked “Arginine” in Fig. 4.12, panel B). The KO terms included in this module 

represent five enzymes encoded by genes astA, astB, astC, astD, and astE  (K00673, 

K01484, K00840, K06447, and K05526, respectively). They are part of the aru operon, 

which indeed has no known homologues in gram-positive bacteria [140, 141]. For gram-

positives, the modules “fatty acid biosynthesis, initiation” and “fatty acid biosynthesis, 

elongation” are both returned as exclusives (panel D). Their only participating KO is “fatty 

acid synthase, bacteria type” (K11533), which incorrectly suggest that only gram-positive 

bacteria  express  the  enzyme  [142].  Since it is the categories’ only term, its rejection 

Figure 4.11: KO terms significantly associated with gram stain: negative (red) and positive 

(blue). Significance thresholds are set to 1.0 for 𝑂�̃�, and 0.01 for p-values. Any 𝑂�̃� with magnitude 

3 is manually corrected from infinite magnitude, representing annotation terms found uniquely for 

one gram stain attribute. 
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eliminates both entire categories. Nevertheless, fatty acid biosynthesis is known to differ 

between gram-negative and -positive organisms [143, 144 p. 221]. How issues like this 

may still be resolved is regarded in Chapter 5 (p. 65).  

4.3.4. Inferring gram stain attributes for new organisms 

The previous Subsections saw the use of Fisher’s exact tests to determine whether the 

presence of particular genomic contents was significantly associated with a given gram 

stain attribute. Across all annotation terms and both trait attributes, over 4,000 significant 

associations were found. Additional tools were used to group the significant terms to ease 

their interpretation. For several investigated instances, studies supporting the biological 

connotations of the terms’ association with gram stain were found. This section seeks to 

gather the impressions across all three annotation classes (COG, GO, and KO) to see if the 

inferred patterns can be used to indicate the gram stain attribute of organisms with similar 

genomic contents. 

Many significant terms found for both gram attributes seem to correctly suggest features 

which differs between the two cell types. As described in Chapter 2 (p. 9), both gram-

negative and gram-positive cells have a cell wall consisting of peptidoglycan. However, this 

layer is generally much thicker in gram-positive cells. Gram-negatives are instead enclosed 

by an additional outer membrane. The significantly higher number of terms associated with 

gram-negativity may thus be due to this additional structure; a notion which is supported 

by the prominent presence of terms directly described as associated with the outer 

membrane and the larger inter-membrane space seen in these types of microbes. On the 

Figure 4.12: KO modules 

significantly associated with 

gram stain. 
 

A: significantly associated with 

gram-negative organisms, 

comprises all reds in Fig. 4.11. 
 

B: exclusively associated with 

gram-negative organisms, left-

most reds in Fig. 4.11.  
 

C: significantly associated with 

gram-positive organisms, 

comprises all blues in Fig. 4.11. 
 

D: exclusively associated with 

gram-positive organism, right-

most blues in Fig. 4.11. 
 

Panels A and C: circle sizes 

represent the number of KOs 

within the module; colour 

indicates avg. 𝑂�̃� of KOs in the 

module. 
 

Panels B and D: both circle size 

and colour represent the number 

of KOs  within the module. 

https://public.tableau.com/app/profile/jenny.merkesvik/viz/dataset_comparison/KO_overview  
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other hand, many of the terms associated with gram positivity are related to surface 

proteins and enzymes involved in the biogenesis and maintenance of its prominent cell wall 

and peptidoglycan layer. With these general indications in mind, the annotated genomic 

contents of three random organisms in the assembled dataset can be generated in order 

to attempt to infer their gram status. 

Gleimia coleocanis strain M343/98/2 (GCA_000159015) is registered without a gram 

attribute in the assembled dataset. When annotated by eggNOG, it is found to contain 

several of the terms mentioned previously in this Chapter, such as K09772 (cell-division 

protein SepF), and K09762 (cell-division inhibitor whiA). These terms have previously been 

found significantly associated with gram-positive organisms from the reduced dataset. G. 

coleocanis is therefore indicated to be gram-positive, which is true [145]. 

Another organism found in the dataset without registered gram stain is Komagataeibacter 

xylinus (GCA_004006375). Within its annotated genomic contents, the terms COG4105 

and K05807 (outer membrane protein assembly factor BamD), and COG2853 and 

COG2854 (intermembrane phospholipid subunits MlaA and MlaC, respectively) are found. 

These are all indicative of the presence of an outer membrane, suggesting K. xylinus as a 

gram-negative organism: this is correct [146]. 

A final example is Kyrpidia tusciae strain T2 (GCA_000092905). Its annotations include 

COG3599 (cell division septum initiation protein DivIVA) and COG4105 (BamD), which 

have previously been significantly associated with gram-negative organisms. This is indeed 

the gram attribute of K. tusciae [147]. 

Thus with the GPA patterns derived in the conducted methodology, several annotation 

terms were recognised within the genomic content of three randomly selected organisms 

from the assembled dataset that did not previously have gram stain registered. Based on 

the known attributes of the organisms for which the same annotations were found, correct 

suggestions of the gram attributes of the three organisms could be made. Despite this 

demonstration exemplifying the use of the gathered data for inferring phenotypic features 

based on genomic content, particular care was taken when choosing which of the 

annotation terms to pursue. Among the 4,444 annotation terms found significantly 

associated with either gram stain attribute, several has been found to be misleading or 

directly erroneous in the introductory investigations conducted over the past three 

Subsections. The next Chapter will regard the patterns seen for these instances and 

attempt to discover the factors that may be causing them, and how they may be remedied. 
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5. Discussion 

In this chapter, the conducted methodology will be reviewed in light of the results they 

have provided. The earliest interpretations of the analysis outcome will be expanded upon 

and considered along with other relevant areas of the present work. These matters will be 

presented and discussed corresponding to the sectioning utilised in previous chapters. 

5.1. Microbial trait dataset 

This section will regard the earliest efforts of the present work. It includes the assessment 

of microbial trait data sources with respect to the great variety between them; the selection 

of sources and traits to include in the assembled dataset; and whether the dataset fulfils 

its purpose of being a comprehensive and homogenous source of microbial trait data. 

5.1.1. Data sources are highly variable 

One of the main takeaways from the conducted work is the impression that current sources 

of biological data vary greatly with respect to many characteristics. Most prominent are 

differences in coverage, completeness, focus, format, and accessibility. These have all 

affected the approach needed for the utilisation of the datasets’ contents. 

Overall, datasets’ organism coverage and category completeness seem to be negatively 

correlated measures. Moore, Nielsen, Mason, PhyMet2, Kremer, and Campedelli are the 

smallest data sources considered in this thesis, and all but two have perfect completeness 

for all trait fields they report on. In contrast, the largest two data sources have at most 

85% and 70% completeness, which drop to 43% and 56% respectively, when considering 

their second most complete categories. This difference is likely explained by the fact that 

the smallest data sources often are products of independent research studies, rather than 

being intended as repositories of microbial data. These studies either depend on or produce 

these microbial data and usually have a specific focus. Hence their high completeness. For 

instance, Kremer regards the temperature- and size-scaling of growth rates for 

phytoplankton and thus reports complete data on growth rates and temperatures. On the 

other hand, databases like BacDive and JGI collect data from such studies. They therefore 

contain observations from many sources on a vast number of different organisms and trait 

categories. Their large coverage and low completeness may therefore be said to symbolise 

the immense diversity of microbes, and how little is known about most of them. 

