
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Olav Valle
Simen Nesse Wiik

3D Printer Farm Management
System

Bachelor’s thesis in Computer Science Engineering
Supervisor: Kjell Inge Tomren
May 2022

Ba
ch

el
or

’s
th

es
is

Olav Valle
Simen Nesse Wiik

3D Printer Farm Management System

Bachelor’s thesis in Computer Science Engineering
Supervisor: Kjell Inge Tomren
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

”The greatest

teacher, failure is.

- Yoda

1

I Acknowledgements

We would like to dedicate this text to Paul Steffen Kleppe for his guidance, inspiration and the unwaver-

ing support and trust he has placed in us throughout the project. Paul Steffen has had an enthusiasm

and drive for the project that often outshone that of our own. Without his management of the logistics

tied to the systems that our project depended on at MANULAB, we would not have gotten anywhere.

We consider ourselves incredibly fortunate to have had him as both product owner and mentor.

A special ”thank you” also goes out to the faculty and students at MANULAB, for providing

excellent support, insight and companionship throughout the project.

We would also like to thank all the teachers and lecturers that have strived to instil their knowledge

and wisdom into us during our years at NTNU Ålesund.

Our supervisor, Kjell Inge Tomren, also deserves recognition for his patience and guidance through-

out the project.

2

II Abstract

In the summer of 2021, students at NTNU Ålesund developed a prototype for a management system

for the printer farm at MANULAB Ålesund. In fall of that year, the faculty of the Department of Ocean

Operations and Civil Engineering (DOOCE) at NTNU Ålesund recruited student assistants from the

computer science program to continue development of this project. The intention was to expand the

functionality of the prototype, and re-implement it as a web application.

Examination by the students found that the existing prototype, while a good proof-of-concept,

would require an extensive redesign to fulfill the requirements laid out by the DOOCE. As the work

involved in this endeavour would be more than the students had capacity for alongside their regular

studies, one of the students involved suggested that they could take on the project as their bachelors

thesis in the spring semester of 2022. The department agreed to this suggestion, and recommended that

the student continue working on the project through the fall semester of 2021, as a form of planning

and design phase for the project. The student recruited a colleague from their study program, and

submitted an application to have the project approved by their supervisors.

Work on this project started in full in January of 2022. At the agreement of both the department

faculty and the student team, an additional requirement goal was added to the project; the design and

implementation of a server solution that could be used for both the farm management system being

developed, as well as being a foundation for future software and Internet of Things (IoT) projects at

MANULAB Ålesund.

The result of this project is the design and prototype of a server infrastructure consisting of

clustered ARM architecture single-board computers, which provides both horizontal scalability and high-

availability of the containerized services it hosts. A prototype of the 3D printer farm administration

system was hosted on this server as a containerized web app front end and back end system, both

implemented in TypeScript. The back end connects 3D printers to the web app front end, allowing for

uploading of 3D models for printing and supervision of the status of the printers. The front end and

back end systems communicate using REST API’s and uses the WebSocket protocol to transmit real

time data from the printers.

3

III Sammendrag

Sommeren 2021 utviklet studenter ved NTNU Ålesund en prototype for et styringssystem for printer-

farmen ved MANULAB Ålesund. Høsten samme år rekrutterte fakultetet fra Institutt for Havromsop-

erasjoner og Byggteknikk (IHB) ved NTNU Ålesund studentassistenter fra informatikkprogrammet for

å fortsette utviklingen av dette prosjektet. Intensjonen var å utvide funksjonaliteten til prototypen, og

re-implementere den som en webapplikasjon.

Undersøkelse utført av studentene fant at den eksisterende prototypen, selv om den var en god

proof-of-concept, ville kreve omfattende redesign for å oppfylle kravene fastsatt av IHB. Siden dette

arbeidet var mer enn studentene hadde kapasitet til ved siden av sine vanlige studier, foreslo en av

de involverte studentene at de kunne ta p̊a seg prosjektet som bacheloroppgave i v̊arsemesteret 2022.

Instituttet sluttet seg til dette forslaget, og oppfordret studenten å jobbe videre med prosjektet gjennom

høstsemesteret 2021, som en form for planleggings- og designfase for prosjektet. Studenten rekrutterte

en kollega fra studiet sitt, og sendte inn søknad om å f̊a prosjektet godkjent av sine veiledere.

Arbeidet med dette prosjektet startet for fullt i januar 2022. Etter enighet mellom instituttfakultetet

og studentteamet ble det lagt inn et ekstra kravmål til prosjektet; design og implementering av en

serverløsning som kunne brukes til b̊ade printerfarmsstyringssystemet som skulle utvikles, samt være et

fundament for fremtidige programvare- og Internet of Things (IoT)-prosjekter ved MANULAB Ålesund.

Resultatet av dette prosjektet er designet for og prototypen av en serverinfrastruktur som best̊ar

av en klynge ARM-arkitektur enkeltbordsdatamaskiner, som muliggjør b̊ade horisontal skalerbarhet og

høy tilgjengelighet for de containeriserte tjenestene den er vert for. En prototype av styringssystemet

som ble utviklet for 3D-printerfarmen kjører p̊a denne serveren som et containerisert nettapp-frontend

og backend-system, begge implementert i TypeScript. Bakenden kobler 3D-printere til nettappens fron-

tend, noe som muliggjør opplasting av 3D-modeller for utskrift og overv̊aking av statusen til skriverne.

Frontend og backend kommuniserer gjennom REST API og bruker Websocket-protokoll for overføring

av sanntidsdata fra printerene.

4

IV Foreword

This document is the final report of the bachelors thesis project of Olav Valle and Simen Nesse Wiik.

The project was completed in the spring semester of 2022, as part of the Computer Science Engineer

program at NTNU Ålesund. It was undertaken on behalf of the Department of Ocean Operations

and Civil Engineering at NTNU Ålesund (DOOCE), at the request of Paul Steffen Kleppe, Irina-Emily

Hansen and Ola Jon Mork.

The aim of this project was to develop the server infrastructure and web application for a manage-

ment system for the 3D printer farm at MANULAB Ålesund. The requirements and goals of the project

were planned out in cooperation between the two students and the aforementioned faculty members

of DOOCE. The project builds upon previous work done by students at MANULAB in the summer

of 2021, and the results from this work served as a prototype and proof-of-concept for the products

developed in this project.

The students chose this project because of their interest in 3D printing, system administration and

server infrastructure design. The opportunity to work with software and hardware in a cross-disciplinary

environment, in close cooperation with students and teachers at the automation and mechanical en-

gineering programs, also interested the team.

5

V Problem Formulation

This project aims to design and implement the software and hardware infrastructure for a 3D printer

farm mamagement system. A web application user interface for interacting with the farm from a user

and administrative perspective is to be designed and implemented. The server infrastructure being

designed and developed will host the web application services, and as serve as the foundation for future

projects at MANULAB Ålesund.

6

Contents

I Acknowledgements 2

II Abstract 3

III Sammendrag 4

IV Foreword 5

V Problem Formulation 6

Contents 7

List of Figures 13

Glossary 15

Acronyms 16

1 Introduction 18

1.1 Background . 18

1.2 Existing Solutions . 18

1.3 Aim . 19

1.4 Structure . 19

2 Theory and Materials 20

2.1 Frameworks and technologies . 20

2.1.1 TypeScript and JavaScript . 20

2.1.2 Bash . 21

7

2.1.3 YAML . 21

2.1.4 Linux . 21

2.1.5 HTML . 21

2.1.6 CSS . 21

2.1.7 3rd party libraries . 23

2.1.8 Version control . 23

2.1.9 Development Environment . 23

2.1.10 Express . 23

2.2 Industry 4.0 . 23

2.2.1 Industry 4.0 . 23

2.2.2 3D Printers . 23

2.2.3 IoT . 24

2.3 Client-server communication . 24

2.3.1 HTTP . 24

2.3.2 MQTT . 24

2.3.3 Websocket . 24

2.4 Server system infrastructure . 25

2.4.1 Single board computers . 25

2.4.2 ARM . 25

2.4.3 Clustering . 25

2.4.4 Scalability . 25

2.4.5 System administration . 26

2.4.6 Netboot . 27

2.4.7 ZFS . 28

2.5 Network infrastructure . 29

2.5.1 Ethernet . 29

2.5.2 Wi-Fi . 29

2.5.3 DHCP . 30

2.5.4 TFTP . 30

2.6 Project management methods . 30

8

2.6.1 Scrum . 30

2.6.2 Use case . 32

2.6.3 Persona . 32

2.6.4 User story . 32

3 Method 33

3.1 Scientific method . 33

3.2 Hardware . 35

3.2.1 Prusa 3D Printers . 35

3.2.2 Raspberry Pi . 35

3.3 Frameworks and libraries . 37

3.3.1 Containers . 37

3.3.2 Kafka . 37

3.3.3 High availability . 37

3.3.4 MQTT . 38

3.3.5 Nest . 38

3.3.6 Turborepo . 38

3.4 Project organization . 39

3.4.1 Discord . 39

3.4.2 Google Drive . 39

3.4.3 Overleaf . 39

3.4.4 Scrum . 40

3.4.5 Distribution of work . 40

3.5 Software and applications . 40

3.5.1 OctoPi . 40

4 Results 41

4.1 Scientific results . 41

4.1.1 Relevance . 41

4.1.2 Knowledge base building . 41

4.1.3 User testing . 42

9

4.2 Technical results . 42

4.2.1 Raspberry Pi management . 42

4.2.2 Infrastructure scalability . 42

4.2.3 Frontend . 43

4.2.4 Backend . 43

4.2.5 Storage . 43

4.2.6 MQTT . 43

4.2.7 Printers, OctoPi and OctoPrint . 44

4.3 Administrative results . 44

4.3.1 Scrum . 44

4.3.2 Distribution of work . 44

5 Discussion 45

5.0.1 Printers . 45

5.0.2 Raspberry Pi . 45

5.0.3 Kubernetes . 45

5.0.4 Frontend . 46

5.0.5 Turborepo . 46

5.0.6 Kafka . 46

5.1 Results . 46

6 Conclusion and recommendations further work 48

6.1 Conclusion . 48

6.1.1 Kubernetes . 49

6.1.2 Raspberry Pi . 49

6.1.3 Further work . 49

7 Effects on society 50

Bibliography 51

A Pre-project plan 54

10

B Requirement specification 69

B.1 Contents . 69

B.2 Introduction . 69

B.3 Use Case diagram . 70

B.4 User Stories . 70

B.5 Domain model . 71

B.6 Wireframes . 72

C Research issues 75

C.1 User Stories . 85

D Decision Reports 96

E System documentation 105

E.1 Introduction . 105

E.2 Hardware Architecture . 105

A Networking . 105

B Raspberry Pi . 106

E.3 Software architecture . 106

A Frontend . 106

B backend . 106

E.4 Code repository . 106

E.5 Containers . 106

E.6 Kubernetes . 106

A Using Kubectl to administer the cluster . 107

B Adding nodes to the cluster . 107

E.7 Security . 107

E.8 Installation . 107

E.9 Source code documentation . 107

F Source Code and Bash Scripts 108

F.1 Kubernetes YAML definitions . 108

11

A IngressRoute . 108

B Deployment . 109

C Service . 110

G Work diaries 111

12

List of Figures

2.1 TypeScript enables code autocompletion . 21

2.2 Horizontal scaling. Workload is distributed among the PCs 26

2.3 Vertical scaling. A single PC is upgraded with more powerful hardware. 26

2.4 Use case diagrams consist of actors and use cases. Image source: https://www.visual-

paradigm.com/guide/agile-software-development/user-story-vs-use-case/ 32

3.1 Raspberry Pi Imager for easily flashing SD cards . 36

B.1 Use case diagram . 70

B.2 Domain model diagram. 71

B.3 Wireframe of card module for printer grid. 72

B.4 Wireframe of the detail printer view. 73

B.5 Wireframe of the printer grid overview page layout. 74

E.1 Hardware system diagram. 105

13

List of Code Examples

1 Example of dynamic typing in JavaScript code. 20

2 Example of static typing error in TypeScript code. 20

3 Example of a YAML file. 22

4 Example of a typical ”Hello World” HTML document. 22

5 Example of CSS code. 22

14

Glossary

bit rot Bit rot (aka. data decay, data degradation) is the gradual degradation of data caused by

the accumulation of hardware failures in a storage device. These failures can be caused by the

constituent bits in magnetic media losing or altering their magnetic charge. In solid state devices,

the decay may be caused by the device losing its electrical charge. In both these cases, the result

of the degradation is that one or more bits have their values flipped (bit flipping), e.g. from a 1

to a 0. 28

container Isolated execution environment only containing the required libraries to run a program. 37

data streaming The speed at which sequential bits of data can be read from or written to a storage

device. 28

monorepo A code repository with multiple projects, and tools to facilitate sharing code, running tests

and caching build artifacts. 38

OS kernel The core of an operating system’s software. Facilitates allocation of hardware resources to

software processes on the system. 27

root file system The top node of a file system. Contains the files most critical for an operating

system’s basic functionality. 27

space efficiency The ratio of available storage space in a RAID storage configuration, in relation to

the raw storage space of the disks in the configuration. 28

telemetry The collection and transmission of data (e.g. sensor readings or system status reports) from

remote devices to a server. 24

15

Acronyms

API application programming interface. 37

BIOS basic input/output system. 27

CSS cascading style sheets. 21

DHCP dynamic host configuration protocol. 27, 30

DNS domain name system. 30

DSR design science research. 34, 41

HTML hypertext markup language. 21

HTTP hypertext transfer protocol. 24

IOPS I/O operations per second. 28

IoT internet of things. 24, 29, 35, 36, 38

IP Internet Protocol. 27

JBOD Just a Bunch of Disks. 29

MQTT Message Queuing Telemetry Transport. 24

NFS Network File System. 27

OS operating system. 27

PXE Preboot Execution Environment. 27

RAID Redundant Array of Inexpensive Disks, or Redundant Array of Independent Disks. 28

SBC single board computer. 25, 35

TFTP trivial file transfer protocol. 27, 30

UEFI unified extensible firmware interface. 27

16

VCS version control system. 23

YAML YAML Ain’t Markup Language. 21

ZFS Previously the Zettabyte File System. Now named ZFS, or Z File System (”zed file system”). 28

17

1 Introduction

1.1 Background

This project was undertaken on assignment from MANULAB Ålesund, on behalf of the Department of

Ocean Operations and Civil Engineering at NTNU Ålesund. MANULAB is an infrastructure partnership

project between the three NTNU campuses (Gjøvik, Trondheim and Ålesund) [1] [2], and is funded by

the Norwegian research council.

Manulab (formally IDEA-lab) can be found in the Lanterna building of NTNU Ålesund. It houses

machines for production automation, including robot arms, conveyor belts and self-driving robots. It

also houses 3D printers, which can be freely used by students and faculty.

1.2 Existing Solutions

Several companies provide 3D printer farm administration solutions that meet many of the specifications

that Manulab requires.

The Prusa Automated Farm System[3], while still in closed beta, is targeted towards businesses

and large scale industrial printer farms. Astroprint promises a ”simple and powerful way to manage 3D

printers.” RaiseCloud, a 3D printing web platform, boasts features such as statistical insights into the

status of the farm, and integrates OctoPrint support in its product.

Common to most systems out there, however, is the fact that they are tied to business models that

require payment for any large scale deployments. These commercial products are also usually closed

source, which limits the flexibility and customization options available to tailor the solution for specific

use cases. Some of these systems are also locked to specific brands of 3D printers, which again limits

their relevance and applicability to existing printer farms.

While many of these solutions could provide most of the features and functionality required by

MANULAB, a custom solution clearly provides the best possibilities for tailoring and integrating the

farm into other systems and projects at MANULAB.

18

1.3 Aim

The aim of this project is twofold. One part aims to develop a hardware and software system intended to

become the foundation for future projects at Manulab, and encompasses the design and implementation

of a clustered server architecture for containerised services built from Raspberry Pi hardware. This server

solution will host the software developed as the second part of the project; A web application that will

act as a frontend for the 3D printer farm at Manulab. This application will provide a user interface for

uploading 3D printing files to printers in the farm, and administration of printing jobs in the farm.

1.4 Structure

In the second chapter, required theory to understand the method and result is described. The third

chapter describes the methods employed by the team to produce the work. The fourth chapter presents

the resulting work. Chapter five discusses why the results came to be. The sixth chapter concludes the

work. In the seventh chapter, social, economic and other impacts are described.

19

2 Theory and Materials

2.1 Frameworks and technologies

2.1.1 TypeScript and JavaScript

JavaScript is a dynamically typed language. It was originally only used for creating interactive web

applications, but expanded to desktop application development with the introduction of Node.js. Its

core feature is dynamic typing. This means a variable may hold different types of values throughout

their lifetime.

let favoriteNumber = 103

favoriteNumber = "#103" // Previously held number, now holds string

Code 1: Example of dynamic typing in JavaScript code.

The advantage of dynamic typing is concise programs. Because a variable can be expressed without

a type, an algorithmic solution in JavaScript is expressed in fewer characters. Another advantage is

easy conversion between types.

Dynamic typing is also a disadvantage. Errors that occur as the program is running, also called

runtime errors, may happen as the developer was not warned about faulty conversions. The IDE also

cannot help with code autocompletion as there is no type information to infer from any variables.

TypeScript

TypeScript enhances JavaScript with type safety. Type safety means the compiler can catch mismatch-

ing types at compile time, and eliminates errors at runtime.

let favoriteNumber: number = 103

favoriteNumber = "#103" // Error: Type 'string' is not assignable to type 'number'.

Code 2: Example of static typing error in TypeScript code.

