
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f I

CT
 a

nd
 N

at
ur

al
 S

ci
en

ce
s

Klungerbo/Ram
berg

Service for D
ata Stream

ing

Tomas Klungerbo Olsen
Lars Ivar Ramberg

Service for Data Streaming

Bachelor’s thesis in Computer Science
Supervisor: Saleh Abdel-Afou Alaliyat
May 2022

Ba
ch

el
or

’s
th

es
is

Tomas Klungerbo Olsen
Lars Ivar Ramberg

Service for Data Streaming

Bachelor’s thesis in Computer Science
Supervisor: Saleh Abdel-Afou Alaliyat
May 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of ICT and Natural Sciences

Abstract
In a world where data becomes increasingly plentiful, new solutions are needed to process
data as quickly as possible. AutoStore AS has recognized the need to process the data
from their automated warehouse installations in a reliable and scalable way. This need
provides the basis for the project this paper presents.

By developing a solution for streaming data in real-time, the project described in this
paper aims to offer a system for streaming data. By conducting research, testing, and
implementation using solid frameworks and methodologies of Scrum, a product is was
made that can provide reliable data streaming.

The main product produced as a result of this project provides streaming capabilities that
offer reliability and scaling. Although some work remains before the solution is ready to
be used in the real world to transport possibly sensitive information, the solution offers a
Java-based implementation of a system fully capable of transferring data between
endpoints.

In addition to the product, results in terms of research have also been created, which can
be helpful to other developers looking to create services for streaming data. In addition to
the primary implementation, prototypes have been produced and made publicly available
as open-source software, contributing to the global open source community. The project
lays a solid foundation for further development into a more secure solution fit for
enterprise standards.

v

Sammendrag
I en verden hvor data blir stadig mer rikelig, er det nødvendig med nye løsninger for å
behandle data så raskt som mulig. AutoStore AS har erkjent behovet for å behandle
dataene fra deres automatiserte lagerinstallasjoner på en pålitelig og skalerbar måte.
Dette behovet danner grunnlaget for prosjektet denne rapporten presenterer.

Ved å utvikle en løsning for strømming av data i sanntid, har prosjektet beskrevet i denne
rapporten som mål å tilby et system for strømming av data. Ved å utføre forskning,
testing og implementering ved hjelp av solide rammeverk og Scrum metodologi ble det
laget et produkt som tilbyr pålitelig datastrømming.

Hovedproduktet produsert som et resultat av dette prosjektet gir mulighet for pålitelig og
skalerbar datastrømming. Selv om det gjenstår noe arbeid før løsningen er klar til brukes
i den virkelige verden for å transportere mulig sensitiv informasjon tilbyr løsningen en
Java-basert implementasjon av et system som er fullt i stand til å overføre data mellom
endepunkter.

I tillegg til produktet er det også skapt forskningsmessige resultater som kan være nyttig
for andre utviklere som ønsker å lage tjenester for strømming av data. I tillegg til den
primære implementeringen, har prototyper blitt produsert og gjort offentlig tilgjengelig
som åpen kildekode-programvare. Dette bidrar til det globale åpen-kildekode
utviklersamfunnet ved å tilby eksempler og løsninger for lignende prosjekter. Prosjektet
legger et solid grunnlag for videre utvikling til en sikrere løsning som temmer overens
med bedriftsstandarder.

vi

Preface
The project represented by this paper was made in close collaboration with AutoStore AS,
in particual Asle Olsen Gaasø who represented AutoStore and served as the stakeholder
representative for the project.

We would like to thank Asle for the open communication, guidance, and feedback on the
results produced as a result of this project.

We would also like to thank the staff at the Department of ICT and Computer science at
the Norwegian University of Science and Technology, and in partcular our advisor Saleh
Abdel-Afou Alaliyat.

This assignment was chosen because of, and made possible due to the willingness of
AutoStore to have students develop solutions to their problems. We would like to thank
AutoStore as an organization for believing in this project enough to set aside time for
discussion during the development period.

vii

Assignment
Assignment text adapted from original assigment text provided by Asle Gaaso Olsen at
AutoStore. ”We” in the context of this assignment text refers to AutoStore AS.

Real-time streaming architecture for global data collection and analytics.

AutoStore, founded in 1996, is a warehouse robot technology company that invented and
continues to pioneer cube storage automation, the densest order-fulfillment solution in
existence. Our focus is to marry software and hardware with human abilities to create the
future of warehousing.

The company is global, with over 650 installations in 40 countries in a wide range of
industries. All sales are distributed, designed, installed, and serviced by a network of
qualified system integrators we call ”partners”.

In order to improve system performance and service capabilities AutoStore is depending
on data from their installations. Today this data is gathered using a batch approach, where
one every day, the relevant data is transferred from the installation to a central repository.

This assignment involves the following tasks: research relevant technologies and
frameworks that exists today that can enable world wide distributed streaming of data to
a Cloud storage repository.

• Investigate common fault strategies related to loss of Internet connection or other
faults.

• Implement prototype for real-time data distribution

• Implement or configure Cloud services that receives streamed data.

• Research Cloud based analytics frameworks that can enable real-time data analytics
on real time data streams.

viii

Table of Contents

List of Figures xii

List of Tables xiii

Glossary xiv

Acronyms xv

1 Introduction 1

1.1 Background . 1

1.2 Problem Thesis . 2

1.3 Requirements . 2

1.4 Boundaries . 2

1.5 Subject areas . 3

1.6 Structure . 4

2 Theory and material 5

2.1 Agile methods and SCRUM . 5

2.1.1 Scrum Sprints . 5

2.1.2 User Stories . 5

2.1.3 Backlog . 6

2.1.4 Scrum meetings . 6

2.1.5 Scrum Roles . 6

2.1.6 Story Points . 7

2.1.7 Planning Poker . 7

2.2 Containers and images . 8

2.3 Cloud Technologies . 9

2.4 Streaming . 9

2.5 Version control . 10

2.5.1 Git flow . 10

2.6 Clean Code . 12

ix

TABLE OF CONTENTS

2.7 Pair Programming . 12

2.8 Code Review . 12

2.9 Encryption . 13

2.10 SOLID design principles . 13

3 Method 15

3.1 Research method . 15

3.1.1 Frameworks and Framework Research 15

3.2 Technologies and Developmental Methodologies 16

3.2.1 Java . 16

3.2.2 Code style . 16

3.2.3 Continuous Integration . 16

3.2.4 Containers and Docker . 17

3.2.5 Virtual Machines and Networking . 17

3.2.6 Collaboration . 18

3.2.7 Planning and estimation of work . 18

3.2.8 Work distribution . 18

3.2.9 Work scheduling . 20

3.2.10 Issue Tracking System . 20

3.2.11 Project Documentation System . 20

3.2.12 Milestone plan . 21

3.2.13 Version Control and Git . 21

3.2.14 Utility (util) Repositories . 22

3.2.15 Prototyping . 22

3.2.16 Testing . 23

4 Results 26

4.1 Scientific Results . 26

4.2 Engineering Results . 27

4.2.1 Style Guide and Checkstyle . 27

4.2.2 Prototypes . 27

4.2.3 Final streaming solution . 28

4.2.4 Cluster Implementation . 28

x

TABLE OF CONTENTS

4.2.5 Documentation . 28

4.3 Administrative Results . 29

4.3.1 Implementation of Scrum . 29

4.3.2 Roles and Responsibilities . 30

4.3.3 Milestone plans . 30

4.3.4 Final streaming solution . 31

5 Discussion 32

5.1 Scientific discussion . 32

5.1.1 Framework Research . 32

5.1.2 Testing and Documentation of Testing 32

5.2 Engineering Results . 33

5.2.1 Streaming and Communication of Data 33

5.2.2 Security . 33

5.2.3 Implementation of Broker as a Cluster 34

5.2.4 Documentation . 34

5.3 Administrative discussion . 35

5.3.1 Implementation of Scrum . 35

5.3.2 Milestones . 36

6 Conclusion 37

6.1 Conclusions . 37

6.2 Further work . 37

6.2.1 Authentication . 37

6.2.2 Encryption . 38

6.2.3 Pulsar property limitations . 38

6.2.4 Cloud cluster solution . 38

6.2.5 Infrastructure as code . 38

6.2.6 Unit testing . 39

Social impact 40

References 41

Appendices 43

xi

List of Figures

1.1 AutoStore installation with robots generating event data (TKSL, 2020) 1

1.2 Diagram showing the relevant technological subject-areas of the assignment 3

2.1 Overview of the Scrum methodology (Adam, 2022) 5

2.2 Example of a user story with a ”who”, a ”what”, and ”why” 6

2.3 Illustration of the scrum team consisting of a product owner, scrum master,
and the development team (Doshi, 2022) . 7

2.4 Illustration of a development team practicing planning poker (Compliance, 2018) 8

2.5 Virtual machines vs containers (Weaveworks, 2020) 9

2.6 Visual illustration of branching in Git Flow (Driessen, 2010) 11

2.7 Illustration of a development team practicing pair programming (Termenji, 2021) 12

2.8 Encryption using asymmetric keys (Rajitha, 2021) 13

3.1 Scrum poker in progress. Voice call is started, issues are read out, and points
are assigned. 19

3.2 Sprint issue board used during development 20

3.3 Diagram showing the structure of repositories and their relationships. Dotted
arrows indicate the implementation of functionality from one repo into another 22

3.4 Illustration of testing architecture. 24

4.1 Screenshot of readme belonging to the consumer component 29

xii

List of Tables

3.1 Table of acceptance tests and goals . 25

4.1 Overview of assigned scrum roles . 30

4.2 Overview of technical responsibilities . 30

xiii

Glossary
agile development A collection of iterative change based practices and frameworks. 3

branch Code representing a state of development.. 12

continuous integration A automated code integration practice that assists code change
for multiple developers working on the same piece of software. 16, 34, 38, 39

Docker Compose Tool for multi-container management. 17, 27, 28

GitHub Provider of hosting for remote repositores. 21, 28, 29

GitHub actions Github’s CI and CD platform. 16, 17

GitLab Provider of hosting for remote repositores. 21

Javadoc Generates documentation from java code into HTML sites. 16, 17, 28, 35

OpenStack Open source cloud software platform. 17, 18, 25

virtual machine Emulation of a computer system through software. 8, 17, 18, 24, 25

xiv

Acronyms
API Application programming interface. 28, 33

CD continuous delivery. xiv

CI continuous integration. xiv

HTML HyperText Markup Language. xiv

IDE Integrated development environment. 16

IP Internet Protocol. 18, 24

JVM Java virtual machine. 17

NTNU Norges teknisk-naturvitenskapelige universitet (Norwegian University of Science
and Technology). 17, 18, 20, 24, 25

TLS Transport Level Security. 34

VPN Virtual private network. 24

xv

1 Introduction
This chapter introduces the project this report is based upon. The project background,
requirements, boundaries, and subject areas are all introduced to provide an
understanding of the project and its value. The structure of the report is introduced at the
end of the chapter.

1.1 Background

Businesses today generate large amounts of data in their day to day operations. For
AutoStore AS, one of the core sources of data are their installations. AutoStore offers an
automated warehouse solution which includes robots to handle merchandise, ports that
present this merchandise to human operators, and all of the communicative technology
necessary for robots, ports, and humans to work efficiently and synchronized. The system
is in constant motion, with many moving parts operating in parallel (see Figure 1.1 for a
visual example).

Figure 1.1: AutoStore installation with robots generating event data (TKSL, 2020)

AutoStore currently collects their data in batches at set points during the day. While this is
valuable, a real time approach would provide further value and open up new possibilities.
Being able to gather all the data generated by a system during operation in real time
would enable AutoStore to act on anything happening in a system as it happens and
predict system events based on the data.

This project was requested by AutoStore AS on behalf of their Monitoring and Maintenance
team, responsible for analyzing data from AutoStore systems. The project is part of a
larger initiative within AutoStore to modernize the use and flow of data, introducing real

1

CHAPTER 1. INTRODUCTION

time streaming and analytics.

1.2 Problem Thesis

Analyzing data in real time necessitates real time access. This project was conceptualized
as a solution to provide real time access to AutoStore data by streaming it from the
locations where it is generated to AutoStore’s already existing analytics infrastructure.
The end goal is to discover and implement a streaming alternative to the currently
existing batch transmissions of data currently used by AutoStore, enabling them to
respond and act on their data in real time. To achieve this, a solution will be built that is
fault-tolerant, performant, scalable, and secure.

1.3 Requirements

As a product handling data for a public company, there are multiple considerations and
requirements that must be accounted for. Firstly, the solution must be secure as it handles
highly valuable data. Secondly, it must be scalable to accommodate a company in growth.

Since the solution will target sensitive data of a growing company, the following
requirements have been identified:

• Security. Data must not be stolen or manipulated as it is transferred

• Scalability. AutoStore is a company in growth. If the solution does not scale, it will
not be a permanent solution

The assignment document provided by AutoStore specifies five main tasks for the project.
As the assignment document was formulated by AutoStore, the requirements also reflect
their wishes and needs. The tasks mention research of technologies and frameworks, fault
strategies during loss of internet connection or other faults, implementation of real-time
data distribution, and configuration or implementation of cloud services that receive data.
Analytics is also mentioned, but only as a research task.

Based on the project description, the following has been identified as requirements:

• Performance. High-performant streaming with low delay, ideally close to real time.

• Reliability. Data needs to safely travel from source to consumer without loss

• Fault tolerance. Temporary system failure should not lead to loss of data

• Cloud compatibility. The solution needs to be deployable to and accessible from the
cloud.

1.4 Boundaries

The group is limited in their access to real AutoStore data. This is to avoid any concerns
regarding confidentiality, as well as security. From a confidentiality perspective, it is
technically not required for the group to have actual data to implement a general data
streaming solution, making it an unnecessary extension of privileges. From the
perspective of security, giving the group access means creating one or two extra accounts

2

CHAPTER 1. INTRODUCTION

that can access AutoStore data. These two accounts represent two extra entry-points into
the system which should be avoided if possible.

The project has been defined to only concern streaming of data, not analysis. This is a
key distinction as it substantially impacts the scope of the solution. The solution need only
receive freshly created data, stream the data over the internet, and ensure that the sent
data is received intact and secure. While the reduced scope makes the task smaller, it
allows for more focus on a secure, stable, and user-friendly streaming solution.

1.5 Subject areas

This assignment covers multiple subject areas related to computer science and software
development. A distinction is made between technical subjects, and organizational
subjects.

Relevant technological areas are cloud computing, networking and cybersecurity. These
three areas can be combined in different ways, but the inclusion of all of them forms the
secure distributed computing this assignment is based upon. Figure 1.2 provides a visual
representation of the relevant subject areas.

Figure 1.2: Diagram showing the relevant technological subject-areas of the assignment

The non-technical subjects of agile development, agile subjects, testing and prototyping

3

CHAPTER 1. INTRODUCTION

are relevant. These subjects do have technical aspects to them, but have a heavier
element of organization than the technical subjects, hence the distinction.

1.6 Structure

This document is divided into 6 main chapters:

Chapter 1: Introduction Introduction to the project with background, problem thesis,
boundaries, and requirements.

Chapter 2: Theory and Material Presents the reader to the theoretical background of
both the solution and its development

Chapter 3: Method Description of scientific and developmental methods utilized for this
project

Chapter 4: Results Project results, presents what was achieved

Chapter 5: Discussion Discussion and reflection, discusses the results in relation to
problem thesis

Chapter 6: Conclusion Concludes the thesis as a whole both thematically and in terms
of project results and subsequent discussion

4

2 Theory and material
This chapter presents relevant background-theory for the project. This chapter covers
theory related to methodologies, technologies, and tools related to and used during this
project. After reading this chapter, the reader should have the necessary theoretical
knowledge to understand the tools and technologies described.

2.1 Agile methods and SCRUM

SCRUM is a development methodology commonly used in software development. It is
designed to help people, organizations, and teams create adaptive solutions to complex
problems (Schwaber and Sutherland, 2020). Scrum is an agile method, allowing for a
more flexible and reactive development schedule when compared to traditional waterfall
methods by working in an iterative manner where each iteration feeds back into the
development of the end product. Figure 2.1 gives a visual overview of Scrum.

Figure 2.1: Overview of the Scrum methodology (Adam, 2022)

2.1.1 Scrum Sprints

A sprint is a time-boxed period of development where a team works to complete a set
amount of tasks (West, 2022). A sprint is usually defined to last from one to four weeks
although there are no strict limits to length.

2.1.2 User Stories

User Stories are units of work within the Scrum framework (Rehkopf, 2022a). User Stories
help put the end-user at the center of development by formulating software features as

5

CHAPTER 2. THEORY AND MATERIAL

user needs or desires. User Stories are usually formulated by expressing the user need in
a ”as who, I want what, so that why” way (Paradigm, 2022). Figure 2.2 presents one
example of a user story.

Figure 2.2: Example of a user story with a ”who”, a ”what”, and ”why”

2.1.3 Backlog

The backlog is the home of all unresolved issues. Any piece of intended functionality will
start as an issue in the backlog, before it is eventually selected for implementation and
moved from the backlog into a sprint (see section 2.1.1). User stories described in section
2.1.2 are commonly stored in the backlog as issues, although the backlog may contain
other tasks as well.

2.1.4 Scrum meetings

In addition to sprints, Scrum is structured around multiple meetings with varying
frequencies. These meetings have different purposes and intentions.

The following meetings are commonly included in scrum:

Stand up A small, daily meeting where the development team discuss what each
individual member is working on. This is an opportunity for the team members to
present any blockers they may have encountered.

Sprint planning A meeting for planning an upcoming sprint. The team decides what
issues to take from the backlog and put into the upcoming sprint.

Sprint Review A larger meeting after a sprint has completed. The team presents what
results have been achieved, and what each member of the team has been working
on. This meeting focuses heavily on the product.

Sprint Retrospective A meeting where the team discuss their process over the last
sprint. This meeting focuses on the team and their processes as opposed to the
product.

2.1.5 Scrum Roles

Scrum uses roles separate from ordinary job titles to define tasks and responsibilities
(Coursera, 2022). Scrum is usually divided into three roles: Product owner, Scrum master
and Development team (West, 2022, Coursera, 2022). Figure 2.3 illustrates the different
roles and their primary tasks.

The product owner is a bridge between the development team and the stakeholder. The
product owner manages the scrum backlog, handles releases, and communicates with
stakeholders (West, 2022).

The development team refers to the team creating the product. Development teams in
scrum are unique in that their roles are fluent, and a developer in scrum context refers to
any technical professional contributing to a product, not only software developers (Fowler,
2019).

6

CHAPTER 2. THEORY AND MATERIAL

The scrum master is a servant leader and scrum advocate within a project West, 2022.
The scrum master helps the product owner manage the backlog and deliver value. In
addition, the scrum master assists the team by ensuring that work is being done and that
blocking tasks are dealt with and removed. (ibid.).

Figure 2.3: Illustration of the scrum team consisting of a product owner, scrum master, and
the development team (Doshi, 2022)

2.1.6 Story Points

Story points are a measure of overall effort required to implement a backlog item
(Radigan, 2022). Story points are used to assign an appropriate amount of tasks to a
sprint, and to distribute the workload fairly between developers.

2.1.7 Planning Poker

Planning Poker is a way of assigning Story Points to a user story (see section 2.1.2). For
each user story in the backlog, the developers estimate an amount of story points
individually. The estimation is often performed with playing cards where each card has a
value from an agreed-upon limit. These values can be as simple as a linear range or a
more complicated range like the Fibonacci sequence. The Fibonacci sequence has the
effect of an increasing difference in values which can help expose insecurity when
estimating a story. The estimated card is laid on a surface with its back facing up. The
card’s value is hidden so as not to influence the decision of other team members. When
all members have estimated the user story, the cards are flipped upside-down, exposing
the estimated values as illustrated in figure 2.4. Discussions regarding why some chose
low whereas others chose high values can begin, and convergence towards a final
estimate can ensue. The discussion often reveals ideas and concepts for solving a
problem that some members did not possess before the discussion. The discussion can
also function oppositely and expose issues that might seem easy at first, but that other
team members have had difficulties with previously.

7

CHAPTER 2. THEORY AND MATERIAL

Figure 2.4: Illustration of a development team practicing planning poker (Compliance,
2018)

2.2 Containers and images

A container is a concept in which applications are bundled with their required environment
and other dependencies, making it effortless to share across compatible devices (Docker,
2022). A compatible device for containers is a device in which the operating system has
an engine to run containers (McCarty, 2018). Compared to similar solutions, which use a
virtual machine, containers utilize the kernel of the host operating systems, making them
more lightweight. Although containers use the host operating system’s kernel, they run as
isolated processes in user space for additional security. Figure 2.5 illustrates the
difference between virtual machines and containers where a container can be seen
running directly on the host operating system from a container engine.

Images function as a template for containers. They contain layers of instructions on how
to create container instances. Comparing images to equivalent technology would be that
of a snapshot for a virtual machine (Gillis, 2021).

8

CHAPTER 2. THEORY AND MATERIAL

Figure 2.5: Virtual machines vs containers (Weaveworks, 2020)

2.3 Cloud Technologies

The cloud and cloud technologies are a relatively new phenomenon in software
development. Although the cloud has existed as a concept of distributed computing since
the 1990’s (Hoffman, 1993), it gained significant traction after big companies like
Amazon, Google, and Microsoft entered the space with their respective services in the
2000’s. The cloud refers to a set of computational services on the internet that both
software developers and consumers can access.

From the consumer-perspective, cloud technologies allows many technologies and
solutions to be available from anywhere in the world without having to install anything on
their own device. It is also common to have files stored in the cloud instead of, or in
addition to, having them stored on a local device.

For the developers, the cloud offers amorphous black boxes of functionality and services
over the internet. Microservices as an example can be many different small applications
living on the cloud that can be brought into a larger application to compose applications
from multiple small parts.

2.4 Streaming

In computing, streaming refers to the process of transferring data in a continuous stream
for immediate processing (Schwaber and Sutherland, 2020). Streaming data provides
benefits like the ability to receive data within milliseconds of creation and usage of data
without downloading its entire file (commonly used for video and music). Streaming is a
central part of the assignment, as the quick reception is at the core of the stakeholder’s
use-case.

The concept of streaming is closely related to the subject of cloud computing (see section
2.3), in that parts of the streaming infrastructure usually exists as a cloud service or
incorporates cloud services. Normally, endpoints exist on client computers, while a

9

CHAPTER 2. THEORY AND MATERIAL

middle-man or broker lives on a cloud-server

2.5 Version control

Version control refers to the act of progressively tracking and managing changes in code
(Atlassian, 2022). Version control allows developers to track changes in code over time,
work on different features without irreversibly changing the source code, and facilitates
simultaneous work on different parts of the code.

2.5.1 Git flow

Git flow is a way of managing version control. Git Flow provides a way of organizing
branches in order to avoid committing unready changes to the main branch. This type of
version control centers around two central branches: main and develop. Every time a
change is to be made, a branch is created from develop. A branch can be one of four
types:

Feature A branch containing a new feature

Refactor A branch containing changes to an already existing feature that does not fix a
bug

Hotfix A branch containing a fix to a bug

Release A branch ready to become a release

All feautre, refactor, and hotfix branches are committed to develop before a release
branch is created from develop. The release branch is tagged with a version before it is
merged into the main branch. This flow is exemplified in figure 2.6.

Although named after the version control-system Git, Git Flow is technology-agnostic and
can be applied to any version-control system that supports branching.

10

CHAPTER 2. THEORY AND MATERIAL

Figure 2.6: Visual illustration of branching in Git Flow (Driessen, 2010)

11

CHAPTER 2. THEORY AND MATERIAL

2.6 Clean Code

Clean code is a book written by Robert Cecil Martin (Martin, 2009) which investigates
good and bad code practices from the author’s point of view. Although good and bad code
often can be regarded as subjective, many ideas and paradigms can be found in the book
which can be implemented to produce simpler code to read. The book covers subjects
such as naming conventions, length of methods, clutter comments, and code formatting.

2.7 Pair Programming

Pair programming is a concept with its roots in extreme programming. Pair programming
involves co-development by two developers on the same piece of code. One developer,
the driver, writes the code while the other, the observer, watches the driver and actively
searches for syntactic defects and thinks about the overall direction of the work (Williams,
2001). The pair programming workflow with its driver and observer role has been
illustrated in figure 2.7

Pair programming trades the perceived efficiency of working on multiple pieces of code at
once with the benefit of having two developers work on the same piece of code to ensure
correctness, performance, and maintainability.

Figure 2.7: Illustration of a development team practicing pair programming (Termenji,
2021)

2.8 Code Review

Code review is the process of having one developer inspect and review the code of
another. Usually, code reviews are performed before changes in a branch are permanently
committed to production code.

Code review provides an extra opportunity for errors to be caught as developers review
the code of their colleagues. It also facilitates increased system knowledge among
developers as they need to inspect and understand code in parts of the system they are

12

CHAPTER 2. THEORY AND MATERIAL

not directly responsible for implementing.

2.9 Encryption

Encryption is the obfuscation and securing of data by changing it in a reversible manner.
Encryption when related to computer science and software engineering uses mathematical
methods (Chen, 2021) in order to encrypt and decrypt data.

Many modern encryption schemes are based on keys. Keys provide the necessary
mathematical information for a program to encrypt and decrypt data, provided the
software has the correct keys. There is a distinction between symmetric key cryptography,
and asymmetric key cryptography. With symmetric keys, provider and client have the
same key and use this key to encrypt and decrypt the data transferred between them.
With asymmetric cryptography (see Figure 2.8), clients and providers have public and
private keys. Public keys can be distributed to other agents and the private keys are
unique to each agent. As an example of this, agent A wants to send an encrypted
message to B. A then acquires or uses the public key of B to encrypt the message. A now
sends the message, and the private key of B is used to decrypt the message.

Figure 2.8: Encryption using asymmetric keys (Rajitha, 2021)

2.10 SOLID design principles

The SOLID design principles are a set of principles and guidelines for software engineering
and development. It is a subset of the many principles presented by Robert C. Martin in
2000 in his essay ”Design Principles and Design Patterns (Watts, 2020).

SOLID forms an acronym representing each principle. The principles are as follows
(Oloruntoba, 2021):

Single responsibility principle Each class should have only one job

Open-closed principle Each class should be open for extension, but closed for
modification

Liskov Substitution Principle Every subclass or derived class should be substitutable
for their parent class

13

CHAPTER 2. THEORY AND MATERIAL

Interface Segregation Principle A Client should never be forced to implement an
interface that it doesn’t use.

Dependency inversion Principle Entities must depend on abstractions, not on
concretions.

14

3 Method
This chapter presents all relevant methodology, both scientific and developmental, used
during this project. Usage and implementation of the technologies, theories, and concepts
described in Chapter 2 are discussed here to illustrate how the project was conducted and
how the project reached its result.

Research and implementation were closely related for this project, as part of both
research and implementation was the development of prototypes. The prototypes can be
considered research in that they were later used to test different frameworks for function
and efficiency. They could also be considered part of the development methodology as
one of the prototypes were carried on to implementation, and many core decisions were
taken based on these prototypes.

3.1 Research method

Although the project was a developmental project, there was a heavy focus on research
and documentation of findings. Streaming and related technologies were new areas both
for AutoStore and for the group. It therefore became necessary to dedicate time solely for
research and discovery to find the best way to solve the problem posed by AutoStore.

3.1.1 Frameworks and Framework Research

Researching and comparing available frameworks was a high priority at the start of the
project. As the team had limited previous knowledge of the domain of streaming and
related frameworks, a large theoretical analysis was performed and presented to
stakeholder. This analysis and its results helped dictate what technologies to use for the
prototypes and final implementation.

From the research, a research paper was written and delivered to stakeholder in week 3.
The research paper contains general information and facts about each framework to allow
for comparison in terms of theoretical capacity, pros, and cons of each framework.

This research paper was later used when discussing with the stakeholder which
frameworks should be implemented. This was done to avoid choosing a framework that
did not fit the stakeholders use case, lacked functionality, or provided functionality that
would not be necessary such as analytics capabilities.

The frameworks chosen for the assignment needed to fit the criteria outlined in Section
1.3. Therefore, the frameworks needed to be fast, secure, and ideally easy to implement.
The presence of already existing analytics tools from the stakeholder side also pushed the
search in the direction of lightweight frameworks that do not contain any analytics
capabilities.

Three frameworks were chosen as a result of the research: Apache Kafka, Apache Pulsar,
and Apache Flink. RabbitMQ, Apache Spark and Apache Storm were also considered

RabbitMQ was quickly deemed unfitting for the use-case as it could not offer the required
security of data. It does not by default check to see whether messages have been

15

CHAPTER 3. METHOD

successfully received by the consumer endpoint. Spark and Storm were passed up due to
a large amount of unnecessary and unwanted features.

Both Kafka and Pulsar were chosen because they were lightweight frameworks that
provide secure messaging without being burdened with un-needed analytics features.
Pulsar and Kafka seemed to be the fast and lightweight solutions that the project would
need. Additionally, neither framework had any large known security flaws at the time of
development.

Flink was the most experimental choice, as Flink contains multiple features that the other
frameworks do not and is also compatible with both of the other chosen frameworks as
part of a data-chain. This led to a decision of creating a more experimental framework
where Flink would be built on top of Pulsar or Kafka. Flink was also chosen because it too
promised to be fast and secure, although somewhat less lightweight than the other
frameworks.

3.2 Technologies and Developmental Methodologies

3.2.1 Java

Although all the initially chosen frameworks (see Section 3.1.1) supported multiple
languages, the group eventually decided on Java for development and implementation.

The most apparent reason was developer experience. Java is a language both members of
the development team are highly comfortable with using. Using this experience, the team
could rapidly start developing the solution without learning a new language.

Java was also a good choice from a technical standpoint. Java is a cross-platform
language, meaning a program compiled in Windows will also work on Mac and Linux. In
addition, the ”compile once, run everywhere” feature of the language increases the
portability of the solution and makes it a viable option regardless of the end-users
operating system.

3.2.2 Code style

Code style was enforced using a formal style guide, as well as a Checkstyle plugin for the
IntelliJ IDE.

The style guide details how the members of the development team are expected to
formulate their code. While good and maintainable code is possible without a common
guide, uniformity is achieved when there is a common guide for the developers to follow.

The Checkstyle file of the project is based on the style-guide. When used, it ensures that
the style-guide is being followed by scanning the code in the IDE and highlighting any
mismatches between the code and the Checkstyle specifications. Using Checkstyle
eliminates a big manual component of maintaining the code, and ensures greater
adherence to the style guide.

3.2.3 Continuous Integration

Continuous integration was used to verify that new changes did not break the solution and
to automatically generate and publish Javadoc. Continuous integration was implemented
using GitHub actions that would run every time code was pushed to the repositories.

16

CHAPTER 3. METHOD

Automatic building was implemented to combat regressive failures in the program.
Whenever code was pushed to the repository, the continuous integration jobs would use
Maven to build the solution and verify that the code was not causing any compilation
errors.

Javadoc generation and publishing were specifically set to trigger when a merge request
or push to the develop or master branch of the repository occurred. One GitHub action
manages the generation of Javadoc for the master branch and pushes the generated
documentation to a directory dedicated to documentation related to the official release. In
contrast, the GitHub actions that manages the generation of Javadoc for the develop
branch pushes the generated documentation to a different directory dedicated to the
newest in-development release. Both branches were set to trigger so the development
team could access documentation for the latest official release and the newest
in-development release. Using Gitflow for managing branches (see Section 2.5.1) leads to
the develop branch being pushed to often, while the master branch only has changes
pushed to it when a new version is ready. Only generating Javadoc on the master branch
would lead to new documentation being rarely available, and having the newest
development Javadoc was necessary for the team during development, as the gaps
between releases were quite large.

