
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Eggestad, H
øyaas, Løken, Stålevik

Softw
are Security Testing

Merete Eggestad
Ingrid Høyaas
Oda Løken
Julie Stade Stålevik

Software Security Testing

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Erik Hjelmås
May 2022Ba

ch
el

or
’s

th
es

is

Merete Eggestad
Ingrid Høyaas
Oda Løken
Julie Stade Stålevik

Software Security Testing

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Erik Hjelmås
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

Title: Software Security Testing
Date: 20.05.2022

Participants: Merete Eggestad
Ingrid Høyaas
Oda Løken
Julie Stade Stålevik

Supervisor: Erik Hjelmås, Associate Professor, Department of
Information Security and Communication Technology

Employer: Tor Birger Skogen, NDMA ICT

Keywords: Information security, software security, automatic
security testing, DAST, SAST, SCA

Pages: 92
Attachments: 10
Availability: Open

Abstract: Software security testing is important to detect
vulnerabilities in the software before it is deployed
to production. NDMA wanted suggestions on how
they could improve their software security routines.
The thesis group have examined different tools that
can be used on software. They cover SAST, DAST,
and/or SCA. Some of the tools have been tested, and
the results were compared to each other. Furthermore,
the tools were evaluated based on advantages and
disadvantages, before the thesis group came up with
recommendations on which solution that can best suit
NDMA. These solutions were Veracode, or Snyk together
with StackHawk.

iii

Sammendrag

Tittel: Software Security Testing
Dato: 20.05.2022

Deltakere: Merete Eggestad
Ingrid Høyaas
Oda Løken
Julie Stade Stålevik

Veileder: Erik Hjelmås, Førsteamanuensis, Institutt for
informasjonssikkerhet og kommunikasjonsteknologi

Oppdragsgiver: Tor Birger Skogen, FMA IKT

Nøkkelord: Informasjonssikkerhet, prorgamvaresikkerhet,
automatisk sikkerhetstesting, DAST, SAST, SCA

Antall sider: 92
Antall vedlegg: 10
Tilgjengelighet: Åpen

Sammendrag: Sikkerhetstesting av programvare er viktig for å oppdage
sårbarheter i programvaren før den distribueres til
produksjon. FMA ønsket forslag til hvordan de kunne
forbedre sikkerhetsrutinene sine. Prosjektgruppen
har undersøkt ulike verktøy som kan brukes på
programvare. De dekker SAST, DAST og/eller SCA. Noen
av verktøyene er testet, og resultatene ble sammenlignet
med hverandre. Videre ble verktøyene evaluert ut fra
fordeler og ulemper, før prosjektgruppen kom med
anbefalinger om hvilke løsninger som kan passe best for
FMA. Disse løsningene er Veracode, eller Snyk sammen
med StackHawk.

v

Preface

Many thanks to our supervisor, Erik Hjelmås, for good guidance and help
throughout the whole project period.

Thanks to Tom Røise for advice on how to motivate NDMA to use the
recommended tools.

Thanks to other professors at NTNU for help with issues with the testing.

Thanks to Martin Stene for letting the group borrow both an API and a Java
software to test during the experiment.

Thanks to Odin Jenseg, Tor Erling Bjørstad, and Joakim von Brandis in Mnemonic
for helpful information about Snyk and how they use it.

Thanks to external companies for helpful information about how they perform
security checks on their software, and which tools they use.

Thanks to family and friends for reviewing the thesis and for providing
feedback.

And finally, many thanks to our contact person in NDMA, Håkon Liberg, for
guidance and help, for setting up interviews, and for all the information provided.
Also, thanks to the developers in NDMA for partaking in the interviews, and
for being helpful and sharing. We look forward to sharing the results of this
collaboration with you.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xv
Tables . xix
Acronyms . xxi
1 Introduction . 1

1.1 Background . 1
1.2 Problem Area . 1
1.3 Scope and Limitations . 2
1.4 Target Group . 2
1.5 Goals . 2
1.6 Framework . 3
1.7 The Group’s Academic Background . 3

1.7.1 Why This Task Was Chosen . 4
1.8 Methodology . 4

1.8.1 Software Engineering Method 4
1.8.2 Research Methods . 5

1.8.2.1 Literature Study . 5
1.8.2.2 Interviews . 6
1.8.2.3 Experiment . 6

1.9 Thesis Structure . 6
1.9.1 Chapters . 7

2 Theory . 9
2.1 Introduction . 9
2.2 Testing Functionality Compared to Security 9
2.3 Box Testing . 10

2.3.1 White Box Testing . 10
2.3.2 Black Box Testing . 11
2.3.3 Gray Box Testing . 11

2.4 Application Security Assessment . 12
2.4.1 Shift-Left . 12

ix

x Contents

2.4.2 False Positives and Negatives 12
2.5 Application Security Testing and Analysis 13

2.5.1 Static Application Security Testing (SAST) 13
2.5.2 Dynamic Application Security Testing (DAST) 14
2.5.3 Interactive Application Security Testing (IAST) 14
2.5.4 Runtime Application Security Protection (RASP) 15
2.5.5 Software Composition Analysis (SCA) 16

2.6 The Importance of Software Security Testing 16
2.7 The Odds of Finding Vulnerabilities . 17
2.8 Test Environment . 18
2.9 Penetration Testing . 18
2.10 Fuzzing . 19
2.11 OWASP Top 10 . 19
2.12 Vulnerability Estimators . 20

2.12.1 Common Vulnerability Scoring System (CVSS) 20
2.12.2 Common Vulnerabilities and Exposures (CVE) 20
2.12.3 Common Weakness Enumeration (CWE) 21
2.12.4 OWASP Risk Rating Methodology 21

2.13 Containers . 22
3 Tools for Security Testing . 25

3.1 Introduction . 25
3.2 Today’s Solution . 25
3.3 Tools . 26

3.3.1 Comparison Table . 26
3.3.2 Overview of Tools . 28

4 Analysis of Selected Tools . 33
4.1 Introduction . 33
4.2 Contrast Security . 33

4.2.1 Why Contrast Security Was Chosen 33
4.2.2 Product Overview . 34

4.2.2.1 Contrast Scan . 34
4.2.2.2 Contrast SCA . 34
4.2.2.3 Contrast Assess . 34
4.2.2.4 Contrast Serverless . 35
4.2.2.5 Contrast Protect . 35

4.2.3 How Contrast Security Handles Data 35
4.2.4 Vulnerability Scoring . 35

4.3 Snyk . 36
4.3.1 Why Snyk Was Chosen . 36
4.3.2 Product Overview . 37

4.3.2.1 Snyk Open Source . 37
4.3.2.2 Snyk Container . 37
4.3.2.3 Snyk Code . 38
4.3.2.4 Snyk Infrastructure as Code 38

Contents xi

4.3.2.5 Snyk Learn . 38
4.3.2.6 Snyk Vulnerability Database 38

4.3.3 How Snyk Handles User Code and Repositories 39
4.3.3.1 Snyk Open Source . 39
4.3.3.2 Snyk Container . 39
4.3.3.3 Snyk Code . 39
4.3.3.4 Snyk Infrastructure as Code 40

4.3.4 Vulnerability Scoring . 40
4.4 StackHawk . 40

4.4.1 Why StackHawk Was Chosen 40
4.4.2 Product Overview . 40
4.4.3 How StackHawk Handles Data 41
4.4.4 Vulnerability Scoring . 41

4.5 Veracode . 41
4.5.1 Why Veracode Was Chosen . 41
4.5.2 Product Overview . 42

4.5.2.1 Veracode Static Analysis 42
4.5.2.2 Veracode Software Composition Analysis 42
4.5.2.3 Veracode Dynamic Analysis 43
4.5.2.4 Veracode Discovery 43
4.5.2.5 Veracode Manual Penetration Testing 44
4.5.2.6 Veracode eLearning 44

4.5.3 How Veracode Handles Data . 44
4.5.4 Vulnerability Scoring . 44

4.6 Selected Tools in the SDLC . 45
5 Experiment . 47

5.1 Introduction . 47
5.2 The Test Environments . 47

5.2.1 Test Data . 47
5.3 Tested Tools . 48

5.3.1 Contrast Security . 48
5.3.1.1 Community Edition 48

5.3.2 Snyk . 51
5.3.2.1 GitHub . 51

5.3.3 StackHawk . 53
5.3.3.1 HawkScan . 53

5.4 Untested Tools . 58
5.4.1 Contrast Security . 58

5.4.1.1 Contrast Scan (SAST) 58
5.4.2 Veracode . 61

5.4.2.1 Veracode SCA . 61
5.4.2.2 Veracode Dynamic Analysis (DAST) 64
5.4.2.3 Veracode Static Analysis (SAST) 67

5.5 Results . 71

xii Contents

6 Discussion . 73
6.1 Introduction . 73
6.2 Result Interpretation . 73
6.3 Advantages and Disadvantages . 75

6.3.1 Contrast Security . 75
6.3.2 Snyk . 77
6.3.3 StackHawk . 79
6.3.4 Veracode . 81

6.4 Other Security Options for Testing and Analysis 82
6.5 Manual Testing Methods . 82
6.6 Containers . 83
6.7 Limitations . 83

6.7.1 Research . 83
6.7.2 Testing . 83
6.7.3 Other . 84

6.8 Critique of the Thesis . 84
6.8.1 Documentation . 84
6.8.2 Testing . 85
6.8.3 New Tools . 85
6.8.4 Changes . 85

6.8.4.1 Invicti Security . 85
6.8.4.2 Contrast Security . 86
6.8.4.3 Snyk and StackHawk 86

7 Conclusion . 87
7.1 Introduction . 87
7.2 Reflections . 87

7.2.1 Software From NDMA . 87
7.2.2 Interviews . 88
7.2.3 Customer Persuasion Meeting 88
7.2.4 Getting Acquainted With New Tools 88
7.2.5 Evaluation of the Working Process 88

7.2.5.1 Halfway Assessment 88
7.2.5.2 Gantt . 89
7.2.5.3 System Development Model 90
7.2.5.4 Work Distribution . 90
7.2.5.5 Goals . 91

7.3 Further Work . 92
7.4 Conclusion . 92

Bibliography . 93
A Contrast . 107

A.1 Contrast Scan (SAST) . 107
B Snyk . 115

B.1 GitHub . 115
B.1.1 Test With an Old Exam . 115

Contents xiii

B.1.2 Test with FastTasks . 120
C Veracode . 123

C.1 Veracode SCA . 123
C.1.1 Upload and Scan . 123
C.1.2 Agent-Based Scan . 126

C.2 Veracode Dynamic Analysis . 129
C.2.1 Authenticated Dynamic Scan 129
C.2.2 Unauthenticated Dynamic Scan 130
C.2.3 Dynamic Analysis for Internal Scanning 131

C.3 Veracode Static Analysis . 132
C.3.1 GitHub . 132
C.3.2 Visual Studio Code . 136

C.3.2.1 Installation of Veracode for VS Code 136
C.3.2.2 Scanning source code with Veracode for VS Code . 139
C.3.2.3 Review findings in Veracode for VS Code 142

C.3.3 Veracode Platform . 146
D Intervjuguide . 149

D.1 Intervju med ekstern bedrift . 149
D.2 Intervju med utviklere i FMA . 151

E Oppgavebeskrivelse . 157
F Samarbeidsavtale . 159
G Prosjektplan . 167

G.1 Mål og rammer . 167
G.1.1 Bakgrunn . 167
G.1.2 Prosjektmål . 167
G.1.3 Rammer . 168

G.2 Omfang . 168
G.2.1 Problemområde . 168
G.2.2 Problemstilling og avgrensninger 169

G.3 Prosjektorganisering . 169
G.3.1 Ansvarsforhold og roller . 169
G.3.2 Rutiner . 170
G.3.3 Grupperegler . 170

G.4 Planlegging, oppfølging og rapportering 170
G.4.1 Hovedinndelingen av prosjektet 170

G.5 Organisering av kvalitetsikring . 172
G.5.1 Dokumentasjon og verktøy . 172
G.5.2 Plan for inspeksjoner og testing 172
G.5.3 Risikoanalyse . 172

G.6 Plan for gjennomføring . 178
G.6.1 Aktiviteter . 178
G.6.2 Milepæler . 180
G.6.3 Gantt-skjema . 180

H Relevant mailkommunikasjon . 181

xiv Contents

H.1 Undersøkte verktøy . 181
H.1.1 StackHawk . 181
H.1.2 Invicti Security . 183

H.2 Eksterne bedrifter . 183
H.2.1 Mnemonic . 183
H.2.2 Basefarm . 186
H.2.3 Finansinstitusjon . 187

H.3 Faglærere på NTNU . 188
H.3.1 Ivar Farup . 188
H.3.2 Kiran Raja . 190
H.3.3 Lars Erik Pedersen . 192

H.4 Utvikler i FMA . 192
I Referat . 195

I.1 Referat fra møter med veileder . 195
I.2 Referat fra møter med oppdragsgiver 204
I.3 Referat fra egne møter . 211
I.4 Referat fra møter med utviklere . 213
I.5 Referat fra møter og intervjuer med diverse eksterne 217

J Timeliste . 221

Figures

1.1 Software development model . 5

2.1 Application Security Testing . 13
2.2 SAST placed in the SDLC . 13
2.3 DAST placed in the SDLC . 14
2.4 SCA placed in the SDLC . 16
2.5 OWASP Top 10 in 2017 vs. OWASP Top 10 in 2021 20
2.6 The ranking of vulnerabilities in version 3.1 20
2.7 The likelihood and impact levels . 21
2.8 The risk severity . 22

3.1 Information about all the examined tools 27

4.1 Contrast Security products placed in the SDLC 34
4.2 The risk severity . 36
4.3 Snyk products placed in the SDLC . 37
4.4 Veracode products placed in the SDLC 42
4.5 The tools placed in the SDLC . 45
4.6 The tools and what type of software they can be used on 45

5.1 The results from the test . 49
5.2 Overview of the vulnerability found . 50
5.3 Details about the vulnerability found 50
5.4 Information about how to fix the vulnerability 51
5.5 Adding projects to scan for vulnerabilities 52
5.6 Scanned project with vulnerabilities ranked by grade of severity . . 52
5.7 An example of a suggested fix . 53
5.8 Issue with permissions . 54
5.9 Error fix . 54
5.10 First time running the command for starting a test 54
5.11 Results from test shown in PowerShell 55
5.12 Test in progress on StackHawk’s website 56
5.13 Website-version of the test results . 56
5.14 Details of found vulnerability . 57

xv

xvi Figures

5.15 Details on the threat . 58
5.16 Overview over scans and add new button in the right corner 59
5.17 Starting a new scan in the CLI . 59
5.18 One scan done on the project named "Java Scan" 60
5.19 Overview of a vulnerability . 60
5.20 The Veracode Platform . 61
5.21 The results from the SCA scan . 62
5.22 The commands needed to create an agent in the CLI 63
5.23 The results from the scan in the CLI as a JSON output 63
5.24 The Dynamic Analysis workflow . 64
5.25 The Blocklist . 65
5.26 The Allowlist . 65
5.27 Different ways to authenticate . 66
5.28 The results from the test . 67
5.29 The GitHub repository that is going to be scanned 68
5.30 The veracode-analysis.yml file . 69
5.31 Overview of all the issues found in the scan 70

6.1 Results from Snyk retesting . 74

7.1 The original Gantt . 90
7.2 The actual Gantt . 90

A.1 Starting a new scan in the CLI . 107
A.2 Get started by choosing what is going to be scanned 108
A.3 Creating a scan project . 108
A.4 A new and empty project . 109
A.5 Uploading the file and starting the scanning it 109
A.6 Vulnerabilities in the project . 110
A.7 Details about a vulnerability . 110
A.8 Information on how to fix a vulnerability 111
A.9 Notes on a vulnerability found in the project 111
A.10 Vulnerabilities can be marked manually 112
A.11 The vulnerabilities can be sorted on different statuses 112
A.12 Overview of policies used . 113
A.13 The results can be shared with others i a JSON file or CSV file . . . 113

B.1 Adding projects to scan for vulnerabilities 115
B.2 Scanned project with vulnerabilities ranked by grade of severity . . 116
B.3 Found vulnerability with context and score 116
B.4 More information about a vulnerability 117
B.5 List of scanned projects . 117
B.6 Fix recommendation . 118
B.7 Fix recommendation . 118
B.8 Fix PR . 119

Figures xvii

B.9 Failed scan due to it being a C++ project 119
B.10 Documentation for .NET support . 120
B.11 Partly failed scan . 120
B.12 Test result . 121
B.13 Vulnerability example . 121
B.14 Unscanned files . 122

C.1 The types of scans that can be done . 123
C.2 Packaging requirements for the relevant supported language 124
C.3 The vulnerability database . 124
C.4 Different ways to start a scan . 125
C.5 Where to add new rules . 125
C.6 Where to start the Veracode agent-based scan 126
C.7 Where to create a workspace . 127
C.8 The commands in the CLI and the how to start a scan 127
C.9 The URL to the results in the Veracode Platform 128
C.10 List of discovered CVEs from the scan 128
C.11 Information about the Dynamic Analysis 129
C.12 Uploading the CSV file with URLs . 131
C.13 Where to select gateway and endpoint 132
C.14 The Veracode documentation on how to set up API credentials . . . 133
C.15 Where to add the credentials . 133
C.16 The Veracode template to perform a scan 134
C.17 Overview of the running workflows . 135
C.18 All the different steps in the scan . 135
C.19 Information about one specific issue 136
C.20 The files in the extension folder . 137
C.21 Which extension that needs to be installed 138
C.22 The details and how to run the scan . 138
C.23 The opened folder with all the files . 139
C.24 The first way to scan a file . 140
C.25 The second way to scan a file . 140
C.26 The third way to scan a file . 141
C.27 The results in the Veracode tab . 141
C.28 How to scan a folder . 142
C.29 All CWEs in the code . 143
C.30 The issue marked with a red underline 143
C.31 More information about the issue . 144
C.32 The details panel with a description of the CWE 144
C.33 Different severities can be filtered out 145
C.34 The filter icon . 145
C.35 How to temporarily ignore findings . 146
C.36 Guidance for the specific language and platform 146
C.37 When a scan is completed . 147

xviii Figures

C.38 The results from the static analysis scan 147

E.1 Oppgavebeskrivelse . 157

G.1 Systemutviklingsmodell . 171
G.2 Gantt-skjema . 180

H.1 Mail from StackHawk . 182
H.2 Mail from Invicti . 183
H.3 Mail til Odin i Mnemonic . 183
H.4 Svar fra Odin i Mnemonic . 184
H.5 Svar til Odin . 184
H.6 Svar fra Odin med kopi til Tor i Mnemonic 184
H.7 Mail fra Tor i Mnemonic . 184
H.8 Mail til Tor med flere spørsmål . 185
H.9 Svar fra Tor med kopi til Joakim i Mnemonic 185
H.10 Svar fra Joakim . 186
H.11 Mail fra Basefarm . 186
H.12 Mailkommunikasjon med finansinstituasjon 187
H.13 Tips om nettside fra finansinstitusjon 187
H.14 Mailkommunikasjon med Ivar . 188
H.15 Mailkommunikasjon med Ivar . 188
H.16 Mailkommunikasjon med Ivar . 189
H.17 Mailkommunikasjon med Ivar . 189
H.18 Mailkommunikasjon med Ivar . 190
H.19 Mailkommunikasjon med Kiran . 190
H.20 Mailkommunikasjon med Kiran . 191
H.21 Mailkommunikasjon med Kiran . 191
H.22 Mailkommunikasjon med Lars Erik . 192
H.23 Mail til utvikler i FMA . 192
H.24 Mail fra utvikler i FMA . 193

J.1 Antall timer jobbet med Bacheloroppgave - Oda 221
J.2 Antall timer jobbet med Bacheloroppgave - Merete 222
J.3 Antall timer jobbet med Bacheloroppgave - Julie 222
J.4 Antall timer jobbet med Bacheloroppgave - Ingrid 223
J.5 Antall timer jobbet per uke . 223

Tables

3.1 Aqua Security/Trivy, Burp Suite and Contrast Security 29
3.2 Detectify, Invicti Security and Klocwork 30
3.3 Nessus, OWASP ZAP and Reshift . 31
3.4 Snyk, StackHawk and Veracode . 32

5.1 Results from the tests . 71

6.1 Advantages and disadvantages discovered about Contrast Security . 75
6.2 Advantages and disadvantages discovered about Contrast Security . 76
6.3 Advantages and disadvantages discovered about Snyk 77
6.4 Advantages and disadvantages discovered about Snyk 78
6.5 Advantages and disadvantages discovered about StackHawk 79
6.6 Advantages and disadvantages discovered about StackHawk 80
6.7 Advantages and disadvantages discovered about Veracode 81

G.1 Risikoanalyse 1 . 173
G.2 Risikoanalyse 2 . 174
G.3 Risikoanalyse 3 . 175
G.4 Risikoanalyse 4 . 176
G.5 Risikoanalyse 5 . 177
G.6 Milepæler . 180

xix

Acronyms

AI Artificial Intelligence. 38

API Application Programming Interface. vii, 29, 32, 34, 40, 43, 48, 53, 61, 64,
67, 71, 74, 79, 123, 132, 133, 137

ARM Azure Resource Manager. 38

AWS Amazon Web Services. 32, 36, 41

BOM Bill of Materials. 16

cURL Client URL. 32, 48

CI continuous integration. 43

CI/CD Continuous Integration/Continuous Delivery. 15, 18, 32, 37, 38, 40, 42

CLI Command Line Interface. 34, 40, 59, 62, 63, 75, 107, 127

CSV Comma-Separated Values. 60, 112, 113, 130, 131

CVE Common Vulnerabilities and Exposures. 20, 21, 35, 128

CVSS Common Vulnerability Scoring System. 20, 40, 44

CWE Common Weakness Enumeration. 20, 21, 44, 142–144

DAST Dynamic Application Security Testing. iii, v, 14, 15, 40, 41, 43, 45, 53, 64,
71, 74, 77, 79, 81, 82, 84, 86

EMEA Europe, Middle East, Africa. 32

EU European Union. 3, 26

FMA Forsvarsmateriell. v

GUI Graphical User Interface. 40

xxi

xxii Acronyms

HQ Headquarter. 29, 32

HTML HyperText Markup Language. 48

HTTP HyperText Transfer Protocol. 130

IaC Infrastructure as Code. 32, 37, 38, 40

IAST Interactive Application Security Testing. 14, 15, 29, 33, 34, 48, 58, 71,
73–75, 82

ICT Information and communications technology. iii

IDE Integrated Development Environment. 14, 25, 31, 42, 51, 67, 136, 137, 142

IKT Informasjons- og kommunikasjonsteknologi. v

IP Internet Protocol. 43, 129, 131

IR Internal or Interagency Reports. 21

ISM Internal Scanning Management. 43

IT Information Technology. 1

JSON JavaScript Object Notation. 60, 62, 63, 112, 113, 128

MPT Manual Penetration Testing. 44

NATO North Atlantic Treaty Organization. 3, 26

NDMA The Norwegian Defence Materiel Agency. iii, vii, 1–3, 7, 25, 26, 28, 33,
36, 40, 45, 75, 77, 79–83, 85–89, 91, 92

NIST National Institute of Standards and Technology. 10–12, 18, 20–22, 83

NTNU Norwegian University of Science and Technology. vii, 3, 47, 71, 159, 188

NVD National Vulnerability Database. 16, 20

OS Operating System. 22, 23, 26, 29, 39

OWASP Open Web Application Security Project. 13, 19–21, 31, 34, 40, 41

PC Personal computer. 47

PHP Hypertext Preprocessor. 36, 38, 48, 86

POM Project Object Model. 73, 76

PR Purchase Requisition. 31

Tables xxiii

RASP Run-time Application Security Protection. 15, 29, 33, 35, 48, 58, 75, 82

REST Representational state transfer. 48, 53, 71, 74

SaaS Software as a Service. 39

SAST Static Application Security Testing. iii, v, 13–15, 29, 33, 34, 36, 38, 41, 42,
45, 58, 67, 71, 74, 75, 77, 81, 82, 84, 86, 107

SBOM Software Bill-of-Materials. 29

SCA Software Composition Analysis. iii, v, 16, 29, 33, 34, 36, 37, 39, 41–45, 48,
58, 61, 62, 71, 73–75, 77, 81, 82, 84, 86, 123–125, 128, 146

SCAP Security Content Automation Protocol. 20

SDLC Software Development Life Cycle. 2, 12–17, 34–38, 42, 43, 45, 74, 75, 79,
82, 91, 92, 150, 152

SP Special Publication. 10–12, 18, 20, 22, 83

SQL Structured Query Language. 14

URL Uniform Resource Locator. xxi, 27, 32, 35, 48, 64, 128–132

VS Code Visual Studio Code. 51, 136, 137, 139, 141, 142

XML Extensible Markup Language. 43

XSS cross-site scripting. 14, 73

ZAP Zed Attack Proxy. 31, 40

Chapter 1

Introduction

1.1 Background

The Ministry of Defense has four underlying agencies [1]. These are the
Norwegian Armed Forces, the Norwegian Defence Research Establishment, the
Norwegian Defense Estates Agency, and the The Norwegian Defence Materiel
Agency (NDMA). The Norwegian Armed Forces is the military part of the
Norwegian government [2], and is led by the Chief of Defense and the Defense
Staff. NDMA equip the Norwegian Armed Forces with material [3] in order
to contribute to a higher operational strength. This includes everything from
the soldiers’ equipment to different vehicles, aircrafts and seagoing vessels,
weapon and sensory systems, and Information Technology (IT)-systems. NDMA
is responsible for procuring, managing and phasing out this material, and they
have the responsibility of ownership management for the duration of the service
life of the equipment. They also have professional authority of all material in the
Norwegian defence industry.