TypeScript’s typing is favorable when programming with an IDE. The TypeScript language server

enriches the IDE with autocompletion, shown in figure 2.1.

20

Figure 2.1: TypeScript enables code autocompletion

2.1.2 Bash

Bash is a shell scripting language used in Unix-based operating systems.

2.1.3 YAML

YAML Ain’t Markup Language (YAML) is a data storage format. It uses spacing and hyphens to denote

collections and nesting. Code 3 is an example YAML file.

2.1.4 Linux

Linux is a widely used operating system kernel. A kernel is the software that controls memory, I/O

ports, threads and other operating system resources.

2.1.5 HTML

Hypertext markup language (HTML) is a markup language for defining the structure of a document.

HTML documents are made up of pairs of tags [4]. Code 4 shows a simple HTML document that

displays a page with the text ”Hello World!”.

2.1.6 CSS

Cascading style sheets (CSS) is a language for defining the style of an XML or HTML document. It

consists of selectors, @-rules, properties and values. Code 5 shows an example using both CSS classes

and media queries.

21

apiVersion: apps/v1

kind: Deployment

metadata:

labels:

app: web

spec:

selector:

matchLabels:

app: web

template:

metadata:

labels:

app: web

spec:

containers:

- image: revosw/printman-web

name: printman-web

Code 3: Example of a YAML file.

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Document</title>

</head>

<body>

<p>Hello World!</p>

</body>

</html>

Code 4: Example of a typical ”Hello World” HTML document.

.card {

width: 100px;

}

@media screen and (max-width: 768px) {

.card {

width: 100%;

}

}

Code 5: Example of CSS code.

22

2.1.7 3rd party libraries

A library is code compiled to a file which other programs may use the functionality of.

2.1.8 Version control

Version control system (VCS) is a tool which keeps track of a history of changes. Although VCS is

widely used in programming for versioning code, VCS applies to documents as well. The most common

VCS in use today is git. Git features a form of temporary versions through branches. Branching

encourages separating features in different branches, enabling context switching between the features

[5]. experimenting with new code, and easily disposing the code if the branch is no longer needed.

2.1.9 Development Environment

When developing a project, it is preferable to separate the publicly deployed version from a sandbox

version for testing. A development environment resembles the production setup, from databases to API

gateways to frontend.

2.1.10 Express

Express is a framework for developing a RESTful API. It abstracts the details of setting correct HTTP

headers and request handling by defining abstract concepts such as routers, request/response objects

and middleware.

2.2 Industry 4.0

2.2.1 Industry 4.0

Industry 1.0, 2.0 and 3.0 encompass the use of steam, electrical energy, and transistors and ICs (In-

tegrated Circuits) in production machinery respectively. Industry 4.0 emerged as the internet became

ubiquitous. With internet, devices can communicate without geographical boundaries, and entire pro-

duction lines can be monitored and controlled remotely (Howard, 2018).

2.2.2 3D Printers

3D printing is a form of additive manufacturing. A 3D printer is a machine that constructs an object

by depositing material in layers until the desired object has been formed. The materials used include

metals, concrete, foodstuffs, resin, rubber or plastics. The most common form of 3D printing uses

plastic or rubber materials, which is deposited by extrusion through a nozzle. The material is first

melted at temperatures between 150-300 degrees Celsius, dictated by the chemical composition of the

material. The raw material takes the form of granules or filament. Granules are small pellets of plastic,

23

similar to those used in injection molding processes. Filament is made from granules that have been

melted and extruded into long strands with specific diameters, and is wound on spools akin to fishing

line or sowing thread.

A 3D printer creates objects from a pre-processed 3D model. The model can be created using

CAD (Computer Aided Design) or artistic modeling software. A model created in this fashion must be

sliced before it can be printed. Slicing a model involves analysing the structure of the model and the

orientation in which it is to be printed. The model is split into a large number layers, each representing

a two dimensional horizontal cross-section of the model. These cross-sections are translated to a set

of coordinates in a plane (both Cartesian and polar coordinates can be used, depending on the printer

design), and describe the path that the extrusion nozzle should follow.

2.2.3 IoT

Internet of things (IoT) is a term used for all small computers connected to a network. The computers

may be used for reading measurements such as humidity and temperature, and controlling electronic

hardware such as garage doors, door locks, and lights.

2.3 Client-server communication

2.3.1 HTTP

Hypertext transfer protocol (HTTP) is a standardized request-response model for communication. It

is widely used for internet traffic involving websites and APIs. It is an application-layer protocol,

implemented with TCP as the transport protocol.

2.3.2 MQTT

MQTT (previously an acronym of Message Queuing Telemetry Transport) is a publish-subscribe mes-

saging protocol designed for use by remote IoT devices for transmitting telemetry data in scenarios with

unreliable network connections and limited bandwidth.

2.3.3 Websocket

While the HTTP protocol is request-response oriented, the websocket protocol allows for persistent

bidirectional communication. This enables real-time services such as chat, online games and digital

twins.

24

2.4 Server system infrastructure

2.4.1 Single board computers

A single board computer (SBC) is a computer with all essential hardware and ports soldered on the

same circuit board. This is in contrast with regular PC motherboards with pluggable hardware. The

most popular SBC is the Raspberry Pi.

2.4.2 ARM

ARM is a company specialized in designing CPUs and licensing the designs to other companies. Their

flagship CPU architecture, also named ARM, is a leading CPU architecture for embedded and low power

devices, as well as being used in laptop computers and mobile devices.

2.4.3 Clustering

A cluster is a group of machines, which can be seen as a single logical unit. In a cluster, all machines

cooperate to serve incoming requests. One advantage of a cluster is fault tolerance. A request can be

served even when a machine unexpectedly becomes unavailable. Another advantage is the ability to

dynamically tune prioritization of workloads. In the event that a service experiences a sudden increase

in demand, the cluster can respond by devoting more resources for the particular service.

2.4.4 Scalability

A computer system is installed to solve a problem. The problem may however change over time.

The scalability of a system determines how quickly the system can accommodate to new or redefined

problems and demands. Scalability of a system is measured according to how much load it can sustain.

Storage, network, cpu and memory are the four limiting factors of a computer system.

The two forms for scaling are horizontal scaling and vertical scaling. Horizontal scaling for hardware

means utilizing multiple machines with the same hardware. The workload is then distributed among all

the machines.

25

Figure 2.2: Horizontal scaling. Workload is distributed among the PCs

Vertical scaling for hardware means upgrading a single machine with more powerful hardware.

The advantage of vertical scaling is better space efficiency. A single machine occupies less space than

multiple machines. The disadvantage is that the price of hardware in terms of performance is non-linear.

A 32 TB SSD for example is usually more than 32 times expensive than a 1TB SSD.

Figure 2.3: Vertical scaling. A single PC is upgraded with more powerful hardware.

2.4.5 System administration

System administration encompasses the tasks and tools related to configuring and maintaining a soft-

ware and computer hardware system. Among these are configuring operating systems, file systems

and software and hardware security, installing computer and network hardware, as well as performing

maintenance on these.

26

2.4.6 Netboot

Netbooting, or netboot, is a method for providing a computer hardware system with an operating system

over a network connection. This differs from booting an operating system in the normal way, where

OS kernel files, drivers and software are stored on disks that are local to the computer. In a netbooting

scenario, these files are provided to the computer via a network connection. The operating system

(OS) files are stored on a server, which provides the files upon request from the computer’s bootstrap

firmware. On modern hardware, this request and boot process is handled by the Preboot Execution

Environment (PXE) of the system BIOS/UEFI firmware. On Internet Protocol (IP) networks, the

transfer protocol in question is typically the trivial file transfer protocol (TFTP). Computers configured

to request netbooting services locate the server through a dynamic host configuration protocol (DHCP)

service on the network. The DHCP server on the network is configured to announce the presence of

the netboot server to all clients on the network.

TFTP

The Trivial File Transfer Protocol is a light-weight and simple protocol for allowing clients to get and

put files on a host. Due to its simple implementation and small memory footprint, the protocol can

be implemented as part of a system’s boot firmware. TFTP is widely used in netbooting scenarios to

retrieve OS kernel files required by the bootloader firmware. See also: 2.5.4 TFTP

NFS

The Network File System (NFS) protocol was developed by Sun Microsystems in 1984. It allows clients

to access and mount remote, distributed, network connected storage devices. The mounted file system

can be integrated into the local file system, and used by the OS as if it were local storage. In netbooting

scenarios, NFS can be used by the OS kernel (which is loaded using TFTP) of the netbooting client to

mount the root file system.

DHCP

The DHCP is a network protocol used on IP networks to automatically assign IP addresses to network

clients. In a netbooting scenario, the DHCP server announces the presence of a TFTP server providing

netboot services, to the netboot client firmware. See also: 2.5.3 DHCP

PXE

The PXE specification defines the interaction between a netboot enabled client and a server that

provides netbooting services. On the client side, PXE is integrated into the network interface firmware.

PXE utilises DHCP and TFTP protocols for communication and file transfer between client and host

systems. PXE is part of the UEFI standard, and is one of the most commonly used systems for

netbooting modern computer systems.

27

BIOS/UEFI

2.4.7 ZFS

ZFS is a file system and volume manager developed by Sun Microsystems in 2001. Unlike traditional

RAID storage systems, where device management, volume management and file system data man-

agement are handled by separate hardware or software, ZFS combines these things into one software

system. This unification allows ZFS to have greater control of the file system and its constituent storage

devices, giving it deeper insight into the integrity of the data stored within. ZFS employs techniques

such as data checksumming, which, along with also monitoring device status, is used to detect data

corruption caused by bit rot or software errors.

VDEV

The ZFS volume and device manager abstracts physical storage devices into VDEVs (Virtual Devices).

A VDEV can consist of one or more devices, which can be assembled in three main topology formations

for data storage. These present different benefits and drawbacks in the metrics of IO performance (data

streaming and IOPS), fault tolerance and space efficiency.

Striped: A striped VDEV is akin to a RAID 0 configuration. This configuration splits data into blocks

that are spread equally across all drives in the VDEV. Striping provides no fault tolerance, and a single

disk failure will render the data chunks stored on other disks in the VDEV useless. However, it does

provide a benefit in read and write speeds, as the speed of the VDEV is equal to N ∗single disk speed

for both IOPS and streaming. Striping also allows for 100% storage space efficiency.

Mirrored: A mirrored VDEV stores identical copies of all data on each disk. This results in greater

fault tolerance, as all but one of the disks in the mirror can fail, while still retaining full data integrity.

Mirroring provides read IOPS and streaming operation speeds equal to N ∗ single disk speed, as the

different parts of the data can be read from different disks in parallel. However, speeds for write IOPS

and streaming follow the speed of a single drive, as data must be written to each of the disks in the

VDEV. Mirroring also provides poor storage space availability, following N−1
N % for N disks.

RAIDz: RAIDz comes in three varieties; RAIDz1, 2 and 3. Comparable to traditional RAID5 or RAID6,

RAIDz provides fault tolerance through data parity information. The number indicates how many copies

of the parity information is stored, and hence the number of drives in the VDEV that can fail before data

integrity is compromised. All data in the VDEV is striped across the disks, as is the parity information;

there are no dedicated parity disks in a RAIDz VDEV. IO performance for RAIDz is equal to single drive

performance for read and write IOPS, but streaming follows (N −P) ∗ single drive speed, for N data

disk and P parity blocks. Storage space efficiency in RAIDz scales with N−P
N , with P ∈ {1, 2, 3}. The

recommended minimum number of disks N in a RAIDz configuration is P + 2.

28

ZPool

ZFS groups one or more VDEVs into a storage pool. The VDEVS in a pool typically have the same

configuration (all mirrored, all RAIDz2, etc), but this is not required. Fault tolerance is nonexistent

at the Zpool level in ZFS. All redundancy in a pool is provided by the VDEVs, and ZFS treats the

VDEVs in a pool akin to a JBOD storage configuration. The data stored in a Zpool is split into chunks

and spread across the storage VDEVs in the pool. Data is spread across VDEVs according to the free

storage space of each individual VDEV, and the distribution may also be affected by the IO traffic of a

VDEV at the time data is written to the pool (e.g. a busy VDEV may be passed over). If any of the

VDEVs in a pool fails completely, the entire pool is compromised and all data is lost.

Data Checksum

ZFS checksums all data stored in the file system. These checksums are not stored in the block of the

data itself. Instead, it is stored as part of the file system pointer to the block. The pointers themselves

are also checksummed, and these are again stored in the parent block pointer. This practice is employed

all the way up the file system hierarchy to the root node. By separating the data from its checksums,

ZFS retains control of data integrity in cases where a data block is corrupted due to the failure of

physical sectors on the disk (where also the checksum could be corrupted if stored in the same block).

2.5 Network infrastructure

2.5.1 Ethernet

Ethernet is a hardware communication protocol. It is implemented as Ethernet cables, with RJ-45 plugs

on both ends. It is used globally to connect network peripherals such as computers, routers, switches

and IoT devices.

Routers and switches act as data mediators. By use of the MAC protocol, devices can send packets

of data orderly from the source to the destination.

2.5.2 Wi-Fi

Wi-Fi is a technology for wireless communication between devices. Instead of a plug and socket, wireless

communication is performed with antennas. Its ease of use has led to adoption in all public and private

spaces. Wi-Fi is is an implementation of the IEEE 802.11 standard.

Wireless communication uses radio waves to transport data bidirectionally between devices. The

most common form of wireless communication happens in the 2.4GHz and 5.0GHz frequency bands

[6]. The 2.4GHz band is segmented into 14 channels, each channel being 22MHz wide. For a wireless

connection between a computer and a router to be made, the computer occupies one or more channels.

The multi-input multi-output (MIMO) rating of a network interface specifies how many channels can be

used for simultaneous data transmission. In general, the number of antennas correspond to the MIMO

29

rating. A 4x4 MIMO network interface therefore often means a network interface with four antennas.

Occupying multiple channels means bandwidth increases. Communicating over a single channel means

the maximum bandwidth is 22MHz.

This form of communication is prone to interference. Because all devices send and receive data

in the same frequency band, the signals may combine into due to the potentially many sources of

wireless signals, and physical blockage such as walls. Loss of signal is measured in -dbA, and dense

materials such as brick and concrete attenuate the signal stronger than light materials such as plywood

and plaster. The choice between wired and wireless communication is therefore a tradeoff between

reliability and convenience.

2.5.3 DHCP

For computers in a network to be able to send and receive packets of data, each computer must obtain

an IP address. A DHCP server is responsible for assigning each computer a unique address within its

configured network. The DCHP server can also be configured to provide other configuration parameters,

such as specifying the IP address of a server providing domain name system (DNS) services.

2.5.4 TFTP

TFTP is a simplified standard of FTP which allows for file transfer between two devices. TFTP is

often used for deploying updates to simple hardware such as routers, and provisioning operating system

installations to remote hardware. TFTP does not employ security features such as authentication. This

makes TFTP unfit for sharing sensitive data.

2.6 Project management methods

2.6.1 Scrum

Scrum is an agile development method for projects experiencing frequent changes in requirements. In

a scrum managed project, tasks are periodically defined and put in the backlog.

Backlog

The backlog contains all unfinished tasks currently defined for the project. A product backlog keeps

track of all the tasks to be done for the product to be considered complete. A sprint backlog is a subset

of the product backlog which the team should focus on in the current sprint.

Sprint

A sprint is a short period devoted to complete a discussed set of tasks. The sprint follows a life cycle.

30

Sprint planning

Sprint planning is the first activity in a sprint. New tasks are brainstormed and put in the product

backlog. Tasks are chosen from the product backlog and put in the sprint backlog. After performing

sprint poker on the new tasks and agreeing on which tasks to do in the sprint, the sprint commences.

Sprint poker

After creating tasks in the sprint planning phase, the new tasks must be assigned points based on their

difficulty. All participants think about which score the task should be assigned, without revealing the

score. When everyone is ready, everyone reveals which score they chose. If there is a deviation from

the average score, it opens up for discussion on why the individual thinks the score is higher or lower.

This way, new insights about the task may be revealed.

Sprint review

The sprint review is an assessment of the product after a period of work. At the end of a sprint, the

team shows the work done to stakeholders and discusses product goals [7]. New opportunities and

changes in the environment are also discussed and acted on, by reviewing the product backlog.

Sprint retrospective

The sprint retrospective is about assessing the people and processes instead of the product itself. If a

task was not completed due to circumstances, it may be discussed and acted on in the retrospective.

Through iterations, the people and processes become more efficient.

Roles

There are three roles in a Scrum team.

The product owner is responsible for the overall vision of the project. The product owner keeps

track of the product backlog, which is a collection of all tasks to be done for the product to be considered

complete.

The Scrum master is responsible for keeping everyone informed about Scrum, and help the team

members better practice Scrum. The Scrum master is also In scrum, all members of a team are assigned

one of three roles; product owner, scrum master, and stakeholder.

A stakeholder is a person or entity with an interest in the product’s success. Examples of stake-

holders are the users of a product and the client ordering the product.

31

2.6.2 Use case

A use case represent a detailed requirement of the product. For a product to have value, it must fulfill

a user’s needs. Thus, the use case documents how the user interacts with the product to produce value

[8]. A use case diagram consist of actors and use cases, as shown in figure B.1.

Figure 2.4: Use case diagrams consist of actors and use cases. Image source: https://www.visual-

paradigm.com/guide/agile-software-development/user-story-vs-use-case/

2.6.3 Persona

In agile terminology, a persona is a fictional character with specific traits such as age, gender, prior

knowledge, interests and hobbies, and abilities and disabilities. The goal of a persona is to represent a

specific demography and psychography. Personas form the foundation of how features of a hardware

or software solution are implemented. Therefore, a mismatch between the personas and the real user

leads to a lessened user experience.