Overall, the plots of Fig. 4.5 (p. 38) further accentuate the variation between the utilised 

data sources. Traits like gram stain, isolation source, and oxygen requirement are reported 

by at least half of the data sources. Others are less frequent and thus usually suffers a 

lower completeness within the assembled dataset. Doubling time and trophy are among 

the traits most scarcely reported on. Corkrey is the biggest contributor to both of these 

fields, which is the main reason for its inclusion in the dataset. Other sources have also 

reported doubling times [46, 86, 101], although these are all journal publications with 

scopes that cannot compete with the coverage found in databases such as BacDive, JGI, 

and IJSEM. Hence their exclusion from the assembled dataset. BacDive does report on 

microbial trophy, although contains fewer reports than Corkrey does for the same field: 

BacDive only overlaps with one of Corkrey’s 660 trophy reports. This observation attests 

to the issue of microbial trait data being scattered across sources. With the ever-increasing 

number of scientific results being made available, the discovery and integration of data is 

a challenge repositories such as BacDive, JGI, and the present work must overcome in 

order to fulfil their purpose. 
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It should also be considered that even repositories like BacDive, which promotes itself as 

the largest database for bacterial information, is likely unable to gather all existing data 

on any particular organism. The sheer number of participants to microbial research alone 

poses a great challenge, and the additional factor of data availability further complicates 

this effort. Even within the relatively small number of data sources regarded in the present 

work, a great variety of approaches were needed to access them. Some were publicly 

unavailable (Campedelli, JGI, Moore, Nielsen) or in unfavourable formats (Bergey’s, 

Corkrey, Mason, RefSeq), requiring them to be obtained through a secondary source 

(Madin et al. [44]). Some were available through command-line or programmatical 

approaches and required a lower (MediaDB, PATRIC) or higher (BacDive, FAPROTAX) 

degree of processing to assume an appropriate structure. Several were readily available 

for download, either through web interfaces (TMD, Pasteur, PhyMet2, ProTraits) or as part 

of scientific publications (IJSEM, Kremer, Vieira-Silva). 

Furthermore, no two datasets had the same structure or standards for reporting their 

microbial information, for instance by the use of trait ontologies such described in Chapter 

2 (p. 15). An example is isolation source, which was reported using categorical tags (in 

IJSEM and ProTraits), non-categorical strings (BacDive, JGI, and Pasteur), or binary values 

(TMD). Hence some reformatting was required for all utilised data sources. Additionally, 

several data sources lack sufficient metadata. For instance, missing explanations of 

included traits resulted in the fields of incubation time [days] and doubling time [hours] 

being kept separate in the present work (see Fig. 4.3, panels T-U, p. 36). The connotation 

of “incubation time” is uncertain, as it for instance could denote both the time required for 

cell division, and the time required for the formation of a visible colony. If the former is 

true, then this field could have been combined with the field doubling time, increasing the 

completeness of this trait while removing the duplicate field. To avoid a possible erroneous 

merging however, no such reformatting was conducted. 

In summary, the discovery and integration of various sources of microbial data is not a 

simple task. To facilitate the collection of biological data, effort is required both from the 

individual researchers producing the data, and the repositories seeking to gather and store 

the information. Examples for the former agent include making sure the data is accessible; 

follows set standards, for instance with respect to taxonomy and ontologies; and have 

sufficient metadata. With high quality data and metadata available, the repositories may 

exert their purpose of including new data sources by curation or submissions; maintain the 

database and its existing information; and further enhance the data’s accessibility. 

5.1.2. Creating a new trait dataset was beneficial 

Having discussed the issues faced when accessing and standardising microbial trait data, 

a decision which should be mentioned was to not utilise any one existing source of microbial 

information for the GPA. As is evident from the data visualisation in Fig. 4.2 (p. 34), 

BacDive has asserted itself as a prominent data source both with respect to coverage and 

completeness of most trait categories. However, no data on gram stain was obtained from 

this data source. Despite gram stain being featured on its websites, BacDive does not 

readily list it as a checkable trait in its download section. Gram staining was regarded as a 

promising candidate for GPA at an early time due to its highly unambiguous nature and 

limited number of possible attributes (positive, negative, or variable). Hence BacDive not 

including it was unfortunate. 

The work of Madin et al. [44] was of great advantage to the present work: they had gained 

access to datasets which were not publicly available; received corrections from original 
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authors; and made improvements to select datasets, for instance by updating organism 

names to current NCBI standards. However, neither the prepared trait dataset nor the 

automated pipelines for data preparation and assembly of Madin et al. were utilised in the 

present work. The main reason for this is the seemingly strict requirements imposed on 

data entries for inclusion in their dataset. An example is JGI: the raw data file utilised by 

Madin et al. consists of 280,750 strain-level entries, with just 12,083 entries in the 

resulting dataset (“condensed_species_NCBI.csv” in Madin et al. [44]) listing JGI as one 

of its contributing data sources. The present work utilised the same raw data and could 

extract 58,169 strain-level entries with data for least one of the relevant trait fields. 

For data sources that are maintained and updated, such as BacDive, Pasteur, and TMD, 

the continued growth of the repositories is another factor discouraging the use of previously 

prepared dataset like Madin et al. No raw data from BacDive was provided in Madin et al., 

however their final dataset counts 1,184 entries with BacDive as an origin. 82,892 entries 

were available at BacDive at the time of download for the present work (16 months after 

the publication of Madin et al.). Of these, 51,431 entries had trait data of relevance for this 

thesis. BacDive continues to grow, and as of time of writing (May 5th, 2022), its repository 

has increased by an additional 6,653 strain-level entries since October 11th, 2021. This 

growth further demonstrates the ever-expanding knowledge gained within the field of 

microbiology, attesting the versatility of and need for effective tools and methodologies to 

gather, store, and maintain biological data. 

5.1.3.  Select data sources and traits were utilised 

Of the 19 data sources first regarded, only ten were included in the assembled dataset of 

the present work. The selection was based the dataset coverage, and only the nine largest 

datasets were used. In addition, Corkrey was included despite being the eleventh largest 

source. It provides over 600 reports of growth rates exclusively for strains also found in 

other datasets: thus it improves completeness for this field without compromising that of 

others. The potential inclusion of the remaining nine datasets would have increased the 

total number of entries of 147,676 only by 2,654. RefSeq alone accounts for 1,727 of 

these. It only reports on the non-trait field isolation source, and for several hundred unique 

entries not found in any other database. Since the contributions of the remaining nine 

datasets would have been rather inconspicuous, and would have required additional efforts 

for standardisation, their inclusion was decided against. Still, they represent sources with 

high specificity and quality within their respective themes, such as growth conditions for 

methanogens in PhyMet2; growth and antibiotic resistance of Lactobacillus in Campedelli; 

and genome projects in RefSeq. The latter resource was for instance used for accessing 

genome sequences in the second part of the present work. 

Not all data categories or traits present in the source datasets were included in the 

assembled dataset. This was to prioritise efforts on traits which could be of particular 

interest for GPA. For instance, being able to suggest substrates for growth was regarded 

as of higher value than to suggest cell size. Thus limiting the number of traits to consider 

aided in setting the scope of the present work. Future projects may choose to include more 

data categories, for which the regarded data sources may still be good candidates. 

5.1.4. Comparison of datasets relies on flawed identification methods 

Being able to correctly identify entries on the same organism is of importance for the 

quality of any database. With erroneous merging of entries, the dataset might indicate 

incorrect traits for organisms, and lack appropriate records for others. Conversely, failing 
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to identify overlaps limits the accumulation of all known data for an organism, ultimately 

compromising the purpose of data repositories in their entirety. 

To decide whether two entries within one or between datasets were of the same organism, 

most instances in the present work used string comparisons as the qualifier. This method 

was adopted due to many entries lacking an unambiguous identifier. An example could be 

NCBI taxonomy ID. In particular, the raw data files from neither BacDive, FAPROTAX, 

IJSEM, TMD, nor Pasteur contained taxonomy IDs, leaving 73,870 entries with the 

organism names as their only identifiers. Being the only field all dataset entries contained; 

the organism names were the only available identifier. 

To facilitate the use of organism names for evaluating overlapping entries, they were 

standardised to omit imprecisions in naming conventions. These differences would not 

change the semantic of the organism names but would trigger a simple string comparison 

function into differentiating between the entries. Spaces, taxonomic level specifiers, and 

special characters were the main focus in this effort and eliminated the most evident 

variations in the name formatting. Still, the method is rather unforgiving, seeing as the 

presence of rarer taxonomic specifiers (e.g. serovar or biovar), special characters, or 

misspellings in the registered names would cause two entries in fact representing the same 

organism, to be regarded as separate. The reported overlaps between data sources indicate 

that the standardisation of organism names was successful to an extent. Still, the overlap 

is likely bigger than indicated in these figures (Fig. 4.4 p. 37, and Fig. 4.5 p. 38). 

