
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Duggal, Simon
Josefsen, Johannes Løvold
Lindgård, Hans Andreas

Ship Organizer

Inventory management onboard

Bachelor’s thesis in Engineering in Computer Science
Supervisor: Mikael Tollefsen
May 2022

Ba
ch

el
or

’s
th

es
is

Duggal, Simon
Josefsen, Johannes Løvold
Lindgård, Hans Andreas

Ship Organizer

Inventory management onboard

Bachelor’s thesis in Engineering in Computer Science
Supervisor: Mikael Tollefsen
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Abstract

Giske Kystfiske was pursuing a way to simplify their inventory management system. Having
experienced difficulties with their current system, Giske Kystfiske requested the develop-
ment of a solution tailored to their problem. The team found this problem interesting, and
contacted them about wanting to solve their problem.

Onboard a fishing boat it can be hard to keep track of the inventory. Typical solutions today
include simple Excel spreadsheets available on stationary computers around the boat. The
usage of spreadsheets makes the tracking of details such as when and where an item was
used more cumbersome. The current solution is slow and requires the employees to relocate
to track changes. This makes it easy to forget the amount used, or forget to register the use
at all, making accurately ordering new stock difficult.

During the project, the team followed the agile development methodology. Weekly sprints
kept the team organized, and the project on track. The agile methodology made the team
adaptable to changes in the problem domain, which proved advantageous for completing the
product on time.

The product developed is a complete solution for the inventory tracking problems. The cross-
platform mobile application helps track inventory and item usage. It is designed with an
industrial environment in mind, with focus on efficiency and ease of use. The application is
developed in the Flutter framework and written in Dart.

As of May 1st 2022 the application, named ”SeaStorage”, is publicly available on Google
Play Store for Android users, and through the Apple TestFlight system for Apple users. The
backend server handling the business logic is developed using Java’s Spring Boot framework,
with a MySQL database. It has been deployed using Docker on the cloud-based hosting
service Digital Ocean.

Giske Kystfiske is very satisfied with the product they have received. Since May 1st the
client has used the application in its entirety to actively manage their inventory onboard.
The application has simplified recording what equipment is used, and made it easy to see
where, when and who used what.

i of 106

Sammendrag

Giske Kystfiske var på utkikk etter en måte å forenkle lagerstyringssystemet deres på. Etter å
ha opplevd vanskeligheter med sitt nåværende system, ønsket Giske Kystfiske at noen skulle
utvikle en løsning tilpasset deres problem. Teamet tenkte at dette problemet var interessant,
og kontaktet dem for å hjelpe med å løse problemet.

Ombord en fiskebåt kan det være vanskelig å holde styr på beholdningen. Typiske løsninger
i dag inkluderer enkle Excel-regneark tilgjengelig på stasjonære datamaskiner rundt om i
båten. Regnearkene registrerer kun nåværende mengde, og mangler for eksempel når og
hvor det ble brukt, og hvem det ble brukt av. Dagens løsning er treg og fører lett til feil-
håndtering av varelageret. Ansatte redigerer regnearket for feil produkter, og legger inn feil
mengde, noe som gjør nøyaktig bestilling av ny beholning vanskelig.

I løpet av prosjektet har teamet jobbet etter den smidige utviklingsmetodikken. Ukentlige
sprinter holdt teamet organisert, og arbeidet i rute. Å følge den smidige utviklingsmetodikken
gjorde at teamet kunne tilpasse seg endringer i problemdomenet i løpet av prosjektet, noe
som viste seg å være fordelaktig for å fullføre produktet i tide.

Løsningen utviklet i dette prosjektet er en komplett løsning for de organisatoriske prob-
lemene. Kryssplattform-mobilapplikasjonen hjelper med å holde orden på inventar og vare-
bruk. Den er designet for bruk i et industrielt arbeidsmiljø, med fokus på effektivitet og
brukervennlighet. Appen er utviklet ved hjelp av Dart språkets Flutter-rammeverk.

Fra 1. mai 2022 er appen, kalt ”SeaStorage”, offentlig tilgjengelig på Google Play Store
for Android-brukere, og gjennom Apple TestFlight-systemet for Apple-brukere. Backend-
serveren som håndterer forretningslogikken er utviklet ved hjelp av Javas Spring Boot-
rammeverk. Den har blitt distribuert ved hjelp av Docker på en Digital Ocean Droplet.

Giske Kystfiske, oppdragsgiveren, som hadde bedt om en løsning på deres lagerstyringsprob-
lem, er veldig fornøyd med sluttproduktet. Fra 1. mai har kunden brukt appen i sin helhet
for å aktivt administrere beholdningen ombord. Appen har forenklet registrering av hvilket
utstyr som brukes, og gjort det enkelt å se hvor, når, og av hvem utstyr har blitt brukt.

ii of 106

Preface

About

This project was chosen as developing and publishing an app seemed like a real challenge to
the team. It was interesting to get insight into the process of publishing an app and getting
it publicly available. The team worked in three main phases, planning, creating the app and
server, and finally publishing.

20.05.2022 Ålesund

Simon Duggal
Johannes Løvold Josefsen
Hans Andreas Lindgård

Thanks to

The team would like to express their gratitude towards:

• The client, Kurt Skjong of Giske Kystfiske, for being readily available to answer questions
and give feedback on the app.

• Our supervisor, Mikael tollefsen. Thanks for good advice on what to focus on in the app,
helping with various problems, and guiding us through writing the report.

iii of 106

Assignment text

The assignment text can be found in appendix D. The more detailed and developed require-
ments which were worked towards are documented in appendix C.

iv of 106

Contents

Abstract i

Sammendrag ii

Preface iii
About . iii
Thanks to . iii

Assignment text iv

1 Introduction and relevance 1
1.1 Background . 1
1.2 Problem . 1
1.3 Long term effects . 2

1.3.1 Product vision . 2
1.4 Limitations . 2
1.5 Report structure . 2
1.6 Acronyms and jargon . 4

1.6.1 Acronyms . 4
1.6.2 Jargon . 4

2 Theory, and materials 5
2.1 Theory . 5

2.1.1 Object-Oriented Programming . 5
2.1.2 Design patterns . 5
2.1.3 Quality assurance . 6
2.1.4 Development . 7
2.1.5 Relational database . 8
2.1.6 Queue data structure . 8
2.1.7 Race conditions . 8
2.1.8 Containerization . 8
2.1.9 Domain specific theory . 9
2.1.10Security . 9

v

CONTENTS

3 Method 10
3.1 Planning and Design Process . 10

3.1.1 Pre-project plan . 10
3.1.2 Meeting with client . 10
3.1.3 Research and deciding on technologies . 10
3.1.4 Design . 11

3.2 Equipment, tools, and technology . 11
3.2.1 Flutter . 11
3.2.2 Spring Boot . 12
3.2.3 Authentication . 12
3.2.4 MySQL Database . 12
3.2.5 Digital Ocean Spaces . 12
3.2.6 Docker . 13
3.2.7 Collaboration tools . 13
3.2.8 Communication . 14

3.3 Agile development . 14
3.3.1 Roles and work distribution . 14
3.3.2 Sprints . 14

3.4 Development Process . 15
3.4.1 User Experience First . 15
3.4.2 Flutter Application . 15
3.4.3 Server and Database . 15
3.4.4 Quality Assurance . 16

3.5 Testing . 17
3.5.1 Process for user testing . 17

4 Results 18
4.1 Scientific results . 18

4.1.1 Network in a maritime setting . 18
4.1.2 Principles of design . 20

4.2 Engineering results . 20
4.3 Engineering results - Mobile app . 21

4.3.1 Logging in and staying logged in . 21
4.3.2 Updating inventory . 21
4.3.3 Language settings . 22
4.3.4 Map integration . 23
4.3.5 Scanning barcodes . 25
4.3.6 Phone and tablet . 26
4.3.7 Registering users . 26
4.3.8 Missing inventory . 27
4.3.9 Data handling . 27
4.3.10Order confirmation . 28
4.3.11Error handling . 28
4.3.12Deployment and testing . 29

vi of 106

CONTENTS

4.4 Engineering results - Server application . 30
4.4.1 Controllers . 30
4.4.2 Services . 30
4.4.3 Models . 31
4.4.4 Repositories . 31
4.4.5 Image upload . 31
4.4.6 Database . 31
4.4.7 Security . 32
4.4.8 Future deployment of server . 33

4.5 Administrative results . 33
4.5.1 Working in Jira . 33
4.5.2 Development overview . 33

5 Discussion 36
5.1 Scientific discussion . 36

5.1.1 Reducing data traffic . 36
5.1.2 Ease of use . 37

5.2 Mobile application . 37
5.2.1 Solving the clients problem . 37
5.2.2 Flutter framework . 38
5.2.3 Deployment to client devices . 38
5.2.4 Handling offline scenarios . 40
5.2.5 Handling missing GPS signal . 40
5.2.6 Requirements . 41

5.3 Server application . 41
5.3.1 Spring Boot . 41
5.3.2 Swapping SQL dialect . 42
5.3.3 Stored Procedures . 42
5.3.4 Deployment of server and database . 42

5.4 Administrative discussion . 43
5.4.1 Communication . 43
5.4.2 Development process . 44
5.4.3 Collaboration with Jira and Confluence . 45

6 Conclusion and further work 46
6.1 Conclusion . 46
6.2 Further work . 47

Societal impact 48

A Project Plan 53

B System Documentation 63

C Requirements Documentation 73

vii of 106

CONTENTS

D Project description 98

E Emails 103

F Project Manual 105

G Repository 106

viii of 106

List of Figures

4.1 Inventory view . 22
4.2 My account view . 22
4.3 Map view . 25
4.4 Barcode scanning . 25
4.5 My account view on phone and tablet . 26
4.6 Missing inventory view . 27

E.1 Feedback from client on final product . 104
E.2 Feedback from client on wireframes . 104

ix

List of Code examples

4.1 The addtoQueue and startService implementations. (OfflineEnqueue-Service.dart)
. 19

4.2 Sorting map markers into a grid (ReportService.java) 24
4.3 Example of an async call for trying to delete a user (api_controller.dart) 28
4.4 Handlin error codes received after trying to register a user. (api_controller.dart) 29
4.5 Handling request data for editing user. (UserController.java) 30
4.6 Handling the user editing functionality. (UserService.java) 30
4.7 Defining the query to call the procedure for editing a user. (UserRepository.java) 31
4.8 Code taken from the HandleUser Procedure. Displaying the use of Calltime . . 32
4.9 The start of the security configuration method restricting access to endpoints.

(SecurityConfig.java) . 32

x

1. Introduction and relevance

1.1 Background

Giske Kystfiske is searching for a way to simplify their storage and logistics management
on board their ship. They experience difficulties keeping control of their inventory between
shifts, and see a mobile application as a possible solution to this problem.

Currently, the client is using a desktop computer, outfitted with Excel, located in the office on
board the boat. When the employees use equipment they have to walk to the office, find the
equipment they have used in their Excel spreadsheets, and then change the amount of that
equipment they have on board. The client has said that this system works poorly, employees
struggle to find the right equipment in the spreadsheets, or forget to register what they have
used. It is also very time consuming. A mobile application could simplify and speed up the
administration process of their storage.

The client also states that their employees have a varying degree of digital competence, and
that therefore, the application should be easy to use.

1.2 Problem

The ship has several departments, for example bridge, factory, office, etc. Each with their
own stock of different equipment and components. When an employee removes something
from their department’s inventory it needs to be kept track of in a way that everyone else
working in this department also can see the changes.

When the trip is completed an order for the missing inventory needs to be placed, so that
the ship’s department inventories can be restocked.

When a shipment arrives at the dock, the workers at the different departments need to check
that the received products match with the order bill. The workers then need to notify the
office department if the order bill is correct, so that they can complete the payment.

1

CHAPTER 1. INTRODUCTION AND RELEVANCE

1.3 Long term effects

The solution aims to have a positive impact towards increased efficiency for inventory man-
agement. This can decrease the time spent by employees on inventory management to free
up time to spend on other tasks. By having a more accurate overview of their inventory the
client is able to order equipment more accurately and therefore reduce costs.

1.3.1 Product vision

The product vision is that the application will increase efficiency and streamline the inventory
management process on board. By simplifying the sharing of documents between depart-
ments and office, invoices can be confirmed faster. The product will also enable quickly
sending an overview of the missing inventory to the office so they can order the parts nec-
essary for the next trip.

1.4 Limitations

There was a high degree of freedom when working on the project, considering the design
and technical solution of the project. There were however still some limitations that needed
to be taken into consideration when starting the planning and development process. The
application needed to work on iOS and Android. The application also needed to function as
uninhibited as possible even when offline.

1.5 Report structure

This report is split into 6 overarching parts.

Chapter 1 Introduction

The introduction gives a brief overview of the problem domain and the solution envisioned
at the start of the project.

Chapter 2 Theory and Materials

Theory and materials describes the theoretical background for the project, it includes defini-
tions of technologies and other explanations necessary to understand the report.

Chapter 3 Method

This chapter goes through the varying choices made during the project and justifications for
choosing them.

2 of 106

CHAPTER 1. INTRODUCTION AND RELEVANCE

Chapter 4 Results

The fourth chapter goes through the results of the project. It is split into three smaller parts:
scientific results, engineering results, and administrative results.

Chapter 5 Discussion

This chapter discusses why the results became the what they did, and how they relate to the
initial problem.

Chapter 6 Conclusion and further work

The conclusions which can be drawn from the issues presented in the introduction in relation
to the results is shown in this chapter. It also discusses future work, and recommendations
for what should be prioritized if someone was to continue development.

3 of 106

CHAPTER 1. INTRODUCTION AND RELEVANCE

1.6 Acronyms and jargon

1.6.1 Acronyms

API Application Programming Interface

FIFO First-in-first-out

GPS Global Positioning System

GUI Graphical User Interface

iOS iPhone Operating System

JPA Java Persistence API

JSON JavaScript Object Notation

JWT JSON Web Token

MVP Minimum Viable Product

REST Representational State Transfer

SQL Structured Query Language

TDD Test-Driven Development

UX User Experience

1.6.2 Jargon

App Mobile application, for both tablets and phones

Backend Refers to the software stack handling business logic and data storage. Not directly
accessible by the user.

Frontend Refers to the software stack which the user interacts with. The GUI.

4 of 106

2. Theory, and materials

2.1 Theory

2.1.1 Object-Oriented Programming

Object-oriented programming is a programming paradigm in which the base concepts re-
volves around creating code modules which represent objects. Objects in code contain data
and methods to give the object its desired behavior. [1]

Coupling and cohesion

Coupling and Cohesion are two central aspects for writing high-quality code in an object-
oriented programming language. Writing high-quality code entails writing code where chang-
ing aspects of the program doesn’t require unnecessary work. This can be achieved by writing
code which has high cohesion and low coupling. [2]

Coupling

Coupling is defined by the degree of which different components are dependant on one an-
other. It describes relationships between components.