3.2.4 Containers and Docker

Docker containers were chosen for use early in the process before any prototypes had
been developed.

Docker was chosen because it would provide a high degree of portability of the solution.
Instead of requiring the user to have the correct version of Java or other dependencies
installed on their system, it would be possible to define Docker images with all the
necessary dependencies defined. A user could then build and run Docker containers
directly on their system without downloading any new dependencies directly on their
system. Although Java already offers cross-platform support through the way the Java
JVM works, Docker provides further compatibility by not requiring Java at all.

In addition to docker, Docker Compose was also utilized. As the system has three different
parts that need to communicate with each other, there was a need for a single mechanism
that could start all parts and provide a network for them to communicate over. Docker
Compose provided both these facilities, and was used actively to test the system locally
and rapidly. Docker Compose made testing during development fast and efficient as
starting the entire system locally could be done with a single command after the
docker-compose file had been properly defined. This saved large amounts of time during
development, as the whole solution was frequently built, started, torn down and deleted.
Time needed to be spent learning docker compose and writing the related compose-files,
but this time investment paid off in time saved during active development.

3.2.5 Virtual Machines and Networking

In addition to containers (see Section 2.2), virtual machines and networks were used
during development. NTNU provided the first virtual machine through their OpenStack
solution. This virtual machine was used by the development team as a server for the
broker, enabling actual tests over the internet with the developed system as opposed to
only local testing over the local network.

17

CHAPTER 3. METHOD

Microsoft Azure provided the second virtual machine much later in the development
process. The team used this virtual machine to host the solution on a publicly reachable
IP and for development towards the end of the project. The Azure virtual machine came
much later than the OpenStack machine to avoid unnecessary costs related to the project,
as Azure can quickly become expensive.

Virtual networks were also used by necessity. The virtual networks’ objective was to
connect to the virtual machine as it did not have a public IP address. The use of virtual
networks gave the group access to their OpenStack virtual machine without being
physically present on campus and connected directly to the NTNU network.

3.2.6 Collaboration

Part of the groups methodology was the way they chose to collaborate. The team was
geographically distributed with one member being in Ålesund, and another located in
Haugesund. This necessitated that the team found ways of collaborating that would
transfer well digitally.

The team performed all meetings using chat services like Microsoft Teams and Discord.
Microsoft Teams was used for meetings that also involved the stakeholder and advisor,
while Discord was used for meetings between the group-members. Teams was used for
the large meetings as everyone had an account readily available either through NTNU or
AutoStore. Discord was chosen for internal group meetings as it was compatible with the
developers operating system of choice (Linux) and provided more effective means of
screen-sharing.

Additionally, the group made heavy use of the pair programming described in section 2.7.
Pair programming was used as the subject are of streaming, as well as the available
frameworks, were new for both group members. It was therefore helpful to be two
developers when facing completely new problems and technologies to more quickly
resolve issues as they were discovered.

3.2.7 Planning and estimation of work

Planning poker (see section 2.1.7) was used to estimate the amount of work a user story
would represent. The team used the Fibonacci numbers for assigning points as the
numerical difference that appears when jumping between high-values gives a clear
separation in terms of workload. Instead of using physical cards, the team would use text
chat in combination with voice chat and screen sharing. The product owner would share
their screen and read out the user stories in the backlog, then the points were assigned
individually by each member by typing their number in the chat, then on voice cue
sending the score to the other member. If the numbers differed, a discussion would start
before eventually converging on one agreed upon score. Figure 3.1 shows an example of
planning poker in progress, with the members agreeing on the score for the first issue,
and disagreeing on the second.

3.2.8 Work distribution

Scrum roles

The distribution of work was even with slightly different responsibilities across the group.
As described in section 2.1.5 there are three roles in scrum; product owner, scrum master,

18

CHAPTER 3. METHOD

Figure 3.1: Scrum poker in progress. Voice call is started, issues are read out, and points
are assigned.

and development team. All roles were utilized by the group, but some adjustments had to
be made due to the small group size.

The roles were decided in the pre-project phase. The decision was made for the group
members to have static roles with no rotation of responsibilities. Rotating responsibilities
would allow each member to learn from multiple points of view and master different
responsibilities, but it would compromise the project as members would have to switch
responsibilities and specializations as roles changed. While the learning outcome of this
would be greater it would also make the group less efficient. The loss of efficiency was
deemed undesirable considering the nature of the project as a product to be delivered to a
stakeholder in a timely manner.

The development team for this project only had two members. As such, the traditional
role-distribution of scrum had to be circumvented somewhat to accommodate for the
small team size. Both members were considered to have the role of development team
members, while there was one dedicated scrum master and one dedicated product owner.
The distribution was done based on personal preference and perceived best fit of skills for
each role. The chosen scrum master was considered the most theoretically knowledgeable
and experienced, while the product owner was the member most comfortable with
stakeholder communication and backlog management.

Technical Responsibilites

The previous section discussed the work load purely in terms of the scrum framework. In
addition to the scrum roles there was a distribution of work on the technical
implementation side as well. This distribution was not planned from the outset, but
naturally evolved as the project developed.

19

CHAPTER 3. METHOD

3.2.9 Work scheduling

The scheduling throughout development was highly flexible to accommodate other
obligations of the development team. As both developers held employment during the
duration of the project, alterations were made to regular work weeks to ensure more
available time for work during weekends.

As can be seen in Appendix 8, the group determined a work week to be from Monday until
Sunday, with meetings every day except Saturdays being mandatory. The extended work
week allowed for great flexibility for the team members, as long working days tending to
other obligations did not hinder development. Any work that was missed during the week
days could be done during the weekend, consequently also avoiding developer burnout by
not forcing overly long days.

3.2.10 Issue Tracking System

For managing the issues, backlog, and sprints belonging to the project, a dedicated
system was needed. The system needed to be easy to use, easy to configure, and
preferably be without a paywall.

The development group chose Jira as their issue tracking system as shown in Figure 3.2.
Jira was provided by NTNU free of charge, and the Jira instance provided was managed by
university staff. As NTNU owned the Jira instance, it was deemed a safe place to store the
backlog and issues without any expense on behalf of the development team.

Figure 3.2: Sprint issue board used during development

3.2.11 Project Documentation System

Alongside the use of Jira (see section 3.2.10) Confluence was also used. Confluence
provides a repository for documents related to the project. Confluence also communicates
with Jira (they are both developed and maintained by Atlassian) allowing for features like
referencing Jira issues in Confluence documents, and generating documents in Confluence

20

CHAPTER 3. METHOD

based on data in Jira.

3.2.12 Milestone plan

Milestone plans were used to direct the development of the project, and to communicate
with the stakeholder. The stakeholder suggested a milestone plan that presented week by
week what the stakeholder expected to receive from the group. These milestones
included multiple reports, programming assets, and time put in for implementing the final
solution. The milestone plan was a tool both to communicate with the stakeholder and to
guide the group through the project.

3.2.13 Version Control and Git

Version control and Git were essential in keeping the development going smoothly and to
keep the project organized with different prototypes.

Gitflow and Changes to code

Gitflow (described in section 2.5.1) was used in the process of development. Every time a
new feature was being worked on, a branch was created related to that feature. The
feature branch would be updated with relevant commits until the the responsible
developer deemed it ready to become part of the develop branch.

After the branch was made ready, the responsible developer would create a pull request in
order to merge the branch into the develop branch. The repositories were set up in a way
so that review and approval from the other developer was required before the branch
could be merged. This was done to ensure code quality, ensure documentation and
readability, and to catch errors or bugs that the original developer might not have
discovered.

Repository organization

As it was decided early on that this project would require multiple prototypes and code
bases it was crucial to have a solid structure within a version control system.
Furthermore, the repositories would all need to be in the same place, preferably in a
location where they would not share space with other repositories in order to keep the
project separate from other projects.

The repo location chosen was GitHub, as it is the repository provider the group has the
most experience with. For such a small team, there were also no perceivable benefits in
using GitLab or other providers over GitHub for this particular project.

Initially the repositories were stored on the private accounts of the developers, but this
both gave a false impression of the streaming service being private projects, and it
obfuscated them among other repositories already existing in the personal spaces of the
developers.

To alleviate the problems of personal repositories the developers created a GitHub
organization. Organizations in GitHub have their own repository space with room for
multiple repositories. An organization named ”AutoStreams” was created and used for the
project. The organization is publicly accessible, and all repositories belonging to the
project are openly available as open source code. The organization and relationships of

21

CHAPTER 3. METHOD

Figure 3.3: Diagram showing the structure of repositories and their relationships. Dotted
arrows indicate the implementation of functionality from one repo into another

the repositories within the AutoStreams organization is illustrated in figure 3.3.

This way of organizing he repositories provides clear separations between the projects, a
key concern when both prototypes and final implementation need to be implemented,
tested, and uploaded to public Version Control.

3.2.14 Utility (util) Repositories

The use of util-repositories (one for prototypes and one for final implementation as
illustrated in Figure 3.3 eliminated some code-duplication by extracting shared
functionality into shared utility repositories. Additionally, keeping the utilities in a shared
repository instead of re-implementing them for every project made the utilities easy to
maintain. If a bug was discovered with a utility, the group could be certain that the fault
was in the one shared implementation and fix it only there. Had the utils been copied,
there would have been a slight chance of breaking alterations as the code is copied and
pasted. Additionally, if any fault was found with the utility code, it would need to be
changed multiple times across multiple implementations.

3.2.15 Prototyping

Prototyping and experimentation was a substantial part of the project. The need for this
prototyping arose from the lack of previous knowledge about the topic both from the side

22

CHAPTER 3. METHOD

of the student group and AutoStore. The prototyping phase narrowed down the selection
of available frameworks to only one that would eventually be used for the final
implementation.

Prototype 1: Kafka

The first prototype was implemented using Apache Kafka. Apache Kafka is a streaming
framework originally developed and released by LinkedIn in 2011 (Rao, 2011). Kafka
works on a publish/subscribe model, with all messages received by a Kafka broker
immediately transferred to all subscribed consumers.

The use of Kafka in this prototype was a result of the research performed before
development, and the findings presented in the research paper (see section 3.1.1 and
Appendix 1). This technology promised high throughput, stability, and good support both
from its community of developers and documentation.

Prototype 2: Pulsar

The second prototype was implemented using Apache Pulsar. Apache Pulsar was originally
developed by Yahoo, but was given to the Apache foundation in 2016 and subsequently
open-sourced Bartholomew, 2020. Pulsar, like Kafka, works on a publish-subscribe model,
pushing all messages to all subscribed consumers.

The implementation of Pulsar came as a result of the research performed before
development and the findings presented in the research paper (see section 3.1.1 and
Appendix 1). Pulsar promised high throughput, stability, and good support from
documentation but with a smaller community than Kafka as a result of being newer.

Prototype 3 Flink

The final prototype was planned to be based on Apache Flink in combination with either
Kafka or Pulsar. Flink is develop and maintained by Apache and was released in 2011
(Wikipedia, 2022).

As the requirements for the project became clear, this prototype was eventually scrapped.
Flink was initially chosen because of its good documentation, great security, and
compatability with other streaming frameworks, enabling extra features such as analytics.

As the project progressed it became clear however that no analytics would be required
from the solution. The Flink prototype was scrapped, enabling further testing and
prototyping of the other frameworks while also avoiding the implementation of features
unimportant to the stakeholder. The decision to drop such a feautre-rich framework
impacts the project from an open-source standpoint, as it will fit fewer use-cases than if it
were to include analytics as well.

The time initially intended to be spent on the Flink prototype was later spent on extra
testing of the remaining frameworks, as well as Azure implementation of the other
prototypes.

3.2.16 Testing

Testing was a large part of the development process. This is partially because the project
involved technologies previously unknown to both the students and stakeholder, and

23

CHAPTER 3. METHOD

because it was necessary to choose not only a functional framework, but the one that best
fit the use case. It was also determined that research alone would not be sufficient to
choose the best solution, and so practical testing was done in addition.

Testing for this project were large scale acceptance-tests and performance tests. For the
acceptance tests, the system was tested for fault-tolerance in various ways. This was
critical to test as the system contains multiple parts that can potentially fail, and because
the stakeholder had explicitly outlined the research of fault tolerance strategies as a key
goal of the project.

Test Setup

The tests were all performed with the same distributed setup. The setup consisted of two
computers and one virtual machine communicating together over the internet. One
computer would provide data (a producer component). The other would receive the data
(a consumer component) whith a broker managing the data between endpoints ran on the
virtual machine. All components ran in Docker for all tests.

As NTNU provided the virtual machine without public IPs, all system components needed
to be connected to the NTNU network to communicate. The virtual machine was by
default connected to the NTNU network. The computers achieved connection by using VPN
to connect to the NTNU network using their student identification. Figure 3.4 illustrates
the test setup as a whole.

Figure 3.4: Illustration of testing architecture.

Acceptance tests

The system was tested by forcing different parts of the system to fail. For each test, the
entire system was started and instructed to continuously process messages. Table 3.1
gives a brief overview of the acceptance tests and what they were intended to test for.

24

CHAPTER 3. METHOD

Test type Component Goal

Application
shutdown

Broker
Assess whether a broker will send all received data
even if it shuts down at an inopportune moment

Server
shutdown

Broker Server
Assess whether a broker will send all received data
even if its server shuts down at an inopportune mo-
ment

Disconnect
Broker Net-
work

Assess whether a broker will send all received data
even if it loses network connection at an inopportune
moment

Disconnect
Consumer
Network

Assess whether the system remains stable if the con-
sumer loses connection, and that the consumer can
continue from where it left off when reconnecting

Disconnect
Producer Net-
work

Assess whether the system remains stable if the pro-
ducer loses connection and that the producer can con-
tinue sending its data when reconnecting

Table 3.1: Table of acceptance tests and goals

Performance test

A performance test was planned and performed to decide which framework could offer the
highest throughput. This was done by using two computers, one from each group member,
and an OpenStack virtual machine provided by NTNU. The producer was ran on one
computer, the broker on the virtual machine, and the consumer on the second computer.
The producing computer then instructed production of either 20,000 or 40,000 messages
per second and sent these across the network to the consumer as fast as possible.

For both the producer and the consumer, special code was written to take measurements
from the performance test. On both the producer and consumer side, changes were made
to log every 100,000 messages sent to console and the time it took to send it, as well as
messages per second. This output were used as the results of the test.

Test Report

As part of the milestone plan between the group and AutoStore, a test report was
scheduled for delivery in week 15.

25

4 Results
This chapter presents the results of the project. Results have three categories; scientific,
engineering, and administrative.

Scientific results represent results that have no implementations but rather knowledge
and findings discovered through the research methods described in section 3.1. For
research to be considered a scientific result, it must be documented and made available
for others to learn from or use the results later.

Engineering results present the concrete results of the project in terms of products
created and code written. The software and all its related code are part of these results.
Engineering results also include documentation belonging to the software.

Administrative results relate directly to the group, their organization, and their use of
development methodologies. Adherence to development methodologies is also considered
an administrative result.

All results are presented alongside necessary documentation as the results are presented
and discussed. All documentation is available either as dependencies to this document or
in public repositories in the case of code. Upon submitting this paper, the development
team will provide the code as files in a folder to be submitted alongside this document.

4.1 Scientific Results

Throughout the project, two significant works of research were undertaken. The first was
the research of prototypes at the beginning of the project, and the second was the testing
at the end of the project.

A paper was produced after researching multiple frameworks. The research for this paper
took place over multiple weeks and the resulting paper covers six frameworks (previously
mentioned in Section 3.1.1) evaluated based on scalability, reliability, security, capacity,
ability to deliver real-time processing, and compatibility. In addition to documenting the
findings for the sake of the development team, the research paper also offers an overview
of multiple popular streaming frameworks. In addition to being a part of this document,
the research paper was handed over to AutoStore during week 3. This paper is available
as Appendix 1.

The testing also produced a document. This document details the tests performed by the
team, how they were performed, and under what circumstances. This document presents
the strengths and weaknesses of Kafka and Pulsar in terms of reliability and performance,
as both stability tests and performance tests are thoroughly documented. In addition to
being a part of this document, the paper describing the tests was handed over to
AutoStore during week 15. This paper is available as Appendix 2. The raw data from the
tests are provided with this document as Appendix 3.

The paper’s scientific results can serve others working with streaming frameworks in the
future, as the documents can be used as reference materials when trying to select the
most suitable framework for a use case. AutoStore in particular, as the stakeholder for
this project, can benefit from having these papers available if they should be interested in

26

CHAPTER 4. RESULTS

further developing the existing solution or trying out a different framework. The papers
are angled towards AutoStore’s use case, and the papers will therefore provide more
utility to them than to others.

4.2 Engineering Results

This section presents the engineering results that resulted from this project. Engineering
results include style-guides, prototypes, the final solution, and scripts for creating
clusters. Documentation for the final implementation is also included in this section.

4.2.1 Style Guide and Checkstyle

Using principles of SOLID design (see Section 2.10) and Clean Code (see Section 2.6) a
style guide for the code was developed and utilized by the team. Although not a direct
product of engineering, the style guide aided the group in creating maintainable, easily
understandable, and technically solid code by setting common standards for the code
written during the project.

Additionally, the team actively used Checkstyle configurations (see Section 3.2.2) to
ensure similarity in the code written to improve readability and maintainability. Therefore,
this Checkstyle configuration file is considered a minor engineering result of the project.

4.2.2 Prototypes

The prototypes produced during the projects are important results from this project. In
addition to providing grounds for learning and experimentation, the prototypes stand on
their own as functional solutions that can stream real-time data from endpoint to
endpoint. Two completed prototypes exist, a Kafka prototype and a Pulsar prototype.

The Kafka prototype was the first one developed and is also the least complete prototype.
Many of the core architectural decisions were made with this prototype. This prototype
consisted of four components, and these components would be created for all other
implementations as well. the four components are as follows:

Data Provider Java application component simulating the generation of data. Sends
data to the producer

Producer Java application component that receives data from a local (on the same
computer) agent, and sends it to a broker

Broker component provided by the framework-developers that manages the messages
on their way from the producer to the consumer

Consumer Java application component. Endpoint for the data. Receives data from the
broker. Implemented using a master-slave pattern where one master consumer
creates multiple consumer workers

These components and their implementation are further described in Appendix 6.

The prototype has a Java implementation, Docker files, and a Docker Compose file making
it possible to run the solution as jars or Docker containers depending on use-case and
desire.

27

CHAPTER 4. RESULTS

Development started on the Pulsar prototype after the Kafka prototype was finished. The
Pulsar prototype is slightly different because the APIs for Kafka and Pulsar are different.
However, the architecture remains the same, with one data provider simulating data, a
producer receiving the data and passing it to a broker before a consumer receives the
data from said broker. This prototype also provides Java code, Docker files, and a Docker
Compose file enabling multiple ways of running the system.

Both prototypes have been made publicly available in their respective Git repositories. This
code may be of use to other developers trying to implement real-time streaming services,
as both prototypes provide functional examples of such systems with simulated data.

4.2.3 Final streaming solution

The final streaming implementation stands as the main engineering result of the project.
The solution with its three parts, producer, broker, and consumer, provides a usable
system for streaming data across the internet at high speeds with high reliability.

The system offers connectivity for the transmission of data through the Producer. The
producer will listen to a configurable port on the local network and relay the data it
receives to the broker. The broker will re-send the data to the consumer and the
consumer will display said data.

The solution has been tested (see Section 4.1) and proven to work both locally and as a
distributed system and when ran locally on only one computer.

4.2.4 Cluster Implementation

As the group successfully finished the producer and consumer components, work started
on implementing a cluster version of the broker. Moving the broker to a cluster solution
was deemed necessary as a cluster would enable horizontal scaling. The ability to scale
horizontally with ease is essential for a growing company like the stakeholder of this
project.

Work was started on the cluster implementation but was left in an incomplete state. The
incomplete state is a result of difficulty during the deployment of the cluster. Despite this,
two scripts were created to install and run a Pulsar broker cluster. First, the installation
script downloads the required Pulsar files. Then, it replaces the configuration files with
files written by the development team to allow a cluster to run on the computer executing
the script. The run script then starts the cluster with the appropriate configurations.
Running these scripts will install and run a cluster. The cluster will accept connections, but
the cluster will start failing as soon as connections are received.

4.2.5 Documentation

The developed solutions have been thoroughly documented. Documentation for the
solution exists both as a standalone document, and as documentation in the public GitHub
repositories of the project. Javadoc based on comments in code is also avaialable.

The standalon documentation is provided alongside this document as Appendix 6 6.2.6.
This document describes project architecture, installation, execution, and configuration in
detail.

Additionally, there was a great deal of commenting in the code. This was done to ensure

28

CHAPTER 4. RESULTS

Figure 4.1: Screenshot of readme belonging to the consumer component

the code could be maintained and develop further by other developers than just the team
for this project.

Additionally, all projects have comprehensive readme files available in the public GitHub
repositories. The readme files do not go in to as much detail as the document, but provide
instructions on how to install and run each component of the system (see 4.1).

Requirement documentation, detailing requirements in terms of user stories domain
models, and class diagrams, was produced as part of the project. Appendix 7 presents
this requirement documentation.

4.3 Administrative Results

4.3.1 Implementation of Scrum

Scrum was successfully implemented into the development process, although with slight
changes compared to the initial plan.

Sprints were all one week long, with 16 sprints for 16 weeks. In addition, the team
performed the agreed-upon Sprint retrospectives, Reviews, and Plannings (see Section
2.1.4) every week. The sprint retrospectives were used to identify how the team worked
together, reviews to show off work between team members, and planning each week to

29

CHAPTER 4. RESULTS

pick the most critical tasks.

Documentation exists for the Retrospectives and Reviews in the system manual. Every
week has a document for its retrospective, but weeks 11, 12, and 13 are missing review
documents. It is unknown why these documents are missing, as they were all written
collaboratively and stored in Jira. The team may have possibly failed to click ”Publish”
after finishing writing the documents, thus losing them upon closing the browser.

Documentation for every week in the form of screenshots also exists. In addition, the
team decided to present burndown charts, and velocity charts showing a timeline of issues
and story points. Do note that some burndown charts show too large periods because
they have later been re-opened and closed to double-check related issues, moving the
closed date. Burndown charts for each week are available in the project manual.

4.3.2 Roles and Responsibilities

As mentioned in Section 3.2.8, the group had a scrum master and a product owner based
on personal skills. There were also technical roles related to the four components of the
system described in section 4.2.2. These roles came naturally as work was distributed,
with each team-member specializing in one or more component of the system, with the
broker being a shared responsibility. Tomas Klungerbo Olsen served as the scrum master,
while Lars Ivar Ramberg was the product owner with both members being considered part
of the development team (see section 2.1.5). Table 4.1 gives an overview of the scrum
responsibilities, while table 4.2 gives an overview of the technical responsibilities.

Role Assignee Description

Scrum master
Tomas Klungerbo
Olsen

Responsible for ensuring scrum is followed, and
handling blocking tasks. Helps product owner
manage the backlog

Product
owner

Lars Ivar Ramberg
Responsible for backlog management and com-
munication with stakeholder

Table 4.1: Overview of assigned scrum roles

Component Assignee Description
Data provider Tomas Klungerbo Olsen Implementation and documentation
Producer Tomas Klungerbo Olsen Implementation and documentation

Broker
Tomas Klungerbo Olsen,
Lars Ivar Ramberg

Configuration and documentation

Consumer Lars Ivar Ramberg Implementation and Documentation

Table 4.2: Overview of technical responsibilities

4.3.3 Milestone plans

Two milestone plans were used during development to guide the team, and to
communicate with the stakeholder what they could expect each week.

30

CHAPTER 4. RESULTS

The first milestone plan laid out milestones for every week of the project. This milestone
plan is the one described in the pre-project plan (Appendix 5). A second and final
milestone plan was produced later in development after development of the first two
prototypes (see Section 3.2.15) had concluded.

4.3.4 Final streaming solution

The final streaming implementation stands as the main engineering result of the project.
The solution with its three parts, producer, broker, and consumer, provides a usable
system for streaming data across the internet at high speeds with high reliability.

The system offers connectivity for the transmission of data through the Producer. The
producer will listen to a configurable port on the local network and relay the data it
receives to the broker. The broker will re-send the data to the consumer and the
consumer will display said data.

The solution has been tested (see Section 4.1) and proven to work both locally and as a
distributed system and when ran locally on only one computer.

31

5 Discussion
This chapter discusses the results presented in Chapter 4. The chapter explores the
results in light of the requirements in order to evaluate whether the result satisfies the
requirements and expectations from the stakeholder. The process and methodologies
used are also discussed to narrow down what were the strengths and weaknesses of the
chosen methodologies. Both strong and weak aspects are discussed in order to have a
realistic discussion about the results, and to provide guidance to future developers of
similar solutions.

5.1 Scientific discussion

The scientific results and work were done with great success, but with room for more work
to be done. The scientific results, as presented in Chapter 4.1 provided a good amount of
information on their given subjects and satisfied the requirements from the stakeholder,
even if more could still be done.

5.1.1 Framework Research

The framework research was thorough and detailed, which led the development team to
make good choices regarding technology choice. In addition to improving the quality of
the end-product as a result of informed choices, the document created also conveys the
information gained during the research phase in a way that could be re-used by other
developers in the future.

Research and Documentation

The research and documentation could be as thorough as it was due to good planning at
the start of the project. In the original milestone plan (see Appendix 6) two whole weeks
were set aside to undertake this research and the group used these weeks almost
exclusively for that purpose. The combination of good planning and the stakeholders view
of research as valuable allowed the development team to conduct large amount of
research and document their results thoroughly.

The research of the framework could have been improved with even more time to look
into more frameworks. The research paper only covers six out of the many frameworks
available and it is possible that other frameworks could also have fit the use case. Due to
not being aware of their existence, the group did not look into any of the streaming
services provided natively in Azure as a service. As the stakeholder explicitly wanted the
solution to be Azure compatible, this would have been a helpful thing to investigate. The
Azure services remained un-investigated as the group were not aware of their existence
until Azure-testing started late in development.

5.1.2 Testing and Documentation of Testing

The testing performed was extensive and valuable, but with additional room for more
exploration, mainly in terms of the Performance tests performed.

32

CHAPTER 5. DISCUSSION

Stability tests

The stability tests were the most successful part of the testing. The tests managed to
confirm that the implemented software modules could manage failures as long as their
machines did not go down as well. The instability of the broker upon server shutdown
(See section 4.1) was an important discovery made during testing as well.

Performance tests

The performance testing also provided useful information, but could have been expanded
and tested system performance in other meaningful ways. An example would be to test
the system for capacity to horizontally scale. The current performance test (see section
3.2.16) test the systems ability to handle large loads of data. While testing handling of
high data loads is important and gives an indicator of what might happen with multiple
connections to a broker, it does not guarantee that the broker will handle multiple
simultaneous connections. What was tested was one connection sending hundreds of
thousands of messages, what should also have been tested is thousands of connections
with a moderate amounts of messages each.

Additionally, the tests should have been performed in a more accurate way in terms of
repeatability. The data sent during tests were randomly generated strings as that did not
have guarantees in terms of length and size. The strings did have a pre-defined range of
lengths, but there was no guarantee that the thousands of messages sent during one test
would equal the messages of another in terms of size and complexity. This was alleviated
somewhat by the afore-mentioned range of lengths, but to make the tests more equal it
would be better to send the copies of the same data many times.

5.2 Engineering Results

The engineering results largely satisfy the requirements posed by the stakeholder. The
developed solution can send data over the internet reliably, with good capacity, and from
anywhere in the world. However, there are still important features left to be implemented
before the solution can be used in the real world.

5.2.1 Streaming and Communication of Data

The streaming aspect of the solution is functional and in adherence to the original
assignment from the stakeholder. Data is sent, from geographically distributed
computers, and is received in correct order. This aspect was worked on right from the
start of the project and has therefore had more development time than any other feature
which is likely partially why this feature works reliably and in the way it was intended. The
contribution of the streaming framework used for the final solution also helped get the
streaming completed, as the streaming was easy to implement using already existing
APIs. Strong documentation on the behalf of Apache helped the group quickly use the
provided APIs to implement the streaming capabilities.

5.2.2 Security

Security was a requirement not directly requested by the stakeholder but deemed very
important by the group as the system would be used to send confidential data related to
the installations belonging to AutoStore customers. If parties with bad intentions were to

33

CHAPTER 5. DISCUSSION

get a hold of this data, they could learn about the inner workings of the AutoStore system
which could compromise AutoStores position as their solutions could then be easily copied.

The group attempted to enable the TLS features of the Pulsar framework used for the final
solution, but the implementation was unsuccessful. The implementation was attempted
using official documentation and by asking for help from fellow students with more
experience in the are than the development team. All attempts eventually ended in the
broker refusing to accept connection from both the consumer and producer.

There are many possible reasons as to why this failed. The TLS scheme supported by the
Pulsar framework uses an asymmetric-key encryption scheme (see section 2.9) so it is
possible that the keys were improperly configured on each attempt. Enabling TLS in
Pulsar requires a great deal of configuration on the broker, so it is also possible that the
configuration of the broker was improperly done by the group.

It is also worthy of note that none of the members of the development team have
extensive experience with security. The concepts have been introduced and explained in
courses related to networking and mathematics, but neither member has attempted to
implement security and encryption in a way similar to the one required by Pulsar. This lack
of knowledge should have been recognized by the team earlier, so that more time could
have been set aside for implementation and work on the feature could have started earlier.

5.2.3 Implementation of Broker as a Cluster

To maximize the support of horizontal scaling, the broker should be implemented as a
scalable cluster that can have more resources added to it as the system requirements
expand with more producers connected to the same broker. Work was started on this, but
was unsuccessful, despite having produced two scripts that install the required files to run
a cluster locally on a computer.

The complexity of clusters was a large contributing factor to why this was not finished. It
was also not set as a requirement by the group nor the stakeholder, but it was a desired
feature by the development team. The idea was to start by creating a local cluster on a
local machine, before distributing the cluster among multiple machines. This would allow
machines for different regions to manage connections from multiple regions. This
clustering was eventually dropped as the development team failed to make satisfying
progress and the stakeholder did not require it, allowing focus on features requested by
the stakeholder.

5.2.4 Documentation

The produced documentation is thorough, comprehensive, and in the case of the public
repositories freely available to the public. Ensuring good documentation is publicly
available is essential for the solution to be used and develop further by other developers.
Seeing as the solution is still missing some features, it is extra important that sufficient
documentation is produced so that the missing features may be added in the future.

The thoroughness on documentation is a result of a focused effort from the group. The
trade-off from this focus is that time that could have been used to develop the solution
further was used on documenting the work. Documentation and development must be
balanced, as insufficient documentation will make development more difficult.

Documentation was also helped a great deal by the continuous integration job (see Section

34

CHAPTER 5. DISCUSSION

3.2.3) automatically generating Javadoc based on the comments present in the code.

Overall the existing documentation should be sufficient both for users looking to download
and run the solutions, and for developers who want to develop the solution further.

5.3 Administrative discussion

Administrative results from this project were overall satisfying, although important lessons
were learned regarding planning for and managing a small team. The use of scrum and
their regular meetings provided a stable framework for collaboration, but the plans made
by the team could in hindsight have been made more efficient.