Other standards of organism identifiers which do not rely on exact string comparisons may 

be preferred. NCBI taxonomy ID might be a candidate, however not all entries within this 

identification scheme differentiates between strain-level entries of the same species. For 

instance, Bergey’s, ProTraits, and JGI report four entries total with tax ID 24, none with 

identical trait reports. The first two report one entry each with the same registered 

organism name (Shewanella putrefaciens), but with no strain designations. On the other 

hand, JGI reports two entries including strain names, however these are not the same (ML-

S2 and W3-6-1). Thus judging overlap by the relatively unforgiving string comparison 

method may be considered better than by tax ID in this instance. Ultimately, the present 

work highlights the benefit of adopting one particular convention for identifying microbial 

species. This would limit ambiguity and misunderstanding between those involved in 

microbial research, and any agent seeking to utilise the results of its efforts. 

5.1.5. The dataset may be representative of the known microbial diversity 

The present work has seen the gathering of data for select traits from ten prominent 

sources of microbial information, thereby assembling more data entries in total than its 

constituents. With this in mind, the assembled dataset might be thought of as 

representative for the diversity of microbes. For instance, of all data entries with reports 

on gram stain, just over 58% are reported as gram-negative (Fig. 4.3, panel D, p. 36). 

Could this suggest that approximately three out of every five microbial species are gram-

negatives? Similarly, will 54% of microbes yield positive indole tests (Fig. 4.3, panel I, p. 

36)? No such conclusions encompassing the entire microbial diversity will be drawn for any 

trait attribute distributions in the present work. This is due to the issue of sample sizes and 

observed bias in the collected data. 

The number of trait reports for the different data categories in the dataset vary greatly. 

Fig. 4.2 (p. 34) illustrates that the features most commonly reported on are isolation 

source, growth temperature, oxygen requirement, and gram staining. Thus the statement 

that “about 60% of microbes are gram-negative” would be based on almost 47,000 data 
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records. In contrast, stating that “21% of organisms are lithotrophic rather than 

organotrophic” (Fig. 4.3, panel H, p. 36) is only based on 300 reports. Thus if any 

generalisations were to be made based on the collected data, the traits with the most 

reports would provide have the better foundation for such generalisations. 

Despite a trait having sufficient sample size, it does not account for potential bias in its 

records. The isolation source is a prime example of this conflict. Being the data category 

with the most reports, it might be expected that it should be the best representative for 

any generalisations made using the assembled dataset. Inspecting the attribute 

distribution within the category accentuates the issue of bias in the dataset. 34% of the 

reports on isolation source contain the word “human”. Despite the human microbiome 

being a vast community of species, it is unlikely that this high a proportion of all microbial 

species would be found in its constituents. This observation demonstrates the fact that 

many of these records are made based on their relations to humans, for instance by having 

been found in tissues or samples of patients during diagnosis and study of illnesses. 

Because these organisms seem to have a direct impact on humans, they are of particular 

scientific interest. Hence they have been studied and reported on more than other species. 

Similar indications of bias can be seen in other data categories. Fig. 4.3, panel V (p. 36) 

indicates the most commonly reported growth temperatures for the recorded entries. There 

are slight indications of a bell curve shifted towards the lower end of the range, and with 

relatively few reports in the range from 50°C to over 100°C. There are however three 

prominent bars at 28°C, 30°C, and 37°C. These have at least double the frequency of 

surrounding temperature points. There is likely to be more microbes that can grow at 35°C 

than the data indicates, but the round number 30°C and the often referred to average 

human body temperature of 37°C is more commonly utilised in the reports of the data 

sources. Another testament to this bias is seen in the temperatures range 50-90°C. Here, 

any temperature with an increment of 5 are all more frequent than the temperature 

attribute right before it, such as 60°C versus 59°C. These observations are due to the fact 

that most data sources report specific growth temperature points, for example the exact 

growth temperature used in the reference work, rather than the full growth temperature 

range of the organism. 

The assembled dataset is observed biased towards organisms and data reports of particular 

interest to humans. Thus it might be justified to state that the current dataset represents 

the diversity of the currently known microbes. As our perspective of microbial diversity 

expands and develops, additional information will be known and made available through 

data repositories. Distributions indicating the most commonly produced products or cell 

wall structures will develop along with these discoveries, and continuously change our 

perception of the microbial diversity surrounding us. 

5.1.6. Strict criteria were set for inclusion in reduced trait dataset 

Following the assembly of the microbial trait dataset, a selection of the entries was 

extracted into a reduced dataset for use in the GPA. To be included in the reduced dataset, 

an entry had meet two requirements regarding their reported data. 

Firstly, the entry must have had non-NaN data entries for at least two of the traits of 

interest: gram stain, oxygen requirement, and substrate. As defined in Subsection 4.1.3 

(p. 39), these were the traits with highest completeness of suitable formats. This criterium 

was based on the ambition of generating predictions based on genome annotations across 

all three traits. Additionally, only using entries which had at least two trait reports served 

as a way of reducing the number of genome annotations to consider to an amount more 
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appropriate for the scope of the project. However, gram stain was ultimately the only trait 

for which a GPA was conducted. With this in mind, the methodology could have included 

any organism with a gram stain report in the assembled into the reduced dataset. This 

would have increased the reduced dataset coverage by almost 2,000 entries. Such an 

increased sample size for the GPA could potentially have seen the elimination of 

erroneously indicated term significances or exclusivities, as mentioned in Subsections 4.3.1 

p. 43, and 4.3.3. p. 47). Thus for future efforts, the trade-off between data management 

simplicity and sample sizes should be considered before subsets of data is disregarded. 

In addition to requirements on trait reports, any entry in the reduced dataset must also 

have had an accession number which lead to a genome assembly within the NCBI servers 

GenBank or RefSeq. This approach is a direct consequence of the observation that data 

sources do not always report taxonomy IDs or unambiguous organism names. Had this 

been the case, the genomes would have been readily available by querying the NCBI 

database for their genomes. Instead, the reported genome accession numbers were the 

only readily available way of unambiguously connecting the dataset entries to their genome 

assemblies. The chosen approach is most limiting when considering that BacDive was the 

only source from which genome accession numbers were included. All entries within the 

reduced dataset are thus ultimately organisms that can be found within BacDive. 

Simultaneously, BacDive entries did not include gram stain reports. The entries must 

therefore be part of the overlap between BacDive and at least one of the sources reporting 

gram stain: IJSEM, JGI, TMD, PATRIC, and ProTraits. Firstly, this observation demonstrates 

the necessity for assembling a new trait dataset for use in the present work, instead of 

using existing datasets. Secondly, it tells that for at least 3,409 organisms (the coverage 

of the reduced dataset), the standardised names yielded merging between at least two 

similar reports from different data sources. These are assumed correct row merges due to 

the precision of the full organism names. Any of these entries thus contain more data on 

the included traits than its corresponding entries in any of the utilised datasets. 

A consequence of having but one source report genome accession numbers is the 

immediate exclusion of over 25,000 entries which fulfil the trait count requirement, simply 

because they are not covered by this one source. Additionally, there is no way of 

corroborating the genome accessions reported by BacDive. For instance, one accession 

(GCA_900455645, key 2619) is found for 21 organisms in the reduced dataset. These are 

all entries of Pseudomonas putida with specified and unique strain names. However, a 

literature search for the accession number only returns the type strain of the species [148]. 

In this instance, there is no conflicting information in the trait reports for the entries with 

the same accession number. If this is the case for any other repeat accession numbers in 

the reduced dataset however, it could result in contradicting association reports. 

Overall, lacking accession numbers is a hindrance to studying genomes and traits as two 

sides of the same coin, as there is no simple way to tell which two sides belong together. 

To facilitate GPA studies, efforts must be made to allow identification of organisms and 

linking of information across databases, seeing as repositories for trait and genomic 

information has historically been kept separate. 