2.6.4 User story

A user story is a story-like description of a persona and a goal. An example of a user story is ”As a

hotel clerk, I want to manually reserve rooms to arriving guests”. User stories is a tool to effectively

describe a requirement of a product that everyone can understand. This is in contrast to a use case,

which aims to describe a requirement in details for implementors.

32

3 Method

3.1 Scientific method

In the fields of natural science, the tenets of the scientific method are vital to ensure both rigor in

the methods employed in the work performed, and to account for possible error or bias in the findings

resulting from experimentation.

Due to the practical and problem solving oriented nature of engineering work, the traditional

scientific methods of an inductive or deductive approach are not always easily applied. A an engineer

does not, as a matter of course, set out to disprove a hypothesis developed through observation, via

the means of empirical experimentation. Rather, a problem has been identified, and the task is to solve

it.

Hevner et. al [9] and Iivari[10] both posit that a vital part of the engineering process is the

understanding of the problem domain and its solution through the design, application and evaluation

of the product of proposed solutions1.

Here, the scientific methods are vitally applied to the problem solving processes that so much

of engineering work consists of. The methodologies and practices prescribed by the various scientific

paradigms are applied to the processes of domain modeling, requirement development, knowledge

building, and the design and implementation of the product.

These practices help ensure that the results of a development project are both reproducible and

of high quality, as well as being relevant to the problem that should be solved. Reproducibility is

important to ensure the repeatability of the work, such that the designed product can be taken from

a small-scale design and development stage, to large-scale production. Ensuring the relevance of the

developed solution, i.e. that it solves the problem it is meant to, is also paramount, as a product

without purpose has little to no value.

Furthermore, a rigorous, logical and scientific development process is important in order to ensure

that the results and findings produced throughout the project can be documented in such a way that

it aides both engineers and researchers in future endeavors. Hevener[11] writes that ”understanding

and communicating the design science research process is essential ... to establish the credibility of

IS design science research among the larger body of researchers [in other fields] ...”, emphasizing the

importance of scientific rigor in engineering as a means to ensure that the work can be communicated

to those in other disciplines.

1Hevner refers to such products as ”artifacts”[9]

33

As many of the concepts and theories the project is based on were largely unknown to the team,

extensive work had to be done to build up the knowledge base of the team. This included both knowledge

regarding the problem domain (3D printers, Industry 4.0), and subjects related to the engineering work

(kubernetes, linux sysadmin, server system provisioning).

Additionally, a lot of knowledge needed to be acquired about the expected use cases of the products

being developed, in order to be able to develop the design requirements of the product.

While this project was not intended to be a purely design science research (DSR) project, some

of the DSR methodologies and guidelines described by Hevener and Iivari have been applied to certain

parts of the project.

Relevance for the designed systems was sought through qualitative methods, including conversa-

tions with and observation of students at MANULAB in order to identify their needs. The team was

also provided with several user reports from an assignment that students at MANULAB had been given,

where they were asked to test, evaluate and provide feedback on the first prototype of the printer farm

system. The feedback in these reports helped inform the requirements that were laid out during the

design process.

Plans for further user tests of the system (for qualitative evaluation of the products relevance),

in addition to multiple-choice questionnaires (for quantitative evaluation), were planned for when the

product reached a usable state. However, these tests were never designed or preformed.

In the work to build the required knowledge and skills to develop the required systems, the team

read extensively on the subjects. The sources for this literary study were mainly found online, in the

form of the system documentation provided by the developers of the systems and frameworks being

employed. Heavy use was made of the documentation of Kubernetes, K3S, the Raspberry Pi SBC,

the Linux kernel, the ZFS system, as well as the JavaScript libraries employed for the web application

frontend and backend.

It was also necessary for the team to familiarize themselves with the various possible technologies

and systems available to choose from. The team approached this by identifying those that appeared most

widely used and adopted in their relevant fields. These options were further compared and contrasted

based upon criteria such as the quality of documentation, their complexity (both as perceived by the

team, and as described by reports from users of these systems), and the teams perception of the

difficulty in learning how to use these technologies at the level required.

The approach taken here largely followed the cyclical model described for DRS, with focus on the

design and rigor cycles. This approach was felt to allow the team to ”learn by doing”, which was seen

as an appropriate approach given the complexity of the engineering subjects in question as well as their

practical, rather than purely theoretical, nature.

34

3.2 Hardware

3.2.1 Prusa 3D Printers

The 3D printers used in the project were all manufactured by Prusa Research. Their use was not a

choice made by the developers, as Manulab already owned many Prusa 3D printers. However, since

any 3D printer with an USB interface would suffice for a prototype, selecting another type or brand

of printer was not necessary. This saved us from time spent waiting for delivery, and immediate and

future monetary expenses.

3.2.2 Raspberry Pi

Raspberrry Pi SBCs were used extensively in this project. Each individual printer in the farm system

was connected to a Raspberry Pi 4B configured with OctoPrint. The Prusa 3D printers used in this

project do not have hardware for network connectivity, and general purpose computers were therefore

attached to the 3D printers via USB to provide a service to other computers on the network.

The SBC’s were also used to build the server hardware, where they are configured as nodes in

a kubernetes cluster. The Raspberry Pi 4B is a capable device when comparing processing power in

relation to their size. While a single Raspberry Pi 4B would not be powerful enough to handle the

processing load required by the server, a cluster of these devices would allow for horizontally scaling the

server hardware in order to meet these requirements.

One reason for their selection was in part due to MANULAB already being in possession of a large

stock of these devices. However, an evaluation of the suitability of the Raspberry Pi was done at the

start of the project. As their use at MANULAB was largely due to the Raspbery Pi’s status as the

de facto choice of SBC in automation and IoT prototyping and hobbyist projects, the developers and

product owners felt that a review of the alternatives was in order. Many other SBC products exist,

some of which could potentially be more suitable and cost effective for the intended application.

When choosing the kind of computer, three criteria needed to be met.

First criteria is to include an RJ45 socket for wired connectivity, for two reasons. Firstly, because

of the potentially high volume of printers on the same network, wireless was deemed too unreliable.

A proper benchmark of network congestion and packet loss was not conducted since the Idea Lab did

not have the hardware to perform such a test. Taking into consideration the reliability goal, the team

decided to not introduce the risk of network congestion and packet loss in constrained environments.

As the SBCs would also be mounted to racks with ample space for running cables, the team responsible

for building these racks did not consider the need for ethernet cabling to be a problem. The second

reason for choosing a wired ethernet network, was the added possibility of utilizing PoE. By powering

the SBCs via PoE, a tradeoff could be made between the cost and added complexity of providing each

SBC with a separate power adapter versus adding PoE hardware.

The second criteria of the SBC is to be ubiquitous. One advantage of ubiquitous hardware is stable

supply chains, and therefore stable prices. In the event of a supply chain instability, the price increase

and unavailability is not as severe as if another less common SBC had been chosen [12]. Another

35

advantage is replacability. Hardware failure is inevitable. By being able to respond quicker to hardware

failure, the service stays up for longer which benefits all the users. The

The third criteria of the SBC is the ability to run Linux-based operating systems. Software today

primarily runs on Windows, Mac OS and Linux. While the Nano and Core versions of Windows Server

are engineered to run on low power hardware, the Windows family of operating systems are regulated

under a paid license and proprietary code. In contrast, Linux-based operating systems are regulated

under a free and open source license. This means choosing Linux will not burden the project with

proprietary licenses.

The most ubiquitous SBC with an Ethernet port which runs Linux is the Raspberry Pi. The

Raspberry Pi is a staple in IoT.

MicroSD cards

Raspberry Pis use microSD cards as primary storage. While microSD cards are ubiquitous, their slow

read/write speed coupled with short lifespan makes microSD cards unfavorable in read/write intensive

workloads.

Figure 3.1: Raspberry Pi Imager for easily flashing SD cards

36

3.3 Frameworks and libraries

3.3.1 Containers

Software relies on the operating system application programming interface (API) to provide access to

computer hardware. The API is implemented as software libraries. For all new versions of the operating

system, some built-in libraries may change in incompatible ways, rendering dependent software non-

functional. Containerization solves this by packaging the software with compatible libraries.

Software however rarely make use of all built-in operating system libraries. To decrease the size of

the container, only the necessary libraries are packaged.

3.3.2 Kafka

Apache Kafka is a event streaming platform, combining an event stream processing system and an event

store database. It is developed by the Apache Software Foundation. In the early stages of the project,

Kafka was intended to be implemented in the project as part of the data and statistics collection part

of the backend system.

Kafka was chosen for this because it is a widely used platform in the Industry 4.0 sector, and

ideal for handling large systems of IoT devices. Kafka offers a system for handling large streams of

sensor data, providing utilities for analytics and data processing. It’s intended use in the product was to

handle the streams of print job progress reports from the printers in the system. These reports would

be processed to extract statistics for the farm administration dashboard, and the collated data would

be stored for use in future data analysis projects at MANULAB.

However, Kafka was eventually cut as a requirement. This decision was made after talks between

the team of this project and the team of a future project, which is intended to continue developing

the data and statistical analysis systems at MANULAB. This was agreed upon partly because the

integration of Kafka was not vital to the main goals of this product, as OctoPrint already provided

API’s that were sufficient for extracting data for print job monitoring. It was also agreed that moving

the work pertaining to the design and implementation of the data collection system over to the team

that would be using this system in their work, would grant this team greater autonomy in their project.

The other team were not previously familiar with Kafka, and wished to explore the available possibilities

as part of their work.

3.3.3 High availability

A goal of the PrintMan project was for the system to be highly available. Long delivery times for new

parts and untrained personnel means a failure may last for more than 24 hours. Although downtime of

the system is not critical at this stage, future extension of the system will be troublesome if the system

cannot scale.

37

3.3.4 MQTT

MQTT was intended to be used as the messaging protocol between the 3D printers and the Kafka data

processing system in the backend. MQTT was chosen for this purpose as it is well suited for transmitting

sensor data from a large number of IoT devices. Due to it’s lightweight bandwidth requirements and

focus on reliable machine to machine communication in scenarios with constrained networks, as well as

its widespread use in Industry 4.0 systems, it was seen as an ideal solution that would allow for both

scaling of the printer farm as well as the integration of future projects into the system. Another reason

for its selection was the existence of an MQTT messaging plugin for the OctoPrint software. This

plugin meant that the team would not have to implement this functionality from scratch, a task that

would have added significant complexity to the project.

The use of the MQTT protocol was cut from the project requirements, as part of the decision to

cut Kafka. MQTT was not required for transmitting print job progress reports, as OctoPrint already

provides this through WebSocket protocols, and was only chosen originally for its integration with Kafka.

3.3.5 Nest

Using express directly in the project is disadvantageous. The express documentation leaves the structure

of the project to be solved by the reader. Thus, the project maintainers are responsible for documenting

the low-level plumbing. Furthermore, the project will experience a turnover of inexperienced developers

every year. As a result, developers most likely end up spending much time learning a partially docu-

mented folder structure.

Nest is a web backend framework focusing on code structure. It delegates details about handling

http requests and websocket traffic to the express framework, and builds a modular framework on top of

it. To use Nest, Developers define modules, services and controllers which are connected automatically

by the Nest framework. The burden of documentation is therefore mostly delegated to Nest developer

documentation.

3.3.6 Turborepo

The PrintMan system currently consists of a web frontend and backend. To manage multiple projects,

it was favorable to use a monorepo tool. Turborepo was chosen as the monorepo tool.

Shared models

Both the frontend and backend are made in TypeScript. Because both projects use the same program-

ming language, it is possible to share the same data models between the projects. One advantage of

shared models is no code duplication. If the code is duplicated, the representation of the same model

can differ between the frontend and backend. If an incompatible change is introduced only to one

version of the model, the frontend or backend will use the data erroneously.

38

Fast iterations

Running the frontend and backend code in parallel can be done with a single command. Furthermore,

for every change in one of the projects, only the affected project restarts. This leads to faster time to

start up, and less time to wait between changes.

3.4 Project organization

3.4.1 Discord

Both authors prefer using Discord for casual communication. Separating casual communication on

Discord and formal agreements on Jira and Confluence leads to better organization, as important

documents are stored in a single, organized location. The Discord platform is also widely used by

the DOOCE faculty for communicating announcements to students, and as communication channels

internally in project teams. At the request of the product owner, all digital communication between the

team and the product owner was done through a dedicated channel on the MANULAB Discord server.

3.4.2 Google Drive

Google Drive was used as a cloud storage for collecting files that did not directly pertain to Confluence

documents or were not suitable for storing in a code repository VCS. Instruction manuals, PDFs of

books and reports used for literature surveys, templates for reports and thesis attachments, and various

other files are stored in Google Drive. Google Docs was used at various stages for collaborating on

document writing, creating presentation slideshows, spreadsheets etc.

3.4.3 Overleaf

For writing the thesis, either a word processor application or a document preparation system could be

used.

GUI word processing applications are driven by buttons and menus. The functionality in a GUI

driven application is easier to use and more intuitive as a first time user, since the buttons are exposed

and available to experiment with without needing to consult the documentation at first. However,

there are several disadvantages to using a GUI driven word processor. The GUI is rarely customizable

or extendable. Since the GUI is designed to fit the average user, many specialized features become

cumbersome to use. Neither Microsoft Word nor Google Docs, the two most popular word processor

applications, are extendable in a way which is favorable for report writing.

On the other hand, LaTeX is a document preparation system. It is entirely driven by text commands,

and is extendable by defining new commands. A significant advantage of LaTeX is being able to

leverage community libraries. There are libraries for inserting table of contents, figures, code formatting,

glossaries and more.

Overleaf is a web-based, real-time collaborative application for writing LaTeX documents. By using

39

Overleaf, the team has been able to write a professional-looking thesis with minimal resistance.

3.4.4 Scrum

The team was unfamiliar with many of the technologies used in the project. Thus, making a detailed

five-month waterfall plan was not feasible. Instead, using Scrum to plan one week sprints at a time

with monthly milestones gave the team time to discover future hindrances.

Roles

Since the team only consists of two people, both were assigned the Scrum master role.

3.4.5 Distribution of work

The project is split into three parts. First part was management of networking, provisioning Raspberry

Pi OS to Raspberry Pis, and configuring OctoPrint with correct plugins. The second part was managing

Kubernetes installation and configuration, and service deployments. The third part was developing the

frontend and backend services.

The first and second part was wholly delegated to a single person, while the third part was shared

between both people.

3.5 Software and applications

3.5.1 OctoPi

To interact with the 3D printer, client software and 3D printer drivers are needed. OctoPi is an operating

system distribution which includes the required software and drivers. Since OctoPi includes all required

software, it removes the burden of manually customizing an installation with self-made scripts. Another

benefit is its ease of installation through the Raspberry Pi Imager software.

40

4 Results

4.1 Scientific results

The scientific methodology applied in this project was based on the cyclical approach described by

the design science research (DSR) paradigm[10]. As this project was not a strict DSR project, these

methods were adapted to fit the workflow of the team. These adaptations were mainly in the form of

the required rigorousness in relation to the knowledge building process, where the team focused more on

exploring and evaluating the existing possibilities, and did not always treat this as a scientific literature

study.

4.1.1 Relevance

In the work of detailing the domain and requirements for the project, the team approached this mainly

through qualitative methods, by engaging in dialogues and observation of the expected end user (stu-

dents and staff at MANULAB). The team were provided with a collection of user reports from an

assignment students had been given before the project started. The task of these assignments were to

test and evaluate the early prototype that this project builds upon. The reports from this assignment

identified several key points that were used to develop the initial requirements for the project. The

findings from these qualitative studies are documented in the form of user stories in Jira, as well as

in product requirement documents using a template in Confluence. See appendix C.1 and C for these

documents.

4.1.2 Knowledge base building

During the knowledge building process, which constituted a significant part of the project, the team ap-

proached the technologies used with a design-rigor cycle approach. Technologies and systems that were

to be used, or were being considered for use, in the project were investigated through small-scale trial

implementations in order to gain insight into both the theoretical complexity and the implementational

complexity of these.

Several technologies were investigated and tested by practical application, and their merits were

compared. The results of these comparisons are detailed in two ways. Issues were created in the Jira

system for those the team felt merited closer investigation. Comments were added to these issues, and

also to the work log entries for these tasks, describing the findings from these investigations. Decision

41

reports were created in Confluence for those that were selected, describing the reason for their selection.

At times, the blog functionality in Confluence was used as a way to write logs of the work being

done. This was used both as a way to ensure reproducibility of the findings from the exploratory work,

as well as to track the thought process during difficult tasks in order to have a form of reference material

for the report writing. These were often also written in the form of tutorials intended for others at

our skill level, as this exercise was seen as a good way to evaluate if the understanding that had been

gained was factually correct. See appendix G for examples of these.

4.1.3 User testing

The team had intended to perform user testing of the products developed in this project. The web

application was to be tested both in small scale test, where the focus would be on gaining feedback

from super user and administrators regarding the functionality of the features of the frontend and farm

hardware systems. Large scale user test were also intended of the frontend system, here using larger

groups of people from both the basic user and advanced user groups. This was intended both to be used

as stresstesting of the system, as well as a comparison to the results found in the student assignment

reports. Neither of these tests were performed, as the system never reached a state where these kinds

of tests were possible.

4.2 Technical results

4.2.1 Raspberry Pi management

Netboot

If there is an available port in the PoE+ network switch, a raspbery pi may be plugged in and have

Raspberry Pi OS automatically installed. At first, ability to provision both Raspberry Pi OS and OctoPi

was planned. However, due to complexity, it was later decided to only provision Raspberry Pi OS.