5.3.1 Implementation of Scrum

The implementation of Scrum was largely successful. The team had regular meetings
throughout the process to ensure that both members knew what the other member was
working on, all important decisions were documented in meeting notes, and the team
members managed to keep communication flowing within the group. Some adjustments
had to be made with regards to the meeting schedule to accommodate for other
obligations of the team members without jeopardizing the project and its development.

Meetings and Meeting Frequency

The meetings had added importance to the group as the group was organized as a
distributed team (see Section 3.2.6). The geographical separation inherent to distributed
teams necessitates some form of mechanism or scheme to encourage communication
between the team as they cannot meet physically and are thus not able to meet in person
to discuss and work together.

The meeting frequency and times were altered from what was originally planned as
development progressed. The stand-up meetings saw the biggest change in that some of
them were omitted in the month of March. During the calendar weeks of 10, 11, and 12
only one stand up meeting was held as opposed to the scheduled six. The primary reason
for this was that the group members were busy with obligations in another course and
decided to focus on that course in the month of March. The shift of focus led to little work
being done during these weeks, which also eliminated the need for daily stand up
meetings. The group members also worked together on the other course which meant the
group still communicated and could discuss the project if needed. After the course
terminated, stand ups were quickly reintroduced as a valuable tool to keep communication
flowing during active development.

Sprint retrospectives, reviews, and plannings (see Section 2.1.4) were performed at
planned frequency, but varied in terms of what day they were performed. The rule of
thumb was to perform these meetings on Sundays as that was considered the end of the
work week, but sometimes the meetings would be moved to Mondays to give a bit more
time to work on issues. On rare occasions, the meetings would take place later in the
week as well if the team members had other obligations they needed to attend to at the
beginning of the week that would prevent progress from being made. This flexibility
ensured that the meetings would always take place and this was crucial both for the team
to evaluate their product during review and their process during retrospective, as well as
thoroughly plan for the upcoming sprint during planning. Flexibility was used to the teams

35

CHAPTER 5. DISCUSSION

advantage to ensure all core scrum meeting activities were performed.

5.3.2 Milestones

As development progressed, the milestones needed adjustments. There were two main
reasons for this: the original milestone plan did not account for work in other courses, and
it did not account for illness or delays. Other academic obligations pushed the project
back slightly, and illness in the development group meant development capacity got
halved for a week.

About half-way through development, the milestone plan was revised. Due to delays
related to illness and work in other courses, the development time for the third prototype
was cut down to one week. The revised plan is available in Appendix 9.

Despite the revision, the development would deviate from the plan shortly after. As
described in Section 3.2.15, it became apparent that the three planned prototypes would
be reduced to only two as the third framework was deemed unfit for the use case. It
became apparent that Flink could not offer any functionality to target the project
requirements (see section 1.3) that the other frameworks could not already offer. It was
then agreed upon verbally during a meeting with the stakeholder that this prototype
would be scrapped, and the entire plan would be moved ahead by one week (week 15’s
milestone would become week 14, and so on). The week that was going to be used for
developing the Flink prototype was instead set aside for testing and implementation in
Azure, expanding the time slot from two weeks to three weeks.

36

6 Conclusion
This chapter presents conclusions and suggestions for further work based on the results
presented in Chapter 4 and the discussions of Chapter 5. Conclusions are formed based
on the requirements compared to the achieved results.

6.1 Conclusions

Conclusions can be drawn form engineering, scientific, and administrative results of this
project.

Comparing with the requirements outlined in section 1.3, the project meets the
requirements set by the stakeholder, but is lacking in the requirements enforced by the
group. The system is performant, reliable, fault tolerant, and cloud compatible, meeting
all stakeholder requirements. From the groups requirements, the solution is scalable, but
not secure in any way. Neither encryption nor authentication has been implemented,
which was deemed a requirement by the group. As previously expressed in section 5.2.2,
this must be implemented before the solution is used by a business or the stakeholder.

The scientific results provide a great amount of researched knowledge, and exceeded the
groups initial expectations in terms of scope and results. However, the results should
prove useful to future developers, even if there is room to do more research on different
streaming frameworks and other types of tests to perform.

Finally for administrative conclusions, there were many correct steps taken and some
miss-steps. The flexibility within the group was hugely helpful in ensuring that
development of this project would not be haltered by other obligations, but this was of
course helped by the fact that the group was very small with only two members. Still,
based on how the administration of this project turned out, the flexibility seems to be a
good approach for small distributed development teams.

Based on the velocity charts and work estimates the estimation of points using planning
poker should be done differently than what was done for this project. Point estimates
should be more pessimistic than what was done by the group, especially when a team is
working with new technologies or developing a type of product they have little experience
with.

6.2 Further work

The following sections cover features that were not implemented with suggestions to
improve the product beyond its current state.

6.2.1 Authentication

Verifying access rights to resources is necessary for a system to be secure, as, without it,
anyone can access or manipulate them. As authentication was not a part of the agreement
between AutoStore and the development team, it has been left out of the current solution.

Pulsar offers documentation and a tutorial on implementing authentication for a producer,

37

CHAPTER 6. CONCLUSION

broker, and consumer on their official website. The development team would have
prioritized authentication if they were to continue beyond the final delivery.

6.2.2 Encryption

Encrypting the data is highly encouraged to send data securely between end devices. The
product does not currently support encryption in its current state. The development team
attempted different tutorials and documentation despite being unsuccessful.

Further reading of Pulsar’s documentation on message encryption for transportation
should be done so the product can send secure messages over the network. The
development team would have prioritized encryption along with authentication (see
section 6.2.1) if they were to develop the solution further.

6.2.3 Pulsar property limitations

Pulsar offers a wide variety of different properties that can be configured. The
combination of these properties dictates the behavior of the system. The Java client API
specifies these properties through Java objects, making it difficult to load the
configuration from a file into the system directly. The current solution reads the properties
from a configuration file and converts them to the correct Java object representation.

The development team only converted properties strictly needed for the requested
product, making the solution less flexible. Additional property conversion should be
implemented to support a broader range of configurations.

6.2.4 Cloud cluster solution

The current version of the project uses the standalone broker solution provided by Pulsar.
This solution is not recommended for a system with high growth as it will reach limits in
the future. A multi-cluster or a cluster of brokers with their zookeepers and bookkeepers
are the recommended solutions as they enable more reliance and throughput. Clusters
also open the possibility of brokers scattered around geographical locations allowing
quicker access from an installation (producer) to the cloud server (broker). In addition,
geographical scattering allows installations to contact other cloud servers when their
central cloud server has unexpectedly or expectedly disconnected.

Although the stakeholder did not desire the feature, more in-depth reading of Pulsar’s
documentation and tutorials to enable clustering would be an interesting feature to
implement since achieving clusters for the product would accommodate systems needing
massive scaling and geographical scattering.

6.2.5 Infrastructure as code

Defining a virtual machine’s resource allocation and configuration through code can have
multiple benefits. A resource defined as code can easily be created and deleted upon
request, and the infrastructure code can be shared to create duplicates efficiently. The
flexibility of this reproduction through code also makes it easier to test the system with
automated tools during a continuous integration phase(Morris, 2021)

The team intended to use Terraform to configure their cloud resources. Upon further
development, the team would have investigated resource creation and configuration

38

CHAPTER 6. CONCLUSION

through code with tools like Terraform and Ansible so that the system would be more
accomodating to change, testing, and reusability.

6.2.6 Unit testing

Testing code in a program can improve the overall quality of the software. One branch of
such testing is unit testing which operates and validates code units. Unit tests are robust
when combined with continuous integration as it allows for automated testing of code
units during changes to the software.

The development team discussed implementing unit tests for the solution on multiple
occasions but decided not to due to the nature of the program being a network application
with a producer and a consumer. Integration-testing of the whole system would therefore
be more beneficial than unit-testing. This decision was further reinforced as there was an
extensive testing phase of the solutions during the development providing
integration-testing for both components. However, for future development, the
development team would set aside more time to find code that qualifies for unit testing
and implement the corresponding tests.

39

Social impact
The project was made open source and freely available to everyone by using MIT
licensing. This licensing enables anyone to use, distribute, and even develop commercial
software using the solutions from this project (Initiative, 2022). This is a contribution to
the overall open-source community, as the group freely provides example code and
documentation for other developers to use and learn from. This access requires no
payment, enrollment in programs, or titles, thus helping democratize development across
socio-economic backgrounds.

In addition to the solution itself, the choice of stakeholder and assignment is important
from a societal and ecological standpoint. Choosing a stakeholder that pollutes and acts in
ethically questionable manners would make the developers complicit and accepting of
their actions. AutoStore provides a green solution running on electricity, a potentially
green and environmentally friendly energy-source.

This project relates to the field of automation in two ways. Firstly, AutoStore as a
company offers an automation solution for warehouses that seeks to replace work done by
human hands with robot substitutes. Secondly, the streaming project is part of
automating the consumption, use, and data within AutoStore. Both these automation
cases have their upsides and downsides.

For the warehouse workers, many will be saved from injury and strain as jobs involving
heavy lifting will be done by robots. At the same time, this could lead to
warehouse-workers losing their jobs to the automated solutions. AutoStore systems still
need humans to interact with them. Maintaining the robots and interacting with the ports
to receive merchandise must still be done manually, which might mitigate this downside.

AutoStore and other automated warehouse solutions might have a greater negative
impact in developing countries. If an international company wants to put a warehouse in
such a country, they will need to hire workers to operate the warehouse. Warehouse
workers typically do not require education and these jobs can provide income for families
that may otherwise not have any other way to earn a living. Taking these low-skill jobs
away could impact families that would otherwise depend on them.

Many of the same upside and downsides also apply from the perspective of automating
data use. Manual tasks of data analysis will be eliminated with the automation of such
tasks. While the risk of human error will be eliminated, it will also eliminate certain roles
related to data analysis as more of it is handled by software.

40

References
Adam, John (2022). Agile software development with the Scrum framework. URL:

https://kruschecompany.com/agile-software-development-with-scrum-framework/ (visited on
18th May 2022).

Atlassian (2022). What is version control? URL:
https://www.atlassian.com/git/tutorials/what-is-version-control (visited on 23rd Apr. 2022).

Bartholomew, Chris (2020). DataStax What is Apache Pulsar? URL:
https://blog.linkedin.com/2011/01/11/open-source-linkedin-kafka (visited on 22nd Apr. 2022).

Chen, James (2021). Encryption. URL: https://www.investopedia.com/terms/e/encryption.asp
(visited on 15th May 2022).

Compliance, Business Audit (2018). Planning Poker – Agile Estimation Technique. URL:
https://auditandcompliance.wordpress.com/2018/12/31/planning-poker-agile-estimation-technique/
(visited on 18th May 2022).

Coursera (2022). URL: https://www.coursera.org/articles/scrum-roles-and-responsibilities (visited on
23rd Apr. 2022).

Docker (2022). URL: https://www.docker.com/resources/what-container/ (visited on 19th May
2022).

Doshi, Hiren (2022). How Do the 3 Scrum Roles Promote Self-Organization? URL:
https://www.scrum.org/resources/blog/how-do-3-scrum-roles-promote-self-organization (visited on
18th May 2022).

Driessen, Vincent (2010). A successful Git branching model. URL:
https://nvie.com/posts/a-successful-git-branching-model/ (visited on 20th Apr. 2022).

Fowler, Frederik M. (2019). ‘The Scrum Development Team’. In: Navigating Hybrid Scrum
Environments: Understanding the Essentials, Avoiding the Pitfalls. Berkeley, CA:
Apress, pp. 39–45. ISBN: 978-1-4842-4164-6. DOI: 10.1007/978-1-4842-4164-6_6. URL:
https://doi.org/10.1007/978-1-4842-4164-6_6.

Gillis, Alexander S. (2021). URL:
https://www.techtarget.com/searchitoperations/definition/Docker-image (visited on 19th May
2022).

Hoffman, David (1993). What Is The Cloud. URL:
https://ghostarchive.org/varchive/_a7hK6kWttE (visited on 30th Apr. 2022).

Initiative, Open Source (2022). The MIT License. URL: https://opensource.org/licenses/MIT
(visited on 19th May 2022).

Martin, Robert Cecil (2009). Clean code. A Handbook of Agile Software Craftsmanship.
Pearson Education.

McCarty, Scott (2018). URL:
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction#
(visited on 19th May 2022).

Morris, Kief (2021). ‘What Is Infrastructure as Code?’ In: Infrastructure as code: Dynamic
Systems for the cloud age. 2nd ed. O’Reilly Media, Inc., pp. 9–11.

Oloruntoba, Samuel (2021). SOLID: The First 5 Principles of Object Oriented Design. URL:
https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-
object-oriented-design (visited on 15th May 2022).

Paradigm, Visual (2022). What is User Story? URL:
https://www.visual-paradigm.com/guide/agile-software-development/what-is-user-story/ (visited on
14th May 2022).

41

https://kruschecompany.com/agile-software-development-with-scrum-framework/
https://www.atlassian.com/git/tutorials/what-is-version-control
https://blog.linkedin.com/2011/01/11/open-source-linkedin-kafka
https://www.investopedia.com/terms/e/encryption.asp
https://auditandcompliance.wordpress.com/2018/12/31/planning-poker-agile-estimation-technique/
https://www.coursera.org/articles/scrum-roles-and-responsibilities
https://www.docker.com/resources/what-container/
https://www.scrum.org/resources/blog/how-do-3-scrum-roles-promote-self-organization
https://nvie.com/posts/a-successful-git-branching-model/
https://doi.org/10.1007/978-1-4842-4164-6_6
https://doi.org/10.1007/978-1-4842-4164-6_6
https://www.techtarget.com/searchitoperations/definition/Docker-image
https://ghostarchive.org/varchive/_a7hK6kWttE
https://opensource.org/licenses/MIT
https://developers.redhat.com/blog/2018/02/22/container-terminology-practical-introduction#
https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://www.visual-paradigm.com/guide/agile-software-development/what-is-user-story/

REFERENCES

Radigan, Dan (2022). Story points and estimation. URL:
https://www.atlassian.com/agile/project-management/estimation (visited on 22nd Apr. 2022).

Rajitha, Charith (2021). URL: https://medium.com/@rajithacharith/asymmetric-encryption-and-
signing-with-keytool-openssl-a014b2ddf01a (visited on 19th May 2022).

Rao, Juan (2011). LinkedIn Official Blog Open-sourcing Kafka, LinkedIn’s distributed
message queue. URL: https://blog.linkedin.com/2011/01/11/open-source-linkedin-kafka (visited
on 22nd Apr. 2022).

Rehkopf, Max (2022a). User stories with examples and a template. URL:
https://www.atlassian.com/agile/project-management/user-stories (visited on 30th Apr. 2022).

Schwaber, Ken and Jeff Sutherland (2020). The 2020 Scrum Guide. URL:
https://scrumguides.org/scrum-guide.html (visited on 20th Apr. 2022).

Termenji, Artur (2021). What is Pair Programming and How to Practice it in a Remote
Team. URL: https://railsware.com/blog/what-is-pair-programming/ (visited on 18th May 2022).

TKSL (2020). AutoStore Develops Router Software, Improving Throughput by 4 Times.
URL: https://www.tksl.co.jp/en/information/2020/1029/000146.html (visited on 18th May 2022).

Watts, Stephen (2020). The Importance of SOLID Design Principles. URL:
https://www.bmc.com/blogs/solid-design-principles/ (visited on 15th May 2022).

Weaveworks (2020). Docker vs Virtual Machines (VMs) : A Practical Guide to Docker
Containers and VMs. URL:
https://www.weave.works/blog/a-practical-guide-to-choosing-between-docker-containers-and-vms
(visited on 18th May 2022).

West, Dave (2022). Scrum roles and the truth about job titles in scrum. URL:
https://www.atlassian.com/agile/scrum/roles (visited on 22nd Apr. 2022).

Wikipedia (2022). Apache Kafka. URL: https://en.wikipedia.org/wiki/Apache_Flink (visited on
19th May 2022).

Williams, L. (2001). ‘Integrating pair programming into a software development process’.
In: Proceedings 14th Conference on Software Engineering Education and Training. ’In
search of a software engineering profession’ (Cat. No.PR01059), pp. 27–36. DOI:
10.1109/CSEE.2001.913816.

42

https://www.atlassian.com/agile/project-management/estimation
https://medium.com/@rajithacharith/asymmetric-encryption-and-signing-with-keytool-openssl-a014b2ddf01a
https://medium.com/@rajithacharith/asymmetric-encryption-and-signing-with-keytool-openssl-a014b2ddf01a
https://blog.linkedin.com/2011/01/11/open-source-linkedin-kafka
https://www.atlassian.com/agile/project-management/user-stories
https://scrumguides.org/scrum-guide.html
https://railsware.com/blog/what-is-pair-programming/
https://www.tksl.co.jp/en/information/2020/1029/000146.html
https://www.bmc.com/blogs/solid-design-principles/
https://www.weave.works/blog/a-practical-guide-to-choosing-between-docker-containers-and-vms
https://www.atlassian.com/agile/scrum/roles
https://en.wikipedia.org/wiki/Apache_Flink
https://doi.org/10.1109/CSEE.2001.913816

Appendices
Appendix 1: Research: Streaming Frameworks

Appendix 2: Prototype Testing documentation

Appendix 3: Data from testing

Appendix 4: AutoStreams’ style guide

Appendix 5: Pre-Project Plan

Appendix 6: System documentation

Appendix 7: Requirements documentation

Appendix 8: Internal Work Contract, Development Team

43

Appendix 1: Research Streaming Frameworks

44

Research: Streaming Frameworks, best fit

for AutoStore use-case
Norwegian Institute of Science and Technology 2022

on behalf of AutoStore AS

Authors: Tomas Klungerbo Olsen, Lars Ivar Ramberg

45

Research: Streaming Frameworks 1

Background and purpose 2
User Needs and Key Considerations 2

Streaming data, the theory 4

Frameworks 5
Apache Kafka 6

Overview 6
Security 7
API 7
Conclusion 8

Apache Pulsar 9
Overview 9
Security 10
API 10
Conclusion 10

RabbitMQ 11
Overview 11
Conclusion 12

Apache Spark (Spark Streaming) 13
Overview 13
Security 14
API 14
Conclusion 14

Apache Storm 15
Overview 15
API 16
Security 16
Conclusion 16

Apache Flink 17
Overview 17
Security 17
API 18
Conclusion 18

Selection for Prototyping 19
Prototype 1, Kafka (barebone prototype) 19
Prototype 2, Pulsar (barebone prototype) 19
Prototype 3, Kafka or Pulsar + Flink (stack prototype) 20

References 21

Bibliography 22

46

Research: Streaming Frameworks 2

Background and purpose

This paper represents the first hand-in to be provided to AutoStore AS as part of the Bachelor

Project “Strømmetjenste for Data” at NTNU, 2022. The student group and AutoStore have

agreed on a set of milestones and deliverables to be presented during the project, this paper is

the first of said deliverables.

This paper presents what the group has learned regarding the needs of AutoStore as a

stakeholder and streaming services, both in terms of theoretical details and available

frameworks. The stake-holder needs and theory are presented first, before the relevant

streaming frameworks are discussed. In addition to presenting the frameworks, this paper also

offers an evaluation of each framework, providing an overview of which frameworks will be

relevant for the prototyping and possibly implementation stage of the project.

User Needs and Key Considerations

The use-case of AutoStore is unique and challenging. AutoStore is a global company, with

hundreds of installations across the globe that generate large amounts of data every moment

of the day. Up until now the data from the AutoStore sites have been accumulated over a set

period (usually a day) before all the data from said day has been made available the

subsequent day. The data is then processed as AutoStore receives the data, in batches of one

day. It is desirable to see data and events from AutoStore sites as they happen, thus enabling

swift action based on information from the system.

The key objective of this project is to move away from the batch processing by sending the

data the moment it is generated as opposed to in one great batch the next day. This

assignment focuses fully on the sending of the data, as the processing is already being

handled internally by AutoStore. Figure 1 illustrates this separation and gives an overview of

the data flow from an AutoStore system to an end-user/consumer of the data.

47

Research: Streaming Frameworks 3

Based on the information presented above, the following key considerations have been

identified:

● Scalability, as AutoStore is growing
● Reliability, as we want reliable data
● Security, as data directly connected to AutoStore assets will be sent
● Real-Time or Close to real-time timeframe, as the data should enable swift action
● Ease of installation and use
● Compatibility, yet generalization (needs to be compatible with AutoStore, but general

enough to be used elsewhere)
● High speed and capacity due to large amounts of data

Figure 1: Illustration of data transport from AutoStore to end user. Yellow boxes represent
areas covered by the project.

48

Research: Streaming Frameworks 4

Streaming data, the theory

When streaming data, as opposed to just storing it, the goal is that a user can connect to a

channel, stream, or similar, and either receive data real time, or receive parts of data as

needed as opposed to downloading all the data and selecting the desired parts. Consider the

streaming of video, for example. The user does not have to download a full video before they

start watching it, they can watch it in parts as the data of the video reaches their device. They

can also select which parts of the video they are interested in, thereby avoiding the sending

undesired or uninteresting data to the user.

In this project, the focus will primarily be on the real-time aspect of streaming. This is

because the use-case of AutoStore requires this real-time streaming more than streaming of

stored data, although both of these functionalities are feasible.

It is assumed that the data being streamed will always be one way. The user will always be

receiving data, but not altering or sending data back, at least not in the exact same channel as

the streamed data. This means that the data-stream, no matter how many intermediaries there

are, will be a Directed Acyclic Graph , meaning that there are no loops in the datastream, and

ultimately data is always moving from the source towards the end node.

Figure 2: Directed Acyclic Graph, https://en.wikipedia.org/wiki/Directed_acyclic_graph

49

Research: Streaming Frameworks 5

Frameworks

In the following sections, different frameworks and technologies for streaming are presented.

The frameworks are analyzed and evaluated in regards to the key considerations presented in

section “User Needs and Key Considerations”.

Framework Developer/Maintainer Open Source?

Apache Kafka Apache Software
Foundation

Yes

Apache Pulsar Apache Software
Foundation

Yes

RabbitMQ Pivotal Software (now part
of VMware)

Yes

Apache Spark Apache Software
Foundation

Yes

Apache Storm Apache Software
Foundation

Yes

Apache Flink Apache Software
Foundation

Yes

50

Research: Streaming Frameworks 6

Apache Kafka

“Apache Kafka is an open-source distributed event streaming platform used by thousands of

companies for high-performance data pipelines, streaming analytics, data integration, and

mission-critical applications.”

- https://kafka.apache.org/

Overview

Apache Kafka serves as an intermediary between producers and consumers, resulting in the

decoupling of data streams and services. Kafka focuses on storing events instead of the

traditional database way of storing “things.” These events are stored in topics which

essentially are lists of events with some state associated with them. These topics use

redundancy in the form of data replication to mitigate data loss. Topics can be stored for

minutes to hundreds of years depending on need, and they can be of any size. Any service

can read events from a topic, process the data, and then store the processed data back into a

topic. These topics are persistent, making it possible for them to be reread after consumption.

Figure 3: Apache Kafka internals,
https://docs.cloudera.com/runtime/7.2.10/kafka-overview/topics/kafka-overview-topics.html

Topics are stored in a Kafka Broker, which is a Kafka server. The combination of multiple

Brokers forms a Kafka Cluster. Kafka Zookeeper manages the Kafka Brokers in a cluster

both in horizontal scaling and duplication of topics.

51

Research: Streaming Frameworks 7

Figure 4: Apache Kafka’s Zookeeper to Broker interaction,
https://docs.cloudera.com/runtime/7.2.10/kafka-overview/topics/kafka-overview-brokers.html

Security

Supported protocols for authentication to brokers in the current version are:

● SSL
● SASL/GSSAPI
● SASL/PLAIN
● SASL/SCRAM-SHA-256 and SASL/SCRAM-SHA-512
● SASL/OAUTHBEARER

SSL can be used for both authentication and encryption of data. This feature is not enabled by

default.

Older versions of Apache Kafka and Apache Kafka running on an older version of Eclipse

Jetty have known security vulnerabilities that are not present in current releases.

API

Apache Kafka API is designed to use a language-independent protocol. Although the main

client maintained by the Kafka project is Java, there are many independent open-source

52

Research: Streaming Frameworks 8

bindings for other languages. A complete list of these supported languages can be found at

https://cwiki.apache.org/confluence/display/KAFKA/Clients.

Conclusion

Apache Kafka is a producer-to-consumer streaming framework that sends data as events. The

framework is open-source, horizontally scalable, and secure, making it a perfect candidate for

this assignment.

53

Research: Streaming Frameworks 9

Apache Pulsar

“Apache Pulsar is a cloud-native, distributed messaging and streaming platform originally

created at Yahoo! and now a top-level Apache Software Foundation project”

- https://pulsar.apache.org/

Overview

Apache Pulsar started as a message queuing system and later expanded into streaming (Kafka

vs Pulsar - Performance, Features, and Architecture Compared, n.d.). The framework shares

much of the same terminology as Apache Kafka. They both use Apache Brokers as servers

and an Apache ZooKeeper to manage the cluster of Apache Brokers. Apache Pulsar also uses

the concept of producers and consumers to generate and process data. Apache Pulsar has an

addition of an Apache BookKeeper, which it uses to persist data. Apache BookKeepers can

separate the storage into tiers, allowing old data storage on cost-efficient solutions (Despot,

2021).

Figure 5: Apache Pulsar internals,
https://memgraph.com/blog/pulsar-vs-kafka

54

Research: Streaming Frameworks 10

Security

There is currently one known vulnerability in the current version of Apache Pulsar.

“If Apache Pulsar is configured to authenticate clients using tokens based on JSON Web

Tokens (JWT), the signature of the token is not validated if the algorithm of the presented

token is set to "none". This allows an attacker to connect to Pulsar instances as any user (incl.

admins).”

- https://www.cvedetails.com/cve/CVE-2021-22160/

API

There are official client APIs for:

● Java client

● Go client

● Python client

● C++ client

● Node.js client

● WebSocket client

● C# client

There are also unofficial client APIs for:

● Haskell

● Scala

● Rust

● .NET

The WebSocket API can be used by any programming language with a WebSocket library.

There is also an Admin API that uses REST accessed by HTTP calls.

Conclusion

Although Apache Pulsar comes with improved storage features compared with Apache

Kafka, it falls behind in streaming (Despot, 2021) as it is less developed for that purpose.

Therefore, Apache Pulsar is a less suitable candidate for this project. This framework is still

worth considering if problems should arise with Apache Kafka.

55

Research: Streaming Frameworks 11

RabbitMQ

“RabbitMQ is the most widely deployed open source message broker.”

- https://www.rabbitmq.com/

Overview

RabbitMQ is a message software that puts messages in queues for consumption. The

framework consists of a RabbitMQ Broker that accepts messages from producers, adds the

messages to a queue, and passes them along to subscribed consumers when they are ready to

consume.

Figure 6: RabbitMQ’s Broker system,
https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-rabbitmq.html

The RabbitMQ Broker contains queues and an exchanger. The exchanger is responsible for

sorting messages based on attributes and passing these along to the correct queue.

Figure 7: RabbitMQ’s exchanger,
https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-rabbitmq.html

56

Research: Streaming Frameworks 12

Because RabbitMQ mainly focuses on message queueing compared to streaming, further

research into APIs and security has been dropped.

Conclusion

RabbitMQ is a framework that mainly focuses on consuming messages that need to be

delayed slightly before being processed. As the project requires persisting the produced data,

RabbitMQ is not a candidate.

57

Research: Streaming Frameworks 13

Apache Spark (Spark Streaming)

“Apache Spark™ is a multi-language engine for executing data engineering, data science,

and machine learning on single-node machines or clusters.”

- https://spark.apache.org/

Overview

Somewhat already in use at AutoStore in the form of databricks. Spark is used for treatment

of data, but can also be used to pseudo-stream. The term pseudo-stream is used here, because

there is no actual streaming, only really fast batch processing (Levy, 2021).

Spark Streaming works by receiving data from a stream or source of continuous data, which

it then processes into batches. These batches are then passed further down the stream to the

Spark processing engine, before it is passed on to a server/data lake/recipient. These batches

are small, but still large enough to cause delays of milliseconds which should be insignificant

for the use case. Spark streaming can be configured to mitigate the batch-streaming, but this

is still somewhat experimental (Pointer, 2018).

Figure 8: High Level overview of Spark Streaming architecture,
https://spark.apache.org/docs/latest/streaming-programming-guide.html

The obvious benefit or detriment depending on the use-case, is that Spark Streaming is

inherently tied to the spark engine. The fact that the spark engine is intended to process the

data introduces an unwanted and unneeded step for the specific use-case of AutoStore, where

processing is not needed.

58

Research: Streaming Frameworks 14

Figure 9: Data stream using Spark Streaming and the Spark Engine,
https://spark.apache.org/docs/latest/streaming-programming-guide.html

Security

Spark streaming offers authentication for RPC channels using a shared secret. This does

require configuration, but the configuration is well documented, with options for:

● cryptographic key length
● algorithm for encryption
● option to enable SASL-based encrypted communication

There is one known vulnerability in spark related to the shared secret on standalone resource

manages. In Spark versions 2.4.5 and older, it is possible to send a specific malicious RPC

message to start resources within a Spark cluster. This vulnerability does not apply for other

resource managers (I.E Yarn).

API

Spark supports the following languages:

● Scala

● Java

● Python

● R

Spark is widely used, and has a large amount of documentation, simplifying implementation.

Conclusion

Due to unnecessary processing included with the Spark streaming, this framework is unfit for

the project, although interesting if the need for processing the streamed data should arise. It is

not completely irrelevant as the use of standard Spark functionality can be minimized, but it

might prove more efficient to utilize simpler frameworks.

59

Research: Streaming Frameworks 15

Apache Storm

“Apache Storm is a free and open source distributed realtime computation system. Apache

Storm makes it easy to reliably process unbounded streams of data, doing for real time

processing what Hadoop did for batch processing. Apache Storm is simple, can be used with

any programming language, and is a lot of fun to use!”

- https://storm.apache.org/

Overview

Apache Storm is yet another open source Apache framework. Unlike Spark Streaming,

Apache Storm is not tied to or part of a larger product (like Spark).

Apache Storm uses terminology of “Spouts”and “Bolts” to describe the nodes in the graph

representing the data stream. Spouts are the source tasks of the stream, and bolts are the

processing tasks. The Spout connects to the data source, and communicates with the bolts,

sending the data to them. Bolts receive an input stream, processes the contents, and passes it

on to other Bolts.

Figure 10: Spouts and Bolts of Apache Storm. Bolts are both intermediaries and end-points,
https://storm.apache.org/

Apache Storm is well established and has been in development for many years. However,

Storm is primarily a processing service, not a message-broker. The message-broker in Storm

is the “Spout” that provides the data. A possible use of Storm could then be as part of a stack,

60

Research: Streaming Frameworks 16

with a message-broker sending the data to Storm, before Storm sends it to storage (Apache

Kafka vs Apache Storm, 2014). Storm is not a queue the same way that message-brokers are.

This means that to ensure reliability, Storm should be used in conjunction with other

technologies.

Apache Storm is open source and free to implement. Storm also touts high scalability, and

high speed (Apache Storm, n.d.), especially when compared to, for example, Spark

Streaming, due to micro-batches being used in Storm. Storm is also very well documented,

simplifying implementation.

API

Storm is language dependant and supports the following languages:

● JavaScript

● Python

● Ruby

Additionally, there is third party support for c#.

