
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Aas, G
luppe, Vannebo

Self-Sovereign Identity and Verifiable D
ata

Mikkel Aas
Magnus Gluppe
Erlend Johan Ringen Vannebo

Using Self-Sovereign Identity and
Verifiable Data to improve public
services

Bachelor’s thesis in Computer Science
Supervisor: Mariusz Nowostawski
May 2022

Ba
ch

el
or

’s 
th

es
is





Mikkel Aas
Magnus Gluppe
Erlend Johan Ringen Vannebo

Using Self-Sovereign Identity and
Verifiable Data to improve public
services

Bachelor’s thesis in Computer Science
Supervisor: Mariusz Nowostawski
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Abstract

Symfoni, a Norwegian company specializing in verifiable data, wanted to make a
demo for NAV that showcased how EU Digital Wallet could be used when apply-
ing for unemployment benefits. The end product was an application that runs on
the web and a smartphone that allows users to control their verifiable data. It is
essential to state that none of the sensitive verifiable data used in the application
is real. Therefore it can not be used in a real-life scenario. It is, however, a good
demo for showcasing the flow of data in the Self-Sovereign Identity system.

iii





Sammendrag

Symfoni ønsket å lage en demo for NAV som kunne vise hvordan EU Digital Wallet
kan bli tatt i bruk når én søker om dagpenger. Resultatet ble en applikasjon som
kjører i nettleseren og på mobilen, der brukeren er i kontroll over sin egen veri-
fiserbare data. Det er viktig å understreke at den sensitive verifiserbare dataen i
prosjektet ikke er ekte, og kan dermed ikke brukes i en ekte situasjon. På en annen
side er det en god demo for å demonstrere flyten av data i et egen-kontrollert iden-
titet system.

v





Preface

This bachelor thesis is written by Mikkel Aas, Erlend Vannebo, and Magnus Gluppe
for the Department of Computer Science at NTNU in Gjøvik.

First, we want to extend our sincere gratitude to our client and mentor, Jon
Ramvi, CEO and founder of Symfoni. Jon and the other developers from Symfoni
have provided invaluable input for this thesis, both from a theoretical and tech-
nical standpoint. He has put us in contact with NAV and different professionals to
help during development. Second, we would like to thank Elin Vethe, our contact
person, when collaborating with NAV, Norway’s Work- and Welfare Management.
She always showed great enthusiasm in our meetings and asked important ques-
tions that helped us improve the application. She provided an outsider’s perspect-
ive and had the knowledge regarding the inner workings of NAV that the group
required. Third, we would like to thank Mariusz Nowostawski, associate professor
for NTNU, and our supervisor for the thesis. Mariusz has helped us traverse the
university end of the thesis with the project’s scope and writing the thesis itself.

Finally, we would like to thank our family, friends, and fellow students for be-
ing our support structure throughout this process. They have helped with proofread-
ing the report and encouraging us along the way.

vii





Repository

The code for this project can be found at NTNUs Git in a public repository. Inside
the repository, there is a readme that will explain how to start the demo:
https://git.gvk.idi.ntnu.no/Mikkelaa/bachelor

ix

https://git.gvk.idi.ntnu.no/Mikkelaa/bachelor




Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Code Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Project Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Target audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4.2 Physical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.3 Legal and ethical . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Group background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5.1 Responsibilities and roles . . . . . . . . . . . . . . . . . . . . . . 3
1.5.2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5.3 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5.4 SCRUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5.5 Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5.6 Symfoni and supervisor . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Report structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6.2 Theory and technology . . . . . . . . . . . . . . . . . . . . . . . 5
1.6.3 Requirement specifications . . . . . . . . . . . . . . . . . . . . . 5
1.6.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6.5 Front-end design . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6.6 Development process . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6.7 Implementation coding production . . . . . . . . . . . . . . . . 6
1.6.8 Testing and quality assurance . . . . . . . . . . . . . . . . . . . 6

xi



xiiCoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

1.6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Theory and Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Self-Sovereign Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Trust triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Decentralized Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 DID methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 DID document . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Verifiable credentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Verifiable data registries . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 DIDComm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Trust anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 Veramo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.5 Infura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Requirement specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Initial product outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Multistage transaction model . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Swim lanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Business . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.2 User making a DID . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.3 Company making a DID . . . . . . . . . . . . . . . . . . . . . . 23
3.5.4 User acquires personal ID VC . . . . . . . . . . . . . . . . . . . 23
3.5.5 User acquires employment VC . . . . . . . . . . . . . . . . . . . 24