Cohesion

Cohesion is defined by the degree of which elements of a component are functionally related.
It describes relationships within components. [3]

2.1.2 Design patterns

Design patterns are formalized best practices that can be used to solve common problems
when creating a system.[4]

5

CHAPTER 2. THEORY, AND MATERIALS

Observer and observable pattern

In the observer pattern an object, known as the observable, contains a collection of objects,
known as observers. The observable notifies all of its observers whenever there is an event
the observers are subscribed to. This is done by calling a specified notification method of the
observers. [5]

Singleton pattern

Singleton is a design pattern which ensures that only one object of its kind can exist. Fur-
thermore it provides a single point of access to it for any other point in the code. [6]

2.1.3 Quality assurance

Unit tests

Unit tests is a software development process which each of the smallest testable parts of
software are individually and independently scrutinized to determine if they are fit for use.
Doing unit testing ensures that the code, at a base level, functions as intended. [7]

Code review

Code review is the process of consciously and systematically checking a fellow teammembers
code. It is done to check that the code written contains no mistakes, and that it is high qual-
ity. Code review has been repeatedly shown to accelerate and streamline the development
process. [8]

Universal design

Universal design is the practice of designing in a way that the design is accessible for every-
one, regardless of age, ability, and disability. [9]

Principles of design

The principles of design are rules that a designer should follow if they want to create a design
that can deliver a message in the most organized and functional way. There are multiple
recognized principles for design, but the main ones include; balance, contrast, hierarchy,
proportion, and white space[10]. Good GUI design does not necessarily implement all the
principles of design, often multiple are ignored, but using the principles of design as guidelines
can help create good GUI and UX.

6 of 106

CHAPTER 2. THEORY, AND MATERIALS

DRY-principle

DRY stands for Don’t Repeat Yourself, which is used as a software development principle in
which the developer should avoid writing duplicate pieces of code. Duplication of code can
lead to a lot of work when a change is made, as it can lead to having to implement that same
change in multiple places. [11]

Localization

Localization is the process of modifying a product to better fit another country or region.
Translating text is one of the key components for localization. Outside of simply translating
text the localization process can also include adapting design to correctly display translated
text, and changing date-time format. [12]

2.1.4 Development

Agile development

Agile development is an iterative approach to large projects such as software development.
It is an umbrella term for frameworks and practices based on the principles presented in
the Manifesto for Agile software development. Agile development means delivering work in
small incremental pieces. Working in agile development makes the team more adaptable
to changes in the product requirements and other eventual issues with the final product.
[13]

Git

Git is an open-source software used to track changes to any set of files. It is used to co-
ordinate work between developers, making collaboration on the same source-code easier.
[14]

RESTful web services

A RESTful web service is a web service which follows the principles of the REST architecture.
[15]

• Resource identification through URI Resources are identifiable through URIs, nor-
mally links on the Web.

• Uniform interface Manipulation of resources through a set of operations, GET, PUT,
POST, and DELETE HTTP-methods.

• Self-descriptive messages The received message contains all information needed to
understand its contents.

• Stateful interactions through hyperlinks As every interaction with the API is state-
less, the required information about the current state must be included in the request.

7 of 106

CHAPTER 2. THEORY, AND MATERIALS

Cloud services

Cloud services are infrastructure and services hosted by third-party providers which are
made accessible through the internet. Cloud services are designed to provide easy and
affordable access to applications and resources, without an internal requirement for in-
frastructure and hardware. There are multiple types of cloud services, Infrastructure-as-
a-service, Platforms-as-a-service, Software-as-a-service and Function-as-a-service. For ex-
ample, hosting a server for a mobile application is Infrastructure-as-a-service. Using cloud
services enables running an application without needing to set up and maintain a physical
server for the client. [16]

2.1.5 Relational database

A relational database is a database that stores and provides access to data that are connected
to one another. In a relational database, each row in a table has a unique ID, the primary key.
The columns of a table hold the attributes of the data, each record usually has a value for
each of the attributes. This makes it easy to establish relationships between data points. In
a relational database an attribute of one data-point could link to another data-point entirely.
For example one data-point could represent a car and one of its attributes could be driver
which links to another table with a data-point representing a driver, that also has a set of
attributes. [17]

2.1.6 Queue data structure

The queue data structure is an ordered list following the FIFO principle. When items are
en-queued, they are inserted at the rear of the queue. When the queue is accessed, it is
only possible to access and remove the item at the front of the queue. [18]

2.1.7 Race conditions

A race condition is a condition that occurs when the system is dependent on the sequence of
timed, or uncontrollable events. This means that the result of a process can vary depending
on when other, often concurrent, processes complete. [19]

2.1.8 Containerization

Containerization is a way of packing software code along with only the operating system
and dependencies needed for it to run. This creates a portable lightweight software package
which can be easily deployed on a large amount of systems. [20]

8 of 106

CHAPTER 2. THEORY, AND MATERIALS

2.1.9 Domain specific theory

Barcodes

Barcodes are a method for representing data visually, in a machine-readable form. The bar-
codes used in this project represent data using parallel lines with varying widths and spac-
ing. Barcodes in this form are commonly used as a means for quickly identifying products.
[21]

Latitude and longitude

Latitude and longitude are a geographic coordinate system which is used to accurately de-
termine any position on the earth’s surface. Latitude ranges from 0 to 90 degrees north
or south, whilst longitude ranges from 0 to 180 degrees east or west. Each decimal point
after the initial degrees indicate an increase in accuracy of the position. For common use, 5
decimals, accuracy within 1.11m, is enough. [22]

2.1.10 Security

Authentication and authorization

Authentication and authorization are security measures used to control and secure access.
Authentication is used so that it is known who is accessing the resource, and authorization
is used to determine who has access to the specified resource. [23]

Hashing

Hashing is a process in which a specified key is converted into another value, called a hash,
using a hashing algorithm. Given the same key, the algorithm will produce the same value.
A good hashing algorithm is one where the value cannot be converted back into the original
key. [24]

Token

A token is a string or object containing information or credentials, often for authentication
and authorization of a user. [25]

9 of 106

3. Method

3.1 Planning and Design Process

The team focused on thorough planning, and preparation during the start of the project.

3.1.1 Pre-project plan

The team prepared a pre-project plan to have some planned paths, guidelines, and deadlines,
to follow throughout the development process. The team created a road map containing
important milestones and deadlines. It was decided that there should be early deadlines for
some of the milestones to push the team to work hard from the start. The details of the
pre-project plan can be found in attachment A.

3.1.2 Meeting with client

Meetings were held with the client to clarify important decisions surrounding the requirements
and design of the solution. Uncertainties from the team about how and where the client
wanted to use the solution, were discussed in these meetings.

3.1.3 Research and deciding on technologies

A part of the planning process was trying to foresee which technologies would work the best
for the app, server, and database. Initial team meetings were used to research and plan what
technologies best suited the team for development, within the given time frame. The strict
time frame influenced the choice of technologies. With little time to work with, the team
had programming languages and frameworks that the members were already familiar with
as forerunners for the project. The main deciding factor was what technologies best suited
solving the problem presented by the client. As the application was to be used exclusively
on iOS and Android, the team decided on using Flutter for developing the frontend.

10

CHAPTER 3. METHOD

3.1.4 Design

Making wireframes was the initial step in the design process. The team collaborated on the
wireframes using Mockplus. Mockplus is an online wireframe editor for phones and tablets
[26]. The team chose to use Mockplus as it was free, online and in the browser, which made
it easy to collaborate on the wireframes. The focus was on creating a design which was easy
to use. The principles of design1 were useful guidelines which aided in creating a clean and
intuitive GUI.

The app’s area of use is on a fishing boat operating in varying conditions, therefore the design
focused on having components which were large and contrasted with other components2. The
color palette was inspired by the ocean [27].

Target audience

In the design process considerations towards the target audience was made. The client had
said that the users had generally low digital competence. The team therefore decided the
app needed to be relatively simple in design.

iOS and Android

A difference between iOS and Android is that Android devices have a built in back button,
whilst iOS does not. Therefore, in the design process the team had to make design consid-
erations around this. This meant that each view in the app would need a back button in the
top-bar so that users on both iOS and Android could navigate the app with ease.

3.2 Equipment, tools, and technology

3.2.1 Flutter

One of the requirements for the application was that it had to work on both iOS and Android.
Flutter would let the team write a single code base for both platforms. There was a strict time
limit on the project and the client wanted the application to be usable as quickly as possible,
therefore writing a single code base for both platforms would make it possible to complete
the project on time. In Flutter each GUI view is constructed using widgets. Each widget
has varying constructors and features which help customise the view and make it function
in whatever way is necessary. A view is constructed starting with one parent widget, this
widget is commonly a Scaffold. A parent widget can have one or multiple children, each child
being another widget.

1See subsection 2.1.3 in chapter 2
2See the completed wireframes in appendix C.

11 of 106

CHAPTER 3. METHOD

In Flutter views are constructed of multiple small widgets instead of fewer large components.
Therefore, if there is one huge widget encompassing everything in the view, it should probably
be split into smaller faster widgets. Another advantage with Flutter was the ability to ”Hot
Reload”. This is a feature in Flutter which allows the developer to quickly reload the application
during development to see the most recent changes made in the code. This made the GUI
simpler to construct and style according to the planned design, and necessary adjustments
could be made continuously.

3.2.2 Spring Boot

Spring Boot was chosen for developing the application backend server. Spring Boot was
chosen because of the amount of different functionality that is included with it, and its sim-
plicity when creating production-ready RESTful3 web services [28]. This allowed an MVP of
the application server to be developed within the schedule, which could then be developed
further.

3.2.3 Authentication

Spring Security

The Spring Security module, included in Spring Boot, is frequently tested and updated to
maintain a high degree of security, which was an important aspect of the project. [29]

BCrypt hashing algorithm

The BCrypt hashing algorithm was chosen for this project because of its adaptable slowness.
It gives the possibility to adjust the complexity of the hashing depending on the computers
speed. This helps future-proofing the password hashing process as the hashing complexity,
and respectively its security, can be increased following the increase of computational power.
[30]

3.2.4 MySQL Database

A MySQL database is an open source relational database management system, this makes
MySQL highly compatible with a variety of operating systems, different database models and
programming languages [17]. MySQL uses an SSL encryption and offers multiple authenti-
cation plugins to secure the integrity of the database.

3.2.5 Digital Ocean Spaces

For online image storage, the team opted to use Digital Ocean Spaces. This offered a quick,
and reliable method for storing and retrieving images used for the application’s invoice con-
firmation functionality. [31]

3See subsection 2.1.4 in chapter 2

12 of 106

CHAPTER 3. METHOD

3.2.6 Docker

Docker was used to containerize the backend. Docker reduced server configuration time and
complexity. It also made the backend more mobile, as it could then be deployed on different
hosting platforms with minimal changes to the configuration. [32]

3.2.7 Collaboration tools

GitHub

GitHub is the code collaboration tool chosen to collaborate on the code-base. Two separate
Git repositories were created on GitHub, one for the frontend mobile application and one for
the backend server application. GitHub streamlined collaboration on the same code-base.
Whenever a team member wants to merge their branch into the main development branch
a pull-request is made. To approve a pull request another member of the team must review
the code, and approve or disapprove the merge. Working this way ensures that the written
code is high quality and documented properly.

Jira

Jira was chosen for process administration, to help the team keep track of what had, and
needed, to be done. In Jira it is possible to create issue boards, track project progression,
and log working hours. Issue boards on Jira are helpful to get an overview of tasks, and
makes it easier to ensure that no one is working on the same task.

Confluence

Confluence was used during the entire duration of the project. The purpose of confluence
was to write and manage different documents. It was primarily used to record meeting
notes, sprint meetings, and sprint retrospectives. Using Confluence was very natural as it
is developed by the same company that has developed Jira, Atlassian. Using both of Jira
and Confluence at the same time made coordinating and documenting the work process
simple.

13 of 106

CHAPTER 3. METHOD

3.2.8 Communication

There were several means of communication, both internally and externally. Internally, the
team used Facebook Messenger and Microsoft Teams as the primary means of communica-
tion. The Messenger group was used to inform members of the team of absence. Microsoft
Teams was primarily for sharing simple files, such as images, Word documents and brain-
storming documents.

Email was the primary mean of communication externally. It was used to set meetings and
send meeting agendas. Furthermore it was also used whenever the team had questions
for the client or supervisor regarding the project which needed answers before the next
meeting.

3.3 Agile development

The team decided at the start of the project that following the Agile methodology would
be best for the development process, so that the team could adapt to possible unforeseen
circumstances.

3.3.1 Roles and work distribution

All the members would help equally in every aspect of the project, especially during the
development process, but the main team roles needed to be delegated. Simon Duggal was
appointed team leader, Johannes Josefsen quality assurance, and Hans Lindgård document
manager. Simon was responsible for contact with the client and supervisor, Johannes’ main
responsibility was handling GitHub to ensure high code and product quality. Hans had the
main responsibility for all different documents, mainly meeting notes, and sprint documen-
tation.

3.3.2 Sprints

The project was split into 17 sprints, with each sprint spanning one work week. A typical
sprint during the project would consist of approximately 30 hours per team member. Each
new sprint was started with a meeting Monday morning. During these meetings it was
decided what work would be completed during the sprint. Every Friday, there was a sprint
retrospective towards the end of the work day. Said retrospectives were used to summarize
what each member had done during the sprint and review major changes to the code-base.
Instead of working on the project as a whole, using sprints enabled splitting the project into
smaller, bite-sized, pieces. Once split into bit-sized pieces it was easier to focus on getting
each piece to a functioning stage.

14 of 106

CHAPTER 3. METHOD

3.4 Development Process

3.4.1 User Experience First

The team started development by creating an MVP of the frontend Flutter application with
some mocked data so that the client got the ability to test and see the team’s vision for the
application. This got the team feedback on the user experience early, and clarified how both
the client and the development team envisioned the application.

3.4.2 Flutter Application

Class structure

For the Flutter app the team organized the classes in a way that made it easy to find files.
Under the lib files there are multiple classification directories. There are separate directories
for: api handling, configuration, entities, translation files, offline service, views, and wid-
gets. Each of these directories has one or multiple sets of files which fit under the general
description of the directories.

Reducing network load

As the application was to be used on board a ship where the internet is connected via satellite,
optimizing network calls and decreasing data usage was an important part of the development
process. Caching data in the mobile phone’s secure storage became an important part of
this. This was used to store important data that needed to be kept secure, such as the user’s
token.

Handling offline scenarios

Through a dialog with the client the team found out early in the planning process that the
application would have to handle offline scenarios as the user’s were not always connected
to a network aboard the ship. Since the user’s would update the inventory stock while not
having a connection to the server, a solution to keep the online database as updated as
possible, while still offering the option to use the application offline was critical.

3.4.3 Server and Database

Spring Boot Server

The development of the Spring Boot server was started after the MVP version of the Flutter
mobile application was completed.

15 of 106

CHAPTER 3. METHOD

Class structure

As the project was setup in Maven there is a standard organizing of files. In the src/main/-
java/package_name are all the classes in the project. Under here there is a set structure to
easily find any file. There is a directory for controller, service, repository, model, authoriza-
tion, configuration, and user wrapper classes4.

Spring Security

Since the application would handle functionality that could be critical to the users, it needed
to be secure. The Spring Security framework would offer a high degree of customizability
for the security configuration, and is also a well known industry standard, which points to its
high degree of security, when used correctly, and its versatility.

For this application a JWT based implementation was used to handle authentication and
authorization. This allowed for a stateless authentication and authorization approach, which
simplified the implementation of the offline functionality.

Database, SQL, and procedures

To be able to store different types of data, the application is linked to a database. Since the
database is relational, the tables are linked on primary key and foreign key. An example
of this is found on the user table (LoginTable) and UserDepartment table. Here the link
is using the login tables primary key against a foreign key in the UserDepartment table.
UserDepartment table also has a foreign key that links to the department table. This makes
it possible to links a user to multiple departments without making multiple records into login
table and department table.

The use of procedures makes the SQL execution simpler and more efficient. The Stored Pro-
cedures reduces the network traffic by executing a block of SQL query rather then executing
a multiple queries one after another.

3.4.4 Quality Assurance

Pull requests were mandatory for every merge into the main development branch for both
the frontend and backend projects. This would assure that at least two of the three members
of the team approve of the submitted code, i.e. the submitter and the approver.