Through NDMA, the Norwegian Armed Forces get a lot of different software
from various vendors [4]. It is important that the software they use is as secure
as possible. This is especially important when dealing with data with classified
status.

1.2 Problem Area

NDMA need to test the security of both produced and procured software before
they go into production. The solution today is a manual review of code, and a
review of all the libraries that the code is dependent on. This is a cumbersome
and time-consuming process, and vulnerabilities are easily missed. Grading the
severity of the vulnerabilities appropriately can also be difficult without a frame
of reference.

1

2 Chapter 1: Introduction

NDMA need a better method for performing security and vulnerability checks of
software from both internal and external developers. Their desire is an option that
is as automated as possible, and that allows them to find vulnerabilities earlier in
the Software Development Life Cycle (SDLC).

1.3 Scope and Limitations

The thesis will be limited to software security. One problem that is emphasized
by NDMA, is that there are more libraries than necessary in the source code from
the software they receive, and it is difficult to get an overview of all the libraries.
NDMA want to check if these contain vulnerabilities, or if they are not in use and
only pose an unnecessary threat. Thus, the main focus will be to automate these
checks as much as possible. If it is not possible to recommend an alternative that
is fully automated, the goal will be a combination of an automated and a manual
solution of high quality. Most important is that the end result makes it easier to
review software than it has been before.

1.4 Target Group

There are several target groups for the thesis. One of the target groups are the
leaders of NDMA, because they are ultimately the people who decide if a solution
is worth investing time and money into. Another target group is the developers
of NDMA and the Norwegian Armed Forces. They will potentially be using the
recommended tools to make their software more secure. A third target group is
the employees responsible for reviewing external software for NDMA.

1.5 Goals

Effect goals:

M1 Increased awareness of security during software development.
M2 NDMA are happy with the methods that are proposed and use these over

time.
M3 Reduce the time it takes to check for vulnerabilities in the software.
M4 Reduce the number of people that need to check for vulnerabilities in the

software.

Chapter 1: Introduction 3

Project goals:

M5 Find tools and methods to make the security checks for the NDMA more
effective, and automate this if possible.

M6 NDMA start using the tools and methods the group has come up with.
M7 Create a systematic overview of potential tools that can be used for software

control.

1.6 Framework

Procurement for the Norwegian Armed Forces is subject to the Public Procurement
Act [5], with some exceptions. It means that choosing suppliers is often
competition driven, sometimes making it impossible to rely on one supplier
only. This is part of the reason why they have several different suppliers. Having
different suppliers also means more differences in procured software, thus
executed security checks may vary. Some of the procured software includes
source code, while some does not. Source code analysis is consequently not
always possible. Additionally the Norwegian Armed Forces have different
levels of access to their data. A cloud solution might be possible for data with
unclassified access, but not for higher levels. Such variations need to be taken
into account when choosing a solution. Lastly, it is important to consider where
the potential tools have located their headquarters, due to NDMA only accepting
tools located in North Atlantic Treaty Organization (NATO) or European Union
(EU) countries.

1.7 The Group’s Academic Background

The group is on the third and last year of a Bachelor in Digital Infrastructure and
Cyber Security at the Norwegian University of Science and Technology (NTNU).
Through this study, the group has acquired knowledge from several subjects that
are relevant for the thesis.

DCSG1001 - Infrastruktur: Grunnleggende ferdigheter and DCSG1005 -
Infrastruktur: sikre grunntjenester were relevant for testing the chosen tools,
because they covered use of command-line.

DCSG2005 - Risikostyring was relevant for understanding why it is important
to test software, as well as understanding the results from tests. It was also
relevant because the group got the experience of writing an academic text for a
client.

IIKG2001 - Software Security was relevant for understanding the importance of
secure code and defense in depth.

4 Chapter 1: Introduction

1.7.1 Why This Task Was Chosen

The group chose this task because of an interest in security itself, and the future
of security. The group believes that security needs to be automated to some
degree, in order to make businesses take this more into consideration. This is
especially true for software security, where few see the value of including it when
the software being developed. If the bar is low, the thesis group believes that
more businesses would be willing to implement security during the earlier phases
of software development. They would also be able to protect themselves from
insecure software from external developers. This can be a strenuous process if
done manually, and is therefore often neglected. The thesis group believes that
it would be better to use an automated security testing tool to test the software,
compared to not testing it at all.

This task let the thesis group be a part of the process of finding and exploring
different software security testing tools. It is also an opportunity to see how far
the technology has gotten, and to understand it better.

1.8 Methodology

1.8.1 Software Engineering Method

The project period is divided into four phases that generally follow a waterfall
model, with elements from the agile method in parts of the process, as displayed
in figure 1.1. The first phase has a focus on all the relevant theory for the thesis,
and it is in this phase the literature study will be done, together with finding and
choosing different tools. After this is done, the focus is on doing the necessary
research to perform the tests on the chosen tools. During this phase it is also
important to figure out which type of test environment is needed. The next phase
is focused on performing the tests, and studying how the tools work with the test
data. In the last phase, the focus is on evaluating the results from the tests.

Chapter 1: Introduction 5

Project Plan

Explore Tools

Interviews

Research Tools

Test Tools

Review Test Results

Complete Thesis

Figure 1.1: The software development model that is followed during the thesis

1.8.2 Research Methods

1.8.2.1 Literature Study

The literature study is done by looking through previous textbooks, and by
researching the web for relevant information and theory that can be used in the
thesis, and later to perform the tests. This will include reading documentation
and other materials. One goal for the literature study is to build up the theory
chapter with relevant information, as well as building up the group’s knowledge
on the subject. This is necessary to conduct a thesis of high quality. Another goal
is to find tools and critical information about them. The tools are then chosen
based on the critical information, before further research is done to get a proper
overview.

6 Chapter 1: Introduction

1.8.2.2 Interviews

The interviews are conducted by following different strategies and guidelines from
the Harvard Sociology Department, Strategies for Qualitative Interviews [6]. Before
the interviews, an interview guide with questions will be made, together with
information about the purpose of them.

1.8.2.3 Experiment

In order to perform the experiments on the selected tools, the test environment
has to be made, and some test data needs to be available. When this is ready, the
tests will be performed systematically. One tool will be fully tested before another
tool gets tested. When the tests are done, the results will be compared based on
the amount of vulnerabilities found. There will also be made a list of advantages
and disadvantages for every tool, to evaluate other factors as well.

1.9 Thesis Structure

Some things to notice when reading through the thesis;

The thesis uses clickable links to chapters, sections, acronyms, figures, tables and
sources.

All figures will come after they have been explained in the text, together with a
reference to where they can be seen.

The language used in this thesis is English, except some attachments that are
in Norwegian. This is because most of the communication through interviews,
e-mails and meetings are done in Norwegian. Thus, it would be unnatural to have
this in English. The project plan is also written in Norwegian, because the original
plan was to write the thesis in Norwegian. After conversations with the supervisor
(appendix I.1) and the employer (appendix I.2.1), the language was reconsidered
and English was chosen, due to the industry using this language. Using Norwegian
could lead to difficulties translating words correctly, and misunderstandings after
translations could occur.

Titles are defined as chapters, sections, subsections, subsubsections and
subsubsubsections; where chapter is the top level and subsubsubsection is
the lowest. All titles from chapter to subsubsection are shown in the table of
content.

Chapter 1: Introduction 7

1.9.1 Chapters

The first chapter, Introduction, is the introduction to the bachelor thesis. This
section starts with the background of the project, with some general information
about NDMA. Then the issue, scope and limitations are introduced, which explain
the issue NDMA want to solve, as well as the limitations to solving the issue.
Goals are covered as effect and project goals, before framework and the groups
background is presented. The chapter ends with the methodology, as well as the
thesis structure.

The second chapter, Theory, covers theory that is relevant to the rest of the thesis
and it should be understood before the rest can be read.

The third chapter, Tools for Security Testing, consists of tools that have been
examined as possible solutions for NDMA. It contains all the relevant information
to deciding which tools to take a further look at.

The fourth chapter, Analysis of Selected Tools, consists of the chosen tools
for NDMA. It covers why they were chosen as a possible solution, as well as
information about what the tools are and what they do.

The fifth chapter, Experiment, covers the tests of the chosen tools. It includes an
explanation of the test environment and test data, as well as explaining how the
tests were performed. The chapter concludes with the results.

The sixth chapter, Discussion, covers a presentation of the group’s process and
findings. It also covers unpredicted limitations during the thesis, changes that
were made during the project, and a discussion with critique of the thesis.

The seventh chapter, Conclusion, covers reflections and evaluations from the
work, theoretically possible further work, and a conclusion to the thesis.

Attachments will have all attachments related to the thesis. Some attachments
are: more detailed information about the tests, minutes of meetings, and the
cooperation agreement.

Chapter 2

Theory

2.1 Introduction

The theory chapter consists of an explanation of different types of software
tests, different methods used to conduct software security tests, as well as some
additional information. The additional information is included because it is
important to understand before reading the thesis.

2.2 Testing Functionality Compared to Security

To understand the goal of this thesis it is important to know the different types
of software testing and the function of those tests. Functional testing, according
to Official (ISC) Guide to the CSSLP CK [7], is a type of testing where the goal
primarily is to test if the software functions as expected. Within this type of
test, there are multiple smaller tests. These smaller tests need to be conducted
successfully, in order to know that the software’s functions work accordingly. One
of these tests is unit testing.

Unit testing is a form of functional testing that takes place during the
implementation phase. This type of testing is done by the developer, rather
than a tester. Smaller sections, units, of the software are isolated and tested.
The goal of this test is to see if there are any compilation errors and to validate
functional logic. Unit testing can also help the developer discover vulnerabilities
in the code, such as hard-coding variables or lack of input validation. Integration
testing is used for testing the sum of all parts of the unit test. This type of test is
the natural next step after unit testing. It helps uncover issues that might occur
when the units are put together.

9

10 Chapter 2: Theory

Logic testing is a form of testing used to make the processing logic of the software
accurate. When copying code from different sources and combining those lines of
code, some issues might occur. To avoid those issues in the software, it is important
to validate that the implemented code is correct for the functionality and logic.
This is especially important when the software allows for user input.

None of these tests are security tests, and there are more tests that can be done
to a software without testing security. Performance testing, where the goal is to
look for bottlenecks in the system, might make some companies rethink security
measures that slows down the system. The difference between these tests and
security testing, is that security tests try to break the software on purpose.
The tester will try to take on a hostile mindset and work their way around the
protection of the software. Security testing and testing security functionality are
also different.

When testing security functionalities, the goal is to validate whether or not the
protection mechanisms, such as auditing and authentication, work as intended.
On the other hand, security testing will try to attack the software and validate
the software’s overall ability to protect itself from the attacks. Some examples of
security testing methods are white box testing, black box testing and gray box
testing, covered in section 2.3.

2.3 Box Testing

Box Testing is an approach to software testing, where testing is divided into white
box testing, black box testing and gray box testing.

2.3.1 White Box Testing

According to NIST SP 800-137 [8], white box testing is "a test methodology
that assumes explicit and substantial knowledge of the internal structure and
implementation detail of the assessment object". It is also referred to as "glass
box testing" [9] or "clear box testing" due to its transparency.

The upside to white box testing [10] is that it will cover the entire code, as
well as finding structural problems, hidden errors and problems with specific
components. It is also possible to automate, and allows for the code to continually
improve. The downside to white box testing is that even though it allows for
automation, it still requires a lot of effort before it can be automatic. Another
downside is that it cannot test from a user’s perspective, in order to find functional
problems.

Chapter 2: Theory 11

2.3.2 Black Box Testing

Black box testing is, according to NIST SP 800-192 [9], "a method of software
testing that examines the functionality of an application without peering into its
internal structures or workings". This means that it is not testing the software’s
internal structure [11], but rather how it reacts to interactions from an outside
source.

The tester knows what the system should do, but not how it is done. This will
emulate a user using the system. A user will not care about how the software is
structured, only how it works. This is known as zero knowledge assessment [7].
Black box testing will test if the software works as it should for the user, and will
test if there are any vulnerabilities that could be exploited.

The upsides to black box testing are that it has a low false positive rate, and that it
can be done by someone with little to no technical knowledge. The downsides are
that black box testing is difficult to automate, as well as being difficult to test all
possible user-paths. Because of this, it is difficult to calculate test coverage.

2.3.3 Gray Box Testing

According to NIST SP 800-53A Rev. 5 [12], gray box testing is "a test methodology
that assumes some knowledge of the internal structure and implementation detail
of the assessment object". The goal of gray box testing [13] is to test for defects
based on the software’s internal structure.

With gray box testing, the tester only has insight into parts of the system. It can
be used as a form of penetration test, covered in 2.9, where the tester knows the
internal components, but not how they work together. By using that knowledge,
it will try to act like a potential attacker. With this type of testing it is important to
keep testers and developers apart, to make sure that the tester will not have any
extra knowledge about the system.

The upside to gray box testing is that it will provide benefits from both black and
white box testing, as well as having clear testing goals which makes it easier for
both developers and testers. One downside is that it can be difficult to create the
test case, which is the type of tests that will be conducted on the system. Finding
the root cause of disturbances in the system after tests are done might also become
difficult. This is because of the limited knowledge about the internal system, which
causes gray box testing to loose some white box testing benefits.

12 Chapter 2: Theory

2.4 Application Security Assessment

Application security assessment is the process of identifying, analyzing and
planning mitigation of threats and vulnerabilities in an application [14]. There
are many options available for automatic testing and analysis, that make the
process of application security assessment more efficient.

Some things to keep in mind when choosing automatic tools are the prevalence
of false positives and negatives, and how early in the Software Development Life
Cycle (SDLC) they can be implemented. The SDLC is a process with a set of steps
used in software development [15]. Having security testing early in the SDLC is
often referred to as shift-left testing [16].

2.4.1 Shift-Left

Traditionally, testing comes late in the SDLC [17]. In more recent years, it has
become more common to implement security earlier. The reason it is called
shift-left, is that testing is moved to the left in the SDLC.

There are significant benefits to having security testing early in the SDLC, as it is
less costly, as well as resource and schedule efficient [7].

2.4.2 False Positives and Negatives

A false positive is, according to National Institute of Standards and Technology
(NIST) Special Publication (SP) 800-115 [18], "an alert that incorrectly indicates
that a vulnerability is present". This often happens with automated security
tests [19]. When going through the alerts, it is possible that most of them are
false. When this occurs, it is easy to assume that all of them are false positives
without going through them all, and then ignore the rest. By doing so, there
is a good chance that the real vulnerabilities and threats to the system will go
undetected.

On the opposite side, a false negative is, according to NIST SP 800-83 Rev.
1 [20], "an instance in which a security tool intended to detect a particular
threat fails to do so". The reason why they are not detected can be because they
are dormant [21], highly sophisticated, or the security infrastructure does not
have the technological ability to detect them. This can cause a false feeling of
security.

Chapter 2: Theory 13

2.5 Application Security Testing and Analysis

When using a combination of application security testing tools (figure 2.1), it is
possible to reduce the overall security risk of the software [22]. This causes a form
of defense in depth, where the application is tested from multiple angles. When
it is not possible to include all of them, some of the forms for testing should still
be included if possible.

 Application Security Testing

 Low False

Positives

Exploitability Code

Visibility

Remediation

Advice

Broad Platform

Support

SAST

DAST

IAST

SCA

RASP

Figure 2.1: Application Security Testing, inspired by [22]

2.5.1 Static Application Security Testing (SAST)

Figure 2.2: SAST placed in the SDLC

Static Application Security Testing (SAST) is a type of "white box testing", and is
an integral part of shift-left methodology [23]. It can help developers find security
vulnerabilities in the source code of the application earlier in the SDLC [24]. It
also ensures compliance with both standards and guidelines for coding, without
executing the underlying code.

SAST tools give developers feedback in real-time as they are writing the code [25].
This assists them in fixing potential issues before the next stage in the SDLC. The
exact locations of the issues also get pointed out in the code. Potential issues can
be vulnerabilities listed in the OWASP top 10 [26], but also other vulnerabilities.
This might vary based on the tool used to conduct the test.

14 Chapter 2: Theory

SAST allows developers to scan a project at the code level, which makes it easier to
make the recommended changes. When the flaws are found earlier in the SDLC, it
helps reduce the cost and the repercussions that result from addressing problems
at the end of the process. It works well when it comes to finding errors in code,
but it is not very efficient in finding data flow flaws. SAST tools are also known
for the larger amount of false positives and negatives.

2.5.2 Dynamic Application Security Testing (DAST)

Figure 2.3: DAST placed in the SDLC

Dynamic Application Security Testing (DAST) is a type of "black box testing" [27].
It is used to find security vulnerabilities in a running application, often web
applications, without having access to the source code. To do this, it employs fault
injection techniques on the application [24], for example by feeding malicious
data to the software, in order to identify common security vulnerabilities like
SQL injection and cross-site scripting (XSS).

When using DAST in the SDLC, vulnerabilities can be detected in the application
before it is deployed to the public [28]. This can be vulnerabilities that SAST is not
capable of finding, because it is linked to runtime, such as authentication flaws.
DAST is also better at avoiding false positives and negatives compared to SAST,
as well as being less expensive and less complicated to handle.

DAST will simulate attacks on the application, detecting some vulnerabilities. The
issue is that DAST does not have any insight about the application, and can thus
not simulate attacks from an agent with some inside knowledge.

2.5.3 Interactive Application Security Testing (IAST)

Interactive Application Security Testing (IAST) is seen as a type of "gray box
testing" [29], and is an application security testing method that tests the
application for possible vulnerabilities in execution, while the application is in
use. This type of testing happens during the testing and deployment phases of
the SDLC. Some IAST tools come with Integrated Development Environment
(IDE) integrations, which makes it possible to run the security analysis while
developing the application.

Chapter 2: Theory 15

IAST has an "agent-like" approach [28], which means that agents and sensors are
run to continually analyze the application workings during automated testing,
manual testing, or a combination of the two.

The difference between IAST compared to SAST and DAST [30], is that IAST is
located inside the application. IAST can be implemented in different ways, one
being a sensor placed in the back-end of the application. This sensor will then be
triggered by another test being conducted, or other forms of interactions with the
application.

When choosing to use IAST, potential issues or vulnerabilities can be caught
earlier, which can lead to costs and delays being minimized. This is due to the
application of a shift-left approach. Because of the range of information IAST
has access to, it can accurately identify the source of vulnerabilities. IAST can
also easily be integrated into the Continuous Integration/Continuous Delivery
(CI/CD) pipeline, which is a series of steps that need to be performed in order to
deliver a new version of software [31].

On the other hand, IAST tools can slow down the operation of the application,
because the agents essentially serve as added instrumentation, which can lead
to the code not performing as well. Furthermore, since it is a relatively new
technology, there might be some undiscovered issues.

2.5.4 Run-time Application Security Protection (RASP)

Run-time Application Security Protection (RASP) is integrated into applications to
analyze the traffic coming in and out of the application [32]. It will also analyze
the user patterns to protect from security attacks. Users might have suspicious
behavior that this method can detect and protect against. This is used in the
maintenance phase of the SDLC, and is not a testing tool.

RASP is deployed to an application or web server. Here it is located next to the
main application while the application is running to monitor and analyze the
traffic behavior. There is no human intervention required to do this. When an
issue is found, RASP will send out alerts, and the ones trying to gain access to the
application will immediately be blocked.

When RASP is deployed, it will not wait and try to rely on the specific signatures
of known vulnerabilities. Instead, it will secure the whole application against
different attacks.

16 Chapter 2: Theory

2.5.5 Software Composition Analysis (SCA)

Figure 2.4: SCA placed in the SDLC

Software Composition Analysis (SCA) is a tool that performs automated scans
on an application’s code base to provide visibility into the usage of open source
software [22]. This includes identifying all the open source components, their
license compliance data, and the security vulnerabilities. In addition to this,
SCA prioritizes vulnerabilities in the open source and provide insights and auto
remediation to resolve security threats.

SCA tools inspect package managers and manifest files, source code, binary files
and container images [33]. The open source that is identified is compiled into
a Bill of Materials (BOM). This is then compared against a variety of different
databases, including the National Vulnerability Database (NVD), which is a U.S.
Government repository of vulnerabilities. These databases contain information
about known and common vulnerabilities.

To discover licenses associated with the code and analyze overall code quality, SCA
tools can compare BOMs against other databases. By doing this, security teams
are able to identify critical security and legal vulnerabilities.

2.6 The Importance of Software Security Testing

It can be difficult to see why security testing is necessary. According to the Official
(ISC) Guide to the CSSLP CK [7], it is usually impossible to know which security
breaches were avoided by doing security testing and fixing the vulnerabilities
found. This makes many businesses reluctant to dedicate resources to securing
software. Despite this, it is important to talk about the consequences of not
security testing software properly.

Chapter 2: Theory 17

The earlier in the SDLC software security is considered, the less expensive it
becomes. The longer it is ignored, the more expensive it becomes to deal with
the consequences. The average data breach will cost 3.8 million dollars to fix,
while the vulnerability itself would cost less than 500 dollars, on average, to
fix during the design phase [34]. This is because a lot of resources are required
to fix something that has already gone wrong. A software can contain security
holes, which can be exploited by an agent in order to collect sensitive data.
If this happens, data will no longer be private, and it is almost impossible to
make this information completely private again. Implementing security testing
tools during the development and testing process can reduce this possibility
considerably.

If software is made in-house, it should be tested during development. It is
important to test both the libraries being used, and the code written by the
developers. A reason why the libraries need to be tested, is that they may be
open source. If that is the case, malicious agents have the opportunity to look
through the libraries and find vulnerabilities to exploit. Another reason is that
it is difficult for humans to have control over every way it is possible to exploit
code, and because human errors happen frequently.

A business will most likely buy software from an external source as well, and
might not have the source code available. When this situation occurs, it is still
important to take security into account. It should be made clear if the external
developer used some sort of security testing, and to what degree security was
taken into account. It is also important to remember that just because security
functions exist in the software, it is not necessarily implemented correctly to be
used in the specific environment to the business. Hence, it is important to security
test.

2.7 The Odds of Finding Vulnerabilities

To understand results from software security testing, it is important to know what
the chances of finding vulnerabilities are. An example on how probable it is to find
vulnerabilities, is the study ‘Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages’ [35]. The study found a total of 339 new
malicious packages after looking through over one million packages. It is plausible
that more vulnerabilities exist in these packages, but they were left unnoticed.
The result from the study indicates that it is unlikely to find copious amounts of
vulnerabilities, especially when the tests are limited.

18 Chapter 2: Theory

2.8 Test Environment

Testing potentially vulnerable or malicious software should be done in a
safe environment, in order to avoid crashing or compromising a production
environment. It can also prevent the release of vulnerable data [36]. For this
reason, it is smart to create a test environment to run the tests, before the
software goes into production.

A test environment should provide accurate feedback about the quality and the
behaviour of the application that is being tested, and provide the necessary setup
to perform the tests. Further, it provides a dedicated environment enabling the
possibility to isolate the code, and verify the behaviour of the application. This
ensures that the output of the tests is not influenced by other activities. A test
environment can also act as an exact copy of the production environment, which
is crucial for the test results to be accurate.

2.9 Penetration Testing

Scanning tools in the CI/CD pipeline are valuable for identifying issues early. To
ensure defense in depth, it is important to have different methods for security
testing. Manual penetration testing [7] is thus helpful to find vulnerabilities
that automated assessments cannot. Penetration testing is, according to NIST
SP 800-95 [37], "a method of testing where testers target individual binary
components or the application as a whole to determine whether intra or
intercomponent vulnerabilities can be exploited to compromise the application,
its data, or its environment resources".

Manual penetration testing is a form of testing where the tester tries to act
like a hacker on the system. The test should be performed by an expert in the
field. The expert will write a report on everything that is done during the test,
and the vulnerabilities that might have been discovered. This is done with the
permission of the owner of the system, and is used in order to look for holes in
the security. If a penetration tester were to find a way to hack the system, the
owner will be informed. It is then up to the owner to evaluate what to do with
this information.

It is preferred to perform manual tests when possible [38], especially on
more critical systems. If manual tests are not possible to conduct, automated
penetration tools can be used.

Chapter 2: Theory 19

2.10 Fuzzing

According to Official (ISC) Guide to the CSSLP CK [7], fuzzing, or fault injection
testing, is a form of testing where data is injected into the software, and the
reaction of the software is being considered. The data would be a type of random
or semi-random data that should not be injected, called fuzz data. The goal with
this type of test is to find out if the input validation is effective.