4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 File structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Controller classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5.1 user endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.2 NAV endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.3 symfoni endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.4 state endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Front end design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Login page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Show DID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 List VCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.3 Send VP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.4 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



Contents xiii

5.3 Symfoni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.1 Add employee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.2 Terminate employee . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.3 Request VCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 NAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.6 Wireframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.7 Abandoned changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Development process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1 Meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Symfoni meetings . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.2 NAV meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.3 Supervisor meetings . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Development model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.1 Sprints and sprint review . . . . . . . . . . . . . . . . . . . . . . 54
6.2.2 Issue tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.3 Code review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.4 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 Veramo agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3.2 Main functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3.3 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.4 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4.1 Endpoint functionality descriptions . . . . . . . . . . . . . . . 67

7.5 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.5.1 Firestore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.5.2 Local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.6 React Native . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.6.1 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.6.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.6.3 Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.6.4 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.6.5 Function components . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Testing and quality assurance . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.1 Unit testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2 API testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3 GUI testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.1.1 SSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.1.2 Collaboration with NAV . . . . . . . . . . . . . . . . . . . . . . . 89



xivCoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

9.1.3 Redundant code . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.1.4 Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.1.5 Limited amount of issuers . . . . . . . . . . . . . . . . . . . . . 91
9.1.6 Type guards in TypeScript . . . . . . . . . . . . . . . . . . . . . 92
9.1.7 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.2 Critique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.4 Evaluation of group efforts . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.4.1 Organizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.4.2 Workload distribution . . . . . . . . . . . . . . . . . . . . . . . . 94
9.4.3 Project as a form of work . . . . . . . . . . . . . . . . . . . . . . 95

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A Project Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B Project Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
C Task Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
D Symfoni Meeting Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
E NAV Meeting Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
F Adviser Meeting Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
G Low fidelity prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
H Swimlanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
I Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
J User agent setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
K isQualifiedForUnemploymentBenefits function . . . . . . . . . . . . . . . 195
L Original Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
M Timesheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



Figures

2.1 Trust triangle for SSI ecosystem. [2, p. 25] . . . . . . . . . . . . . . . 8
2.2 Example layout for a DID. [2, p. 158] . . . . . . . . . . . . . . . . . . . 9
2.3 An information graph that shows the contents of a verifiable cre-

dential. [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Architecture of a centralized database. [2, p. 33] . . . . . . . . . . . . 12
2.5 Peer-to-peer blockchain connection. [2, p. 33] . . . . . . . . . . . . . 12
2.6 Veramo plugins architecture. [11] . . . . . . . . . . . . . . . . . . . . . 14
2.7 Infura connects to the Ethereum network. [12] . . . . . . . . . . . . . 15

3.1 Digital agent. [2, p. 29] . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Simple use case for the actions an agent can perform. . . . . . . . . . 18
3.3 Frequency matrix for showing often actions are preformed. . . . . . 18
3.4 Proposed flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Shows the flow of credentials, and how the different actors play

different roles in a transaction. . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Shows a business flow how a user would proceed to apply for un-

employment benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 A user creating a DID using did:ethr . . . . . . . . . . . . . . . . . . . 22
3.8 Company creates DID:web . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9 A user acquires a person credential from the national registry . . . . 24
3.10 Shows the flow of credentials, and how the different actors play