Security

By default, Storm installs without authentication but this can be configured. It is possible to

configure for SSL within Storm, and technologies can (and should) be used for authentication

and authorization. The built-in security measures of Storm appear somewhat lackluster, so

integrating other technologies will be necessary.

Storm has a history of vulnerabilities, but there are no known vulnerabilities in the current

version (2.2.1).

Conclusion

Apache Storm is a good candidate as a part of a larger stack. It is possible to use it on its own,

but to ensure reliability, a message-broker with queue functionality should be used in

conjunction.

61

Research: Streaming Frameworks 17

Apache Flink

“Apache Flink is a framework and distributed processing engine for stateful computations

over unbounded and bounded data streams. Flink has been designed to run in all common

cluster environments, perform computations at in-memory speed and at any scale.”

- https://flink.apache.org/flink-architecture.html

Overview

Yet another Apache product, Flink is a framework that shows great promise. Since its initial

release in 2011 Flink has been developed to support large scale streaming of both bounded

and unbounded data. Flink has no batches, and its event processing is pure streaming,

constantly pushing data out to nodes for processing and handling as events arrive. Flink is

also fast compared to other frameworks.

Figure 11: comparison of throughput between Apache Storm and Apache Flink,
https://medium.com/@chandanbaranwal/spark-streaming-vs-flink-vs-storm-vs-kafka-streams
-vs-samza-choose-your-stream-processing-91ea3f04675b

Flink is a cluster framework and the framework deploys the application either in standalone

Flink clusers, or using containers (Flink vs Kafka Streams - Comparing Features, 2016).

Typically, Flink is used in conjunction with Kafka, where Kafka serves as the source

connecting to Flink, although this is not necessary.

Security

Flink allows for authentication through the use of Kerberos authentication. Other forms of

authentication can be used, but Kerberos is the only one actively supported by Flink.

62

Research: Streaming Frameworks 18

According to CVE Details, Flink is one of the most secure services, as it has few

vulnerabilities, and the ones that have been discovered are not considered severe.

Furthermore, no vulnerabilities are present in the current version (1.14.3)

API

Flink supports the following languages:

● Java

● Scala

● Python

● SQL

Java is best supported, but the Python implementation (referred to as PyFlink) has also been

receiving great support.

Flink offers three layered APIs that each target slightly different use cases. The APIs focus on

two areas; Conciseness and Expressiveness, and an increase in one leads to a reduction in the

other. Azure connection is also supported, although Hadoop is required.

Figure 12: The three API layers, https://flink.apache.org/flink-applications.html

Finally, flink offers connectors for multiple sources like Kafka, but also RabbitMQ, Amazon

Kinesis, and Apache Pulsar.

Conclusion

Apache Flink appears to be a good candidate offering real-time streaming, good security, and

a robust API, as well as good performance.

63

Research: Streaming Frameworks 19

Selection for Prototyping

Based on the properties of all frameworks, the following frameworks are suggested for the

prototyping stage of the project based on factors such as documentation, availability,

performance, and the use-case of the assignment.

Prototype 1, Kafka (barebone prototype)

Prototype utilizing only Kafka, with minimal involvement of other technologies. A pure

Kafka prototype will not only form a solid foundation for Kafka in conjunction with other

services but can also easily be supported through documentation and online resources due to

widespread implementation.

Kafka also has a streaming API with powerful features for handling the data in addition to the

message-brokering. This API is a built-in part of Kafka, and this prototype will leverage this

library to implement a full stream.

For storage, ksqlDB is the most promising technology. ksqlDB stands for Kafka SQL

DataBase, and is built with streaming (in particular with Kafka) in mind. This prototype will

utilize ksqlDB to store/receive the stream.

Prototype 2, Pulsar (barebone prototype)

Prototype utilizing Puslar, with minimal involvement of other technologies. Like a pure

Kafka prototype, this can lay a foundation for Pulsar in conjunction with other services.

Although popular, Pulsar is not as widespread as Kafka, but documentation exists.

For storage, there are multiple options in addition to the ksqlDB mentioned in the section

discussing Prototype 1. This prototype will also be used to test multiple different databases in

order to discover which database offers the best performance. Database performance will be

measured and reported, and the choice of database for the third prototype and final

implementation will be based on this analysis.

64

Research: Streaming Frameworks 20

Prototype 3, Kafka or Pulsar + Flink (stack prototype)

Based on the previous prototypes, this prototype will utilize either Kafka or Pulsar for

messaging with Flink for data handling and processing. The processing will be limited to

receiving the data and fitting it into a database. Although fitting the data into a database is not

a large job, it is still not the main focus of either Kafka or Pulsar. Therefore, it would be

interesting to have this prototype in addition to the barebones previous prototypes which

utilizes an additional framework concerning data-handling.

Flink has been chosen because it is independant, has few known security risks, is being

actively developed, and promises support for both bounded and unbounded data. Flink also

supports connectivity with both Kafka and Pulsar. If flink should prove impossible or overly

inconvenient to implement, it can be replaced by Storm. Storm is however considerably

slower than Flink. Spark will likely not be used, as functionality aside from streaming mostly

focuses on analysis of data which is irrelevant for the use-case.

Storage for this prototype will be chosen based on results from the previous prototypes as

well. In theory, this prototype should connect to the most efficient database based on previous

findings.

65

Research: Streaming Frameworks 21

References

Levy, E. (2021, December 30). 7 Popular Stream Processing Frameworks Compared.
Upsolver. Retrieved February 6, 2022, from
https://www.upsolver.com/blog/popular-stream-processing-frameworks-compared

Pointer, I. (2018, March 15). What’s new in Apache Spark? Low-latency streaming and
Kubernetes. InfoWorld. Retrieved February 6, 2022, from
https://www.infoworld.com/article/3262995/whats-new-in-apache-spark-low-latency-streami
ng-and-kubernetes.html

Apache Storm. (n.d.). Apache Storm. Retrieved February 6, 2022, from
https://storm.apache.org/index.html

Despot, I. (2021, November 30). Apache Pulsar vs Apache Kafka - How to choose a data
streaming platform. Memgraph. Retrieved February 6, 2022, from
https://memgraph.com/blog/pulsar-vs-kafka

Kafka vs Pulsar - Performance, Features, and Architecture Compared. (n.d.). Confluent.
Retrieved February 6, 2022, from https://www.confluent.io/kafka-vs-pulsar/

Flink vs Kafka Streams - Comparing Features. (2016, September 2). Confluent. Retrieved
February 6, 2022, from
https://www.confluent.io/blog/apache-flink-apache-kafka-streams-comparison-guideline-user
s/

66

Research: Streaming Frameworks 22

Bibliography

Overview - Spark 2.2.0 Documentation. (n.d.). Apache Spark. Retrieved February 6, 2022,
from https://spark.apache.org/docs/2.2.0/index.html

Security - Spark 3.2.1 Documentation. (n.d.). Apache Spark. Retrieved February 6, 2022,
from https://spark.apache.org/docs/latest/security.html

Apache Storm. (n.d.). Apache Storm. Retrieved February 6, 2022, from
https://storm.apache.org/index.html

Apache Storm : List of security vulnerabilities. (n.d.). CVE Details Retrieved February 6,
2022, from
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-35571/Apache-Storm.
html

Apache Flink: Stateful Computations over Data Streams. (n.d.). Apache Flink. Retrieved
February 6, 2022, from https://flink.apache.org/

Apache Flink Documentation. (n.d.). Apache Flink. Retrieved February 6, 2022, from
https://nightlies.apache.org/flink/flink-docs-release-1.14/

Baeldung. (2021, August 17). Building a Data Pipeline with Flink and Kafka. Retrieved
February 6, 2022, from https://www.baeldung.com/kafka-flink-data-pipeline

Apache Flink : List of security vulnerabilities. (n.d.). CVE Details. Retrieved February 6,
2022, from
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-88972/Apache-Flink.h
tml

Apache kafka. Apache Kafka. (n.d.). Retrieved February 6, 2022, from
https://kafka.apache.org/

Kafka Introduction. (n.d.). Cloudera. Retrieved February 6, 2022, from
https://docs.cloudera.com/runtime/7.2.10/kafka-overview/topics/kafka-overview-intro.html

Apache Kafka : List of security vulnerabilities. (n.d.). CVE Details. Retrieved February 6,
2022, from
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-48980/Apache-Kafka.
html

67

Research: Streaming Frameworks 23

Documentation Security. Apache Kafka. (n.d.). Retrieved February 6, 2022, from
https://kafka.apache.org/documentation/#security

Apache Pulsar. (n.d.). Pulsar. Retrieved February 6, 2022, from https://pulsar.apache.org/

Apache Pulsar : List of security vulnerabilities. (n.d.). CVE Details. Retrieved February 6,
2022, from
https://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-95667/Apache-Pulsar.
html

Messaging that just works — RabbitMQ. (n.d.). RabbitMQ. Retrieved February 6, 2022, from
https://www.rabbitmq.com/

JOHANSSON, L. (2019, September 23). Part 1: RabbitMQ for beginners - What is
RabbitMQ? - CloudAMQP. CloudAMQP. Retrieved February 6, 2022, from
https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-rabbitmq.html

Kafka vs Pulsar - Performance, Features, and Architecture Compared. (n.d.-b). Confluent.
Retrieved February 6, 2022, from https://www.confluent.io/kafka-vs-pulsar/

Despot, I. (2021b, November 30). Apache Pulsar vs Apache Kafka - How to choose a data
streaming platform. Memgraph. Retrieved February 6, 2022, from
https://memgraph.com/blog/pulsar-vs-kafka

Flink vs Kafka Streams - Comparing Features. (2016, September 2). Confluent. Retrieved
February 6, 2022, from
https://www.confluent.io/blog/apache-flink-apache-kafka-streams-comparison-guideline-user
s/

68

Appendix 2: Prototype Testing documentation

69

Test Requirements and Results for
Prototype Testing, Service for

Data Streaming
IDATA2900, Bachelor's in Computer Science, 2022

Tomas Klungerbo Olsen

Lars Ivar Ramberg

70

Prototype testing i

Contents
Introduction .. 3

Test Subjects ... 3

Test methodology and framework .. 3

Terminology ... 3

System Overview for Testing ... 4

Test Coverage ... 5

Performance Test ... 6

Broker race: sending one million messages. ... 6

Description .. 6

Methodology .. 9

Success Criteria ... 10

Results ... 10

Stability Tests .. 12

Broker application shutdown ... 12

Description .. 12

Methodology .. 13

Success Criteria ... 13

Results ... 13

Broker server shutdown ... 14

Description .. 14

Methodology .. 15

Success Criteria ... 15

Results ... 15

Broker network disconnect ... 16

Description .. 16

Methodology .. 17

Success Criteria ... 17

Results ... 17

Unexpected disconnect of consumer .. 18

Description .. 18

Methodology .. 19

Success Criteria ... 19

Results ... 19

Unexpected disconnect of producer ... 20

71

Prototype testing ii

Description .. 20

Methodology .. 21

Success Criteria ... 21

Results ... 21

Results ... 22

Comparison of results .. 22

Other considerations when comparing the frameworks ... 22

Conclusion... 22

72

Prototype testing 3

Introduction

This document presents the formal test criteria for, and results from, the testing of

prototypes done during the bachelor's in computer science project, "Service for Data

Streaming." The document describes in detail the intention, methodology, and environment

for the tests, the tests performed, the requirements for the tests, and the results from the

tests.

The document introduces the test subjects, test environment, and resources available for

the tests. Afterward, test coverage is discussed concerning essential requirements identified

for the desired solution. Finally, each test is described in detail, including its purpose,

methodology, and results for each test. At the end of the document, the test results are

compared considering the outlined criteria to select the best framework for further

development.

Test Subjects

Subjects for the tests in this document are the two prototypes developed for the IDATA2900

project “Service for Data Streaming.” Two prototypes were produced, one utilizing Apache

Kafka and another using Apache Pulsar. Although the prototypes are similar in

implementation, the two frameworks differ in how they manage the streaming of data. The

purpose of the testing outlined in this document is to discover how these differences

manifest in terms of performance and stability, subsequently informing the decision of

which framework is best in relation to the requirements for the solution.

Test methodology and framework

Terminology
The two systems tested implement Apache Kafka and Apache Pulsar respectively. For both

systems, the implementation is split into the following parts and responsibilities:

1. Data provider: creates data to pass through the system. The data providers simulate

the generation of data from the AutoStore system in an actual implementation

2. Producer: forwards data from the data provider to the rest of the system. The

producer implements Kafka and Pulsar-related code.

3. Broker: the communication link between producer and consumer. Passes the data

from the producer to the consumer with the option to persist data

4. Consumer: receives the data. In the current testing framework, the consumer

merely displays received data in the console.

73

Prototype testing 4

System Overview for Testing

Figure 1 Illustration of testing architecture. Developer one hosts Data Providers and a Producer on
their computer. Developer two hosts a consumer on their computer. Both developer and consumer
connect to an OpenStack virtual machine through an NTNU VPN. The OpenStack server contains the

brokers for both Kafka and Pulsar.

The testing was performed using already acquired and developed technologies. All tests

were performed with connections across the internet, with the brokers being on a remote

server to simulate an actual use case where the provider, consumer, and broker will be

distributed geographically.

The server running the brokers was an NTNU OpenStack virtual machine. To access this

machine, it is required to be connected to the NTNU network. This means that the producers

and consumers of the solutions also needed to be on the NTNU network when testing the

broker. This was achieved by using a VPN connection from the computers belonging to the

group to the NTNU network. The architecture described here is illustrated in Figure 1. VPN

usage should be considered when viewing the results of the tests, as a VPN introduces

overhead that otherwise would not be present without a VPN connection.

Tests were divided into two categories, performance and stability. The performance test

measures how effectively the system can perform its task. The stability tests measure the

ability to perform said tasks even when faced with unexpected or undesired events like

disconnects and program failures.

74

Prototype testing 5

Test Coverage

The solutions being tested need to meet specific requirements. Briefly summarized, the

requirements are:

1. Performance, data needs to be streamed fast

2. Reliability, data needs to safely travel from source to consumer without loss

3. Fault Tolerance, temporary system failure should not lead to loss of data

4. Cloud compatibility, the solution needs to be accessible from the cloud

5. Security, data should be safe from theft and manipulation during transfer

6. Scalability, AutoStore is a company in growth. If the solution does not scale, it will

not be a permanent solution

The requirements above are not numbered by importance, urgency, or other metrics. The

numbering is present to ease referencing when discussing whether criteria are covered by

the defined tests.

Except for 4 and 5, all points are testable by the current prototypes. Points 1, 2, and 3 are

directly tested, whereas point 6 is indirectly tested. The thoroughly tested points can easily

be tested with a small number of computers and connections and are therefore the ones

tested most thoroughly. Testing for scalability (point 6) is also possible and is to an extent

done by the performance test, but not to the extent where hundreds or thousands of

connections are used. To do this, the group would need multiple computers and servers to

force enormous amounts of data from multiple points through the prototyped systems.

It is assumed that cloud compatibility (point 4) will be tested at a later stage in

development. As outlined in the milestone plan agreed upon between AutoStore and the

group, there will be two weeks of implementation and testing against Azure. During these

two weeks, cloud support will be extensively implemented and tested.

As for security, there are two possibilities. Firstly, security can be actively evaluated at a

point later in development when authentication and security have been implemented.

Secondly, at least for authentication, it is possible that the group can implement a solution

compatible with authentications currently used by AutoStore. To what extent already

existing security will and can be implemented must be discussed at a later stage of

development.

75

Prototype testing 6

Performance Test

The following test was specifically designed to test the performance of a system. The test

does not assess how the system manages unexpected events and assumes the system is

working and stable. The question is not “does the system work,” but rather the focus is on

“how well does it work.”

Broker race: sending one million messages.

Description
This test covers performance and reliability. The test measures how fast messages in bulk

can go from data provider to producer, through a broker, and arrive at the consumer. The

data provider continuously creates the messages and sends them to the producer. The time

it takes for the consumer to receive one million messages is measured.

This test also serves as a stress test. No parts of the system should fail during high-stress

situations. This test simulates such a high-stress situation, with messages being

continuously sent and received at a high volume.

Figure 2 High-level systems overview for the one million messages test with twenty thousand
messages per second as send rate

76

Prototype testing 7

Figure 3 System overview of the one million messages test with twenty thousand messages per
second as send rate

77

Prototype testing 8

Figure 4 High-level systems overview for the one million messages test with forty thousand messages
per second as send rate

78

Prototype testing 9

Figure 5 System overview of the one million messages test with forty thousand messages per second
as send rate

Methodology
This test was done with two data provider instances, one producer instance, one broker,

and one consumer.

The data providers are instructed to produce and send infinite amounts of String messages

at set rates to the producer. The producer then forwards these messages as fast as possible

to the broker. The broker then passes these messages on to the one consumer that is

connected to it.

The production rates tested are twenty thousand and forty thousand messages per second,

split equally between the two data providers. For each rate, the time taken to send one

million messages is measured five times in five intervals.

The consumer has a timer. The timer records the time of the first received message of an

interval, and the time it receives message number one million of its current interval. Both

times are saved as Unix timestamps. The times are subtracted to get milliseconds between

the two events, then divided by one thousand to get seconds. After a million messages have

been received, the time is displayed in seconds in the console, before the timer restarts and

times the subsequent million messages, in effect starting its next interval.

To get one numerical result for each test, the average amount of time for the five intervals

is calculated. This average is considered the final representative result of how fast one

million messages can get from one end of the system to the other.

79

Prototype testing 10

Success Criteria
The test is successful if all segments are received by the consumer. Additionally, the

framework that can do this in the shortest amount of time is considered the most

performant in the test.

Additionally, no messages should be lost during the high stress of sending unlimited

messages at maximum speed. This also means that neither broker, consumer, nor producer

should fail during the test to the point of requiring a manual restart. If any of the

components fail and restart themselves, they may still pass the test, but time will be

affected by such events.

Results
Both frameworks passed the test. For both Kafka and Pulsar, all messages were sent, and

none got lost along the way. Additionally, no parts of the system for either framework failed

during the high load.

There is a considerable difference in performance between the two frameworks (see Table

1). In the twenty thousand test, Pulsar was on average 4.73 seconds faster than Pulsar

(55.26 seconds vs 59.99 seconds). When the send rate was increased to forty thousand,

Pulsar remained faster with 42.37 seconds needed versus 46.37 for Kafka. Although the

differences are negligible when considering the enormous amount of data sent in both tests,

it is still an indicator that Pulsar will be able to perform better under higher loads in terms of

pure throughput.

80

Prototype testing 11

Pulsar One million
received,

20k send
rate

Average
messages

received per
second, 20k
send rate

One million
received,

40k send
rate

Average
message per

second, 40k
send rate

Run one 60.43 16633.4 43.37 23656.6

Run two 53.19 18856.4 42.1 24368.2

Run three 53.38 18828.8 44.31 23156.7

Run four 53.93 18648.2 42.35 23882.7

Run five 55.35 18120.7 39.7 25482.1

Average 55.26 18217.5 42.37 24109.26

Kafka One million
received,
20k send

rate

Average
messages
received per

second, 20k
send rate

One million
received,
40k send

rate

Average
message per
second,

Kafka 40k
send rate

Run one 53.01 18903.8 35.03 28683.8

Run two 59.91 16838 48.94 20521

Run three 61.67 16233.1 49.15 20716.1

Run four 62.75 15950 50.63 19850

Run five 62.63 15971.4 48.09 20964.4

Average 59.99 16779.26 46.37 22147.06

Table 1 Results of tests sending one million messages through the system

81

Prototype testing 12

Stability Tests

These tests do not aim to assess how well a system functions, but if it can function at all

given specific circumstances. The tests specifically concern fault-handling, whether a system

can tolerate parts of it breaking during function. The tests do not measure “how well can a

system perform the task,” rather focusing on “can the system still function given particular

scenarios.”

Broker application shutdown

Description
This test covers fault tolerance. The test assesses whether a broker will send all received

data even if it shuts down at an inopportune moment.

Figure 6 High-level systems overview for the broker application shutdown test

82

Prototype testing 13

Figure 7 System overview of broker shutdown test. The parts which are shut down are marked with an
x and red coloring

Methodology
The test was done using one data provider, one producer, one broker, and one consumer.

After starting the system and ensuring that messages were generated by the producer,

sent, and received, the broker was forcefully shut down from the console. To simulate an

unexpected and uncontrolled shutdown, the brokers were not gracefully shut down

programmatically, but forcefully stopped by killing their processes. Afterward, the broker

was restarted after approximately five messages had been sent from the producer.

This test required the broker to persist any unacknowledged messages it received before

shutdown, and for the producer to persist messages it could not send while the broker was

shut down.

Success Criteria
The test is successful if all generated data reaches the consumer, even after the broker has

been restarted.

Additionally, it is a plus if the brokers can restart fast. The time it takes for the consumer to

start receiving messages from the brokers after restart should be minimal.

Results
Both frameworks passed this test. In both instances, the brokers could be restarted after a

forceful shutdown, and no data was lost. In both instances, only seconds were needed for

the brokers to resume sending of data. Neither producer nor consumer encountered

irrecoverable problems during this reset, although communication with the broker was

impossible while it was shut down.

83

Prototype testing 14

Broker server shutdown

Description
This test covers fault tolerance. The test assesses whether a broker will send all received

data even if its server shuts down at an inopportune moment.

Figure 8 High-level systems overview for the broker server shutdown test

84

Prototype testing 15

Figure 9 System overview of the broker server shutdown test. The server that was shut down is
marked with an X and red coloring

Methodology
This test was done using one data provider, one producer, one broker, and one consumer.

After ensuring connection and data transfer between all parts of the system, the server

hosting the broker was rebooted without first shutting down the broker. After restart, the

broker was also restarted from the console.

Success Criteria
To pass the test, the broker must resume receiving data from the producer and forward it to

the consumer, without loss and corruption. Additionally, it is desirable that the broker

restarts sending of data as soon as possible after being rebooted.

Results
Neither framework passed this test, although the extent of failure was slightly different

between the frameworks. Kafka completely failed to restart sending data after a server

shutdown and threw exceptions upon restart. Pulsar fares a little better, as it sent data after

restarting. However, the data sent by Pulsar was incomplete, as data sent from the

producer while the server was down never reached the consumer.

85

Prototype testing 16

Broker network disconnect

Description
This test covers fault tolerance. The test assesses whether a broker will send all received

data even if it loses network connection at an inopportune moment.

Figure 10 High-level systems overview for the broker network disconnect test

86

Prototype testing 17

Figure 11 System overview of the broker network disconnect test. The interrupted connections are
marked with an x

Methodology
This test was done using one data provider, one producer, one broker, and one consumer.

After starting the system and ensuring that messages were being generated, sent, and

received, the broker was disconnected from the internet. Afterward, the broker was

reconnected to the internet without restarting the broker itself.

To disconnect the broker from the internet, its docker container was disconnected from its

network by issuing a docker disconnect command from the console. To verify that this

caused a loss of connection to the rest of the internet, the consumer attempted to reconnect

to the broker after the command was issued. After confirming that it was impossible to

reconnect, the broker was left disconnected for approximately ten messages, before being

reconnected with a docker connect command.

Success Criteria
To pass the test, the broker must restart sending messages when it is reconnected to the

network. The messages must arrive at the consumer undamaged and in correct order.

Additionally, the time it takes from reconnecting to sending new messages should be

minimal.

Results
Both frameworks passed this test. Disconnecting the brokers did not appear to cause any

significant problems, and both producers and consumers were able to quickly reconnect to

the broker and restart transmission of messages. In terms of time, the frameworks are

quite similar, with a small time-gap between reconnecting to the network and transmission

of messages.

87

Prototype testing 18

Unexpected disconnect of consumer

Description
This test covers fault tolerance. The system should be stable, even if a consumer loses

connection. This test ensures that even if a consumer either fails or loses connection, the

system can remain stable. The consumer should be able to reconnect and continue receiving

data.

Figure 12 High-level systems overview for the consumer disconnect test

88

Prototype testing 19

Figure 13 System overview of the consumer disconnect test. The interrupted disconnect is marked
with a red x

Methodology
This test was done using one data provider, one producer, one broker, and one consumer.

After connecting all parts of the system and ensuring data transfer, the consumer was

disconnected from the network before being reconnected. As the test system was set up

over NTNU VPN, the disconnect was simulated by having the computer running the

consumer disconnect from the VPN. After generating approximately ten messages, the

consumers were reconnected by reconnecting to the VPN.

Success Criteria
The test is passed if the consumer can reconnect and continue receiving data from where it

left off. This implies that if the last received segment for the consumer is segment number

one hundred, the first segment it receives upon reconnecting should be segment 101, and

then all subsequent segments it missed while disconnected. Not only must all messages

reach the consumer, but they must also be in correct order.

Results
Both frameworks, given the appropriate configurations, could reconnect and continue to

receive messages from where they left off. For Kafka, retries must be issued

programmatically, and code must be written to ensure message reception does not go out

of order. For Pulsar, it is sufficient to set its subscription type to “Exclusive.” This will

guarantee message delivery and correct order. These changes were made to the consumers

after they initially failed the test. After the changes, both consumers passed on their first

attempts. There was no noticeable difference in time to reconnect between the two

solutions, and both solutions appear to start receiving messages instantly when the

connection is re-established.

89

Prototype testing 20

Unexpected disconnect of producer

Description
This test covers fault tolerance. The system should be stable, even if a producer loses

connection. This test ensures that even if a producer either fails or loses connection, the

system can remain stable. The producer should be able to start resupplying data upon

reconnection.

Figure 14 High-level systems overview for the producer disconnect test

90

Prototype testing 21

Figure 15 System overview of the producer disconnect test. The interrupted connection is marked with
a red x

Methodology
This test was done using one data provider, one producer, one broker, and one consumer.

After connecting all parts of the system and ensuring data transfer, the producer lost

connection to the broker, before reconnecting after approximately ten messages had been

generated. As the test system was set up over NTNU VPN, disconnection was simulated by

simply having the computer running the producer disconnect from the VPN.

Success Criteria
The producer should be able to reconnect and continue to deliver data. The broker should

receive the data, and everything should arrive intact to the consumer.

Results
For both frameworks, the producer successfully reconnected and continued passing along its

data to the broker, which in turn successfully forwarded it to the consumer. There was no

noticeable difference in the time taken to restart sending data, with both frameworks

appearing to restart sending close to instantly.

91

Prototype testing 22

Results

Comparison of results
Both frameworks performed well under the tests outlined in this document. The only

significant difference between the two frameworks is in terms of throughput, which is an

important metric once the number of messages starts reaching tens of thousands.

Both frameworks are fault-tolerant and able to manage most situations related to restarts

and connection failures. The only exception is on server restart where both frameworks fail

to appropriately handle the situation, and data is lost as a result.

Both frameworks are also highly performant with send rates surpassing twenty thousand

with only one producer, broker, and consumer. However, performance is the only point

where there is a noticeable difference between Pulsar and Kafka, as shown in Table 1.

Taking all results into consideration, Pulsar overall outperforms Kafka in the current

implementations, although not by a huge margin. It should also be considered that both

Kafka and Pulsar were evaluated in an “out-of-the-box” fashion. It is possible that both

frameworks can be optimized.

Other considerations when comparing the frameworks
As this test is a part of the decision process of which framework to implement in the final

solution, other factors must be considered as well, not just pure test performance.

The most decisive aspect in favor of Pulsar is the lack of persistence in the framework. In

the final implementation, the data sent from AutoStore systems will eventually live in an

Azure Data Lake. This eliminates the need for persistence in the broker beyond consumption

as the data will be stored in the data lake after it has reached the consumer. Kafka by

default persists data, while Pulsar does not. There is only a need for data persistence during

shortages, not long term, making the default Kafka persistence superfluous.