5.2. Genome sequence annotation 

Having regarded the first main task of the thesis, namely assembling a dataset on microbial 

traits, this Section concerns the acquisition of their genotypic counterparts. Of relevance 

for this part of the project was to determine the source for genome sequences and how 

their contents could be annotated. Further, the immediate analysis of the returned 
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annotation terms yielded insight into the organisms within the reduced dataset, in addition 

to setting the stage for the subsequent GPA.  

5.2.1. Both GenBank and RefSeq were utilised as genome sources 

As discussed in Subsection 5.1.6 (p. 57), genome accession numbers included in the 

reduced dataset served as the bridge between the assembled trait data, and the organisms’ 

sequenced genomes. Most of these accessions were directed towards GenBank, thus by 

mapping the accession numbers to the NCBI overview listing each accession number and 

its last updated assembly (“ncbi_prokaryotes.txt”, Supplementary information 5, App. A, 

p. 85), direct genome download links to GenBank were retrieved. Some of the genomes 

acquired from this initial query yielded several particularly short genomes. Upon closer 

inspection, it was discovered that some contained as few as 11 protein sequences. 

According to the organisms’ Nucleotide Database entries, the utilised GenBank accession 

was older than its RefSeq equivalent, while the latter reported a genome containing 

significantly more proteins. For another particularly small file however, the GenBank 

genome was newer, but the RefSeq genome was the utilised standard and contained more 

sequences. 

This discovery initiated an investigation that saw the comparison of protein counts within 

corresponding genomes acquired from GenBank and RefSeq. To follow the reported 

genome accession numbers as often as possible, only genomes which saw an increase in 

proteins by at least 15% were updated to their RefSeq assembly counterpart. This way, 

the data source for the genomes would remain as consistent as possible, while still omitting 

the use of highly incomplete genomes. Future efforts requiring a mapping from accession 

numbers to FTP server links should seek out or query an updated overview file. If provided 

with multiple genome options, that containing the most proteins should be prioritised to 

yield annotations both of better quality and quantity. 

5.2.2. EggNOG was the preferred tool for functional annotation 

To highlight the genomic contents present within the collected genome sequences, three 

sources of functional annotations were considered. Firstly, most assemblies in NCBI’s 

GenBank and RefSeq servers contain an annotation of the assembly genome 

(“*_genomic.gff.gz” or “*_genomic.gtf.gz” files). These would have provided quick and 

easy access to genomic characteristics through utilising a modified version of the pipeline 

made for downloading genomes from the same source. However, the NCBI-derived 

annotations do not currently contain information on orthology, which was required in the 

present work to enable the relation of features across taxa. Hence the need for a separate 

tool for functional annotation of the acquired genomes. 

Two tools were assessed for the task of functional annotation. The first was Prokka (ver. 

1.14.5) [149], utilising Orione [150], and accessed through the Galaxy server (ver. 21.09) 

[151]. The second was eggNOG, which for the purpose of tool testing was accessed through 

its web interface [152]. Both tools report COG, however they did not yield the same 

annotations when given the same input genomes. The full tests and outputs are included 

in the notebook “annotation_tool_comparisons.ipynb” (Supplementary information 9, App. 

A, p. 85), while Appendix C (p. 95) contains an excerpt of the test results. Overall, eggNOG 

took slightly longer to run but yielded significantly more COG terms than Prokka for all four 

test species. At most, Prokka had eight COGs not reported by eggNOG, while eggNOG had 

218 unique entries at the least (see Fig. C1, App. C, p. 85). Thus eggNOG was chosen as 

the tool for functional annotation. Instead of utilising the web interface however, the 

annotations were conducted with the same settings using a command-line approach. 



   

 

_________________________________________________________________________________________ 
  60 

A notable observation with the eggNOG annotations is the high number of COG terms used 

by the tool (included in the eggNOG raw data (ver. 5) [153]). In the present work, eggNOG 

annotated 9,744 unique COG terms across all submitted genomes. However, only 4,877 

unique terms are listed within the official COG database [67]. Thus any additional orthology 

terms in eggNOG that does not follow the COG standard was disregarded in the analysis, 

due to no COG category being mapped to this genomic content. 

5.2.3. Annotation classes vary in coverage and diversity 

EggNOG returns several annotation classes and for the present work, three were regarded: 

COG, KO and GO. The former two are orthologies, thus annotation genes with the same 

function originating from a common ancestor in different microorganisms. Additionally, GO 

is a well-established resource for computational representations of biological concepts and 

can also be used across taxa. It was thus included despite not being a true orthology. 

The overview of term diversity presented in Subsection 4.2.3 (Fig. 4.6, p. 41) reveal that 

COG is the least diverse annotation type; KO has the fewest total annotations; and GO is 

prominent in terms of both total and unique annotations. A probable explanation for this 

observation is explored in Subsection 5.2.3 (p. 60). Concerning the number of total 

annotations, these observations are expected due to the annotation output only including 

the lowest possible level within the annotation hierarchies for both COG and KO. This yields 

the most particular data for the association of traits with genomic contents. For GO terms 

however, each row in the annotation results could contain the full path from the lowest 

possible hierarchy level back to a top node (BP, CC, or MF). This explains the high number 

of total and unique GO annotations. 

To avoid this formatting difference from affecting the frequency distribution, only the most 

specific GO terms have been extracted from the annotation results. However, not all entries 

followed one path in exact order back to the origin node. For instance, one annotation for 

the test species Cellulomonas fimi NRS133 listed over a hundred terms, starting with 

“GO:0000166, GO:0003674, GO:0003676, (…)”. Assessing the placement of these three 

terms in the hierarchy returns the relative positions “2, 1, 3”, and the middle term is in 

fact an origin node, MF. Thus the returned terms cannot be assumed to be in order for the 

simple extraction of the most specific term. To extract only the most specific term for each 

annotation, an additional tool would be needed. This matter is partially solved by the 

generalisation of GO terms seen in Figs. B1-6 (App. B, p. 87) and will be discussed further 

in Subsection 5.3.5 (p. 65).41 

Overall, the frequency distributions of the annotation classes (Fig. 4.6, p. 41) showed a 

decreasing number of instances for increasing frequencies, however not across the entire 

frequency range. This demonstrates the presence of larger groups of terms that are found 

in almost all of the annotated genomes. If these represent conserved characteristics, such 

as housekeeping functionalities required by all cells for survival, they are expected to be 

found in most genomes. If they represent some rarer characteristic and are still found 

among most of the 3,307 annotated genomes, it will demonstrate that the reduced dataset 

is over-enriched for this function. Thus the dataset may not be considered representative, 

and the quality of any results provided by its use will be compromised. Hence it is of 

relevance that these terms found in high frequency within the annotations, represent 

common microbial characteristics. 

The most common COGs are COG0454 and COG0142, with respective frequencies 3,290 

and 3,288: these represent enzyme families which indeed are found within all kingdoms of 

life [154-156]. Their high frequencies are therefore coherent with their lack of specificity. 
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Similar observations are made for the most frequent GO terms: GO:0003674 (frequency 

of 3,306) represents “molecular function”, one of the three top nodes in the GO hierarchy 

[157]. GO:0044237 (frequency of 3,305) is “cellular metabolic process”, a term only two 

edges away from the top node BP [158]. For KO, a similar pattern is seen. K02988 and 

K02892 are the most common terms with frequencies of 3,282, and both represent 

ribosomal subunits [159, 160] which are highly conserved functions needed for survival by 

all living cells. 

In order to circumvent the consideration of annotation terms which where unlikely to yield 

any significant associations when related to gram staining, any term present in less than 

5% or more than 95% of the genomes were removed. Since the reduced dataset contained 

about a 2/3 ratio of gram attributes in the favour of gram-negativity, a term present in 

very few (less than 166) or very many (more than 3,141) genomes were considered less 

relevant for the GPA. Thus following this exclusion, the genomic contents used for the GPA 

are believed to represent a sufficient diversity of features. The terms for the most particular 

and most conserved features have been disregarded, leaving three sets of annotation 

terms which may further be attempted associated with observed phenotypic attributes. 