Fuzzing can be used in both black and white box testing. It is used a lot in black
box testing, where the fuzz data is sent to the software without any insight of
internal workings. With this type of fuzzing, there is no guarantee that all code
paths were covered, as opposed to with white box fuzzing. White box fuzzing lets
the internal workings be known, which then guarantees better coverage. White
box fuzzing would be the best option in this case, but if the internal workings are
unknown, black box fuzzing should be performed.

Generation-Based Fuzzing, also called "Smart fuzzing", is a type of fuzzing where
the data format or protocol is known beforehand. The fuzz data is then made
by generating data based on the known format. This can be a time consuming
process, due to testers having to import known data formats before generating
variations. The main downside to this type of fuzzing is the lack of coverage for
new or proprietary protocols.

Mutation-Based Fuzzing, also called "Dumb fuzzing", is a type of fuzzing where
the data format is unknown. The fuzz data is then made by mutating existing
data samples, blindly and randomly. This type of fuzzing should only be done in
a simulated environment, due to its destructive potential. It can lead to Denial of
Service, destruction, and complete disruption of the software’s operations.

2.11 OWASP Top 10

Open Web Application Security Project (OWASP) Top 10 [39] is a document that
contains ranking of and remediation about the ten most critical web application
security risks. It is based on an agreement among developers around the world.
All the risks are ranked and based on the frequency of discovered security defects,
the severeness of the vulnerabilities, and information about their potential impact.
The purpose of the document is to offer insight into the most prevalent security
risks that might happen. With this information, developers and web applications
security professionals can incorporate the information from the document into
their security practices, and thereby minimize the presence of these risks in their
applications. The most recent changes were done in 2021 (figure 2.5), which
indicates that the table is updated regularly.

20 Chapter 2: Theory

Figure 2.5: OWASP Top 10 in 2017 vs. OWASP Top 10 in 2021 [39]

2.12 Vulnerability Estimators

Vulnerabilities can be classified in a standardized way, by using CVSS, CVE, CWE,
and OWASP Risk rating Methodology.

2.12.1 Common Vulnerability Scoring System (CVSS)

Common Vulnerability Scoring System (CVSS) is, according to NIST SP
800-128 [40], "an Security Content Automation Protocol (SCAP) specification for
communicating the characteristics of vulnerabilities and measuring their relative
severity". The CVSS offers a way to capture vulnerability characteristics, and
generate a numerical score that reflects the severity (figure 2.6). This severity
score can be translated into qualitative representation, such as low, medium, high
and critical. The current version is CVSS v3.1 [41].

Figure 2.6: The ranking of vulnerabilities in version 3.1 [42]

2.12.2 Common Vulnerabilities and Exposures (CVE)

According to NIST SP 800-126 Rev. 3 [43], Common Vulnerabilities and
Exposures (CVE) is "a dictionary of common names for publicly known
information system vulnerabilities". It has to do with a specific instance within a
system or a product [44], and not the underlying flaw. Each vulnerability has an
identification number and they are published in the NVD [45].

Chapter 2: Theory 21

2.12.3 Common Weakness Enumeration (CWE)

Common Weakness Enumeration (CWE) is, according to NISTIR 8011 Vol.
4 [46] "a taxonomy for identifying the common sources of software flaws". It
is a community-developed list of different types of weaknesses in software and
hardware [47]. It serves as a measurement for security tools, and as a baseline
for weakness identification, mitigation, and prevention efforts. CWE has to do
with the specific vulnerability [44], and not the instance within a product or a
system like with CVE.

2.12.4 OWASP Risk Rating Methodology

OWASP Risk Rating Methodology [48] is a rating system where risk = impact ∗
l ikel ihood. It also gives guidelines on how to estimate the impact and likelihood
levels.

The factors to estimate likelihood are divided into groups that are related to the
threat agent involved, where the goal is to estimate the likelihood of the threat
agent to perform an attack. The four factors are skill level, motive, opportunity,
and size. Each factor is given a score between one and nine.

The factors to evaluate impact can be divided into technical and business impact
factors. The technical impact factors can be further divided into confidentiality,
integrity, availability, and accountability. Each of these factors are also given a
score between one and nine to estimate the impact on the system if a vulnerability
is exploited. The same applies to the business impact factors, except that the
factors are financial damage, reputation damage, non-compliance, and privacy
violation.

To find the severity of the risk, the likelihood estimate and the impact estimate
factors are put together to get an overall severity of the risk, which can be low,
medium, or high (figure 2.7). They can then be combined to get a final severity
risk (figure 2.8).

Figure 2.7: The likelihood and impact levels [48]

22 Chapter 2: Theory

Figure 2.8: The risk severity [48]

2.13 Containers

According to NIST SP 1800-190 [49], a container is "a method for packaging and
securely running an application within an application virtualization environment".
It is used to move applications from one environment to another, without having
to make specific changes to the application in order for it work in the new
environment. It is inspired by the containers used in the shipping industry [50],
with the standard containers that make it easier to ship objects. With digital
containers, a developer can work on the Operating System (OS) they want to,
and still have the application work in the production environment.

A container has multiple security benefits. It isolates the application, and
is constantly replaced with new updated versions, which makes fixing
software vulnerabilities quicker [51]. Containers are possible to replace within
minutes, while other methods can take weeks. This makes containers great for
fixing vulnerabilities, but there are also vulnerabilities that come with using
containers.

A common threat to containerized environments [49] are application-level
vulnerabilities which are found in the software within containers. The image
might be built based on a common web application, which might have
vulnerabilities. If that is the case, the attacker can subvert the application within
the container to try to map the system, elevate privileges within the compromised
container, or abuse the container in order to attack other systems.

Chapter 2: Theory 23

This is one of many threats that might happen when using containers. This does
not mean that containers should not be used, but it requires a lot of changes in
an environment in order to make it safe. An example of changes that should be
made in order to make containers safe, are to use container-specific host OSs.
This means that instead of using a standard OS, the host uses a minimalistic OS
made to run containers only. Another example would be to avoid running apps
with different sensitivity levels together on the same host.

Even though a system is using containers, this does not mean that security
checks should not be done. It is recommended that both image software
vulnerabilities and configuration settings are taken into account. There should
also be container-aware run-time defense tools in use. Traditional security
solutions might not be able to protect containers properly, and it will be necessary
to utilize a container-native security solution.

There are multiple container solutions today, with different advantages and
disadvantages. One of the most popular solutions [52] being Docker, which
provides products to help developers pack applications into containers. Docker
Engine [53] is the software that hosts all the containers, while the Docker daemon
manages all the containers by listening for requests from the Docker Engine.
Docker supports multiple OSs, making it available for most people.

Chapter 3

Tools for Security Testing

3.1 Introduction

The tools for security testing chapter consists of descriptions of different tools for
security testing. It explains the current solution and all the tools that were chosen
for further investigation.

3.2 Today’s Solution

Today, NDMA’s developers use different techniques in order to conduct security
checks. Some use tools, while others manually look through the code.

One of the tools used by NDMA is Trivy (figure H.24). Trivy is used as a security
check for third party dependencies. Vulnerabilities that are ranked to be low or
medium are accepted. They try to avoid those that are considered to be high. If it
is difficult to avoid those, it is important to specify what the vulnerability is, why
they have it, and what they need to do to get rid of it. The vulnerabilities that
are considered critical are not allowed. If some of these are detected, they need
to rewrite the code to avoid it. Another control mechanism used, is integrated
in the IDE that is used to write the code. If the code that is written can lead to
any vulnerabilities, they get a notification on this when they write it, or when
they compile the code. This is used by some of the developers, but not all of
them.

Several developers (appendix I.4.2) read manually through their code to look for
vulnerabilities, and decide for themselves if something is an issue or not. Some
developers only think about security before they start writing code, while others
try to keep security in mind while coding. These developers do not feel like they
have time to look through the code for vulnerabilities.

25

26 Chapter 3: Tools for Security Testing

When not all developers use the same techniques, the quality of the code may vary
depending on the tools that are used and the knowledge each of the developers
have. Some of the developers may have more experience with implementing
security, while others can lack an understanding and value of the topic. As a
result, there can be an overall risk that they have vulnerabilities that they do not
know of, and are more vulnerable to potential attacks.

3.3 Tools

The figure 3.1, and table 3.1-3.4 show a comparison of all the various tools
that have been examined. It shows the ones NDMA use, as well as popular
tools from NATO and EU countries. NDMA want tools based in NATO or EU for
security reasons, which made others irrelevant. They were also chosen based
on which tools are more popular and trusted by different companies around
the world. Others, like for example Checkmarx were also looked into, but since
it has headquarters in Israel and China [54], it was not chosen to examine
further.

3.3.1 Comparison Table

The table displayed in figure 3.1 shows information about all the various tools
that have been examined. The tools are compared based on what kind of security
testing method they support, in order for NDMA to choose a tool that will fit their
needs. The table also covers if they were founded in NATO or EU countries, and
are thus accepted tools for NDMA to use. It includes whether they offer a free trial
or not. This will show if it is possible for the thesis group to test the tools, before
recommending them to NDMA. Lastly, the table shows supported programming
languages, Operating Systems and integrations, in order to make sure that the
tools fit NDMA’s requirements.

Chapter 3: Tools for Security Testing 27

N
o

P
artial

O
n
ly

 if
Y

es
Irrelev

an
t

N
a
m

e
S

A
S

T
D

A
S

T
IA

S
T

S
C

A
R

A
S

P
N

A
T

O
E

U
F

ree tria
l

G
o

J
A

V
A

C
#

P
y

th
o
n

A
B

A
P

W
in

d
o
w

s
L

in
u

x
M

a
cO

S
G

itH
u

b
/

G
itL

a
b

M
a
v
en

S
la

ck
J
en

k
in

s
T

erra
fo

rm

A
q

u
a
 S

ecu
rity

/

T
riv

y
h
ttp

s://co
n
tain

erjo
u
rn

al.co
m

/to
p
ics/co

n
tain

er-secu
rity

/aq
u
a-secu

rity
-allies-w

ith
-g

ith
u
b
-o

n
-co

n
tain

er-secu
rity

/
<

-
<

-
<

-
h
ttp

s://w
w

w
.aq

u
asec.co

m
/ab

o
u
t-u

s/co
n
tact-u

s/
<

-

O
p
en

so
u
rce

h
ttp

s://aq
u
asecu

rity
.g

ith
u
b
.io

/triv
y
/v

0
.2

0
.1

/v
u
ln

erab
ility

/d
etectio

n
/lan

g
u
ag

e/
<

-
<

-
<

-
<

-
h

ttp
s://stacko

verflo
w

.co
m

/q
u

estio
n

s/68481388/h
o

w
-to

-ru
n

-a-trivy-scan
-o

n
-w

in
d

o
w

s
h
ttp

s://aq
u
asecu

rity
.g

ith
u
b
.io

/triv
y
/v

0
.2

4
.2

/g
ettin

g
-started

/o
v
erv

iew
/

h
ttp

s://aq
u
asecu

rity
.g

ith
u
b
.io

/triv
y
/v

0
.2

4
.2

/g
ettin

g
-started

/in
stallatio

n
/

h
ttp

s://arn
avtrip

ath
y9

8.m
ed

iu
m

.co
m

/in
tegratin

g-trivy-w
ith

-gitlab
-6

56995a87270
h

ttp
s://aq

u
asecu

rity.gith
u

b
.io

/trivy/v0.25.3/d
o

cs/
<

-
<

-
<

-

B
u

rp
 S

u
ite

h
ttp

s://fo
ru

m
.p

o
rtsw

ig
g
er.n

et/th
read

/static-an
aly

sis-sast-an
d
-d

y
n
am

ic-an
aly

sis-9
aa3

a8
e5

<
-

<
-

<
-

h
ttp

s://p
o
rtsw

ig
g
er.n

et/ab
o
u
t/co

n
tact

<
-

h
ttp

s://p
o

rtsw
igger.n

e
t/b

u
rp

/p
ro

/trial
h
ttp

s://p
o
rtsw

ig
g
er.n

et/b
u
rp

/d
o
cu

m
en

tatio
n
/in

filtrato
r

<
-

<
-

<
-

<
-

h
ttp

s://p
o
rtsw

ig
g
er.n

et/su
p
p
o
rt/b

u
rp

-su
ite-so

ftw
are-faq

s
<

-
<

-
h

ttp
s://p

o
rtsw

igger.n
e

t/b
u

rp
/d

o
cu

m
en

tatio
n

/en
terp

rise/in
tegratin

g-w
ith

-o
th

er-to
o

ls/in
tegratin

g-gitlab
h

ttp
s://p

o
rtsw

igger.n
e

t/b
u

rp
/d

o
cu

m
en

tatio
n

/en
terp

rise/ad
m

in
istratio

n
-tasks/in

tegratin
g-slack

<-
h

ttp
s://p

o
rtsw

igger.n
e

t/b
u

rp
/d

o
cu

m
en

tatio
n

/en
terp

rise/in
tegratin

g-w
ith

-o
th

er-to
o

ls/ci-cd
/jen

kin
s

<
-

C
o
n

tra
st

S
ecu

rity
h
ttp

s://w
w

w
.co

n
trastsecu

rity
.co

m
/p

ricin
g

<
-

<
-

<
-

<
-

h
ttp

s://w
w

w
.co

n
trastsecu

rity
.co

m
/co

n
tact-u

s
<

-
h

ttp
s://w

w
w

.co
n

trastsecu
rity.co

m
/p

ricin
g

h
ttp

s://w
w

w
.co

n
trastsecu

rity.co
m

/secu
rity-agen

t
<

-
<

-
<

-
<

-
h
ttp

s://d
o
cs.co

n
trastsecu

rity
.co

m
/en

/co
n
trast-sy

stem
-req

u
irem

en
ts.h

tm
l

<
-

<-
h

ttp
s://d

o
cs.co

n
trastsecu

rity.co
m

/en
/in

tegratio
n

s.h
tm

l
<

-
<

-
<

-
<

-

D
etectify

h
ttp

s://p
ro

d
u
cts.ciso

p
latfo

rm
.co

m
/secu

rity
/p

ro
d
u
cts/ap

p
licatio

n
-secu

rity
-testin

g
-ast/d

etectify
<

-
<

-
<

-
h
ttp

s://d
etectify

.co
m

/ab
o
u
t

<
-

h
ttp

s://d
etectify

.co
m

/p
ricin

g
h

ttp
s://d

etectify.co
m

/p
ro

d
u

ct/ap
p

licatio
n

-scan
n

in
g

<
-

<
-

<
-

<
-

h
ttp

s://d
etectify

.co
m

/p
ro

d
u
ct/in

teg
ratio

n
s

<
-

<
-

<
-

<
-

A
cu

n
etix

->
h
ttp

s://w
w

w
.acu

n
etix

.co
m

/p
lp

/w
eb

-v
u
ln

erab
ility

-scan
n
er/?ab

=
v
2
&

g
clid

=
C

j0
K

C
Q

iA
p
L

2
Q

B
h
C

8
A

R
IsA

G
M

m
-K

F
h
lZ

iT
M

h
3
IA

iJah
O

R
8
V

IlX
7
M

e8
X

Y
sM

v
o
J0

0
p
zB

4
K

3
6
O

q
eH

8
S

5
G

U
9
A

aA
k
E

zE
A

L
w

_
w

cB
&

u
tm

_
m

ed
iu

m
=

cp
c&

u
tm

_
so

u
rce=

A
d
w

o
rd

s&
u
tm

_
co

n
ten

t=
5
5
4
2
3
3
7
4
1
6
9
&

u
tm

_
cam

p
aig

n
=

1
0
7
7
4
7
1
7
5
1
&

u
tm

_
term

=
acu

n
etix

<
-

h
ttp

s://w
w

w
.in

victi.co
m

/co
n

tact/
<

-
h
ttp

s://w
w

w
.acu

n
etix

.co
m

/p
lp

/w
eb

-v
u
ln

erab
ility

-scan
n
er/?ab

=
v
2
&

g
clid

=
C

j0
K

C
Q

iA
u
6
2
Q

B
h
C

7
A

R
IsA

L
X

ijX
Q

V
B

T
m

lk
s9

O
u
V

a0
M

1
M

Q
u
0
1
jp

g
fk

0
sd

6
1
F

cY
k
F

ip
9
b
k
p
o
S

d
O

n
O

Y
R

T
F

A
aA

ty
U

E
A

L
w

_
w

cB
&

u
tm

_
m

ed
iu

m
=

cp
c&

u
tm

_
so

u
rce=

A
d
w

o
rd

s&
u
tm

_
co

n
ten

t=
5
5
4
2
3
3
7
4
1
6
9
&

u
tm

_
cam

p
aig

n
=

1
0
7
7
4
7
1
7
5
1
&

u
tm

_
term

=
acu

n
etix

.
h
ttp

s://w
w

w
.acu

n
etix

.co
m

/su
p
p
o
rt/d

o
cs/w

v
s/in

stallin
g
-acu

n
etix

-w
v
s/

<
-

<
-

h
ttp

s://w
w

w
.acu

n
etix.co

m
/p

lp
/w

eb
-vu

ln
erab

ility-scan
n

er/?ab
=v2&

gclid
=C

j0K
C

Q
iA

p
L2Q

B
h

C
8A

R
IsA

G
M

m
-K

Fh
lZiTM

h
3IA

iJah
O

R
8

V
IlX

7M
e8X

YsM
vo

J00p
zB

4
K

36O
q

eH
8S5G

U
9A

aA
kEzEA

Lw
_w

cB
&

u
tm

_m
ed

iu
m

=cp
c&

u
tm

_so
u

rce=
A

d
w

o
rd

s&
u

tm
_co

n
ten

t=5
5423374169&

u
tm

_cam
p

aign
=1

077471751&
u

tm
_term

=acu
n

etix
<

-
<

-
<

-
<

-

N
etsp

a
rk

er
->

h
ttp

s://w
w

w
.n

etsp
ark

er.co
m

/p
ro

d
u
ct/

<
-

h
ttp

s://w
w

w
.n

etsp
ark

er.co
m

/su
p
p
o
rt/so

ftw
are-co

m
p
o
sitio

n
-an

aly
sis-n

o
d
e/

.
h

ttp
s://w

w
w

.in
victi.co

m
/co

n
tact/

<
-

h
ttp

s://w
w

w
.in

victi.co
m

/get-d
em

o
/

->
->

h
ttp

s://w
w

w
.in

victi.co
m

/su
p

p
o

rt/cu
sto

m
-sen

d
-to

-actio
n

s-in
victi/

<
-

<
-

h
ttp

s://w
w

w
.in

victi.co
m

/su
p

p
o

rt/in
stallin

g-in
victi-stan

d
ard

/
h

ttp
s://w

w
w

.in
victi.co

m
/su

p
p

o
rt/au

th
en

ticatio
n

-verifier-agen
t-lin

u
x-red

h
at/

<
-

h
ttp

s://w
w

w
.in

victi.co
m

/in
tegratio

n
s/

<
-

<
-

<
-

<
-

K
lo

cw
o
rk

h
ttp

s://w
w

w
.p

erfo
rce.co

m
/reso

u
rces/k

w
/sast

<
-

<
-

<
-

h
ttp

s://w
w

w
.p

erfo
rce.co

m
/co

n
tact-u

s
<

-
h
ttp

s://w
w

w
.p

erfo
rce.co

m
/p

ro
d
u
cts/k

w
/free-static-co

d
e-an

aly
zer-trial

h
ttp

s://w
w

w
.p

erfo
rce.co

m
/p

ro
d
u
cts/k

lo
cw

o
rk

<
-

<
-

<
-

<
-

h
ttp

s://d
o
cs.ro

g
u
ew

av
e.co

m
/en

/k
lo

cw
o
rk

/2
0
1
8
/su

p
p
o
rted

p
latfo

rm
s

<
-

<
-

h
ttp

s://d
o
cs.ro

g
u
ew

av
e.co

m
/en

/k
lo

cw
o
rk

/2
0
1
8
/1

co
n
tin

u
o
u
sin

teg
ratio

n
req

u
irem

en
ts

<
-

<
-

<
-

<
-

N
essu

s
->

h
ttp

s://d
o
cs.ten

ab
le.co

m
/o

th
er/ten

ab
leio

/G
ettin

g
_
S

tarted
_
w

ith
_
T

en
ab

leio
_
W

eb
_
A

p
p
licatio

n
_
S

can
n
in

g
.p

d
f

<
-

<
-

h
ttp

s://w
w

w
.ten

ab
le.co

m
/ab

o
u
t-ten

ab
le/co

n
tact-ten

ab
le

<
-

h
ttp

s://w
w

w
.ten

ab
le.co

m
/p

ro
d
u
cts/n

essu
s

.
h
ttp

s://en
.w

ik
ip

ed
ia.o

rg
/w

ik
i/N

essu
s_

(so
ftw

are)
<

-
<

-
h

ttp
s://d

o
cs.ten

ab
le.co

m
/In

tegratio
n

s.h
tm

<

-
<

-
<

-
<

-

O
W

A
S

P

Z
A

P
->

h
ttp

s://w
w

w
.zap

ro
x
y
.o

rg
/b

lo
g
/2

0
2
0
-0

5
-1

5
-d

y
n
am

ic-ap
p
licatio

n
-secu

rity
-testin

g
-w

ith
-zap

-an
d
-g

ith
u
b
-actio

n
s/

<
-

<
-

h
ttp

s://w
w

w
.cru

n
ch

b
ase.co

m
/o

rg
an

izatio
n
/o

w
asp

-fo
u
n
d
atio

n
<

-

o
p
en

so
u
rce

h
ttp

s://w
w

w
.zap

ro
x
y
.o

rg
/faq

/w
h
at-o

p
eratin

g
-sy

stem
s-are-su

p
p
o
rted

/
<

-
<

-
h

ttp
s://w

w
w

.zap
ro

xy.o
rg/b

lo
g/2020-0

4-0
9-au

to
m

ate-secu
rity-testin

g-w
ith

-zap
-an

d
-gith

u
b

-actio
n

s/
<

-
<

-
h

ttp
s://m

ed
iu

m
.co

m
/glo

b
an

t/o
w

asp
-zap

-in
tegratio

n
-w

ith
-jen

kin
s-7

95d
65991404

<
-

R
esh

ift
h
ttp

s://w
w

w
.so

ftw
aresecu

red
.co

m
/to

p
-sast-to

o
ls-fo

r-d
ev

elo
p
ers/

<
-

<
-

<
-

h
ttp

s://w
w

w
.resh

iftsecu
rity

.co
m

/co
n
tact-u

s/
<

-
h
ttp

s://w
w

w
.resh

iftsecu
rity

.co
m

/p
ricin

g
/

h
ttp

s://d
o
cs.resh

iftsecu
rity

.co
m

/g
ettin

g
-started

/scan
-y

o
u
r-first-p

ro
ject-u

p
d
ated

#
3
.-select-y

o
u
r-lan

g
u
ag

e
<

-
<

-
<

-
<

-
h
ttp

s://d
o
cs.resh

iftsecu
rity

.co
m

/g
ettin

g
-started

/scan
-y

o
u
r-first-p

ro
ject-u

p
d
ated

<

-
<

-
h

ttp
s://d

o
cs.re

sh
iftsecu

rity.co
m

/gettin
g-started

/sign
in

g-u
p

-u
sin

g-gith
u

b

h
ttp

s://d
o

cs.re
sh

iftsecu
rity.co

m
/gettin

g-started
/scan

-yo
u

r-first-p
ro

ject-u
p

d
ated

<
-

h
ttp

s://d
o

cs.re
sh

iftsecu
rity.co

m
/in

tegratio
n

s/jen
kin

s
<

-

S
n

y
k

h
ttp

s://sn
y
k
.io

/p
ro

d
u
ct/sn

y
k
-co

d
e/

<
-

<
-

h
ttp

s://d
o
cs.sn

y
k
.io

/tu
to

rials/sp
rin

g
o
n
e-w

o
rk

sh
o
p
/sn

y
k
-o

ss-fo
r-d

ev
elo

p
ers

.
h
ttp

s://w
w

w
.cru

n
ch

b
ase.co

m
/o

rg
an

izatio
n
/sn

y
k

<
-

h
ttp

s://sn
y
k
.io

/p
lan

s/
h
ttp

s://d
o
cs.sn

y
k
.io

/p
ro

d
u
cts/sn

y
k
-o

p
en

-so
u
rce/lan

g
u
ag

e-an
d
-p

ack
ag

e-m
an

ag
er-su

p
p
o
rt

<
-

<
-

<
-

<
-

h
ttp

s://d
o
cs.sn

y
k
.io

/in
teg

ratio
n
s/ci-cd

-in
teg

ratio
n
s/g

ith
u
b
-actio

n
s-in

teg
ratio

n

<
-

h
ttp

s://d
o

cs.sn
yk.io

/in
tegratio

n
s/n

o
tificatio

n
s-ticketin

g-system
-in

tegratio
n

s/slack-in
tegratio

n
h

ttp
s://d

o
cs.sn

yk.io
/in

tegratio
n

s/ci-cd
-in

tegratio
n

s/jen
kin

s-in
tegratio

n
-o

verview
<

-

S
ta

ck
H

a
w

k
->

h
ttp

s://d
o
cs.stack

h
aw

k
.co

m
/h

aw
k
scan

/
<

-
<

-
h
ttp

s://w
w

w
.stack

h
aw

k
.co

m
/ab

o
u
t/

<
-

h
ttp

s://w
w

w
.stack

h
aw

k
.co

m
/p

ricin
g
/

.
h
ttp

s://d
o
cs.stack

h
aw

k
.co

m
/h

aw
k
scan

/
<

-
<

- n
o
t M

1
 C

P
U

h
ttp

s://d
o
cs.stack

h
aw

k
.co

m
/w

o
rk

flo
w

-in
teg

ratio
n
s/g

ith
u
b
-co

d
e-scan

n
in

g
.h

tm
l

<
-

<
-

<
-

<
-

V
era

co
d

e
h

ttp
s://w

w
w

.ve
raco

d
e.co

m
/p

ro
d

u
cts/ap

p
licatio

n
-an

alysis
<

-
<

-
<

-
h
ttp

s://w
w

w
.v

eraco
d
e.co

m
/co

n
tact-u

s#
m

k
to

F
o
rm

_
3
2
6

<
-

h
ttp

s://in
fo

.v
eraco

d
e.co

m
/v

eraco
d
e-so

lu
tio

n
-d

em
o
.h

tm
l

h
ttp

s://d
o

cs.ve
raco

d
e.co

m
/r/r_su

p
p

o
rted

_tab
le

<
-

<
-

<
-

<-
h

ttp
s://d

o
cs.ve

raco
d

e.co
m

/r/c_u
sin

g_ism
<

-
<

-
h
ttp

s://d
o
cs.v

eraco
d
e.co

m
/r/c_

ab
o
u
t_

g
ith

u
b

<
-

<
-

<
-

<
-

Figure 3.1: Information about all the examined tools
Note: The boxes contain clickable URLs to where the information has been found.
Since several boxes have the same URL, there are arrows pointing to the URL where
the information has been found.