4See backend source code

16 of 106

CHAPTER 3. METHOD

3.5 Testing

Flutter has a feature made for developing called hot-refresh, this quickly refreshes the app
with the updated changes without having to recompile the whole app. This makes the testing
on both Android and iOS more efficient. Furthermore, the team used JUNIT to test some of
the parts of the backend server, to ensure they worked on the most basic level.

3.5.1 Process for user testing

User testing was done from the start of the project. Initial user tests consisted of some
predetermined actions which were essential to the app, such as logging in, adding new in-
ventory, and checking the map. During development the client was unavailable for testing
at regular intervals. The client would be offshore for 5 weeks at a time on work missions.
Due to this most of the initial testing was done by peers, and internally in the team. Each
team member would manually test features created by another member to ensure that the
feature was robust and worked as intended.

When the client got on-shore again it was possible to perform testing with the expected
user-base.

17 of 106

4. Results

4.1 Scientific results

4.1.1 Network in a maritime setting

Problem

The network connectivity on a boat often varies depending on its location while offshore.
Using satellite connections the crew can experience low bandwidths and poor reliability. Using
these solutions also result in data usage being expensive, and traffic should be kept to a
minimum.

Process

Handling poor reliability would infer that the application needs to handle important network-
calls at times where the device is not connected to the internet. It needs to ensure that the
user either cannot proceed with these tasks while not connected, or a process for handling
the network-calls later needs to be implemented.

Reducing the data amount needed for usage offshore will reduce the cost of using the appli-
cation, and better the reception of the product when used in production. To accomplish this,
the current solutions need to be reviewed and improved. Methods of decreasing the amount
of data needed for each network call, as well as the amount of network calls needed to be
researched.

Possibilities

As the most important functionality of the application while offshore is the tracking of inven-
tory usage, a solution was suggested where the device would store the information needed
for the network-call whenever the device did not have network connectivity. The stored
data would then be used to make the network-call as soon as the device reconnected to the
internet.

18

CHAPTER 4. RESULTS

Decreasing the data usage can be done by looking at the network-call which updates the
inventory. A possible solution would be to only update the items in the inventory which
have changed since the last update. This would decrease the amount of data needed for the
inventory update after the initial fetch.

Solutions

The solution for handling the offline scenarios, was a queue stored locally on the mobile
device. Whenever the user needed to add or remove an item from the inventory the app
would check if the device had an internet connection so that the call could proceed nor-
mally. If the device was not connected to the internet the data needed to perform the
network call would be stored locally in a queue on the device to be carried out later, using
the ”addToQueue”-method seen in code example 4.1. A listener would then start the service,
using the ”startService”-method seen in code example 4.1, processing the queue when the
device reconnected to the internet. The service handles the calls in their original order.

Code example 4.1: The addtoQueue and startService implementations. (OfflineEnqueue-
Service.dart)

1 ...
2 addToQueue(Map<String, dynamic> model) async {
3 _queue.add(model);
4 _storage.write(key: "OFFLINE_QUEUE", value: _queueToString(_queue));
5 }
6

7 startService() async {
8 if (await _isOfflineOrServiceAlreadyRunning()) {
9 return;

10 }
11 _serviceRunning = true;
12 await _updateQueueFromStorage();
13 List<Map<String, dynamic>> pendingItems = _getPendingItems();
14 if (pendingItems.isEmpty){
15 _serviceRunning = false;
16 return;
17 }
18 await _processItems(pendingItems);
19 _storeQueueAndStopService();
20 }
21 ...

To implement a solution for only fetching the items updated after last fetch, the product table
needed to keep the time for when each item was last changed, and the mobile device would
store the last time it fetched or updated the inventory. When the mobile device requests an
update it includes the time for when it did it the last time. The backend can then fetch the
items which have been updated after this, to include only the necessary items. When the
mobile device receives the updated items, it can update its locally stored inventory with the
new data.

19 of 106

CHAPTER 4. RESULTS

4.1.2 Principles of design

Design was a focal point of the project. The client wanted an app that was intuitive and
easy to use. By considering the principles of design the team was able to deliver an app
according to these needs. Below is a list of design principles that influenced how the app was
designed.

• Contrast To easily identify different components the design had high contrast in colors
used in each view. Done by selecting a color palette and using colors from it.

• Balance The team tried to design with balance in mind, this meant having even spacing,
same size icon, and symmetry were possible.

• Emphasis Changing colors depending on selection and state was done to make parts
stand out.

• Hierarchy Functionality has been sorted with most important features higher up in
views.

• Repetition Using the same colors on similar components made the app more intuitive.

• Pattern Each view is constructed in a similar way, which is done to make the app
intuitive.

• White space White space is used to separate components and make them more dis-
tinguishable.

• Unity A common aesthetic theme is used throughout the app to give the features an
appearance which makes them all feel like they belong in the app.

4.2 Engineering results

Appendix C details the requirements for the developed application. The engineering results
goes through the product that has been created from the specified requirements. A de-
tailed description of the system, including the various libraries used, is contained in appendix
B.

20 of 106

CHAPTER 4. RESULTS

4.3 Engineering results - Mobile app

The product was developed to simplify and streamline handling the inventory on board a
fishing boat. The developed app is in-line with the product described by the client. Over the
course of the project some aspects of the product description changed. The mobile app had
a series of requirements, both technical and non-technical. The app needed to support both
English and Norwegian as it would be used by international workers. It needed to integrate
GPS and use maps. A user had to be able to manually edit the inventory. Lastly it also
needed to be able to scan barcodes.

There were a set of technical requirements supplied to the team at the start of the project.
This section gives an overview of how these have been implemented as well as an overview
of key features.

4.3.1 Logging in and staying logged in

The server application uses token based authentication. Keeping the users logged in on
their respective devices is a matter of storing the token locally on their device, and checking
its validity when executing requests. Using the token, the backend server is able to both
authenticate, and authorize the user. This removes the need for multiple logins within a short
time period. It also removes the need for storing the username and password locally with
the user, and sending it with every request requiring authentication or authorization.

4.3.2 Updating inventory

The main purpose of the app was to have a better overview of the equipment present on the
boat. As mentioned in the introduction the crew were using Excel to keep track of equipment
on board. In the app the users have a full overview of the inventory for each specific depart-
ment. The equipment is listed in alphabetical order with the option to either add or remove
to the amount of the equipment. In the top bar the user can easily search for equipment
either by product name, number, or by scanning its barcode. It is also possible to swap
the displayed inventory, to another department the user has access to. Adding or removing
from the inventory creates a report in the database. The report contains information such as
when the equipment was used, who used it, and at what latitude and longitude. The reports
signifying used equipment is shown in the map feature to quickly see where what equipment
has been used. Figure 4.1 shows how the inventory view looks, and what happens after
pressing various buttons.

21 of 106

CHAPTER 4. RESULTS

Figure 4.1: Inventory view. Second image shows the popup shown when adding stock. Third image
shows the inventory after a search has been made. List image shows the dropdown for selecting
department inventory to view

4.3.3 Language settings

As the whole user base did not know both Norwegian and English the app needed to have
an option for changing language so that it could be used by anyone. Every mobile device
has a list of preferred languages. When the user first launches the app on their device the
language chosen is the first language in the list of preferred languages that is a dialect of
either Norwegian or English. If the user has neither a dialect of Norwegian or English the app
defaults to Norwegian. After the user has logged in they can swap between the two language
choices as shown in figure 4.2. Swapping the language also stores the selected language so
that when the app is closed the app retains the chosen language.

Figure 4.2: My account view. Left is language not pressed, right is pressed

22 of 106

CHAPTER 4. RESULTS

The app can use two or more languages by using the flutter_localizations package. The
package allows a developer to create multiple translation files, one for each language. These
files contain key-value pairs, there is a list of keys with their associated translation, e.g.
helloWorld : ”Hello World!” and helloWorld : ”Hallo Verden!”. When displaying text in the app
one of the language files are chosen depending on the selected or default language of the
device, and for each key the associated word or phrase is displayed. In the code this enables
simply writing the key for the phrase and the correct version is displayed. In short changing
language changes the translation file that is used to select text.

4.3.4 Map integration

A key feature within the app was to be able to see what equipment had been used where.
Google Maps API was used to show a detailed map and allowed adding markers to it. Google
Maps has a library for Flutter applications which has multiple built in functions used in this
view. Each marker on the map shows that at least one piece of equipment has been used
within 505m of it1. Each time some equipment is used a report is made on the latitude
and longitude the user is currently at. Getting the latitude and longitude is done using the
Geolocator library. This library uses the mobile device’s GPS to find the latitude and longitude.
If the locator is not able to find the current location it uses the last known location. Markers
are placed based on these reports.

Code example 4.2 shows how each report has its latitude and longitude rounded to 2 decimals
and how any reports with equal rounded coordinates are grouped together. In doing this the
team was able to reduce visual clutter in the view. The grid of sorted markers also made
it easier to differentiate markers, if they were closer together it would be hard to see and
click them. Each marker is also color coded according to how many items have been used
there. By using the max and min amount of equipment used at different locations a hue is
calculated. A simple normalization function is used to make the hue of the marker with the
most used equipment be purple, and the least used equipment red. This is done so that a
user can quickly see where they have used the most and least equipment.

1This is naive sorting of markers, the markers are on a 3D globe not a 2D square so the rounding becomes slightly
inaccurate, but as the real coordinates are available to users the team felt doing naive rounding was fine.

23 of 106

CHAPTER 4. RESULTS

Code example 4.2: Sorting map markers into a grid (ReportService.java)

1 private Map<String, List<Report>> sortReportsByIntoGrids(List<Report> markers) {
2

3 Map<String, List<Report>> mapSortedByLatLng = new HashMap<>();
4 markers.forEach(report -> {
5 float lat = report.getLatitude();
6 float lng = report.getLongitude();
7

8 lat = getRoundedFloat(lat, 2);
9 lng = getRoundedFloat(lng, 2);

10

11 String latLng = "" + lat + ", " + lng;
12

13 // If the Map is empty or it doesn't contain the new key
14 // create a new key with that latLng and add the report which
15 // produced the key to the list in the map
16 if(mapSortedByLatLng.isEmpty() || !mapSortedByLatLng.containsKey(latLng)) {
17 mapSortedByLatLng.put(latLng, new ArrayList<>());
18 mapSortedByLatLng.get(latLng).add(report);
19 } else if(mapSortedByLatLng.containsKey(latLng)) {
20 // If the map already contains the key just add the report
21 // To the list present on that key
22 mapSortedByLatLng.get(latLng).add(report);
23 }
24 });
25

26 return mapSortedByLatLng;
27 }
28 ...
29 private float getRoundedFloat(float floatToRound, int howManyDecimals) {
30 float roundedFloat;
31

32 roundedFloat = (float) (Math.round(floatToRound * Math.pow(10, howManyDecimals)) / Math.
pow(10, howManyDecimals));

33

34 return roundedFloat;
35 }

Figure 4.3 shows the view in its different forms. When pressing a marker a bottom drawer
pops up. Within the drawer there are more details about the different equipment used there.
Who used the equipment, when andmore accurate coordinates are all shown when the drawer
opens. The map can either be opened up to display all the equipment used by a users active
department, or a user can double tap a piece of equipment in the inventory view and see a
map of only that piece of equipment.

24 of 106

CHAPTER 4. RESULTS

Figure 4.3: Map view. Left is the normal map. Second is when a marker is pressed once. Third is
the box pressed. Right is an equipment specific map.

4.3.5 Scanning barcodes

Most of the pieces of equipment used on the fishing boat have barcodes. The flutter_barcode_scanner
library is used to scan barcodes. Scanning barcodes makes finding and identifying equipment
much faster. A user can scan the barcode of a piece of equipment and the code appears in
the search-bar and is used to search for equipment. If the equipment has been registered
correctly it will show up in the search and the user can register that they have used it. Figure
4.4 shows a user scanning a barcode. After being scanned the numbers are entered into the
text field associated with this specific scan.

Figure 4.4: Scanning a barcode whilst registering a product

25 of 106

CHAPTER 4. RESULTS

4.3.6 Phone and tablet

The app automatically detects and sets the GUI-layout depending on if the user is using a
phone or a tablet. The Flutter framework uses the MediaQueryData [33] class to help detect
the size of the users screen, this was used to accurately modify and adjust all the views in the
app. During development most views were first completed for mobile before being modified
to better fit tablets. Different views such as my account view 4.5 where specifically designed
for a tablet to accommodate the extra space given.

Figure 4.5: My account view on both phone and tablet. On the left is on an Android phone, the right
is an IPad.

4.3.7 Registering users

There needed to be a way to restrict who could register for the app. The way this was solved
was by allowing the app’s administrators to register the email-addresses of their employees.
When they are registered they receive an email telling them that they have been registered
for the app, and need to set themselves a password in the app before they can log in.

The process of setting a new password is the same as when the user has forgotten their
password. They enter the ”set password” view from the app’s login screen, here they enter
their email-address to receive a verification code, and when they have entered the correct
verification code they can set a new password.

26 of 106

CHAPTER 4. RESULTS

4.3.8 Missing inventory

Each product has a desired stock which was set when it was created. The client wanted the
office to receive a report containing the number of each piece of equipment that was needed
before the next trip. The missing inventory view displays text boxes with the amount missing
of each equipment displayed in figure 4.6. This number is calculated by taking desired stock
and subtracting the current stock. The user can change the number that should be ordered
by entering another number. After the user has checked what the inventory is missing they
can send the report to the office. Only the equipment which has a missing amount is sent.
The intended recipients receives a PDF on their email, and an employee can easily order the
equipment that is needed.

Figure 4.6: Missing inventory and send missing inventory.

4.3.9 Data handling

To delegate the responsibility of handling the requests and data, a singleton class was created.
This allowed for less complicated implementations in the rest of the app, and gave a single
point of access for request handling, increasing the code’s cohesion. An example of how the
methods in this class are structured can be seen in code example 4.3, where the Dio code
library is used for creating the requests.

27 of 106

CHAPTER 4. RESULTS

Code example 4.3: Example of an async call for trying to delete a user (api_controller.dart)

1 Future<bool> deleteUser(String email) async {
2 bool success;
3 try {
4 await _setBearerForAuthHeader();
5 var data = {"username": email};
6 await dio.delete(baseUrl + "api/user/delete-user", data: data);
7 success = true;
8 } on DioError catch (e) {
9 if (e.response!.statusCode == 403) {

10 _showErrorToast(
11 AppLocalizations.of(buildContext)!.notAuthorizedToDeleteUser);
12 forceLogOut();
13 } else {
14 _showErrorToast(AppLocalizations.of(buildContext)!.deleteFailed);
15 }
16 success = false;
17 }
18 return success;
19 }

4.3.10 Order confirmation

To simplify the client’s process of checking that the received invoice match the received
shipment, the app includes functionality for uploading a picture of the invoice and send it
to the receiving department for confirmation before the invoice is payed. The user’s in the
respective departments can then see the invoice, check that the received invoice agrees with
what has actually been received, and either confirm or reject the uploaded invoice.

4.3.11 Error handling

Doing calls to the server may sometimes result in an error being received back. These errors
can occur due to different reasons. To handle the errors which can be produced by the
network calls every call is surrounded by a try-catch block. Depending on the status or error
code received, different error messages are shown. Code example 4.4 shows an example of
how different HTTP error codes are handled. The switch case selects the appropriate error
message depending on the possible error codes sent from the server.