5.3. Genotype—phenotype association 

Following the acquisition of microbial features on both the phenotype and genotype level, 

this Section will regard the analysis of the association between the functional annotations 

and the collected trait attributes. Themes include the choice of gram staining as the trait 

and Fisher’s exact tests for the association; the biological interpretations of inferred 

patterns, and their use for inferring phenotypic attributes for new organisms. 

5.3.1. Gram staining was chosen for genotype—phenotype association 

The reduced dataset for which functional annotations had been generated, contained three 

traits in total: gram stain, oxygen requirement, and substrate. Gram stain was prioritised 

for the GPA for three reasons. The first being its high completeness relative to other trait 

fields in the assembled dataset. It was reported by several data sources and thus would 

provide a better sample size of organisms for the GPA. Secondly, because it is a common 

way of distinguishing between two types of microorganisms. The main features separating 

the two are well studied, thus any patterns indicated by the analysis results could be 

substantiated or discouraged by literature searches. Lastly, the trait of gram staining was 

easily divisible into just two attributes: positive or negative. Only having two possible 

attributes was beneficial because it would only require the creation of one contingency 

table for each annotation term. The third possible attribute for gram stain was “variable”, 

however it was present in less than 1.3% of instances. It could therefore be disregarded 

without compromising the sample size. Dividing the reduced dataset based on this one 

trait thus yielded two groups of organisms of sufficient size. 

Still, other trait fields can be chosen for a similar GPA approaches given slight modifications 

to the conducted methodology. For instance, the trait of oxygen requirement has seven 

possible attributes in the present dataset when excluding the “conflict” attribute. In its 

potential GPA procedure, a contingency table would be created for each attribute to divide 

the dataset into groups based on its presence in the reported phenotypes. For instance, 

the reduced dataset would see groups comprising of 116 with and 3,239 without the 

attribute “obligate aerobe”;  266 with and 3,089 without the attribute “microaerophile”; 

and so on. A Fisher’s exact test would be conducted per attribute per annotation term, 

yielding output OR and p-values for each association. Ultimately, the analysis and biological 
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interpretation would consider seven times the number of data points compared to the 

current gram stain analysis, due to the increased number of attributes. The interpretation 

effort could be aided by similar term generalisation approaches as utilised in the present 

work. Alternatively, the attributes themselves could be generalised to yield fewer 

contingency tables and parameters to regard. This would however yield a trade-off 

between overview and particularity, as is regarded in Subsection 5.3.5 (p. 65). 

Nevertheless, the trait of oxygen requirement is still considered a future candidate for 

similar GPA for the discovery of patterns between genomic contents and known 

phenotypes. The same is true for other trait fields, such as substrate. This trait sees an 

even higher number of possible attributes (944 in the reduced dataset) however, which 

would yield a prominent number of contingency tables and parameters to regard in the 

subsequent analyses. The generalisation scheme for these traits could therefore greatly 

benefit from the generalisation of the utilised attributes. This could be achieved by a trait 

or compound ontology, providing a standardised framework for reporting trait attributes. 

5.3.2. Fisher’ exact tests facilitated biological interpretation 

The Fisher’s exact tests used for the current GPA investigated the null hypotheses stating 

no dependence between the presence of any particular annotation term and any particular 

attribute of gram staining. Each test yielded an OR and a p-value. The OR denotes the 

odds of a particular outcome (having an annotation term “x”, denoted h) given a prior 

exposure (gram attribute “positive”, denoted p) compared to the same outcome in the 

absence of the exposure (gram attribute “negative”, denoted n) (see Section 2.3.3, p. 13). 

For each test, the OR was normalised by log10-transformations, after which they were 

denoted 𝑂�̃�. The absolute value of 𝑂�̃� represents the magnitude of the association, while 

the sign indicates its direction: negative values are associated with the absence of exposure 

n, and positive values with the presence of exposure p. Thus 𝑂�̃� is a more intuitive 

measurement of the association and was therefore used for the remaining analyses. 

An additional change introduced to 𝑂�̃� was the truncation of any values of infinite 

magnitude to that of 3. The calculation of OR (Eq. 1, p. 13) requires divisions involving the 

number of occurrences of the four possible instances (ph, nh, pl, and nl). If an 

annotation term was present only within entries with one particular gram stain, two of 

these four values would equal zero and yield divisions equalling infinite magnitudes. To 

prevent these terms from being excluded in the Volcano plots (Figs. 4.8 p. 44, 4.10 p. 46, 

4.11 p. 48), they were instead set to a particular threshold value outside the range of any 

non-infinite 𝑂�̃�. This way, they would still be included in the plot but be kept separate from 

the remaining terms. They all have magnitudes of 3 but may have different p-values. 

Therefore, they form two vertical columns in each end of the x-axis in the Figures. For p-

values, FDR correction was utilised. It seeks to limit the number of erroneous rejections of 

the null hypotheses during multiple testing [61]. This would apply to any p-value ≠ 1.  

The significance level set for 𝑂�̃� was 1.0. This implicates that for any association between 

a term and a particular gram stain, the magnitude of the odds ratio must be at least 10. 

For p-values, the significance level was set to 0.01. Overall, this means that a GPA between 

a term and a gram stain attribute is considered significant if the odds of an organism being 

annotated with the term in question is 10 times higher for one particular gram stain 

attribute than another; and that there is at most a probability of 1% of obtaining a similarly 

extreme distribution of observations if no association was present (i.e. the null hypothesis 

is true). This was regarded as a sufficiently high indicator of significance for the results. 

However, some observations and investigations of particular instances does reveal 
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erroneous associations within the results. These will be explained and discussed in the next 

Subsections. 

5.3.3. Thousands of annotation terms have significant gram associations 

Across the all three annotation classes, 4,444 annotation terms were found significantly 

associated with either gram-negativity or gram-positivity. Most terms were associated with 

gram-negativity, and over half of these were found exclusively for this gram attribute. This 

Subsection regards the observed diversity and extent of each annotation class, aided by 

the overviews presented in Fig. 4.7 (p. 43) and the Volcano plots in Figs. 4.8 (p. 44), 4.10 

(p. 46), and 4.11 (p. 48). 

Asserting itself as the most numerous and diverse annotation class before the association 

analysis, GO unsurprisingly appears as the most prominent annotation class among the 

terms with significant association to either gram stain. It could be attributed to the fact 

that it is a well-established representation of biological concepts with over 40,000 valid 

terms. In comparison, the NCBI COG database spans just under 5,000 terms [67]: hence 

its limited coverage. KO however consists of over 58,000 unique terms at its lowest level, 

while still seeing fewer total and unique annotations than GO. The notion that GO is more 

commonly utilised than COG and KO may result in these terms having relatively more 

established methods for annotation. Still, the prominence of GO is most likely due to many 

general terms being included in this class, as was discussed in Subsection 5.2.3 (p. 60). 

The effect of structural differences between the hierarchies will be regarded further in 

Subsection 5.3.5 (p. 65). 

Nevertheless, all three annotation classes provided several hundred annotation terms of 

interest for investigation. A selection of terms was found exclusively in genomes from 

organisms with a specific attribute of gram staining. These exclusive terms were most 

prominent for gram-negativity, surpassing even the number of non-exclusive terms for the 

same attribute. Generally, there seems to be more annotations known for genomes of 

gram-negative organisms. The total number of significantly associated terms are about 

twice as high for gram-negativity than gram-positivity, corroborating this assumption. This 

might be seen in light of the fact that there are more gram-negative organisms included 

in the dataset overall. As discussed in Subsection 5.1.5 (p. 56), any data repository is 

biased towards the organisms and data categories of interest in the scientific community. 

If more entries on gram-negative organisms are present, they might represent more 

popular subjects for study; hence the prominent number of genomic contents identified 

within their genomes. Inspecting the exclusive annotation terms however, reveals another 

possible explanation: many regard the biogenesis and structure of the gram-negative cell 

wall. Considering that gram-negatives contain a second phospholipid bilayer with several 

additional compounds (see Fig. 2.1, p. 9), these many extra terms relative to gram-

positives might be due to this additional cellular feature. 