28 Chapter 3: Tools for Security Testing

3.3.2 Overview of Tools

The tables 3.1 - 3.4 contain information about what the tools are and what they do,
where and when they were founded, as well as how much each of them cost.

What the tools are, is covered because it is important to know something about
the tools and how they are different from each other. Where the tools are from
is covered because some tools might be owned by countries NDMA might not
approve of. When they were founded can play a role into how easy it is to find
information about them when troubleshooting. New tools might have bugs, and a
lack of documentation. Who uses the tools are covered because it shows businesses
that believe in the product. Pricing is covered because it shows the budget needed
in order to use the tools. The tools might have multiple different prices, which are
dependent on how many features are included, and/or how many users that will
use that specific tool.

Overall, this information together with figure 3.1 gives a short overview of the
different tools.

Chapter 3: Tools for Security Testing 29

Table 3.1: Aqua Security/Trivy, Burp Suite and Contrast Security
Note: "—" is placed in the table where the information could not be found

Tool Aqua Security/Trivy Burp Suite Contrast Security

What Trivy is a simple and
comprehensive scanner
for vulnerabilities in
different container
images, file systems and
Git repositories. It also
detects vulnerabilities
in OS packages and
other language-specific
packages [55].

Burp Suite is a part of
PortSwigger and is an
application security
testing software [56].
It consist of Burp Suite
Enterprise Edition and
Burp Suite Professional
Edition, and they are
used to secure the web
and speed up software
delivery [57].

Contrast Security
specializes in application
security. They add
attack prevention and
code analysis into the
software [58].

Where International HQ: Israel UK [59] USA [60]

US HQ: Burlington [61]
When 2015 [62] 2003 [63] 2014 [60]
Who — Thrifty, P&G, Bendigo

Bank [64], amazon.com,
Walmart, Google [65]

BMW, Intuit,
CreditSuisse, DocuSign,
GreenSky, Unit4,
CM [66]

Pricing Free Burp Suite Enterprise
Edition:

Community - Free -
Individual developers or
small teams, SCA, IAST,
RASP

Starter - $6995 per year
- 5 scanning agents
Grow - $14480 per year
- 20 scanning agents

Assess - $2800 per
developer per year
- SCA, API Security
Testing, SBOM, IAST

Accellerate - $29450
per year - 50+ scanning
agents
All of them are
fully-featured with
unlimited users and no
application limits [67]

AST - $3000 per
developer per year
- SCA, API Security
Testing, SBOM, IAST,
SAST, Serverless
Security

Burp Suite Professional
Edition:
From $399 per year,
depending on how many
users [68]

Enterprise - $3500
per developer per year
- SCA, API Security
Testing, IAST, SAST,
Serverless Security,
RASP [69]

30 Chapter 3: Tools for Security Testing

Table 3.2: Detectify, Invicti Security and Klocwork
Note: "—" is placed in the table where the information could not be found

Tool Detectify Invicti Security Klocwork

What Detectify offer surface
monitoring and
application scanning.
Surface monitoring
makes it possible to
monitor large amounts
of Internet-facing assets
and scan what is hosted.
Application scanning
checks web applications
for vulnerabilities
and sends alerts and
guidance on how to fix
them when they are
detected [70].

Invicti security is a
combination of Acunetix
and Netsparker, which
are two brands that
prevent data breaches
and other security
incidents [71].

Klocwork is a static
code analysis tool for
different programming
languages, such as C,
C++ and Java, and
it keeps development
velocity high while
enforcing continuous
compliance for security
and quality [72].

Where Sweden [73] USA [74] USA [75]

Acunetix : Malta [74]

Netsparker : USA [76]
When 2013 [73] 2015 1995 [77]

Acunetix: 2005 [74]

Netsparker: 2006 [76]
Who Spotify, Grammarly,

Trustly, King [70]
VISA, U.S. Air Force,
Starbucks, NASA, Cisco,
Ford, Verizon [74]

Raytheon, Spirent
Communications,
Motorola, Johns
Hopkins, Elektrobit,
AVM, ACI Worldwide,
ACCESS, ABB [78]

Pricing Surface Monitoring -
=C49 per month

— —

Application Scanning -
=C70 per month [79]

Chapter 3: Tools for Security Testing 31

Table 3.3: Nessus, OWASP ZAP and Reshift Note: "—" is placed in the table where
the information could not be found

Tool Nessus OWASP ZAP Reshift

What Nessus is a remote
security scanning tool.
It scans the system and
raises an alert if there
are any vulnerabilities
that can be exploited by
hackers [80].

Zed Attack Proxy (ZAP)
is an open source web
application scanner [81].

Reshift is a developer
first code security
tool that helps
developers to find and
fix vulnerabilities early
in their IDE [82].

Where USA [83] USA [84] Canada [85]
When 2002 [86] 2010 [87] 2019 [85]
Who American Eagle

Outfitters, World
Wide Technology,
Virtustream [88]

Mozilla, StackHawk,
we45 and
AppSecEngineer, Orange
Business Services,
Banzai Cloud, Motorola
Solutions [89]

—

Pricing 1 year - NOK 36 103,55
- 2 years - NOK 70
395,88 3 years - NOK
102 876,99

Free Free - 1 user, Unlimited
public repositories, 0
private repositories,
1 concurrent scan, PR
workflow [90]

Unlimited assessments,
use anywhere,
configuration
assessment, live results,
configurable reports,
community support,
advanced support,
on-demand training
available [91]

Pro - $99 per month - 2
users, unlimited public
repositories, unlimited
private repositories, 2
concurrent scans, PR
workflow, 2x scanning
speed, support [90]

Team - $299 per
month - 10 users,
unlimited public
repositories, unlimited
private repositories, 10
concurrent scans, PR
workflow, 2x scanning
speed, support [90]

Contact - price based
on needs - 100+
users, unlimited public
repositories, unlimited
private repositories, 50
concurrent scans, PR
workflow, 2x scanning
speed, support [90]

32 Chapter 3: Tools for Security Testing

Table 3.4: Snyk, StackHawk and Veracode Note: "—" is placed in the table where
the information could not be found

Tool Snyk StackHawk Veracode

What Snyk is a developer
security platform.
It is used to secure
code, dependencies,
containers, and
Infrastructure as
Code [92].

StackHawk is a dynamic
application and
API security testing
tool [93]. It runs a
automated scan on
every pull request to
find newly introduced
vulnerabilities [94].

Veracode helps
organizations to
confidently develop
software by reducing the
risk of security breaches
through analysis,
developer enablement,
and application security
governance [95].

Where USA [96] USA [97] Corporate HQ: USA

EMEA HQ: UK [98]
When 2015 [96] 2019 [97] 2006 [99]
Who Google, Revolut, AWS,

Datadog [100]
Cloudbees, DataRobot,
.planetly, Firebolt [101]

Garmin, Santander,
Adidas, ebay [102]

Pricing Free - Limited tests,
unlimited developers,
Snyk Open Source, Snyk
Container, Snyk IaC,
Snyk Code

Free - Unlimited scans
and environment, one
application, Docker
based application
security scanner, CI/CD
Automation, Historical
scan data, cURL based
reproduction criteria,
Finding triage, Slack
Integration, e-mail Based
Support

—

Team - $46 per month
- Unlimited tests, 5-25
developers + all features
in Free

Pro - $35 per month -
Minimum 5 developers,
Unlimited applications,
Jira Integration
Applications Dashboard,
e-mail and Slack Based
Support + all features in
Free

Business - $65
per month - 10-75
developers + all features
in Team [103]

Enterprise - $49 per
month - Single Sign-On,
Microsoft Teams,
Generic, Webhooks
Integration, Role based
permissions, Activity
History & Audit Log,
Dedicated Slack Based
Support, Premier Phone
Support + all features in
Pro [104]

Chapter 4

Analysis of Selected Tools

4.1 Introduction

The analysis of selected tools chapter consists of the tools that are chosen as
possible solutions for NDMA. It contains reasons for why the various tools were
chosen, how NDMA can use them, as well as how they work. It also contains
information about how the tools handle uploaded data, and what kind of scoring
system they use on vulnerabilities.

4.2 Contrast Security

4.2.1 Why Contrast Security Was Chosen

Contrast Security was chosen because it covers SAST, IAST, SCA and RASP. Since
it uses both SAST and SCA, it works well on the internal software that NDMA
develops. It checks the code for insecure libraries, as well as vulnerabilities while
writing the code. Contrast Security also offers a variety of solutions with their
platform, allowing NDMA to use the solution that best suits their needs. Each
solution is well documented, and as a result, they can be set up according to
preferred programming language. Contrast Security supports Java, .NET, .NET
Core, Go, NodeJS, Python and Ruby [105], depending on which product is used.
It also supports different integrations, such as Jenkins, Maven, GitHub, Slack,
Microsoft Teams, IntelliJ, and more [106].

33

34 Chapter 4: Analysis of Selected Tools

4.2.2 Product Overview

DEV

TEST

PROD

Contrast
Scan

Contrast
SCA

Contrast
Assess

Contrast
Serverless

Contrast
Protect

Figure 4.1: Contrast Security products placed in the SDLC (Inspired by [58])

Contrast Security [107] is a tool that instruments applications with sensors
to detect vulnerabilities in the code and protect applications against potential
security attacks. It has five platform solutions [108]; Contrast Scan, Contrast SCA,
Contrast Assess, Contrast Serverless, and Contrast Protect (figure 4.1).

4.2.2.1 Contrast Scan

Contrast Scan [109] is a SAST tool that scans code for vulnerabilities. The
scans can be initiated through Command Line Interface (CLI), build automation
(Maven, Gradle, GitHub Action), simple Application Programming Interface
(API) call or secure code upload. The algorithm is exploitability-focused, and the
analysis is based on OWASP benchmark scores.

4.2.2.2 Contrast SCA

Contrast SCA [110] is a tool that tests and protects third party open source
code. This testing can be done through the entire SDLC, and is a shift-left effort.
As a shared service across the Contrast Application Security Platform, Contrast
SCA also provides third-party software visibility without the need to deploy any
additional tools.

4.2.2.3 Contrast Assess

Contrast Assess [111] is an IAST tool that continuously detects and prioritizes
vulnerabilities in real-time. With this tool, organizations can visualize the
application architecture, code trees, and message flow information. The
application’s major architectural components are illustrated in automatically
generated diagrams, which helps the developer to quickly identify the meaning
of a vulnerability that Contrast Assess pinpoints, and can then form a starting
point for threat modeling remediation.

Chapter 4: Analysis of Selected Tools 35

When a vulnerability is found, the Contrast Assess platform explains the
vulnerability, and pinpoints the place where it is. This enables developers to fix
the vulnerabilities without the need of security expertise.

Contrast Assess provides a mapping of the URLs and routes of the software that
are executed during the testing phase of the SDLC. This helps increase confidence
in the coverage of the Assess solution, as well as identify the effectiveness of the
overall testing practice.

4.2.2.4 Contrast Serverless

Contrast Serverless [112] is a tool that can find and fix security issues across
cloud-native environments. It helps find vulnerabilities in custom code and open
source. Since it has near real-time monitoring and testing of every change that
has been deployed in serverless environments, it provides vulnerability context
of code, configuration, relationships, and flows, both to the developers and the
application security teams.

4.2.2.5 Contrast Protect

Contrast Protect [113] is a RASP tool that detects and blocks run time attacks
on known and unknown code vulnerabilities. When exploits are detected, it will
notify about whether the attack reached its target or not, and give a detailed
report. The report will include code lines, queries executed, files accessed, and
more.

4.2.3 How Contrast Security Handles Data

How Contrast Security handles data [114] is largely dependent on how it is
configured. Contrast Security offers data masking, which protects sensitive data
in the application by redacting it in vulnerability and attack report. This is further
sent to Contrast, syslog or security log. Data masking censors sensitive data, or
data types, into keywords. This type of masking will happen in query parameters,
request headers, cookies, and body.

Contrast Security agents will try to avoid sensitive data being logged in the
log statements. However, it might be included if the level is set to DEBUG or
lower.

4.2.4 Vulnerability Scoring

Contrast Security scoring system [115] involves comparing impact and likelihood,
and merging this into one score (figure 4.2). This score is also compared to CVE
confidence.

36 Chapter 4: Analysis of Selected Tools

Figure 4.2: The risk severity [115]

Contrast Security also has its own scoring system for the whole application [116].
This scoring system goes from A to F, where A is the best and F is the worst. The
score is calculated by starting with 100 points (maximum), then the number
of critical vulnerabilities is multiplied with 20 and subtracted from the 100
points that was started with. The same is done with the high, medium and low
vulnerabilities, except that for high, the number of vulnerabilities is multiplied by
ten, for medium it is multiplied by five, and for low it is multiplied by one.

4.3 Snyk

4.3.1 Why Snyk Was Chosen

Snyk was chosen because it covers SCA and SAST. SCA will help NDMA with
finding insecure libraries in the code they are writing, while SAST will help
finding insecurities while the code is written. This will help NDMA with finding
vulnerabilities early in the SDLC, hence making it relevant for the software they
develop. Being in business since 2015, it is plausible that Snyk have built up
comprehensive documentation, resulting in easier troubleshooting. Snyk works
with containers and supports many different programming languages, such
as .Net, C/C++, Go, Java, JavaScript, PHP, Python and others [117]. It also
supports different integrations, such as GitHub, Jenkins, Maven, AWS, IntelliJ,
and more [118]. Google, Amazon Web Services (AWS) and Mnemonic are trusted
companies using Snyk.

Chapter 4: Analysis of Selected Tools 37

4.3.2 Product Overview

 PLAN DEV TEST PROD

Snyk Learn Snyk Code

 Snyk Open Source

 Snyk Infrastructure as Code

 Snyk Container

Figure 4.3: Snyk products placed in the SDLC

Snyk [92] is a developer security platform. It is used to secure code, dependencies,
containers, and Infrastructure as Code (IaC). Snyk consists of four products [100],
Snyk Open Source, Snyk Code, Snyk Container, and Snyk Infrastructure as
Code (figure 4.3). It also provides Snyk Learn [119], and Snyk Vulnerability
Database [120].

4.3.2.1 Snyk Open Source

Snyk Open Source [121] is a SCA tool that helps developers detect vulnerabilities
in the open source dependencies early in the SDLC. It does this by scanning the
pull requests before merging. It also tests the projects directly from the repositories
regularly to see if there are any new vulnerabilities introduced after the first scan.
A Snyk test is added to the CI/CD to prevent new vulnerabilities from passing
through the build process as well [122].

4.3.2.2 Snyk Container

Snyk Container [123] solution has two functions. It provides tools to find and fix
vulnerabilities that may exist in a container, and it helps to build security into
images from the start.

38 Chapter 4: Analysis of Selected Tools

4.3.2.3 Snyk Code

Snyk Code [124] is designed to be developer-first. It is a SAST tool that begins
scanning the code from the start and not after compilation. To avoid false
positives, Snyk Code uses Artificial Intelligence (AI). The AI uses open source
code to learn, and pairs this information with Snyk’s Security Intelligence
database. Another feature of Snyk Code [125], is that it also gives example
solutions and education about vulnerabilities.

4.3.2.4 Snyk Infrastructure as Code

Snyk Infrastructure as Code (IaC) [126] is used for helping developers write
secure configurations for applications. It provides fix advice so it is possible to
make changes directly into the code before the application goes to production.
It is used in configurations for AWS CloudFormation, Azure Resource Manager
(ARM), Kubernetes, and HashiCorp Terraform.

Snyk IaC integrates security checks into the SDLC by providing immediate local
feedback when writing configurations. In this way issues can be found and fixed
before they are committed. To automate security checks, it is possible to integrate
Snyk directly into the CI/CD processes, and for ongoing monitoring and analysis,
it is possible to import source repositories.

4.3.2.5 Snyk Learn

Snyk Learn [119] is designed to help developers learn how to exploit and mitigate
vulnerabilities. This is a free web page where developers can choose the type of
ecosystem they use when developing. Snyk Learn provides lessons for JavaScript,
Java, C#, GO, PHP, Kubernetes and Python. In the lessons, developers get a
briefing on the basics of the vulnerabilities and get hands on experience with how
to exploit them [127]. It also provides information about how the vulnerabilities
work, the impact of an exploitation, and how to mitigate them.

4.3.2.6 Snyk Vulnerability Database

Snyk Vulnerability Database [120] is a database with different open source
vulnerabilities. It contains information about what they are, what they do, and
how to prevent them. It is also possible to report threats or new vulnerabilities
directly to Snyk. They can then look at them and potentially add them to the
database.

Chapter 4: Analysis of Selected Tools 39

4.3.3 How Snyk Handles User Code and Repositories

Snyk is a Software as a Service (SaaS) application, and they fully manage
everything [128]. There is an option to use Snyk as a SaaS with Broker. This is
a service where Snyk is installed in a private infrastructure, where it acts like
a proxy between Snyk and the private codebase. The Broker will control the
connections, encrypt data when it is being transmitted, and all the user’s sensitive
information will stay behind their own firewall.

4.3.3.1 Snyk Open Source

Snyk Open Source [128] has access to the build configuration files and to the
manifest files to identify the open source dependencies in the code. The SCA scan
does not need to access any of the source code. It only needs to access the name
and version number of the dependencies, which it also stores. For the optional
ADD-ONS Reachable Vulnerabilities computation and Lambda integration only,
Snyk stores the code until the analysis is done. Then the code is removed.

4.3.3.2 Snyk Container

Snyk Container [128] will access and store package versions, executable hashes,
what type of OS is used, metadata of the container image, and information about
the overall image. From the Dockerfile, it will also store the RUN instructions.
For the Kubernetes configurations, Snyk needs to access the workload security
settings, and for container registry integrations, Snyk stores a temporary copy of
the container image until the analysis is done. Snyk does not store the container
image if a Broker is used.

4.3.3.3 Snyk Code

Snyk Code [128] stores code for a period up to 24 hours, before removing
it for the network and logs. After this, Snyk only stores the position of the
vulnerabilities found. The results of the scan will be stored in a database for
analytic and monitoring purposes, but the results will not be used for engine
training purposes, or to make examples for fixes in the code. Snyk Code only
uses pointers to positions and identification meta-information when showing the
results, and does not contain original source code.

40 Chapter 4: Analysis of Selected Tools

4.3.3.4 Snyk Infrastructure as Code

When Snyk IaC [128] performs a CLI scan, the scan is only performed locally.
For the Git-based scans, IaC files are stored temporarily and completely deleted
afterwards.

4.3.4 Vulnerability Scoring

Snyk uses CVSS framework version 3.1 [42] for the vulnerability scoring.

4.4 StackHawk

4.4.1 Why StackHawk Was Chosen

StackHawk was chosen because it covers DAST, and is thus mainly relevant for the
software that NDMA get from external providers. DAST does not cover the need
for testing libraries, but due to defense in depth it is still considered important
in order to ensure a more secure software. StackHawk can be used on the
internal software as well, as a last security check before deployment. StackHawk
has a collaboration with Snyk, so even though StackHawk is a relatively new
security testing tool, it is supported by someone with more experience and
recognition [129]. The StackHawk application is inspired by OWASP ZAP [130],
which is a known security testing tool [131], and is often used for preventing
OWASP top 10 vulnerabilities (figure H.1). It also supports different integrations,
such as GitHub, Slack, Microsoft Teams, and more [132].

4.4.2 Product Overview

StackHawk will look for vulnerabilities in the applications, as well as services and
APIs, both during and after the development phase. It is a DAST tool made with
developers in mind, where it is possible to scan in the CI/CD pipeline, before
hitting production. It will look for both security vulnerabilities that the team has
introduced, and exploitable open source bugs [133].

StackHawk has two parts called the HawkScan Scanner and the StackHawk
Platform [93]. The HawkScan Scanner is a security bug scanner, which
is command-line based. It is supported by OWASP ZAP. The StackHawk
Platform [134] is a Graphical User Interface (GUI) to start scans and view the
results.

Results from scans are presented in the terminal and also collected on the
StackHawk Platform. These results are split into two categories; a result summary
and result payload. The summary shows the total number of vulnerabilities, and
the payload gives specific details about each vulnerability.

Chapter 4: Analysis of Selected Tools 41

4.4.3 How StackHawk Handles Data

StackHawk has a list of what is considered personal information that they
collect [135]. This covers both information about the business itself and
employees, as well as software frameworks and the scanning results. The
information is used by StackHawk when communicating with customers,
and in order to improve their service and personalize the experience for
customers.

StackHawk might share personal information if affiliates, service providers, or
professional advisors ask for it. StackHawk is also willing to share personal
information if it is needed for compliance, fraud prevention, and safety.
StackHawk might also sell personal information in special cases. These cases are
listed on their site in the Privacy Policy. The Privacy Policy is often updated, so it
is important to pay attention to changes.

4.4.4 Vulnerability Scoring

StackHawk risk scoring system [136] is based on the OWASP Risk Rating
Methodology.

4.5 Veracode

4.5.1 Why Veracode Was Chosen

Veracode was chosen because it covers SAST, DAST and SCA, and thus can be used
on both internal and external software. Having all these options available from
one supplier might make security testing easier to handle. Veracode also supports
many different programming languages, such as Java, Python, Go, C/C++, and
others [137]. GitHub, Jenkins, Maven, and AWS are some of the integrations
Veracode supports [138].

42 Chapter 4: Analysis of Selected Tools

4.5.2 Product Overview

 PLAN DEV TEST PROD

 Veracode
eLearning

 Veracode
Static Analysis

 Veracode Manual
Penetration

Testing

 Veracode Static
Analysis IDE Scan

 Veracode Dynamic
Analysis

Figure 4.4: Veracode products placed in the SDLC [139]

Veracode has a lot of different products to choose from (figure 4.4); Veracode
Static Analysis, Veracode Software Composition Analysis, Veracode Dynamic
Analysis, Veracode Discovery, Veracode Manual Penetration Testing, and Veracode
eLearning. It is possible to only choose some of the products if some functions
are not needed or covered by other products already owned.

4.5.2.1 Veracode Static Analysis

Veracode Static Analysis [140] is a SAST solution that makes it possible to quickly
identify and remediate application security findings. It can analyze frameworks
and languages without needing the source code. Code that is written, bought, or
downloaded can be assessed, and the progress can be measured. It gives feedback
to the developers in the IDE, and in the CI/CD pipeline. Before deployment [141],
Veracode Static Analysis conducts a full policy scan, that offers guidance on how
to find, prioritize, and fix issues in the code, and it does not need tuning.

4.5.2.2 Veracode Software Composition Analysis

Veracode Software Composition Analysis (SCA) [142] helps building an inventory
of all third party components to identify potential vulnerabilities, including both
open source and commercial code. It scans a list of libraries, and identifies the
vulnerabilities in each of them. A notification is sent out for any new vulnerabilities
discovered that may impact the application, without the need to manually perform
a new scan. There are two types of possible scans, which can be run at different
stages in the SDLC. These are the upload and scan method and the agent-based
scan.

Chapter 4: Analysis of Selected Tools 43

The upload and scan method scans the application after it is compiled and the
application binaries are uploaded to the Veracode platform. The binaries can be
uploaded through the Veracode platform user interface, or by using the Veracode
Extensible Markup Language (XML) APIs. This method makes it possible to
perform a SCA scan together with a Veracode Static Analysis, or separately.

The agent-based scan method scans the code early and frequently in the SDLC.
This method makes it possible to scan repositories or projects cloned locally on
the computer. Agent-based scanning can also be integrated into the continuous
integration (CI) pipelines. C/C++ scanning, Docker container scanning, and other
additional insights, for example vulnerable methods and dependency graphs, can
only be done through agent-based scanning.