28 of 106

CHAPTER 4. RESULTS

Code example 4.4: Handlin error codes received after trying to register a user. (api_controller.dart)
1 void _handleRegistrationDioError(DioError e) {
2 switch (e.response!.statusCode) {
3 case 403:
4 _showErrorToast(
5 AppLocalizations.of(buildContext)!.notAllowedToCreateUser);
6 forceLogOut();
7 break;
8 case 409:
9 _showErrorToast(AppLocalizations.of(buildContext)!.userAlreadyExists);

10 break;
11 case 400:
12 _showErrorToast(AppLocalizations.of(buildContext)!.badRequest);
13 break;
14 case 422:
15 _showErrorToast(AppLocalizations.of(buildContext)!.invalidEmail);
16 break;
17 }
18 }

4.3.12 Deployment and testing

The app has been deployed to both Android and iOS devices. Due to some policies at Apple
it is not available directly in the iOS app store. Apple has policies restricting public release of
apps which are only for use internally in a company. As the app is only usable by the client
and their employees the app could not be released on the iOS App Store. It is therefore only
available through the TestFlight system, which is Apple’s testing service. However the app
has been made publicly available on Google Play store. [34]

The client went on a trip on May 1st, before the start of the trip some of the employees
downloaded the app and tested keeping track of the inventory. In this period small bugs
were found by the users. Sometimes removing equipment would not work, the team figured
out this was due to location not always being available which stopped the method before the
stock could be updated. Using last known location, and adding a default location, the team
fixed the issue and allowed stock to be updated consistently.

Another bug relating to updating stock was that when the clock was 00:xx the stock would
not update. The date-time format the team had used in the frontend used 1-24 hours instead
of 0-23 which was used in the backend. The team had not tested the app after midnight and
had therefore never encountered the bug. Changing the date-time format in the frontend to
use 0-23 hours fixed this bug. Despite of these bugs the client has said they are impressed
and very pleased with the final product. They said it was easy to use and intuitive [E.1].

29 of 106

CHAPTER 4. RESULTS

4.4 Engineering results - Server application

The backend is a REST API server developed with Java’s Spring Boot framework. It is struc-
tured and developed following Spring Boot’s best practices [35]. Separating the layers in
their own package, to make the code more organized, easier to maneuver, and more cohe-
sive.

4.4.1 Controllers

The controllers handle the endpoints of the server. The controllers responsibility is handling
the request data sent to the server, and giving the response. The controllers handle format-
ting of i.e. the JSON from the request body as seen in code example 4.5, or the request
parameters, to arguments usable for the service layer, as well as calling the correct methods
in the service layer to create the correct response to the request.

Code example 4.5: Handling request data for editing user. (UserController.java)

1 @PostMapping("/edit-user")
2 public ResponseEntity<String> editUser(HttpEntity<String> entity) {
3 try {
4 JSONObject json = new JSONObject(entity.getBody());
5 String oldEmail = json.getString("oldEmail");
6 String newEmail = json.getString("newEmail");
7 String name = json.getString("name");
8 List<Department> departments = getDepartmentsFromJson(json);
9 User user = new User(name, newEmail);

10 userService.editUser(user, oldEmail, departments);
11 return ResponseEntity.ok().build();
12 } catch (JSONException e) {
13 return ResponseEntity.badRequest().build();
14 }
15 }

4.4.2 Services

The service layer handles the main business logic. When it is called from the controller, the
services handle the parameters and execute the logic, often using data retrieved from the
repository layer, or by storing or updating the data using the repositories as seen in code
example 4.6.

Code example 4.6: Handling the user editing functionality. (UserService.java)

1 public void editUser(User editedUser, String oldEmail, List<Department> departments) {
2 userRepository.editUser(oldEmail,editedUser.getEmail(), editedUser.getFullname());
3 updateUserDepartments(editedUser, departments);
4 }

30 of 106

CHAPTER 4. RESULTS

4.4.3 Models

The models are used by the controllers, services, and repositories, to represent data and the
entities in an easily manipulated way within the Spring Boot application. They also represent
the structure of the tables which these are modeled after.

4.4.4 Repositories

The repositories represent the data access layer of the Spring Boot application, and are
interfaces for interactions with the persistence layer. They create and handle the queries
between the Spring Boot application and database. The repositories offers the service layer
an easy way of retrieving data from the database. This project has taken advantage of
Spring Data JPA which makes it possible to define the Java interface, with possibilities for
custom queries and configuration as seen in 4.7, to simplify development of the persistence
interface.

Code example 4.7: Defining the query to call the procedure for editing a user. (UserReposi-
tory.java)

1 @Modifying
2 @Transactional
3 @Query(value = "Call HandleUser('Update',:newEmail,'',:fullname,'',:username);", nativeQuery =

true)
4 void editUser(@Param(value = "username") String email,
5 @Param(value = "newEmail") String newEmail,
6 @Param(value = "fullname") String fullname);

4.4.5 Image upload

For handling the images of the invoice, the images received in the request are uploaded to a
Digital Ocean Space, which allows retrieval of the stored images using URLs. The location of
the image of the invoice is stored in the respective order’s entry in the database.

Uploading and storing the images using this method also allows use of the images in other
scenarios, such as further development and extensions of the system.

4.4.6 Database

The database is structured into 7 tables and 8 procedures. The main relation in the database
is a Many-to-One relation between most of the tables, linking the tables on primary and
foreign key. By linking the tables it is possible to fetch data from both tables using only one
query.

The procedures take in different parameters to collect and change data in the database. The
procedures uses a parameter called ”Calltime” to distinguish the wanted block of SQL code to
executed. Procedure HandleUser using calltime to differentiate between a Insert and Update
action as displayed in Figure 4.8

31 of 106

CHAPTER 4. RESULTS

Code example 4.8: Code taken from the HandleUser Procedure. Displaying the use of Calltime

1 if(Calltime = 'Insert')
2 then
3 Insert into LoginTable (Username,Password,FullName) values (UsernameString,

PasswordString,Fullname);
4 end if;
5 if(Calltime = 'Update')
6 then
7 Update LoginTable set Username= UsernameString, Fullname=Fullname where Username =

OldEmail;
8 end if;

4.4.7 Security

By using Spring Security the application could be secured in a way that required authorization
and authentication for all requests except for the log in, and set password functionality. This
ensures a high degree of security, requiring a token with the correct authorization to execute
calls to the API.

Keeping the log in, and set password functionality open was necessary to let users log in from
any new device, and also to let them set a new password if they had forgotten their current.
Setting a new password still requires authentication in the form that the user receives an
email to their registered address, which they need access to, if they are to complete their
password change.

Using Spring Security the team was able to configure the endpoints in a way which uses the
tokens for securing the endpoints from unauthorized users, as seen in code example 4.9.
This also makes sure that anyone using an external method for accessing the API can only
do so using a token with the correct authorization.

Code example 4.9: The start of the security configuration method restricting access to endpoints.
(SecurityConfig.java)

1 @Override
2 protected void configure(HttpSecurity http) throws Exception {
3 http
4 .csrf().disable()
5 .sessionManagement().sessionCreationPolicy(SessionCreationPolicy.STATELESS)
6 .and()
7 .addFilter(new JwtAuthenticationFilter(authenticationManager(), userService,

jwtProperties))
8 .authorizeRequests()
9 // Permit login and registration

10 .antMatchers(HttpMethod.POST, "/auth/login").permitAll()
11 .antMatchers(HttpMethod.POST, "/auth/register").hasRole("ADMIN")
12 ...

32 of 106

CHAPTER 4. RESULTS

4.4.8 Future deployment of server

Using Docker gives any new set of users the possibility to build the server using the Docker
file. The Docker file can be built in a new Digital Ocean droplet, locally on a computer or any
other hosting platform that supports Docker. The file compiles and creates both the Spring
Boot server and the database.

4.5 Administrative results

The team was able to use Jira, Confluence and GitHub to manage and complete the project
within the allotted time. Appendix A shows the plan for the project. It contains internal and
external deadlines.

4.5.1 Working in Jira

Jira was used as the issue tracking tool throughout the whole project. Each member of the
team had the option of creating, editing and assigning issues.

4.5.2 Development overview

This section goes over the development process as a whole documenting what has been done
and when.

Sprint

The team had retrospectives at the end of each sprint to summarise what had been done by
each member. In the meetings the team discussed what had worked well and what had not
worked well. These things were areas which the team tried to improve or maintain the next
sprint.

Planning

The initial step of the project started January 10. Before the team had decided on what
development process would be used, the team went through the project specifications from
the client to gather an overview of the project at hand. On January 13, the team had their
first meeting with the client and most of the product requirements were cemented. During
the course of this week the team decided to work in the agile method, use Jira and Confluence
to aid the project, and that each sprint should be one week long. The first sprint started on
the subsequent Monday, January 17. The first sprint was used to decide what technologies
the team wanted to use for the different parts of the project.

33 of 106

CHAPTER 4. RESULTS

Preliminary work

After the planning process had been completed the team started working on the work needed
in advance of development. The first goal was to create wireframes for all the views for both
tablet and phone. The team created issues in Jira for each view, and a team member could
then select a view in the issue board, move it to ”in progress”, complete it and then move
the issue to ”Done”. Parallel to creating the wireframes the team also worked on creating the
pre-project plan which was one of the obligatory work requirements for the Bachelor thesis.
The team sent the wireframes to the client and received feedback that the views looked good
and they were pleased.

MVP

The team had decided that the completing an MVP for the frontend should be the first step in
the development process. Creating an MVP early would allow the team to test the app with
end users early on. Testing early would also follow the agile principle of failing fast. An MVP
was completed by the end of the 3rd sprint. While the MVP was completed early it would
take time to test it physically with the end users as the client were on a 5 week trip/mission
from the end of February.

Backend

The team was able to complete the MVP before the end of sprint 3 so work on the backend
had started before the start of sprint 4. The team expected the backend development to
take more time than that required to develop the frontend. Initially the code was written in
Java 8 as the team had misunderstood and thought Docker could only run the code if it was
written in 8. At the beginning of March the team realized this was wrong so the project was
moved to Java 17. At the end of sprint 6 most of the functionality in the backend had been
completed, therefore the team started connecting the frontend MVP with the backend.

Time lost

At the start of March, the team had to dedicate the majority of work hours to another class,
INGA2300. This class had a project that had a deadline in the middle of March as well as an
exam towards the end of the month. The class took most of the teams time so little progress
was made in the time period from the end of sprint 7 until the start of sprint 11.

34 of 106

CHAPTER 4. RESULTS

Integrating the two parts

When the MVPs for both the frontend and backend were completed the team started con-
necting them to each other. The team had accounted for the integration when writing the
backend and frontend. When writing the backend considerations towards how the data will
be handled in the frontend were made. Similarly in the frontend there were considerations
towards handling data in the backend. Doing this meant the integration process was mostly
problem free, and the team could move on to improving and extending the applications
functionality.

Publishing

The internal deadline for finishing the app and having it published was before Easter, April
8. By then the app was close to done, only missing the publishing before the full-scale test
could start. Docker was chosen to containerize the server and database, which could then
be published to a Digital Ocean droplet. The server was published by April 23rd. With an
internal test version of the app the same day. The client was therefore able to test the app
with some of their employees before their 5 week trip, from May 1. The feedback received
from the client up until May 1 allowed the team to make small changes and fix bugs. Due to
this it was possible to get a public version for the whole crew available to download before
May 1st.

Following this release the team kept in close contact with the client to resolve any issues
they discovered, and provide rapid bug fix updates to the app.

35 of 106

5. Discussion

This chapter focuses on discussing and reflecting on the work that has been completed in
this project. It will also discuss any challenges and difficulties met during the process.

5.1 Scientific discussion

5.1.1 Reducing data traffic

As the boat has a varying degree of bandwidth and internet connection quality, implemen-
tations which reduce the data usage and request amount needed to be taken into consider-
ation.

Keeping data usage to a minimum involves not including unnecessary data in the requests
and responses. When updating the inventory list for example, it would not be necessary to
receive the items which are already up to date, but only include the changed items.

Implementing this method for the inventory updates, where only the changed items are
fetched from the server to decrease data usage, could be used in other areas of the app to
further decrease data usage. Due to time constraints, and other functionality not being used
frequently when offshore, this has not been prioritized during the time of the project.

Another method to reduce data usage could be to optimize the requests to the API further.
This could be done by only requesting the data that will be displayed in the app, and not
include data which is only necessary after a view change. When changing view, the app can
then do a new call where it again only gets the necessary data.

Image quality restrictions

The team has ensured that the traffic over the satellite network is minimal. To do this it
was necessary to restrict the image quality, as some mobile devices are equipped with high
quality cameras, which can produce large, high resolution images, which require a larger
amount of data.

36

CHAPTER 5. DISCUSSION

In the public test the team encountered a possibility that the image size exceeded the lim-
itations made for the backend server. The decrease of the image quality to 50% in the
application, makes the image size decrease. This, and making a small increase of the upload
size limit, made the image possible to upload. Taking into consideration that this functionality
is mostly used by the on-shore office department, and that the crew will use this function-
ality while on land, this problem does not increase the offshore data usage excessively. The
team acknowledges that the solution is not the optimal solution, but necessary to deliver the
product with the specified requirements on time.

A method to further reduce data usage could be that when the backend receives an image, it
prepares several versions of the image in different qualities. This way when the app requests
an image, it has the possibility of choosing the quality depending on the quality of the network
connection.

For similar inventory management systems, including an image with each item in the in-
ventory list could prove beneficial. It could make it easier to find products. In this solution
however, due to network limitations, and user familiarity with the equipment, this would be
excessive.

5.1.2 Ease of use

A key requirement of the app was ease of use. Having the app be easy to use was a key
consideration during the entire design process. The app will be used in an industrial setting,
so when designing the app there was a focus on large icons and text to make it easy to see
what buttons did what. Furthermore, aesthetics was not a focal point as there is no need
to attract new users. When the client used the app full-scale, with users who have never
seen the app before, the team received feedback that all users found the app easy to use
E.1.

One of the principles of universal design is to have a tolerance for mistakes[36]. The app
has a relatively low tolerance for mistakes. If a user changes something there is no ”undo”
button. For example if a user deletes a product there is no way to roll back the change. A
possible improvement would therefore be to implement a feature were the user would be
able to restore mistakes.

5.2 Mobile application

This section discusses the app created in its entirety, the different aspects which are satis-
factory, and aspects that could be improved.

5.2.1 Solving the clients problem

Collaborating with the client to define their problems, the team has been able to develop
and publish a solution which manages and tracks the inventory on board the client’s boat.

37 of 106

CHAPTER 5. DISCUSSION

The inventory functionality lets the users easily see, and change the amount of any available
product in their department’s stock. Displaying the inventory as a list with search functionality
is a simple way to let the user see what they have, and with the buttons for adding and
removing items directly on the product’s tile in the list makes the usage of it intuitive.

A web based interface could be a useful expansion on the existing system. The employees
working in the office mainly use stationary computers or laptops, so having a web based
interface for some of the administrative features could be useful. Making registering a user,
seeing the map with markers, administering users and products, available in the browser
could simplify the work of the office department.

5.2.2 Flutter framework

Using the Flutter framework gave the team the ability to have an MVP of the frontend app on
both platforms early in the process. Because of the agile work method, the team was able
to use the sprints to focus on creating better iterations of the app. Being able to create an
MVP of the app quickly also allowed some bugs, and errors to enter the code and manifest
if they were not discovered for a while, making the bug fixing and clean up process at the
end of the project a little more extensive. The speed of development using a cross-platform
development framework, did however greatly make up for these problems.

5.2.3 Deployment to client devices

The internal deadline for completing and publishing the app set by the team during planning
was right before Easter1. Unforeseen difficulties with deployment caused this deadline to be
pushed back. By Easter the app was close to done, only having minor bug fixing, and full
scale testing left. After the app was fully completed it took a lot of effort getting the app
published. The deployment process was slightly delayed due to missing access to necessary
accounts and services, as the team got access from the client to the different accounts needed
to deploy the app right after Easter.