Adding a Raspberry Pi as worker or server

After netbooting, the raspberry pi should have been assigned a k3s worker or server role. However, the

team did not have time to investigate this.

4.2.2 Infrastructure scalability

One of the goals was making the backend scalable in terms of future expansion of the printer farm, and

integration with other projects at the Manulab.

42

Service deployment with kubernetes

Kubernetes has been installed on Raspberry Pis. Additionally, services such as the frontend and backend

may be installed on the Raspberry Pis by creating A YAML definition for a deployment, and applying

it through the command ‘kubectl apply -f <definition>.yml‘. The services may replicate to

multiple instances across several Raspberry Pis.

Exposing services with Traefik

However, these services are not exposed to the internet. Traefik requires configuration for exposing

Kubernetes services. Although the documentation was read and a team member tried to solve this, the

solution to this was not found.

4.2.3 Frontend

The web frontend is not yet available on https://printman.manulab.net. A wildcard certificate must

first be generated with Certbot, then the certificate must be added as a Kubernetes secret. Upon

entering the site, dummy data is presented. When pressing one of the cards, graphs and logs related to

the print job should have been presented, but only dummy graphs are presented. When dragging and

dropping a 3D model onto the drop zone, a modal is presented. Settings such as filament type and

color cannot be adjusted. The job cannot be started.

4.2.4 Backend

Dummy data is generated and sent to the frontend. The backend can successfully connect to one or

more OctoPrint instances, however the data is not aggregated. The camera feed from a printer is not

mediated to the frontend.

4.2.5 Storage

A hard drive bay with five hard disk drives is connected to one of the Raspberry Pis. However, with the

decision to drop the software storage solution, it is currently not in use.

Statistics

Capturing statistics would be used for analyzing and machine learning in the future. However, later the

team did not want to dictate which software solution to use for storing the statistics data

4.2.6 MQTT

Initially, it was decided to run MQTT services on the cluster. Since the scope of the project was growing

beyond what the time limit allowed, this requirement was dropped.

43

https://printman.manulab.net

4.2.7 Printers, OctoPi and OctoPrint

Printer interface

OctoPrint successfully connects to a printer. When assigned a job, the printer prints. The camera

shows a live feed from a designated URL.

MQTT from OctoPrint

Before deciding to drop the storage requirement, the MQTT plugin was installed on OctoPrint. To

monitor the MQTT traffic, MQTT-Explorer was installed. However, due to difficulty configuring Traefik

to expose MQTT endpoints, the MQTT traffic could not be monitored.

4.3 Administrative results

4.3.1 Scrum

The team was largely inexperienced with the use of SCRUM methods in project organisation. The

team used the tools provided Confluence for documentation of requirements, design decisions and sprint

retrospectives. Jira was used for issue tracking, where requirements from Confluence were created as

user stories or tasks.

Sprint planning, sprint review, sprint retrospective were used the first four weeks. By the fifth week,

sprint planning was not done. This period coincides with the research of Kubernetes and netbooting,

and a period of high workload in other study activities that ran parallel to the project.

Roles

As the team only consisted of two people, the traditional role distribution used in SCRUM was not

used. Both members functioned as developer, SCRUM master and product owner at all times, and

decisions that would be made by these roles were made jointly.

4.3.2 Distribution of work

The project was split into three parts. First part was management of networking, provisioning Raspberry

Pi OS to Raspberry Pis, and configuring OctoPrint with correct plugins. The second part was managing

Kubernetes installation and configuration, and service deployments. The third part was developing the

frontend and backend services.

The first and second part was wholly delegated to separate members, while the third part was

shared between both people.

44

5 Discussion

5.0.1 Printers

Although the prototype was not developed to the extent that real 3D printers were tested, the 3D

printers proved sufficient when the prototype eventually is developed enough. Although nozzles were

clogged from time to time, the teaching assistants quickly fixed the problem when it happened.

5.0.2 Raspberry Pi

Because the project did not require hardware resources outside of merely hosting web services, Raspberry

Pis were sufficient for prototyping purposes. the Idea Lab were already supplied with 15 Raspberry Pis.

5.0.3 Kubernetes

The decision to use Kubernetes is due to the goal of high availability. After careful considerations

between different implementations of Kubernetes such as MicroK8s, Minikube, standard Kubernetes

and K3s, the team found k3s to be the most viable alternative. This is partly because k3s has been

recognized as a CNCF sandbox project [13], and because it had favorable features such as embedded

etcd for cluster configuration. Although the choice to use Kubernetes was founded on solving a real

problem, it severely impacted the resulting work and thesis. Seven weeks were spent learning Kubernetes,

in which no other value was added to the project in that time frame. In hindsight, adding Kubernetes

retroactively when a working MVP was implemented and outside the boundary of the bachelor thesis

would have saved us from being stuck in research phase for so long.

HTTPS certificate with Let’s Encrypt

Hosting a service over HTTPS on Kubernetes requires the certificate to be stored as a Kubernetes

secret. Because all computers reject certificates not signed by a trusted root certificate authority, a

third party CA must sign the certificate. The Let’s Encrypt service can provide a signed certificate that

all computers trust. The team did not have the time to generate and test such a certificate.

45

5.0.4 Frontend

NextJS

NextJS’ nested folder structure for subpages was a good addition for the project. It is easy to understand

the relationship between the pages without reading the code.

WebSocket

WebSocket was a good fit for sending printer data to the frontend. Although the team did not have any

experience with Socket.IO, it seems easy to swap the plain WebSocket implmementation to Socket.IO

both for the frontend and backend.

5.0.5 Turborepo

Turborepo was easy to understand from their developer documentation. Running projects in parallel

proved to be as easy as running a command.

NPM versus Yarn

Using NPM, local module resolution was a problem. The tsconfig.json file which resides in the pack-

ages/tsconfig folder could not be correctly imported. However, by switching to Yarn v1, this was not a

problem. Future versions of Turborepo might solve outstanding issues relating to package managers.

Turborepo pruning

Pruning with Turborepo worked well. After pruning the web service for example, a dockerfile could

package the pruned files into a complete image ready to deploy to the cluster.

5.0.6 Kafka

Using kafka in the project was scrapped for the same reason MQTT was scrapped. The team did not

want to impose a storage solution on the master students who will eventually work on the statistics

analysis.

5.1 Results

The product resulting from this project is far from complete. A simple prototype of the web interface

for the frontend was developed early in the project, intended to be an MVP that could be used to

show the product customer. The project itself hit a standstill around early april. Around this time, the

team decided to add several requirements to the project, pertaining to the server infrastructure design.

46

Among these were to move the server hardware system, which had previously been planned to be a simple

desktop computer, into a cluster of Raspberry Pi’s. The team believed this was a good way to fulfill the

requirements that had been stated regarding the foundation that the project was supposed to lay for

future projects at MANULAB. The team decided to implement the server architecture as a Kubernetes

cluster, and at the same time that the Raspberry Pi’s being used should not boot from SD cards due

to their unreliable nature. It was believed that netbooting the Pi’s, both those used in the cluster, and

those connected to the printers, would provide a more robust system by eliminating this possible source

of hardware failure. The decision to develop a clustered server infrastructure came from the goal that

the server should ideally be robust enough to handle the web traffic that the webapplication could be

expected to handle. As a single desktop computer as server would have resulted in a single point of

failure which could bring down the entire system, a cluster was considered to be both more robust, as

well as providing options for horizontal scaling to meet future compute hardware requirements.

The server that was designed to provide the netbooting services for the cluster and printers proved

a great challenge to implement. It was decided, for reasons of fault tolerance of the OS data of these

systems, that ZFS should be set up using an external USB chassis with 5 hard drives. Many issues

sprang from this part of the project, seemingly from untraceable and unsolvable hardware issues with

the USB chassis itself. Great amounts of time was spent trying to debug and implement this system,

but no conclusion was made about the source of the problem.

Configuring the operating systems for the raspberry Pi’s also proved challenging, and work here

was affected by the unreliability discovered in the server storage devices. A netbooting proof of concept

was achieved eventually, but much vast amounts of time was spent doing this. Netbooting of Raspberry

Pi’s works well, but is a fairly new concept. Many confusing sources on the subject were investigated,

many of which lead no closer to a working result. Among these sources were the official documentation

of the Raspberry Pi itself. Results were only achieved here after great effort to assemble a working

solution by combining and testing claims made by several sources, and this trial-and-error approach to

problem solving proved too costly. The team should have accepted that this problem was outside of

the scope of the project at an earlier stage, and should have adapted accordingly.

Further challenges in the way of achieveing the desired results came from the Kubernetes cluster

itself. This proved to be a challenging technology system to understand, and the team had no previous

experience with Kubernetes, and only a little experience with Docker containers. This is again a point

that the team should have realised and acted upon much earlier, and shift the focus of the project back

to the main requirements.

The sum of all these challenges is that there is no functional product as the result of this project.

Many problems were solved regarding Kubernetes, linux system administrtion, network configuration

and netboot OS provisioning, but ultimately there were too many issues left with no time to solve

them.

47

6 Conclusion and recommendations further

work

6.1 Conclusion

Regretfully, few conclusions can be drawn from the results of this project. Most of the planned features

and requirements are only in a partial state of completion, and as such there has been little opportunity

to put the criteria we have defined in user stories and our plans for user tests through any form of

evaluation process.

The few conclusions the team feel comfortable making are mostly in regard to project planning and

methodology. The team unequivocally believes that the poor, and in some cases non-existent, results

of this project are fully due to their own failings in evaluating the workloads certain design choices and

requirements brought to the project.

The team members started off working in a structured manner, with frequent sprint planning, story

point poker for estimating workloads, and retrospectives. However, this structure became fleeting once

the team started researching Kubernetes and Netbooting. Entire sprints were devoted to only research,

and the lack of changing tasks made the members complacent to the fact that the research task we

planned to spend a week on were still the main focus week after week.

Both members agree that the workloads, both in the project itself and in other studies parallel to

the project, and lack of tangible progress in this work lead to a feeling of low morale and demotivation,

and that these were felt seemingly as personal failures on our part. Neither member voiced this opinion

at the time, but reflection and dialogue at the end of the project has revealed that these feelings were

harbored by both, in increasing fashion, as the project dragged on.

As a symptom of this, the members were less and less active in the requisite tasks on Jira and

Confluence, where timekeeping and work logging also suffered. Documentation of the system also was

negatively affected by this. Blog posts were posted in the beginning, however as the team drowned in

documentation and cooperated less, we did not hold each other as accountable as we should have.

The requirements the team set that resulted in the greatest workloads were all associated with

the design and implementation of the server infrastructure. These were all tasks chosen by the team

because of their deep interest in the subjects, and they were seen as great opportunities to dive into

systems and technologies that had not been extensively covered by their curriculum of their studies.

48

6.1.1 Kubernetes

Researching kubernetes took a substantial amount of time. Instead of adding Kubernetes right away,

implementing a fully working MVP and basing the thesis on that would have saved us a lot of time.

The drawback of not using Kubernetes would be a single-node failure leading to downtime.

Traefik

The services on the cluster can be deployed. However, Traefik configuration for exposing the deploy-

ments do not work. See section F.1 for the definitions pertaining to the deployments of the frontend

and backend services.

Automatic k3s setup

The Raspberry Pis currently can be netbooted. However, k3s is not automatically installed after first

boot. To install k3s, an init script must run. Two OS images must be made, one for k3s server and

another for k3s worker.

6.1.2 Raspberry Pi

The Raspberry Pis are relatively cheap and has adequate performance for hosting web services. This

makes them great computers for the cluster. However, the work involved in setting up over a dozen

linux systems for netbooting was greatly underestimated. The vastness of this task was not apparent

at first, and as more hours were poured into it, a certain form of sunk-cost fallacy set in.

In all these cases, the team agrees that a more critical stance on their relevance to the project and

product should have been taken much earlier on. The team believes it is not inconceivable that a fully

functional farm management system could have been developed during this project, had priorities been

chosen differently.

6.1.3 Further work

While the team has doubts regarding the usefulness of their work as foundation for further work related

to the system, we have identified several possible features and systems that could be implemented

Storage

Eventually, master students will work on the storage system. To store statistics, a Pub/Sub protocol

such as MQTT is favorable.

49

7 Effects on society

50

Bibliography

[1] MANULAB. (). ‘Manulab’, [Online]. Available: https://manulab.org/ (visited on 2022).

[2] NTNU. (). ‘Manulab’, [Online]. Available: https://www.ntnu.no/ivb/manulab (visited on 2022).

[3] Prusa Research. (). ‘Prusa pro afs’, [Online]. Available: https://expo.prusa3d.com/.

[4] Mozilla. (2022). ‘Html tag reference’, [Online]. Available: https://developer .mozilla .org/en-

US/docs/Web/HTML/Element (visited on 12th Dec. 2021).

[5] Git. (2022). ‘About’, [Online]. Available: https://git-scm.com/about (visited on 12th Dec. 2021).

[6] 802.11 WG - Wireless LAN Working Group. (2021). ‘Ieee 802.11ax’, [Online]. Available: https:

//standards.ieee.org/ieee/802.11ax/7180/ (visited on 6th May 2022).

[7] Schwaber, Ken and Jeff Sutherland. (). ‘The scrum guide’, [Online]. Available: https://scrumguides.

org/scrum-guide.html#purpose-of-the-scrum-guide (visited on 2020).

[8] Visual Paradigm. (). ‘User story vs use case’, [Online]. Available: https://www.visual-paradigm.

com/guide/agile-software-development/user-story-vs-use-case/ (visited on 12th Dec. 2021).

[9] A. Hevner, A. R, S. March, S. T, Park, J. Park, Ram and Sudha, ‘Design science in information

systems research’, Management Information Systems Quarterly, vol. 28, pp. 75–, Mar. 2004.

[10] J. Iivari, ‘A paradigmatic analysis of information systems as a design science’, Scandinavian

Journal of Information Systems, vol. 19, pp. 39–, Jan. 2007.

[11] A. Hevner, ‘A three cycle view of design science research’, Scandinavian Journal of Information

Systems, vol. 19, Jan. 2007.

[12] Raspberry Pi. (). ‘Supply chain, shortages, and our first-ever price increase’, [Online]. Available:

https://www.raspberrypi.com/news/supply-chain-shortages-and-our-first-ever-price-increase/

(visited on 20th Oct. 2021).

[13] CNCF. (). ‘K3s graduated to cncf sandbox project’, [Online]. Available: https://www.cncf.io/

projects/k3s/ (visited on 19th Aug. 2020).

51

https://manulab.org/
https://www.ntnu.no/ivb/manulab
https://expo.prusa3d.com/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://git-scm.com/about
https://standards.ieee.org/ieee/802.11ax/7180/
https://standards.ieee.org/ieee/802.11ax/7180/
https://scrumguides.org/scrum-guide.html#purpose-of-the-scrum-guide
https://scrumguides.org/scrum-guide.html#purpose-of-the-scrum-guide
https://www.visual-paradigm.com/guide/agile-software-development/user-story-vs-use-case/
https://www.visual-paradigm.com/guide/agile-software-development/user-story-vs-use-case/
https://www.raspberrypi.com/news/supply-chain-shortages-and-our-first-ever-price-increase/
https://www.cncf.io/projects/k3s/
https://www.cncf.io/projects/k3s/

52

Appendix

53

A Pre-project plan

54

B Requirement specification

B.1 Contents

1. Introduction 69

2. Use Case diagram 70

3. User Stories 70

4. Domain model 71

5. Wireframes 72

B.2 Introduction

This document details the product requirements as they were defined for the project.

69

B.3 Use Case diagram

[H]

Figure B.1: Use case diagram

B.4 User Stories

See appendix C.1.

70

B.5 Domain model

Figure B.2: Domain model diagram.

71

B.6 Wireframes

Figure B.3: Wireframe of card module for printer grid.

72

Figure B.4: Wireframe of the detail printer view.

73

Figure B.5: Wireframe of the printer grid overview page layout.

74

C Research issues

75

[PRINTMAN-4] Explore existing implementations and competing products Created: 19/Jan/22 Updated: 26/Jan/22 Resolved: 26/Jan/22

Status: Done

Project: Manulab 3D Printer Manager

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Task Priority: Medium

Reporter: Olav Valle Assignee: Olav Valle

Resolution: Done Votes: 0

Labels: None

Remaining Estimate: 0 minutes

Time Spent: 3 hours

Original Estimate: Not Specified

Sprint: PRINTMAN Sprint 0: Pre-project

Generated at Fri May 20 08:38:53 CEST 2022 by Olav Valle using Jira 8.22.2#822002-sha1:165c8f51e3b1a891285d611f42f1d6c4389222ad.

[#PRINTMAN-4] Explore existing implementations and competing products https://jira.iir.ntnu.no/si/jira.issueviews:issue-html/PRINTMAN-4/PRINTMAN-4.html

1 of 1 5/20/22, 08:38

[PRINTMAN-12] Why React? Created: 26/Jan/22 Updated: 07/Feb/22 Resolved: 07/Feb/22

Status: Done

Project: Manulab 3D Printer Manager

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Task Priority: High

Reporter: Olav Valle Assignee: Unassigned

Resolution: Done Votes: 0

Labels: Documentation, decision-report

Remaining Estimate: Not Specified

Time Spent: Not Specified

Original Estimate: Not Specified

Epic Link: Decision reports

Sprint: Sprint 1: Grid view MVP

 Description

Contrast and compare React (Next.js) to alternative web frontend frameworks.

Notable alternatives:

• Vue

• Svelte

• Angular

• Next.js or just React?