4.5.2.3 Veracode Dynamic Analysis

Veracode Dynamic Analysis [143] is a DAST solution that delivers a scalable
and automated dynamic scanning capability. It can be used to scan both web
applications and API specifications.

Veracode Dynamic Analysis can be used to run security tests against live web
applications in the last stages of the SDLC, for example during the testing or
production stage. It can also be used for API scanning, to test the security of
the endpoints in the API specifications. The different scanning methods with this
solution are an authenticated and unauthenticated dynamic analysis of a web
application, and a dynamic analysis for an internal web application.

Veracode Dynamic Analysis integrates with Veracode Discovery and it provides
Veracode Internal Scanning Management (ISM) to access applications and API
specifications behind a firewall.

4.5.2.4 Veracode Discovery

Veracode Discovery [144] makes it possible to manage the elusive web attack
surface by discovering and inventorying all public-facing applications, both inside
and outside of the IP range. This provides an easy workflow to scan different
sites for vulnerabilities. It can be used alone or together with Veracode Dynamic
Analysis to discover potential flaws in assets that have been identified.

44 Chapter 4: Analysis of Selected Tools

4.5.2.5 Veracode Manual Penetration Testing

Veracode Manual Penetration Testing (MPT) [145] involves different penetration
testers who simulate real-life attacks and perform tests. The goal with this is
to determine if attackers have the potential to successfully access and perform
malicious activities, by exploiting previously known or unknown vulnerabilities in
the software. This is done by using a combination of manual testing and automatic
penetration testing. It is recommended that MPT is used in conjunction with other
automated security assessments. By using this approach, the penetration testers
can focus on complex attack schemes and business logic flaws that are not as easy
to automate.

4.5.2.6 Veracode eLearning

Veracode eLearning [146] consists of course-based training that will help
developers get the necessary knowledge to identify and address potential
vulnerabilities when developing. This includes online courses to improve
security knowledge and a Knowledge Base on secure software development. The
Knowledge Base is a collection of information about different vulnerabilities,
together with techniques that can be used to prevent them.

4.5.3 How Veracode Handles Data

Veracode recognizes uploaded application files as binaries [147]. To allow for
re-scanning applications without re-uploading modules with issues or errors,
and performing results-quality investigations upon request, Veracode retains
uploaded binaries for a number of days. Binaries for submitted scans are retained
for 30 days, whereas binaries for scans that did not complete are retained for 90
days.

4.5.4 Vulnerability Scoring

Veracode vulnerability scoring [148] is based on both CWE and CVSS. CVSS is only
used on the SCA and the MPT products, where the user can choose to use either
version two or three [149], while CWE is used on all of Veracode’s products.

Chapter 4: Analysis of Selected Tools 45

4.6 Selected Tools in the SDLC

Figure 4.5 shows the four examined tools with their products, and where they are
placed in the SDLC.

Figure 4.5: The tools placed in the SDLC

Figure 4.6 shows in which context the different tools can be used. NDMA has
both internal and external software that is either compiled or source code. These
types of software can be security tested through DAST, SCA, or SAST. The dotted
lines show that it is partly connected. For some tools, SCA works with compiled
software, while for others it does not.

Figure 4.6: The tools and what type of software they can be used on

Chapter 5

Experiment

5.1 Introduction

The experiment chapter starts with a description of the test environment and
test data. Thereafter, explanations of how the tests were conducted together with
their corresponding results are presented. The tests are divided into two sections:
tools that were tested by the group, and tools that could not be tested by the
group.

5.2 The Test Environments

There were different testing environments used. The environment used for testing
Contrast Security and StackHawk was a PC with Windows 10 pro. A browser,
Microsoft Edge, was used to see results on the tools website. PowerShell was used
for the experiment itself, while Docker was only used for StackHawk tests. The
environment used to test Snyk was a Microsoft Edge browser with a user logged
into GitHub through the Snyk website.

5.2.1 Test Data

There were three sets of test data used to conduct the tests, two from a student at
NTNU, and one from a former exam of a group member. These were used because
they met the requirements needed in order to conduct the tests.

The first test data was a "To do list" application called "FastTasks", which let the
user add different activities, prioritize them, and set a due date. This application
was written in Java, and the file was a .jar file. The application was not connected
to the Internet. This test data was tested with Contrast Security and Snyk.

47

48 Chapter 5: Experiment

The second test data was used to test StackHawk. This was a Representational
state transfer (REST) API, which let the user write a country in the URL, in order
to find some information about it, and universities located in that country. This API
was written in GO, and the information was fetched from two other APIs.

Lastly, Snyk was also tested with a prior exam called "prog2053-exam2020", to
show the automatic fix function. It consists mostly of PHP code, with some HTML
and JavaScript.

5.3 Tested Tools

Some tools could be tested by using a free trial. Not all of the free trials offer the
same functions as the purchased product, which makes some of the tests limited.
These tests are meant to give some insight on how the tools work, how difficult
they are to set up, and how they perform in terms of functionality.

5.3.1 Contrast Security

There are different ways to test Contrast Security, but there was only one way
that was possible to test with the free trial. This was with the community edition,
which covers SCA, IAST, and RASP.

5.3.1.1 Community Edition

The Java Quick Starter Guide [150] was used in order to do the test. This guide
was made for use with Linux, and since this was done on Windows, a few changes
had to be made.

The first command, shown in code listing 5.1, did not work because the cURL
command is not the same in PowerShell as in Linux. The PowerShell command
replacing curl is curl.exe, and this was thus used instead.

Code listing 5.1: Linux command to download the JAR file agent

curl -L ’https://repository.sonatype.org/service/local/artifact/maven/redirect?r=
central-proxy&g=com.contrastsecurity&a=contrast-agent&v=LATEST’ -o contrast.jar

Then the YAML file had to be changed according to the guide.

The last command needed to do the test, was 5.2, but this would not work in
PowerShell. This was because it did not read the command correctly. To make it
work, a suggestion from Stack Overflow [151] was followed, and it was changed
to the command shown in 5.3.

Code listing 5.2: Linux command to tell the agent where to find the YAML file

java -javaagent:./contrast.jar -Dcontrast.config.path=contrast_security.yaml -jar
<ApplicationJarPath>

Chapter 5: Experiment 49

Code listing 5.3: PowerShell command to tell the agent where to find the YAML
file, with the application path for this test

java -javaagent:’./contrast.jar’ ’-Dcontrast.config.path=contrast_security.yaml’
-jar .\FastTasks.jar

Then the application being tested started automatically. When the application was
interacted with, Contrast Security was able to find vulnerabilities. After reloading
the Contrast Security site, the results appeared (figure 5.1 - 5.4):

Figure 5.1: The results from the test

50 Chapter 5: Experiment

Figure 5.2: Overview of the vulnerability found

Figure 5.3: Details about the vulnerability found

Chapter 5: Experiment 51

Figure 5.4: Information about how to fix the vulnerability

5.3.2 Snyk

Snyk has different ways to test Snyk Code and Snyk Open Source. They can
for example be tested with the GitHub integration, or in a IDE integration
like the VS Code plugin. Here it is tested with the GitHub integration, with
the "prog2053-exam2020" application. A more detailed description of the
procedure and how it works, can be found in appendix B.1. The GitHub test
with the "FastTasks" application can be seen in appendix B.1.2. This test did not
show examples on automatic fixes for the vulnerabilities, but can be used for
comparison with the other tools. The test with the IDE integration should give
the same results as with the GitHub integration.

5.3.2.1 GitHub

A free Snyk account was made when a GitHub account was used to sign in on
Snyk’s website. The first page that was opened (figure 5.5) showed a list of
suggested repositories to scan from the GitHub profile. In this example only one
repository showed up in the suggestions, but other repositories could be seen by
clicking the "show all repositories" button. The wanted repository was the one
suggested, so it was imported and scanned.

52 Chapter 5: Experiment

Figure 5.5: Adding projects to scan for vulnerabilities

When the repository was scanned, Snyk showed an overview of the vulnerabilities
found, ranked by grade of severity (figure 5.6).

Figure 5.6: Scanned project with vulnerabilities ranked by grade of severity

It was also possible to see more information about the found vulnerabilities and
learn how to fix them. Snyk can generate automatic pull requests for the tested
GitHub repository. For this test, Snyk gave suggestion for a fix. Under, in figure 5.7,
is an example of a fix, where Snyk wanted to replace the library php:7.3-apache
to php:8.1.4RC1-fpm.

Chapter 5: Experiment 53

Figure 5.7: An example of a suggested fix

5.3.3 StackHawk

There are different ways to test StackHawk, for example with HawkScan and the
GitHub integration. In this test, it is tested with HawkScan. The GitHub scan would
have given the same results, due to them both testing with DAST.

5.3.3.1 HawkScan

When testing StackHawk, a user was made in order to test it for a limited period of
time. StackHawk gave a clear guide on how to set up a web-application security
test, when first logging into the new user. This guide was easy to follow, but it
came with some issues explained in this experiment.

When first logging into StackHawk, an API-key was made by StackHawk, and the
user is asked to save this key for later use. To run the test, some information about
the application being tested had to be given. In this case the information given
was that the application is a REST API on localhost:8080, and information on the
environment used to conduct the tests. StackHawk gave commands to follow in
order to save important information, as well as downloading everything that is
needed in order to conduct the tests, both with PowerShell and Bash.

The first issue that occurred, shown in figure 5.8, happened on the last command
before the test would start. This issue only happened because of the default
permission in the testing environment. To fix this, the command shown in figure
5.9 was used. This command will change the policy for execution.

54 Chapter 5: Experiment

Figure 5.8: Issue with permissions

Figure 5.9: Fix the error in 5.8

The first time running this test, it pulled a Docker image from StackHawk before
starting the test, shown in figure 5.10.

Figure 5.10: First time running the command for starting a test

After running the test, the results showed up in the terminal, shown in figure 5.11.
It showed which vulnerabilities were found, the paths they were found on, and
how high of a risk that vulnerability has.

Chapter 5: Experiment 55

Figure 5.11: Results from test shown in PowerShell

StackHawk does not only show tests and results in the terminal, it can be seen on
their platform as well. Figure 5.12 shows how the test looks on the website before
finishing. Figure 5.13 shows the results after the test is done.

56 Chapter 5: Experiment

Figure 5.12: Test in progress on StackHawk’s website

Figure 5.13: Website-version of the test results

Chapter 5: Experiment 57

By clicking on vulnerabilities on the website, StackHawk showed a new site with
more information about them (figure 5.14). This site showed details about the
threats found to the left, shown in figure 5.15, as well as the evidence of the
vulnerability to the right.

Figure 5.14: Details of found vulnerability

58 Chapter 5: Experiment

Figure 5.15: Details on the threat

5.4 Untested Tools

Some of the tools could not be tested. This was because the tools did not offer a
free trial. The tests are hence based on documentation from the tools’ websites
and videos where they are tested by employees of the companies.

5.4.1 Contrast Security

Since the free version of Contrast Security only covers SCA, IAST, and RASP, it was
not possible to test it with SAST [69]. To see how it works with SAST, it was thus
necessary to watch videos and read documentation. A more detailed description
of the procedure and how it works, can be found in appendix A.1.

5.4.1.1 Contrast Scan (SAST)

Contrast Scan (SAST) can be found in the Contrast Security editions called
Detect, Detect & Protect and Enterprise [69]. A user who has access to Contrast
Scan [152] can get this page in their account (figure 5.16). This is a list of all the
scanned projects linked with this profile. In this page the user can also add new
scans.

Chapter 5: Experiment 59

Figure 5.16: Overview over scans and add new button in the right corner [152]

There are two ways to start a new scan. The first way is to use CLI (figure 5.17)
and the second is to add the files manually in the Contrast interface.

Figure 5.17: Starting a new scan in the CLI [152]

When adding a new project manually, the user can choose if Contrast Security
should scan a live application or a local file. In this example, a local file will be
used. When the project is created, it is possible to create a scan of the chosen
file.

When the scan is complete, the Contrast Security interface will show the
results from the scan (figure 5.18). This contains information about how many
vulnerabilities there were, how many scans, together with a list of all of them.
Contrast Security will also show more details about each vulnerability (figure
5.19), as well as solutions for how to avoid them.

60 Chapter 5: Experiment

Figure 5.18: One scan done on the project named "Java Scan" [152]

Figure 5.19: Overview of a vulnerability [152]

To share the findings with other developers or interested parties, it is possible
to download a Comma-Separated Values (CSV) file with all vulnerabilities, or a
JavaScript Object Notation (JSON) file with the results shown in the overview of
the project.

Chapter 5: Experiment 61

5.4.2 Veracode

5.4.2.1 Veracode SCA

Veracode SCA has two different methods to perform a scan [153]: the upload and
scan method, and the agent-based scan method. A more detailed description of
the procedures and how they work, can be found in appendix C.1.

Upload and Scan

The upload and scan method [153] scans the application after it is built and
uploaded to the Veracode platform (figure 5.20). It could be binaries, or a
packaged application with a dependencies file. It is possible to upload the
application through the Veracode platform user interface, or by using the
Veracode API. The upload and scan method makes it possible to perform a SCA
scan together with Veracode Static Analysis.

Figure 5.20: The Veracode Platform [153]

The scan can be done by creating a new application or using an existing one. After
all the files are added and the scan is complete, all users and teams associated with
the application will receive an e-mail notification. The results from the scan can
be reviewed when they are available, either from the application profile or the
SCA screen (figure 5.21).

62 Chapter 5: Experiment

Figure 5.21: The results from the SCA scan [153]

Agent-Based Scan Method

An agent-based scan can be done through the Veracode Platform (figure 5.20).
The Veracode agent-based scan [154] is a program that builds and scans code
to find third party libraries and the vulnerabilities in those libraries. To perform
an agent-based scan, it is necessary to create a workspace with an agent to scan
projects. The agent make it possible to scan projects and put the results in a specific
workspace.

The agent is created with commands in the CLI as an administrator, together
with a token (figure 5.22). After a scan is done the results will appear in in
the command line as a JSON output (figure 5.23). They can also be seen in the
Veracode Platform.

Chapter 5: Experiment 63

Figure 5.22: The commands needed to create an agent in the CLI [154]

Figure 5.23: The results from the scan in the CLI as a JSON output [154]

64 Chapter 5: Experiment

5.4.2.2 Veracode Dynamic Analysis (DAST)

The Dynamic Analysis workflow [155] for scanning web applications or API
specifications consists of different steps to configure, execute, and view the
results of the scan (figure 5.24).

Figure 5.24: The Dynamic Analysis workflow [155]

Veracode Dynamic Analysis has several use cases. It is possible to use it to run an
authenticated and unauthenticated dynamic analysis on a web application, as well
as configuring a dynamic analysis of a web application for internal scanning. A
more detailed description of the procedures in an authenticated dynamic analysis,
and how the other use cases work, can be found in appendix C.2.

5.4.2.2.1 Authenticated Dynamic Analysis

To perform an authenticated dynamic analysis [156], login credentials are needed.
After starting a scan of a web application, the URL of the website must be added
together with the name of the dynamic analysis. Next, who is going to have access
to the results need to be selected.

It is possible to create a Blocklist (figure 5.25) and an Allowlist (figure 5.26) with
different URLs. URLs in the Blocklist will be excluded from the scan, while the
ones in the Allowlist will be included to make sure that Veracode can scan the
entire application.

Chapter 5: Experiment 65

Figure 5.25: The Blocklist [156]

Figure 5.26: The Allowlist [156]

In the Authentication section, authentication credentials must be provided, which
can be done in several ways (figure 5.27). Auto-login is selected by default.

66 Chapter 5: Experiment

Figure 5.27: Different ways to authenticate [156]

When it is ready to be run, the Dynamic Analysis can be run immediately, or it can
be scheduled to be run at a date up to 90 days in the future. Dynamic Analysis is
not scheduled by default.

The results from the scans and their status can be seen in the All Dynamic Analysis
page, given that the necessary roles has been set, and that the user has permission
to see them.

All the results will open in the Triage Flaws view of the selected Dynamic Analysis.
They are listed with all the vulnerabilities found, together with details about each
of them (figure 5.28).

Chapter 5: Experiment 67

Figure 5.28: The results from the test [156]

5.4.2.3 Veracode Static Analysis (SAST)

Veracode Static Analysis can be used in several ways. It can be integrated with
GitHub, where the code can be scanned directly in the repository, it can be used
together with an IDE, where code can be scanned at same time as it is being
written, and it can be used from the Veracode Platform where all the other scans
can be seen. All these solutions should show the same results. A more detailed
description of the procedures with the GitHub integration and how the other
methods work, can be found in appendix C.3.

5.4.2.3.1 GitHub

Veracode pipeline scan can be integrated into GitHub as a workflow [157].
The Veracode pipeline scan directly embeds into team development pipelines
and provides feedback on flaws introduced after new commits to the repository
(figure 5.29). To perform a scan, an API key and a secret key is needed to submit
the code for scanning. Veracode provides documentation on how to set this
up [158]. After these keys are generated, they can be added to the secrets in the
GitHub repository.

68 Chapter 5: Experiment

Figure 5.29: The GitHub repository that is going to be scanned [157]

Chapter 5: Experiment 69

To set everything up properly, Veracode provides a template. When this is added
to the repository, it creates a new file called “veracode-analysis.yml” (figure
5.30).

Figure 5.30: The veracode-analysis.yml file [157]

When the scan is complete, it is possible to see all the found issues from the
Veracode pipeline scan (figure 5.31). These issues contain information about
the severity of the issue and where in the code it can be found. It also contain
information about what to do to avoid it.

70 Chapter 5: Experiment

Figure 5.31: Overview of all the issues found in the scan [157]

Chapter 5: Experiment 71

5.5 Results

The table 5.1 shows an overview of the different results from the experiment. As
shown, Contrast Security and Snyk got a big difference in found vulnerabilities
when testing "FastTasks". A reason for this can be that they used different methods.
Since "FastTasks" and the REST API are applications borrowed from another
student at NTNU, the owner has become aware that there are vulnerabilities in
them, and has given consent for it to be published (appendix I.5.3). The results
found in the table are retrieved from figure 5.2, B.12, 5.6 and 5.11.

Table 5.1: Results from the tests

Application Method High Medium Low

Contrast Security "FastTasks" IAST 1
Snyk "FastTasks" SAST, SCA 14
Snyk prog2053- SAST, SCA 2 1 190

exam2020
StackHawk REST API DAST 1 6 6

Chapter 6

Discussion

6.1 Introduction

The discussion chapter consists of a detailed presentation of the group’s process
and findings. It also covers limitations during the thesis, changes that were made
during the project, and a critique of the thesis.

6.2 Result Interpretation

Contrast Security found one medium vulnerability in "FastTasks", which was an
insecure hashing algorithm. In the test, Contrast Security was supposed to test
both SCA and IAST, but this did not happen. The test was done by following the
instructions in the guide they gave, but when the test was finished, no libraries
were found. This means that SCA was not tested. Contrast Security did not say
it was needed, but after e-mail communication with Ivar Farup (H.18), it was
discovered that Contrast Security most likely needs a specific file, a Project Object
Model (POM) file, in order to find the libraries. Due to the lack of the POM file,
the test became irrelevant, because it was the SCA test that was most interesting
for this thesis, and not the IAST test. The reason why is mentioned in section
6.4.

Snyk found 14 vulnerabilities in "FastTasks" of high severity. They were ranked
with a severity score of 922, and all of them were XSS vulnerabilities. This seems
fair, as it potentially is a very damaging vulnerability, and there are no preventative
measures in place. As can be seen in B.14, there were also some files that did not
get tested by Snyk. This could be because of a file type or content that is not
supported, or because the files are too small or too big [159]. Snyk states in its
documentation that minified JavaScript files with three lines or less is too small
for the scan, and single files larger than 1MB will be ignored.

73

74 Chapter 6: Discussion

Snyk was also tested on the "prog2053-exam2020" repository. In this test, two
high, one medium and 190 low vulnerabilities were found. The results were
varied, and some examples of vulnerabilities found were cross site scripting, code
injection and server-side request forgery. This was expected, as part of the code
for the exam has been used for many years, and it is not made to be secure. A
few weeks after the first test was complete, Snyk ran a test on this repository
over again. More vulnerabilities were found, the most surprising being 16 critical
(figure 6.1). This shows how important continuous testing is; new vulnerabilities
are bound to be discovered over time.

Figure 6.1: The results from Snyk retesting the exam software after several weeks

StackHawk found six low, six medium and one high when testing with the REST
API. The API used in the test was not made with security in mind, so it is likely
that it has this many vulnerabilities, but it might also be possible that some of
these alerts were false positives.

These differences in yielded results between the tools demonstrates the benefit
to testing with several tools that have a different focus. The Snyk scan covered
SAST and SCA, the Contrast scan covered IAST, and the StackHawk scan covered
DAST. The test results show how including tests through all stages of the SDLC
can reveal vulnerabilities that might not have been discovered after only testing
in one SDLC phase.

Chapter 6: Discussion 75

6.3 Advantages and Disadvantages

To choose which tools to recommend for NDMA, the advantages and
disadvantages of each tool are listed in table 6.1-6.7. The contents of the
tables are arranged in prioritized order. This is based on what the thesis group
consider to be most important for NDMA, such as ease of use and how much of
the SDLC the tools cover.

Ease of use is prioritized due to developers feeling they do not have time to security
test their software (I.4.2). If the tools are easy to use, it is more likely that the
developers will be satisfied with the solutions, and start including security testing
in their workflow.

NDMA emphasized early in the process that library testing was necessary to
include (appendix I.2.1). This made SCA an important feature to include in
the suggested solutions, even though this only covers a small part of the SDLC.
Although SCA is important, the group realized that only testing libraries was not
enough. To achieve defense in depth, the rest of the SDLC and how much of it
the tools cover needs to be prioritized as well.

6.3.1 Contrast Security

Table 6.1: Advantages and disadvantages discovered about Contrast Security
throughout the thesis period

Advantages Disadvantages

Can be used with a wide variety of
languages and environments.

To test SCA, the application needs to
be compiled and run.

Their SCA product can be used on
compiled code, letting it be used on
both external and internal code.

To test SAST, the files in the
software need to be uploaded
manually each time the software
is tested, or started manually in the
CLI.

The SAST product can be used on
internal code.

Has a lot of requirements for the
application to be able to scan it
properly.

Contrast Security can potentially
cover IAST and RASP. In this way it
will cover more of the SDLC.

Most of the programming languages
supported only work with some of
the products.

76 Chapter 6: Discussion

Table 6.2: Advantages and disadvantages discovered about Contrast Security
throughout the thesis period

Advantages Disadvantages

Contrast Security goes in depth on
the used libraries and shows a lot
of useful information, such as how
many times the libraries are used in
the code.

Lack of some important
documentation. An example is the
lack of information and the need for
a POM file.

Uses data masking to avoid storing
sensitive data.

Intended for use with Linux, works
for Windows, but more cumbersome

Can get customized notifications
about the scans sent to the users
e-mail.

Hard to get in contact by e-mail
when asking questions about the
product.

If the scan level is set to DEBUG or
lower Contrast Security may store
some sensitive data.

Does not have similar products for
learning such as Snyk and Veracode.

Contrast Security shows different
product plans on the website, but
requires an inquiry for pricing.

Chapter 6: Discussion 77

6.3.2 Snyk

Table 6.3: Advantages and disadvantages discovered about Snyk throughout the
thesis period

Advantages Disadvantages

Support for many programming
languages and can be integrated
with many environments.

When using GitHub, it can be
difficult to add new projects after
the initial project.

Gives the user an automatic fix to
some of the vulnerabilities it finds.

Snyk does not provide DAST.

Monitors the applications and
projects uploaded in the platform.
Hence, it is not necessary to
manually start a scan each time.
How often it scans can be adjusted
in the settings.

Some languages are not supported
for certain integrations, such as
C/C++ do not work with the
GitHub integration.

The rulset Snyk uses for scans was
discovered through the tests to be
easy to change/manipulate. This
can make it easier for NDMA to test
for what they want.

Easy to get in contact with Snyk
and they are eager to answer any
questions about their product and
how to set it up.

It provides SAST and SCA and thus
help NDMA to security test internal
or external code if it provides the
source code.

Snyk stores some data in order
to conduct tests, but the data is
encrypted before being transmitted,
and code is removed from the
network and logs within 24 hours.

78 Chapter 6: Discussion

Table 6.4: Advantages and disadvantages discovered about Snyk throughout the
thesis period

Advantages Disadvantages

Gives notifications through e-mail or
Slack when new vulnerabilities are
discovered.

Can scan a private repository in
GitHub without paying for GitHub
Advanced Security.

Snyk offers training and help with
technical setup with the Enterprise
plan.

It has Snyk Learn which can
help developers get a better
understanding of security and learn
more about it.

Offers a free trial with most of the
functionality, so it can be tested
without commitment.

Descriptions and comparison of
plans and pricing can be found
easily through the website.

Chapter 6: Discussion 79

6.3.3 StackHawk

Table 6.5: Advantages and disadvantages discovered about StackHawk
throughout the thesis period

Advantages Disadvantages

A security scan is automatically run
on every pull request, so there is no
need to start the scan each time.

StackHawk is only a DAST tool. This
means that it only covers a small
part late in the SDLC.