different roles in a transaction. . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Src folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Login Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 User home page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 User display decentralized identifier in a QR code and plain text . . 38
5.4 Stored verifiable credentials list . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Verifiable credential detail view . . . . . . . . . . . . . . . . . . . . . . 40
5.6 Verifiable presentation request scanner . . . . . . . . . . . . . . . . . . 41
5.7 Verifiable presentation request alert . . . . . . . . . . . . . . . . . . . . 42
5.8 User receive verifiable presentation request . . . . . . . . . . . . . . . 42

xv



xviCoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

5.9 User message inbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.10 Message details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.11 Employment form part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.12 Employment form part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.13 Termination form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.14 Symfoni request credentials . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.15 NAV home page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.16 NAV verifiable presentation request . . . . . . . . . . . . . . . . . . . . 48
5.17 State home page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.18 State user page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.19 Figma employer page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.20 Figma user home page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1 Issue tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Meeting notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1 This is what the database looks like when directly interacting with
it in the cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 An example of a personal data document inside the Firestore database 75
7.3 An example of an employment contract data document inside the

Firestore database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4 An example of a termination contract data document inside the

Firestore database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Tables

4.1 Endpoints for the user agent . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Endpoints for the NAV agent . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Endpoints for the Symfoni agent . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Endpoints for the state agent . . . . . . . . . . . . . . . . . . . . . . . . 34

xvii





Code Listings

7.1 Continuous integration android build script . . . . . . . . . . . . . . . 60
7.2 Creating a new DIDManager . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3 The get main identifier function . . . . . . . . . . . . . . . . . . . . . . 62
7.4 The resolve DID function . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.5 The create credential function . . . . . . . . . . . . . . . . . . . . . . . 63
7.6 The create person credential . . . . . . . . . . . . . . . . . . . . . . . . 65
7.7 The create employment credential . . . . . . . . . . . . . . . . . . . . . 65
7.8 Express server setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.9 The get main identifier endpoint function . . . . . . . . . . . . . . . . 67
7.10 The create person credential endpoint function . . . . . . . . . . . . . 67
7.11 The add credential to database endpoint function . . . . . . . . . . . 69
7.12 The create verifiable presentation endpoint function . . . . . . . . . 69
7.13 The user send message endpoint function . . . . . . . . . . . . . . . . 71
7.14 The symfoni handle messaging endpoint functionality . . . . . . . . 72
7.15 Firestore database setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.16 Example of a read operation . . . . . . . . . . . . . . . . . . . . . . . . 77
7.17 Example of a delete operation . . . . . . . . . . . . . . . . . . . . . . . 78
7.18 Example of a create and update operation . . . . . . . . . . . . . . . . 78
7.19 Navigation screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.20 pasing params to a different screen . . . . . . . . . . . . . . . . . . . . 80
7.21 Credential card component . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.22 Credential detail component . . . . . . . . . . . . . . . . . . . . . . . . 81
7.23 Example of button styles . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.24 Yup validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.25 UseState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.26 UseEffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.27 Get main identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1 Example of mocha before and after functions for tests . . . . . . . . 85

J.1 Example of user agent setup . . . . . . . . . . . . . . . . . . . . . . . . 193

K.1 isQualifiedForUnemploymentBenefits function from NAVAgentCon-
troller.ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

xix





Acronyms

API Application Programming Interface. 2, 13, 16, 18, 29, 32, 59, 61, 63, 66, 67,
78, 79, 83, 94

DID Decentralized Identifier. 8–14, 16, 17, 19–25, 32–34, 37, 38, 42, 44, 48, 50,
61–64, 68–71, 86, 88, 94, 96

EBSI European blockchain Service Infrastructure. 21

EU European Union. 2, 21, 35

GUI Graphical User Interface. 16, 30, 46

JSON JavaScript Object Notation. 67, 78

JSON-LD JavaScript Object Notation for Linked Data. 9, 32, 91

JWT JSON Web Token. 44, 57, 64, 66, 85

NAV Norway’s Work- and Welfare Management (Arbeids- og velferdsforvaltnin-
gen). 1, 2, 5, 8, 15, 19–21, 27, 31, 35, 42, 48, 53, 54, 61, 64, 74, 76, 77,
89–91, 93, 94, 96