 Comments

Comment by Olav Valle [26/Jan/22]

React vs Next.js

https://www.youtube.com/watch?v=6jWWKczzGM0

Generated at Fri May 20 08:38:33 CEST 2022 by Olav Valle using Jira 8.22.2#822002-sha1:165c8f51e3b1a891285d611f42f1d6c4389222ad.

[#PRINTMAN-12] Why React? https://jira.iir.ntnu.no/si/jira.issueviews:issue-html/PRINTMAN-12/PRINTMAN-12.html

1 of 1 5/20/22, 08:38

[PRINTMAN-14] Why Turborepo? Created: 26/Jan/22 Updated: 07/Feb/22 Resolved: 07/Feb/22

Status: Done

Project: Manulab 3D Printer Manager

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Task Priority: High

Reporter: Olav Valle Assignee: Unassigned

Resolution: Done Votes: 0

Labels: Documentation, decision-report

Remaining Estimate: Not Specified

Time Spent: Not Specified

Original Estimate: Not Specified

Epic Link: Decision reports

Sprint: Sprint 1: Grid view MVP

 Description

Compare and contrast turborepo, and the use of a monorepo, to the alternatives

• Why a monorepo?

• NX vs Turborepo

Generated at Fri May 20 08:38:28 CEST 2022 by Olav Valle using Jira 8.22.2#822002-sha1:165c8f51e3b1a891285d611f42f1d6c4389222ad.

[#PRINTMAN-14] Why Turborepo? https://jira.iir.ntnu.no/si/jira.issueviews:issue-html/PRINTMAN-14/PRINTMAN-14.html

1 of 1 5/20/22, 08:38

[PRINTMAN-15] Why containerised dev environment? Created: 26/Jan/22 Updated: 07/Feb/22 Resolved: 07/Feb/22

Status: Done

Project: Manulab 3D Printer Manager

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Task Priority: High

Reporter: Olav Valle Assignee: Unassigned

Resolution: Done Votes: 0

Labels: Documentation, decision-report

Remaining Estimate: Not Specified

Time Spent: Not Specified

Original Estimate: Not Specified

Epic Link: Decision reports

Sprint: Sprint 1: Grid view MVP

 Description

Compare and contrast pro/con of containerising the dev environment

• Is it common practice?

• Weigh benefits vs cost

• Still feasible/valuable if not using a monorepo?

Generated at Fri May 20 08:38:46 CEST 2022 by Olav Valle using Jira 8.22.2#822002-sha1:165c8f51e3b1a891285d611f42f1d6c4389222ad.

[#PRINTMAN-15] Why containerised dev environment? https://jira.iir.ntnu.no/si/jira.issueviews:issue-html/PRINTMAN-15/PRINTMAN-15.html

1 of 1 5/20/22, 08:38

[PRINTMAN-56] OctoPi vs Dockerized OctoPrint Created: 07/Feb/22 Updated: 01/Mar/22

Status: To Do

Project: Manulab 3D Printer Manager

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Task Priority: Medium

Reporter: Olav Valle Assignee: Unassigned

Resolution: Unresolved Votes: 0

Labels: None

Remaining Estimate: Not Specified

Time Spent: Not Specified

Original Estimate: Not Specified

Epic Link: Decision reports

Generated at Fri May 20 08:38:19 CEST 2022 by Olav Valle using Jira 8.22.2#822002-sha1:165c8f51e3b1a891285d611f42f1d6c4389222ad.

[#PRINTMAN-56] OctoPi vs Dockerized OctoPrint https://jira.iir.ntnu.no/si/jira.issueviews:issue-html/PRINTMAN-56/PRINTMAN-56.html

1 of 1 5/20/22, 08:38

[PRINTMAN-66] Research forking and expanding MQTT plugin Created: 01/Mar/22 Updated: 20/Apr/22

Status: To Do

Project: Manulab 3D Printer Manager

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Task Priority: Medium

Reporter: Olav Valle Assignee: Unassigned

Resolution: Unresolved Votes: 0

Labels: None

Remaining Estimate: Not Specified

Time Spent: Not Specified

Original Estimate: Not Specified

Epic Link: Backend MVP

Sprint: Sprint 4: Backend MVP

 Description

The MQTT plugin for OP may need to be expanded with custom event hooks, to be able to get the type and format of data that we require.

See OP documentation and MQTT plugin github:

• https://docs.octoprint.org/en/master/plugins/index.html

• https://github.com/OctoPrint/OctoPrint-MQTT/blob/master/octoprint_mqtt/__init__.py

 Comments

Comment by Simen Nesse Wiik [20/Apr/22]

Might not be necessary. I have found the root of the problem of not connecting to mosquitto.

These two lines must be present in the configuration file in order to connect to mosquitto

listener 1883

allow_anonymous true

However, this opens up for everyone being able to listen to mosquitto's output. So we must not set allow_anonymous, and rather set a password that

clients must supply. Maybe it's possible to have some sort of ssh_key equivalent

Generated at Fri May 20 08:38:13 CEST 2022 by Olav Valle using Jira 8.22.2#822002-sha1:165c8f51e3b1a891285d611f42f1d6c4389222ad.

[#PRINTMAN-66] Research forking and expanding MQTT plugin https://jira.iir.ntnu.no/si/jira.issueviews:issue-html/PRINTMAN-66/PRINTMAN-66.html

1 of 1 5/20/22, 08:37

Live data from OctoPrint instances (PRINTMAN-67)

 [PRINTMAN-70] Research mosquitto.conf Created: 01/Mar/22 Updated: 20/Apr/22

Status: To Do

Project: Manulab 3D Printer Manager

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Sub-task Priority: Medium

Reporter: Simen Nesse Wiik Assignee: Unassigned

Resolution: Unresolved Votes: 0

Labels: None

Remaining Estimate: Not Specified

Time Spent: 1 day

Original Estimate: Not Specified

Sprint: Sprint 4: Backend MVP

 Description

Do we have to change any default configuration?

https://mosquitto.org/man/mosquitto-conf-5.html

Generated at Fri May 20 08:37:47 CEST 2022 by Olav Valle using Jira 8.22.2#822002-sha1:165c8f51e3b1a891285d611f42f1d6c4389222ad.

[#PRINTMAN-70] Research mosquitto.conf https://jira.iir.ntnu.no/si/jira.issueviews:issue-html/PRINTMAN-70/PRINTMAN-70.html

1 of 1 5/20/22, 08:37

Assignee:

Assign to me

Reporter:

Votes:

Watchers:

Stop watching this issue

Created:

26/Jan/22 10:10 AM

Updated:

07/Feb/22 12:58 PM

Resolved:

07/Feb/22 12:58 PM

Details

Type: Task Status: (View Workflow)DONE

Priority: High Resolution: Done

Labels: Documentation decision-report

Epic Link: Decision reports

Sprint: Sprint 1: Grid view MVP

Description

Compare and contrast pro/con of containerising the dev environment

• Is it common practice?

• Weigh benefits vs cost

• Still feasible/valuable if not using a monorepo?

Attachments

Drop files to attach, or browse.

Tempo

THERE ARE NO ACTIVITIES FOR YOU TO SEE FOR THIS ISSUE.

You have not recorded any activity on this issue.

Log Time Plan Time Add Expense

Activity

There are no comments yet on this issue.

People

 Unassigned

 Olav Valle

0

1

Dates

Collaborators

Agile

Manulab 3D Printer Manager PRINTMAN-15

Why containerised dev environment?

[PRINTMAN-15] Why containerised dev environment? - JIRA NTNU IIR https://jira.iir.ntnu.no/browse/PRINTMAN-15

1 of 2 5/20/22, 08:38

Completed Sprint:

Sprint 1: Grid view MVP ended 07/Feb/22

View on Board

[PRINTMAN-15] Why containerised dev environment? - JIRA NTNU IIR https://jira.iir.ntnu.no/browse/PRINTMAN-15

2 of 2 5/20/22, 08:38

C.1 User Stories

85

Requirement: Admin overview page
Target release

Epic - PRINTMAN-32 Super user printer monitoring and statistics panel TO DO

Document status DRAFT

Document owner Olav Valle

Designer Olav Valle Simen Nesse Wiik

Developers Olav Valle Simen Nesse Wiik

QA Olav Valle Simen Nesse Wiik

Goals

Give administrators a high level overview of all printers and their state
Provide a log of errors, events and system messages
Attach notes/memos to printers to record and share issues and events that have been observed

Background and strategic fit

This page will serve as a useful tool to the administrators and technicians tasked with maintaining and servicing the printer farm. It plays a vital part in
fulfilling the main goal of the product, viz. to streamline and assist in the running of the server farm.

The requirements detailed here will build a foundation of basic functionality, and is planned to be expanded with more functionality, e.g. data visualization
to aid with preventative maintenance, in future projects.

It is therefore important that the features and systems implemented as part of this the work on this requirement will not saddle these future projects with
technical debt.

Focus should be placed on developing basic overview/monitoring features, while advanced features (like remote calibration commands, status reports...)
should be carefully considered, and only be implemented if a useful and robust solution is likely to result from the work.

Assumptions

Requirements

Title User Story Importance Notes

1 Farm
overview

As an administrator user,

I want to be able to view detailed information
about the status and performance of a specific
printer,

so that I can easily review the state of
individual printers remotely.

Must have
Highlight printers with issues
Highlight print jobs with non-default settings/configs (high print speed,
extrusion %...)

2 Admin
comma
nds

As an administrator user,

I want to be able to issue advanced commands
to a specific printer,

so that I can perform supervision and
maintenance tasks remotely.

 Medium
Simplify execution of tasks that can be performed without physical access to
printer

Run calibration tests
Set printers as unavailable/out-of-order

3 Messa
ge log

As an administrator user,

I want to be able to review a log of messages
from OctoPrint and the printer software,

so that I can receive important messages and
warnings about the state of the printer.

Medium
Simplifies task of monitoring the printer farm

4 Statisti
cs

As an administrator user,

I want to have access to the statistics of
previous print jobs, their results, and any
issues that occurred as part of their execution,

so that I can evaluate the overall performance
and maintenance status of the printers in the
farm.

Medium

(Low for
advanced
features)

Many of the more advanced possibilities discussed discussed for this feature
will rely on data visualization and analysis, and may be outside the scope of
this project.
Care should be taken to not implement systems that will leave future projects
with technical debt. Any feature/system that must be removed by future
projects will constitute a wasted effort on behalf of both the current and future
teams.

User interaction and design

Questions

Below is a list of questions to be addressed as a result of this requirements document:

Question Outcome

Not Doing

Requirement: Hardware infrastructure
Target release

Epic - PRINTMAN-61 Raspberry Pi based MicroK8s cluster TO DO

Document status DRAFT

Document owner Olav Valle

Designer Olav Valle Simen Nesse Wiik

Developers Olav Valle Simen Nesse Wiik

QA Olav Valle Simen Nesse Wiik

Goals

Provide the server hardware for the product
Serve as an expandable foundation for systems developed in future projects
Provide a robust hardware solution to avoid single point of failure

Computer cluster
Avoid using microSD cards for OS installations (unreliable and wear quickly)

Provide a set of tools to simplify system administration and maintenance tasks

Background and strategic fit

The 3D printer management system being developed will require both a webserver for the frontend, as well as a backend system to orchestrate
communications between printers and users. Close physical proximity between the backend's server hardware and the printers is a requirement, for
reasons of hardware constraints (wiring and construction of the printer farm and its mobile printer racks), as well as from a maintenance viewpoint
(administrators of the system are also repair technicians for the printer hardware).

While a simple desktop computer would suffice for the low traffic and processing load the system is expected to sustain, a single machine also represents
a single point of failure for the system. A computer cluster architecture allows for both high availability of services running on the hardware, as well as
providing redundancy and robustness to the server itself (since a cluster can continue to function in a reduced state if hardware is damaged). This
eliminates, or at least mitigates, the risks presented by a single point of failure. This cluster architecture also allows for scaling the compute power of the
server to meet future requirements (by adding more Raspberry Pi's to the cluster).

Another deciding factor is the requirement that the system being developed will form the foundation for future projects at Manulab Ålesund. As this work
will inevitably involve research, exploration and testing of prototype machinery and software, having full control of the system hardware is essential for the
rapid prototyping approach that students and researchers at Manulab employ. Relying on servers and systems that are administrated by cloud service
providers or the IT department of NTNU could present unwanted hurdles in the progress of these future projects.

Assumptions

Student assistants and teachers at manulab will serve as system administrators and service technicians for both the hardware and software.
The computer skill set of these people is expected to at minimum be above average for students at the later stages of their engineering
programs.
Their demographic will be from machine/mechanical, electronics/automation and computer engineering backgrounds.
While students from machine engineering backgrounds are not expected to have extensive programming or system administration
experience, their colleagues among the automation and, especially, the computer engineering students are expected to be familiar with
both the command line, and server hardware infrastructure (at least those at 2nd/3rd year of a bachelors program).

As not all students interacting with the system are at the same level of technical computer skill, tools should be developed to simplify and
automate regular tasks as much as possible.
System administration and maintenance will take place exclusively at the premises of Manulab, and remote access to the system is not
considered a priority. SSH access to the administration terminal can be established in those cases where solely software/OS level tasks are
required.

Requirements

Title User Story Importance Notes

1 Hardware
provisioning

As a system administrator,

I want a streamlined method for configuring an operating
system for one or more machines,

to either replace faulty machines, or to expand the system with
new machines.

Must have
A baseline OS (Raspberry Pi OS), configured with as
many default settings as possible
A script that automates setup and config of an OS
tailored to the required use case, with minimal
interaction.

Inputs: RPi's serial number, MAC address, and
task (cluster node or OctoPrint instance)

Ability to have replacement hardware inherit the role
and tasks of the machine it is replacing.

2 Container
orchestration

As a system administrator,

I want to be able to administrate and set up containerized
versions of the services required for the system,

so that these services can be orchestrated across the available
server hardware.

 Must have
Kubernetes based orchestration
Scripts that automate Docker image creation of system
services
Scripts/config files for setup of orchestration

3 Documentati
on

As a system administrator,

I want to have documentation that details and explains how to
use the scripts and tools provided to me,

to make my tasks easier and more understandable.

How-to's for normal tasks
Technical documentation explaining the systems in use,
their purpose and design.
Documentation in scripts explaining functionality

User interaction and design

Questions

Below is a list of questions to be addressed as a result of this requirements document:

Question Outcome

How can we make sysadmin tasks easy and repeatable for
inexperienced users? Make scripts that automate the process.

Document the process well, so that it's understandable to the users (not
"black magic").
Make the system robust, to reduce the frequency of repair/maintenance
tasks.

Not Doing

Requirement: Landing page and Printer Overview
Target release

Epic - PRINTMAN-19 Landing page and printer grid view IN PROGRESS

Document status DRAFT

Document owner Olav Valle

Designer Olav ValleSimen Nesse Wiik

Developers Olav Valle Simen Nesse Wiik

QA Olav Valle Simen Nesse Wiik

Goals

Serve as landing page for the Print Manager service
Allow navigation to other parts of website (admin page, printer detail view, own account page?)
Provide an overview of all printers in the system

Background and strategic fit

This is the most basic part of the product: a web app that allows users (students and teachers at NTNU) to easily check printer availability, start prints, and
monitor the progress of their own prints. Implementation of the "must have" requirements of this page serves as the most fundamental MVP of the final
product.

Assumptions

Users will primarily access this webpage from a laptop or desktop computer, as this is what they use to design their 3D models.
Some users may wish to access the page from mobile devices, to quickly check the state of a print they started earlier.
Cases where users may wish to start a print from a mobile device will be a rare exception.
Users can be split into 3 categories:

Basic users: Students requiring the use of the printers for various projects. Technical computer skill is assumed to be average for that of
an engineering student. Technical skill with 3D printing technology will vary, from complete beginners (most likely first year students) up
to very advanced (pre-/postgrad students, teachers and student assistants).
Advanced users: Students and teachers requiring the use of the printers for various projects. Technical computer skill is assumed to be
average for that of an engineering student, or possibly higher depending on education level and/or profession. High experience with 3D
printer technology, and require greater and more granular control over their print jobs and their current status/progress.
Administrators: Teachers and student assistants hired by the department. Serve as service technicians for the printers, administrators for
the software system, and provide assistance to other users as needed. High level of technical computer skill. Very high level of
experience with 3D printer technology. Require access to detailed reports on the state of all the printers in the system, as well as the
ability to control all printers in the system.

Requirements

Title User Story Importance Notes

1 Printer overview
grid

As a basic user,

I want to have a place where I can get an at-a-glance overview of all printers in
the farm,

so that I can easily see if/how many free printers there are.

Must have
Sort printers by status (error,
finished, busy, clear)
Sort busy status groups by time
remaining
Separate grid of user's own print
jobs (hide if none)

2 Availability
statusbar

As a basic user,

I want a statusbar that shows how many printers are free, or how long until the
next printer is free,

so that I can know if I am able to start a print job or not.

 Must have
 shows counts for ready, busy,
error printers
Shows time until next printer is
free

3 Printer card As a basic user,

I want to have a compact view of the most basic info about a printer,

so that I can easily identify which printer suits my needs at the moment.

Must have
Show snapshot from printer's
camera
Printer state with semantic
colouration
Print time/progress bar
Click card to reach detail view of
printer

4 Printer camera
snapshot

As a basic user,

I want to be able to see a snapshot from the printer's web camera,

so that I can manually check that the print plate is clear before starting a print
remotely.

Must have
Helps users avoid interacting with
printers that are in use with others

5 Drag and Drop
to upload files

As a basic user,

I want to be able to easily drag and drop in my 3D models and have them start up
on an automatically selected, appropriate printer,

so that I can have my print jobs started quickly.