It is well documented and the
documentation is clear and easy
to navigate through. This makes it
easier to find information about the
product and how to set it up.

StackHawk only works for web or
API applications.

Easy to get in contact with
StackHawk and they are eager to
answer any questions about their
product and how to set it up.

To use StackHawk with the GitHub
integration, the repository needs
to be public, or GitHub Advanced
Security needs to be paid for.

Adapted guide for conducting tests
with PowerShell and bash.

StackHawk say they store data
about the results form the tests,
but they do not say what type of
information or how much about the
results they store.

StacHawk provides DAST and
can help NDMA security test their
compiled external or internal code.

Their privacy policy gives them a
lot of freedom on what they are
allowed to do with personal data.

Can easily get notifications about
scans through Microsoft Teams or
Slack.

Do not have similar products for
learning such as Snyk and Veracode.

80 Chapter 6: Discussion

Table 6.6: Advantages and disadvantages discovered about StackHawk
throughout the thesis period

Advantages Disadvantages

It is a relatively new tool, but it
is partnered with Snyk which has
more experience and recognition.

Gives the full version of StackHawk
in a free 2 week trial. In this way
NDMA can test the product in its
entirety without having to pay for it.

Pricing is easily available through
the website.

Chapter 6: Discussion 81

6.3.4 Veracode

Table 6.7: Advantages and disadvantages discovered about Veracode throughout
the thesis period

Advantages Disadvantages

Each Veracode product has different
ways it can be used, so NDMA can
choose the way that suits them best.

Hard to get in contact with them or
receive follow-up to inquiries.

Veracode supports many different
programming languages.

To use Veracode with the GitHub
integration, the repository needs
to be public, or GitHub Advanced
Security needs to be paid for.

Veracode covers SAST, DAST and
SCA, thus including the prioritized
methods. When having all these
options available from one supplier,
it might be easier to handle.

It must be purchased to be able to
use it.

Their SAST and SCA products work
with both compiled and source
code.

Pricing is not listed on the website.

It is a well established tool that has
been around for a long time.

Can get customized e-mail
notifications about the scans
Veracode has done.

It has Veracode eLearning which
will help developers get a better
understanding of security and learn
more about it.

82 Chapter 6: Discussion

6.4 Other Security Options for Testing and Analysis

The focus of this thesis was on SCA, SAST and DAST, although RASP and IAST
also are possible methods for securing software.

RASP was not included throughout the thesis because it did not fit the criteria
of NDMA, and thus seemed irrelevant. RASP is not a tool to test the software for
security issues during development or before reaching production, but rather a
tool for protection against incoming attacks [32]. This does not cover NDMA’s
goal of finding a tool to test the security of a software.

IAST is more relevant than RASP, considering NDMA’s goals, but it is new
technology [28] which makes it difficult to recommend. New technology might
have unknown vulnerabilities or issues which are not yet found, and might cause
problems in the future for NDMA. Although this technology is not recommended
in this thesis, it might be a tool to consider in the future.

6.5 Manual Testing Methods

Even though there are tools for automating software security testing, there should
still be some sort of manual testing in the SDLC as well [7]. Automated testing is
still limited, and it cannot always simulate the acts and thoughts of a real human
being. Another reason why manual testing should be implemented is because of
defense in depth.

Penetration testing is one type of manual testing that should preferably not be
replaced by automatic testing. Even though there are tools for simulating attacks
on software, these mainly simulate known attacks, and might not consider the
architecture of the software, like a manual test would. A machine can carry out
attacks without issues, but it cannot customize attacks for a specific software.
Although this type of testing has not reached its peak yet, it can still be used for
smaller projects and for defense in depth. With smaller projects it might perform
just as well as a manual test [38]. On bigger projects it might not perform as well
as humans, but it can still find gaps that were not detected during penetration
testing.

Another form for testing that should preferably not be replaced by automatic
testing, is fuzzing. This type of testing is more automated, and might be easier
to implement than penetration testing [7]. Not testing for input validation in an
application could lead to critical security breaches. With fuzzing it is possible to
avoid multiple zero-day attacks, which might be difficult to find by using other
testing techniques.

Chapter 6: Discussion 83

Since NDMA wanted solutions that were as automated as possible (appendix
I.2.1), this was a main priority, making manual testing less prioritized. The
thesis group realized that recommending manual testing could become difficult,
considering results being dependent on the person conducting the manual tests.
Manual tests are often done by experts, and it would be difficult for the thesis
group to reach this level of quality. After looking more into the automated
tools available, the thesis group concluded that the scope would become too
overwhelming if it also included manual testing. As a result, the recommended
solutions do not cover methods on how to perform manual tests together with
the automated methods. If manual testing was taken more into consideration,
the recommendations for possible solutions could have been different.

6.6 Containers

Using containers was suggested as an example of a possible solution, but the
group decided to not recommend this to NDMA after looking into the process
of making containers safe. Containers are great for providing portable, reusable,
and automatable ways to package and run applications, and are often considered
a safe tool to use in order to keep elements of the system safe. According to NIST
SP 1800-190 [49], this is incorrect. A container solution can be used to make
the environment safer, but it can also make it less secure. A lot of resources are
needed in order to mitigate these risks. The thesis group found that this was not
the solution to the issue at hand, considering that NDMA was looking for a way
to make security more efficient.

6.7 Limitations

6.7.1 Research

An issue with the research was limited information from other people and
business’ experience with the tools. Since a lot of tools have not been on the
market for long, most of the information was from the tool’s own websites,
which may contain biased information. The group tried to look at the tools with
objectively, not based on who is better at marketing, but rather which tools seem
like the best fit for NDMA.

6.7.2 Testing

During the thesis period, it was important to conduct as much research as possible
on the different methods and tools. A way to find out more about the tools was to
try and test them on applications. The issue with this process was that the group
did not have access to the full versions of the tools, only free trials which were
limited, if even possible.

84 Chapter 6: Discussion

To see how the tools worked without free trials, the group had to watch videos of
other people testing them. This makes the information less reliable, as most videos
were demonstrations made by the creators of the tools. It also made it difficult for
the group to get an overview on how complicated implementation can be, and
which obstacles might come up in the process.

The tools that did have free trials did not have all functions available, and it
was difficult to find fitting test data to use. Different tools needed different
environments and applications in order to conduct the tests. This caused the
testing phase to take longer than first anticipated, and there was not as much
time left to find suitable applications. Since the tools had different requirements,
the comparison of the results was limited.

The tests used different kinds of software security testing methods on the
applications that were tested, such as SAST, DAST, and SCA. The tools also use
different scoring systems to evaluate the software. Thus, it is hard to accurately
compare them and say something about which tools gave better results. This
especially applies to comparison with Veracode, since it could not be tested by
the thesis group, or with the software that was used to test the other tools.

6.7.3 Other

Towards the end of the period, the group had some issues with illness. This meant
that there were some delays from the group’s own deadlines for when things
should be finished. It also affected the results, since multiple members of the group
were sick during the testing period, the tests were not done as effectively as they
could have been. This lead to less tests being done, and with a lower quality than
wished for.

6.8 Critique of the Thesis

6.8.1 Documentation

The websites of the examined tools have different structures for their
documentation, and contain different information. The documentation for
the tools varied a lot in detail and thoroughness. An example where this is done
differently is where the tools write about how they handle system and project
data. Snyk covers this in detail for each product they have, which can be seen
in section 4.3.3. On the other side, Veracode had their main focus on how the
personal data of the users were handled. When requesting more details about
how they handle data, the thesis group did not get an answer.

Chapter 6: Discussion 85

6.8.2 Testing

There were not a lot of tools being tested in this thesis. If more tools were tested,
it would be easier to get an overview of which tools were worth recommending.
The reason why there was a lack of tested tools was because few tools offered free
trials.

Knowing about vulnerabilities that existed in the applications before testing them,
would have made it easier to check the tests for false positives and negatives. With
the results from the tests in this thesis, it might be difficult to evaluate the value of
the alerts from the tools. Some tools might deliver a lot of false positives without
the group knowing. A table of already known vulnerabilities compared to found
vulnerabilities could have been made, which could help indicate which tool works
best in numbers.

6.8.3 New Tools

Even though the group spent a lot of time in the literature study phase to find
different tools to look further into, there were discovered new tools later in the
project period. Some of these tools were looked into, but they did not offer free
trials for educational or research purposes, or the tools already examined seemed
like a better fit for NDMA. It was thus better to focus on the tools chosen from the
beginning.

6.8.4 Changes

Towards the end of the project period, there were discovered different changes in
the selected tools. Some changes resulted in the group choosing not to have them
as a suggested solution anymore, while other changes were not significant enough
to cause that reaction. Some changes were also improvements, which caused the
group to be more likely to want to recommend those tools.

Since there are changes being made often, it is important to take into
consideration that the information about the other tools listed in section
3.3.1 may be outdated.

6.8.4.1 Invicti Security

Originally, the group had Invicti Security as one of the suggested solutions for
NDMA to use. The main reason why it was not chosen for further evaluation, was
because they did not offer a free trial for research purposes (H.2), which means
it would not be possible for the group to test the tool. Even though the tool had
good documentation and was supported by many well known companies, it was
better to focus on tools that could be tested.

86 Chapter 6: Discussion

Another reason was that after looking further into this tool, the group found out
that they had done some changes halfway into the project period [160]. When the
group discovered the tool at the beginning, Invicti Security originally consisted of
both Acunetix and Netsparker. Later Netsparker was named Invicti, while Acunetix
stayed the same. This indicates that Invicti might be changing in an organizational
manner, making it difficult to have an overview of the tools.

6.8.4.2 Contrast Security

When Contrast Security was further examined at the beginning of the project
period, it did not support many programming languages for the relevant products
it offered, only Java and .NET. These products were Contrast Scan and Contrast
SCA. At the end of the period, in the middle of April, they did some improvements
and added more supported programming languages for the products. Now it
is possible to use JavaScript, GO, Scala, PHP, and Kotlin for these products as
well.

6.8.4.3 Snyk and StackHawk

The group chose to look at Snyk and StackHawk as two different potential
methods for NDMA, since Snyk covers SAST and could be used on internal
software, while StackHawk covers DAST that mainly could be used on external
software. Towards the end of the project period, StackHawk released that it now
can be integrated with Snyk [161]. This integration will correlate findings from
StackHawk’s DAST tool with Snyk’s SAST tool. With this, it will be easier for
developers to work in a more efficient way to find vulnerabilities in their code
and application, because they will get an understanding of what security issues
exist. Instead of having two different user interfaces to work with, everything can
be in one place.

Chapter 7

Conclusion

7.1 Introduction

The conclusion chapter consists of reflections around what has been done,
evaluation of the group’s working process, what can theoretically be done further,
as well as a conclusion of the thesis.

7.2 Reflections

7.2.1 Software From NDMA

After researching the tools, it turned out that testing NDMA’s software would be
problematic. Snyk needed the source code in order to test the software, as well as
there being a limit on how many files could be tested with the free trial. Contrast
Security could be tested with Java projects if the project was in a .jar file format.
Since the software from NDMA had a .exe format, it was not possible to test it
with this tool. The software was tested with StackHawk, but it did not find any
vulnerabilities, which made it irrelevant to include in the thesis. When starting a
scan, the type of application has to be chosen. Since the thesis group do not know
enough about the application, the "Other" option had to be chosen. Thus it was
not possible to specify how StackHawk should move through the application, and
it was better to use the software provided by another student.

87

88 Chapter 7: Conclusion

7.2.2 Interviews

When conducting the interviews with the developers in NDMA, not all the
questions were asked. The questions the group prepared were at times very
specific. This was a conscious choice to ensure that the group got all answers
needed. Since the questions were specific, there were many questions. When
the developers were good at answering in a complementary way, many of
the questions became irrelevant and the group did not have time to ask them
all.

Something the group could have done to get through all the questions was to
interrupt them, but there was no need to do that when they talked about relevant
information. The thesis group chose instead to let them talk, and rather discard
some of the less relevant questions. The questions that were not asked, are not
included in the interview guide (appendix D), due to their lack of relevance.

7.2.3 Customer Persuasion Meeting

In a meeting with Tom Røise (appendix I.5.2), it was discussed how to convince
leaders and developers in NDMA to invest in and start using one or more of the
recommended tools. It was emphasized that it is important that they see the
benefit of using the tools in connection with how they work. Instead of having
this as a separate section, the group decided to add this information in section
6.3, because the advantages and disadvantages of each tool can help decide if
the tool is worth spending money and time on. It is natural that this part will be
emphasized, and it is thus important to see this in context with how it will benefit
NDMA, and how the developers work.

7.2.4 Getting Acquainted With New Tools

The group experienced that it was difficult to get acquainted with unfamiliar
tools, and how to find a way to use the results. After e-mail communication and
interviews with external companies (appendix H.9, H.10, I.5.1), it turned out that
they also had this experience. It is thus necessary to set aside some time to learn
how the tools work properly, to get the most out of them.

7.2.5 Evaluation of the Working Process

7.2.5.1 Halfway Assessment

The group finished the project plan early, but because of some changes and
specifications in the scope of the project, it was delivered later than first expected,
but still within the deadline.

Writing the thesis was planned to be done throughout the entire project period,
and the progress was good at the halfway point. There were some discussions
about thesis structure, but the group ended up in agreement.

Chapter 7: Conclusion 89

The group started on the literature study according to the Gantt. It was supposed
to end after week 9, but it continued further throughout the project, due to new
research being necessary later on in the project. Together with the literature
study, the group started to explore various tools for NDMA to use. This was done
within the time frame that was set in the Gantt. The group reached the milestone
about choosing which tools to look further into. This was done before starting
to explore each of them in week 8. The group started testing the selected tools
around the planned starting time. The first test on Snyk was successful, and
was finished swiftly. Other tests were somewhat delayed, since troubleshooting
became necessary.

The group had multiple interviews during the project, which were done within
the time frame planned out. Multiple requests for interviews were sent out, but
not everyone responded. This lead to fewer interviews than expected. During the
interviews, the group did not always get to ask all the prepared questions, due to
lack of time and long discussions about the different topics. Even then, a lot of
valuable information was collected to use further during the project.

7.2.5.2 Gantt

The group was not able to follow the original Gantt, and there were some changes
during the project period.

The literature study ended up covering almost the whole project period. This
happened because the group found out that it was necessary to do research
throughout the whole project, in order to cover all relevant theory. After
examining tools, more technologies were found to be relevant, and some of these
would be preferred to be covered in the theory.

Another change in the Gantt was that the testing period ended up being longer
than planned, due to multiple circumstances. The group found out that more
information on the specific tools, and how to use them, were necessary in order to
conduct the tests. Another issue was that the test data NDMA wanted the group
to use, came late and was not possible to use in the tests. This caused the testing
to be paused a few weeks before it could be continued. The group had a slightly
too optimistic view on how much testing that could be done, and did not take into
account that each tool had different requirements for them to be tested.

Setting up the infrastructure for testing was also pushed back. The reason why
was that more information about each tool was needed in order to know which
environment the group would have to set up. This ended up being an activity
which were done at the same time as the testing, not something done beforehand
like originally planed. With setting up the environment while testing, the group
only set up relevant environments, which made the process more efficient.

90 Chapter 7: Conclusion

With the test period being pushed back, it became difficult to reach the milestone
of finishing testing by week 16, so this milestone was changed to be in week
17.

Name Start Date End Date 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Project plan 11.01.2022 31.01.2022

Deliver project plan 31.01.2022 31.01.2022

Writing the report 24.01.2022 20.05.2022

Litterature study 24.01.2022 04.03.2022

Explore possible methods 24.01.2022 18.02.2022

Interviews 31.01.2022 25.03.2022

Choose methods 18.02.2022 18.02.2022

Infrastructure for testing 21.02.2022 04.03.2022

Examine methods 21.02.2022 22.04.2022

Testing methods 28.02.2022 22.04.2022

Done with testing 22.04.2022 22.04.2022

Review test results 18.04.2022 29.04.2022

Completion of thesis 02.05.2022 20.05.2022

Deliver the thesis 20.05.2022 20.05.2022

January February March April May

Figure 7.1: The original Gantt

Name Start Date End Date 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Project plan 11.01.2022 31.01.2022

Deliver project plan 31.01.2022 31.01.2022

Writing the report 24.01.2022 20.05.2022

Litterature study 24.01.2022 01.05.2022

Explore possible methods 24.01.2022 18.02.2022

Interviews 31.01.2022 20.03.2022

Choose methods 18.02.2022 18.02.2022

Infrastructure for testing 21.03.2022 01.05.2022

Examine methods 21.02.2022 24.04.2022

Testing methods 21.03.2022 01.05.2022

Done with testing 01.05.2022 01.05.2022

Review test results 25.04.2022 08.05.2022

Completion of thesis 02.05.2022 20.05.2022

Deliver the thesis 20.05.2022 20.05.2022

January February March April May

Figure 7.2: The actual Gantt

7.2.5.3 System Development Model

The group mostly followed the system development model that was originally
planned. The model shows that the interviews were to be done at the same time
as the group worked on doing research on different tools (figure 1.1). In this
way, the group would have become acquainted with more possible tools earlier,
and it would have been time to take a closer look at them. Instead, some of the
interviews were conducted after the group had decided on which tools to examine
further, due to the fact that it was difficult to find a time that suited everyone. The
group also had an extra subject in addition to the bachelor thesis that sometimes
had to be prioritized. It was therefore difficult in terms of time to examine more
tools.

7.2.5.4 Work Distribution

The work was evenly distributed among the group members. Everyone has
contributed to what should be included in the theory, everyone has worked on
examining all the recommended tools, and everyone has tried to test the tools.
The group worked together to finish writing the report.

Chapter 7: Conclusion 91

7.2.5.5 Goals

Goal M1, increased awareness of security during software development, might be
achieved. If they read the thesis, they will hopefully think more about security
and the consequences of what may happen if they do not have it in mind.

Goal M2, NDMA are happy with the methods that are proposed and use these over
time, might be achieved. It is uncertain whether the leaders of NDMA see the
benefit of the tools, and if they are willing to invest in them. Granted they do, it is
furthermore dependent on the developers having a positive experience with the
tools, and wanting to continue to use them.

Goal M3, reduce the time it takes to check for vulnerabilities in the software, is a goal
that is partly achieved if NDMA decides to use some of the recommended tools. In
the beginning, the developers might use more time than usual because they will
have to learn how to use the tools. They will most likely also use more time on
going through and remediating the test results. However, after a while when the
developers have learned how to use the tools properly, they might spend less time
conducting security checks. If they start using the tools, they are likely to become
less vulnerable to potential security breaches and attacks.

Goal M4, reduce the number of people that need to check for vulnerabilities in the
software, was not relevant. The group fixated on the fact that NDMA talked about
being three people looking through the code together as a way of security testing
software, and wanted to be able to say that the tests would need less resources
like people. In reality these automated security tests will make all developers test
software, but in a more efficient way.

Goal M5, find tools and methods to make the security checks for the NDMA more
effective, and automate this if possible, was achieved. The group was able to find
tools that could help NDMA improve the software security testing methods. This
includes tools that can be used on both internal and external software.

Goal M6, NDMA start using the tools and methods the group has come up with, might
be achieved. It is uncertain if NDMA will use the recommended tools.

Goal M7, create a systematic overview of potential tools that can be used for software
control, was achieved. All tools contain information about why they were chosen
as a recommended tool for NDMA, together with information about what the tools
are, how they work, which products are included in each tool, and where in the
SDLC they can be used (figure 4.5). Since advantages and disadvantages with
each tool are also covered, it is easier for NDMA to see which tools that may best
suit their needs.

In retrospect the group saw that it was not possible to evaluate some of the effect
goals. The conclusion has to be delivered to NDMA before it can be known if these
goals were met. The rest of the goals were either irrelevant or achieved.

92 Chapter 7: Conclusion

7.3 Further Work

In further work, it would be a good idea to test more tools found during the thesis
(appendix I.5.1), as well as further testing the tools in their full version. Another
idea could be to use one single application, where the vulnerabilities are already
known, on all the tools. By doing this, checking for false positives/negatives, as
well as the number of real vulnerabilities, could be possible.

To further evaluate if any of the tools were good recommendations, it would be a
good idea to compare manual testing to automated testing. The theory states that
manual tests are better, but it would be interesting to see how the tools compare
to manual tests and if any of them can do better.

7.4 Conclusion

Based on the findings, Veracode, or Snyk with StackHawk could be excellent
options for NDMA. They cover a broad range of the SDLC and are easy to use,
as shown in table 6.3, 6.5, and 6.7. Contrast Security is also a possible solution,
but the group’s experience was that it was harder to set up and use, shown in 6.1.
Regardless, the thesis group hope the results of the thesis will be of some value to
NDMA.

Bibliography

[1] J. Børresen. ‘Forsvaret.’ (11th Jan. 2022), [Online]. Available: https://
snl.no/Forsvaret (visited on 18/01/2022).

[2] Forsvarsmateriell. ‘Organisasjon og ledelse.’ (), [Online]. Available:
https://www.fma.no/om-oss/organisasjon-og-ledelse (visited on
21/01/2022).

[3] Forsvaret. ‘Organisasjon.’ (), [Online]. Available: https : / / www .
forsvaret.no/om-forsvaret/organisasjon (visited on 18/01/2022).

[4] Forsvarsmateriell. ‘Eierskapsforvaltning.’ (), [Online]. Available: https:
//www.fma.no/ (visited on 19/01/2022).

[5] Forsvarsmateriell. ‘Anskaffelser og investeringer.’ (), [Online]. Available:
https://www.fma.no/anskaffelser/anskaffe-materiell (visited on
20/01/2022).

[6] H. S. Department. ‘Strategies for qualitative interviews.’ (), [Online].
Available: https://sociology.fas.harvard.edu/files/sociology/
files/interview_strategies.pdf (visited on 25/04/2022).

[7] M. Paul, Official (ISC) Guide to the CSSLP CK. Taylor & Francis Group,
2014.

[8] K. Dempsey, N. S. Chawla, A. Johnson, R. Johnston, A. C. Jones, A.
Orebaugh, M. Scholl and K. Stine. ‘Information security.’ (), [Online].
Available: https : / / nvlpubs . nist . gov / nistpubs / Legacy / SP /
nistspecialpublication800-137.pdf (visited on 11/05/2022).

[9] V. C. Hu, R. Kuhn and D. Yaga. ‘Verification and test methods for access
control policies/models.’ (), [Online]. Available: https://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-192.pdf (visited on
11/05/2022).

[10] imperva. ‘White box testing.’ (), [Online]. Available: https : / / www .
imperva . com / learn / application - security / white - box - testing/
(visited on 15/03/2022).

[11] imperva. ‘Black box testing.’ (), [Online]. Available: https : / / www .
imperva . com / learn / application - security / black - box - testing/
(visited on 15/03/2022).

93

https://snl.no/Forsvaret
https://snl.no/Forsvaret
https://www.fma.no/om-oss/organisasjon-og-ledelse
https://www.forsvaret.no/om-forsvaret/organisasjon
https://www.forsvaret.no/om-forsvaret/organisasjon
https://www.fma.no/
https://www.fma.no/
https://www.fma.no/anskaffelser/anskaffe-materiell
https://sociology.fas.harvard.edu/files/sociology/files/interview_strategies.pdf
https://sociology.fas.harvard.edu/files/sociology/files/interview_strategies.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-137.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-137.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-192.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-192.pdf
https://www.imperva.com/learn/application-security/white-box-testing/
https://www.imperva.com/learn/application-security/white-box-testing/
https://www.imperva.com/learn/application-security/black-box-testing/
https://www.imperva.com/learn/application-security/black-box-testing/

94 Bibliography

[12] J. T. Force. ‘Assessing security and privacy controls in information systems
and organizations.’ (), [Online]. Available: https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-53Ar5.pdf (visited on
11/05/2022).

[13] imperva. ‘Gray box testing.’ (), [Online]. Available: https : / / www .
imperva . com / learn / application - security / gray - box - testing/
(visited on 15/03/2022).

[14] Snyk. ‘5 application security assessment steps.’ (), [Online]. Available:
https://snyk.io/learn/application-security/assessment/ (visited
on 16/02/2022).

[15] tutorialspoint. ‘Sdlc - overview.’ (), [Online]. Available: https :
/ / www . tutorialspoint . com / sdlc / sdlc _ overview . htm (visited
on 18/02/2022).

[16] Veracode. ‘Application security assessment.’ (), [Online]. Available:
https : / / www . veracode . com / security / application - security -
assessment (visited on 16/02/2022).

[17] Devopedia. ‘Shift left.’ (15th Feb. 2022), [Online]. Available: https://
devopedia.org/shift-left (visited on 18/02/2022).

[18] K. Scarfone, M. Souppaya, A. Cody and A. Orebaugh. ‘Technical guide
to information security testing and assessment.’ (Sep. 2008), [Online].
Available: https : / / nvlpubs . nist . gov / nistpubs / Legacy / SP /
nistspecialpublication800-115.pdf (visited on 11/05/2022).

[19] NTT. ‘False positive.’ (), [Online]. Available: https://www.whitehatsec.
com/glossary/content/false-positive (visited on 04/03/2022).

[20] M. Souppaya and K. Scarfone. ‘Guide to malware incident prevention
and handling for desktops and laptops.’ (Jul. 2013), [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
SP.800-83r1.pdf (visited on 11/05/2022).