Giske Kystfiske wanted a finished version of the app to be public by May 1st so they could
use it when they were offshore for 5 weeks. The team was able to release the app so that
Giske Kystfiske could try the app for this trip, and the team could receive feedback from a
full-scale test of the solution, while the users familiarize themselves with the solution.

Apple:

The deployment process to deploy an app to Apple’s App Store is strict, and the team used
some days to complete the structure Apple demanded to deploy the app for testers using
TestFlight.

1Detailed plan available in appendix A

38 of 106

CHAPTER 5. DISCUSSION

All deployed apps on App Store have to be eligible to all consumers and as the app initially is
made for a specific company, the App Store does not recognize that the app can be distributed
to a wider audience. After some research, the team found that Apple has a distribution plat-
form designated for company-specific apps, called Apple Business Manager. However, Apple
Business Manager needs an extra account, which the team was not provided. With internal
and external discussions, the solution was to deploy the app to testers using TestFlight.

Google Play Store:

The app is released to the Google Play Store and is currently in use by the client. When start-
ing the Android deployment process the app was first released for internal testing allowing
a few invited testers to download so that the team could receive user feedback and quickly
update the test versions. When the app was deemed production ready it was released for
production after an approved review from the Google Play Store.

Testing

The team conducted testing in three different phases. The client has been positive and happy
with the changes made in every phase, while also giving constructive feedback.

The first phase included having a walk-through with the client on the wireframes. The client
was sent the wireframes and gave a small feedback before the meeting shown in E.2. In
the meeting the client was able to interact with the wireframes and give feedback on the
different design elements and the user experience. The client tested the wireframes without
direct instructions on how to use it, and from their experience gave verbal feedback to the
team. The team wrote down the user’s feedback from the meeting and made the appropriate
changes.

Phase two of testing involved a more complete test, as it involved giving the client the MVP to
interact with. MVP was compiled on a phone so the user got a more realistic experience of the
app. The users got a set of instruction to test and give feedback on. The feedback received
gave the team a more complete overview of the remaining work. The overall feedback was
that the MVP was in line with what they wanted, and that no design changes needed to be
made.

The last testing done before the app was in full production was the full scale test from the
client before their trip May 1st. Only the captain and one staff member had tested the
application in the previous tests. For this test the whole crew got to try the app. The users
were told to use the app in a working environment, and to send an email detailing any bugs
or errors encountered. The client reported some bugs, all of which the team was able to fix.
Despite the bugs the users found, the client said they are very pleased with the final product
as expressed in appendix E.

Overall, the team is satisfied with how the test process was conducted and thankful that the
client was able to participate in all phases of the process. In retrospect the team acknowl-
edges that instead of doing the feedback verbally the team could have created a form to
better note the client’s thoughts.

39 of 106

CHAPTER 5. DISCUSSION

5.2.4 Handling offline scenarios

The team has developed the app while taking into an account that parts of the ship lack
network access. The most critical and main functionality of the app, which is the inventory,
needed to handle this in a way that the user could still update the stock while being offline.
Using the queue implementation would allow for several changes to be made from a user
before the device regained its connection to the internet. Implementing this functionality
means that the inventory is cached in the app, so that the user has access to the items even
when offline.

The queue implementation for the app ended up being a success. When using the inventory
functionality while offline the user is notified through a red bar, indicating that there might be
some mismatches between the displayed list and the actual inventory2. This gives no further
hindrance in using the app as intended even when offline, as the stock is updated with the
changes when the device reconnects to the internet.

During the full-scale test the users have tested the app both with, and without an internet
connection. Using it as they normally would they experienced no problems relating to the
offline functionality.

The current solution gives feedback when the app is offline and unusable functionality displays
relevant messages on errors. Further improvement of the offline functionality could include
locking functionality which is not available when offline, and finding a better way to give this
feedback to the user. Using the offline queue service to handle more functionalities where
possible has also been accounted for by the current implementation.

5.2.5 Handling missing GPS signal

While offshore, GPS signals can be of various quality, and sometimes might not exist at all.
It is not possible to determine exactly where the user is when they do not have any GPS
signal on their device. To handle these scenarios the team needed to determine how the
location for the usage reports should be gathered. The possible solutions the team came up
with were these:

• Using the last known location.

• Using the next known location.

• Using both the last, and next known location and determining a middle point.

Using the last known location is the fastest solution to implement, as the location library used,
includes a method for fetching the last known location. The downside is that depending on the
time the last location was logged, the accuracy of the report location can vary greatly.

2This happens when another user has changed the stock while the first user is offline.

40 of 106

CHAPTER 5. DISCUSSION

Using the next known location would involve another form of call queue, like the offline queue
used for when the device does not have a network connection, this would entail some more
work needed than implementing the last known location solution while not gaining any more
accuracy.

The last alternative was using both the last known and next known location would likely be
the solution which gives the most accurate location for the report. This solution would still
involve another queue implementation as it would have to wait for the result of the next
location, before the calculation of a middle point could start. It would also involve research
to develop a method to calculate a point which is likely to be closer to the actual usage than
the previous two methods. Depending on how straight the boat has moved it can also give
locations further away than just using the previous or next known location.

Taking these problems and solutions into account, the team decided using the last known
location would be the best solution to implement in the app. As the amount of work needed
to implement the other solutions were substantially larger, the probable accuracy gained by
calculating a middle point not big enough, and the accuracy not important enough for the
client to justify the amount of work estimated for those solutions.

5.2.6 Requirements

The client had given the team a list of requirements at the start of the project, as can be seen
in appendix D. These were used to develop the detailed system requirements, which can be
found in appendix C. After discussions between the team and the client, as well as internally,
some requirements were found to be nonessential features rather than requirements from
the client.

One of the features the client wanted was to be able to scan order bills they received from
a supplier and have it entered into the stock automatically. A problem with this was that
there was no standard format for the order bills. Differences between each order include
that some might be hand written, some had product numbers only and some only product
names. Creating a scanning functionality to read and interpret all of these was outside the
scope of the project. So the team, with a recommendation from the supervisor, told the client
that this was not achievable. The team did however implement functionality to simplify the
re-stocking process, by implementing the order confirmation view.

5.3 Server application

5.3.1 Spring Boot

The solution to the clients problem included creating a server for the app to communicate
with, to make it simpler to handle requests and persist data. For this, a REST API is a good
solution. Creating a REST API meant that it would be simple to use the API for frontend
extensions, i.e. a web interface.

41 of 106

CHAPTER 5. DISCUSSION

Being robust, highly configurable, and including a scalable, production-grade library for han-
dling security, Spring Boot was used for creating the REST API. It allowed the team to quickly
create an MVP of the server which was testable against the MVP of the frontend app. Com-
bined with the agile work method this allowed for fast iterations of the product as a whole,
while letting the team and client try the various versions of the solution. This gave the
opportunity to ”fail fast”, and implement changes ”on the go”.

5.3.2 Swapping SQL dialect

During the majority of the development process, the backend server application used MS
SQL for database communication. MS SQL made it easy to create procedures and set up the
necessary tables in the database. One of the members of the team had extensive experience
with it, so it was a natural choice when starting the project. However, MS SQL is expensive to
get a license for, so the team decided that the project should swap to MySQL as this would be
cheaper for the client. Swapping dialects required quite a lot of additional work, which could
have been avoided had MySQL been used from the start. However, by using MS SQL initially,
the team was able to start the backend development earlier, as the team had a development
database with default data to work towards.

5.3.3 Stored Procedures

The use of stored procedures made the team less dependent on the parameters to use in
the execution of queries to the database. An overview of all the procedures as well as the
database structure can be found in appendix B. Within the procedures there is a possibility
to fetch data to use before an insert or update is executed. This allows the backend server
to make the call to the procedures to handle the data and not directly run a query into the
database.

As this was new to the team, it took some time to be able to create all the procedures. The
result of the procedures has been that its easy modify a SQL query. The team can update
the procedures to fix a potential bug without having to re-deploy the entire backend server,
saving a new update and downtime of the server when updating.

5.3.4 Deployment of server and database

The server and database are deployed to production using a Digital Ocean Droplet. Using a
docker-compose file, Docker builds the MySQL database together with the Spring server in
two separate containers under the same local network. This creates the possibility to deploy
the server and database on any deployment service supporting docker.

The team did experience some difficulties setting up the Docker container, mainly due to
the MySQL and Spring Boot server not communicating with each other. After some research
and work, the team was able to setup the docker-compose file in the correct manner, so the
server and database were able to communicate with each other.

42 of 106

CHAPTER 5. DISCUSSION

Docker

The use of Docker makes it possible to containerize the developed solution. Allowing for
high mobility of the solution as the Docker container takes responsibility for configuring and
running the server, the deployment service only needs to run the container. Initially the
deployment service was not familiar to the team, but rigorous research meant the team
was able to utilize it effectively. The team is satisfied with using Docker which made the
deployment process easier after the deployment service, Digital Ocean, was chosen.

5.4 Administrative discussion

5.4.1 Communication

This section goes over the communication during the project, both internally in the team and
also externally, from the team to other parties.

Client

Communication with the client has been excellent. The client works on a fishing boat and
is therefore offshore for five weeks at a time. Communication with the client has therefore
mainly been via email. The client has received the wireframes by email, and the team has
received positive feedback on all the design choices [E.2]. The client has been able to provide
regular constructive feedback on the progress of the project as updates were sent to them
whenever major project milestones were hit.

When the client was on-shore the team was able to have in-person meetings. The first two
meetings of the project were held physically at campus NTNU. The first meeting was used
to clarify any questions the team had regarding what the client wanted. During the second
meeting the team was able show and demonstrate some wireframe sketches and receive
early feedback on the design.

Through the project the team has experienced that communication through email has been
sufficient, but that physical meetings tended to speed-up the communication drastically.

Internally

The team worked in the agile method so it was decided that each morning the team would
have short 15-minute stand-up meetings at 9 o’clock. Having stand-up meetings every day
helped structure the workday and helped keep the team up-to-date on what the other team
members were doing. Having everyone working on campus was also very important for
the daily structure. Everyone meeting on campus helped keep morale up. Furthermore, it
trivialised helping the other team members, with everyone situated in the same room it made
it easy to simply ask the peer next to you for help.

43 of 106

CHAPTER 5. DISCUSSION

5.4.2 Development process

The plan

The effort put into the plan was reflected by the fact that it was easy to follow. Being optimistic
about the schedule during planning to put pressure on the team, and not accounting for some
challenges and time sinks, the team had to deviate from one of the milestones on the plan.
The plan to complete and publish the app before Easter was slightly delayed.

Delays were mostly caused by the whole team, at different points, catching COVID-19. The
team managed to make the app available the first week back after Easter. Working agile,
and setting optimistic internal deadlines, helped let these deviations have little to no impact
on the final result of the project.

Agile methodology

The team, having had some prior experience working in the agile methodology and since
it is the industry standard for development projects, meant it was natural to work agile.
One of the main advantages the team experienced working in agile was being able to work
with what was most important at the moment, and not what was established in a rigid plan.
Working in agile also kept the client involved during the whole process. As mentioned in
5.4.1 collaboration with the client was done by email. Having the client continuously involved
meant the team got feedback on progress and how the app looked continuously and changes
could be made quickly to better fit the clients wants and needs.

Test-driven development

A development process that the team considered early in the planning process is test-driven
development. Not developing using a test-driven development process has had both up-
sides and downsides for the project. Considering that none of the team members had any
experience working test-driven it had the possibility of doing more harm than good.

TDD would have helped develop an easily refactored code base, where implementation im-
provements and functionality extensions would be safer to develop. This does however re-
quire a lot of experience and knowledge around good test design, and the general TDD
process, to execute in a proper fashion, something none of the team members have.

Using TDD does extend the time used for implementing new functionality quite a bit, some-
thing this project would involve a lot as it is a brand new system. Given the amount of time
the team was given for the project it is likely that the deadline would be exceeded if the team
had decided to work using a TDD process.

44 of 106

CHAPTER 5. DISCUSSION

5.4.3 Collaboration with Jira and Confluence

The team collaborated exceptionally throughout the project. Having collaborated on several
projects previously the team was already familiar with each others working habits. Each work
day was also set in the same room, with all team members present most days. Working next
to each other meant that Jira sometimes ended up being a hindrance more than an aid. If
someone discovered a small bug it was easier to simply ask the person next to you if they
could fix it, rather than creating an issue, assigning it to the person, moving it to ”doing”,
and moving it to done. Having never used Jira before the team was inexperienced with this
at the start. As the project progressed Jira was used more actively, and proved a helpful tool
to keep track of bugs which no-one could fix straight away.

If the team had put more effort into familiarizing themselves with Jira from the start the
project could have been better organized. To the team, it seems that Jira has more use in
larger teams where direct communication between members is harder.

The product specifications given by the client were quite detailed so the team simply devel-
oped from meeting notes and the product specifications. Furthermore, the team did create
user stories to help get an overview of the requirements and what each feature needed to
function. Upon reflection it became apparent that the team should have created a detailed
product specification in Confluence from the start. This would have made it easier to get a
complete overview of the project scope, and made it easier to make issues to help track what
remained.

Pull Requests

Using pull requests was important for making sure the entire team was satisfied with the code
written and the product developed. The process of using pull requests would sometimes lead
to slower development as someone else had to review the code before it was accepted into
the main development branch. It did however also help the team members keep insight into
every part of the project’s code base. The team is happy with the decision to make pull
requests mandatory for merging with the main development branch, as it has kept the code
quality higher, and helped create a product the team members are proud of.

45 of 106

6. Conclusion and further work

6.1 Conclusion

The combination of Flutter and Spring Boot helped the team develop a complete solution to
the client’s problem.

As of May 1st the app is deployed to TestFlight for Apple devices and on Google Play Store
for Android devices. The server is a REST API, with a MySQL database, hosted on a Digital
Ocean Droplet. Docker is used to set up the server and database so that it can be quickly
deployed and updated. The product in its entirety solves the clients problem of struggling to
manage the boats inventory. Using the app the client is able to move away from the solution
of using Excel on a stationary computer. The client was able to use the app for a trip, and
has said they are impressed and pleased with the final product.

The app displays a list of equipment with the option of adding or removing stock. Allowing the
client to easily keep track of the inventory. Another list displays all the missing equipment,
which can be sent by email to the office to make restocking easier and more accurate. By
sending images of the order bills received to the respective departments the employees are
able to double check that the shipment they have received aligns with the bill the office has
to pay.

The team is satisfied with having followed the agile methodology. It has made the team
adaptable to changes and problems faced during development. Furthermore, the team is
content having used Jira and Confluence. It is useful to gain experience with tools which are
used commonly in the industry. However, for this team specifically the tools were sometimes
more time consuming than helpful.

46

CHAPTER 6. CONCLUSION AND FURTHER WORK

6.2 Further work

To simplify making future improvements, both the frontend and backend have been de-
veloped with a focus on high quality, maintainable code. This includes writing descriptive
variable and method names, good documentation and following the DRY-principles.

While regularly using the app the client could discover new features that could prove use-
ful. Hence, for further development, it would be appropriate to maintain a dialog with the
client.

Some improvements to the current product have been mentioned in chapter 5. The team
recommends that improving ease of use with better error messages, and further improving
offline functionality should be prioritised.

47 of 106

Societal impact

Ethical aspects

As apps become a normal part of everyday life, it becomes clear that the ethical aspects
need to be considered more. This is something large corporations know the average user
normally does not consider, and take advantage of this using misleading statements and
hidden meanings. From an article in the New York Times we see an example where a woman’s
location is tracked by an app on her phone, and then sold the data without her knowledge[37].
This case stands as an example of what many apps on the market are trying to do to earn
money.

The intent of the app developed during this project is clear, and never tries to mislead the user.
The data gathered is only used within the app and is used for purely functional purposes.