Must have
Lowers barrier to entry for use of
printers

6 Job confirmation
dialogue

As a basic user,

I want to see a confirmation dialogue that shows a detail view of the printer that
my model will be printed on,

so that I can manually assert that the printer is working and ready.

Must have
Very important to ensure safe
operation of printers

Currently no way to
automate printer readiness
check

Should involve a two-step
confirmation

7

8

User interaction and design

Questions

Below is a list of questions to be addressed as a result of this requirements document:

Question Outcome

Not Doing

Requirement: Printer job details view
Target release

Epic - PRINTMAN-27 Basic user single printer detail view TO DO

Document status DRAFT

Document owner Olav Valle

Designer Olav Valle Simen Nesse Wiik

Developers Olav Valle Simen Nesse Wiik

QA Olav Valle Simen Nesse Wiik

Goals

Provide users a way to monitor the status and progress of their printing jobs
Provide users a way to pause/stop their jobs in case of problems.
Restrict printer interaction to owner of job, or admin.
Video stream from printer camera?
Start print job on specific printer?
Issue commands to change printing speed, flow rate, extruder/printplate temperature for advanced users.

Background and strategic fit

A detailed view of the printer and the job it is performing will allow users to more closely monitor the progress of their prints. A live camera feed will allow
for visual inspection for defects or faults in the print, while stats like temperature and other readouts from the printer hardware will give advanced users
better insight into the progress. More advanced users may also wish to access controls and commands that are available through the physical interface of
the printer, e.g. to set printing speed, temperature etc.

Assumptions

Most users, basic, advanced and admins, will at some point want to remotely monitor the progress and status of their print jobs.
Advanced users may wish to tweak settings for their jobs
Admins may wish to inspect jobs owned by basic and advanced users, and will need the ability to override jobs and/or settings made by these
users.

Requirements

Title User Story Importance Notes

1 Detailed job
progress

As any type of user,

I want to be able to see detailed readouts of the status of the printer hardware, and the progress of
my print job,

to better be able to detect potential issues that have occurred.

Must have
Relevant statistics:

Extruder and
bed
temperature

2 Print job
control

As an advanced user,

I want to be able to issue commands to the printer to either pause/stop a job in progress, or to
change printer settings like print speed or extrusion level,

to have a printing experience as close to physically interacting with the printer as possible.

Important
Relevant
commands:

Pause
/cancel a job
Set printing
speed
Set
extrusion %

3 Job access
restriction

As an administrator user,

I want to users of the system to be restricted to only being able to issue commands for their own jobs,

to prevent accidental or malicious tampering with print jobs owned by other users.

Must have
Connect job
ownership to user
accounts
Admins have
control over all
jobs

4

User interaction and design

Questions

Below is a list of questions to be addressed as a result of this requirements document:

Question Outcome

What printer commands does the product owner want to be restricted?

How much bandwidth would a camera stream from 25-30 printers require? Possibly too much for our system?

Not Doing

Auto-slicing is not a priority, but a known solution exists and can be integrated in a future release.
Starting print job on a specific printer through the details view page is planned for the future.

Requirement: System backend, server, and OctoPrint
connection

Target release

Epic - PRINTMAN-73 MVP for backend code and logic (Nest.js, Kafka, MQTT) TO DO

Document status DRAFT

Document owner Olav Valle Simen Nesse Wiik

Designer Olav Valle Simen Nesse Wiik

Developers Simen Nesse Wiik Olav Valle

QA Olav Valle Simen Nesse Wiik

Goals

Connect to known OctoPrint instances
Collate print job and printer hardware stats over WS or MQTT from OP
Issue commands from web UI users to correct OP instance
Transfer print job files from frontend user to correct OP instance

Serve frontend interaction API endpoints over REST
Serve live data collated from printers to frontend over WS
User account creation and user authentication for print job actions and ownership
Send .stl, .3mf, etc. files to the auto slicing system, when/if this is operational.
Interoperate with a data storage system for statistics tracking of the printer farm.

Background and strategic fit

The backend serves as the interface between the web UI and the OctoPrint instances connected to printers in the farm. OctoPrint transmits both print job
status and printer state , which can be connected to through authentication REST endpoints. OctoPrint also serves information over WS REST endpoints
for issuing commands related to print jobs, printer settings, and uploading of files for print jobs. The role of the backend system will be to route these
commands from the web UI to an appropriate printer for the job.

An important part of the backend system will be to handle user authentication and authorization, to ensure that users are not able to interact or interfere
with other users' jobs, either by accident or on purpose. In the first version of this system, user account creation and credentials authentication will be
handled by implementations in the system itself (e.g. bcrypt and a local password/user database), but may be moved to external auth systems, e.g. Feide
and the OAuth framework in the future. As access to the Feide APIs requires a lengthy application process to Dataporten, this work is regarded as
probably being outside the scope of this project.

Assumptions

The system will be expanded upon by work done by future student projects at Manulab, and will require thorough documentation.
The system implementation is not expected to be interacted with by students other than those hired by Manulab for the express purpose of
continuing the development work.
The system will run as containerized services
The system is not expected to handle requests/interactions from more than a few dozen unique users on a daily basis
The system is expected to be able to handle 20-30 printers at minimum (the current number of printers in the farm), and to handle an increasing
number as the printer farm at Manulab is expanded.
The system will interact with two types of printers at the start (Prusa i3 mk3+ and Prusa Mini+), but may be required to handle printers of other
types (e.g. resin printers), design (e.g. custom built projects) or manufacturer (e.g. Ultimaker) in the future.

Requirements

Title User Story Importance Notes

1 OctoPrint
instance WS
connection

As a system administrator,

I want the system to be able to handshake and connect to an arbitrary
number of OctoPrint instances over websocket,

so that live data from all the printers in the farm can be made available
on the web UI.

Must have
DB to store and add known OP instances
the system should communicate with
Ability to distinguish, sort and collate several
WS streams from multiple OP instances at
once

2 OctoPrint
instance REST
connection

As a system administrator,

I want the system to be able to access the REST endpoints of the
OctoPrint API for an arbitrary number of OP instances,

so that printer commands and print job files can be transferred from
users of the web UI to the correct printer.

Must have
DB to store and add known OP instances
the system should communicate with
Able to distinguish instances to ensure
commands and jobs are sent to correct
printer

3 OctoPrint
instance
database

As a system administrator,

I want a database solution for storing known OctoPrint instances, the
hardware running it (IP, MAC, serial number), and the printers they are
connected to,

to ensure that there is a way to keep track of the printer and computer
hardware in the system, and their relations.

Must have
Database will be used by system for
identifying OctoPrint instances and their
related printers and OS provisioning status.
Should be expandable or interoperable with
future projects relating to data analysis and
statistics tracking.

4

User interaction and design

Questions

Below is a list of questions to be addressed as a result of this requirements document:

Question Outcome

How complicated is the application process for Feide
access?

Very. The IHB faculty will have to handle this process in the future if they find the requirement
to be of value.

How well does the existing auto-slicer system work?
Is it feasible to expand/improve upon this
implementation?

Does not work very well. Will require extensive rewriting to be brought to a stable and
production ready state.

Will OctoPrint instances behave differently if other
printer models or other printer types are used in
future?

Octoprint seems quite universal in it's API implementation, and any implementation that follows
its documentation should only require minor adjustments if future printers differ from current
ones.

Not Doing

Feide login. Requires application made by the faculty.
Auto-slicer. System will only handle pre-sliced .gcode files to start with.

D Decision Reports

96

Clustering Raspberry Pi hardware for system server
Status DECIDED

Stakeholders Simen Nesse Wiik Paul Steffen Kleppe

Outcome Build a compute cluster, using Raspberry Pi hardware as nodes.

Netboot the nodes in the cluster, as well as the Raspberry Pi's used for OctoPrint, to avoid the unreliability and failure rate of
microSD cards when used for write-heavy operating system scenarios.

Implement a netbooting system administration toolset (scripts, software, OS distributions etc.) that streamline administration and
future scaling of the system.

Due date 15 Feb 2022

Owner Olav Valle

Background

The 3D printer management system being developed will require both a webserver for the frontend, as well as a backend system to orchestrate
communications between printers and users.

Close physical proximity between the backend's server hardware and the printers is a requirement, for reasons of hardware constraints (wiring and
construction of the printer farm and its mobile printer racks), as well as from a maintenance viewpoint (administrators of the system are also repair
technicians for the printer hardware).

While a simple desktop computer would suffice for the low traffic and processing load the system is expected to sustain, a single machine also represents
a single point of failure for the system.

An approach that is architecturally similar to the infrastructure in many modern data centers can be achieved by clustering several Raspberry Pi
computers. This allows for both high availability of services running on the hardware, as well as providing redundancy and robustness to the server itself
(since a cluster can continue to function in a reduced state if hardware is damaged). This eliminates, or at least mitigates, the risks presented by a single
point of failure. This cluster architecture also allows for scaling the compute power of the server to meet future requirements (by adding more Raspberry
Pi's to the cluster).

Another deciding factor is the requirement that the system being developed will form the foundation for future projects at Manulab Ålesund. As this work
will inevitably involve research, exploration and testing of prototype machinery and software, having full control of the system hardware is essential for the
rapid prototyping approach that students and researchers at Manulab employ. Relying on servers and systems that are administrated by cloud service
providers or the IT department of NTNU would present unwanted hurdles in the progress of these future projects.

The developers of the Printer Management system have also expressed an interest in the learning possibilities presented by designing and implemented a
such a computing cluster, as this subject is not something that has been extensively covered in the syllabus of their study programs.

Action items

Containerized dev environment
Status DECIDED

Stakeholders Simen Nesse Wiik

Outcome To containerise the Turborepo project in a Docker-Compose, so that current and future developers can all be sure that they work in a
reproducible development environment.

Due date 07 Feb 2022

Owner Olav Valle

Background

The mantra "but it works on my machine" is well known by all software developers working in collaborative projects. Using a container like Docker to
encapsulate and normalize the development environment in a reproducible way can mitigate many of these issues, and in essence ensures that every
developer uses the "same" machine for their work.

Action items

Why Kafka and MQTT as local protocol?
Status DECIDED

Stakeholders Simen Nesse Wiik Paul Steffen Kleppe

Outcome Use MQTT and Kafka + Connect. MQTT is the industry standard for IoT device communication protocols. Apache Kafka is widely
used in Industry 4.0 companies for data streaming and analytics in distributed hardware systems, and provides easy options for
creating scaleable infrastructure. Both Kafka and MQTT integrate well with NestJS, and in combination these make for a robust
solution for our backend architecture.

Due date 13 Feb 2022

Owner Olav Valle

Background

The Printer Manager server will manage status traffic and issue files/job commands to and from a large number of printers. OctoPrint serves this data as a
WS stream to its own frontend, but this solution lacks granularity and will require processing of the message streams to reduce unnecessary traffic loads.
The MQTT protocol is widely used for two-way broadcast/subscriber type communications in large hardware systems, like networks of sensors and smart
devices. Nest.js supports the MQTT protocol through Kafka, a framework for handling and managing MQTT networks.

Action items

Remove Kafka and MQTT requirement
Status DECIDED

Stakeholders Simen Nesse Wiik Paul Steffen KleppeOlav Valle

Outcome All work on implementing Kafka and the MQTT protocol has been removed as a requirement. The development of this feature will be
handed off to the data analysis project team at the end of May 2022.

Due date 02 May 2022

Owner Olav Valle

Background

The use of Kafka as a data streaming, analytics and storage platform was planned. The reason behind this was to allow for collection and analysis of data
(printer status/progress and statistics) from the 3D printer farm, to serve as a foundation for future projects at Manulab.

Kafka was recommended by the developers, after researching various options, because it is widely used in the industry, as is the MQTT IoT
communications protocol. It was decided by stakeholders at the time to add this as a requirement to the project.

However, a project that will continue development of the analytics system has been scheduled to start in May/June of 2022. The team of this future project
has requested that the decision to implement Kafka and MQTT be reviewed (to better understand the reasoning and consequences of this decision), or for
the decision to ultimately be left at their discretion.

Action items

Why Nest.js for backend architecture?
Status DECIDED

Stakeholders Simen Nesse Wiik

Outcome Use NestJS for backend application. NestJS allows us to leverage our knowledge of OOP application design as well as providing a
robust framework for scaleable MVC and microservice architectures.

Due date 07 Feb 2022

Owner Olav Valle

Background

The backend will have a fairly complicated architecture, with scalability and modularity as part of its main goals. Good architecture is critical to achieve this,
and there exist certain frameworks that specialize in simplifying the process of architecting software projects as microservices and using the MVC model.

Action items

Why Octoprint for printer connection?
Status DECIDED

Stakeholders Simen Nesse Wiik

Outcome Use OctoPI as the OS for printer connected Raspberry Pis. This allows us to leverage OctoPrint's robust REST API and popular
plugin ecosystem.

Due date 13 Feb 2022

Owner Olav Valle

Background

What alternatives are there to Octoprint for handling printer stats and commands?

Action items

Using a monorepo (Turborepo) or a multirepo project
structure.

Status DECIDED

Stakeholders Simen Nesse Wiik

Outcome Use a monorepo through Turborepo. As every part of the project is written in Node/TS, the monorepo structure provided by
Turborepo offers many features and functions that will help the project.

Due date 07 Feb 2022

Owner Olav Valle

Background

The structure and method for organising the project code repositories can have a large impact on the workflow of the project. Monorepos are used by
many of the largest software companies in the world, but have traditionally required custom software and complicated routines to manage larger projects.
Turborepo is a tool that aims to simplify the setup and management of Node/TS based projects, along with providing improvements for the dev, build and
deployment process in the form of smarter and more efficient use of system resources.

Action items

Web UI Framework
Status DECIDED

Stakeholders Simen Nesse Wiik

Outcome The team has decided to use the React framework and the Material UI component library. Furthermore, Next.js will be used instead
of "vanilla" react, as it provides a framework for structuring web applications and interaction with APIs.

Due date 07 Feb 2022

Owner Olav Valle

Background

The JS ui framework used for the website frontend plays a massive part in the application tech stack of the project. It is therefore important to select a
framework that is suitable for the project and the developers on the team.

Action items

E System documentation

E.1 Introduction

This document documents the system architecture, code and how to perform maintenance tasks.

E.2 Hardware Architecture

[H]

Figure E.1: Hardware system diagram.

A Networking

The network consists of a router, two switches and attached devices.

105

B Raspberry Pi

The entire PrintMan system runs on Raspberry Pis. The Pis are connected to a PoE+ ethernet switch,

supplying the Pis with both power and data transfer in the same cable. This eliminates the need for a

wall-plugged power adapater.

When connected to the switch with an ethernet cable, the raspberry pi is PXE booted. PXE

booting is a process where the operating system is not loaded from internal storage such as SD cards,

but instead fetched from the network.

E.3 Software architecture

A Frontend

The frontend uses the javascript frontend framework Next for serving the website, and the UI framework

MUI for styling and layout. It fetches printer data through websockets.

B backend

The backend uses the Nest framework. See https://nestjs.com/

E.4 Code repository

The repository for the source code produced for the web application in this project can be found at:

https://github.com/NTNU-manulab/printman

E.5 Containers

A docker-compose file to build a container for the development environment is found in the code

repository.

E.6 Kubernetes

The PrintMan services run inside containers on kubernetes. This section describes how to connect to

the cluster

106

https://nestjs.com/
https://github.com/NTNU-manulab/printman

A Using Kubectl to administer the cluster

Kubectl (pronounced kube control or kube cuttle) lets an administrator perform operations on the

cluster such as creating new deployments.

Imperative vs declarative

With kubectl, imperative and declarative commands can be executed. With an imperative command,

all parameters are specified

B Adding nodes to the cluster

E.7 Security

No code requiring security, authentication or authorization implementation has been produced by this

project.

Public-private key pairs were used for SSH connections to the Raspberry Pi’s in the cluster and

printer racks.

E.8 Installation

Clone the repository and run using ’turborepo run dev’. No installable binaries are produced by this

project.

E.9 Source code documentation

No source code documentation has been produced for the webapp MVP. See G for documents providing

walkthroughs and explanations of the work done for kubernetes cluster setup and hardware cluster

sysadmin and provisioning work.

107

F Source Code and Bash Scripts

The code can be found in the Manulab github organization

https://github.com/NTNU-manulab/printman

F.1 Kubernetes YAML definitions

A IngressRoute

apiVersion: traefik.containo.us/v1alpha1

kind: IngressRoute

metadata:

name: web

spec:

routes:

- kind: Rule

match: Host(`manulab.net`)

services:

- kind: Service

name: web

passHostHeader: true

port: 80

scheme: http

serversTransport: transport

apiVersion: traefik.containo.us/v1alpha1

kind: IngressRoute

metadata:

name: api

spec:

routes:

- kind: Rule

match: Host(`api.manulab.net`)

services:

- kind: Service

108

https://github.com/NTNU-manulab/printman

name: api

passHostHeader: true

port: 80

scheme: http

serversTransport: transport

B Deployment

apiVersion: apps/v1

kind: Deployment

metadata:

name: web

labels:

app: web

spec:

replicas: 1

selector:

matchLabels:

app: web

template:

metadata:

labels:

app: web

spec:

containers:

- name: revosw/printman-web

image: revosw/printman-web:latest

ports:

- containerPort: 80

apiVersion: apps/v1

kind: Deployment

metadata:

name: api

labels:

app: api

spec:

replicas: 1

selector:

matchLabels:

app: api

template:

metadata:

labels:

109

app: api

spec:

containers:

- name: revosw/printman-api

image: revosw/printman-api:latest

ports:

- containerPort: 80

C Service

apiVersion: v1

kind: Service

metadata:

labels:

app: web

name: web

spec:

ports:

- port: 80

protocol: TCP

targetPort: 3000

selector:

app: web

apiVersion: v1

kind: Service

metadata:

labels:

app: api

name: api

spec:

ports:

- port: 80

protocol: TCP

targetPort: 3001

selector:

app: api

110

G Work diaries

111

Work Log: Creating baseline RPi file systems
Goal
Create a baseline /boot and /rootfs that the bootserver scripts can modify to create unique fs's for each Pi.