NPM Node Package Manager. 59

NTNU Norwegian University of Science and Technology. vii, 2, 27

PKI Public Key Infrastructure. 13

SQL Structured Query Language. 59, 61, 74, 79

SSI Self-Sovereign Identity. xv, 2, 3, 5, 7, 8, 13–21, 24, 27, 30, 36, 40, 43, 44,
51–54, 57, 59, 61, 63, 78, 89, 91, 93–96

URL Uniform Resource Locator. 83

VC Verifiable Credential. 8, 13, 17, 19, 20, 24, 27–29, 31, 33, 37, 39, 42, 43, 47,
48, 52, 54, 64, 79, 91

VP Verifiable Presentation. 19, 20, 28, 37, 41–43, 47

xxi





Glossary

blockchain Is a shared, immutable ledger that facilitates the process of recording
transactions and tracking assets in a business network.. 1, 9–12, 21, 30

decentralized identifier Is a new type of identifier that is globally unique, resolv-
able with high availability, and cryptographically verifiable.. 8, 9

Ethereum Ethereum is a decentralized, open-source blockchain with smart con-
tract functionality. 9, 88, 96

veramo Is a bundle of performant and modular APIs for Verifiable Data and SSI.
3, 13, 14, 16–18, 28–30, 59–61, 63, 64, 66, 67, 74, 78, 79, 92

verifiable credential Is a tamper-evident credential that has authorship that can
be cryptographically verified.. 7, 10, 11, 13–16, 23, 24, 27–30, 59, 63, 68–
70, 74, 76, 77, 79, 81, 92, 94–96

verifiable presentation Expresses data from one or more verifiable credentials,
and is packaged in such a way that the authorship of the data is verifiable.
. 41, 70, 71, 74, 90

xxiii





Chapter 1

Introduction

1.1 Background

There will be greater demand for digital solutions in modern society as more and
more of our information is stored and exchanged digitally. With increased glob-
alization, both culturally and in the workspace, it is important to set standards
for storing and exchanging information. The EU Digital Wallet initiative aims to
achieve a secure unified digital identification system for Europe. Ursula von der
Leyen, the President of the European Commission on the EU Digital wallet: "Every
time an App or website asks us to create a new digital identity or to easily log on
via a big platform, we have no idea what happens to our data in reality. That is
why the Commission will propose a secure European e-identity. One that we trust
and that any citizen can use anywhere in Europe to do anything from paying your
taxes to renting a bicycle. A technology where we can control ourselves what data
is used and how." [1]. This digital wallet will contain all of one’s credentials, from
passports to university degrees or military service, and is meant to be used by EU
citizens across EU borders to identify themselves and to make use of services all
over the EU.

The bachelor project is done in collaboration with Norway’s Work- and Welfare
Management(NAV) and Symfoni, a private company specializing in SSI and block-
chain technology. Today many application processes at NAV are being automated,
but many are still performed manually and are time-consuming. This is due to
the applicant having to collect documentation from different institutions, and an
employee at NAV has to verify these. This process can be automated using SSI
technology. In collaboration with Symfoni, we created a proof of concept solution
to show NAV the possibilities behind this technology and how their application
processes can be automated in the future.

1



2CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

1.2 Project Description

Our goal was to create a proof of concept demonstration of the EU Digital wallet
workflow through the application of unemployment benefits at NAV. The project
aims to use the principles of the EU Digital Wallet to create a system for digit-
ally storing credentials. These credentials are used in NAV’s application process.
Mocked counterparts of real-life institutions will issue the information stored in
this wallet to simulate a real scenario. First, we have a user agent representing the
EU digital wallet, where all issued credentials will be stored. It is also decoupled
from large centrally run databases. Then we have an agent representing the state
who issues an identification credential. We have an agent representing Symfoni, a
business issuing employment and termination credentials. Lastly, we have a NAV
agent who is requesting these credentials, verifying them, and deciding whether
someone applies for unemployment benefits or not.