The apps device permissions include access to the device’s location, which is only used for
generating map reports of item usage, and access to the camera is only used for capturing
and uploading images of the order bills which are to be sent for confirmation. The app
never uses any of these permissions for a hidden feature, or tracks, and gathers the data for
sharing.

Economic effects

For the client, the use of the app will help streamline the process of tracking what, when,
where, and by whom, each item from the boat’s inventory is used. This allows the crew
to spend less time logging this using their old system, and gives them more time to use
on productive value-gaining work. This can result in a better result for the client for each
trip.

Using the app will also make it easier to keep an accurate log of the stock, letting them order
just the items they need when restocking. This will save the client money normally spent on
ordering too much of different items.

48

CHAPTER 6. CONCLUSION AND FURTHER WORK

The map reports gives the possibility for the client to see where and when different equipment
is used, and can help them discover vulnerabilities and inefficiencies within their working
process. This can allow for less usage of various equipment, which can help the client save
money.

Relation to UN’s sustainable development goals

Goal 8: Promote inclusive and sustainable economic growth, employ-
ment and decent work for all

The app’s goal is to increase the productivity of the crew on-board the boat. This lines up with
UN’s 8th sustainability goal; Decent work and economic growth. Looking at one of the tar-
gets for this goal; 8.2 Achieve higher levels of economic productivity through diversification,
technological upgrading and innovation, including through a focus on high-value added and
labour-intensive sectors [38], the app focuses on using technological upgrading and innova-
tion to increase the productivity of the company and thereby help increasing the economic
growth within the company.

Goal 12: Ensure sustainable consumption and production patterns

As the app’s map functionality can help the client find overuse of equipment, it can help
contribute to UN’s 12th sustainability goal; Ensure sustainable consumption and production
patterns, and more specifically its target 12.5; Substantially reduce waste generation through
prevention, reduction, recycling and reuse. When optimizing the use of the equipment, the
usage will be reduced, which will reduce the waste generated by needing to order and dispose
of as much equipment.

49 of 106

Bibliography

[1] Object-oriented programming. Mar. 23, 2022. URL: https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/Objects/Object- oriented_programming (visited on Apr. 7,
2022).

[2] Coupling and Cohesion. URL: https://home.adelphi.edu/sbloch/class/adages/coupling_
cohesion.html#:~:text=%22%20Coupling%20%22%20describes%20the%20relationships%
20between,via%20a%20reduction%20in%20coupling. (visited on Apr. 7, 2022).

[3] Robert C. Martin. Clean Code. Pearson, 2009, pp. 140–141. ISBN: 9780132350884.

[4] Design patterns. wikipedia.org. Feb. 25, 2012. URL: https://en.wikipedia.org/wiki/
Software_design_pattern (visited on Mar. 9, 2022).

[5] Observer and observable design pattern. URL: https : / / refactoring . guru / design -
patterns/observer (visited on Apr. 7, 2022).

[6] Singleton design pattern. URL: https://www.javatpoint.com/singleton-design-pattern-
in-java (visited on Apr. 7, 2022).

[7] Unit testing. wikipedia.com. Feb. 26, 2022. URL: https://en.wikipedia.org/wiki/Unit_
testing (visited on Apr. 7, 2022).

[8] What is Code Review? URL: https : / / smartbear . com / learn / code - review / what - is -
code- review/#:~:text=Code%20Review%2C%20also%20known%20as, like%20few%20other%
20practices%20can. (visited on Apr. 7, 2022).

[9] What is Universal Design. universaldesign.ie. 2020. URL: https://universaldesign.ie/
what-is-universal-design/ (visited on May 10, 2022).

[10] Breaking Down the Principles of Design. toptal.com. 2019. URL: https://www.toptal.
com/designers/gui/principles-of-design-infographic#:~:text=There%20are%20twelve%
20basic%20principles,that%20make%20sense%20to%20users. (visited on Apr. 8, 2022).

[11] Don’t Repeat Yourself. Apr. 11, 2022. URL: https://en.wikipedia.org/wiki/Don%27t_
repeat_yourself (visited on Apr. 22, 2022).

[12] Language Services. 2020. URL: https://www.gala-global.org/knowledge-center/about-
the-industry/language-services (visited on Apr. 25, 2022).

[13] What is Agile? URL: https://www.agilealliance.org/agile101/ (visited on Apr. 7, 2022).

50

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_programming
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object-oriented_programming
https://home.adelphi.edu/sbloch/class/adages/coupling_cohesion.html#:~:text=%22%20Coupling%20%22%20describes%20the%20relationships%20between,via%20a%20reduction%20in%20coupling.
https://home.adelphi.edu/sbloch/class/adages/coupling_cohesion.html#:~:text=%22%20Coupling%20%22%20describes%20the%20relationships%20between,via%20a%20reduction%20in%20coupling.
https://home.adelphi.edu/sbloch/class/adages/coupling_cohesion.html#:~:text=%22%20Coupling%20%22%20describes%20the%20relationships%20between,via%20a%20reduction%20in%20coupling.
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://refactoring.guru/design-patterns/observer
https://refactoring.guru/design-patterns/observer
https://www.javatpoint.com/singleton-design-pattern-in-java
https://www.javatpoint.com/singleton-design-pattern-in-java
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Unit_testing
https://smartbear.com/learn/code-review/what-is-code-review/#:~:text=Code%20Review%2C%20also%20known%20as,like%20few%20other%20practices%20can.
https://smartbear.com/learn/code-review/what-is-code-review/#:~:text=Code%20Review%2C%20also%20known%20as,like%20few%20other%20practices%20can.
https://smartbear.com/learn/code-review/what-is-code-review/#:~:text=Code%20Review%2C%20also%20known%20as,like%20few%20other%20practices%20can.
https://universaldesign.ie/what-is-universal-design/
https://universaldesign.ie/what-is-universal-design/
https://www.toptal.com/designers/gui/principles-of-design-infographic#:~:text=There%20are%20twelve%20basic%20principles,that%20make%20sense%20to%20users.
https://www.toptal.com/designers/gui/principles-of-design-infographic#:~:text=There%20are%20twelve%20basic%20principles,that%20make%20sense%20to%20users.
https://www.toptal.com/designers/gui/principles-of-design-infographic#:~:text=There%20are%20twelve%20basic%20principles,that%20make%20sense%20to%20users.
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://www.gala-global.org/knowledge-center/about-the-industry/language-services
https://www.gala-global.org/knowledge-center/about-the-industry/language-services
https://www.agilealliance.org/agile101/

BIBLIOGRAPHY

[14] What is git? URL: https://www.atlassian.com/git/tutorials/what-is-git (visited on
Apr. 27, 2022).

[15] What are RESTful web services? URL: https://docs.oracle.com/javaee/6/tutorial/
doc/gijqy.html (visited on Apr. 8, 2022).

[16] What are cloud services? redhat.com. URL: https://www.redhat.com/en/topics/cloud-
computing/what-are-cloud-services#:~:text=Cloud%20services%20are%20infrastructure%
2C%20platforms,to%20users%20through%20the%20internet. (visited on Apr. 7, 2022).

[17] What is a Relational Database (RDBMS)? oracle.com. URL: https://www.oracle.com/
database/what-is-a-relational-database/ (visited on Apr. 7, 2022).

[18] Queue data structure. URL: https://en.wikipedia.org/wiki/Queue_(abstract_data_
type) (visited on Apr. 8, 2022).

[19] Race condition. Mar. 2, 2022. URL: https://en.wikipedia.org/wiki/Race_condition
(visited on Apr. 8, 2022).

[20] Containerization. URL: https://www.ibm.com/cloud/learn/containerization (visited on
Apr. 7, 2022).

[21] Barcode. shopify.com. URL: https://www.shopify.com/encyclopedia/barcode#:~:text=
Barcodes%20are%20applied%20to%20products, accounting%2C%20among%20many%20other%
20uses. (visited on Apr. 7, 2022).

[22] Latitude/Longitude Distance Calculator. URL: https://www.nhc.noaa.gov/gccalc.shtml
(visited on Apr. 22, 2022).

[23] Authentication and authorization. URL: https://www.bu.edu/tech/about/security-
resources/bestpractice/auth/ (visited on Apr. 7, 2022).

[24] What is hashing? URL: https://www.educative.io/edpresso/what-is-hashing (visited on
Apr. 7, 2022).

[25] What Are Access Tokens? Oct. 8, 2009. URL: https://docs.microsoft.com/en- us/
previous-versions/windows/it-pro/windows-server-2003/cc759267(v=ws.10) (visited on
May 10, 2022).

[26] Mockplus. URL: https://www.mockplus.com/ (visited on May 9, 2022).

[27] Color palette. URL: https://coolors.co/13293d-006494-247ba0-1b98e0-e8f1f (visited on
Apr. 8, 2022).

[28] Spring Boot. URL: https://spring.io/projects/spring-boot (visited on Apr. 7, 2022).

[29] Why Spring Security. Apr. 15, 2021. URL: https://auth0.com/blog/spring-security-
overview/#Why-Spring-Security- (visited on Apr. 7, 2022).

[30] Why You Should Use Bcrypt to Hash Stored Passwords. Sept. 9, 2011. URL: https:
//www.sitepoint.com/why-you-should-use-bcrypt-to-hash-stored-passwords/ (visited
on Apr. 7, 2022).

[31] Digital Ocean Spaces. URL: https://www.digitalocean.com/products/spaces (visited on
Apr. 22, 2022).

51 of 106

https://www.atlassian.com/git/tutorials/what-is-git
https://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html
https://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html
https://www.redhat.com/en/topics/cloud-computing/what-are-cloud-services#:~:text=Cloud%20services%20are%20infrastructure%2C%20platforms,to%20users%20through%20the%20internet.
https://www.redhat.com/en/topics/cloud-computing/what-are-cloud-services#:~:text=Cloud%20services%20are%20infrastructure%2C%20platforms,to%20users%20through%20the%20internet.
https://www.redhat.com/en/topics/cloud-computing/what-are-cloud-services#:~:text=Cloud%20services%20are%20infrastructure%2C%20platforms,to%20users%20through%20the%20internet.
https://www.oracle.com/database/what-is-a-relational-database/
https://www.oracle.com/database/what-is-a-relational-database/
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Race_condition
https://www.ibm.com/cloud/learn/containerization
https://www.shopify.com/encyclopedia/barcode#:~:text=Barcodes%20are%20applied%20to%20products,accounting%2C%20among%20many%20other%20uses.
https://www.shopify.com/encyclopedia/barcode#:~:text=Barcodes%20are%20applied%20to%20products,accounting%2C%20among%20many%20other%20uses.
https://www.shopify.com/encyclopedia/barcode#:~:text=Barcodes%20are%20applied%20to%20products,accounting%2C%20among%20many%20other%20uses.
https://www.nhc.noaa.gov/gccalc.shtml
https://www.bu.edu/tech/about/security-resources/bestpractice/auth/
https://www.bu.edu/tech/about/security-resources/bestpractice/auth/
https://www.educative.io/edpresso/what-is-hashing
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc759267(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc759267(v=ws.10)
https://www.mockplus.com/
https://coolors.co/13293d-006494-247ba0-1b98e0-e8f1f
https://spring.io/projects/spring-boot
https://auth0.com/blog/spring-security-overview/#Why-Spring-Security-
https://auth0.com/blog/spring-security-overview/#Why-Spring-Security-
https://www.sitepoint.com/why-you-should-use-bcrypt-to-hash-stored-passwords/
https://www.sitepoint.com/why-you-should-use-bcrypt-to-hash-stored-passwords/
https://www.digitalocean.com/products/spaces

BIBLIOGRAPHY

[32] Why Docker? URL: https://www.docker.com/why-docker/ (visited on Apr. 25, 2022).

[33] MediaQueryData class. URL: https://api.flutter.dev/flutter/widgets/MediaQueryData-
class.html (visited on May 11, 2022).

[34] SeaStorage on Google Play. URL: https://play.google.com/store/apps/details?id=no.
ntnu.idata.shiporganizer.ship_organizer_app&gl=NO (visited on May 5, 2022).

[35] Spring Boot - Best Practices. URL: https://www.javaguides.net/2019/03/spring-boot-
best-practices.html (visited on May 3, 2022).

[36] Universell utforming. wikipedia.com. Mar. 14, 2019. URL: https://no.wikipedia.org/
wiki/Universell_utforming (visited on May 5, 2022).

[37] Michael H. Keller Jennifer Valentino-DeVries Natasha Singer and Aaron Krolik. Your
Apps Know Where You Were Last Night, and They’re Not Keeping It Secret. Dec. 10,
2018. URL: https://www.nytimes.com/interactive/2018/12/10/business/location-data-
privacy-apps.html (visited on May 6, 2022).

[38] Economic Growth. URL: https://www.un.org/sustainabledevelopment/economic-growth/
(visited on May 6, 2022).

52 of 106

https://www.docker.com/why-docker/
https://api.flutter.dev/flutter/widgets/MediaQueryData-class.html
https://api.flutter.dev/flutter/widgets/MediaQueryData-class.html
https://play.google.com/store/apps/details?id=no.ntnu.idata.shiporganizer.ship_organizer_app&gl=NO
https://play.google.com/store/apps/details?id=no.ntnu.idata.shiporganizer.ship_organizer_app&gl=NO
https://www.javaguides.net/2019/03/spring-boot-best-practices.html
https://www.javaguides.net/2019/03/spring-boot-best-practices.html
https://no.wikipedia.org/wiki/Universell_utforming
https://no.wikipedia.org/wiki/Universell_utforming
https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html
https://www.nytimes.com/interactive/2018/12/10/business/location-data-privacy-apps.html
https://www.un.org/sustainabledevelopment/economic-growth/

A. Project Plan

53

Gruppe 4, Oppgave 8

Ship Organizer

Forprosjektplan

Versjon <1.0>

Gruppe 4, Oppgave 8

Table of Contents

1. Mål og rammer ... 3

1.1 Orientering .. 3

1.2 Problemstilling / prosjektbeskrivelse og resultatmål .. 3

1.3 Effektmål .. 3

1.4 Rammer .. 3

2. Organisering ... 4

3. Gjennomføring .. 4

3.1. Hovedaktiviteter .. 4

3.2. Milepæler .. 5

4. Oppfølging og kvalitetssikring ... 6

4.1 Kvalitetssikring .. 6

4.2 Rapportering .. 6

5. Risikovurdering .. 7

6. Vedlegg ... 8

6.1 Tidsplan ... 8

6.2 Adresseliste .. 9

6.3 Avtaledokumenter ... 9

6.3.1 Arbeidskontrakt for bachelor-gruppen ... 9

6.3.2 3-partsavtale ... 9

Gruppe 4, Oppgave 8

1. Mål og rammer

1.1 Orientering

Giske Kystfiske sendte en oppgave beskrivelse til NTNU og den ble publisert på Blackboard.

Fra Blackboard valgte vi oppgaven ettersom vi syntes den virket interessant samt utfordrende.

1.2 Problemstilling / prosjektbeskrivelse og resultatmål

Giske Kystfiske ønsker en løsning som skal forenkle håndteringen av lager og logistikk ombord

i båtene i form av en mobil applikasjon.

Virksomheten opplever at det er lett å miste kontroll og oversikt over beholdningen for ulike

komponenter om bord i båten og mellom skiftene. De ser da for seg en mobil applikasjon, som

hver ansatt kan bruke for å registrere bruk og tilordning av komponenter hos sitt departement,

som en ønskelig løsning på dette problemet.

Virksomheten forteller også om varierende teknisk kompetanse blant de ansatte og ønsker

derfor også at applikasjonen skal være enkel å forstå og bruke.