5.3.4. Claims of attribute exclusivity are most uncertain 

With the described use of OR to denote the magnitude of association between annotation 

terms and gram attributes, the group of terms were effectively divided in three: the 

exclusive, the significant, and the non-significant terms. The exclusive terms, only found 

annotated in organisms with a particular gram attribute, might appear as the most 

promising candidates for relating genomic contents to that attribute. 

If these terms are true exclusives, this might be true. They could represent genomic 

content that directly contribute to the particular phenotype, hence their absence from 
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genomes of organisms expressing the opposite attribute. The present analysis could 

thereby have unambiguously identified genomic contents which could be used to predict 

the gram stain of an organism displaying the same genomic contents, without requiring 

cultivation and an actual gram staining procedure. Furthermore, any exclusive term may 

be of interest even if their implied causality for the current attribute of interest is refuted. 

Because of the low significance probability used in the tests, it is unlikely that a similarly 

extreme distribution would occur by coincidence. Hence the sequence represented by this 

term is likely of importance; but perhaps for another phenotypic feature present within the 

same group of organisms. 

An example of this is the term K11533, representing the bacterial type fatty acid synthase. 

It was found exclusively associated with gram-positive organisms (Fig. 4.12, panel D, p. 

49), but this association was refuted as in Chapter 4 (p. 46). Still, it is known that fatty 

acid biogenesis differs between gram-negative and gram-positive entries [143, 144 p. 

221]. This means that there must be other terms present in the overview that account for 

the phenotypic difference, or that these annotations have been missed. A search for fatty 

acid-related KOs in the overview returns three additional terms: an enzyme needed in 

biosynthesis for the gram-negative outer membrane (K16363) [161], and two specialised 

proteins involved in unsaturated fatty acid synthesis in gram-negative 𝛼- and 𝛾-

proteobacteria (K01716, K00647) [162]. Hence there are still annotations present in the 

overview that may account for the differences known to exist between gram-negatives and 

-positives for this cellular function. Continued GPA studies could thus be attempted in order 

to identify the features which explain the observed extreme distribution. 

A term’s status as exclusive is highly susceptible to change, however. If the term is 

observed but once for the other gram attribute, it would be demoted to a non-exclusive 

term. It is likely that it would still be significantly associated with the same gram stain for 

which it was assumed exclusive. Hence the biological interpretation could remain similar. 

Still, this issue underlines that the presence of attribute-exclusive terms for any particular 

annotation class does not justify the disregard of its non-exclusive terms. After all, the 

exclusives are but one observation away from joining this group. As a consequence, 

significant terms should be included in the interpretations of the GPA whether or not they 

are found as exclusive. 

In the present work, this mindset let to the creation of two sets of plots for each annotation 

class and gram attribute. Thus even if a term’s status as exclusive is refuted, it would still 

be included as a non-exclusive, significant term in a similar term generalisation scheme 

and be available for interpretation. By only using these visualisations for inferring 

association patterns, interpretations can be made without the risk of false attribute 

exclusivity. This however assumes that the inclusion of potentially overlooked observations 

does not compromise the significance of the association. For instance, COG3722 is a term 

significantly associated with gram-negativity. It represents a DNA-binding transcriptional 

regulator in the MltR family and is thus generalised into the “Transcription” parent term 

(bottom beige circle in Fig. 4.9, panel A, p. 45). Its contingency table reveals the small 

sample size this result is based on: [[1, 19], [221, 334]], meaning one gram-positive with the 

term; 19 gram-negative with the term; 221 gram-positive without the term, and 334 gram-

negative without the term. Due the first observation in the table, the COG is not returned 

as exclusive to gram-negative organisms, but it is still significantly in favour of this 

attribute. If an additional observation of this COG was found for a gram-positive organism 

(yielding the table [[2, 19], [221,334]]) however, the outcome of the Fisher’s exact test 

changes. The association 𝑂�̃� = −1.099 < −1.0 would change to 𝑂�̃� = −0.798 ≮ −1.0, which is 
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not considered significant. For instance, COG3722 is also found in the gram-positive 

bacterium Sphaerobacter thermophilus , which is included in the reduced dataset but lacks 

its gram attribute. Thus due to the small sample size for this term, the addition of just one 

observation changes an indicated GPA from exclusive to non-exclusive, and possibly erases 

its significancy entirely. 

The term K06181 represents the 23S rRNA pseudouridine synthase rluE and was found 

exclusively for gram-negative entries in its association (Fig. 4.11, p. 48). Kim et al. [139] 

however reported the presence of rluE within the relQ operon in the gram-positive 

bacterium Streptococcus mutans in 2012. Surprisingly, this species is included in the 

reduced dataset as gram-positive, facultative, with 15 registered growth substrates, and 

with the accession number GCA_009738105 (key 2941); but the KO term for rluE is not 

annotated within its genome. One explanation could be possible errors within the utilised 

genome sequence, preventing its correct annotation. It is however reported as the 

complete representative genome [163]. Hence substantial errors within the genome 

sequence are unlikely. Alternatively, eggNOG could have failed to annotate parts of the 

submitted genome. Kim et al. state that inconsistencies are often found for the relQ operon 

in various databases: most importantly that rluE of S. mutans often is incorrectly annotated 

as rluD [139]. Reviewing the raw annotation file for this genome yields the discovery of 

three rlu elements, which does include rluD. It is termed by eggNOG as K06180, a KO 

which is not significantly associated with any gram attribute. Thus the KO term originally 

returned as exclusive to gram-negative organisms seems to be an incorrect annotation of 

a common feature seen for organisms of both gram attributes. 

This latter example demonstrates the presence of inconsistencies within the field, and that 

these may persist for long periods of time without correction. Any attempt at interpretation 

and biological connotation utilising the presented results or similar methodologies must be 

done with care. Thorough investigations should be conducted to ensure that the indicated 

association may be genuine, and not a product of small sample sizes, ambiguous 

annotations, or other inconveniences. 

5.3.5. Term generalisation yields trade-off between overview and specificity 

To facilitate the interpretation of the GPA between genome annotations and gram stain 

attributes, terms within each annotation class were generalised by assembling related 

annotations into their parent terms or broader categories. The illustrations of these 

categories (Figs. 4.9 p. 45 for COGs; B1-6 p. 87 for GOs; and 4.12 p. 49 for KOs) convey 

both the number of terms included within each parent, and the average 𝑂�̃� of their 

constituents. By continuing the measure of significance into the generalisations, the parent 

terms may still be used to infer what genomic content appears associated with either gram 

attribute. For instance, they successfully represented several features involved in the 

biogenesis of the outer membrane of gram-negative cells (see Subsection 4.3.1, p. 43). 

However, the generalisations also revealed potential issues with the produced results and 

may themselves also contribute to erroneous interpretations. 

The level of generalisation should be considered when they are used to summarise 

biological information. For all hierarchies, a concern may be the loss of detail and thus 

potential intuitive GPA patterns. Other hierarchies, namely those where a child can have 

several parent terms, could additionally face the challenges of duplicating terms into 

several parents, effectively increasing the number of terms to consider rather than 

achieving the intended generalisation. In the instance of K11533, one round of 

generalisation resulted its duplication into two parent modules (M00082 and M00083). This 
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could be remedied by further generalising these modules into their common parent, thus 

eliminating the redundancy of K11533. Simultaneously, this solution will see the loss of 

even more detail. Thus the right level of generalisation may be difficult to determine. It 

should nevertheless be sought in order to achieve an appropriate balance between 

overview and detail. 

Similar to the hierarchy of KEGG Modules, GO terms may also have several parent terms. 

Additionally, the GO hierarchical structure is described as “loose”, for instance meaning 

that term A can be a direct parent of terms B and C, while term B also is a parent of C. 

This structure further complicates the clustering of related terms, which is likely the reason 

for the low level of generalisation seen for the GO plot overviews in Figs. B1-6 (p. 87). 