Conclusion

Based on the results of the tests, Pulsar is the framework best suited for implementation in

the final solution. Although Kafka and Pulsar are matched in terms of stability, the additional

performance seen is a benefit that needs to be taken into consideration. As AutoStore

grows, higher throughput will be necessary and Pulsar provides the highest throughput

according to this test. The fact that Pulsar does not persist by default also supports it in the

context of this very use case. Pulsar performs well, is stable in most cases, and does not

come with unneeded and unnecessary persistence, and is therefore the framework favored

for further development

92

Appendix 3: Data from testing

93

Test Overview

Pulsar 1 million received, 20k sendrate Average messages received per second, 20k sendrate1 million received, 40k sendrate Average messages received per second, 40k sendrate
Run 1 60.43 16633.4 43.37 23656.6
Run 2 53.19 18856.4 42.1 24368.2
Run 3 53.38 18828.8 44.31 23156.7
Run 4 53.93 18648.2 42.35 23882.7
Run 5 55.35 18120.7 39.7 25482.1
Average 55.26 18217.5 42.37 24109.26

Kafka 1 million received, 20k sendrate Average messages received per second, 20k sendrate1 million received, 40k sendrate Average messages received per second, 40k sendrate
Run 1 53.01 18903.8 35.03 28683.8
Run 2 59.91 16838 48.94 20521
Run 3 61.67 16233.1 49.15 20716.1
Run 4 62.75 15950 50.63 19850
Run 5 62.63 15971.4 48.09 20964.4
Average 59.99 16779.26 46.37 22147.06

Stability Pulsar Kafka
Producer losing connection 2 2
Consumer losing connection 2 2
Broker Shutdown from docker 2 2
Broker Shutdown from server 0 0
Broker Disconnect server network 2 2

94

Disconnect-test, Kafka

Disconnect test, Producer, raw data
ConsumerWorker - Value: 1, Offset: 154 KafkaPrototypeProducer - 1 sent to server
ConsumerWorker - Value: 2, Offset: 155 KafkaPrototypeProducer - 2 sent to server
ConsumerWorker - Value: 3, Offset: 156 KafkaPrototypeProducer - 3 sent to server
ConsumerWorker - Value: 4, Offset: 157 KafkaPrototypeProducer - 4 sent to server
ConsumerWorker - Value: 5, Offset: 158 KafkaPrototypeProducer - 5 sent to server
ConsumerWorker - Value: 6, Offset: 159 KafkaPrototypeProducer - 6 sent to server
ConsumerWorker - Value: 7, Offset: 160 KafkaPrototypeProducer - 7 sent to server
ConsumerWorker - Value: 8, Offset: 161 KafkaPrototypeProducer - 8 sent to server
ConsumerWorker - Value: 9, Offset: 162 KafkaPrototypeProducer - 9 sent to server
ConsumerWorker - Value: 10, Offset: 163 KafkaPrototypeProducer - 10 sent to server
ConsumerWorker - Value: 11, Offset: 164 KafkaPrototypeProducer - 11 sent to server
ConsumerWorker - Value: 12, Offset: 165 KafkaPrototypeProducer - 12 sent to server
ConsumerWorker - Value: 13, Offset: 166 KafkaPrototypeProducer - 13 sent to server
ConsumerWorker - Value: 14, Offset: 167 KafkaPrototypeProducer - 14 sent to server

PRODUCER DISCONNECTS
. NetworkClient - Disconnecting from node 1 due to request timeout.
. NetworkClient - Cancelled in-flight PRODUCE request with correlation id 18 due to node 1 being disconnected
. NETWORK_EXCEPTION. Error Message: Disconnected from node 1
. NetworkException: Disconnected from node 1. Going to request metadata update now

ConsumerWorker - Value: 15, Offset: 168 KafkaPrototypeProducer - 15 sent to server
ConsumerWorker - Value: 16, Offset: 169 KafkaPrototypeProducer - 16 sent to server
ConsumerWorker - Value: 17, Offset: 170 KafkaPrototypeProducer - 17 sent to server
ConsumerWorker - Value: 18, Offset: 171 KafkaPrototypeProducer - 18 sent to server
ConsumerWorker - Value: 19, Offset: 172 KafkaPrototypeProducer - 19 sent to server
ConsumerWorker - Value: 20, Offset: 173 KafkaPrototypeProducer - 20 sent to server

Disconnect test, Consumer, raw data
ConsumerWorker - Value: 1, Offset: 0 KafkaPrototypeProducer - 1 sent to server
ConsumerWorker - Value: 2, Offset: 1 KafkaPrototypeProducer - 2 sent to server
ConsumerWorker - Value: 3, Offset: 2 KafkaPrototypeProducer - 3 sent to server
ConsumerWorker - Value: 4, Offset: 3 KafkaPrototypeProducer - 4 sent to server
ConsumerWorker - Value: 5, Offset: 4 KafkaPrototypeProducer - 5 sent to server
ConsumerWorker - Value: 6, Offset: 5 KafkaPrototypeProducer - 6 sent to server

CONSUMER DISCONNECTS
NetworkClientNode 2147483646 disconnected. KafkaPrototypeProducer - 7 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4942 due to node 2147483646 being disconnected KafkaPrototypeProducer - 8 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4943 due to node 2147483646 being disconnected KafkaPrototypeProducer - 9 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4944 due to node 2147483646 being disconnected KafkaPrototypeProducer - 10 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4945 due to node 2147483646 being disconnected KafkaPrototypeProducer - 11 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4946 due to node 2147483646 being disconnected KafkaPrototypeProducer - 12 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4947 due to node 2147483646 being disconnected KafkaPrototypeProducer - 13 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4948 due to node 2147483646 being disconnected KafkaPrototypeProducer - 14 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4949 due to node 2147483646 being disconnected KafkaPrototypeProducer - 15 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4950 due to node 2147483646 being disconnected KafkaPrototypeProducer - 16 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4951 due to node 2147483646 being disconnected KafkaPrototypeProducer - 17 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4952 due to node 2147483646 being disconnected KafkaPrototypeProducer - 18 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4953 due to node 2147483646 being disconnected KafkaPrototypeProducer - 19 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4954 due to node 2147483646 being disconnected KafkaPrototypeProducer - 20 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4955 due to node 2147483646 being disconnected KafkaPrototypeProducer - 21 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4956 due to node 2147483646 being disconnected KafkaPrototypeProducer - 22 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4957 due to node 2147483646 being disconnected KafkaPrototypeProducer - 23 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4958 due to node 2147483646 being disconnected KafkaPrototypeProducer - 24 sent to server
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4959 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4960 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4961 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4962 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4963 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4964 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4965 due to node 2147483646 being disconnected

95

Disconnect-test, Kafka

NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4966 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4967 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4968 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4969 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4970 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4971 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4972 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4973 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4974 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4975 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4976 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4977 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4978 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4979 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4980 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4981 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4982 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4983 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4984 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4985 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4986 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4987 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4988 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4989 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4990 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4991 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4992 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4993 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4994 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4995 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4996 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4997 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4998 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 4999 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5000 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5001 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5002 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5003 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5004 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5005 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5006 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5007 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5008 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5009 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5010 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5011 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5012 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5013 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5014 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5015 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5016 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5017 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5018 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5019 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5020 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5021 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5022 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5023 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5024 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5025 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5026 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5027 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5028 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5029 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5030 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5031 due to node 2147483646 being disconnected

96

Disconnect-test, Kafka

NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5032 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5033 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5034 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5035 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5036 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5037 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5038 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5039 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5040 due to node 2147483646 being disconnected
NetworkClientCancelled in-flight OFFSET_COMMIT request with correlation id 5041 due to node 2147483646 being disconnected
ConsumerCoordinatorGroup coordinator is unavailable or invalid due to cause: null.isDisconnected: true. Rediscovery will be attempted.
NetworkClientNode 1 disconnected.
NetworkClientCancelled in-flight FETCH request with correlation id 4859 due to node 1 being disconnected
NetworkClientCancelled in-flight METADATA request with correlation id 7739 due to node 1 being disconnected
NetworkClientCancelled in-flight FIND_COORDINATOR request with correlation id 7740 due to node 1 being disconnected
NetworkClientCancelled in-flight FIND_COORDINATOR request with correlation id 7741 due to node 1 being disconnected
FetchSessionHandlerError sending fetch request to node 1: org.apache.kafka.common.errors.DisconnectException
ConsumerCoordinatorDiscovered group coordinator 10.212.26.245:9092 (id: 2147483646 rack: null)
ConsumerWorker - Value: 7, Offset: 6
ConsumerWorker - Value: 8, Offset: 7
ConsumerWorker - Value: 9, Offset: 8
ConsumerWorker - Value: 10, Offset: 9
ConsumerWorker - Value: 11, Offset: 10
ConsumerWorker - Value: 12, Offset: 11
ConsumerWorker - Value: 13, Offset: 12
ConsumerWorker - Value: 14, Offset: 13
ConsumerWorker - Value: 15, Offset: 14
ConsumerWorker - Value: 16, Offset: 15
ConsumerWorker - Value: 17, Offset: 16
ConsumerWorker - Value: 18, Offset: 17
ConsumerWorker - Value: 19, Offset: 18
ConsumerWorker - Value: 20, Offset: 19
ConsumerWorker - Value: 21, Offset: 20
ConsumerWorker - Value: 22, Offset: 21
ConsumerWorker - Value: 23, Offset: 22
ConsumerWorker - Value: 24, Offset: 23

Disconnect test broker, docker shutdown
ConsumerWorker - Value: 1, Offset: 0 KafkaPrototypeProducer - 1 sent to server
ConsumerWorker - Value: 2, Offset: 1 KafkaPrototypeProducer - 2 sent to server
ConsumerWorker - Value: 3, Offset: 2 KafkaPrototypeProducer - 3 sent to server
ConsumerWorker - Value: 4, Offset: 3 KafkaPrototypeProducer - 4 sent to server
ConsumerWorker - Value: 5, Offset: 4 KafkaPrototypeProducer - 5 sent to server
ConsumerWorker - Value: 6, Offset: 5 KafkaPrototypeProducer - 6 sent to server
ConsumerWorker - Value: 7, Offset: 6 KafkaPrototypeProducer - 7 sent to server
ConsumerWorker - Value: 8, Offset: 7 KafkaPrototypeProducer - 8 sent to server
ConsumerWorker - Value: 9, Offset: 8 KafkaPrototypeProducer - 9 sent to server
ConsumerWorker - Value: 10, Offset: 9 KafkaPrototypeProducer - 10 sent to server
ConsumerWorker - Value: 11, Offset: 10 KafkaPrototypeProducer - 11 sent to server

DOCKER COMPOSE DOWN
NetworkClient - Node 2147483646 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Node -1 disconnected.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Node 1 disconnected.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Node 1 disconnected.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Connection to node 1 could not be established. Broker may not be available.
consumer.internals.ConsumerCoordinator - Group coordinator is unavailable or invalid NetworkClient - Node 1 disconnected.
NetworkClient - Node 1 disconnected. NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Cancelled in-flight FETCH request NetworkClient - Node 1 disconnected.
NetworkClient - Cancelled in-flight METADATA request NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Cancelled in-flight FIND_COORDINATOR request NetworkClient - Node 1 disconnected.
FetchSessionHandler - Error sending fetch request (sessionId=254417776, epoch=73) to node 1: NetworkClient - Connection to node 1 could not be established. Broker may not be available.

97

Disconnect-test, Kafka

org.apache.kafka.common.errors.DisconnectException NetworkClient - Node 1 disconnected.
NetworkClient - Node -1 disconnected. NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 12 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 13 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 14 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 15 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 16 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 17 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 18 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 19 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 20 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Error while fetching metadata with correlation id 7370 : {Testtopic=LEADER_NOT_AVAILABLE}
NetworkClient - Error while fetching metadata with correlation id 7372 : {Testtopic=LEADER_NOT_AVAILABLE}
NetworkClient - Error while fetching metadata with correlation id 7374 : {Testtopic=LEADER_NOT_AVAILABLE}
NetworkClient - Error while fetching metadata with correlation id 7376 : {Testtopic=LEADER_NOT_AVAILABLE}
Metadata - Resetting the last seen epoch of partition Testtopic-0
consumer.internals.ConsumerCoordinator - Discovered group coordinator 10.212.26.245:9092 (id: 2147483646 rack: null)
ConsumerWorker - Value: 12, Offset: 11
ConsumerWorker - Value: 13, Offset: 12
ConsumerWorker - Value: 14, Offset: 13
ConsumerWorker - Value: 15, Offset: 14
ConsumerWorker - Value: 16, Offset: 15
ConsumerWorker - Value: 17, Offset: 16
ConsumerWorker - Value: 18, Offset: 17
ConsumerWorker - Value: 19, Offset: 18
ConsumerWorker - Value: 20, Offset: 19

Shutdown broker, server shutdown
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 1, Offset: 0 KafkaPrototypeProducer - 1 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 2, Offset: 1 KafkaPrototypeProducer - 2 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 3, Offset: 2 KafkaPrototypeProducer - 3 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 4, Offset: 3 KafkaPrototypeProducer - 4 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 5, Offset: 4 KafkaPrototypeProducer - 5 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 6, Offset: 5 KafkaPrototypeProducer - 6 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 7, Offset: 6 KafkaPrototypeProducer - 7 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 8, Offset: 7 KafkaPrototypeProducer - 8 sent to server

98

Disconnect-test, Kafka

[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 9, Offset: 8 KafkaPrototypeProducer - 9 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 10, Offset: 9 KafkaPrototypeProducer - 10 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 11, Offset: 10 KafkaPrototypeProducer - 11 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 12, Offset: 11 KafkaPrototypeProducer - 12 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 13, Offset: 12 KafkaPrototypeProducer - 13 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 14, Offset: 13 KafkaPrototypeProducer - 14 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 15, Offset: 14 KafkaPrototypeProducer - 15 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 16, Offset: 15 KafkaPrototypeProducer - 16 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 17, Offset: 16 KafkaPrototypeProducer - 17 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 18, Offset: 17 KafkaPrototypeProducer - 18 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 19, Offset: 18 KafkaPrototypeProducer - 19 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 20, Offset: 19 KafkaPrototypeProducer - 20 sent to server
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 21, Offset: 20 KafkaPrototypeProducer - 21 sent to server

SERVER SHUTDOWN
NetworkClient - Node -1 disconnected. NetworkClient - Node -1 disconnected.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Cancelled in-flight FETCH request NetworkClient - Cancelled in-flight METADATA request with correlation id 25 due to node 1 being disconnected.
NetworkClient - Cancelled in-flight METADATA request NetworkClient - Node 1 disconnected.
NetworkClient - Node 2147483646 disconnected. NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Node 1 disconnected.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Node 1 disconnected.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Node 1 disconnected.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Node 1 disconnected.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Node 1 disconnected.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Node 1 disconnected.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Disconnecting from node 1 due to socket connection setup timeout. The timeout value is 25140 ms.
NetworkClient - Cancelled in-flight OFFSET_COMMIT NetworkClient - Node 1 disconnected.
FetchSessionHandler - Error sending fetch request (sessionId=730830382, epoch=108) to node 1: NetworkClient - Connection to node 1 could not be established. Broker may not be available.
org.apache.kafka.common.errors.DisconnectException NetworkClient - Node 1 disconnected.
consumer.internals.ConsumerCoordinator - Group coordinator is unavailable NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Cancelled in-flight API_VERSIONS request with correlation id 26 due to node 1 being disconnected.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.

99

Disconnect-test, Kafka

NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 22 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 23 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 24 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 25 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 26 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 27 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 28 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 29 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 30 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 31 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 32 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 33 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 34 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 35 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 36 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 37 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 38 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 39 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 40 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 41 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 42 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 43 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 44 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 45 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 46 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 47 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 48 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 49 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 50 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 51 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 52 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 53 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 54 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 55 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 56 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 57 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 58 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 59 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 60 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 61 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 62 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 63 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 64 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 65 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 66 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 67 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 68 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 69 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 70 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 71 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 72 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 73 sent to server

100

Disconnect-test, Kafka

NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 74 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 75 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 76 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 77 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 78 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 79 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 80 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 81 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 82 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 83 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 84 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 85 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 86 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 87 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 88 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 89 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 90 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 91 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 92 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 93 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 94 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 95 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 96 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 97 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 98 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 99 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 100 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 101 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 102 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 103 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 104 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 105 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 106 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 107 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 108 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 109 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 110 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 111 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 112 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 113 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 114 sent to server
NetworkClient - Cancelled in-flight API_VERSIONS request KafkaPrototypeProducer - 115 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 116 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 117 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 118 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 119 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 120 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 121 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 122 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 123 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 124 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 125 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 126 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 127 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 128 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 129 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 130 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 131 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 132 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 133 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 134 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 135 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 136 sent to server

101

Disconnect-test, Kafka

NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 137 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 138 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 139 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 140 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.KafkaPrototypeProducer - 141 sent to server
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 142 sent to server
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 (/10.212.26.245:9092) could not be established. Broker may not be available.
NetworkClient - Error while fetching metadata with correlation id 10781 : {Testtopic=LEADER_NOT_AVAILABLE}
NetworkClient - Error while fetching metadata with correlation id 10783 : {Testtopic=LEADER_NOT_AVAILABLE}
NetworkClient - Error while fetching metadata with correlation id 10785 : {Testtopic=LEADER_NOT_AVAILABLE}
NetworkClient - Error while fetching metadata with correlation id 10787 : {Testtopic=LEADER_NOT_AVAILABLE}
NetworkClient - Error while fetching metadata with correlation id 10789 : {Testtopic=LEADER_NOT_AVAILABLE}
NetworkClient - Error while fetching metadata with correlation id 10791 : {Testtopic=LEADER_NOT_AVAILABLE}
Metadata - Resetting the last seen epoch of partition Testtopic-0 to 0 since the associated topicId changed from null to of1l4XPcTguj81wE1Oh2Gg
consumer.internals.ConsumerCoordinator - Discovered group coordinator 10.212.26.245:9092 (id: 2147483646 rack: null)
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:

102

Disconnect-test, Kafka

consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
consumer.internals.ConsumerCoordinator - Offset commit failed on partition Testtopic-0 at offset 21:
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 142, Offset: 21
[Thread-0] INFO com.autostreams.kafka.ConsumerWorker - Value: 143, Offset: 22

Broker disconnect, network disconnect
ConsumerWorker - Value: 1, Offset: 0 KafkaPrototypeProducer - 1 sent to server
ConsumerWorker - Value: 2, Offset: 1 KafkaPrototypeProducer - 2 sent to server
ConsumerWorker - Value: 3, Offset: 2 KafkaPrototypeProducer - 3 sent to server
ConsumerWorker - Value: 4, Offset: 3 KafkaPrototypeProducer - 4 sent to server
ConsumerWorker - Value: 5, Offset: 4 KafkaPrototypeProducer - 5 sent to server

DOCKER NETWORK DISCONNECTED
NetworkClient -Node 2147483646 disconnected. NetworkClient - Node 1 disconnected.
NetworkClient -Cancelled in-flight OFFSET_COMMIT NetworkClient - Cancelled in-flight PRODUCE request with correlation id 9 due to node 1 being disconnected.
NetworkClient -Cancelled in-flight OFFSET_COMMIT Sender - Got error produce response with correlation id 9 on topic-partition Testtopic-0, retrying (2147483646 attempts left).
NetworkClient -Cancelled in-flight OFFSET_COMMIT NetworkException: Disconnected from node 1. Going to request metadata update now
NetworkClient -Cancelled in-flight OFFSET_COMMIT NetworkClient - Node 1 disconnected.
NetworkClient -Cancelled in-flight OFFSET_COMMIT NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient -Cancelled in-flight OFFSET_COMMIT NetworkClient - Node 1 disconnected.
NetworkClient -Cancelled in-flight OFFSET_COMMIT NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient -Cancelled in-flight OFFSET_COMMIT NetworkClient - Node 1 disconnected.
NetworkClient -Cancelled in-flight OFFSET_COMMIT NetworkClient - Connection to node 1 could not be established. Broker may not be available.
ConsumerCoordinatorGroup coordinator is unavailable or invalid due to cause: null.isDisconnected: true. NetworkClient - Node 1 disconnected.
NetworkClient -Node 1 disconnected. NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient -Cancelled in-flight FETCH request NetworkClient - Node 1 disconnected.
NetworkClient -Cancelled in-flight METADATA request NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient -Cancelled in-flight FIND_COORDINATOR request NetworkClient - Node 1 disconnected.
FetchSessionHandler Error sending fetch request to node 1: org.apache.kafka.common.errors.DisconnectExceptionNetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient -Node 1 disconnected. KafkaPrototypeProducer - 6 sent to server
NetworkClient - Connection to node 1 could not be established. Broker may not be available. KafkaPrototypeProducer - 7 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 8 sent to server
NetworkClient - Connection to node 1 could not be established. Broker may not be available. KafkaPrototypeProducer - 9 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 10 sent to server
NetworkClient - Connection to node 1 could not be established. Broker may not be available. KafkaPrototypeProducer - 11 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 12 sent to server
NetworkClient - Connection to node 1 could not be established. Broker may not be available. KafkaPrototypeProducer - 13 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 14 sent to server
NetworkClient - Connection to node 1 could not be established. Broker may not be available. KafkaPrototypeProducer - 15 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 16 sent to server
NetworkClient - Connection to node 1 could not be established. Broker may not be available. KafkaPrototypeProducer - 17 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 18 sent to server
NetworkClient - Connection to node 1 could not be established. Broker may not be available. KafkaPrototypeProducer - 19 sent to server
NetworkClient - Node 1 disconnected. KafkaPrototypeProducer - 20 sent to server
NetworkClient - Connection to node 1 could not be established. Broker may not be available.
NetworkClient - Node 1 disconnected.
NetworkClient - Connection to node 1 could not be established. Broker may not be available.
consumer.internals.ConsumerCoordinator - Discovered group coordinator

103

Disconnect-test, Kafka

ConsumerWorker - Value: 6, Offset: 5
ConsumerWorker - Value: 7, Offset: 6
ConsumerWorker - Value: 8, Offset: 7
ConsumerWorker - Value: 9, Offset: 8
ConsumerWorker - Value: 10, Offset: 9
ConsumerWorker - Value: 11, Offset: 10
ConsumerWorker - Value: 12, Offset: 11
ConsumerWorker - Value: 13, Offset: 12
ConsumerWorker - Value: 14, Offset: 13
ConsumerWorker - Value: 15, Offset: 14
ConsumerWorker - Value: 16, Offset: 15
ConsumerWorker - Value: 17, Offset: 16
ConsumerWorker - Value: 18, Offset: 17
ConsumerWorker - Value: 19, Offset: 18
ConsumerWorker - Value: 20, Offset: 19

104

Kafka Producer 1M raw

2 Data providers sending 10 000 msg/s each 2 Data providers sending 20 000 msg/s each
1 Producer in Ålesund 1 Producer in Ålesund
1 Broker running in Docker container on NTNU server 1 Broker running in Docker container on NTNU server
1 Consumer in Haugesund 1 Consumer in Haugesund

Run 1 Run 1
Messages Seconds Messages per second Messages Seconds Messages per second
100000 5.21 19201 100000 4.58 21843
100000 5.39 18570 100000 4.35 22977
100000 5.3 18875 100000 4.58 21843
100000 5.22 19149 100000 4.89 20470
100000 5.29 18889 100000 4.89 20445
100000 5.46 18331 100000 4.82 20742
100000 5.54 18063 100000 4.94 20263
100000 4.66 21440 100000 4.72 21190
100000 5.37 18628 100000 4.8 20833
100000 5.56 17988 100000 4.82 20764

Run 2 Run 2
Messages Seconds Messages per second Messages Seconds Messages per second
100000 5.05 19798 100000 5.39 18566
100000 5.32 18804 100000 5.09 19654
100000 6.32 15827 100000 4.67 21427
100000 6.16 16225 100000 5.47 18281
100000 5.57 17966 100000 5.02 19932 AVG per run 20kAVG per run 40k
100000 6.31 15847 100000 4.75 21070 5.902 4.882
100000 6.52 15330 100000 4.45 22487 5.916 4.994
100000 6.16 16244 100000 5.11 19588 6.056 4.57
100000 6.41 15593 100000 4.62 21626 6.04 4.978
100000 6.13 16315 100000 5.47 18291 5.858 4.806

Run 3 Run 3 5.992 4.902
Messages Seconds Messages per second Messages Seconds Messages per second 6.218 4.9
100000 6.44 15527 100000 4.72 21190 5.822 4.984
100000 6.32 15835 100000 5.47 18288 6.098 4.886
100000 6.11 16358 100000 4.16 24021 6.1 5.156
100000 6.11 16358 100000 3.95 25342
100000 6.09 16409 100000 4.5 22222
100000 5.62 17780 100000 4.88 20491
100000 6.22 16069 100000 5.39 18542
100000 6.23 16059 100000 4.9 20403
100000 6.35 15748 100000 5.39 18563
100000 6.2 16142 100000 5.79 17259

Run 4 Run 4
Messages Seconds Messages per second Messages Seconds Messages per second
100000 6.41 15612 100000 4.88 20504
100000 6.41 15600 100000 5.27 18960
100000 6.1 16401 100000 5.34 18719
100000 6.33 15807 100000 5.23 19138
100000 6.26 15976 100000 5.2 19219
100000 6.41 15590 100000 5.35 18709
100000 6.39 15651 100000 5.39 18552
100000 5.93 16860 100000 4.89 20449
100000 6.21 16097 100000 4.63 21588
100000 6.27 15948 100000 4.41 22675

Run 5 Run 5
Messages Seconds Messages per second Messages Seconds Messages per second
100000 6.4 15637 100000 4.84 20656
100000 6.14 16299 100000 4.79 20859
100000 6.45 15496 100000 4.1 24414
100000 6.38 15671 100000 5.35 18684
100000 6.08 16458 100000 4.42 22614 AVG per run 20kAVG per run 40k
100000 6.16 16236 100000 4.71 21231 17155 20551.8
100000 6.42 15586 100000 4.33 23105 17021.6 20147.6
100000 6.13 16302 100000 5.3 18871 16591.4 22084.8
100000 6.15 16254 100000 4.99 20052 16642 20383
100000 6.34 15767 100000 5.29 18900 17139.6 20886.4

16756.8 20448.6
16139.8 20589.8
17381 20100.2
16464 20532.4
16432 19577.8

105

Kafka Producer 1M raw

106

Kafka Consumer 1M raw

2 Data providers sending 10 000 msg/s each 2 Data providers sending 20 000 msg/s each
1 Producer in Ålesund 1 Producer in Ålesund
1 Broker running in Docker container 1 Broker running in Docker container
1 Consumer in Haugesund 1 Consumer in Haugesund

Run 1 Run 1
Messages Seconds Messages per second Messages Seconds Messages per second
100000 5.17 19353 100000 3.44 29044
200000 5.52 18129 100000 3.94 25380
300000 5.26 19004 100000 3.3 30312
400000 5.13 19496 100000 3.53 28336
500000 5.3 18867 100000 3.16 31645
600000 5.58 17927 100000 3.66 27337
700000 5.44 18385 100000 3.28 30487
800000 4.83 20716 100000 3.58 27972
900000 5.17 19327 100000 3.32 30120
1000000 5.61 17834 100000 3.82 26205

Run 2 Run 2
Messages Seconds Messages per second Messages Seconds Messages per second
100000 5.05 19817 100000 4.39 22789
100000 5.29 18910 100000 5.09 19642
100000 6.46 15470 100000 4.76 21003
100000 6.32 15822 100000 5.34 18716
100000 5.26 19018 100000 4.96 20165
100000 6.29 15895 100000 4.98 20072
100000 6.53 15313 100000 4.32 23137
100000 6.17 16217 100000 5.04 19860
100000 6.4 15629 100000 4.82 20746
100000 6.14 16289 100000 5.24 19080

Run 1 Run 3
Messages Seconds Messages per second Messages Seconds Messages per second
100000 6.42 15571 100000 4.77 20951

107

Kafka Consumer 1M raw

100000 6.33 15805 100000 5.62 17799
100000 6.11 16355 100000 4.58 21824
100000 6.16 16231 100000 3.63 27525
100000 6.05 16526 100000 4.21 23747
100000 5.61 17825 100000 4.86 20567
100000 6.23 16046 100000 5.41 18501
100000 6.24 16025 100000 4.91 20354
100000 6.33 15790 100000 5.41 18487
100000 6.19 16157 100000 5.75 17406

Run 1 Run 4
Messages Seconds Messages per second Messages Seconds Messages per second
100000 6.44 15540 100000 4.9 20429
100000 6.39 15661 100000 5.31 18850
100000 6.11 16371 100000 5.43 18426
100000 6.32 15832 100000 5.21 19197
100000 6.27 15951 100000 5.11 19580
100000 6.42 15588 100000 5.33 18775
100000 6.38 15681 100000 5.38 18580
100000 5.97 16742 100000 5 19992
100000 6.18 16178 100000 4.6 21720
100000 6.27 15956 100000 4.36 22951

Run 1 Run 5
Messages Seconds Messages per second Messages Seconds Messages per second
100000 6.38 15678 100000 5.09 19654
100000 6.18 16178 100000 4.54 22021
100000 6.42 15581 100000 4.08 24485
100000 6.45 15494 100000 5.56 17998
100000 6.08 16452 100000 4.21 23747
100000 6.21 16110 100000 4.79 20898
100000 6.29 15888 100000 4.77 20951
100000 6.14 16278 100000 4.83 20712

108

Kafka Consumer 1M raw

100000 6.17 16210 100000 4.98 20084
100000 6.31 15845 100000 5.24 19094

109

Disconnect-test, Pulsar

Disconnect test, Producer, raw data
ConsumerWorker - Value: 1, Offset: 0 PulsarPrototypeProducer - 1 sent to server
ConsumerWorker - Value: 2, Offset: 1 PulsarPrototypeProducer - 2 sent to server
ConsumerWorker - Value: 3, Offset: 2 PulsarPrototypeProducer - 3 sent to server
ConsumerWorker - Value: 4, Offset: 3 PulsarPrototypeProducer - 4 sent to server
ConsumerWorker - Value: 5, Offset: 4 PulsarPrototypeProducer - 5 sent to server

Producer Disconnect
. ClientCnx - Got exception {}
. NativeIoException: Connection reset by peer
. ClientCnx - Disconnected
. ClientCnx - Got exception {}
. NativeIoException: Connection reset by peer
. ClientCnx - Disconnected
. ConnectionHandler - Closed connection- Will try again in 0.1 s
. ConnectionHandler - Reconnecting after timeout
. ConnectionPool - Connected to server
. ConnectionPool - Connected to server
. ClientCnx - Connected through proxy to target broker at localhost:6650
. ProducerImpl - Creating producer on cnx
. ProducerImpl - Created producer on cnx
. ProducerImpl - Re-Sending 18 messages to server

ConsumerWorker - Value: 6, Offset: 5 PulsarPrototypeProducer - 6 sent to server
ConsumerWorker - Value: 7, Offset: 6 PulsarPrototypeProducer - 7 sent to server
ConsumerWorker - Value: 8, Offset: 7 PulsarPrototypeProducer - 8 sent to server
ConsumerWorker - Value: 9, Offset: 8 PulsarPrototypeProducer - 9 sent to server
ConsumerWorker - Value: 10, Offset: 9 PulsarPrototypeProducer - 10 sent to server
ConsumerWorker - Value: 11, Offset: 10 PulsarPrototypeProducer - 11 sent to server
ConsumerWorker - Value: 12, Offset: 11 PulsarPrototypeProducer - 12 sent to server
ConsumerWorker - Value: 13, Offset: 12 PulsarPrototypeProducer - 13 sent to server
ConsumerWorker - Value: 14, Offset: 13 PulsarPrototypeProducer - 14 sent to server
ConsumerWorker - Value: 15, Offset: 14 PulsarPrototypeProducer - 15 sent to server
ConsumerWorker - Value: 16, Offset: 15 PulsarPrototypeProducer - 16 sent to server
ConsumerWorker - Value: 17, Offset: 16 PulsarPrototypeProducer - 17 sent to server
ConsumerWorker - Value: 18, Offset: 17 PulsarPrototypeProducer - 18 sent to server
ConsumerWorker - Value: 19, Offset: 18 PulsarPrototypeProducer - 19 sent to server
ConsumerWorker - Value: 20, Offset: 19 PulsarPrototypeProducer - 20 sent to server

Disconnect test, Consumer, raw data
ConsumerWorker - Value: 1, Offset: 0 PulsarPrototypeProducer - 1 sent to server
ConsumerWorker - Value: 2, Offset: 1 PulsarPrototypeProducer - 2 sent to server
ConsumerWorker - Value: 3, Offset: 2 PulsarPrototypeProducer - 3 sent to server
ConsumerWorker - Value: 4, Offset: 3 PulsarPrototypeProducer - 4 sent to server
ConsumerWorker - Value: 5, Offset: 4 PulsarPrototypeProducer - 5 sent to server

110

Disconnect-test, Pulsar

CONSUMER DISCONNECTED
PulsarHandler - Forcing connection to close after keep-alive timeoutPulsarPrototypeProducer - 6 sent to server
ClientCnx - Disconnected PulsarPrototypeProducer - 7 sent to server
PulsarHandler - Forcing connection to close after keep-alive timeoutPulsarPrototypeProducer - 8 sent to server
ClientCnx -Disconnected PulsarPrototypeProducer - 9 sent to server
ConnectionHandler -Closed connection PulsarPrototypeProducer - 10 sent to server
ConnectionHandler - Reconnecting after timeout PulsarPrototypeProducer - 11 sent to server
ConnectionPool - Connected to server PulsarPrototypeProducer - 12 sent to server
ConnectionPool - Connected to server PulsarPrototypeProducer - 13 sent to server
ClientCnx - Connected through proxy to target broker PulsarPrototypeProducer - 14 sent to server
ConsumerImpl - Subscribing to topic PulsarPrototypeProducer - 15 sent to server
ConsumerImpl - Subscribed to topic PulsarPrototypeProducer - 16 sent to server
ConsumerWorker - Value: 6, Offset: 5 PulsarPrototypeProducer - 17 sent to server
ConsumerWorker - Value: 7, Offset: 6 PulsarPrototypeProducer - 18 sent to server
ConsumerWorker - Value: 8, Offset: 7 PulsarPrototypeProducer - 19 sent to server
ConsumerWorker - Value: 9, Offset: 8 PulsarPrototypeProducer - 20 sent to server
ConsumerWorker - Value: 10, Offset: 9
ConsumerWorker - Value: 11, Offset: 10
ConsumerWorker - Value: 12, Offset: 11
ConsumerWorker - Value: 13, Offset: 12
ConsumerWorker - Value: 14, Offset: 13
ConsumerWorker - Value: 15, Offset: 14
ConsumerWorker - Value: 16, Offset: 15
ConsumerWorker - Value: 17, Offset: 16
ConsumerWorker - Value: 18, Offset: 17
ConsumerWorker - Value: 19, Offset: 18
ConsumerWorker - Value: 20, Offset: 19