 - PRINTMAN-75 RPi provisioning script IN PROGRESS

Resources
The kernel-command-line: Details the arguments used in cmdline.txt

Usermod: Built in Linux utility for modifying user accounts: changing usernames, setting passwords, configuring home directories, etc.

Groupmod: Modifies definitions for usergroups.

Install: A fancy and convenient way of creating and copying files and directories, while setting their owners, permission modes etc.

sed: The GNU tream itor. Used to perform basic transformations on text, either from files or pipes (streams). Basically a find-and-replace function for s ed
the command line. Beware: Hic Sunt Regex

openssl: A cryptography toolkit. Used to hash user passwords through . We use the SHA512 algorithm, as openssl passwd recommended by the
Raspberry Pi Foundation

.

Todo
Figure out what we need from the script that the Raspberry Pi Imager adds when you flash an OS to an SD card.firstboot.sh
Modify to suit our needsfirstboot.sh

Assign RPi serial number as hostname.
Assign username based on OS:

busk for k3s cluster Pi
printer for Octoprint Pi

Generate and hash password for user
Same as username?

Preconfigure all the things that every system will have in common, and remove from script
SSH config, bootserver pubkey
Timezone, language and localization config

Modify cmdline.txt
Remove script. There is no partition to resize.resizefs
Set argument to root /dev/nfs
Add nfsroot=[netboot-server-IP]:/path/to/nfsroot/PI-SN#,vers=4.1,proto=tcp
Add (at least for k3s Pi's)cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory

Modify /etc/fstab
Remove device mounts for and /boot /
Add nfs mounts for with /boot [netboot-server-IP]:/path/to/tftpboot/PI-SN# /boot nfs defaults,_netdev,

 vers4.1,proto=tcp 0 0

What does Firstrun.sh actually do?

The script below is generated by the RPi Imager when the OS is flashed to an SD card.

firstrun.sh

#!/bin/bash

set +e

CURRENT_HOSTNAME=`cat /etc/hostname | tr -d " \t\n\r"`
echo bootsrv >/etc/hostname
sed -i "s/127.0.1.1.*$CURRENT_HOSTNAME/127.0.1.1\tbootsrv/g" /etc/hosts
FIRSTUSER=`getent passwd 1000 | cut -d: -f1`
FIRSTUSERHOME=`getent passwd 1000 | cut -d: -f6`
install -o "$FIRSTUSER" -m 700 -d "$FIRSTUSERHOME/.ssh"
install -o "$FIRSTUSER" -m 600 <(printf "YOUR_SSH_KEY") "$FIRSTUSERHOME/.ssh/authorized_keys"
echo 'PasswordAuthentication no' >>/etc/ssh/sshd_config
if [-f /usr/lib/userconf-pi/userconf]; then
 /usr/lib/userconf-pi/userconf 'bootsrv' '5SAs192S7Ar$3ubTjCtGAz37fdcuzNopN1j3Sw3TFcx3dnK1D.xCjs5'
else
 echo "$FIRSTUSER:"'$5$SAs192S7Ar$3ubTjCtGAz37fdcuzNopN1j3Sw3TFcx3dnK1D.xCjs5' | chpasswd -e
 if ["$FIRSTUSER" != "bootsrv"]; then
 usermod -l "bootsrv" "$FIRSTUSER"
 usermod -m -d "/home/bootsrv" "bootsrv"
 groupmod -n "bootsrv" "$FIRSTUSER"
 if grep -q "^autologin-user=" /etc/lightdm/lightdm.conf ; then
 sed /etc/lightdm/lightdm.conf -i -e "s/^autologin-user=.*/autologin-user=bootsrv/"
 fi
 if [-f /etc/systemd/system/getty@tty1.service.d/autologin.conf]; then
 sed /etc/systemd/system/getty@tty1.service.d/autologin.conf -i -e "s/$FIRSTUSER/bootsrv/"
 fi
 if [-f /etc/sudoers.d/010_pi-nopasswd]; then
 sed -i "s/^$FIRSTUSER /bootsrv /" /etc/sudoers.d/010_pi-nopasswd
 fi
 fi
fi
systemctl enable ssh
rm -f /etc/localtime
echo "Europe/Oslo" >/etc/timezone
dpkg-reconfigure -f noninteractive tzdata
cat >/etc/default/keyboard <<'KBEOF'
XKBMODEL="pc105"
XKBLAYOUT="us"
XKBVARIANT=""
XKBOPTIONS=""

KBEOF
dpkg-reconfigure -f noninteractive keyboard-configuration
rm -f /boot/firstrun.sh
sed -i 's| systemd.run.*||g' /boot/cmdline.txt
exit 0

The script is run via , after the root partition has been resized, as part of the first boot setup process of the RPiOS.cmdline.txt

cmdline.txt

console=serial0,115200 console=tty1 root=PARTUUID=0ee3e8a8-02 rootfstype=ext4 fsck.repair=yes rootwait quiet
init=/usr/lib/raspi-config/init_resize.sh systemd.run=/boot/firstrun.sh systemd.run_success_action=reboot
systemd.unit=kernel-command-line.target

Here we can see that the following happens

The root partition is resized to fill the entire SD card by the script. We don't need this, as there is no SD card and no partition to init_resize
resize.
firstrun.sh is executed via systemd.run
If the script executed successfully, the system reboots via systemd.run_success_action

The script itself performs several actions:

First, it replaces the default hostname with our chosen hostname in and :/etc/hostname /etc/hosts

set hostname

CURRENT_HOSTNAME=`cat /etc/hostname | tr -d " \t\n\r"`
echo bootsrv >/etc/hostname
sed -i "s/127.0.1.1.*$CURRENT_HOSTNAME/127.0.1.1\tbootsrv/g" /etc/hosts

It then finds the username and home directory of the "first user", i.e. the one we want to be the default user:

get "first user"

FIRSTUSER=`getent passwd 1000 | cut -d: -f1`
FIRSTUSERHOME=`getent passwd 1000 | cut -d: -f6`

The script uses these values to add our SSH key to the file of this user, and to configure the SSH Daemon of the system:authorized_keys

SSH config

install -o "$FIRSTUSER" -m 700 -d "$FIRSTUSERHOME/.ssh"
install -o "$FIRSTUSER" -m 600 <(printf "YOUR_SSH_KEY") "$FIRSTUSERHOME/.ssh/authorized_keys"
echo 'PasswordAuthentication no' >>/etc/ssh/sshd_config

After this, the script modifies the "first user" account, setting the password, permissions, sudoers rights, etc, for the user account. It does this either using
the script (if it exists), or via a block of code that performs basically the same tasks as the script would:/usr/lib/userconf-pi/userconf userconf

if [-f /usr/lib/userconf-pi/userconf]; then
 /usr/lib/userconf-pi/userconf 'bootsrv' '5SAs192S7Ar$3ubTjCtGAz37fdcuzNopN1j3Sw3TFcx3dnK1D.xCjs5'
else
 echo "$FIRSTUSER:"'$5$SAs192S7Ar$3ubTjCtGAz37fdcuzNopN1j3Sw3TFcx3dnK1D.xCjs5' | chpasswd -e
 if ["$FIRSTUSER" != "bootsrv"]; then
 usermod -l "bootsrv" "$FIRSTUSER"
 usermod -m -d "/home/bootsrv" "bootsrv"
 groupmod -n "bootsrv" "$FIRSTUSER"
 if grep -q "^autologin-user=" /etc/lightdm/lightdm.conf ; then
 sed /etc/lightdm/lightdm.conf -i -e "s/^autologin-user=.*/autologin-user=bootsrv/"
 fi
 if [-f /etc/systemd/system/getty@tty1.service.d/autologin.conf]; then
 sed /etc/systemd/system/getty@tty1.service.d/autologin.conf -i -e "s/$FIRSTUSER/bootsrv/"
 fi
 if [-f /etc/sudoers.d/010_pi-nopasswd]; then
 sed -i "s/^$FIRSTUSER /bootsrv /" /etc/sudoers.d/010_pi-nopasswd
 fi
 fi
fi

As the script exists in our case, the code in the clause does not come into play for us. The script looks like this:userconf else userconf

/usr/lib/userconf-pi/userconf

#!/bin/sh

rename_user () {
 usermod -l "$NEWNAME" "$FIRSTUSER"
 usermod -m -d "/home/$NEWNAME" "$NEWNAME"
 groupmod -n "$NEWNAME" "$FIRSTGROUP"
 for file in /etc/subuid /etc/subgid; do
 sed -i "s/^$FIRSTUSER:/$NEWNAME:/" "$file"
 done
 if [-f /etc/sudoers.d/010_pi-nopasswd]; then
 sed -i "s/^$FIRSTUSER /$NEWNAME /" /etc/sudoers.d/010_pi-nopasswd
 fi
}

if [$# -eq 3]; then
 FIRSTUSER="$1"
 FIRSTGROUP="$1"
 shift
else
 FIRSTUSER="$(getent passwd 1000 | cut -d: -f1)"
 FIRSTGROUP="$(getent group 1000 | cut -d: -f1)"
fi

NEWNAME=$1
NEWPASS=$2

if ["$FIRSTUSER" != "$NEWNAME"]; then
 rename_user
fi

if [-n "$NEWPASS"]; then
 echo "$NEWNAME:$NEWPASS" | chpasswd -e
fi

/usr/bin/cancel-rename "$NEWNAME"

As we can see, it takes in a username and password (line 24-25), and modifies the "first user" account with these values via and , usermod groupmod
which are built in Linux commands (lines 5-7). On line 9 it changes the entries in and to match our username. On line 11-/etc/subuid /etc/subgid
13, it changes the file to also reflect our chosen username.010_pi-nopasswd

Note: the entry in makes it so that our user account doesn't have to provide the sudo password when executing commands 010_pi-nopasswd
via sudo. This be a bad thing...may

After all the user account configuration stuff is done, the script activates SSH on the system:

enable ssh

systemctl enable ssh

This, in combination with adding our SSH key and configuring the SSH Daemon earlier, is required to allow us to connect via SSH.

The script then sets localization, language, keyboard and time zone options:

rm -f /etc/localtime
echo "Europe/Oslo" >/etc/timezone
dpkg-reconfigure -f noninteractive tzdata
cat >/etc/default/keyboard <<'KBEOF'
XKBMODEL="pc105"
XKBLAYOUT="us"
XKBVARIANT=""
XKBOPTIONS=""

KBEOF
dpkg-reconfigure -f noninteractive keyboard-configuration

The localization and language configuration is not vitally important to us. Setting the time zone is important, however, to ensure that timestamps generated
by the system reflect our local time (and that all the Pi's in the system create time stamps that match).

Finally, the script performs some clean up. It deletes the script itself (since it's not needed again), and removes the kernel command line arguments that
caused the script to execute in the first place:

clean up

rm -f /boot/firstrun.sh
sed -i 's| systemd.run.*||g' /boot/cmdline.txt
exit 0

The script exits with code 0, which lets know that it's appropriate to perform the reboot command as specified by systemd systemd.
 in .run_success_action=reboot cmdline.txt

Note: If we want to add a safety check, and perform some specific action if the script fails, we can add a firstrun.sh systemd.
 argument. This will run if the script returns anything else than exit code 0, and could be used e.g. for run_failure_action= firstrun.sh

logging or clean up/recovery.

When the system reboots, no longer contains the `systemd.run=firstrun.sh` argument, and boots into the OS normally.cmdline.txt

What should do?our firstrun.sh
There are several things that systems running the same OS will have in common, and a lot of it can be set in the config files of the baseline image. The all
things we need out script to do are:

The username (and password...?)
This eliminates the need for everything that has to do with setting user rights etc., as this can be configured in the baseline image.
To do this, we have to find the files that and make changes to.usermod groupmod
Or, we can add a file named to the directory. The contents of the file should be a username and hashed pw in userconf.txt /boot
the format . This will trigger the RPi OS to create this user with the default settings (autologin, sudoers username:password-hash
NOPASSWD, etc..)

Hostname (Pi's serial number)
We can preconfigure these values into and as part of the script that creates the OS file systems./etc/hosts /etc/hostname

SSH stuff
The pub key of the bootserver can be preconfigured in , as can the settings in /home/$FIRSTUSER/.ssh/authorized_keys sshd.

.config
SSH still has to be activated through ,systemctl enable ssh or:
SSH can also be activated by placing a file named in . This triggers the OS to automatically activate SSH on the next system ssh /boot
boot, after which the file is deleted.
All localisation settings.
Parameters in and can be preconfigured./etc/timezone /etc/default/keyboard
We must still run for and !dpkg-reconfigure -f noninteractive tzdata keyboad-configuration

This leaves us with a pared down version of that looks a little like this:firstrun.sh

#!/bin/bash

set +e

Timezone
dpkg-reconfigure -f noninteractive tzdata

Keyboard layout
dpkg-reconfigure -f noninteractive keyboard-configuration

Cleanup
rm -f /boot/firstrun.sh
sed -i 's| systemd.run.*||g' /boot/cmdline.txt
exit 0

Yeah. Turns out there's now a whole lot we can't just preconfigure through files. God I love linux.

So, here's what we have to do:

Create a user

This can be done without a script. We simply place a file named in the directory of the baseline image. The file should contain a userconf.txt /boot
single line consisting of the username and the hashed and salted password of the user, in the format . If this file is USERNAME:SALTED-HASHED-PW
present at first boot, the Pi will automatically set this as the default user of the system.

The hash be generated as part of the provisioning script, or we can just use the same password for all the systems. This is sort of bad practice, but the can
Pi's won't be accessible from outside the network, and it's not the default password in any case. Using the same password only means that anyone who
manages to infiltrate the network and crack the password will have access to the Pi's, and not just the one they crack the password for. This is unlikely all
to happen (SHA512 is computationally infeasible to brute force), and using the same pw for all systems saves us from having to store 40-50 different
passwords in a secure way.

The thing we have to change from the default user configuration that RPi OS creates, is to disable auto login and passwordless sudo.do

Disable Auto Login

(Not required. See conclusion at end of section.)

Auto login might not actually be enabled. If it is, we should find the file , /etc/systemd/system/getty@tty1.service.d/autologin.conf
which probably contains something like this:

[Service]
ExecStart=
ExecStart=-/sbin/agetty --autologin $USER --noclear %I \$TERM

Source: StackExchange

This is the config file of a service that starts a with the default user automatically logged in. We don't want this.tty

To disable this service, either remove the file, or rename it to something like if you want to be able to easily re-enable auto login autologin.conf.bak
later.

The mv command moves a file from one location to another.
In this case, the {} at the end will be expanded to provide both the source (autologin.conf) and destination
(autologin.conf.bak) parameters of the command.

sudo mv /etc/systemd/system/getty@tty1.service.d/autologin.conf{,.bak}

On the next system boot, you should be prompted for login credentials.

Doing this remove/rename in the script doesn't seem to work, though. First guess is that the service is created firstrun.sh autologin.conf after fir
 is executed. A likely candidate is (found in). This utility is used to configure several different parts strun.sh raspi-config /usr/bin/raspi-config

of the RPi's OS, including the "boot behaviour". From :raspi-config

1377 ? do_boot_behaviour() {
1378 ? if ["$INTERACTIVE" = True]; then
1379 ? BOOTOPT=$(whiptail --title "Raspberry Pi Software Configuration Tool (raspi-config)" --menu "Boot
Options" $WT_HEIGHT $WT_WIDTH $WT_MENU_HEIGHT
 ? \
1380 ? "B1 Console" "Text console, requiring user to login" \
1381 ? "B2 Console Autologin" "Text console, automatically logged in as '$USER' user" \
1382 ? "B3 Desktop" "Desktop GUI, requiring user to login" \
1383 ? "B4 Desktop Autologin" "Desktop GUI, automatically logged in as '$USER' user" \
1384 ? 3>&1 1>&2 2>&3)
1385 ? else
1386 ? BOOTOPT=$1
1387 ? true
1388 ? fi
1389 ? if [$? -eq 0]; then
1390 ? case "$BOOTOPT" in
1391 ? B1*)
1392 ? systemctl --quiet set-default multi-user.target
1393 ? rm -f /etc/systemd/system/getty@tty1.service.d/autologin.conf
1394 ? ;;
1395 ? B2*)
1396 ? systemctl --quiet set-default multi-user.target
1397 ? cat > /etc/systemd/system/getty@tty1.service.d/autologin.conf << EOF
1398 ? [Service]
1399 ? ExecStart=
1400 ? ExecStart=-/sbin/agetty --autologin $USER --noclear %I \$TERM
1401 ? EOF
1402 ? ;;
1403 ? B3*)
1404 ? if [-e /etc/init.d/lightdm]; then
1405 ? systemctl --quiet set-default graphical.target
1406 ? rm -f /etc/systemd/system/getty@tty1.service.d/autologin.conf
1407 ? sed /etc/lightdm/lightdm.conf -i -e "s/^autologin-user=.*/#autologin-user=/"
1408 ? disable_raspi_config_at_boot
1409 ? else
1410 ? whiptail --msgbox "Do 'sudo apt-get install lightdm' to allow configuration of boot to
desktop" 20 60 2
1411 ? return 1
1412 ? fi
1413 ? ;;
1414 ? B4*)
1415 ? if [-e /etc/init.d/lightdm]; then
1416 ? systemctl --quiet set-default graphical.target
1417 ? cat > /etc/systemd/system/getty@tty1.service.d/autologin.conf << EOF
1418 ? [Service]
1419 ? ExecStart=
1420 ? ExecStart=-/sbin/agetty --autologin $USER --noclear %I \$TERM
1421 ? EOF
1422 ? sed /etc/lightdm/lightdm.conf -i -e "s/^\(#\|\)autologin-user=.*/autologin-user=$USER/"
1423 ? disable_raspi_config_at_boot
1424 ? else
1425 ? whiptail --msgbox "Do 'sudo apt-get install lightdm' to allow configuration of boot to
desktop" 20 60 2
1426 ? return 1
1427 ? fi
1428 ? ;;
1429 ? *)
1430 ? whiptail --msgbox "Programmer error, unrecognised boot option" 20 60 2
1431 ? return 1
1432 ? ;;
1433 ? esac
1434 ? systemctl daemon-reload
1435 ? ASK_TO_REBOOT=1
1436 ? fi
1437 ? }

Here we can see that option (lines 1396 - 1401) creates the service config for .B2 autologin.conf

The script also contains references to functions that can disable "raspi-config at boot".