1.3 Target audience

The goal of the bachelor thesis is twofold, creating a product to show proof of
concept for SSI and writing a bachelor’s thesis for NTNU.

The product is mainly meant for NAV and Symfoni to see if technology has
potential and if it improves upon the current system. However, we hope other
institutions and businesses can take inspiration from this product, find other use
cases for this technology, and continue development on the subject.

The report is written for people who have a basic understanding of central
concepts within computer science, such as familiarity with coding, databases, and
APIs. The report is targeted toward fellow students, the supervisor, and the exam-
iner. Students who are interested in the subject can use this report to learn more
about the subject matter.

1.4 Constraints

1.4.1 Time

The project is a bachelor thesis, so certain time constraints had to be considered.
Being inexperienced in the subject matter was a point of concern as it would take
time to learn the concepts of SSI and to learn the additional tools and program-
ming languages required before we could start developing the product. Having a
finite amount of time for the project meant we had to manage it well and priorit-
ize the most important aspects. Early on We made a progress plan where we sat
milestones for ourselves to hit (see Appendix B). We did this to ensure that we
progressed and did not get stuck for too long on specific problems. This ensured
that we were not spending too much time on one area, such as reading so that we
had time to develop the application and write the report.



Chapter 1: Introduction 3

1.4.2 Physical

The group scheduled three physical work sessions at the campus a week. Dur-
ing these, we worked with the current tasks laid out in the project plan: pre-
project planning, developing code, writing the report, and preparing for the final
presentation. We had digital sessions over discord when physical meetings were
not scheduled, and these consisted of the same tasks as the physical sessions.
Later in the development stage, it was more open for individual work, both on
the codebase and the report. In addition to having meetings with the group, we
had regular meetings with our faculty supervisor and employer. These meetings
were held digitally over discord or Microsoft teams.

1.4.3 Legal and ethical

The biggest ethical issue with this product is handling private and sensitive in-
formation. The intended function is for different government agencies to com-
municate and pass personal data. We must ensure this data is not compromised
and used for nefarious means. This project uses dummy data, though a real-life
implementation would have to consider privacy concerns.

Both Symfoni and our bachelor group are committed to the concept of open-
source software, and the code is available to be studied and used by all. Our goal
was to make a practical and secure solution so that others could build upon what
we create.

1.5 Group background

The group consists of 3 computer engineering students with experience with sev-
eral programming languages and system development. Both node and JavaScript
frameworks are used, and the group has experience using these tools. None of
the members had any experience with the SSI infrastructure, so a considerable
amount of time was used to learn both the theoretical and practical applications
of the technology. The main unknown software that needed to be learned were
DIDComm and Veramo.io

1.5.1 Responsibilities and roles

The main parts of the project were split into different categories—the primary
responsibility of each category was delegated to one group member. Every group
member had responsibility for the entire project and was expected to work on
each part of the project; however, the person with the primary responsibility was
responsible for doing the final quality check of the content being produced. This
made us use our different strengths to our advantage and distribute the workload
evenly between us when performing quality assurance.



4CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

1.5.2 Code

Erlend was in charge of Code quality. We tried to uphold a high and consistent
standard, using good practice throughout the project. Erlend ensured we shared
the same principles like high cohesion, low coupling, and sensible variable names
in our code. The plan was to have a code review every time a sizable part was
merged into dev, and the code master had a greater responsibility to make sure
this happened.

Being in charge of the code quality was by far the most significant respons-
ibility, as this included: code conventions and standards, continuous integration,
pipeline, code quality, and testing. This was a big task for one person, so the code
master had to delegate some of these responsibilities to make sure not too much
fell on one person.

1.5.3 Documentation

Mikkel was in charge of the overall documentation for the bachelor thesis. This
included documentation for code, the main report, and all the necessary attach-
ments required. All members were expected to document the work; the docu-
mentation master was not meant to micromanage everything, but to ensure that
the overall style and standards were upheld.