Shutdown docker compose test, Broker
ConsumerWorker - Value: 1, Offset: 0 PulsarPrototypeProducer - 1 sent to server
ConsumerWorker - Value: 2, Offset: 1 PulsarPrototypeProducer - 2 sent to server
ConsumerWorker - Value: 3, Offset: 2 PulsarPrototypeProducer - 3 sent to server
ConsumerWorker - Value: 4, Offset: 3 PulsarPrototypeProducer - 4 sent to server
ConsumerWorker - Value: 5, Offset: 4 PulsarPrototypeProducer - 5 sent to server
ConsumerWorker - Value: 6, Offset: 5 PulsarPrototypeProducer - 6 sent to server
ConsumerWorker - Value: 7, Offset: 6 PulsarPrototypeProducer - 7 sent to server
ConsumerWorker - Value: 8, Offset: 7 PulsarPrototypeProducer - 8 sent to server

SHUTDOWN DOCKER COMPOSE
ClientCnx - Closed consumer: 0 ClientCnx - Broker notification of Closed producer: 0
ConnectionHandler - Closed connection ConnectionHandler - Closed connection -- Will try again in 0.1 s
ClientCnx - Disconnected ClientCnx - Disconnected
ClientCnx - Disconnected ClientCnx - Disconnected
ConnectionHandler - Reconnecting after timeout ConnectionHandler - Reconnecting after timeout

111

Disconnect-test, Pulsar

ConnectionPool - Failed to open connection AnnotatedConnectException: Connection refused
ConnectionHandler - Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler - Could not get connection to broker ConnectException: Connection refused -- Will try again in 0.2 s
ConnectionHandler -Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Failed to open connection AnnotatedConnectException: Connection refused
ConnectionHandler -Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler -Could not get connection to broker AnnotatedConnectException: Connection refused - Will try again in 0.382 s
ConnectionHandler -Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Failed to open connection AnnotatedConnectException: Connection refused
ConnectionHandler -Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler - Could not get connection to broker AnnotatedConnectException: Connection refused - Will try again in 0.752 s
ConnectionHandler -Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Failed to open connection AnnotatedConnectException: Connection refused
ConnectionHandler -Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler -Could not get connection to broker AnnotatedConnectException: Connection refused -- Will try again in 1.503 s
ConnectionHandler -Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Failed to open connection AnnotatedConnectException: Connection refused
ConnectionHandler -Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler -Could not get connection to broker AnnotatedConnectException: Connection refused -- Will try again in 3.047 s
ConnectionHandler -Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Failed to open connection AnnotatedConnectException: Connection refused
ConnectionHandler -Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler -Could not get connection to broker AnnotatedConnectException: Connection refused -- Will try again in 5.81 s
ConnectionHandler -Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Failed to open connection AnnotatedConnectException: Connection refused
ConnectionHandler -Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler -Could not get connection to broker AnnotatedConnectException: Connection refused -- Will try again in 11.675 s
ConnectionHandler -Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Connected to server ConnectionPool - Connected to server
ConnectionPool - Connected to server ConnectionPool - Connected to server
ClientCnx - Connected through proxy to target broker ClientCnx - Connected through proxy to target broker at localhost:6650
ConsumerImpl -Subscribing to topic ProducerImpl - Creating producer on cnx
ConsumerImpl -Subscribed to topic ProducerImpl - Created producer on cnx
ConsumerWorker - Value: 9, Offset: 8 ProducerImpl - Re-Sending 25 messages to server
ConsumerWorker - Value: 10, Offset: 9 PulsarPrototypeProducer - 9 sent to server
ConsumerWorker - Value: 11, Offset: 10 PulsarPrototypeProducer - 10 sent to server
ConsumerWorker - Value: 12, Offset: 11 PulsarPrototypeProducer - 11 sent to server
ConsumerWorker - Value: 13, Offset: 12 PulsarPrototypeProducer - 12 sent to server
ConsumerWorker - Value: 14, Offset: 13 PulsarPrototypeProducer - 13 sent to server
ConsumerWorker - Value: 15, Offset: 14 PulsarPrototypeProducer - 14 sent to server
ConsumerWorker - Value: 16, Offset: 15 PulsarPrototypeProducer - 15 sent to server
ConsumerWorker - Value: 17, Offset: 16 PulsarPrototypeProducer - 16 sent to server
ConsumerWorker - Value: 18, Offset: 17 PulsarPrototypeProducer - 17 sent to server
ConsumerWorker - Value: 19, Offset: 18 PulsarPrototypeProducer - 18 sent to server
ConsumerWorker - Value: 20, Offset: 19 PulsarPrototypeProducer - 19 sent to server

PulsarPrototypeProducer - 20 sent to server

112

Disconnect-test, Pulsar

Shutdown server while running test, Broker
ConsumerWorker - Value: 1, Offset: 0 PulsarPrototypeProducer - 1 sent to server
ConsumerWorker - Value: 2, Offset: 1 PulsarPrototypeProducer - 2 sent to server
ConsumerWorker - Value: 3, Offset: 2 PulsarPrototypeProducer - 3 sent to server
ConsumerWorker - Value: 4, Offset: 3 PulsarPrototypeProducer - 4 sent to server
ConsumerWorker - Value: 5, Offset: 4 PulsarPrototypeProducer - 5 sent to server
ConsumerWorker - Value: 6, Offset: 5 PulsarPrototypeProducer - 6 sent to server
ConsumerWorker - Value: 7, Offset: 6 PulsarPrototypeProducer - 7 sent to server
ConsumerWorker - Value: 8, Offset: 7 PulsarPrototypeProducer - 8 sent to server
ConsumerWorker - Value: 9, Offset: 8 PulsarPrototypeProducer - 9 sent to server
ConsumerWorker - Value: 10, Offset: 9 PulsarPrototypeProducer - 10 sent to server
ConsumerWorker - Value: 11, Offset: 10 PulsarPrototypeProducer - 11 sent to server
ConsumerWorker - Value: 12, Offset: 11 PulsarPrototypeProducer - 12 sent to server
ConsumerWorker - Value: 13, Offset: 12 PulsarPrototypeProducer - 13 sent to server
ConsumerWorker - Value: 14, Offset: 13 PulsarPrototypeProducer - 14 sent to server
ConsumerWorker - Value: 15, Offset: 14 PulsarPrototypeProducer - 15 sent to server

SHUTDOWN SERVER
ClientCnx -Broker notification of Closed consumer: 0 ClientCnx - Broker notification of Closed producer: 0
ConnectionHandler -Closed connection Will try again in 0.1 sConnectionHandler - Closed connection -- Will try again in 0.1 s
ClientCnx - Disconnected ClientCnx - Disconnected
ClientCnx - Disconnected ClientCnx - Disconnected
ConnectionHandler - Reconnecting after timeout ConnectionHandler - Reconnecting after timeout
ConnectionPool -Connection refused AnnotatedConnectException: Connection refused
ConnectionHandler - Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler - Could not get connection to broker AnnotatedConnectException: Connection refused -- Will try again in 0.187 s
ConnectionHandler - Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Failed to open connection AnnotatedConnectException: Connection refused
ConnectionHandler - Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler - Could not get connection to broker AnnotatedConnectException: Connection refused -- Will try again in 0.382 s
ConnectionHandler - Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Failed to open connection AnnotatedConnectException: Connection refused
ConnectionHandler - Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler - Could not get connection to broker AnnotatedConnectException: Connection refused -- Will try again in 0.747 s
ConnectionHandler - Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Failed to open connection AnnotatedConnectException: Connection refused
ConnectionHandler - Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler - Could not get connection to broker AnnotatedConnectException: Connection refused -- Will try again in 1.522 s
ConnectionHandler - Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Failed to open connection AnnotatedConnectException: Connection refused
ConnectionHandler - Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler - Could not get connection to broker AnnotatedConnectException: Connection refused -- Will try again in 3.034 s
ConnectionHandler - Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed

113

Disconnect-test, Pulsar

ConnectionPool - Failed to open connection ConnectTimeoutException: connection timed out
ConnectionHandler - Error connecting to broker ConnectTimeoutException: connection timed out
ConnectionHandler - Could not get connection to broker ConnectTimeoutException: connection timed out -- Will try again in 6.139 s
ConnectionHandler - Reconnecting after connection was closedConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Failed to open connection ProducerImpl - Message send timed out. Failing 30 messages
ConnectionHandler - Error connecting to broker ConnectTimeoutException: connection timed out
ConnectionHandler - Could not get connection to broker ConnectTimeoutException: connection timed out
ConnectionHandler - Reconnecting after connection was closedConnectTimeoutException: connection timed out -- Will try again in 0.1 s
ConnectionPool - Failed to open connection ConnectionHandler - Reconnecting after connection was closed
ConnectionHandler - Error connecting to broker AnnotatedConnectException: No route to host
ConnectionHandler - Could not get connection to broker AnnotatedConnectException: No route to host
ConnectionHandler - Reconnecting after connection was closedAnnotatedConnectException: No route to host -- Will try again in 24.625 s
ConnectionPool - Failed to open connection ConnectionHandler - Reconnecting after connection was closed
ConnectionHandler - Error connecting to broker AnnotatedConnectException: Connection refused
ConnectionHandler - Could not get connection to broker AnnotatedConnectException: Connection refused
ConnectionHandler - Reconnecting after connection was closedAnnotatedConnectException: Connection refused -- Will try again in 49.24 s
ConnectionPool - Connected to server ProducerImpl - Message send timed out. Failing 31 messages
ConnectionPool - Connected to server ProducerImpl - Message send timed out. Failing 30 messages
ClientCnx - Connected through proxy ConnectionHandler - Reconnecting after connection was closed
ConsumerImpl - Subscribing to topic AnnotatedConnectException: Connection refused
ConsumerImpl - Subscribed to topic AnnotatedConnectException: Connection refused
ConsumerWorker - Value: 168, Offset: 167 AnnotatedConnectException: Connection refused -- Will try again in 55.853 s

ProducerImpl - Message send timed out. Failing 30 messages
ProducerImpl - Message send timed out. Failing 31 messages
ConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Connected to server
ConnectionPool - Connected to server
ClientCnx - Connected through proxy to target broker at localhost:6650
ProducerImpl - Creating producer on cnx
ProducerImpl - Created producer on cnx
ProducerImpl - Re-Sending 11 messages to server
PulsarPrototypeProducer - 168 sent to server

Disconnect Docker network while running test, Broker
ConsumerWorker - Value: 1, Offset: 0 PulsarPrototypeProducer - 1 sent to server
ConsumerWorker - Value: 2, Offset: 1 PulsarPrototypeProducer - 2 sent to server
ConsumerWorker - Value: 3, Offset: 2 PulsarPrototypeProducer - 3 sent to server
ConsumerWorker - Value: 4, Offset: 3 PulsarPrototypeProducer - 4 sent to server
ConsumerWorker - Value: 5, Offset: 4 PulsarPrototypeProducer - 5 sent to server
ConsumerWorker - Value: 6, Offset: 5 PulsarPrototypeProducer - 6 sent to server
ConsumerWorker - Value: 7, Offset: 6 PulsarPrototypeProducer - 7 sent to server
ConsumerWorker - Value: 8, Offset: 7 PulsarPrototypeProducer - 8 sent to server
ConsumerWorker - Value: 9, Offset: 8 PulsarPrototypeProducer - 9 sent to server

114

Disconnect-test, Pulsar

ConsumerWorker - Value: 10, Offset: 9 PulsarPrototypeProducer - 10 sent to server
ConsumerWorker - Value: 11, Offset: 10 PulsarPrototypeProducer - 11 sent to server
ConsumerWorker - Value: 12, Offset: 11 PulsarPrototypeProducer - 12 sent to server
ConsumerWorker - Value: 13, Offset: 12 PulsarPrototypeProducer - 13 sent to server
ConsumerWorker - Value: 14, Offset: 13 PulsarPrototypeProducer - 14 sent to server
ConsumerWorker - Value: 15, Offset: 14 PulsarPrototypeProducer - 15 sent to server
ConsumerWorker - Value: 16, Offset: 15 PulsarPrototypeProducer - 16 sent to server
ConsumerWorker - Value: 17, Offset: 16 PulsarPrototypeProducer - 17 sent to server
ConsumerWorker - Value: 18, Offset: 17 PulsarPrototypeProducer - 18 sent to server
ConsumerWorker - Value: 19, Offset: 18 PulsarPrototypeProducer - 19 sent to server
ConsumerWorker - Value: 20, Offset: 19 PulsarPrototypeProducer - 20 sent to server

DISCONNECT DOCKER NETWORK, BROKER
ConsumerWorker - Value: 21, Offset: 20 ClientCnx - [10.212.26.245/10.212.26.245:6650] Got exception {}
ConsumerWorker - Value: 22, Offset: 21 NativeIoException: readAddress(..) failed: Connection reset by peer
ConsumerWorker - Value: 23, Offset: 22 ClientCnx - Disconnected
ConsumerWorker - Value: 24, Offset: 23 ConnectionHandler - Closed connection -- Will try again in 0.1 s
ConsumerWorker - Value: 25, Offset: 24 ConnectionHandler - Reconnecting after timeout

ClientCnx - Got exception {}
NativeIoException: readAddress(..) failed: Connection reset by peer
ClientCnx - Disconnected
BinaryProtoLookupService - Disconnected from server
ConnectionHandler - ConnectException: Disconnected from server
ConnectException: Disconnected from server -- Will try again in 0.198 s
ConnectionHandler - Reconnecting after connection was closed
AnnotatedConnectException: Connection refused
AnnotatedConnectException: Connection refused
AnnotatedConnectException: Connection refused -- Will try again in 0.372 s
ConnectionHandler - Reconnecting after connection was closed
AnnotatedConnectException: Connection refused
AnnotatedConnectException: Connection refused
AnnotatedConnectException: Connection refused -- Will try again in 0.788 s
ConnectionHandler - Reconnecting after connection was closed
AnnotatedConnectException: Connection refused
AnnotatedConnectException: Connection refused
AnnotatedConnectException: Connection refused -- Will try again in 1.447 s
ConnectionHandler - Reconnecting after connection was closed
AnnotatedConnectException: Connection refused
AnnotatedConnectException: Connection refused
AnnotatedConnectException: Connection refused -- Will try again in 3.142 s
ConnectionHandler - Reconnecting after connection was closed
ConnectionPool - Connected to server
ConnectionPool - Connected to server
ClientCnx - Connected through proxy to target broker at localhost:6650
ProducerImpl - Creating producer on cnx
ProducerImpl - Created producer on cnx
ProducerImpl - Re-Sending 7 messages to server

115

Disconnect-test, Pulsar

PulsarPrototypeProducer - 21 sent to server
PulsarPrototypeProducer - 22 sent to server
PulsarPrototypeProducer - 23 sent to server
PulsarPrototypeProducer - 24 sent to server
PulsarPrototypeProducer - 25 sent to server
PulsarPrototypeProducer - 26 sent to server
PulsarPrototypeProducer - 27 sent to server
PulsarPrototypeProducer - 28 sent to server
PulsarPrototypeProducer - 29 sent to server
PulsarPrototypeProducer - 30 sent to server
PulsarPrototypeProducer - 31 sent to server
PulsarPrototypeProducer - 32 sent to server
PulsarPrototypeProducer - 33 sent to server

116

Pulsar Producer 1M raw

2 Data providers sending 10 000 msg/s each 2 Data providers sending 20 000 msg/s each
1 Producer in Ålesund 1 Producer in Ålesund
1 Broker running in Docker container on NTNU server 1 Broker running in Docker container on NTNU server
1 Consumer in Haugesund 1 Consumer in Haugesund

Run 1 Run 1
Messages Seconds Messages per second Messages Seconds Messages per second
100000 6.43 15554 100000 5.16 19379
100000 5.62 17806 100000 4.7 21294
100000 5.81 17223 100000 3.56 28129
100000 6.13 16310 100000 4.74 21097
100000 5.62 17784 100000 4.06 24660
100000 5.25 19051 100000 3.18 31446
100000 5.95 16818 100000 4.24 23584
100000 6.46 15477 100000 3.67 27270
100000 6.67 14992 100000 5.06 19766
100000 6.39 15644 100000 4.89 20437

Run 2 Run 2
Messages Seconds Messages per second Messages Seconds Messages per second
100000 5.38 18597 100000 5.56 17975
100000 5.53 18083 100000 3.7 27034
100000 5.17 19353 100000 4.29 23304
100000 5.2 19230 100000 5.17 19353
100000 5.31 18828 100000 3.87 25826 AVG per run 20kAVG per run 40k
100000 5.58 17921 100000 3.82 26178 5.458 4.638
100000 5.23 19138 100000 3.58 27940 5.41 4.226
100000 5.25 19043 100000 4.77 20959 5.46 4.504
100000 5.1 19627 100000 3.57 28050 5.458 4.472
100000 5.4 18535 100000 3.7 27056 5.508 3.934

Run 3 Run 3 5.458 4.1
Messages Seconds Messages per second Messages Seconds Messages per second 5.584 4.164
100000 5.12 19538 100000 5.46 18331 5.516 4.166
100000 5.16 19387 100000 5.06 19762 5.542 3.974
100000 5.16 19376 100000 5.47 18284 5.724 4.132
100000 5.22 19146 100000 3.57 27995
100000 5.54 18044 100000 3.43 29154
100000 5.53 18092 100000 4.28 23380
100000 5.17 19349 100000 4.89 20445
100000 5.14 19451 100000 3.83 26089
100000 5.25 19043 100000 4.16 24021
100000 5.83 17158 100000 4.17 23975

Run 4 Run 4
Messages Seconds Messages per second Messages Seconds Messages per second
100000 5.19 19252 100000 3.85 26007
100000 5.63 17777 100000 3.86 25940
100000 5.85 17091 100000 4.47 22391
100000 5.25 19040 100000 4.47 22351
100000 5.49 18228 100000 4.43 22583
100000 5.53 18096 100000 4.75 21065
100000 5.36 18660 100000 4.26 23463
100000 5.12 19527 100000 4.78 20938
100000 5.24 19087 100000 3.3 30312
100000 5.31 18835 100000 4.16 24050

Run 5 Run 5
Messages Seconds Messages per second Messages Seconds Messages per second
100000 5.17 19342 100000 3.16 31635
100000 5.11 19573 100000 3.81 26253
100000 5.31 18843 100000 4.73 21141
100000 5.49 18218 100000 4.41 22696
100000 5.58 17934 100000 3.88 25799 AVG per run 20kAVG per run 40k
100000 5.4 18515 100000 4.47 22356 18456.6 22665.4
100000 6.21 16097 100000 3.85 26001 18525.2 24056.6
100000 5.61 17828 100000 3.78 26476 18377.2 22649.8
100000 5.45 18358 100000 3.78 26448 18388.8 22698.4
100000 5.69 17577 100000 3.74 26773 18163.6 25604.4

18335 24885
18012.4 24286.6
18265.2 24346.4
18221.4 25719.4
17549.8 24458.2

117

Pulsar Consumer 1M raw

2 Data providers sending 10 000 msg/s each 2 Data providers sending 20 000 msg/s each
1 Producer in Ålesund 1 Producer in Ålesund
1 Broker running in Docker container 1 Broker running in Docker container
1 Consumer in Haugesund 1 Consumer in Haugesund

Run 1 Run 1
Messages Seconds Messages per second Messages Seconds Messages per second
100000 6.4 15622 100000 5.19 19282
100000 5.66 17667 100000 4.66 21459
100000 5.81 17217 100000 3.59 27894
100000 6.12 16350 100000 4.75 21048
100000 5.62 17784 100000 4.08 24491
100000 5.3 18864 100000 3.13 31918
100000 5.94 16823 100000 4.25 23523
100000 6.45 15501 100000 3.7 27048
100000 6.76 14803 100000 5.08 19669
100000 6.37 15703 100000 4.94 20234

Run 2 Run 2
Messages Seconds Messages per second Messages Seconds Messages per second
100000 5.38 18583 100000 5.48 18234
200000 5.51 18142 100000 3.72 26917
300000 5.2 19245 100000 4.38 22815
400000 5.37 18615 100000 5.28 18925
500000 5.14 19447 100000 3.67 27240
600000 5.59 17901 100000 3.85 25994
700000 5.28 18957 100000 3.59 27855
800000 5.65 17714 100000 4.83 20695
900000 5.46 18325 100000 3.48 28768
1000000 4.62 21635 100000 3.81 26239

Run 3 Run 3
Messages Seconds Messages per second Messages Seconds Messages per second
100000 5.14 19466 100000 5.55 18018
100000 5.16 19394 200000 4.97 20140
100000 5.19 19278 300000 5.39 18559
100000 5.23 19124 400009 3.56 28121
100000 6.22 16084 500000 3.47 28826
100000 4.87 20521 600000 4.34 23030
100000 5.19 19282 700000 4.93 20271
100000 5.18 19312 800000 3.72 26874
100000 5.24 19080 900001 4.21 23736
100000 5.97 16747 1000001 4.17 23992

Run 4 Run 4
Messages Seconds Messages per second Messages Seconds Messages per second
100000 5.06 19755 100003 3.85 25960
100000 5.73 17439 200000 3.95 25303
100000 5.82 17176 300004 4.34 23062
100000 5.57 17943 400000 4.62 21645
100000 5.12 19523 500000 4.38 22857
100000 6.17 16196 600000 4.75 21043
100000 4.72 21172 700000 4.3 23255
100000 5.21 19186 800000 4.7 21272
100000 5.22 19164 900000 3.28 30478
100000 5.28 18928 1000001 4.18 23952

Run 5 Run 5
Messages Seconds Messages per second Messages Seconds Messages per second

118

Pulsar Consumer 1M raw

100000 5.2 19230 100000 3.22 31065
100000 5.1 19607 200006 3.79 26385
100000 5.35 18695 300007 4.86 20567
100000 5.47 18298 400000 4.35 23004
100000 5.65 17705 500007 4 25018
100000 5.49 18228 600000 4.28 23375
100000 6.17 16207 700003 4.03 24813
100000 5.55 18018 800000 3.61 27670
100000 5.46 18328 900000 3.78 26448
100000 5.92 16891 1000000 3.78 26476

119

Appendix 4: AutoStreams’ style guide

120

i

JavaDoc 2
Example, JavaDoc 2
Annotations 2

The usage of “var” 2

Tabs vs spaces 3

The naming of files and directories 3
Directories 3
Java class files 3

Git 3
Branches and Git Flow 3
Naming a branch 3
Master branch 4

Can merge into 4
Can branch off from 4
Can be pushed to 4

Release branch 4
Tagging 4
Naming 4
Can merge into 4
Can branch from 4
Can be pushed to 5

Develop branch 5
Can merge into 5
Can branch off from 5
Can be pushed to 5

Feature Branches 5
Can merge into 5
Can branch from 5
Can be pushed to 5

Hotfix 6
Can merge into 6
Can branch from 6
Can be pushed to 6

121

AutoStreams style guide 2

JavaDoc
Document every class and method, private and public, with JavaDoc. Avoid commenting code
within a method. If there is a need to comment code within a method, try to rewrite the method
instead.

Example, JavaDoc
This example illustrates the general style of the JavaDoc. Parameter order, spacing, and use of
periods should be done the same way in the code as it is in this example.

/**

* This is a description of the class/method.

*

* @param1 description of param1.

* @param2 description of param2.

* @throws description of exceptions thrown.

* @return description of return value

*/

Method signature (args) {}

Annotations
Do’s

● Use @version and @since on classes (not methods)
● Use @param for every parameter when writing JavaDoc.
● Use @throws when the method throws exceptions.
● Use @return whenever the method returns a value
● Use the same order of annotations as described in the example above

Don'ts
● Use @author

The usage of “var”
Var is not to be used under any circumstance due to the following reasons

● It is difficult to define when and when not to use it, leading to inconsistency
● Not as explicit as using specific types
● Improves readability on GitHub
● More compatible for porting to Java 8 (Var is a Java 10 feature)

122

AutoStreams style guide 3

Tabs vs spaces
● Indentation of Java files has to be done with 4 spaces.
● The indentation of YAML has to be 2 spaces.

The naming of files and directories

Directories
All directories are lowercase with a hyphen connecting separate words.

Example of a directory name:
kafka-prototype-producer

Java class files
All Java class files are named with CamelCaps. File and class names must match. Naming must
be relevant, coherent, descriptive, and grammatically correct.

Example of a Java class name:
DataProducer.java

Git

Branches and Git Flow
Branches shall be structured according to Vincent Driessen’s Git Flow, utilizing three main
branches:

● Master
● Release
● Develop

Naming a branch
Every branch name is to be written using only lowercase characters. When the name of a
branch is composed of multiple words, each word is to be separated with the underscore
symbol.

Example of a branch name
branch_name_with_multiple_words

123

AutoStreams style guide 4

Master branch
The master branch must never be committed to, only merged to from the release branch. The
name of the master branch is only “master”.

Can merge into
● None

Can branch off from
● None

Can be pushed to
No

Release branch
Release branches represent new releases of the product. release branches always branch out
from develop, never any other branch. The release branch is the final stage before changes are
merged into master.

Tagging
Every release has to be tagged with the new version using the command `git tag -a
major.minor.patch`

Example of version with major, minor, and patch
1.2.0

Naming
Naming of a release branch has the extra step of adding the major and minor version of the
release to the end of the branch name.

Example of name
release-2.1

Can merge into
● Master
● Develop

Can branch from
● Develop

124

AutoStreams style guide 5

Can be pushed to
No

Develop branch
Develop is the main branch for changes during development. All new features must merge into
develop before they can be introduced elsewhere. This centralizes changes to one branch.

Develop merges into Release when the product is approaching a new release.
Develop must never be committed to, only merged with the release, hotfix, and feature
branches.

Can merge into
● Master

Can branch off from
● None (initially master)

Can be pushed to
No

Feature Branches
All new work is to be done in a feature branch relating to and named after the feature to be
implemented. Feature branches always branch out from develop, never any other branch.

Example of feature branch name:
feature/consumer

Feature branches are always merged into the develop branch.

Can merge into
● Develop

Can branch from
● Develop

Can be pushed to
Yes

125

AutoStreams style guide 6

Hotfix
Hotfix branches follow the same naming convention as features.

Example of hotfix branch name:
hotfix/infinite_loops

Can merge into
● Develop
● Master

Can branch from
● Master

Can be pushed to
No

126

Appendix 5: Pre-Project Plan

127

Tjeneste for Datastrømming
Forprosjektplan

Versjon 1.2

128

Forprosjektsplan i

Revisjonshistorie
Dato Versjon Beskrivelse Forfatter

10/01/2022 1.0 Første Utkast Tomas Klungerbo

Olsen

Lars Ivar Ramberg

19/01/2022 1.1 Revidert Utkast Tomas Klungerbo

Olsen

Lars Ivar Ramberg

28/01/2022 1.2 Ferdigstilt Utkast Tomas Klungerbo

Olsen

Lars Ivar Ramberg

129

Forprosjektsplan ii

Innholdsfortegnelse
1. Mål og rammer ... 3

1.1 Orientering .. 3

1.2 Problemstilling / prosjektbeskrivelse og resultatmål .. 3

1.3 Effektmål ... 3

1.4 Rammer .. 4

2. Organisering ... 4

Prosjektgruppen ... 4

Tomas Klungerbo Olsen ... 4

Lars Ivar Ramberg .. 4

Veiledere .. 4

Saleh Abdel-Afou Alaliyat ... 4

Stakeholders/Eksterne oppdragsgivere ... 4

Asle Olsen Gaasø .. 4

3. Gjennomføring .. 4

3.1. Hovedaktiviteter .. 4

3.2. Milepæler ... 6

4. Oppfølging og kvalitetssikring ... 6

4.1 Kvalitetssikring ... 6

4.2 Rapportering .. 6

5. Risikovurdering ... 7

130

Forprosjektsplan 3

1. Mål og rammer

1.1 Orientering
Denne oppgaven ble valgt etter samtale med AutoStore AS. En av gruppemedlemmene

er ansatt i AutoStore, og oppgaven ble foreslått etter samtale med ansatte i avdelingen

for overvåkning og vedlikehold.

Oppgaven ble valgt fordi den byr på en spennende reell problemstilling, og mulighet til å

utforske og implementere moderne teknologier for strømming og behandling av data. I

tillegg føler gruppen at de har tilstrekkelig kompetanse til å håndtere en slik oppgave.

1.2 Problemstilling / prosjektbeskrivelse og resultatmål
Målet med oppgaven er å implementere en tjeneste for å strømme data fra AutoStore

installasjoner i sanntid. Data fra AutoStore anlegg leveres nå i batcher, der data sendes

fra AutoStore anlegg til en sentral server på gitte tidspunkter. Data samles over en hel

dag, og all data sendes til den sentrale serveren på et bestemt tidspunkt neste dag.

Relevante problemstillinger vil være utfordringer knyttet til å strømme data over

internett. I tillegg til å implementere en slik strømming må løsningen kunne håndtere

tap av tilkobling og strømming over svake nettverk. I tillegg må sikkerhet tas i

betraktning, da dataene som skal strømmes vil være sensitive. Til slutt må skalering

betraktes, da det i dag eksisterer hundrevis av AutoStore anlegg, og flere vil bygges i

fremtiden.

Når prosjektet er ferdig skal det minimum være implementert en prototype for

datastrømmingen, som skal kunne strømme data fra en AutoStore installasjon til en

mottaker.

Hvis prosjektet passerer prototype stadiet vil et større mål være å ha en generell løsning

som kan strømme data i sanntid til en mottaker. I forbindelse med denne spesifikke

oppgaven vil det bety at flere anlegg vil kunne strømme sin data, og flere mottakere kan

motta data fra en eller flere anlegg.

1.3 Effektmål
For gruppen vil følgende mål være relevante:

- Implementere en strømmeløsning som kan strømme faktiske data fra

installasjoner

- Lære om og implementere feil-strategier for strømmetjenester (hvordan håndtere

tap av tilkobling)

- Utforme en strømmeløsning som er generell nok til å strømme andre data enn

kun AutoStore data

- Lære mer om skytjenester og moderne strømmeteknologier

For bedriften vil følgende gevinster og resultater være relevante:

- Benytte seg av strømmetjenesten for å følge opp AutoStore anlegg i sanntid

- Benytte seg av sanntidsinformasjon for å foreta forebyggende vedlikehold

- Bygge videre på strømmetjesten etter prosjektet for å utvide kapasiteten

- Kombinere strømmet sanntidsdata med eksisterende historisk data for å danne et

helhetlig bilde av AutoStore anlegg, og hendelser ved anlegg.

131

Forprosjektsplan 4

1.4 Rammer
Det vil være nødvendig for alle gruppemedlemmer å ha en datamaskin og internett-

tilkobling.

Minst en av gruppemedlemmene, helst begge, må ha tilgang til AutoStore sitt interne

nettverk for få tilgang til data. Alternativt kan det avtales bruk av dummy-data, gitt at

dataene kan modellere use-caset.

For å håndtere datastrømmingen vil det være behov for skytjenester. Det forutsettes av

prosjektgruppen at AutoStore kan tilby de nødvendige skytjenestene og rammeverkene

for å implementere den tiltenkte strømme-løsningen. Gruppen har avtalt med AutoStore

at kostnader for skytjenester kan dekkes underveis gitt at gruppen kommuniserer

behov.