[21] datto. ‘Datto.’ (), [Online]. Available: https://www.datto.com/ (visited
on 04/03/2022).

[22] J. Peterson. ‘Application security testing: Security scanning vs. runtime
protection.’ (), [Online]. Available: https://www.whitesourcesoftware.
com/resources/blog/ast-application-security-testing/ (visited on
25/02/2022).

[23] E. Katz. ‘Top 10 static application security testing (sast) tools in 2021.’
(8th Sep. 2021), [Online]. Available: https://spectralops.io/blog/
top- 10- static- application- security- testing- sast- tools- in-
2021/ (visited on 10/02/2022).

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53Ar5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53Ar5.pdf
https://www.imperva.com/learn/application-security/gray-box-testing/
https://www.imperva.com/learn/application-security/gray-box-testing/
https://snyk.io/learn/application-security/assessment/
https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://www.tutorialspoint.com/sdlc/sdlc_overview.htm
https://www.veracode.com/security/application-security-assessment
https://www.veracode.com/security/application-security-assessment
https://devopedia.org/shift-left
https://devopedia.org/shift-left
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-115.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-115.pdf
https://www.whitehatsec.com/glossary/content/false-positive
https://www.whitehatsec.com/glossary/content/false-positive
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-83r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-83r1.pdf
https://www.datto.com/
https://www.whitesourcesoftware.com/resources/blog/ast-application-security-testing/
https://www.whitesourcesoftware.com/resources/blog/ast-application-security-testing/
https://spectralops.io/blog/top-10-static-application-security-testing-sast-tools-in-2021/
https://spectralops.io/blog/top-10-static-application-security-testing-sast-tools-in-2021/
https://spectralops.io/blog/top-10-static-application-security-testing-sast-tools-in-2021/

Bibliography 95

[24] O. Harris. ‘What do sast, dast, iast and rasp mean to developers?’
(), [Online]. Available: https : / / www . softwaresecured . com / what -
do- sast- dast- iast- and- rasp- mean- to- developers/ (visited on
10/02/2022).

[25] Synopsys. ‘Static application scurity testing.’ (), [Online]. Available:
https://www.synopsys.com/glossary/what-is-sast.html (visited on
10/02/2022).

[26] A. Phadke. ‘Sast vs. dast: What’s the best method for application
security testing?’ (), [Online]. Available: https://www.synopsys.com/
blogs/software- security/sast- vs- dast- difference/ (visited on
10/02/2022).

[27] M. Focus. ‘What is dynamic application security testing (dast)?’ (),
[Online]. Available: https : / / www . microfocus . com / en - us / what -
is/dast (visited on 25/02/2022).

[28] positive technologies. ‘Sast, dast, iast, and rasp: How to choose?’
(2nd Aug. 2019), [Online]. Available: https://www.ptsecurity.com/
ww-en/analytics/knowledge-base/sast-dast-iast-and-rasp-how-
to-choose/ (visited on 25/02/2022).

[29] Snyk. ‘Interactive application security testing (iast).’ (), [Online].
Available: https : / / snyk . io / learn / application - security /
iast - interactive - application - security - testing/ (visited on
25/02/2022).

[30] Y. Pan. ‘Interactive application security testing.’ (2019), [Online].
Available: https : / / ieeexplore . ieee . org / abstract / document /
8901378/authors#authors (visited on 16/05/2022).

[31] R. Hat. ‘What is a ci/cd pipeline?’ (8th Jan. 2019), [Online]. Available:
https://www.redhat.com/en/topics/devops/what-cicd-pipeline
(visited on 25/02/2022).

[32] S. T. Help. ‘What is rasp.’ (3rd Feb. 2022), [Online]. Available: https:
//www.softwaretestinghelp.com/differences-between-sast-dast-
iast-and-rasp/#What_Is_RASP (visited on 11/02/2022).

[33] Synopsys. ‘Software composition analysis.’ (), [Online]. Available: https:
//www.synopsys.com/glossary/what- is- software- composition-
analysis.html (visited on 25/02/2022).

[34] D. Contributor. ‘The cost of not building with security in mind.’ (14th Apr.
2016), [Online]. Available: https://devops.com/cost-not-building-
software-security-mind/ (visited on 02/03/2022).

[35] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio and W.
Lee, ‘Towards measuring supply chain attacks on package managers
for interpreted languages,’ Ph.D. dissertation, Georgia Institute of
Technology, 2021.

https://www.softwaresecured.com/what-do-sast-dast-iast-and-rasp-mean-to-developers/
https://www.softwaresecured.com/what-do-sast-dast-iast-and-rasp-mean-to-developers/
https://www.synopsys.com/glossary/what-is-sast.html
https://www.synopsys.com/blogs/software-security/sast-vs-dast-difference/
https://www.synopsys.com/blogs/software-security/sast-vs-dast-difference/
https://www.microfocus.com/en-us/what-is/dast
https://www.microfocus.com/en-us/what-is/dast
https://www.ptsecurity.com/ww-en/analytics/knowledge-base/sast-dast-iast-and-rasp-how-to-choose/
https://www.ptsecurity.com/ww-en/analytics/knowledge-base/sast-dast-iast-and-rasp-how-to-choose/
https://www.ptsecurity.com/ww-en/analytics/knowledge-base/sast-dast-iast-and-rasp-how-to-choose/
https://snyk.io/learn/application-security/iast-interactive-application-security-testing/
https://snyk.io/learn/application-security/iast-interactive-application-security-testing/
https://ieeexplore.ieee.org/abstract/document/8901378/authors#authors
https://ieeexplore.ieee.org/abstract/document/8901378/authors#authors
https://www.redhat.com/en/topics/devops/what-cicd-pipeline
https://www.softwaretestinghelp.com/differences-between-sast-dast-iast-and-rasp/#What_Is_RASP
https://www.softwaretestinghelp.com/differences-between-sast-dast-iast-and-rasp/#What_Is_RASP
https://www.softwaretestinghelp.com/differences-between-sast-dast-iast-and-rasp/#What_Is_RASP
https://www.synopsys.com/glossary/what-is-software-composition-analysis.html
https://www.synopsys.com/glossary/what-is-software-composition-analysis.html
https://www.synopsys.com/glossary/what-is-software-composition-analysis.html
https://devops.com/cost-not-building-software-security-mind/
https://devops.com/cost-not-building-software-security-mind/

96 Bibliography

[36] testim. ‘Test environment guide.’ (7th Nov. 2019), [Online]. Available:
https://www.testim.io/blog/test-environment-guide/ (visited on
11/03/2022).

[37] A. Singhal, T. Winograd and S. Karen. ‘Guide to secure web services.’ (),
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-95.pdf (visited on 11/05/2022).

[38] Veracode. ‘Veracode manual penetration testing.’ (), [Online]. Available:
https://www.veracode.com/products/penetration-testing (visited
on 11/03/2022).

[39] Synopsys. ‘Open web application security project top 10 (owasp top 10).’
(), [Online]. Available: https://www.synopsys.com/glossary/what-
is-owasp-top-10.html (visited on 21/03/2022).

[40] A. Johnson, K. Dempsey, R. Ross, S. Gupta and D. Bailey. ‘Guide for
security-focused configuration management of information systems.’
(Aug. 2011), [Online]. Available: https : / / nvlpubs . nist . gov /
nistpubs/SpecialPublications/NIST.SP.800- 128.pdf (visited on
12/05/2022).

[41] First. ‘Common vulnerability scoring system sig.’ (), [Online]. Available:
https://www.first.org/cvss/ (visited on 12/05/2022).

[42] Snyk. ‘How is a vulnerability’s severity determined?’ (), [Online].
Available: https : / / support . snyk . io / hc / en - us / articles /
360001040078-How-is-a-vulnerability-s-severity-determined-
(visited on 11/05/2022).

[43] D. Walter, S. Quinn, H. Booth, K. Scarfone and D. Prisaca. ‘The technical
specification for the security content automation protocol (scap).’
(Feb. 2018), [Online]. Available: https : / / nvlpubs . nist . gov /
nistpubs/SpecialPublications/NIST.SP.800-126r3.pdf (visited on
12/05/2022).

[44] D. Miessler. ‘The difference between cwe and cve.’ (17th Dec. 2019),
[Online]. Available: https://danielmiessler.com/blog/difference-
cve-cwe/ (visited on 12/05/2022).

[45] M. Kaczorowski. ‘Using cwe and cvss scores to get more context on a
security advisory.’ (9th Feb. 2021), [Online]. Available: https://github.
blog/2021- 02- 09- using- cwe- and- cvss- scores- to- get- more-
context-on-a-security-advisory/ (visited on 12/05/2022).

[46] K. Dempsey, P. Eavy, G. Moore and E. Takamura. ‘Automation support for
security control assessments: Software vulnerability management.’ (Apr.
2020), [Online]. Available: https://nvlpubs.nist.gov/nistpubs/ir/
2020/NIST.IR.8011-4.pdf (visited on 12/05/2022).

[47] Mitre. ‘2021 cwe most important hardware weaknesses.’ (5th May 2022),
[Online]. Available: https://cwe.mitre.org/ (visited on 12/05/2022).

https://www.testim.io/blog/test-environment-guide/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-95.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-95.pdf
https://www.veracode.com/products/penetration-testing
https://www.synopsys.com/glossary/what-is-owasp-top-10.html
https://www.synopsys.com/glossary/what-is-owasp-top-10.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-128.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-128.pdf
https://www.first.org/cvss/
https://support.snyk.io/hc/en-us/articles/360001040078-How-is-a-vulnerability-s-severity-determined-
https://support.snyk.io/hc/en-us/articles/360001040078-How-is-a-vulnerability-s-severity-determined-
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-126r3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-126r3.pdf
https://danielmiessler.com/blog/difference-cve-cwe/
https://danielmiessler.com/blog/difference-cve-cwe/
https://github.blog/2021-02-09-using-cwe-and-cvss-scores-to-get-more-context-on-a-security-advisory/
https://github.blog/2021-02-09-using-cwe-and-cvss-scores-to-get-more-context-on-a-security-advisory/
https://github.blog/2021-02-09-using-cwe-and-cvss-scores-to-get-more-context-on-a-security-advisory/
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8011-4.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8011-4.pdf
https://cwe.mitre.org/

Bibliography 97

[48] OWASP. ‘Owasp risk rating methodology.’ (), [Online]. Available:
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
(visited on 11/05/2022).

[49] M. Souppaya, J. Morello and K. Scarfone. ‘Application container security
guide.’ (), [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-190.pdf (visited on 11/05/2022).

[50] T. A. Limoncelli, S. R. Chalup and C. J. Hogan, The Practice of Cloud System
Administration. Addison-Wesley Educational Publishers Inc, 2015.

[51] M. Mafy. ‘Containers are inherently secure: Reality or myth?’ (15th May
2020), [Online]. Available: https://www.paloaltonetworks.com/blog/
2020/05/containers- are- inherently- secure- reality- or- myth/
(visited on 15/03/2022).

[52] S. T. Help. ‘Top 10 best container software in 2022.’ (4th May 2022),
[Online]. Available: https : / / www . softwaretestinghelp . com /
container-software/ (visited on 13/05/2022).

[53] Docker. ‘Docker engine overview.’ (), [Online]. Available: https://docs.
docker.com/engine/ (visited on 13/05/2022).

[54] Checkmarx. ‘Contact us.’ (), [Online]. Available: https://checkmarx.
com/contact/?checkmarx-offices (visited on 11/05/2022).

[55] Trivy. ‘Aqua security/trivy.’ (), [Online]. Available: https://github.com/
aquasecurity/trivy (visited on 17/02/2022).

[56] PortSwigger. ‘Portswigger.’ (), [Online]. Available: https://portswigger.
net/ (visited on 16/02/2022).

[57] PortSwigger. ‘Burp suite is the choice of security professionals worldwide.’
(), [Online]. Available: https : / / portswigger . net / burp (visited on
17/02/2022).

[58] C. Security. ‘Contrast security.’ (), [Online]. Available: https://www.
contrastsecurity.com/ (visited on 27/02/2022).

[59] PortSwigger. ‘Contact us.’ (), [Online]. Available: https://portswigger.
net/about/contact (visited on 21/02/2022).

[60] Crunchbase. ‘Contrast security.’ (), [Online]. Available: https://www.
contrastsecurity.com/pricing (visited on 17/02/2022).

[61] A. Security. ‘Contact us.’ (), [Online]. Available: https://www.aquasec.
com/about-us/contact-us/ (visited on 15/02/2022).

[62] A. Security. ‘Aqua security - about us.’ (), [Online]. Available: https:
//www.aquasec.com/about-us/ (visited on 15/02/2022).

[63] PortSwigger. ‘About.’ (), [Online]. Available: https://portswigger.net/
about (visited on 15/02/2022).

[64] PortSwigger. ‘Portswigger.’ (), [Online]. Available: https://portswigger.
net/burp/enterprise (visited on 16/02/2022).

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://www.paloaltonetworks.com/blog/2020/05/containers-are-inherently-secure-reality-or-myth/
https://www.paloaltonetworks.com/blog/2020/05/containers-are-inherently-secure-reality-or-myth/
https://www.softwaretestinghelp.com/container-software/
https://www.softwaretestinghelp.com/container-software/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://checkmarx.com/contact/?checkmarx-offices
https://checkmarx.com/contact/?checkmarx-offices
https://github.com/aquasecurity/trivy
https://github.com/aquasecurity/trivy
https://portswigger.net/
https://portswigger.net/
https://portswigger.net/burp
https://www.contrastsecurity.com/
https://www.contrastsecurity.com/
https://portswigger.net/about/contact
https://portswigger.net/about/contact
https://www.contrastsecurity.com/pricing
https://www.contrastsecurity.com/pricing
https://www.aquasec.com/about-us/contact-us/
https://www.aquasec.com/about-us/contact-us/
https://www.aquasec.com/about-us/
https://www.aquasec.com/about-us/
https://portswigger.net/about
https://portswigger.net/about
https://portswigger.net/burp/enterprise
https://portswigger.net/burp/enterprise

98 Bibliography

[65] PortSwigger. ‘Portswigger.’ (), [Online]. Available: https://portswigger.
net/burp/pro (visited on 16/02/2022).

[66] C. Security. ‘Contrast security.’ (), [Online]. Available: https://www.
contrastsecurity.com/customer-success (visited on 17/02/2022).

[67] PortSwigger. ‘Select your burp suite enterprise edition plan.’ (), [Online].
Available: https : / / portswigger . net / burp / enterprise / pricing
(visited on 18/02/2022).

[68] PortSwigger. ‘Subscribe to burp suite professional.’ (), [Online]. Available:
https://portswigger.net/buy/pro (visited on 18/02/2022).

[69] C. Security. ‘Contrast security plans and pricing.’ (), [Online]. Available:
https://www.contrastsecurity.com/pricing (visited on 17/02/2022).

[70] Detectify. ‘Detectify.’ (), [Online]. Available: https://detectify.com/
(visited on 16/02/2022).

[71] Acunetix. ‘About acunetix.’ (), [Online]. Available: https : / / www .
acunetix.com/about/ (visited on 03/03/2022).

[72] Perforce. ‘Klocwork.’ (), [Online]. Available: https://www.perforce.
com/products/klocwork (visited on 17/02/2022).

[73] Detectify. ‘Detectify about.’ (), [Online]. Available: https://detectify.
com/about (visited on 17/02/2022).

[74] Invicti. ‘Invicti.’ (), [Online]. Available: https : / / www . invicti . com/
(visited on 16/02/2022).

[75] Perforce. ‘Contact us.’ (), [Online]. Available: https://www.perforce.
com/contact-us (visited on 21/02/2022).

[76] Netsparker. ‘About netsparker.’ (), [Online]. Available: https://www.
netsparker.com/about/ (visited on 16/02/2022).

[77] Perforce. ‘About perforce.’ (), [Online]. Available: https : / / www .
perforce.com/company (visited on 15/02/2022).

[78] Perforce. ‘Customers.’ (), [Online]. Available: https://www.perforce.
com/customers?field_industry_target_id=All&field_product_
line_target_id=1531&field_customer_resource_type_target_id=
All (visited on 21/02/2022).

[79] Detectify. ‘Detectify pricing.’ (), [Online]. Available: https://detectify.
com/pricing (visited on 16/02/2022).

[80] D. Wendlandt. ‘Nessus : A security vulnerability scanning tool.’ (),
[Online]. Available: https://www.cs.cmu.edu/~dwendlan/personal/
nessus.html (visited on 18/02/2022).

[81] OWASP. ‘Owasp zed attack proxy.’ (), [Online]. Available: https://www.
zaproxy.org (visited on 17/02/2022).

https://portswigger.net/burp/pro
https://portswigger.net/burp/pro
https://www.contrastsecurity.com/customer-success
https://www.contrastsecurity.com/customer-success
https://portswigger.net/burp/enterprise/pricing
https://portswigger.net/buy/pro
https://www.contrastsecurity.com/pricing
https://detectify.com/
https://www.acunetix.com/about/
https://www.acunetix.com/about/
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://detectify.com/about
https://detectify.com/about
https://www.invicti.com/
https://www.perforce.com/contact-us
https://www.perforce.com/contact-us
https://www.netsparker.com/about/
https://www.netsparker.com/about/
https://www.perforce.com/company
https://www.perforce.com/company
https://www.perforce.com/customers?field_industry_target_id=All&field_product_line_target_id=1531&field_customer_resource_type_target_id=All
https://www.perforce.com/customers?field_industry_target_id=All&field_product_line_target_id=1531&field_customer_resource_type_target_id=All
https://www.perforce.com/customers?field_industry_target_id=All&field_product_line_target_id=1531&field_customer_resource_type_target_id=All
https://www.perforce.com/customers?field_industry_target_id=All&field_product_line_target_id=1531&field_customer_resource_type_target_id=All
https://detectify.com/pricing
https://detectify.com/pricing
https://www.cs.cmu.edu/~dwendlan/personal/nessus.html
https://www.cs.cmu.edu/~dwendlan/personal/nessus.html
https://www.zaproxy.org
https://www.zaproxy.org

Bibliography 99

[82] Reshift. ‘Welcome to reshift.’ (), [Online]. Available: https : / / docs .
reshiftsecurity.com/ (visited on 17/02/2022).

[83] Tenable. ‘Contact tenable.’ (), [Online]. Available: https : / / www .
tenable . com / about - tenable / contact - tenable (visited on
16/02/2022).

[84] Crunchbase. ‘Owasp foundation.’ (), [Online]. Available: https :
//www.crunchbase.com/organization/owasp-foundation (visited on
17/02/2022).

[85] Crunchbase. ‘Reshift security.’ (), [Online]. Available: https : / / www .
crunchbase . com / organization / reshift - security (visited on
16/02/2022).

[86] Tenable. ‘About us.’ (), [Online]. Available: https://www.tenable.com/
about-tenable/about-us (visited on 15/02/2022).

[87] Psiinon. ‘Zap is ten years old.’ (6th Sep. 2020), [Online]. Available: https:
//www.zaproxy.org/blog/2020- 09- 06- zap- is- ten- years- old/
(visited on 17/02/2022).

[88] Tenable. ‘Tenable customers.’ (), [Online]. Available: https : / / www .
tenable.com/customers (visited on 17/02/2022).

[89] Zap. ‘Success stories.’ (), [Online]. Available: https://www.zaproxy.
org/success/ (visited on 17/02/2022).

[90] Reshift. ‘Plans and pricing.’ (), [Online]. Available: https : / / www .
reshiftsecurity.com/pricing/ (visited on 16/02/2022).

[91] Tenable. ‘Nessus.’ (), [Online]. Available: https://www.tenable.com/
products/nessus (visited on 17/02/2022).

[92] Snyk. ‘What is snyk?’ (), [Online]. Available: https://snyk.io/what-
is-snyk/ (visited on 21/03/2022).

[93] StackHawk. ‘Welcome to stackhawk.’ (), [Online]. Available: https :
/ / docs . stackhawk . com / #welcome - to - stackhawk (visited on
16/02/2022).

[94] StackHawk. ‘Find, triage, and fix security bugs.’ (), [Online]. Available:
https://www.stackhawk.com/product/ (visited on 17/02/2022).

[95] Veracode. ‘The veracode solution.’ (), [Online]. Available: https://www.
veracode.com/products (visited on 17/02/2022).

[96] Crunchbase. ‘Snyk.’ (), [Online]. Available: https://www.crunchbase.
com/organization/snyk (visited on 15/02/2022).

[97] StackHawk. ‘About stackhawk.’ (), [Online]. Available: https://www.
stackhawk.com/about/ (visited on 15/02/2022).

[98] Veracode. ‘Contact departments.’ (), [Online]. Available: https://www.
veracode.com/contact-us#mktoForm_326 (visited on 21/02/2022).

https://docs.reshiftsecurity.com/
https://docs.reshiftsecurity.com/
https://www.tenable.com/about-tenable/contact-tenable
https://www.tenable.com/about-tenable/contact-tenable
https://www.crunchbase.com/organization/owasp-foundation
https://www.crunchbase.com/organization/owasp-foundation
https://www.crunchbase.com/organization/reshift-security
https://www.crunchbase.com/organization/reshift-security
https://www.tenable.com/about-tenable/about-us
https://www.tenable.com/about-tenable/about-us
https://www.zaproxy.org/blog/2020-09-06-zap-is-ten-years-old/
https://www.zaproxy.org/blog/2020-09-06-zap-is-ten-years-old/
https://www.tenable.com/customers
https://www.tenable.com/customers
https://www.zaproxy.org/success/
https://www.zaproxy.org/success/
https://www.reshiftsecurity.com/pricing/
https://www.reshiftsecurity.com/pricing/
https://www.tenable.com/products/nessus
https://www.tenable.com/products/nessus
https://snyk.io/what-is-snyk/
https://snyk.io/what-is-snyk/
https://docs.stackhawk.com/#welcome-to-stackhawk
https://docs.stackhawk.com/#welcome-to-stackhawk
https://www.stackhawk.com/product/
https://www.veracode.com/products
https://www.veracode.com/products
https://www.crunchbase.com/organization/snyk
https://www.crunchbase.com/organization/snyk
https://www.stackhawk.com/about/
https://www.stackhawk.com/about/
https://www.veracode.com/contact-us#mktoForm_326
https://www.veracode.com/contact-us#mktoForm_326

100 Bibliography

[99] Crunchbase. ‘Veracode.’ (), [Online]. Available: https : / / www .
crunchbase.com/organization/veracode (visited on 21/02/2022).

[100] Snyk. ‘Snyk.’ (), [Online]. Available: https : / / snyk . io/ (visited on
16/02/2022).

[101] StackHawk. ‘Stackhawk.’ (), [Online]. Available: https : / / www .
stackhawk.com/ (visited on 16/02/2022).

[102] Veracode. ‘Veracode.’ (), [Online]. Available: https://www.veracode.
com/ (visited on 17/02/2022).

[103] Snyk. ‘Plans and pricing.’ (), [Online]. Available: https://snyk.io/
plans/ (visited on 16/02/2022).

[104] StackHawk. ‘Pricing.’ (), [Online]. Available: https://www.stackhawk.
com/pricing/ (visited on 15/02/2022).

[105] C. Security. ‘Devsec with contrast.’ (), [Online]. Available: https :
//contrastsecurity.dev/docs/getting-started/where-do-i-start/
(visited on 04/04/2022).

[106] C. Security. ‘Integrations.’ (), [Online]. Available: https : / / docs .
contrastsecurity.com/en/integrations.html (visited on 06/04/2022).

[107] K. Srinivas. ‘Detecting security vulnerabilities with contrast security.’
(6th Sep. 2017), [Online]. Available: https://www.ibm.com/blogs/
cloud - archive / 2017 / 09 / detecting - security - vulnerabilities -
with-contrast-security/ (visited on 03/03/2022).

[108] C. Security. ‘The contrast code security platform.’ (), [Online].
Available: https : / / www . contrastsecurity . com / platform (visited
on 03/03/2022).

[109] C. Security. ‘Contrast scan.’ (), [Online]. Available: https : / / www .
contrastsecurity . com / contrast - scan ? hsLang = en (visited on
03/03/2022).

[110] C. Security. ‘Contrast sca.’ (), [Online]. Available: https : / / www .
contrastsecurity.com/contrast-sca (visited on 03/03/2022).

[111] C. Security. ‘Contrast assess.’ (), [Online]. Available: https : / / www .
contrastsecurity.com/contrast-assess (visited on 03/03/2022).

[112] C. Security. ‘Contrast serverless application security.’ (), [Online].
Available: https://www.contrastsecurity.com/contrast-serverless
(visited on 03/03/2022).

[113] C. Security. ‘Contrast protect.’ (), [Online]. Available: https : / / www .
contrastsecurity . com / contrast - protect ? hsLang = en (visited on
01/03/2022).