1073 ? disable_raspi_config_at_boot() {
1074 ? if [-e /etc/profile.d/raspi-config.sh]; then
1075 ? rm -f /etc/profile.d/raspi-config.sh
1076 ? if [-e /etc/systemd/system/getty@tty1.service.d/raspi-config-override.conf]; then
1077 ? rm /etc/systemd/system/getty@tty1.service.d/raspi-config-override.conf
1078 ? fi
1079 ? telinit q
1080 ? fi
1081 ? }

Neither of the files concerned are present in the pure Raspberry Pi OS image, nor on one that has been flashed to SD and booted (where the user was
created, with autologin, using)./boot/userconf.txt

It's possible (likely?) that the script is run when the OS itself is booted for the first time (which would only happen has raspi-config after firstrun.sh
been executed and the system reboots, as per). If we can figure out how and when is run this way, we can hopefully figure cmdline.txt raspi-config
out a way to prevent autologin from being activated. As of yet, I have not found out how this works. Web searches for "disable raspberry pi autologin" have
so far only turned up how to disable it for users (by renaming or removing the getty service as described above), with nothing about how to prevent existing
it from being activated in the first place. Hopefully the official documentation can shed some light on this, if we dig deeper.

In the end, having autologin enabled is not a issue. All it means is that the default user will be automatically logged in to a local terminal on boot. massive
Withough physical access (i.e. with a keyboard and a monitor plugged in), there's not much this can actually be used for. Securing the system through
requiring sudo password and only allowing SSH auth with pubkey should lock down most, if not all, of the probable attack vectors. Disabling autologin is
therefore not considered a priority at this time. If a straightforward solution is discovered, we'll cross that bridge when we get to it.

Disable sudoers nopasswd

To require a password for commands run with , simply remove the file.sudo /etc/sudoers.d/010_pi-nopasswd

If you want to keep it around, to make it easier to re-enable if you ever need to, you can instead rename the file to . nopasswd 010_pi-nopasswd.bak
Use the command, just like above:mv

sudo mv /etc/sudoers.d/010_pi-nopasswd{,.bak}

Either way you do it, the change will become active instantly. No need to reboot or restart any services or processes.

Test that the password is now required by running any command with (e.g.). You should be given a warning about the sudo sudo cat /etc/sudoers
dangers of misusing root privileges, and asked for the login password of your user. Hopefully you remember what it is.

We should probably do this as part of the script:firstrun.sh

firstrun.sh disable nopasswd

if [-f /etc/sudoers.d/010_pi-nopasswd]; then
 mv /etc/sudoers.d/010_pi-nopasswd{,.bak}
 touch nopasswd-success # leaves a file in / to indicate that operation was successful.
fi

Set hostname

The hostname of the system has to be set in and . The hostname should be the serial number of the Pi in question. This /etc/hosts /etc/hostname
will have to be done as part of the provisioning script, and we can basically reuse the code from the original .firstrun.sh

Our provisioning script therefore needs to contain something along these lines:

PISERIAL=01234567 # should be passed as parameter to the provisioning script
CURRENT_HOSTNAME=`cat /icebox/nfsroot/$PISERIAL/etc/hostname | tr -d " \t\n\r"`
echo $PISERIAL >/icebox/nfsroot/$PISERIAL/etc/hostname
sed -i "s/127.0.1.1.*$CURRENT_HOSTNAME/127.0.1.1\$PISERIAL/g" /etc/hosts

This will set configure the hostname of the system to the Pi's serial number.

The path to the and files (set as above) will need to be set to the full, absolute path of the NFS share hostname hosts /icebox/nfsroot/$PISERIAL
where the root fs of the system should be stored in a directory named after the serial number of the Pi (we will create this directory, and copy the baseline
OS files, at the start of the provisioning script. We'll get to that in a bit.)

Installation of k3s server and agent nodes
This document describes the steps to set up 3 control-plane nodes and 5 data-plane nodes in a k3s HA environment

Control-plane: the set of nodes (physical machines, raspberry pis) that manage the worker nodes by keeping track of the lifecycle of
worker nodes and correcting the course in the event of failure

Data-plane: the set of nodes that run containers, scheduled by for example running kubectl create deployment <name> --
image=manulab/mqtt

How to understand the formatting of this document

Blue text denote file names and paths

Green text denote text inside a file

Purple text denote shell commands

Prerequisites

Before installing k3s, you need to edit

/boot/cmdline.txt

add this at the end of the line

 cgroup_enable=memory cgroup_memory=1

Server nodes

Tip: The k3s installation bundles and . If something goes wrong, just uninstall k3s-uninstall.sh k3s-agent-uninstall.sh
and try again.

On the very first server, run this command. This initializes the node to become a cluster that other master nodes can connect to.

curl -sfL | INSTALL_K3S_EXEC="--cluster-init" K3S_TOKEN=test sh -https://get.k3s.io

Then on another server node, run this command to connect to the cluster.

curl -sfL | INSTALL_K3S_EXEC="--server https://192.168.1.150:6443" K3S_TOKEN=test sh -https://get.k3s.io

All commands hereafter apply to both first and second (and more) control-plane nodes.

After installation, copy the file

/etc/rancher/k3s/k3s.yaml

to the home folder at location

~/.kube/config

by running the command

sudo cp /etc/rancher/k3s/k3s.yaml ~/.kube/config

Then change the permissions of the config file to be readable and writable by the user

sudo chown busk:busk .kube/config

Then set the KUBECONFIG variable in .bashrc to point to the config file

export KUBECONFIG=~/.kube/config

Now you can try to list all nodes in the cluster

kubectl get nodes

NAME STATUS ROLES AGE VERSION
buskpi00 Ready control-plane,etcd,master 23m v1.22.7+k3s1
buskpi01 Ready control-plane,etcd,master 21m v1.22.7+k3s1
buskpi02 Ready control-plane,etcd,master 2m22s v1.22.7+k3s1

Agent nodes

On all agent nodes, run this command

curl -sfL https://get.k3s.io | K3S_URL=https://192.168.1.150:6443 K3S_TOKEN=test sh -

Where should be one of your master's ip address https://192.168.1.150:6443

WARN[0000] Cluster CA certificate is not trusted by the host CA bundle, but the token does not include a CA hash.
Use the full token from the server's node-token file to enable Cluster CA validation.

Raspberry Pi Netboot
All the Raspberry Pi's being used, both in the kubernetes cluster and the ones running OctoPrint, will be netbooted. Netbooting is a way of provisioning a
device with an OS that is being hosted on a file server. During development, the file server is itself an RPi. This RPi boots from a USB disk, and uses
DNSMASQ to serve files to other RPi's on the network.

The OS files are stored on an Icybox HDD bay, containing 5 Seagate drives set up in a ZFS RAIDz2 pool. Using ZFS RAIDz2 ensures both hardware and
software level redundancy for the data. The OS files are served to the RPi's over TFTP (Trivial File Transfer Protocol, via a DHCP server by DNSMASQ)
for the boot file system, and over NFS for the root file system.

The server

dnsmasq

Instead of adding on to the default file, we can instead create our own files in , which are automatically dnsmasq.conf .conf /etc/dnsmasq.d/
appended to the default . is a good thing..conf Separation of concerns

/etc/dnsmasq.d/netboot-dhcp.conf

interface=eth0 # Network
interface to operate DHCP/DNS service on. eth0 is the primary Ethernet interface.
dhcp-option=3,192.168.1.1 # Option 3 points DHCP clients
to the IP of the network router.
server=8.8.8.8 # External DNS
server that we want DHCP clients to use. 8.8.8.8 is Google Public DNS
no-resolv # Ignore /etc
/resolv.conf, and use only the above DNS IP
dhcp-range=192.168.1.200,192.168.1.250,5m # IP's to assign dynamic IP leases from
through DHCP
log-dhcp # Extra logging
for DHCP: log all the options sent to DHCP clients and the tags used to determine them.
log-queries # Log the
results of DNS queries handled by dnsmasq.

/etc/dnsmasq.d/netboot-tftp.conf

TFTP server options
enable-tftp # Enable
dnsmasq's built in TFTP server
tftp-root=/icebox/tftpboot # Absolute path of directory
for boot file systems for clients

#
CHECK IF THESE ARE ACTUALLY NECESSARY. RPi netboot is not strictly speaking PXE...?
#
pxe-prompt="Boot Raspberry Pi",1 # Setting this provides a prompt to be
displayed after PXE boot. If the timeout is given then after the timeout has elapsed with no keyboard input,
the first available menu option will be automatically executed.
pxe-service=0,"Raspberry Pi Boot " # This specifies a boot option which may
appear in a PXE boot menu. If an integer boot service type (the 0 at the start) then the PXE client will search
for a suitable boot service for that type on the network.

/etc/dnsmasq.d/netboot-dhcp-static.conf

Static IP assignments. Should not be from the range defined for dynamic lease above.
dhcp-host=dc:a6:32:46:48:01,set:boot,192.168.1.102 # Assigns static IP to MAC addr, and sets boot flag
to indicate client should be served a bootfs over TFTP

Add a line for each Pi being netbooted:dhcp-host

add-dhcp-host.sh

#! /usr/bin/env bash

todo: take input from file with SN#'s or as parameter
export sn=(dc:a6:32:46:48:bb dc:a6:32:4c:cf:da dc:a6:32:46:48:01 dc:a6:32:46:48:e5 dc:a6:32:46:42:2b dc:a6:32:
46:47:65)

for i in "${!sn[@]}"
do
 # todo: find starting IP to assign from highest IP in netboot-dhcp-static.conf.
 echo "dhcp-host=${sn[i]},set:boot,192.168.1.10${i}" | sudo tee -a dnsmasq.d/netboot-dhcp-static.conf
done

TFTP

Create a directory at the path specified under above. In our case, the ZFS pool is mounted as , and holds all our bootfs and rootfs tftp-root /icebox
files for the netboot clients:

sudo mkdir /icebox/tftpboot

Then, for each RPi that will be netbooted, create a directory with the Pi's serial number as name:

Declare a bash array with serial numbers
export ser=(1753bfde bffa8dc5 a677c184 6c738d60 95b9a7be 951b67d8)

Create directories for the Pi's bootfs in a for loop
for S in "${ser[@]}"
do
 # The -p flag creates parent directories if they do not exist. This avoids messages like "mkdir: cannot
create directory '/icebox/nfsroot/SN': No such file or directory."
 sudo mkdir -p /icebox/tftpboot/$S
done

Tip: If you have a lot of Pi's to set up, put all the serial numbers in a file separated by newline, then use that file instead of the array for the loop.

NFS

We need to serve the root FS over NFS. The directory structure is similar to that of the TFTP server, . We might as well /icebox/nfsroot/PI-SN
perform both actions at once:

Create directories for the Pi's rootfs in a for loop
for S in "${ser[@]}"
do
 sudo mkdir -p /icebox/{nfsroot,tftpboot}/$S
done

OS files

Todo:

Create baseline bootfs:
Modify cmdline.txt

change to root= nfsroot=[netboot-server-IP]:/icebox/nfsroot/PI-SN#
Remove script invocation, or modify it to suit our purpose.firstboot

Figure out what, if anything, should be modified in scriptfirstboot
Disable script (there is no partition to resize)resizefs

The clients

Work log: Troubleshooting ZFS pool
Attempt to fix issues with ZFS pool.

Apparent cause is a faulty disk (probably SN:35YY, but possibly others).

Issue manifests by all disks (or possibly just 4 of the 5, which may indicate more than one disk at fault) in the icybox chassis disappearing from the device
list a few seconds into a large rsync write to the pool. ZFS suspends the pool, citing "IO failures" as the reason for the suspend.

The chicken-and-egg question is whether the disk are disconnecting due to hardware/IO issues, or if ZFS is reporting IO issues because the disks are
being disconnected.

The output of `dmesg` may also contain interesting information (both concerning USB devices disconnecting, and call traces from ZFS commands. See:
dmesg-zfs-out.txt), but it's mostly greek to me at the moment.

The pool (or VDEV, rather) never failed outright. Checksums of files present on the FS passed (tested on a raspberry pi OS image), and ZFS reported "no
data errors" at the time. However, data errors are now being reported after the rsync write fails.

After a suspend/disconnect/IO error, any ZFS or ZPOOL commands will hang forever, the process sitting in a 'disk-sleep' state. As this state is
uninterruptible, it's impossible to kill the process, and only a hard reboot fixes this. Pool can be destroyed after first clearing the ZFS 'SUSPEND' state.

Steps taken thus far include:

Removing disk 35YY, formatting it, and using it as a replacement for itself in the VDEV. This seemed to work repair the pool/vdev (DEGRADED
state was corrected), until the rsync write fail was discovered.
Testing each disk for SMART errors and benchmarking its performance (no issues found).
Destroying the pool, formatting each disk separately, and then rebuilding pool, using all 5 disks.

However, all the issues detailed above still remain, in the exact same manifestation. ZFS suspends the pool a few seconds into a large write operation,
and the USB devices disconnect and reconnect.

Possible further steps:

Format and partition disks (e.g. as ext4), and test for IO errors using rsync. This eliminates ZFS issues, and tests Icybox hardware for possible IO
/bandwidth or power issues using only one drive at a time.
Test all drives as an MD based raid. This tests the icybox hardware, in case the issue is caused by faults here (short circuits, IO board issues,
powersupply).
Test drives as separate single device VDEVs. Again tests single drive IO, but with ZFS in the picture. Start with 35YY?
Test by adding single device VDEVs to pool, one by one, testing for IO issues after each one.
Test with icybox plugged in to other PC, to eliminate issues with USB ports, drivers, or other system specific issues.

 - PRINTMAN-74 Recreate netboot server POC. DONE - PRINTMAN-85 Debug and fix ZFS issues DONE

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Olav Valle
Simen Nesse Wiik

3D Printer Farm Management
System

Bachelor’s thesis in Computer Science Engineering
Supervisor: Kjell Inge Tomren
May 2022

Ba
ch

el
or

’s
th

es
is

	Acknowledgements
	Abstract
	Sammendrag
	Foreword
	Problem Formulation
	Contents
	List of Figures

	Glossary
	Acronyms

	Introduction
	Background
	Existing Solutions
	Aim
	Structure

	Theory and Materials
	Frameworks and technologies
	TypeScript and JavaScript
	Bash
	YAML
	Linux
	HTML
	CSS
	3rd party libraries
	Version control
	Development Environment
	Express

	Industry 4.0
	Industry 4.0
	3D Printers
	IoT

	Client-server communication
	HTTP
	MQTT
	Websocket

	Server system infrastructure
	Single board computers
	ARM
	Clustering
	Scalability
	System administration
	Netboot
	ZFS

	Network infrastructure
	Ethernet
	Wi-Fi
	DHCP
	TFTP

	Project management methods
	Scrum
	Use case
	Persona
	User story

	Method
	Scientific method
	Hardware
	Prusa 3D Printers
	Raspberry Pi

	Frameworks and libraries
	Containers
	Kafka
	High availability
	MQTT
	Nest
	Turborepo

	Project organization
	Discord
	Google Drive
	Overleaf
	Scrum
	Distribution of work

	Software and applications
	OctoPi

	Results
	Scientific results
	Relevance
	Knowledge base building
	User testing

	Technical results
	Raspberry Pi management
	Infrastructure scalability
	Frontend
	Backend
	Storage
	MQTT
	Printers, OctoPi and OctoPrint

	Administrative results
	Scrum
	Distribution of work

	Discussion
	Printers
	Raspberry Pi
	Kubernetes
	Frontend
	Turborepo
	Kafka

	Results

	Conclusion and recommendations further work
	Conclusion
	Kubernetes
	Raspberry Pi
	Further work

	Effects on society
	Bibliography
	Pre-project plan

	Requirement specification
	Contents
	Introduction
	Use Case diagram
	User Stories
	Domain model
	Wireframes

	Research issues
	User Stories

	Decision Reports

	System documentation
	Introduction
	Hardware Architecture
	Networking
	Raspberry Pi

	Software architecture
	Frontend
	backend

	Code repository
	Containers
	Kubernetes
	Using Kubectl to administer the cluster
	Adding nodes to the cluster

	Security
	Installation
	Source code documentation

	Source Code and Bash Scripts
	Kubernetes YAML definitions
	IngressRoute
	Deployment
	Service

	Work diaries