2. Organisering

Prosjektgruppen

Tomas Klungerbo Olsen

Student, utvikler for prosjektet, Scrum Master

Lars Ivar Ramberg

Student, utvikler for prosjektet, Product Owner

Veiledere

Saleh Abdel-Afou Alaliyat

Førsteamanuensis, Instituttet for IKT og Realfag ved NTNU Ålesund

Stakeholders/Eksterne oppdragsgivere

Asle Olsen Gaasø

Manager, Monitoring and Maintenance, R&D, AutoStore AS

3. Gjennomføring

3.1. Hovedaktiviteter
Hva Hvem Hvorfor Hvordan Når Forutsetnin

ger

Planleggin

g

Tomas Klungerbo

Olsen

Lars Ivar

Ramberg

Identifisere

behov for

prosjektet.

Planlegge

prosjektet

Analyse,

samtale,

drøfting

Januar,

frem til

28.01.202

2

Tilstedevæ

relse, tidlig

start for å

komme i

mål

132

Forprosjektsplan 5

Skriving av

Møterefera

ter

Dokumentansvarl

ig/sekretær

Dokumentasjo

n

Kontinuerl

ig

dokument

asjon.

Lagres i

Confluenc

e eller

Google

Drive

Under og

etter

møter

Tilgang til

Confluence

Research Tomas Klungerbo

Olsen

Lars Ivar

ramberg

Identifisere

relevante

teknologier

basert på

behov.

Internetts

øk,

Lesing av

artikler og

dokument

asjon.

Rapporteri

ng av

funn

Research-

fase

24.01.202

2 -

04.02.202

2,Kontinue

rlig

Oversikt

over behov

for

prosjektet

Utvikling

av løsning

Tomas Klungerbo

Olsen

Lars Ivar

Ramberg

Møte

prosjektmål

og levere

produkt til

stakeholder

Utvikling,

skriving

av kode

Etter

planleggin

g frem til

innleverin

g

28.01.202

2 -

20.05.202

2

Fullført

planleggin

gsfase.

Innleverin

g av

rapport til

veileder

Tomas Klungerbo

Olsen

Lars Ivar

Ramberg

Få

tilbakemelding

på rapport

Ha klart et

utkast

innen dato

Senest

06.05.202

2

Utkast må

være klart

og leveres.

Møter med

stakeholde

r og

veiledning

Tomas Klungerbo

Olsen

Lars Ivar

Ramberg

Veileder og

Stakeholder

Få

tilbakemelding

på utvikling

Digitale

møter

Annenhver

uke med

start i uke

2

Møteinnkall

inger må

sendes ut.

Tidsrom

må passe

for alle

deltakere

Innleverin

g av

rapport

Tomas Klungerbo

Olsen

Lars Ivar

Ramberg

Fullføre

prosjektet

Innleverin

g i

Inspera

20.05.202

2

Prosjektet

må være

klart, og

rapport må

være

ferdigstilt

133

Forprosjektsplan 6

Innleverin

g av kode

Tomas Klungerbo

Olsen

Lars Ivar

Ramberg

Fullføre

prosjektet,

Presentere

resultat til

oppdragsgiver

Jobbe

målrettet

og

strukturer

t med

prosjektet

Til

oppdragsg

iver:

13.05.202

2 Til

NTNU:

20.05.202

2

Prosjektet

må være

klart, og

rapport må

være

ferdigstilt

3.2. Milepæler
Dato Hendelse

28.01.2022 Innlevering av forprosjektplan

11.02.2022 Innlevering av research-materiale til

AutoStore

01.04.2022 Innlevering av prototyper til AutoStore

06.05.2022 Innlevering av rapport til veileder

13.05.2022 Innlevering av kode til AutoStore

18.05.2022 Innlevering av poster

20.05.2022 Innlevering av rapport

4. Oppfølging og kvalitetssikring

4.1 Kvalitetssikring
For å sikre kvalitet vil det brukes en kombinasjon av intern kvalitetssikring, og ekstern

veiledning. Ekstern forstås i denne forstand som utenfor studentgruppen.

Gruppen har definert prosesser for kvalitetssikring i sin arbeidsavtale. I avtalen står det

at alt arbeid, både kode og dokumenter, skal kvalitetssikres og godkjennes av

gruppemedlemmet som ikke er forfatter. I praksis betyr dette at alt arbeid skal sees av

begge medlemmer før det blir en del av endelig løsning eller rapport.

4.2 Rapportering
Rapportering av fremgang skal skje annenhver uke fra starten av prosjektet til slutten av

prosjektet. Rapportering skjer til veileder og kontaktperson hos AutoStore AS (Se

seksjon 2).

Rapportering vil skje under møter annenhver uke. Her vil fremgang presenteres, og

veien videre skal drøftes med både veileder og kontaktperson.

Underveis skal arbeidet også dokumenteres i form av screenshots. Denne rapporteringen

vil være en del av den endelige rapporten som leveres i Inspera ved slutten av

prosjektet.

Arbeidet skal til slutt presenteres i form av en rapport. Denne rapporten skal leveres inn

for vurdering og vil representere slutten av prosjektet.

134

Forprosjektsplan 7

5. Risikovurdering
De følgende risikoene har blitt identifisert i forarbeidet til prosjektet. Hver risiko har blitt

analysert for sannsynlighet og konsekvens. Basert på sannsynlighet og konsekvens har

hver risiko blitt gitt en score basert på systemet illustrert i Tabell 1.

 UFARL

IG

MINDR

E

ALVOR

LIG

ALVOR

LIG

SVÆRT

ALVOR

LIG

KATASTR

OFALT

SVÆRT

SANNSYNLIG

5 10 15 20 25

MEGET

SANNSYNLIG

4 8 12 16 20

SANNSYNLIG 3 6 9 12 15

MINDRE

SANNSYNLIG

2 4 6 8 10

USANNSYNLIG 1 2 3 4 5

 Tabell 1: Oversikt over poengsystem for risikovurdering

I Tabell 1 representerer grønne felter en akseptabel risiko. Oransje felter kan aksepteres

dersom det finnes tilfredsstillende tiltak. Røde felter representerer risiko som må

elimineres, eller som må støttes med flere tiltak.

Hendelse Sannsynligh

et

Konsekvens Poengsum Tiltak

Frafall av et

gruppemedlem

Usannsynlig Katastrofalt 5 Kontinuerlig oppfølging.

Arbeidskontrakt.

Teknologisk svikt

hos et

gruppemedlem

Sannsynlig Alvorlig 9 Kontinuerlig oppdatering

og vedlikehold av utstyr.

Ta backups.

Teknologisk svikt

hos flere

gruppemedlemm

er

Mindre

Sannsynlig

Katastrofalt 10 Kontinuerlig oppdatering

og vedlikehold av utstyr.

Ta backups.

Uoverkommelig

oppgave-

kompleksitet

Usannsynlig Katastrofalt 5 Skaler oppgave for å

tilpasse ferdigheter.

Manglende

ressurser fra

arbeidsgiver

Usannsynlig Svært

Alvorlig

4 Kommuniser behov til

oppdragsgiver tidlig i

prosessen. Meld i fra

dersom noe mangler så

tidlig som mulig.

For sen start på

rapport

Mindre

Sannsynlig

Alvorlig 6 Start så tidlig som mulig

med rapport-skriving.

135

Forprosjektsplan 8

Langvarig

sykdom/

Midlertidig frafall

Sannsynlig Svært

Alvorlig

12 Smittevernstiltak. Følg

gjeldende råd og

anbefalinger vedrørende

COVID-situasjonen.

136

Appendix 6: System documentation

137

Service for data streaming

System Documentation

<v1.2>

138

System documentation i

REVISION HISTORY

Date Version Description Author

29/04/2022 <1.0> Initial Draft Lars Ivar Ramberg
Tomas Klungerbo Olsen

03/05/2022 <1.1> Completed the project

structure section

Documentation section

complete

Lars Ivar Ramberg
Tomas Klungerbo Olsen

11/05/2022 <1.2> Update Pulsar

implementation directory

structure

Lars Ivar Ramberg
Tomas Klungerbo Olsen

139

System documentation ii

TABLE OF CONTENTS

Revision history .. i

List of figures .. iii

List of tables ... iii

1 Introduction .. 4

2 Architecture .. 5

2.1 Project structure .. 6

2.1.1 Autostreams checks ... 6

2.1.2 Prototype utilities ... 7

2.1.3 Utilities ... 7

2.1.4 Kafka prototype ... 8

2.1.5 Pulsar prototype .. 10

2.1.6 Final implementation - Pulsar .. 11

2.2 Class diagram .. 14

2.2.1 Consumer ... 14

2.2.2 Producer ... 15

3 Installation and execution ... 15

3.1 Building and Running Docker Images ... 16

3.1.1 Producer ... 16

3.1.2 Consumer ... 19

3.2 Building and Running With Maven .. 22

3.2.1 Producer ... 22

3.2.2 Consumer ... 25

3.3 IDE (intellij) .. 28

3.3.1 Prerequisites ... 28

3.3.2 Producer/Consumer ... 28

3.4 Broker .. 29

3.4.1 Download ... 29

3.4.2 Execution .. 29

4 Source code documentation... 30

5 Continuous integration .. 30

References .. 31

140

System documentation iii

LIST OF FIGURES

Figure 1 Focused overview of the system. ... 5

Figure 2 Holistic overview of the system. Illustration places the system in a larger data

pipeline. .. 5

Figure 3 Directory structure for the AutoStreams/autostreams-checks repository. 6

Figure 4 Directory structure for the AutoStreams/prototype-utils repository. 7

Figure 5 Directory structure for the AutoStreams/utils repository. 8

Figure 6 Directory structure for the AutoStreams/prototype-kafka repository. 9

Figure 7 Directory structure for the AutoStreams/prototype-pulsar repository. 11

Figure 8 Directory structure for the AutoStreams/pulsar-implementation repository. 13

Figure 9 Class diagram for the consumer Java client. .. 14

Figure 10 Class diagram for the producer Java client. ... 15

LIST OF TABLES

Table 1 List of Maven layout directories and files used by AutoStreams repositories. 6

Table 2 List of files used by the AutoStreams repositories not strictly bound to the Maven

standard layout structure. ... 6

Table 3 Pulsar Producer Docker configuration settings .. 19

Table 4 Pulsar consumer Docker configuration settings ... 22

Table 5 Pulsar producer Maven configurations .. 25

Table 6 Pulsar consumer Maven configuration .. 27

141

System documentation 4

1 INTRODUCTION

This document serves as the system documentation for the project “Service for Data

streaming” at NTNU (Norges Teknisk Naturvitenskapelige Universitet) in Ålesund.

The purpose of the document is to present the structure and features of the solution, and to

serve as a guide for installation and use. After reading the document, the reader should

have a clear understanding of how the solution is structured, what it can offer to the user in

terms of functionality, and how the solution can be installed and used to send and receive

data in real-time.

142

System documentation 5

2 ARCHITECTURE

The system and its architecture are part of a larger intended system. The system

represented by this document is solely responsible for transmitting messages and is

therefore difficult to present architecturally on its own. For this reason, the architecture is

presented here both on its own (Figure 1) and as part of a larger system (Figure 2).

Figure 1 Focused overview of the system.

Figure 2 Holistic overview of the system. Illustration places the system in a larger data pipeline.

143

System documentation 6

2.1 PROJECT STRUCTURE
Service for data streaming is a collection of multiple repositories and projects. Every

repository is owned by the organization AutoStreams, which was created to group these

related projects logically. One repository was created for the Pulsar prototype, one for the

Kafka prototype, and one for the final implementation of the Pulsar solution. AutoStreams

also holds some utility repositories shared among the previously mentioned repositories.

One utility repository exists for the prototypes and one for the final implementation. The

last repository that AutoStreams has is a utility repository containing the check style

configuration used by the team.

Java project repositories are organized according to the Maven standard directory layout

(Apache Maven Project, 2022). The files and directories that all AutoStreams java project

repositories have implemented are as follows:

Name Type Usage
pom.xml file Defines the project and its dependencies.
src/main/java Directory Contains all source files for the project
src/main/resources Directory Contains the resource files for the project, which for

this project are configuration files
Table 1 List of Maven layout directories and files used by AutoStreams repositories.

Files unrelated to or not strictly bound to the Maven standard directory layout are:

Name Usage

LICENSE Defines the license for the project

README.md Contains information about the submodule project’s purpose and guidance

for installation

Dockerfile A YAML file that defines a Docker image of the project. The Docker image

can be spun up as Docker containers.

Table 2 List of files used by the AutoStreams repositories not strictly bound to the Maven standard
layout structure.

2.1.1 Autostreams checks

Repository name: autostreams-checks
Link: https://github.com/AutoStreams/autostreams-checks

The autostreams-checks repository is a modification of the google Checkstyle configuration

(Google checkstyle, 2022). The modification uses four spaces as opposed to the usual two

spaces. All AutoStreams’s repositories have a dependency on this repository, so new

developers can easily find the Checkstyle configuration.

Directory structure:

├── autostreams-checks

│ ├── README.md

│ └── streams_checks.xml

Figure 3 Directory structure for the AutoStreams/autostreams-checks repository.

144

System documentation 7

2.1.2 Prototype utilities

Repository name: prototype-utils
Link: https://github.com/AutoStreams/prototype-utils

The prototype-utils repository contains utilities shared among projects within other

repositories.

Directory structure:

├── prototype-utils

│ ├── LICENSE

│ ├── pom.xml

│ ├── README.md

│ └── src

│ └── main

│ ├── java

│ │ └── com

│ │ └── autostreams

│ │ └── utils

│ │ ├── dataprovider

│ │ │ ├── DataProducerHandler.java

│ │ │ ├── DataProducerInitializer.java

│ │ │ └── DataProvider.java

│ │ ├── datareceiver

│ │ │ ├── DataReceiverHandler.java

│ │ │ ├── DataReceiverInitializer.java

│ │ │ ├── DataReceiver.java

│ │ │ └── StreamsServer.java

│ │ └── fileutils

│ │ └── FileUtils.java

│ └── resources

│ └── simplelogger.properties

Figure 4 Directory structure for the AutoStreams/prototype-utils repository.

2.1.3 Utilities

Repository name: utils
Link: https://github.com/AutoStreams/utils

The utils repository contains utilities shared among projects within the final implementation.

The utils repository is a divergence of the prototype-utils repository, allowing further

development without affecting the prototypes.

Directory structure:

├── utils

│ ├── LICENSE

│ ├── pom.xml

│ ├── README.md

│ └── src

145

System documentation 8

│ └── main

│ ├── java

│ │ └── com

│ │ └── autostreams

│ │ └── utils

│ │ ├── dataprovider

│ │ │ ├── DataProducerHandler.java

│ │ │ ├── DataProducerInitializer.java

│ │ │ └── DataProvider.java

│ │ ├── datareceiver

│ │ │ ├── DataReceiverHandler.java

│ │ │ ├── DataReceiverInitializer.java

│ │ │ ├── DataReceiver.java

│ │ │ └── StreamsServer.java

│ │ └── fileutils

│ │ └── FileUtils.java

│ └── resources

│ └── simplelogger.properties

└── utils.iml

Figure 5 Directory structure for the AutoStreams/utils repository.

2.1.4 Kafka prototype

Repository name: prototype-kafka
Link: https://github.com/AutoStreams/prototype-kafka

The prototype-kafka repository holds the implementation of the Kafka solution created

during the prototype stage. The root directory of this repository contains a parent pom.xml

file with sub-project modules. Each sub-project module follows the Maven standard

directory layout and is contained in its own unique directory. Furthermore, the root

directory contains a docker-compose file to initiate the complete solution locally for testing

and a shutdown script to gracefully shut down the consumer and producer while running in

a Docker container.

Submodule projects which the Kafka prototype contains are:
• autostreams-checks - checkstyle configuration

• consumer - the Kafka stream consumer

• producer - the Kafka stream producer

• data-provider - creates and sends data to the producer

• broker - the Kafka stream broker

Directory structure:

├── prototype-kafka

│ ├── autostreams-checks

│ │ ├── README.md

│ │ └── streams_checks.xml

│ ├── broker

│ │ └── docker-compose.yml

│ ├── consumer

146

System documentation 9

│ │ ├── Dockerfile

│ │ ├── pom.xml

│ │ ├── README.md

│ │ └── src

│ │ └── main

│ │ ├── java

│ │ │ └── com

│ │ │ └── autostreams

│ │ │ └── kafka

│ │ │ ├── ConsumerMaster.java

│ │ │ ├── ConsumerWorker.java

│ │ │ └── Main.java

│ │ └── resources

│ │ ├── consumerconfig.properties

│ │ └── masterconfig.properties

│ ├── data-provider

│ │ ├── Dockerfile

│ │ ├── kafka-data-provider.iml

│ │ ├── pom.xml

│ │ └── src

│ │ └── main

│ │ ├── java

│ │ │ └── com

│ │ │ └── autostreams

│ │ │ └── dataprovider

│ │ │ └── Main.java

│ │ └── resources

│ │ └── config.properties

│ ├── docker-compose.yml

│ ├── pom.xml

│ ├── producer

│ │ ├── Dockerfile

│ │ ├── kafka-producer.iml

│ │ ├── pom.xml

│ │ ├── README.md

│ │ └── src

│ │ └── main

│ │ ├── java

│ │ │ └── com

│ │ │ └── autostreams

│ │ │ └── kafka

│ │ │ ├── KafkaPrototypeProducer.java

│ │ │ └── Main.java

│ │ └── resources

│ │ └── config.properties

│ ├── README.md

│ └── streams-shutdown.sh

Figure 6 Directory structure for the AutoStreams/prototype-kafka repository.

147

System documentation 10

2.1.5 Pulsar prototype

Repository name: prototype-pulsar
Link: https://github.com/AutoStreams/prototype-pulsar

The prototype-pulsar repository holds the implementation of the Pulsar solution created

during the prototype stage. Similar to the Kafka prototype, the root directory of this

repository contains a parent pom.xml file with sub-project modules. Each sub-project

module has its directory following the Maven standard directory layout. The root directory

also contains a docker-compose file to initiate the complete solution locally for testing and a

shutdown script to gracefully shut down the consumer and producer while running in a

Docker container.

Submodule projects which the Kafka prototype contains are:
• autostreams-checks - checkstyle configuration

• consumer - the Pulsar stream consumer

• producer - the Pulsar stream producer

• data-provider - creates and sends data to the producer

• broker - the Pulsar stream broker

Directory structure:

└── prototype-pulsar

 ├── autostreams-checks

 │ ├── README.md

 │ └── streams_checks.xml

 ├── consumer

 │ ├── Dockerfile

 │ ├── pom.xml

 │ └── src

 │ └── main

 │ ├── java

 │ │ └── com

 │ │ └── autostreams

 │ │ ├── pulsar

 │ │ │ ├── ConsumerMaster.java

 │ │ │ ├── ConsumerWorker.java

 │ │ │ └── Main.java

 │ │ └── utils

 │ │ └── fileutils

 │ │ └── FileUtils.java

 │ └── resources

 │ ├── consumerconfig.properties

 │ └── masterconfig.properties

 ├── data-provider

 │ ├── data-provider.iml

 │ ├── Dockerfile

 │ ├── pom.xml

 │ ├── pulsar-data-provider.iml

148

System documentation 11

 │ └── src

 │ └── main

 │ ├── java

 │ │ └── com

 │ │ └── autostreams

 │ │ ├── dataprovider

 │ │ │ └── Main.java

 │ │ └── pulsar

 │ │ └── dataprovider

 │ │ ├── DataProducerHandler.java

 │ │ ├── DataProducerInitializer.java

 │ │ └── DataProvider.java

 │ └── resources

 │ ├── config.properties

 │ └── simplelogger.properties

 ├── docker-compose.yml

 ├── pom.xml

 ├── producer

 │ ├── Dockerfile

 │ ├── pom.xml

 │ ├── pulsar-producer.iml

 │ ├── README.md

 │ └── src

 │ └── main

 │ ├── java

 │ │ └── com

 │ │ └── autostreams

 │ │ ├── pulsar

 │ │ │ ├── Main.java

 │ │ │ └── PulsarPrototypeProducer.java

 │ │ └── utils

 │ │ └── datareceiver

 │ │ └── StreamsServer.java

 │ └── resources

 │ ├── config.properties

 │ ├── producer.properties

 │ └── producer-streaming.properties

 ├── README.md

 └── streams-shutdown.sh

Figure 7 Directory structure for the AutoStreams/prototype-pulsar repository.

2.1.6 Final implementation - Pulsar

Repository name: pulsar-implementation
Link: https://github.com/AutoStreams/pulsar-implementation

This repository holds the final implementation of the solution. The structure is similar to the

Pulsar prototype repository (see section 2.1.5 Pulsar prototype) but with additional features

149

System documentation 12

and improvements. There is also an additional directory called example that contains a

Docker Compose file that can be spun up to test the complete system locally.

Directory structure:

└── pulsar-implementation

 ├── autostreams-checks

 │ ├── README.md

 │ └── streams_checks.xml

 ├── consumer

 │ ├── Dockerfile

 │ ├── pom.xml

 │ ├── README.md

 │ └── src

 │ └── main

 │ ├── java

 │ │ └── com

 │ │ └── autostreams

 │ │ └── pulsar

 │ │ ├── ConsumerMaster.java

 │ │ ├── ConsumerPropertyLoader.java

 │ │ ├── ConsumerWorker.java

 │ │ └── Main.java

 │ └── resources

 │ ├── consumerconfig.properties

 │ ├── masterconfig.properties

 │ └── simplelogger.properties

 ├── example

 │ ├── data-provider

 │ │ ├── Dockerfile

 │ │ ├── pom.xml

 │ │ ├── README.md

 │ │ └── src

 │ │ └── main

 │ │ ├── java

 │ │ │ └── com

 │ │ │ └── autostreams

 │ │ │ └── pulsar

 │ │ │ └── dataprovider

 │ │ │ ├── DataProducerHandler.java

 │ │ │ ├── DataProducerInitializer.j..

 │ │ │ ├── DataProvider.java

 │ │ │ └── Main.java

 │ │ └── resources

 │ │ ├── config.properties

 │ │ └── simplelogger.properties

 │ ├── docker-compose.yml

 │ ├── README.md

150

System documentation 13

 │ └── streams-shutdown.sh

 ├── LICENSE

 ├── pom.xml

 ├── producer

 │ ├── Dockerfile

 │ ├── pom.xml

 │ ├── README.md

 │ └── src

 │ └── main

 │ ├── java

 │ │ └── com

 │ │ └── autostreams

 │ │ └── pulsar

 │ │ ├── Main.java

 │ │ ├── producer

 │ │ │ └── PulsarProducer.java

 │ │ └── receiver

 │ │ └── DataReceiverCreator.java

 │ └── resources

 │ ├── config.properties

 │ ├── producer.properties

 │ └── simplelogger.properties

 └── README.md

Figure 8 Directory structure for the AutoStreams/pulsar-implementation repository.

151

System documentation 14

2.2 CLASS DIAGRAM
As all the three projects (prototypes and final implementation) share similar structure, only

one class diagram is presented to avoid redundancy. The class diagram chosen was the

Pulsar prototype.

2.2.1 Consumer

Figure 9 Class diagram for the consumer Java client.

The consumer is implemented with the Java Pulsar client API (Pulsar, 2022). It implements

the StreamsServer interface, which is a server implementation that uses Netty (Netty

project, 2022). The consumer uses the server implementation to listen for a shutdown

command from localhost. The consumer itself is implemented with the master-worker

pattern (Java Design Patterns, n.d.). This pattern allows the consumer master to delegate

work amongst multiple consumer workers.

152

System documentation 15

2.2.2 Producer

Figure 10 Class diagram for the producer Java client.

Like the consumer, the producer is implemented with the Java Pulsar client API (Pulsar,

2022) and implements the StreamsServer interface as well. The producer uses the server

implementation to listen for messages to forward to the broker and a shutdown command

from localhost.

3 INSTALLATION AND EXECUTION

This part of the document presents on a component-by-component basis how to configure,

install, and run each part of the system. The installation process is described in detail for

each component, including necessary prerequisites. Execution is subsequently described.

After reading this part of the document, the reader should be able to install and run a

complete system capable of sending and receiving data.

Installation and execution of producer and consumer is possible in two ways:

• By using docker images built from Dockerfiles

• By running jar-files built using Maven

• By building and running through an IDE

153

System documentation 16

All three approaches are explained so they are available to readers of this document.

Prerequisites are listed in the “Prerequisites” subchapter for each approach, as

dependencies will vary based on approach.

The broker is the only non-java part of the system and can also be run in multiple ways.

The method presented in this document is taken from the “Run Pulsar Locally” tutorial

described in the official Pulsar documentation (Pulsar, n.d.).

To get a fully running system, each part of it must be installed on different computers that

can communicate with each other. The intended use is for these computers to be located in

different geographical locations with one of them being a broker server.

If desired, it is possible to run everything locally by either using Docker, Docker Compose,

or the Java solution. This is recommended if the intention is to test the system, and not to

send data over the internet. The Docker-Compose approach is described at the end of this

chapter.

3.1 BUILDING AND RUNNING DOCKER IMAGES
Prerequisites

• Docker must be installed on the system to run the Dockerized version of the system

3.1.1 Producer

Installation and Configuration

• Configure the connection URL for the Broker in the Dockerfile belonging to the

Producer using the PULSAR_BROKER_URL environment variable:

ENV PULSAR_BROKER_URL='pulsar://<BROKER_IP_ADDRESS>:<BROKER_IP>'

• Specify other settings such as topic-name, size of pending message buffer, and other

options in the environment variables. Below is a table of all available settings, their

effect, and defaults. This list is adapted from the official documentation on the official

Pulsar websites (Pulsar, N.D).Where possible, the descriptions are taken straight

from this source.

o All descriptions from the official Pulsar website are labeled with *. Note that

the default values are based on the defaults of the implemented solution, not

the defaults listed on the Pulsar website, although most defaults are based on

the official Pulsar defaults.

o Properties not listed in this document that are listed on the Pulsar website will

be set to their corresponding Pulsar defaults

Variable Description Default
PULSAR_BROKER_URL URL for the broker to

connect to
broker-1:6650

TOPIC_NAME Topic to subscribe to.

Topics serve as

groupings of messages.

Consumers with

‘Testtopic’

154

System documentation 17

matching topics will

receive the messages

sent from the producer
SEND_TIMEOUT_MS Message send timeout in

ms.
If a message is not

acknowledged by a

server before the

sendTimeout expires, an

error occurs*.

30000

BLOCK_IF_QUEUE_FULL If it is set to true, when

the outgoing message

queue is full, the Send

and SendAsync methods

of producer block, rather

than failing and throwing

errors.

If it is set to false, when

the outgoing message

queue is full, the Send

and SendAsync methods

of producer fail and

ProducerQueueIsFullError

exceptions occur*.

The

MaxPendingMessages

parameter determines

the size of the outgoing

message queue*.

false

MAX_PENDING_MESSAGES The maximum size of a

queue holding pending

messages.

For example, a message

waiting to receive an

acknowledgment from a

broker.

By default, when the

queue is full, all calls to

the Send and SendAsync

methods fail unless you

set BlockIfQueueFull to

true*.

155

System documentation 18

MAX_PENDING_MESSAGES_ACROSS_P

ARTITIONS
The maximum number of

pending messages across

partitions.

Use the setting to lower

the max pending

messages for each

partition ({@link

#setMaxPendingMessage

s(int)}) if the total

number exceeds the

configured value*.

50000

MESSAGE_ROUTING_MODE Message routing logic for

producers on partitioned

topics.

Apply the logic only when

setting no key on

messages.

Available options are as

follows:

pulsar.RoundRobinDistrib

ution: round robin

pulsar.UseSinglePartition

: publish all messages to

a single partition

pulsar.CustomPartition: a

custom partitioning

scheme*

RoundRobinPart

ition

HASHING_SCHEME Hashing function

determining the partition

where you publish a

particular message

(partitioned topics only).
Available options are as

follows:
pulsar.JavastringHash:

the equivalent of

string.hashCode() in Java
pulsar.Murmur3_32Hash:

applies the Murmur3

hashing function
pulsar.BoostHash:

applies the hashing

function from C++'s

Boost library

Murmur3_32Ha

sh

156

System documentation 19

CRYPTO_FAILURE_ACTION Producer should take

action when encryption

fails.
FAIL: if encryption fails,

unencrypted messages

fail to send.
SEND: if encryption fails,

unencrypted messages

are sent*.

Fail

COMPRESSION_TYPE Message data

compression type used

by a producer.
Available options*:

• LZ4

• ZLIB

• ZSTD

• SNAPPY

zstd

Table 3 Pulsar Producer Docker configuration settings

• After configuring the settings as desired, build the producer docker image from the

terminal.

o Navigate to the folder of the producer:

Cd <PATH_TO_PRODUCER>

o Run docker build, tag the image as “producer”

Docker build -t producer .

Execution

• Run the built image using docker run:

Docker run producer

The producer will execute inside a Docker container and connect to the broker residing at

the specified PULSAR_BROKER_URL (provided the url is valid and there is a broker at the

address)

3.1.2 Consumer

Configuration and Installation

• Configure the connection URL for the Broker in the Dockerfile belonging to the

Producer using the PULSAR_BROKER_URL environment variable:

ENV PULSAR_BROKER_URL='pulsar://<BROKER_IP_ADDRESS>:<BROKER_IP>'

• Specify other settings such as topic-name, subscription-type, and other options in

the environment variables. Below is a table of all available settings, their effect, and

defaults. This list is adapted from the official Pulsar documentation (Pulsar, N.D).

Where possible, the descriptions are taken straight from this source.

157

System documentation 20

• All descriptions from the official documentation are labeled with *. Note that the

default values are based on the defaults of the implemented solution, not the

defaults listed on the Pulsar website, although most defaults are based on the official

Pulsar defaults.

Variable Description Default
PULSAR_BROKER_URL URL for the broker

to connect to
‘broker:6650’

TOPIC_NAME Topic to subscribe

to. Topics serve as

groupings of

messages.

Consumers with

matching topics

will receive the

messages sent

from the producer

‘Testtopic’

SUBSCRIPTION_NAME Name of the

current

subscription

‘subscription’

SUBSCRIPTION_TYPE Subscription type

Four subscription

types are

available:

• Exclusive

• Failover

• Shared

• Key_Shared

“Shared”

RECEIVER_QUEUE_SIZE Size of a

consumer's

receiver queue*.

For example, the

number of

messages

accumulated by a

consumer before

an application calls

Receive*.

A value higher

than the default

value increases

consumer

1000

158

System documentation 21

throughput,

though at the

expense of more

memory

utilization*.
ACKNOWLEDGEMENTS_GROUP_TIME_MICROS Group a consumer

acknowledgment

for a specified

time*.

By default, a

consumer uses

100ms grouping

time to send out

acknowledgments

to a broker*.

Setting a group

time of 0 sends

out

acknowledgments

immediately*.

A longer ack group

time is more

efficient at the

expense of a slight

increase in

message re-

deliveries after a

failure*.

100

CONSUMER_NAME Consumer name “Consumer”
ACK_TIMEOUT_MILLIS Timeout of

unacked

messages*

0

TICK_DURATION_MILLIS Granularity of the

ack-timeout

redelivery*.

Using a higher

tickDurationMillis

reduces the

memory overhead

to track messages

when setting ack-

timeout to a

1000

159

System documentation 22

bigger value (for

example, 1

hour)*.
Table 4 Pulsar consumer Docker configuration settings

• After configuring the settings as desired, build the consumer docker image from the

terminal.

o Navigate to the folder of the producer:

cd <PATH_TO_CONSUMER>

o Run docker build, tag the image as “producer”

Docker build -t consumer .