1.3 Effektmål

Virksomheten ønsker en mer effektiv og oversiktlig logistikksituasjon, med hensyn til

beholdning og bruk av deler om bord i sine båter. Virksomheten ønsker å forenkle hverdagen

til seg selv og sine ansatte ved å innføre et enkelt grensesnitt for å holde orden på beholdningen.

Det er et mål for virksomheten at de ansatte skal bruke mindre tid på det administrative knyttet

til logistikk, sånn at de har mer tid til andre oppgaver, og derfor kan være mer effektive på

jobb.

1.4 Rammer

Kunden vil antagelig trenge en ekstra server dedikert til appen på hver båt. Dette må til for at

appen skal kunne synkronisere mellom enheter uavhengig om den er koblet til internett/den

sentrale databasen.

Gruppe 4, Oppgave 8

2. Organisering

Utviklingsteam:

Simon Duggal (Teamleder)

Johannes Løvold Josefsen (Kvalitetssikring)

Hans Andreas Lindgård (Dokumentansvarlig)

Veileder:

Mikael Tollefsen

Kunde:

Giske Kystfiske, kontaktperson: Kurt Skjong

3. Gjennomføring

3.1. Hovedaktiviteter

Appen skal utvikles av hele gruppen. Vi vil fordele de ulike app-aktivitetene jevnt mellom

medlemmer i gruppa. Hvert medlem vil i hovedsak utvikle sine app-aktiviteter, men blir de

ferdig tidlig vil han kunne hoppe inn for å hjelpe ett annet medlem, eller bli satt til en ny

oppgave. Alle app-aktivitetene blir utviklet i språket Dart med Flutter-rammeverket. Før vi kan

begynne å utvikle appen må alle wireframesene være ferdige og akseptert av arbeidsgiver. Dert

vil også bli opprettet GitHub-repositories for å samarbeide på koden.

Backenden til appen skal bli utviklet av hele gruppa. Vi trenger en server som kan håndtere

data og være koblingen mellom appen og databasen. Backenden blir skrevet i Java og skal være

en Spring-Boot-applikasjon. For at vi skal kunne begynne på backenden skal det opprettes en

GitHub-repository for å samarbeide på koden, samt at strukturen for databasen skal være

planlagt. Når dette målet er fullført skal vi ha en fullstendig funksjonell backend som håndterer

alle requests som appen sender.

Rapporten skrives av hele gruppen. Rapporten skrives for å dokumentere alt arbeidet som har

blitt gjort i bachelor oppgaven. Rapporten skal skrives i Latex i samarbeidsverktøyet OverLeaf.

Vi valgte dette fordi vi føler det er lett å samarbeide i samt gjør det enkelt å lage en rapport

som ser profesjonell ut.

Gruppe 4, Oppgave 8

3.2. Milepæler

13.01.2022: Oppstartsmøte med veileder og arbeidsgiver

26.01.2022: Statusmøte med veileder og arbeidsgiver

28.01.2022: Forprosjektplan leveres på Blackboard

08.02.2022: Demo-versjon av Frontend/App

09.02.2022: Statusmøte med veileder og arbeidsgiver

23.02.2022: Statusmøte med veileder og arbeidsgiver

09.03.2022: Statusmøte med veileder og arbeidsgiver

22.03.2022: MVP for backend

23.03.2022: Statusmøte med veileder og arbeidsgiver

06.04.2022: Statusmøte med veileder og arbeidsgiver

19.04.2022: App-utvikling ferdig, inkluderer backend, frontend, og deployment

(PlayStore/AppStore)

20.04.2022: Statusmøte med veileder og arbeidsgiver

22.04.2022: Muntlig presentasjon på engelsk

04.05.2022: Statusmøte med veileder og arbeidsgiver

06.05.2022: Levere siste utkast av rapport til veileder for tilbakemelding

19.05.2022: Oppsummeringsmøte med veileder og arbeidsgiver

20.05.2022: Levere endelig rapport i Inspera

~20.05.2022: Presentasjon av prosjektet plenum

Gruppe 4, Oppgave 8

4. Oppfølging og kvalitetssikring

4.1 Kvalitetssikring

Teamet har en dedikert kvalitetssikringsansvarlig, men hvert enkelt teammedlem har fremdeles

ansvar for å levere fra seg arbeid av høyest mulig kvalitet. Pull-requests vil bli brukt ved

pushing til kodebasen i GitHub, dette fører til at minst to medlem har sett og godkjent all kode.

Med hensyn til andre viktige dokumenter og arbeider har hvert medlem ansvar for å inkludere

resten av teamet for å komme med flere innspill og sikre best mulig kvalitet, og et produkt som

hele gruppen er fornøyd med.

4.2 Rapportering

Teamet vil arrangere møte annenhver uke mellom alle parter (team, veileder, og kunde), for å

oppdatere om status, plan, og eventuelt diskutere oppdagede problemstillinger for prosjektet.

Gruppe 4, Oppgave 8

5. Risikovurdering

Hendelse Sannsynlighet

(1-5)

Konsekvens

(1-5)

Risiko-

faktor

Tiltak

Manglende oversikt

over tidsplan og

nødvendige gjøremål.

2 3 6

Starte tidlig med god

planlegging og kartlegging

av nødvendige oppgaver.

Dårlig/misledende

vurdering av tidsramme

for ulike oppgaver.

3 3 9

Være bevisst på hvor lang

tid som er tenkt til en

oppgave og hvor mye tid

som faktisk blir brukt.

Være åpen for

omprioritering/omfordeling

av oppgaver ved store

avvik.

Manglende innsikt for

optimal prioritering av

oppgaver om man ikke

rekker alle.

2 4 8

Sørge for å ha god dialog

med oppdragsgiver om

hvilke funksjoner som

burde prioriteres.

Koronavirus fører til

vanskeligheter for

prosjektarbeid.

3 2 6

Gruppemedlem skal ta

hensyn ved tegn til

symptom. Gruppen skal

legge opp til at medlem i

eventuell

karantene/isolasjon skal

kunne arbeide hjemmefra

med digital deltagelse.

Dårlig kommunikasjon

innad i gruppen.
1 4 4

Daglige møter hvor

medlemmene oppdaterer

hverandre om status og

plan.

Rekker ikke å bli ferdig

med prosjektet grunnet

for stor arbeidsmengde.

1 5 5

Sette frister innad i gruppen

for deloppgaver som må

utføres og sørge for at

fristene blir holdt. Være

villige til å legge inn noe

ekstra arbeid for å komme i

mål.

Ikke tilfredsstillende

kvalitet på fullført

produkt.

2 4 8

Sørge for å ha god dialog

med veileder og

oppdragsgiver angående

produktets kvalitet og hva

som forventes av det.

Gruppe 4, Oppgave 8

6. Vedlegg

6.1 Tidsplan

Gruppe 4, Oppgave 8

6.2 Adresseliste

Navn, firma, tlf., epost, adresse

Navn Firma Telefon E-post

Simon Duggal 992 59 192 simondu@ntnu.no

Hans Andreas Lindgård 901 08 618 hansal@ntnu.no

Johannes Løvold Josefsen 412 21 156 johannlj@ntnu.no

Mikael Tollefsen NTNU, Driw 701 61 340 mikael.tollefsen@ntnu.no

Kurt Skjong Giske Kystfiske 926 36 079 kurt@maoyi.no

6.3 Avtaledokumenter

6.3.1 Arbeidskontrakt for bachelor-gruppen

Se innlevering i Blackboard.

6.3.2 3-partsavtale

Se innlevering i Blackboard.

Contents

1 Introduction . 2

2 Architecture . 2

3 Project structure . 3

3.1 Application . 3

3.2 Server . 3

4 Class diagram . 4

4.1 Application . 4

4.2 Server . 4

5 Database model . 5

6 Server services - REST resources . 5

6.1 Authentication and authorization resources . 5

6.2 User resources . 6

6.3 Product resources . 6

6.4 Report resources . 7

6.5 Order bill resources . 7

6.6 Department resources . 7

7 Security . 8

7.1 Token access . 8

7.2 Password . 8

8 Deployment . 8

8.1 Application . 8

8.2 Server . 9

9 Documentation of source code . 9

9.1 Application . 9

9.2 Server . 9

10 Testing . 9

11 References . 10

1

B. System Documentation

63

1. INTRODUCTION

1 Introduction

System documentation describes the code project structure including, the different classes used in both

application and server, how the database is setup and the sequence of classes used in a method

2 Architecture

The flow chart below shows the structure from mobile device as the start point to the sever being the end

point.

Figure 1: Drawing showing the different components and their communication

2 of 10

3. PROJECT STRUCTURE

3 Project structure

3.1 Application

The project is structured in different folders on the root level after the initial ”lib” folder. These folders

represent the content and files used in the application, as shown in the tree structure under
lib

api handling (Handles all API calls)

config (Configuration files)

entities (Different entities files)

I10n (Language files)

offline queue (Handles all offline API calls)

views (All view files)

widget (Custom widget files)

3.2 Server

The spring server is divided into three main folders, controller, service and repository. The controller is

the endpoint for the applications API call and decodes the JSON request. Then the service receives the

decoded JSON object and if necessary modifies the data and make a method call to the repository to fetch,

insert or update the data in the database.
src

java

auth (Authentication filter for security config)

config (Configuration files)

controller (Different controller files for all the possible API calls)

model (Entity class files)

repository (Handles calls to database)

service (Used as buffer between controller and repository to handle ad modify data)

userprinciple (Provides UserDetails for the user principle)

resources

application properties

3 of 10

4. CLASS DIAGRAM

4 Class diagram

4.1 Application

The mobile application has 21 view classes and 17 support classes ranging form configuration files and

custom widgets.

4.2 Server

The spring boot server contains 38 working classes, 1 main class to start the application and 6 test class.

The 39 working classes are distributed into controller, service and repository classes. The controller is the

first step for the server and the endpoint for the mobile application. Here the request is picked up and

the JSON object is decoded, so the call to the service is with the correct parameters. The service modifies

the data if necessary and make a call to the repository to handle the call to the procedure directly in the

database. The respond from the database is sent back to the service with the creation of entities object

when needed, where then the service makes modifications if necessary and then passes the data to the

controller to make the responds for the mobile application.

Figure 2: Class diagram for the backend server. See attached image in separate file for larger, more readable

class diagram.

4 of 10

5. DATABASE MODEL

5 Database model

Figure 3 shows the relation and table structure of the database. The database con-

tains a set of procedures used to collect, insert and update the different tables.

Most of the tables has a relation to another, by using an Many-to-One relation.

Figure 3: Diagram showing the relation between the tables in the database

6 Server services - REST resources

6.1 Authentication and authorization resources

Registration

/auth/register - This endpoint serves the registration resource. To access this, a valid bearer token from an

admin user must be included. It allows an admin to register new users to the system, with their specified

departments, name and email-address, so that the user can set a password for themselves to start using

the system.

Login

/auth/login - This endpoint serves the login resource. The user can POST a JSON object containing an

email-address and password, and receive either a valid token related to the already registered user, or an

error response.

5 of 10

6. SERVER SERVICES - REST RESOURCES

6.2 User resources

List of all users

/api/user/all-users - Gets a list of all users in the system. Admin rights needed.

Edit user

/api/user/edit-user - Lets an admin edit user information of the users.

Get name

/api/user/name - Allows an authenticated user to get their full name.

Get departments

/api/user/departments - Allows an authenticated user to get a list of the departments they belong to.

Delete user

/api/user/delete-user - Allows an authenticated user to delete themselves from the system, or an admin

to delete any user.

Send verification code

/api/user/send-verification-code - Sends a verification code to the specified email, to be used for changing

password.

Set password

/api/user/set-password - Allows setting a new password for a user using a valid verification code.

Check verification code

/api/user/check-valid-verification-code - Used for checking the validity of a verification code to an email.

Check role

/api/user/check-role - Lets an authenticated user get their role in the system.

6.3 Product resources

Get inventory

/api/product/get-inventory - Gets the inventory for the specified department.

Get recently updated inventory

/api/product/recently-updated-inventory - Gets inventory list of items updated after specified time for

specified department.

Get recommended inventory

/api/product/get-recommended-inventory - Gets a list of the recommended amount of each item in the

inventory to be ordered, to reach the desired stock for the specified department.

Create new product

/api/product/new-product - Allows a user to create a new product to include in the inventory for the

specified department.

6 of 10

6. SERVER SERVICES - REST RESOURCES

Edit product

/api/product/edit-product - Lets a user edit information of a product.

Delete product

/api/product/delete-product - Lets a user delete a specified product from the inventory.

Set new stock

/api/product/set-new-stock - Lets a user update how many of a product to add to, or remove from, the

stock. Stores a report of removals to the system.

Send PDF of missing items

/api/product/create-pdf - Sends a list in the for of a PDF to the specified email addresses of the items

missing to reach the desired stock of the specified department.

6.4 Report resources

Get all reports for department

/reports/all-reports={department name} - Gets all usage reports for the specified department.

Get reports for product in department

/reports/reports-with-name={product name}-dep={department name} - Gets the reports for specified prod-

uct in specified department.

6.5 Order bill resources

Add new order confirmation

/orders/new - Adds a new order for confirmation with uploaded image to specified department.

Update order confirmation

/orders/update - Updates a pending order to the specified status.

Get all pending order confirmations

/orders/admin/pending - Lets an admin get all the pending order confirmations.

Get pending order confirmations for department

/orders/user/pending - Lets a user get the pending order confirmations for the specified department.

Get completed order confirmations

/orders/confirmed - Lets an admin get all completed order confirmations.

6.6 Department resources

Get all departments

/api/department/get-all - Gets a list of all departments in the system.

7 of 10

7. SECURITY

7 Security

7.1 Token access

Every user gets assigned an token upon creation of the user. When the user is logged in the user gets

delivered the token to use as authentication bearer token. This token is only valid in 3 weeks at a time or

until the user logs into the application. The token is different from a regular user and the administrator

user, and this determines the different API calls the user have access to.

7.2 Password

The password is hashed using the bcrypt [bcrypt] hashing algorithm. The algorithm gives the possibility to

modify the complexity of the password depending on the computers speed. Only the encrypted password is

stored in the database, so for an outsider to be able to read an users password, they have to have knowledge

of the specific algorithm used.

8 Deployment

8.1 Application

The application is available to both Android and iOS. The Andriod version are online on Google Play Store,

while the iOS version is only available to the users using TestFlight. TestFlight is Apples test framework

and every user needs to be added by the application administrator to be able to access the download site.

The following code libraries are used in the app.

• flutter localizations A library used for localization. Entails generating translation files.[1]

• multi select flutter A widget to select multiple items at once.[2]

• json annotation Used to create code for JSON serialization and deserialization.[3]

• google maps flutter A library for displaying an interactive map. [4]

• permission handler A library used to ask for permissions and check their status.[5]

• flutter riverpod State-management library. [6]

• dio Http client for dart. Used to do network calls.[7]

• flutter secure storage Library used to securely store data. Mainly used to persist data between

sessions.[8]

• fluttertoast Library used to show short messages (toasts) to the user. Usually used to show error

messages.[9]

• flutter launcher icons Library used to set the app icons, e.g. the ones the user presses to launch

the app.

• cupertino icons Library containing default icons.[10]

• image picker A library to either select a picture from image library or take a new one.[11]

• flutter barcode scanner A library to scan barcodes on both Android and iOS.[12]

8 of 10

9. DOCUMENTATION OF SOURCE CODE

• connectivity Library used to check if the user is online or not.

• geolocator A Flutter library used to get specific location.[13]

8.2 Server

The server is deployed at Digital Ocean as a droplet using Docker. Docker supports the creation of a

compose file where there is possible to create an spring boot container as well as an MySQL database.

The Digital Ocean server gets an IP address which the application uses to communicate with the server.