Most terms seem to have been grouped into parent terms. For instance, the highly general 

term “chromosome” is found in Fig. B2, panel B (p. 88). Conversely, terms like “bacterial 

type flagellum stator complex” (small, red circle in Fig. B2, panel B) is presented as more 

specific terms both by name and the visual cues of the circles. The REVIGO plots suffer 

particularly from this varying degree of generalisation due to the results not indicating 

which GO terms are contributing to the circle sizes. Hence no closer inspection of the terms, 

like that seen for COG and KEGG modules, are possible. There are alternative tools that 

may yield better generalisations of GO terms, with examples being GO Slim Term Mapper 

[164] and Generic GO Term Mapper [165]). For the sake of exemplifying the utilisation of 

exiting microbial data in this thesis however, the current generalisation provided sufficient 

overview and contributed to the general indication of candidate genomic contents for 

suggesting gram attributes. 

The unambiguous categorisation seen for COG contrasts that of both GO and KO. All COGs 

were divided into just one of 26 possible categories, hence their visualisation in Fig. 4.9 

(p. 45) yielded the most concise overview of all three annotation classes. A caveat of this 

structure is however a high level of generalisation, so much so that there is a difference in 

just three categories between significant gram-negatives (Fig. 4.9, panel A) and significant 

gram-positives (Fig. 4.9, panel C): “cell motility”, “chromatin structure and dynamics”, and 

“extracellular structures”. Since these categories are highly general, investigation of their 

constituent COGs is necessary to understand the differences indicated between gram-

negatives and -positives. Since there are relatively few COG terms in general, this task is 

not as laborious as it would have been for GO and KO. Some groups of terms may be 

relatively intuitive. For instance, six of eight COGs within the “cell motility” category contain 

“flagellar biosynthesis” or “flagellar basal body” in their definitions, making their function 

easily inferable. Such a clear sub-categorisation might not be present to the same extent 

within “extracellular structures”, whose contributing COGs are “chaperone PapD” 

(COG3121), “fimbrial subunit ScuA/B” (COG5430), and “pilus biogenesis protein 

CpaD/CtpE” (COG5461). 

Another notable observation from Fig. 4.9 (p. 45) is that the COG category “Function 

unknown” is the most prominent in all four panels. It may further accentuate the COG 

system as less established than its KO and GO counterparts. Additionally, considering the 

descriptions of the COGs found within the “unknown function” category reveals that the 

interpretation could have benefitted from a less extensive generalisation than the 26 COG 

categories can offer. For the 188 gram negative-associated COGs with unknown function, 

33 are defined as membrane proteins. Another five terms have definitions containing 

“periplasm”. Thus with additional distinctions within the COG categories, several results 

would have been more readily available for interpretation of their biological connotations. 
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For the present work, the highly general categorisation of COG terms did not infer 

significantly with the utility of the generalised plot of Fig. 4.9 (p. 45). It could still be used 

to indicate functional areas of interest for the consideration of features differing between 

gram-positive and gram-negative organisms. However, if other analyses see the inclusion 

of significantly higher number of COG annotations, inferring a general overview of functions 

they represent will likely be more laborious. 
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6. Conclusions and outlook 

The final chapter of this thesis seeks to summarise the essential takeaways from the 

present work. It will firstly address the creation of a dataset of microbial traits and the 

acquisition of functionally annotated genome sequences. This is followed by the association 

of genomic contents with observed attributes of gram stain, whose patterns were 

ultimately utilised to predict gram attributes for other organisms present in the dataset. In 

light of the results of these Sections and the points raised in the discussion conducted in 

the previous Chapter, tentative conclusions are formed with the intention of addressing 

the thesis aim of exemplifying uses of existing microbial data and annotated genomic 

contents to suggest phenotypic traits. Lastly, potential improvements and further areas of 

interest will be suggested for the hypothetical continuation of the project or its aim. 

The conducted methodology saw the consideration of 19 sources for microbial data. They 

were highly diverse in terms of coverage, theme, format, and completeness. As a 

consequence, particular procedures were needed to access and manage the data from each 

source. By enforcing existing terminology and custom standardisations of data categories, 

data such as organism names, gram stain, trophy, and growth temperatures was 

homogenised. After assuming similar structures and formats, comparisons of the datasets’ 

content could be used in the decision of which data sources to move forward with. 

Ten sources were selected based on their coverage and completeness, yielding an 

assembled dataset of 147,676 entries, spanning 126,763 unique strain-level organisms 

and 25 data categories. The variation seen in the individual data sources is apparent in the 

assembled dataset as well, manifesting itself in terms of great diversity of data fields and 

their varying completeness. For instance, seven sources report on oxygen requirements, 

while only two contribute to the field of doubling time. The completeness may be greater 

than its current impression indicates, a limitation attributed to the chosen structuring 

method. In the assembled dataset, entries from different data sources have not been 

merged. Some organisms are therefore found represented by several rows in the dataset. 

With this structure however, it is straightforward to infer the data sources for each reported 

data point, and no potential erroneous merging of organisms are made. This latter point is 

of concern due to the lack of a universal, unambiguous identification methods, which should 

be a priority in any future efforts of producing and gathering microbial data. 

By considering the variety of attributes within each data field and their relative frequencies, 

an image of the currently reported microbial diversity may be obtained. Examples of the 

most common attributes of the recorded traits are negative gram staining, positive indole 

metabolic assay, aerobic respiration, and growth in the mesophilic temperature range. 

Whether these observations are representative of the entire microbial diversity is less 

likely, considering bias in data reports and conducted research. As more is learned about 

known species and additional organisms are discovered and reported on, our perception of 

microbial diversity will continue to evolve. 

A subset of the collected organisms and their phenotypic data was extracted into a reduced 

dataset to provide trait information for organisms with readily available genome data. To 

condense the dataset, reports from different sources on the same organisms were merged. 

This way, all genomes would be paired with all the information available in the dataset for 

the selected fields. By only using a subset of organisms and traits, the relative 

completeness of each data category was increased and only the entries with the most 

reports were included in the establishment of genotype—phenotype associations. 

Alternatively, the procedure could have imposed more permissive criteria for the 
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considered species, and thus increased the sample size of the reduced dataset. The trade-

off between quality and quantity should be regarded in any further attempts at utilising 

existing data for association studies. 

The genome sequences of each organism in the reduced dataset were downloaded and 

annotated, yielding ontology and orthology terms describing the genomic contents of the 

collected genomes. Of the utilised term hierarchies, gene ontology was the most diverse 

and numerous. Clusters of orthologous genes were initially more numerous than KEGG 

orthology, however less than half of the terms were later mapped to their official database, 

compromising its relative coverage. Upon reviewing the annotated terms, most were highly 

particular and thus only present in a few genomes. The terms found more commonly 

among the genomes generally represented conserved cellular features, with examples such 

as universal enzyme superfamilies and ribosomal subunits. Hence it was deemed 

sufficiently representative for its continued use. 

The association of phenotypic features and genomic contents was conducted with respect 

to the trait of gram stain. This choice was based on the well-established understanding of 

gram-specific cellular features, its prevalence in the dataset, and its limited number of 

possible attributes: positive or negative. Thus to represent the distribution of any particular 

term across different gram attributes, only one contingency table was required per 

annotation term. Thus for each term, the organisms were divided into four categories: 

gram-positive with the term; gram-negative with the term; gram-positive without the 

term; and gram-negative without the term. The distributions were noted in contingency 

tables which were assessed with Fisher’s exact tests. The resulting associations were 

represented by two values. Normalised odds ratios assigned the direction and magnitude 

of the term’ association with either gram attribute, while p-values denoted the probability 

of erroneously rejecting the null hypothesis given a similarly extreme distribution. With the 

set significance levels (||𝑂�̃�|| > 1,    𝑝𝑉𝑎𝑙 < 0.01), 4,444 annotations were found associated 

with either gram stain attribute. Furthermore, some terms were found exclusively in 

genomes of organisms with a particular gram stain attribute. These may represent the 

most promising candidate genomic contents for predicting gram stain. However, many are 

determined using small sample sizes, which compromises their significance relative to the 

terms found associated with, but not exclusive to, particular gram stain attributes. Hence 

the exclusive terms have not been favoured in the present analysis. 

Nevertheless, the biological connotations of the significantly associated annotation terms 

were inferred as appropriate in several of the investigated instances. Prominent examples 

include the association of terms related to outer membrane biogenesis with gram 

negativity, and anionic acid polymers with gram-positivity. Having identified terms with 

significant association to a gram stain attribute among the known data based on the 

dataset, the same patterns were applied to three random organisms without a registered 

gram stain attribute in the dataset. Different patterns were recognised within their 

annotated genomes and resulted in the successful determination of their gram attributes. 