Execution

• Run the built image using docker run:

Docker run consumer

The producer will execute inside a Docker container and connect to the broker residing at

the specified PULSAR_BROKER_URL (provided the url is valid and there is a broker at the

address)

The messages received are printed to the terminal.

3.2 BUILDING AND RUNNING WITH MAVEN
Prerequisites

• Maven must be installed and available from the terminal

• Java 17 must be installed on the building system

3.2.1 Producer

Configuration and Installation

• Configuration for the producer is done using config.properties and

producer.properties located at the following location:pulsar-

implementation/producer/src/main/resources

o Config.properties concerns networking. Producer.properties concern settings

related to the producer

• Configure the network connection in config.properties

o Set the url of the broker:

pulsar.broker.url=pulsar://127.0.0.1:6650

o Set the port of the producer:

listen.port=8992

160

System documentation 23

• Configure the producer in the producer.properties file. The table below lists all

configurable properties. This list is adapted from the official Pulsar documentation

(Pulsar, N.D). Where possible, the descriptions are taken straight from this source.

• All descriptions from the source are labeled with *. Note that the default values are

based on the defaults of the implemented solution, not the defaults listed on the

Pulsar website, although most defaults are based on the official Pulsar defaults.

Variable Description Default
topicName Topic to subscribe to. Topics

serve as groupings of

messages. Consumers with

matching topics will receive

the messages sent from the

producer

‘testtopic’

sendTimeoutMs Message send timeout in ms.
If a message is not

acknowledged by a server

before the sendTimeout

expires, an error occurs*.

30000

blockIfQueueFull If it is set to true, when the

outgoing message queue is

full, the Send and SendAsync

methods of producer block,

rather than failing and

throwing errors.

If it is set to false, when the

outgoing message queue is

full, the Send and SendAsync

methods of producer fail and

ProducerQueueIsFullError

exceptions occur*.

The MaxPendingMessages

parameter determines the

size of the outgoing message

queue*.

false

maxPendingMessages The maximum size of a

queue holding pending

messages.

For example, a message

waiting to receive an

acknowledgment from a

broker.

161

System documentation 24

By default, when the queue

is full, all calls to the Send

and SendAsync methods fail

unless you set

BlockIfQueueFull to true*.
maxPendingMessagesAcrossPartit

ions
The maximum number of

pending messages across

partitions.

Use the setting to lower the

max pending messages for

each partition ({@link

#setMaxPendingMessages(in

t)}) if the total number

exceeds the configured

value*.

50000

messageRoutingMode Message routing logic for

producers on partitioned

topics.

Apply the logic only when

setting no key on messages.

Available options are as

follows:

pulsar.RoundRobinDistributio

n: round robin

pulsar.UseSinglePartition:

publish all messages to a

single partition

pulsar.CustomPartition: a

custom partitioning scheme*

RoundRobinPartiti

on

hashingScheme Hashing function determining

the partition where you

publish a particular message

(partitioned topics only).
Available options are as

follows:
pulsar.JavastringHash: the

equivalent of

string.hashCode() in Java
pulsar.Murmur3_32Hash:

applies the Murmur3 hashing

function
pulsar.BoostHash: applies

the hashing function from

C++'s Boost library*

Murmur3_32Hash

162

System documentation 25

cryptoFailureAction Producer should take action

when encryption fails.
FAIL: if encryption fails,

unencrypted messages fail to

send.
SEND: if encryption fails,

unencrypted messages are

sent*.

Fail

compressionType Message data compression

type used by a producer.
Available options*:

• LZ4

• ZLIB

• ZSTD

• SNAPPY

zstd

Table 5 Pulsar producer Maven configurations

• After configuring the settings as desired, build the producer jar from the terminal

using maven:

o Navigate to the folder of the producer:

cd <PATH_TO_PRODUCER>

o Run maven package to get a runnable jar :

Mvn package

▪ If the project is being rebuilt, it is advisable to run the clean command

as well:

Mvn clean build

Execution

• Inside the producer folder, there should now be a target folder. Navigate to this

folder:

Cd target

o If the folder is missing, the project may not have been built. Please refer to

the previous section “Configuration and Installation”.

• Run the jar:

Java -jar pulsar-producer.jar

• The producer is now running and is ready to send data

3.2.2 Consumer

Configuration and Installation

163

System documentation 26

• Configuration for the consumer is done using masterconfig.properties and

consumerconfig.properties located at the following location:

pulsar-implementation/consumer/src/main/resources

o masterconfig.properties concerns the consumer master. The only settable

property is consumer-count, which decides how many workers the master

should produce.

• All settings directly related to the consumer exist in the consumerconfig.properties.

Firstly, set the url for the broker using the url property:

url=pulsar://23.102.116.13:6650

• Configure the consumer in the consumer.properties file. The table below lists all

configurable properties. This list is adapted from the official Pulsar documentations

(Pulsar, N.D). Where possible, the descriptions are taken straight from this source.

• All descriptions from the official documentation are labeled with *. Note that the

default values are based on the defaults of the implemented solution, not the

defaults listed on the Pulsar website, although most defaults are based on the official

Pulsar defaults.

Variable Description Default
topicName Topic to subscribe to. Topics

serve as groupings of

messages. Consumers with

matching topics will receive

the messages sent from the

producer

‘Testtopic’

subscriptionName Name of the current

subscription
‘subscription’

subscriptionType Subscription type

Four subscription types are

available:

• Exclusive

• Failover

• Shared

• Key_Shared

“Shared”

receiverQueueSize Size of a consumer's receiver

queue*.

1000

164

System documentation 27

For example, the number of

messages accumulated by a

consumer before an

application calls Receive*.

A value higher than the

default value increases

consumer throughput, though

at the expense of more

memory utilization*.
acknowledgementGroupTimeMicros Group a consumer

acknowledgment for a

specified time*.

By default, a consumer uses

100ms grouping time to send

out acknowledgments to a

broker*.

Setting a group time of 0

sends out acknowledgments

immediately*.

A longer ack group time is

more efficient at the expense

of a slight increase in

message re-deliveries after a

failure*.

100

consumerName Consumer name “Consumer”
ackTimeoutMillis Timeout of unacked

messages*
0

tickDurationMillis Granularity of the ack-

timeout redelivery*.

Using a higher

tickDurationMillis reduces the

memory overhead to track

messages when setting ack-

timeout to a bigger value (for

example, 1 hour)*.

1000

Table 6 Pulsar consumer Maven configuration

• After configuring the settings as desired, build the consumer jar from the terminal

using maven:

165

System documentation 28

o Navigate to the folder of the consumer:

cd <PATH_TO_CONSUMER>

o Run maven package to get a runnable jar

Mvn package

▪ If the project is being rebuilt, it is advisable to run the clean command

as well:

Mvn clean build

Execution

• Inside the consumer folder, there should now be a target folder. Navigate to this

folder:

Cd target

o If the folder is missing, the project may not have been built. Please refer to

the previous section “Configuration and Installation”.

• Run the jar:

Java -jar pulsar-consumer-0.1.0-SNAPSHOT.jar

• The consumer is now running and ready to receive data

3.3 IDE (INTELLIJ)
If desired, the producer and consumer can be run straight from an IDE.

IT is assumed than any IDE that allows code execution through detection of an entry-point

will be able to run the solution. However, the only IDE tested is JetBrains IntelliJ and this

document only describes the process for IntelliJ.

3.3.1 Prerequisites

• An installed IDE capable of executing programs from source code. IntelliJ is

recommended and the assumed IDE in this document.

• Java 17 must be installed.

3.3.2 Producer/Consumer

Configuration and Installation

To configure either the consumer or producer, please follow the steps outlined in the section

describing configuration of Maven built versions of the project as the programmes will use

the .properties files when run through an IDE.

There is no installation required

Execution

To execute the desired program:

166

System documentation 29

• Open the desired project, consumer or producer, in IntelliJ

• Click the “Start” button. The program will start executing.

o If the start button is grayed out, the easiest way to start the program is to go

to the main file of either the producer or consumer and click the small play

button next to the Main class signature or main method signature.

3.4 BROKER
The broker is handled differently from the consumer and producer. The broker is provided

by pulsar and their documentation is the best resource as to how to run the broker. The

broker is run in a cluster with Apache Bookkeeper and Apache Zookeeper to handle

persistence and load balancing respectively.

Apache provides a quick and easy way of implementing a broker by downloading a cluster

and running it through the command line. The approach described here is the approach

described in LINK, but any functioning deployment of the broker will work with the producer

and consumer.

3.4.1 Download

Downloading can be done in many ways as described in the official documentation. The

method presented here uses wget to get the necessary files.

• Navigate to a location on your computer/environment where you want the broker to

be ran from

• Get the files using wget:

$ wget https://archive.apache.org/dist/pulsar/pulsar-2.10.0/apache-

pulsar-2.10.0-bin.tar.gz

• After downloading it, untar the received tarball and cd into the folder:

$ tar xvfz apache-pulsar-2.10.0-bin.tar.gz

$ cd apache-pulsar-2.10.0

3.4.2 Execution

• Run the broker with the following command:

$ bin/pulsar standalone

• You will see messages printed out to the console after the broker has booted.

• By default, this broker will run on the following URL:

pulsar://<SYSTEM_IP>:6650

o Port can be configured by changing the value of the brokerServicePort

variable in the file apache-pulsar-2.10.0/conf/broker.conf:

brokerServicePort=<PORT>

167

System documentation 30

4 SOURCE CODE DOCUMENTATION

The prototype-pulsar, prototype-kafka, prototype-utils, utils, and the pulsar-implementation

repository has their own GitHub page. The page can be accessed from the link

https://autostreams.github.io/<repository-name>/ where <repository-name> is substituted

with the repository of interest. To access the documentation, one can append javadoc to the

link for the main Javadoc and javadoc-develop for the Javadoc from the development

branch. The links to these pages can also be found in the README file for each project.

Example of a full link to the pulsar implementation development javadoc:

https://autostreams.github.io/pulsar-implementation/javadoc-develop/

One can also generate the javadoc locally with Maven, provided Maven is installed. From the

root directory of the parent project of interest, issue the command

mvn javadoc:aggregate

The generated API documentation can then be found in the directory: ./target/site/apidocs

5 CONTINUOUS INTEGRATION

GitHub actions [https://docs.github.com/en/actions] is the continuous integration tool used

for all the AutoStream repositories containing a maven project. There are three workflow

files for each repository:

• maven.yml - Verifies that all sub-module projects can be built with maven

• javadoc_publisher.yaml - Generates the Javadoc documentation for the master

branch and uploads it to GitHub pages related to the project

• javadoc_develop_publisher.yaml - Generates the Javadoc documentation for the

develop branch and uploads it to GitHub pages related to the project

168

System documentation 31

REFERENCES

Apache Maven Project, 2022. Introduction to the Standard Directory Layout. [Online]

Available at: https://maven.apache.org/guides/introduction/introduction-to-the-standard-

directory-layout.html

[Accessed 11 5 2022].

Google checkstyle, 2022. Github google_checks.xml. [Online]

Available at:

https://github.com/checkstyle/checkstyle/blob/master/src/main/resources/google_checks.x

ml

[Accessed 11 5 2022].

Java Design Patterns, n.d. Master-Worker. [Online]

Available at: https://java-design-patterns.com/patterns/master-worker-pattern/

[Accessed 11 5 2022].

JetBrains, n.d. IntelliJ IDEA: The Capable & Ergonomic Java IDE by JetBrains. [Online]

Available at: https://www.jetbrains.com/idea/

[Accessed 12 May 2022].

Netty project, 2022. Netty project. [Online]

Available at: https://netty.io/

[Accessed 11 5 2022].

Pulsar, 2022. Pulsar Java client. [Online]

Available at: https://pulsar.apache.org/docs/en/client-libraries-java/

[Accessed 11 5 2022].

Pulsar, A., n.d. Pulsar Java client. [Online]

Available at: https://pulsar.apache.org/docs/client-libraries-java/

[Accessed 12 May 2022].

Pulsar, A., n.d. Set up a standalone Pulsar locally. [Online]

Available at: https://pulsar.apache.org/docs/getting-started-standalone/

[Accessed 12 May 2022].

Pulsar, N.D. Pulsar Java Client. [Online]

Available at: https://pulsar.apache.org/docs/client-libraries-java/

[Accessed 5 May 2022].

169

Appendix 7: Requirements documentation

170

Service for Data Streaming

Documentation of Requirements

Lars Ivar Ramberg

Tomas Klungerbo Olsen

171

Documentation of requirements i

Table of Contents
1 Introduction 2

2 Use Case diagram 2

3 User Stories 4

3.1 Customer/Installation 4

3.2 Service Installer 4

3.3 Data-Analyst 6

4 Domain model 7

5 References 10

172

Documentation of requirements 2

1 INTRODUCTION

This document presents the identified requirements for the project “Service for

Data streaming” at NTNU (Norges Teknisk Naturvitenskapelige Universitet) in

Ålesund. The requirements are identified using a Use Case diagram, user stories,

and a domain model. These tools are intended to provide reasoning and

background for identified requirements.

The project is a command-line-based solution. Wireframe prototypes are therefore

not presented in this document, as no graphical user interface prototypes were

developed.

2 USE CASE DIAGRAM

This chapter presents a graphical representation of users and their interactions with

the system, a Use Case diagram [1].

The use case diagram is intended to guide the developers during development and

communicate an understanding of use cases to the stakeholder. The diagram acts

as a common language shared by the development team and the stakeholder.

The users of the system must be identified to create a use-case diagram. For this

use case, the following immediate users and their interactions have been identified

as:

• Customers/Installations generate data passively and provide it to the

system

• Data-analysts perform analysis on the data provided

• Service Installers Install and configure the system at customer sites. The

installers may be the same user as the Service Engineer in some cases

173

Documentation of requirements 3

Figure 1 Use Case Diagram of solution

174

Documentation of requirements 4

3 USER STORIES
The following section presents relevant user stories for the solution. These user stories differ

from the ones used in Jira, as the user stories in Jira have all been defined with a general

“user” as opposed to specific users. All user stories do still apply.

3.1 CUSTOMER/INSTALLATION

As a Customer/Installation,

I want the data I generate to be sent from my installation to AutoStore for analysis and

action,

So that my system can be properly maintained

Acceptance criteria:

• Mechanism for sending data to Pulsar broker for further sending to consumer

• Mechanism that can run continuously and pass along data as the system generates it

As a Customer/Installation,

I want to send my data securely,

So that no actor other than AutoStore can see my data

Acceptance criteria:

• Encryption of sent messages, and functional decryption on the receiving side

• Default settings to encryption, make it either impossible or very difficult to turn

encryption off

3.2 SERVICE INSTALLER

As a Service Installer,
I want to easily install the Pulsar consumer implementation using a cloud service,
So that messages produced from installations can be consumed

Acceptance criteria:

175

Documentation of requirements 5

• Semantic configuration properties in files

• No installation, or easy installation

• Good, thorough documentation and user manual

• Clear error messages in case of misconfiguration

As a Service Installer,
I want to configure the Pulsar consumer,
So that consumption of messages is optimized regarding current needs

Acceptance criteria:

• Ability to configure pulsar consumer

As a Service Installer

I want to configure the Pulsar producer

So that message production is optimized regarding current needs

Acceptance criteria:

• Ability to configure Pulsar Producer

As a Service Installer

access to the Pulsar consumer and producer implementation documentation,

So that additional features can be added

Acceptance criteria:

• Thorough, understandable documentation

• Documentation needs to accompany the packaging of the solution

176

Documentation of requirements 6

3.3 DATA-ANALYST

As a Data-analyst

I want to receive data from the installation

So that I can perform analysis on the data

Acceptance criteria:

• Mechanism for receiving data transferred from customer sites

• Mechanism for passing the data to systems of analytics¨

As a Data-analyst

I want to receive all the data from the installation

So that my analyses are based on a complete dataset

Acceptance criteria:

• All data sent must be received. Loss should be 0%

• If a piece of data fails to be received on first try, the system must retry until the data

is sent

• Delayed data must eventually reach the consumer

177

Documentation of requirements 7

4 DOMAIN MODEL
Multiple models of the solution were created to improve communication with the stakeholder

The first model (See Figure 2) was made relatively early to present the solution to the

stakeholder and verify that the team had understood the envisioned architecture

properl

Figure 2 First model made to communicate with stakeholder.

Diagrams were created to show the architecture for the tests. While not strictly domain

models, they give an overview of system implementation. A final solution will need to be

installed the same way as the tests, with one unit each hosting a producer, consumer, and

broker. The model from the testing is included as Figure 3.

178

Documentation of requirements 8

Figure 3 Model created for testing

A more formal domain model was produced using the Visual Paradigm software (see Figure

4). This domain model presents a comprehensive system image with classes, fields, and

methods. The domain model complements the higher-level model created for the testing

(see Figure 3), as the detailed model shows implementation details of the consumer and

producer. However, the broker is omitted as it is configured rather than implemented. It is

helpful to have both diagrams to understand the developed solution’s implementation and

installation.

179

Documentation of requirements 9

Figure 4 Detailed domain model including classes, interfaces, fields, and methods, as well as their relationships.

180

Documentation of requirements 10

5 REFERENCES

[1] Wikipedia contributors, Use case diagram. Online:

https://en.wikipedia.org/wiki/Use_case_diagram. Last visited 29.04.2022

181

Appendix 8: Internal Work Contract, Devel-
opment Team

182

Arbeidskontrakt for “Tjeneste for
datastrømming (IDATA2900, ED3)”
Medlemmer: Lars Ivar Ramberg, Tomas Klungerbo Olsen

Innledning
Denne arbeidskontrakten bygger på et sett med typiske mål, oppgavefordelinger, prosedyrer og

retningslinjer for interaksjoner for studentarbeider. Arbeidskontrakten er utfylt med egne

fortolkninger av hva man mener med disse og hvordan man skal oppnå dette. Roller og

oppgavefordeling

Dokumentansvarlig/sekretær
Dokumentansvarlig/sekretær har ansvar for å ta møtereferater, screenshots av sprinter, og føre

annen relevant dokumentasjon underveis i prosjektet. Denne rollen vil rulleres innad i gruppen på

ukentlig basis.

Tomas Klungerbo Olsen tar denne rollen første gang i uke 2, og vil ha denne rollen hver partallsuke.

Lars Ivar Ramberg tar denne rollen første gang i uke 3, og vil ha denne rollen hver oddetalsuke.

Product Owner
Product Owner er bindeleddet mellom oppdragsgiver og utvikler-teamet. Product Owner er ansvarlig

for å representere produktet, og har som mål å fatte beslutninger som kommer produktet til gode.

Product Owner har ofte ansvar for backlog og user stories, men i denne oppgaven vil ansvar for

backlog og user stories deles mellom gruppemedlemmene. Product Owner vil derfor i hovedsak ha

en kommunikativ rolle mot oppdragsgiver, og være ansvarlig for kommunikasjon.

Lars Ivar Ramberg vil være Product Owner for dette prosjektet.

Scrum Master
Scrum Master er ansvarlig for å kommunisere mål og retning til de resterende team-medlemmene.

Scrum Master har ikke direkte ansvar for kommunikasjon med oppdragsgiver (dette ansvaret faller

på Product Owner).

Scrum Master er en “tjenende leder” for teamet. Teamet skal i utgangspunktet være selvstyrende, og

Scrum Master skal da ikke lede teamet direkte. Scrum Master skal påse at Scrum rammeverket blir

fulgt og respektert.

Tomas Olsen vil være Scrum Master for dette prosjektet.

Kvalitetssikring

Kode
All kode skal gjennom en “review” før den aksepteres som del av endelig løsning. Rollen som

kvalitetssikrer, eller “reviewer” vil tilhøre det gruppemedlemmet som ikke skrev den aktuelle koden.

Dette gjøres for å forsikre kvalitet ved at begge gruppemedlemmene ser og godkjenner all kode som

skrives.

183

Dokumentasjon

Kvalitetssikring for dokumenter vil være ansvaret til det gruppemedlemmet som ikke er forfatter av

dokumentet.

Prosedyrer
A. Scrum og utviklingsmetodikk

a. Utvikling skal gjennomføres basert på Scrum metodikk.

b. Hver sprint vil være en uke lange.

c. Scrum roller og rolle-fordeling er beskrevet i avsnitt “Roller og oppgavefordeling”

d. En ny sprint starter med sprint planning hver mandag etter daglig stand-up møte (se
punkt B “Møter”).

e. Sprint review avholdes hver søndag etter daglig stand-up møte (se punkt B “Møter”).
f. En sprint avsluttes med sprint retrospective hver søndag etter sprint review.

i. I sprint retrospective skal det reflekteres over prosessen, ikke produktet.
Sprint retrospectiven bør derfor ta for seg:

1. Hva gikk bra?
2. Hva gikk ikke så bra?
3. Hvilke konkrete handlinger kan teamet ta for å forbedre det som ikke

gikk bra, og videreføre/opprettholde det som har gått bra.
g. Issue tracking skal skje i prosjektet sitt Jira-space

i. Alle oppgaver tilknyttet utvikling skal spores (trackes) i Jira-spacet. Oppgaver
skal som hovedregel ikke utføres uten å bli sporet i Jira.

h. All kode utviklet i prosessen skal samles i en GitHub repository.
i. Den ansvarlige for GitHub repositoriet skal forsikre seg om at repositoriet er

tilgjengelig for alle gruppemedlemmer, også etter at prosjektet er over, i
minst et år etter sluttdato.

ii. Dersom det andre gruppemedlemmet ønsker tilgang etter året med
tilgjengelighet, må de ta en kopi av repositoriet før tilgjengeligheten
avsluttes.

i. Extreme-Programming metodikk kan implementeres dersom nødvendig.
B. Møter

a. Stand up møter skal gjøres daglig, mandag til fredag og søndag kl 08:00. Disse

møtene skjer uten innkalling til faste tider i Microsoft Teams.

b. Sprint møter skal skje hver uke i form av en sprint review, sprint planning, og sprint

retrospective.

c. Møter med veileder og oppdragsgiver skal skje annenhver uke, med start i uke 2,

2022. Disse møtene vil tilsvare en sprint review med demo, der arbeid vises frem til

oppdragsgiver og veileder. Videre prosedyrer for innkalling er beskrevet i punkt C.

C. Møteinnkalling

a. Alle møter som ikke er stand up møter skal ha en formell innkalling.

b. Møteinnkalling skal skje over mail. Mail sendes til alle gruppemedlemmer hver uke.

Annenhver uke inviteres også veileder, kontaktperson hos oppdragsgiver, og annet

relevant personell hos oppdragsgiver.

i. Annet relevant personell kan være veiledere eller interessehavere hos

oppdragsgiver.

c. I møteinnkallingen skal det alltid være en lenke til et Microsoft-Teams rom der

møtene holdes.

d. Møteinnkallingen må inneholde tidspunkt for møtet.

184

e. Møteinnkalling skal senest sendes ut tre dager før møtet avholdes.

D. Varsling ved fravær eller andre hendelser

a. Dersom man ikke kan møte skal dette meldes om så snart som mulig før møtet.

Varsling skal skje over mail, og varslet skal gå ut til alle andre møte-deltakere.

b. Følgende ansees som gyldige grunner til fravær:

i. Uforutsett tap av internettforbindelse

1. Herunder forutsettes det at gruppemedlemmet tar tiltak for å møte

likevel, som for eksempel å bruke mobilnett, eller dra til campus.

ii. Uforutsette, kritiske tekniske problemer.

iii. Sykdom

iv. Ulykke eller alvorlige personskader som hindrer arbeid

v. Død eller alvorlig sykdom i nære relasjoner

vi. Dødsfall

c. Ved fravær uten varsel brukes følgende system for sanksjoner:

i. Første fravær resulterer i samtale innad i gruppen. Samtalen bør diskutere

hvorfor fraværet skjedde, og om det kan gjøres endringer for å unngå flere

fravær.

ii. Andre fravær resulterer i samtale mellom gruppen og veileder. Samtalen bør

også her fokusere på å diskutere hvorfor fraværet skjedde, og om noe kan

endres for å unngå flere fravær.

iii. Ved tredje fravær vil det bli iverksatt seperasjon av gruppen.

E. Dokumenthåndtering

a. Alt skal dokumenteres så langt det lar seg gjøre.

b. Ansvaret for dokumentasjon skal rulleres hver uke (Se seksjon “Roller og

Oppgavefordeling”).

c. Følgende skal alltid dokumenteres:

i. Møter (møtereferat).

ii. Beslutninger vedrørende utvikling.

iii. Sprinter og fremgang, dokumenteres med snapshots underveis.

d. All dokumentasjon skal så langt det lar seg gjøre skrives og lagres i Confluence.

Dokumentasjon som ikke lagres i Confluence skal lagres i en delt Google-drive som

alle gruppemedlemmer skal ha tilgang til.

e. Dokument-ansvarlig har frist til søndag kveld for å fullføre sin dokumentasjon.

F. Innleveringer av gruppearbeider

a. Alle innleveringer vedrørende rapport og dokumentasjon direkte knyttet til rapport,

skal gjennomleses og godkjennes av alle gruppemedlemmer før innlevering.

b. Alle innleveringer vedrørende rapport og dokumentasjon direkte knyttet til rapport

skal levers innen gitte tidsfrister.

c. Gruppearbeider skal være et kollaborativt arbeid der alle gruppemedlemmer deltar i

utforming, godkjenning, og innlevering.

G. Timeregistrering

a. All tid brukt på prosjektet, og arbeid direkte relatert til prosjektet, skal registreres

b. Registrering foregår i Tempo, en plug-in for Jira.

185

i. Hver time skal registreres til en issue.

ii. Hvis arbeid gjøres som ikke kan registreres til en spesifik issue, skal det

registreres til en generell issue som kan representere. Arbeidet gjort.

1. For eksempel vil etter-skriving av møtereferater kunne registreres på

en generell issue/task ved navn “Referater” eller “Generelt

dokumentarbeid”.

Interaksjon
A. Oppmøte og forberedelse

a. Alle gruppemedlemmer skal senest stille opp ved angitt oppmøtetidspunkt informert

via mail.

i. For stand up møter skal gruppemedlemmene senest stille opp ved

tidspunktene spesifisert i denne avtalen.

b. Dersom et gruppemedlem stiller opp etter oppmøtetidspunktet ansees dette som en

forsentkomming.

i. Forsentkomminger behandles på lik måte som fravær (Seksjon “Prosedyre”,

Punkt D).

B. Tilstedeværelse og engasjement

a. Passiv underholdning tillates under arbeid. Passiv underholdning defineres som:

i. Musikk

ii. Video og streaming av video.

b. Det er opp til hvert enkelt gruppemedlem å påse at underholdningen ikke distraherer

fra arbeidet. Dersom underholdningen blir distraherende, selv om den er passiv, skal

underholdningen utebli.

c. Følgende underholdning skal til enhver tid unngås:

i. Dataspill.

ii. Facebook og sosiale medier.

iii. Lesing av materiale ikke relatert til arbeidet (for eksempel nettaviser).

iv. Vilkårlig surfing.

d. Under møter er det forventet at alle gruppemedlemmer deltar aktivt og er

engasjerte. Andre aktiviteter som ikke er relatert til møtet eller dokumentasjon av

møtet skal unngås.

C. Hvordan støtte hverandre

a. Gruppen skal fremme en kultur hvor det er lov å gjøre feil, stille spørsmål, og

presentere konstruktiv kritikk.

b. Alminnelig folkeskikk skal utøves til enhver tid. Trakassering og mobbing skal unngås.

i. Alvorlige tilfeller av trakassering ansees som avvik og kan ansees som

grunnlag for å separere gruppen.

ii. Ved alvorlige tilfeller skal veileder inkluderes og gruppen skal prøve å løse

uenigheter.

iii. Dersom uenighetene ikke kan løses, selv etter møte mellom

gruppemedlemmer og veileder, vil det iverksettes seperasjon av gruppen.

c. Alle ideer skal høres og behandles med respekt.

i. Ideer skal være åpen for kritikk, men kritikken skal være saklig og

konstruktiv.

186

D. Uenighet, avtalebrudd

a. Uenighet skal så langt det lar seg gjøre løses ved samtaler innad i gruppen.

i. Veileder kan involveres dersom uenighetene ikke lar seg løse innad i

gruppen.

ii. Dersom uenigheten fortsatt ikke lar seg løse, vil et siste alternativ være å

splitte gruppen. Dette skal unngås så langt som mulig.

b. Relevante avvik vil også være fravær. Fravær diskuteres og avklares i avsnitt

“Prosedyrer” (Punkt D) av denne avtalen.

187

Appendix 9: Revised milestone plan

188

Milestones, V 2.0

What Description When
Implementation Completion of Pulsar prototype

(Framework 2)
Weeks 11 – 12

Implementation Completion of Flink Prototype
(Framework 3)

Week 13

Testing Testing and comparison between
frameworks

Week 14

Reporting Document all finding in above
implementation tasks. Start
thesis report. Finish
research section above and hand
over for review to AutoStore.

Week 15
2nd delivery to AutoStore

Implementation Selection of most relevant
framework. More in depth
implementation, testing
and validation.

Week 16

Implementation Testing in Azure. Cloud
architecture and frameworks
available for data
consumption.
Configuration, implementation
and test of cloud consumer and
multi-region
clients.
(Students should use their own
Azure accounts, but expenses
not covered by
university can be reimbursed)

Weeks 17 - 18

Reporting Finalize report, complete thesis
work.

Week 19
3rd and final delivery to
AutoStore

189

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f I

CT
 a

nd
 N

at
ur

al
 S

ci
en

ce
s

Klungerbo/Ram
berg

Service for D
ata Stream

ing

Tomas Klungerbo Olsen
Lars Ivar Ramberg

Service for Data Streaming

Bachelor’s thesis in Computer Science
Supervisor: Saleh Abdel-Afou Alaliyat
May 2022

Ba
ch

el
or

’s
th

es
is

	List of Figures
	List of Tables
	Glossary
	Acronyms
	Introduction
	Background
	Problem Thesis
	Requirements
	Boundaries
	Subject areas
	Structure

	Theory and material
	Agile methods and SCRUM
	Scrum Sprints
	User Stories
	Backlog
	Scrum meetings
	Scrum Roles
	Story Points
	Planning Poker

	Containers and images
	Cloud Technologies
	Streaming
	Version control
	Git flow

	Clean Code
	Pair Programming
	Code Review
	Encryption
	SOLID design principles

	Method
	Research method
	Frameworks and Framework Research

	Technologies and Developmental Methodologies
	Java
	Code style
	Continuous Integration
	Containers and Docker
	Virtual Machines and Networking
	Collaboration
	Planning and estimation of work
	Work distribution
	Work scheduling
	Issue Tracking System
	Project Documentation System
	Milestone plan
	Version Control and Git
	Utility (util) Repositories
	Prototyping
	Testing

	Results
	Scientific Results
	Engineering Results
	Style Guide and Checkstyle
	Prototypes
	Final streaming solution
	Cluster Implementation
	Documentation

	Administrative Results
	Implementation of Scrum
	Roles and Responsibilities
	Milestone plans
	Final streaming solution

	Discussion
	Scientific discussion
	Framework Research
	Testing and Documentation of Testing

	Engineering Results
	Streaming and Communication of Data
	Security
	Implementation of Broker as a Cluster
	Documentation

	Administrative discussion
	Implementation of Scrum
	Milestones

	Conclusion
	Conclusions
	Further work
	Authentication
	Encryption
	Pulsar property limitations
	Cloud cluster solution
	Infrastructure as code
	Unit testing

	Social impact
	References
	Appendices