[114] C. Security. ‘Sensitive data masking.’ (), [Online]. Available: https :
//docs.contrastsecurity.com/en/sensitive- data- masking.html
(visited on 24/03/2022).

https://www.crunchbase.com/organization/veracode
https://www.crunchbase.com/organization/veracode
https://snyk.io/
https://www.stackhawk.com/
https://www.stackhawk.com/
https://www.veracode.com/
https://www.veracode.com/
https://snyk.io/plans/
https://snyk.io/plans/
https://www.stackhawk.com/pricing/
https://www.stackhawk.com/pricing/
https://contrastsecurity.dev/docs/getting-started/where-do-i-start/
https://contrastsecurity.dev/docs/getting-started/where-do-i-start/
https://docs.contrastsecurity.com/en/integrations.html
https://docs.contrastsecurity.com/en/integrations.html
https://www.ibm.com/blogs/cloud-archive/2017/09/detecting-security-vulnerabilities-with-contrast-security/
https://www.ibm.com/blogs/cloud-archive/2017/09/detecting-security-vulnerabilities-with-contrast-security/
https://www.ibm.com/blogs/cloud-archive/2017/09/detecting-security-vulnerabilities-with-contrast-security/
https://www.contrastsecurity.com/platform
https://www.contrastsecurity.com/contrast-scan?hsLang=en
https://www.contrastsecurity.com/contrast-scan?hsLang=en
https://www.contrastsecurity.com/contrast-sca
https://www.contrastsecurity.com/contrast-sca
https://www.contrastsecurity.com/contrast-assess
https://www.contrastsecurity.com/contrast-assess
https://www.contrastsecurity.com/contrast-serverless
https://www.contrastsecurity.com/contrast-protect?hsLang=en
https://www.contrastsecurity.com/contrast-protect?hsLang=en
https://docs.contrastsecurity.com/en/sensitive-data-masking.html
https://docs.contrastsecurity.com/en/sensitive-data-masking.html

Bibliography 101

[115] J. Watasseril. ‘Understanding and adjusting severity levels.’ (4th Feb.
2022), [Online]. Available: https://support.contrastsecurity.com/
hc/en-us/articles/360000449926-Understanding-and-Adjusting-
Severity-Levels.

[116] Contrast. ‘Application scoring guide.’ (), [Online]. Available: https://
docs.contrastsecurity.com/en/application-scoring-guide.html
(visited on 05/04/2022).

[117] Snyk. ‘Open source language and package manager support.’ (), [Online].
Available: https : / / docs . snyk . io / products / snyk - open - source /
language-and-package-manager-support (visited on 06/04/2022).

[118] Snyk. ‘Snyk integrations.’ (27th Apr. 2022), [Online]. Available: https:
//docs.snyk.io/integrations (visited on 18/05/2022).

[119] Snyk. ‘Snyk learned.’ (), [Online]. Available: https://learn.snyk.io/
(visited on 14/03/2022).

[120] Snyk. ‘Open source vulnerability database.’ (), [Online]. Available: https:
//security.snyk.io/ (visited on 15/03/2022).

[121] Snyk. ‘Snyk open-source (sca).’ (), [Online]. Available: https://docs.
snyk.io/tutorials/springone-workshop/snyk-oss-for-developers
(visited on 15/03/2022).

[122] Snyk. ‘Snyk open source.’ (), [Online]. Available: https : / / snyk .
io / product / open - source - security - management/ (visited on
22/02/2022).

[123] Snyk. ‘Snyk container.’ (17th Feb. 2022), [Online]. Available: https://
docs.snyk.io/products/snyk-container (visited on 01/03/2022).

[124] Snyk. ‘Snyk code.’ (), [Online]. Available: https://snyk.io/product/
snyk-code/ (visited on 22/02/2022).

[125] Snyk. ‘Snyk code.’ (28th Feb. 2022), [Online]. Available: https://docs.
snyk.io/products/snyk-code (visited on 01/03/2022).

[126] Snyk. ‘Snyk infrastructure as code.’ (21st Feb. 2022), [Online]. Available:
https://docs.snyk.io/products/snyk- infrastructure- as- code
(visited on 22/03/2022).

[127] Snyk. ‘Sql injection.’ (), [Online]. Available: https://learn.snyk.io/
lessons/sql-injection/javascript/ (visited on 14/03/2022).

[128] Snyk. ‘How snyk handles your data.’ (), [Online]. Available: https://
docs.snyk.io/more-info/how-snyk-handles-your-data#product-
specific-data-types (visited on 18/03/2022).

[129] StackHawk. ‘Stackhawk and snyk are better together.’ (), [Online].
Available: https://www.stackhawk.com/snyk/ (visited on 29/04/2022).

https://support.contrastsecurity.com/hc/en-us/articles/360000449926-Understanding-and-Adjusting-Severity-Levels
https://support.contrastsecurity.com/hc/en-us/articles/360000449926-Understanding-and-Adjusting-Severity-Levels
https://support.contrastsecurity.com/hc/en-us/articles/360000449926-Understanding-and-Adjusting-Severity-Levels
https://docs.contrastsecurity.com/en/application-scoring-guide.html
https://docs.contrastsecurity.com/en/application-scoring-guide.html
https://docs.snyk.io/products/snyk-open-source/language-and-package-manager-support
https://docs.snyk.io/products/snyk-open-source/language-and-package-manager-support
https://docs.snyk.io/integrations
https://docs.snyk.io/integrations
https://learn.snyk.io/
https://security.snyk.io/
https://security.snyk.io/
https://docs.snyk.io/tutorials/springone-workshop/snyk-oss-for-developers
https://docs.snyk.io/tutorials/springone-workshop/snyk-oss-for-developers
https://snyk.io/product/open-source-security-management/
https://snyk.io/product/open-source-security-management/
https://docs.snyk.io/products/snyk-container
https://docs.snyk.io/products/snyk-container
https://snyk.io/product/snyk-code/
https://snyk.io/product/snyk-code/
https://docs.snyk.io/products/snyk-code
https://docs.snyk.io/products/snyk-code
https://docs.snyk.io/products/snyk-infrastructure-as-code
https://learn.snyk.io/lessons/sql-injection/javascript/
https://learn.snyk.io/lessons/sql-injection/javascript/
https://docs.snyk.io/more-info/how-snyk-handles-your-data#product-specific-data-types
https://docs.snyk.io/more-info/how-snyk-handles-your-data#product-specific-data-types
https://docs.snyk.io/more-info/how-snyk-handles-your-data#product-specific-data-types
https://www.stackhawk.com/snyk/

102 Bibliography

[130] StackHawk. ‘Dynamic application security testing (dast): Overview and
tooling guide.’ (), [Online]. Available: https://www.stackhawk.com/
blog/dynamic-application-security-testing-overview/ (visited on
14/03/2022).

[131] Zap. ‘Owasp zed attack proxy (zap).’ (), [Online]. Available: https://
www.zaproxy.org/ (visited on 14/03/2022).

[132] StackHawk. ‘Stackhawk integrations.’ (), [Online]. Available: https :
/ / docs . stackhawk . com / workflow - integrations/ (visited on
06/04/2022).

[133] StackHawk. ‘Dynamic application security testing.’ (), [Online].
Available: https://www.stackhawk.com/solutions/dast/ (visited on
15/03/2022).

[134] StackHawk. ‘Stackhawk platform.’ (), [Online]. Available: https://docs.
stackhawk.com/web-app/ (visited on 18/05/2022).

[135] StackHawk. ‘Stackhawk privacy policy.’ (), [Online]. Available: https:
//www.stackhawk.com/privacy-policy/ (visited on 06/04/2022).

[136] StackHawk. ‘Risk.’ (), [Online]. Available: https://docs.stackhawk.
com / hawkscan / viewing - scan - results . html # risk (visited on
11/05/2022).

[137] Veracode. ‘Supported languages and platforms.’ (), [Online]. Available:
https : / / docs . veracode . com / r / r _ supported _ table (visited on
04/04/2022).

[138] Veracode. ‘Integrating with build and release management systems.’ (),
[Online]. Available: https://docs.veracode.com/r/c_integration_
buildservs (visited on 06/04/2022).

[139] Veracode. ‘Software development life cycle (sdlc).’ (), [Online]. Available:
https : / / www . veracode . com / security / software - development -
lifecycle-sdlc (visited on 03/05/2022).

[140] Veracode. ‘About veracode static analysis.’ (), [Online]. Available: https:
//docs.veracode.com/r/c_static_overview (visited on 05/04/2022).

[141] Veracode. ‘Veracode static analysis.’ (), [Online]. Available: https://www.
veracode.com/products/binary-static-analysis-sast (visited on
11/03/2022).

[142] Veracode. ‘Getting started with veracode software composition analysis
(sca).’ (), [Online]. Available: https://docs.veracode.com/r/Getting_
Started _ with _ Veracode _ Software _ Composition _ Analysis _ SCA
(visited on 05/04/2022).

[143] Veracode. ‘About veracode dynamic analysis.’ (), [Online]. Available:
https://docs.veracode.com/r/c_was_intro (visited on 05/04/2022).

https://www.stackhawk.com/blog/dynamic-application-security-testing-overview/
https://www.stackhawk.com/blog/dynamic-application-security-testing-overview/
https://www.zaproxy.org/
https://www.zaproxy.org/
https://docs.stackhawk.com/workflow-integrations/
https://docs.stackhawk.com/workflow-integrations/
https://www.stackhawk.com/solutions/dast/
https://docs.stackhawk.com/web-app/
https://docs.stackhawk.com/web-app/
https://www.stackhawk.com/privacy-policy/
https://www.stackhawk.com/privacy-policy/
https://docs.stackhawk.com/hawkscan/viewing-scan-results.html#risk
https://docs.stackhawk.com/hawkscan/viewing-scan-results.html#risk
https://docs.veracode.com/r/r_supported_table
https://docs.veracode.com/r/c_integration_buildservs
https://docs.veracode.com/r/c_integration_buildservs
https://www.veracode.com/security/software-development-lifecycle-sdlc
https://www.veracode.com/security/software-development-lifecycle-sdlc
https://docs.veracode.com/r/c_static_overview
https://docs.veracode.com/r/c_static_overview
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://docs.veracode.com/r/Getting_Started_with_Veracode_Software_Composition_Analysis_SCA
https://docs.veracode.com/r/Getting_Started_with_Veracode_Software_Composition_Analysis_SCA
https://docs.veracode.com/r/c_was_intro

Bibliography 103

[144] Veracode. ‘Veracode discovery.’ (), [Online]. Available: https://www.
veracode.com/products/discovery (visited on 11/03/2022).

[145] Veracode. ‘Understanding manual penetration testing.’ (), [Online].
Available: https://docs.veracode.com/r/c_understanding_manual
(visited on 16/05/2022).

[146] Veracode. ‘About veracode elearning.’ (), [Online]. Available: https://
docs.veracode.com/r/elearning_master (visited on 04/05/2022).

[147] Veracode. ‘Understanding veracode rules for data retention and
archiving.’ (), [Online]. Available: https : / / docs . veracode . com /
r/c_data_retention (visited on 25/04/2022).

[148] Veracode. ‘Scoring methodology.’ (), [Online]. Available: https://docs.
veracode.com/r/review_scoringmethodology (visited on 11/05/2022).

[149] Veracode. ‘Using cvss versions.’ (), [Online]. Available: https://docs.
veracode.com/r/Using_CVSS_Versions (visited on 11/05/2022).

[150] C. Security. ‘Java quick start guide.’ (), [Online]. Available: https://
docs . contrastsecurity . com / en / java - quick - start - guide . html
(visited on 26/04/2022).

[151] lmat - Reinstate Monica. ‘Powershell run java process problem.’ (),
[Online]. Available: https://stackoverflow.com/questions/4685184/
powershell-run-java-process-problem (visited on 26/04/2022).

[152] C. Security. ‘Contrast scan.’ (), [Online]. Available: https : / / www .
contrastsecurity.com/contrast-scan (visited on 06/04/2022).

[153] Veracode. ‘Upload and scan applications with veracode software
composition analysis.’ (10th Jan. 2020), [Online]. Available: https :
//www.youtube.com/watch?v=a4GDfRR7K4c&ab_channel=VERACODE
(visited on 07/04/2022).

[154] Veracode. ‘Set up an agent to scan with veracode software composition
analysis.’ (12th Mar. 2020), [Online]. Available: https://www.youtube.
com/watch?v=fVxTD_EZ9tg (visited on 07/04/2022).

[155] Veracode. ‘About the veracode dynamic analysis workflow.’ (), [Online].
Available: https : / / docs . veracode . com / r / About _ the _ Veracode _
Dynamic_Analysis_Workflow (visited on 07/04/2022).

[156] Veracode. ‘Run an authenticated dynamic analysis of a web application.’
(), [Online]. Available: https://docs.veracode.com/r/c_was_use_
case2 (visited on 07/04/2022).

[157] Veracode. ‘Veracode and github integration.’ (22nd Nov. 2021), [Online].
Available: https : / / www . youtube . com / watch ? v = xalWwLf9bWM & ab _
channel=VERACODE (visited on 07/04/2022).

https://www.veracode.com/products/discovery
https://www.veracode.com/products/discovery
https://docs.veracode.com/r/c_understanding_manual
https://docs.veracode.com/r/elearning_master
https://docs.veracode.com/r/elearning_master
https://docs.veracode.com/r/c_data_retention
https://docs.veracode.com/r/c_data_retention
https://docs.veracode.com/r/review_scoringmethodology
https://docs.veracode.com/r/review_scoringmethodology
https://docs.veracode.com/r/Using_CVSS_Versions
https://docs.veracode.com/r/Using_CVSS_Versions
https://docs.contrastsecurity.com/en/java-quick-start-guide.html
https://docs.contrastsecurity.com/en/java-quick-start-guide.html
https://stackoverflow.com/questions/4685184/powershell-run-java-process-problem
https://stackoverflow.com/questions/4685184/powershell-run-java-process-problem
https://www.contrastsecurity.com/contrast-scan
https://www.contrastsecurity.com/contrast-scan
https://www.youtube.com/watch?v=a4GDfRR7K4c&ab_channel=VERACODE
https://www.youtube.com/watch?v=a4GDfRR7K4c&ab_channel=VERACODE
https://www.youtube.com/watch?v=fVxTD_EZ9tg
https://www.youtube.com/watch?v=fVxTD_EZ9tg
https://docs.veracode.com/r/About_the_Veracode_Dynamic_Analysis_Workflow
https://docs.veracode.com/r/About_the_Veracode_Dynamic_Analysis_Workflow
https://docs.veracode.com/r/c_was_use_case2
https://docs.veracode.com/r/c_was_use_case2
https://www.youtube.com/watch?v=xalWwLf9bWM&ab_channel=VERACODE
https://www.youtube.com/watch?v=xalWwLf9bWM&ab_channel=VERACODE

104 Bibliography

[158] Veracode. ‘Generate veracode api credentials.’ (), [Online]. Available:
https:/ /docs.veracode. com/r/t _create_api _creds (visited on
07/04/2022).

[159] Snyk. ‘Code language and framework support.’ (4th May 2022), [Online].
Available: https://docs.snyk.io/products/snyk-code/snyk-code-
language-and-framework-support (visited on 05/05/2022).

[160] Invicti. ‘A new era for modern application security: Netsparker is now
invicti.’ (8th Mar. 2022), [Online]. Available: https://www.invicti.
com / blog / news / netsparker - is - now - invicti - new - era - modern -
application-security/ (visited on 30/04/2022).

[161] StackHawk. ‘First of its kind snyk integration correlates dynamic & static
application security testing.’ (27th Apr. 2022), [Online]. Available: https:
//www.stackhawk.com/blog/stackhawk-snyk-integration-press-
release/?fbclid=IwAR0PT7SW-CVfyS2rwoM22vlDTVduQmIx0aZ_PF6Pmc-
pFLmaCOXSE9nVcFk (visited on 30/04/2022).

[162] Snyk. ‘Cross-site scripting.’ (), [Online]. Available: https://learn.snyk.
io/lessons/xss/javascript/ (visited on 14/03/2022).

[163] Veracode. ‘Understanding language support for veracode sca upload
scans.’ (), [Online]. Available: https://docs.veracode.com/r/c_sc_
supported_lang (visited on 25/03/2022).

[164] Veracode. ‘Create and run an unauthenticated dynamic analysis.’
(28th Jan. 2021), [Online]. Available: https : / / www . youtube . com /
watch?v=El6xBMaC4yg&ab_channel=VERACODE (visited on 07/04/2022).

[165] Veracode. ‘Best practices for gateway management.’ (), [Online].
Available: https://docs.veracode.com/r/c_gateway_best_practices
(visited on 07/04/2022).

[166] Veracode. ‘Best practices for endpoint management.’ (), [Online].
Available: https : / / docs . veracode . com / r / c _ endpoint _ best _
practices (visited on 07/04/2022).

[167] Veracode. ‘Configure a dynamic analysis of a web application for internal
scanning.’ (), [Online]. Available: https://docs.veracode.com/r/c_
was_use_case3 (visited on 07/04/2022).

[168] Veracode. ‘About veracode ide integrations.’ (), [Online]. Available:
https://docs.veracode.com/r/c_ide_intro (visited on 25/03/2022).

[169] Veracode. ‘Install veracode for vs code to run ide scans.’ (), [Online].
Available: https://www.youtube.com/watch?v=ow5fGyjKtug (visited
on 26/04/2022).

[170] Veracode. ‘Scanning source code using veracode for vs code.’ (), [Online].
Available: https://www.youtube.com/watch?v=halOpSJa5kM (visited on
26/04/2022).

https://docs.veracode.com/r/t_create_api_creds
https://docs.snyk.io/products/snyk-code/snyk-code-language-and-framework-support
https://docs.snyk.io/products/snyk-code/snyk-code-language-and-framework-support
https://www.invicti.com/blog/news/netsparker-is-now-invicti-new-era-modern-application-security/
https://www.invicti.com/blog/news/netsparker-is-now-invicti-new-era-modern-application-security/
https://www.invicti.com/blog/news/netsparker-is-now-invicti-new-era-modern-application-security/
https://www.stackhawk.com/blog/stackhawk-snyk-integration-press-release/?fbclid=IwAR0PT7SW-CVfyS2rwoM22vlDTVduQmIx0aZ_PF6Pmc-pFLmaCOXSE9nVcFk
https://www.stackhawk.com/blog/stackhawk-snyk-integration-press-release/?fbclid=IwAR0PT7SW-CVfyS2rwoM22vlDTVduQmIx0aZ_PF6Pmc-pFLmaCOXSE9nVcFk
https://www.stackhawk.com/blog/stackhawk-snyk-integration-press-release/?fbclid=IwAR0PT7SW-CVfyS2rwoM22vlDTVduQmIx0aZ_PF6Pmc-pFLmaCOXSE9nVcFk
https://www.stackhawk.com/blog/stackhawk-snyk-integration-press-release/?fbclid=IwAR0PT7SW-CVfyS2rwoM22vlDTVduQmIx0aZ_PF6Pmc-pFLmaCOXSE9nVcFk
https://learn.snyk.io/lessons/xss/javascript/
https://learn.snyk.io/lessons/xss/javascript/
https://docs.veracode.com/r/c_sc_supported_lang
https://docs.veracode.com/r/c_sc_supported_lang
https://www.youtube.com/watch?v=El6xBMaC4yg&ab_channel=VERACODE
https://www.youtube.com/watch?v=El6xBMaC4yg&ab_channel=VERACODE
https://docs.veracode.com/r/c_gateway_best_practices
https://docs.veracode.com/r/c_endpoint_best_practices
https://docs.veracode.com/r/c_endpoint_best_practices
https://docs.veracode.com/r/c_was_use_case3
https://docs.veracode.com/r/c_was_use_case3
https://docs.veracode.com/r/c_ide_intro
https://www.youtube.com/watch?v=ow5fGyjKtug
https://www.youtube.com/watch?v=halOpSJa5kM

Bibliography 105

[171] Veracode. ‘Reviewing findings in veracode for vs code.’ (), [Online].
Available: https://www.youtube.com/watch?v=DbpeS4IWC28 (visited on
26/04/2022).

[172] Veracode. ‘Request a static scan in the veracode platform.’ (24th Sep.
2019), [Online]. Available: https://www.youtube.com/watch?v=M-
v0dodSavM&ab_channel=VERACODE (visited on 07/04/2022).

[173] Veracode. ‘Configuring an api credentials file.’ (), [Online]. Available:
https://docs.veracode.com/r/c_configure_api_cred_file?tocId=
x91jZOXBHfLA556x5w4xcQ (visited on 25/03/2022).

[174] A. Aspøy. ‘Forsvarsdepartementet.’ (14th Oct. 2022), [Online]. Available:
https://snl.no/Forsvarsdepartementet.

https://www.youtube.com/watch?v=DbpeS4IWC28
https://www.youtube.com/watch?v=M-v0dodSavM&ab_channel=VERACODE
https://www.youtube.com/watch?v=M-v0dodSavM&ab_channel=VERACODE
https://docs.veracode.com/r/c_configure_api_cred_file?tocId=x91jZOXBHfLA556x5w4xcQ
https://docs.veracode.com/r/c_configure_api_cred_file?tocId=x91jZOXBHfLA556x5w4xcQ
https://snl.no/Forsvarsdepartementet

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Eggestad, H
øyaas, Løken, Stålevik

Softw
are Security Testing

Merete Eggestad
Ingrid Høyaas
Oda Løken
Julie Stade Stålevik

Software Security Testing

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Erik Hjelmås
May 2022Ba

ch
el

or
’s

th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Background
	Problem Area
	Scope and Limitations
	Target Group
	Goals
	Framework
	The Group's Academic Background
	Methodology
	Thesis Structure

	Theory
	Introduction
	Testing Functionality Compared to Security
	Box Testing
	Application Security Assessment
	Application Security Testing and Analysis
	The Importance of Software Security Testing
	The Odds of Finding Vulnerabilities
	Test Environment
	Penetration Testing
	Fuzzing
	OWASP Top 10
	Vulnerability Estimators
	Containers

	Tools for Security Testing
	Introduction
	Today's Solution
	Tools

	Analysis of Selected Tools
	Introduction
	Contrast Security
	Snyk
	StackHawk
	Veracode
	Selected Tools in the SDLC

	Experiment
	Introduction
	The Test Environments
	Tested Tools
	Untested Tools
	Results

	Discussion
	Introduction
	Result Interpretation
	Advantages and Disadvantages
	Other Security Options for Testing and Analysis
	Manual Testing Methods
	Containers
	Limitations
	Critique of the Thesis

	Conclusion
	Introduction
	Reflections
	Further Work
	Conclusion

	Bibliography
	Contrast
	Contrast Scan (SAST)

	Snyk
	GitHub

	Veracode
	Veracode SCA
	Veracode Dynamic Analysis
	Veracode Static Analysis

	Intervjuguide
	Intervju med ekstern bedrift
	Intervju med utviklere i FMA

	Oppgavebeskrivelse
	Samarbeidsavtale
	Prosjektplan
	Mål og rammer
	Omfang
	Prosjektorganisering
	Planlegging, oppfølging og rapportering
	Organisering av kvalitetsikring
	Plan for gjennomføring

	Relevant mailkommunikasjon
	Undersøkte verktøy
	Eksterne bedrifter
	Faglærere på NTNU
	Utvikler i FMA

	Referat
	Referat fra møter med veileder
	Referat fra møter med oppdragsgiver
	Referat fra egne møter
	Referat fra møter med utviklere
	Referat fra møter og intervjuer med diverse eksterne

	Timeliste
	9698454d-89f2-412b-9bd7-6937f8000f9c.pdf
	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Background
	Problem Area
	Scope and Limitations
	Target Group
	Goals
	Framework
	The Group's Academic Background
	Methodology
	Thesis Structure

	Theory
	Introduction
	Testing Functionality Compared to Security
	Box Testing
	Application Security Assessment
	Application Security Testing and Analysis
	The Importance of Software Security Testing
	The Odds of Finding Vulnerabilities
	Test Environment
	Penetration Testing
	Fuzzing
	OWASP Top 10
	Vulnerability Estimators
	Containers

	Tools for Security Testing
	Introduction
	Today's Solution
	Tools

	Analysis of Selected Tools
	Introduction
	Contrast Security
	Snyk
	StackHawk
	Veracode
	Selected Tools in the SDLC

	Experiment
	Introduction
	The Test Environments
	Tested Tools
	Untested Tools
	Results

	Discussion
	Introduction
	Result Interpretation
	Advantages and Disadvantages
	Other Security Options for Testing and Analysis
	Manual Testing Methods
	Containers
	Limitations
	Critique of the Thesis

	Conclusion
	Introduction
	Reflections
	Further Work
	Conclusion

	Bibliography
	Contrast
	Contrast Scan (SAST)

	Snyk
	GitHub

	Veracode
	Veracode SCA
	Veracode Dynamic Analysis
	Veracode Static Analysis

	Intervjuguide
	Intervju med ekstern bedrift
	Intervju med utviklere i FMA

	Oppgavebeskrivelse
	Samarbeidsavtale
	Prosjektplan
	Mål og rammer
	Omfang
	Prosjektorganisering
	Planlegging, oppfølging og rapportering
	Organisering av kvalitetsikring
	Plan for gjennomføring

	Relevant mailkommunikasjon
	Undersøkte verktøy
	Eksterne bedrifter
	Faglærere på NTNU
	Utvikler i FMA

	Referat
	Referat fra møter med veileder
	Referat fra møter med oppdragsgiver
	Referat fra egne møter
	Referat fra møter med utviklere
	Referat fra møter og intervjuer med diverse eksterne

	Timeliste