Thus it is believed that based on the present work, gram stain attributes for other 

organisms may be inferred by searching for similar patterns in their genomic content. 

Furthermore, other traits may be investigated using the same concept of inferring relations 

between known genotypic content and phenotypic features. Potential subjects for 

association from the present dataset include oxygen requirements and substrate. If 

similarly successful patterns of genomic content are discovered for these two traits, they 

can be used in the determination of growth capabilities of any organism with the same 
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genomic contents. This may be of use for instance in wet-lab methodologies seeking to 

facilitate growth of particular organisms, or to help overcome the issue of the great plate 

count anomaly. Further, similar studies could be conducted to help detect genomic targets 

involved in the production of desired metabolites, aiding the identification of new microbial 

species to utilise for industrial and medicinal purposes. 

The present work highlights many areas of major potential for further investigation. Given 

an additional few months, the present work could have continued its effort of generating 

and maintaining a large repository for microbial data. Such repositories have already 

demonstrated their versatility by facilitating scientific efforts and discoveries, and by 

promoting the accessibility of its findings. Automated processes for fetching and 

standardising data from the utilised sources could ease this effort. Furthermore, additional 

sources and trait fields may be incorporated to incentivise the utilisation of more of the 

already existing microbial data for genotype—phenotype association. Additional tools that 

may simplify the standardisation efforts is the establishment of new or utilisation of existing 

ontologies, for instance for isolation sources and growth media. Given their acceptance and 

utilisation in the scientific community, such ontologies provide beneficial frameworks for 

organising biological information and help streamline the flow of information between 

researchers, repositories, and computers. 

With the availability of additional data points, the current methodology of genotype—

phenotype analysis could be expanded upon. Including additional data points for the 

already explored association between genotypic content and gram stain is but one 

example. Through more sophisticated analyses and machine learning, models for 

phenotype prediction could be developed to consider the presence of multiple features in 

an organism’s genomic content. This would limit a central issue with the concept of the 

present work, namely that the presence of a gene or other genotypic marker does not 

guarantee its expression in the organism’s phenotype. In concept, development, growth, 

and refinement of such models could result in powerful tools which when provided with the 

genomic content of any microbe, could give detailed predictions of their expressed 

phenotype. This could be indicating of its optimal growth requirements, facilitating 

subsequent web-lab procedures for its cultivation and study of whether the traits predicted 

by the model accurately manifest themselves in the organism. In addition to providing 

well-founded predictions of the organism’s capabilities before cultivation, such models may 

present themselves as the most prominent tools for understanding biological systems, 

enabling simulation of complex interactions and the interplay of the many components and 

levels of organisation occurring within a cell. 
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Appendix A: Supplementary information 

This appendix presents an overview of the files made and utilised in the present work. All 

the files are found in the GitHub repository of the project, which can be accessed at 

https://github.com/jennymerkesvik/msc_thesis_supplementary_information. For simple 

navigation, use the “Go to file” option in the main directory and paste the path to the 

desired file using the shortcuts in Table A1. 

 

Table A1: GitHub repository overview detailing the thesis’ supplementary information. 
 

No. Description Path 

1 Raw trait dataset from various sources database/raw_data 

2 Scripts for preparing datasets database/scripts 

3 Prepared trait datasets from various sources database/preprared_data 

4 Output of the dataset assembly and analysis database/output_files 

5 NCBI overview of prokaryotes sequences/ncbi_prokaryotes.txt 

6 Protein sequence acquisition and verification sequences/protein_checks 

7 Reduced trait dataset used for association study sequences/reducedDataset.csv 

8 Protein sequence data comparison sequences/protein_data 

9 Functional annotation data and analysis sequences/annotation 

10 Fisher’s tests for annotations and gram stain analysis/fisher 

11 Genotype—phenotype association analysis/association 

12 COG term generalisation and analysis analysis/association/cog_terms 

13 GO term generalisation and analysis analysis/association/go_terms 

14 KO term generalisation and analysis analysis/association/ko_terms 

15 Sequences and annotations for test species analysis/suggest_gram_test 
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Figure B1: GO term 

biological process  

significantly 

associated with 

gram-negativity. 

 

A: significantly 

associated with 

gram-negativity. 

Circle size denotes 

the number of 

children terms within 

the category. Circle 

colour denotes 𝑂�̃�, 

from weak (yellow) 

to strong (red) 

association. 
 

B: exclusively 

associated with 

gram-negativity. 

Both circle size and 

colour denote the 

number of children 

terms within the 

category.  

Appendix B: Gene Ontology term generalisation 

This appendix contains the generalised GO term categories generated with REVIGO [116]. 

The interpretations of the figures are given in Subsection 4.3.2 (p. 46).  
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Figure B2: GO term 

cellular component 

significantly 

associated with 

gram-negativity. 

 

A: significantly 

associated with 

gram-negativity. 

Circle size denotes 

the number of 

children terms within 

the category. Circle 

colour denotes 𝑂�̃�, 

from weak (yellow) 

to strong (red) 

association. 
 

B: exclusively 

associated with 

gram-negativity. 

Both circle size and 

colour denote the 

number of children 

terms within the 

category.  



 

_________________________________________________________________________________________ 
89 . 

 

 

 

Figure B3: GO term 

molecular function 

significantly 

associated with 

gram-negativity. 

 

A: significantly 

associated with 

gram-negativity. 

Circle size denotes 

the number of 

children terms within 

the category. Circle 

colour denotes 𝑂�̃�, 

from weak (yellow) 

to strong (red) 

association. 
 

B: exclusively 

associated with 

gram-negativity. 

Both circle size and 

colour denote the 

number of children 

terms within the 

category.  
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Figure B4: GO term 

biological process 

significantly 

associated with 

gram-positivity. 

 

A: significantly 

associated with gram-

positivity. Circle size 

denotes the number of 

children terms within 

the category. Circle 

colour denotes 𝑂�̃�, 

from weak (red) to 

strong (yellow) 

association. 
 

B: exclusively 

associated with gram-

positivity. Both circle 

size and colour denote 

the number of children 

terms within the 

category.  
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Figure B5: GO term 

cellular component 

significantly 

associated with 

gram-positivity. 

 

A: significantly 

associated with gram-

positivity. Circle size 

denotes the number of 

children terms within 

the category. Circle 

colour denotes 𝑂�̃�, 

from weak (red) to 

strong (yellow) 

association. 
 

B: exclusively 

associated with gram-

positivity. Both circle 

size and colour denote 

the number of children 

terms within the 

category.  
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Figure B6: GO term 

molecular function 

significantly 

associated with 

gram-positivity. 

 

A: significantly 

associated with 

gram-positivity. 

Circle size denotes 

the number of 

children terms within 

the category. Circle 

colour denotes 𝑂�̃�, 

from weak (red) to 

strong (yellow) 

association. 
 

B: exclusively 

associated with 

gram-positivity. Both 

circle size and colour 

denote the number of 

children terms within 

the category.  
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Appendix C: Tests of annotation tools 

This Appendix summarises the results of the conducted test of two tools for functional 

annotation of genome sequences: Prokka and eggNOG. The test saw the submission of 

identical genome sequences to the tools and the subsequent comparison of the Clusters of 

orthologous genes identified by the tools. The raw data, script, and output are available in 

Supplementary information 9 (App. A, p. 85). 

Fig. C1 presents the term overlap produced by the two tools. For all four test species, the 

two tools overlap extensively. However, eggNOG saw the annotation of several terms not 

identified by Prokka in all four tests. Thus eggNOG was selected as the annotation tool for 

producing the genomic content used in the present genotype—phenotype association. 

 

 

Figure C1: Comparison of annotation tools, indicating that eggNOG (red, left circles) was 

the tool with the more comprehensive output compared to Prokka (green, right circles) in all 

four test parallels (columns). The circles sizes are unweighted; thus the data labels are used to 

indicate the number of annotation term found within each source, and their intersection. 
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