1.5.4 SCRUM

The Scrum master for this team was Magnus. His job was to ensure that every
team member was familiar with the Scrum process and followed the appropriate
guidelines. With agile development, it was easy to exclusively focus on writing
code and neglect the documentation and planning parts of the project. Scrum is
lighter on the planning and documentation part than more traditional develop-
ment methods, but it is still essential to use the issue tracker and sprint reviews.
The Scrum master ensured that the development process did not slide into chaos.

1.5.5 Manager

In addition to his role of overseeing the documentation, Mikkel had the respons-
ibilities of a manager. This included ensuring deadlines are upheld, organizing
meetings, ensuring information flow between the team members and external
stakeholders, and the general morale of the team. There is some overlap between
the Scrum master and the manager, but there was no coordination issue consid-
ering the team was small.

1.5.6 Symfoni and supervisor

Symfoni played an essential role in the project. Early on, they gave us learning
materials on the subject area and willingly wanted to discuss the subject to help



Chapter 1: Introduction 5

us understand. We had weekly meetings during the development process to get
feedback on our progress, and technical requirements were further discussed. Ad-
ditionally, technical meetings were encouraged by them, where they helped us
with coding and gaining insight into using the technologies within SSI. Symfoni
also served as a bridge between us, NAV and the industry.

Our supervisor played a more distanced role in our project. We had meetings
less frequently, mostly when more significant changes had been made to ensure
we were on the right track regarding the academic expectations for the thesis.

1.6 Report structure

The report consists of ten chapters. In the first part, we will be discussing the thesis
problem and the technologies we will be using to solve it. In the second part, we
will talk about the initial design and how we implemented it. Lastly, we are going
to discuss the result.

1.6.1 Introduction

Introduces the project to the reader and sets a baseline for the reader to follow
through with the report.

1.6.2 Theory and technology

The theory and Technology chapter provides the background necessary to under-
stand the technology used in this project. SSI is a reasonably new technology, and
some knowledge is required to understand the scenario this bachelor wants to
showcase

1.6.3 Requirement specifications

The Requirement specifications chapter contains the task given to the group by
Symfoni, the employer issuing the bachelor problem statement.

1.6.4 Design

The Design chapter consists of the overall design choices for the bachelor project.
Furthermore, it explains the project’s overall structure and the scenario we build
the application demo around.

1.6.5 Front-end design

The Front-end design chapter goes through how the application looks and the
thought process behind the decisions that were made. Every page of the applica-
tion is documented with an image and a short text giving additional context.



6CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

1.6.6 Development process

The development process chapter explains how the group worked to achieve the
goal. It covers everything from internal code reviews to meetings with external
partners like Symfoni.

1.6.7 Implementation coding production

The implementation and coding production chapter are about how the demo was
made. It uses code examples from both the back and front end of our demo to
describe how the demo was written.

1.6.8 Testing and quality assurance

The testing and quality assurance chapter are about how we tested and quality
assured our code, and it also has some reflection on what we would have done
differently.

1.6.9 Conclusion

In the concluding chapter, we discuss our thoughts on the project. The chapter
ranges from our thought on team cooperation to the state of the final demo.



Chapter 2

Theory and Technology

This chapter is about the core technology and theory fundamental to understand-
ing how the project was done. It explains the most important building blocks of
the Self-Sovereign Identity system. Furthermore, it has an in-depth problem de-
scription that extends on the theories and technologies discussed.

2.1 Self-Sovereign Identity

Self-sovereign identity is a new model for digital identity on the internet. Its goal
is to streamline the identification process for websites, services, and apps where a
user needs to establish a trusted relationship to access or protect private inform-
ation. It is driven by new technologies and standards in cryptography, distributed
networks, cloud computing, and smartphones.

The main idea is to shift from a centralized to a decentralized system. The old
identity models rely on the communication between an issuer and a verifier. The
new model aims to bridge this connection through the user. In other words, they
are letting the user be in control of their own identity. [2, p. 3]

2.1.1 Trust triangle

The three core parts of the SSI model are the issuer, holder, and verifier. The issuer
is the source of all credentials, and every credential has an issuer. For the most part,
the issuers are organizations such as government agencies, financial institutes,
universities, corporations, and many more. However, individuals or objects can
also be issuers. An individual could issue a credential for power of attorney, and
a sensor could issue a credential for an approved product.