To deploy the server in another deployment service the compose file needs to be run, and a set of creation

procedures found in a folder sql/procedures.sql in the source code needs to be executed in the database.

SpringBoot comes with many features, the list below outlines other code libraries used.

• mysql-connector-java Library used to connect to database.

• spring-boot-starter-mail The library used to send email in Spring.

• java-jwt Used to generate jwt. Essential for security in the app.

• itextpdf, pdfbox Library used for creating a PDF. Needed to send a nicely formatted order bill.

• aws-java-sdk-core, aws-java-sdk-s3, commons-collections4, commons-io Used for processing

images and uploading them to the image server.

9 Documentation of source code

9.1 Application

The code in the frontend app is documented in-line with how to document in Flutter. Each method is

given a descriptive name but also documented using ”///” notation. There are also smaller comments with

”//” notation isnide methods to describe how some more complex lines of code work.

9.2 Server

The whole SpringBoot server is documented in detail using Javadoc. It is possible to use a built in Intellij

feature to generate and show the documentation. This can be done by going to Tools/Generate Javadoc

and selecting a valid destination folder. This creates an HTML file containing all the documentation of

the server.

10 Testing

The server contains classes delegated to testing the main features. The app is tested publicly by having it

deployed to clients devices. The server has a configured Docker file, which makes it easy to rerun the server

with any updates. The team has created unit tests to test some of the smaller pieces of the code.

9 of 10

11. REFERENCES

11 References

[1] Author: flutterando.com.br https://pub.dev/packages/localization, Visited on 09.05.2022

[2] Author: CHB61, https://pub.dev/packages/multi select flutter, Visited on 09.05.2022

[3] Author: google.dev, https://pub.dev/packages/json annotation, Visited on 09.05.2022

[4] Author: flutter.dev, https://pub.dev/packages/google maps flutter, Visited on 09.05.2022

[5] Author: baseflow.com, https://pub.dev/packages/permission handler, Visited on 09.05.2022

[6] Author: dash-overflow.net, https://pub.dev/packages/riverpod, Visited on 09.05.2022

[7] Author: flutterchina.club, https://pub.dev/packages/dio, Visited on 09.05.2022

[8] https://pub.dev/packages/flutter secure storage, Visited on 09.05.2022

[9] Author: karthikponnam.dev, https://pub.dev/packages/fluttertoast, Visited on 09.05.2022

[10] Author: flutter.dev, https://pub.dev/packages/cupertino icons, Visited on 09.05.2022

[11] Author: flutter.dev, https://pub.dev/packages/image picker, Visited on 09.05.2022

[12] https://pub.dev/packages/flutter barcode scanner, Visited on 09.05.2022

[13] Author: baseflow.com, https://pub.dev/packages/geolocator, Visited on 09.05.2022

10 of 10

Contents

1 Introduction . 2

2 Use Case diagram . 2

3 User stories . 3

3.1 Story 1 . 3

3.2 Story 2 . 3

3.3 Story 3 . 4

3.4 Story 4 . 4

3.5 Story 5 . 4

3.6 Story 6 . 4

3.7 Story 7 . 5

3.8 Story 8 . 5

3.9 Story 9 . 5

3.10 Story 10 . 5

3.11 Story 11 . 6

3.12 Story 12 . 6

3.13 Story 13 . 6

3.14 Story 14 . 6

3.15 Story 15 . 7

3.16 Story 16 . 7

4 Domain model . 7

4.1 Sequence diagram . 8

5 Wireframe . 8

5.1 Phone . 8

5.2 Tablet . 13

1

C. Requirements Documentation

73

1. INTRODUCTION

1 Introduction

This document contains the different requirements and specifications for the app made in this project.

2 Use Case diagram

Use case diagram displayed in 1 show the different possibility the a normal user has compared to the

possibility an administrator has shown in 2

Figure 1: Use case diagram for a regular user

2 of 25

3. USER STORIES

Figure 2: Use case diagram for an administrator user

3 User stories

The stories are in no specific order.

3.1 Story 1

As a user, I would like to update only the items in inventory which have been modified after the last time

they were fetched, so that the data usage is reduced.

• Send time to database when refreshing inventory.

• Database must store when item was last updated.

• Store items locally so that not all are required to be fetched.

3.2 Story 2

As a user I want to change the language on the app in case the default is different from what i want so

that the app is easier to use.

• Have translation files. One for each language to support.

• I MyAccount view have an icon which can be pressed.

• When pressing icon display a list of languages which can be pressed, this changes the language in the

app.

• All displayed text needs to be translated.

3 of 25

3. USER STORIES

• All error messages must be translated.

3.3 Story 3

As an admin I want the possibility to select department, so that I can see everything from that depart-

ment.

• Have a button to select department. Not shown if only has one department and not admin.

• When selecting a department show all departments if admin.

• Swapping department swaps the cached inventory.

3.4 Story 4

As an admin I want to create new users, so that I can delegate the new user’s department.

• A button to access create user.

• A new user needs to have a set of details. Name, email, and departments.

• Need to be able to select multiple departments.

• Need to get feedback if email is invalid format.

• Must get error message if user email already exists.

3.5 Story 5

As a user I want to check the map, so that I can see where we have used equipment and where we have

used the most equipment.

• Have a map view.

• Have markers on the map to show that equipment has been used.

• Have the markers be clickable to see more details.

• The markers show a drawer with accurate details when pressed.

• Markers are colour coded so that its easy to see where the most items have been used.

• Markers that should be close together are grouped together to reduce visual clutter and increase

performance.

3.6 Story 6

As a user I would like to log in and stay logged in, so that I don’t have to log in each time I open the

app.

• A view where the user can log in.

• Feedback if the user cannot log in.

• Use token based logging in.

• Check token when opening the app to keep the user logged in.

• If the token has expired log the user out.

4 of 25

3. USER STORIES

3.7 Story 7

As a user I want to be able to change my password, so that if I forget it I can still log in without getting

a new account.

• Have a set password view.

• Send verification code to users email.

• User can enter verification code, this is checked.

• Can enter password and confirm password. The passwords must match to confirm the user has

entered what they think they have.

• Must be able to change password even if logged in.

3.8 Story 8

As a user I want to add or remove from the inventory whenever I use some equipment and I want it to be

updated for the rest of the crew, so that the crew can easily track the inventory onboard.

• Have list view showing whole inventory for department.

• Have minus and plus icon buttons on each equipment.

• Pressing either plus or minus shows a popup window where they can enter how much to add/remove.

• The equipment has the amount updated automatically when add or remove is used.

• Add and remove updates the stock in the database so other users also see the changed stock.

• Create a record of when the stock is updated to cntribute to low data usage.

3.9 Story 9

As an admin I want there to be created records whenever equipment is removed so that it is easy to see

when, where and who equipment was used.

• Create record in database with the user who used equipment. Include LatLng, date-time, and user’s

name.

• Show the details of this in the map.

3.10 Story 10

As an admin I want to edit existing users, so that they can be deleted or modified if they quit, or need

access to other departments.

• A list view with all users.

• An edit button on each user.

• A view for showing the details of the specific user.

• Need to change and enter text in those text boxes.

• Can select departments the user should have access to.

5 of 25

3. USER STORIES

• An update button to push the changes to the server.

• A back button to cancel the changes.

• A delete button to delete the user.

3.11 Story 11

As a user I want to be able to edit existing products, so that if they are wrong I can change them.

• A view with a list of equipment.

• Each equipment has an edit button.

• A view showing the details of the pressed item.

• The option of editing product number, desired stock and product name.

• Confirming the edit button.

• Back button so changes aren’t pushed to server.

• A delete button to delete this piece of equipment.

3.12 Story 12

As an admin I want to send pictures of order bills to specific departments, so that they can confirm they

have received what the bill charges for.

• A view for taking picture and selecting department that is receiving the bill.

• A view for seeing pending bills.

• A view for seeing confirmed bills.

• The department user must see pending bills, and have button to confirm them.

3.13 Story 13

As a user I want to see the missing inventory and send it to the office so they can order more of the missing

equipment.

• A view displaying each item with the amount that’s missing.

• A button to send the missing inventory.

• Only send the items which have a missing amount.

• Enter the emails of the recipients.

• Send an email with a PDF to recipients so they can order missing equipment.

3.14 Story 14

As a user I want to be able to search for equipment, so that its faster to find it.

• A search bar in the inventory views.

• Search the shown equipment only so it is fast.

6 of 25

4. DOMAIN MODEL

3.15 Story 15

As a user I want to be able to search using barcode, so that the search is fast, easier and I do not have to

type.

• A barcode scanner which enters the scanned barcode into the search.

• Search automatically after the barcode is scanned.

3.16 Story 16

As a user I want to add new pieces of equipment to the inventory, so that when we receive new equipment

the app can give an overlook over the full inventory.

• A view for adding new equipment.

• Need to be able to enter product name, number, current stock, desired stock and scan/type in

barcode.

• Able to cancel creation.

• Able to submit new product and have it added to the database and be viewed in the inventory views.

4 Domain model

Figure 3: Domain model

7 of 25

5. WIREFRAME

4.1 Sequence diagram

The sequence diagram show the servers action when a the call to set a new stock for a product is made.

The call enters the product controller then proceeds to the product server then to the product repository

to make a final call to the procedure in the database.

Figure 4: Sequence diagram the method setNewStock

5 Wireframe

5.1 Phone

8 of 25

5.2 Tablet

13

D. Project description

98

Kravspesifikasjon.

Tiltenkt navn på applikasjon.

Ship organizer.

Målet til applikasjonen.

Applikasjonen skal være en hjelp til å holde orden på arbeidsplassen ombord i en båt. Vi
som arbeider ombord ser ofte att det er lett og miste kontrollen over beholdning ombord.
Her er ingen skikkelig rutine for å registrere uttak og påfyll av utstyr og deler, samt sjekke
opp mot faktura som kommer til kontoret på dei forskjellige ordrene. Det vil vi med denne
applikasjonen gjøre noe med. Da det er varierende kompetanse på bruk av data ombord, vil
vi prøve å gjøre det så enkelt som mulig å både registrere forbruk og innkjøp. Slik kan en til
enhver tid ha full kontroll over hva som er ombord.

De forskjellige departement ombord er kontor, teknisk avdeling, styrhus, maskin, dekk,
fabrikk og bysse.

Velkomstbilde.

Þ På denne siden har du innlogging.

Þ Brukernavn og passord bestemmer hvilket departement en får tilgang til. Har en
tilgang til flere må man velge.

Þ En skal kunne huske brukernavn og passere slik en ikke trenger og logge inn hver
gang fra samme enhet.

Mine sider de forskjellige departement.

Þ Her har en valg mellom og legge inn komponenter eller ta ut komponenter.

Þ En må kunne ta ut beholdningsliste.

Þ En må kunne legge inn anbefalt beholdning ombord.

Þ En må kunne hente ut og sende bestillingsliste i henhold til beholdning ombord og
ønsket beholdning.

Þ En må kunne scanne ordresedler som leser og legger de forskjellige komponenter det
det skal i beholdningslisten.

Þ En må kunne legge inn/ta ut komponenter manuelt.

Mine sider skipper, tekniske sjef og kontor.

Þ Samme muligheter som mine sider forskjellige departement.

Þ Har admin tilgang og kan legge til brukere.

Þ Har full oversikt over alle departement.

Þ Kunne sende faktura ombord til rett departement for godkjenning.

Tekniske krav.

• Applikasjonen skal være på Norsk og Engelsk.
• GPS.
• Må ha kartintegrasjon.
• Må kunne scanne ordresedler.
• Må kunne oppdatere beholdning manuelt.
• Må kunne lese barcoder.

Applikasjonen er i første omgang ment som en demo. Vi tenker å testkjøre den på eget rederi
opp mot egne kunde, og om det blir en suksess tenker vi å videreutvikle den.

Ulike integrasjoner.

• Mot rederi modul.
• Alle departement må være integrert med hverandre.
• Må kunne integreres mot eksterne moduler som leverandører.

Ikke funksjonelle krav.

• Plattform som IOS og Android.

• Skal brukes på telefon og nettbrett.

• Høg sikkerhet.

• Starte å virke innen rimelig tid.

Referanser til applikasjoner vi liker.

Ideen kom da vi ombord med oss har hatt store problemer mellom skiftene å få til en felles
måte å registrere beholdning ombord. Og utifra det med å betale regninger i bank, der vi kan
ta et bilde og sende til banken, så fyller det seg automatisk ut, tenkte vi att dette var noe vi
kunne bruke ombord med oss til å gjøre det enklere å legge inn ordresedler i ei beholdning.

Tidsramme.

Det er ikke satt noen tidsramme på prosjektet. Det viktigeste er att det ferdige produktet blir
best mulig.

Kontakt person.

Kurt Louis Skjong. Tlf: 92636079, email kurt@maoyi.no

E. Emails

103

APPENDIX E. EMAILS

Figure E.1: Feedback from client on final product

Figure E.2: Feedback from client on wireframes

104 of 106

F. Project Manual

See separate attachment.

105

G. Repository

See Attachments for source code to both repositories.

Application

GitHub: https://github.com/johanneslj/ShipOrganizerApp

Server

GitHub: https://github.com/johanneslj/ShipOrganizerService

106

https://github.com/johanneslj/ShipOrganizerApp
https://github.com/johanneslj/ShipOrganizerService

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Duggal, Simon
Josefsen, Johannes Løvold
Lindgård, Hans Andreas

Ship Organizer

Inventory management onboard

Bachelor’s thesis in Engineering in Computer Science
Supervisor: Mikael Tollefsen
May 2022

Ba
ch

el
or

’s
th

es
is

	Abstract
	Sammendrag
	Preface
	About
	Thanks to

	Assignment text
	Introduction and relevance
	Background
	Problem
	Long term effects
	Product vision

	Limitations
	Report structure
	Acronyms and jargon
	Acronyms
	Jargon

	Theory, and materials
	Theory
	Object-Oriented Programming
	Design patterns
	Quality assurance
	Development
	Relational database
	Queue data structure
	Race conditions
	Containerization
	Domain specific theory
	Security

	Method
	Planning and Design Process
	Pre-project plan
	Meeting with client
	Research and deciding on technologies
	Design

	Equipment, tools, and technology
	Flutter
	Spring Boot
	Authentication
	MySQL Database
	Digital Ocean Spaces
	Docker
	Collaboration tools
	Communication

	Agile development
	Roles and work distribution
	Sprints

	Development Process
	User Experience First
	Flutter Application
	Server and Database
	Quality Assurance

	Testing
	Process for user testing

	Results
	Scientific results
	Network in a maritime setting
	Principles of design

	Engineering results
	Engineering results - Mobile app
	Logging in and staying logged in
	Updating inventory
	Language settings
	Map integration
	Scanning barcodes
	Phone and tablet
	Registering users
	Missing inventory
	Data handling
	Order confirmation
	Error handling
	Deployment and testing

	Engineering results - Server application
	Controllers
	Services
	Models
	Repositories
	Image upload
	Database
	Security
	Future deployment of server

	Administrative results
	Working in Jira
	Development overview

	Discussion
	Scientific discussion
	Reducing data traffic
	Ease of use

	Mobile application
	Solving the clients problem
	Flutter framework
	Deployment to client devices
	Handling offline scenarios
	Handling missing GPS signal
	Requirements

	Server application
	Spring Boot
	Swapping SQL dialect
	Stored Procedures
	Deployment of server and database

	Administrative discussion
	Communication
	Development process
	Collaboration with Jira and Confluence

	Conclusion and further work
	Conclusion
	Further work

	Societal impact
	Project Plan
	System Documentation
	Requirements Documentation
	Project description
	Emails
	Project Manual
	Repository