Holders request verifiable credentials from the issuers and keep them in the
holder’s digital wallet. In most cases, the holder of a digital wallet will be an
individual, and the holder may then present these credentials to any verifier. This
step makes trusted interactions possible, as the verifier checks if the credential
is from a trusted issuer. A government agency has a high level of trust, while an
unknown startup company has a lower level of trust.

7



8CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Verifiers can be a person, organization, or object seeking trust assurance about
the subject’s credentials. The verifier requests proof of a credential or a claim
from a holder’s credential. If the holder approves this request, the holder’s agent
responds with proof that the verifier can verify. A crucial step in this process is the
verification of the issuer’s digital signature, typically accomplished using a DID,
which will be discussed in the next section.[2, p. 24-26]

Figure 2.1: Trust triangle for SSI ecosystem. [2, p. 25]

The trust triangle is the relationship between issuers, holders, and verifiers,
and it is fundamentally how human trust relationships are conveyed over a digital
network. [2, p. 101]

VCs only convey trust if the verifier trusts the issuer. This does not mean that
the verifier must have a direct business or legal relationship with the issuer. It
means that the verifier is willing to make a business decision based on the level
of trust assurance the verifier has in the issuer.

A trust triangle, as discussed above, only describes one side of a business trans-
action. It is possible that both parties request information and that both parties
may play the roles of holder and verifier in a single transaction. This is not the
case in our project, as we deal with government entities or private businesses.
Here the trust in the user is established by sending an identity credential issued
by the government. It would be less natural for NAV to send a credential proving
their identity, as they are the established party.

2.2 Decentralized Identifiers

One of the essential building blocks of SSI is the decentralized identifier, com-
monly called a DID. A DID is a new type of identifier that can refer to any subject
such as a person, organization, or an abstract entity. The innovative part of DID is
that rather than being based on federated identifiers, they are entirely controlled
by the DID’s owner. This allows DIDs to be decoupled from centralized registries,
identity providers, and certificate authorities and establishes trust-able interac-
tions between subjects.[3]



Chapter 2: Theory and Technology 9

2.2.1 DID methods

There are many different methods when it comes to creating a DID, both on and off
the blockchain. A DID structure is quite similar to a URL; the scheme is defined
as a DID, then the DID method is specified, and the last part is a DID method-
specific string that serves as the ID. For reference see Figure 2.2. Two examples of
DID methods are DID:ethr and DID:web.

Figure 2.2: Example layout for a DID. [2, p. 158]

DID:web is a decentralized identifier that is domain-based. Creating a DID:web
consists of three steps

1. Register the use of a domain name.
2. Storing the IP address at DNS lookup service.
3. Create the DID document JSON-LD with a key pair and store the did.json at

an URL.

The DID resolver can look up the URL to verify the did.json data. If several
DIDs are stored on the same domain, use a specific path for the different DIDs.
This method does not require a blockchain network to work and therefore is easier
to understand for the general public. DID:web is a suitable option in a scenario
where a business wants to create identifiers for themselves. Most businesses have a
dedicated web page and can use that domain for verifying the DID:web identifier.
Additionally, a malicious actor cannot impersonate the business, as they do not
have access to the business’ domain. One would look up their DID:web identifier
and see that it is not issued from the correct domain and, therefore, fraudulent.[4]

DID:ethr is a DID method based on the Ethereum blockchain. It works very
similarly to the DID:web method, but instead of storing the did document on a
domain, one uses an Ethereum address. An Ethereum address can only be owned
by one user at the time and has a public key. Decentralized identifiers are de-
signed to be compatible with any distributed ledger or network. However, they
are designed around the blockchain, using the peer-to-peer connection that the
blockchain provides. To make changes to a DID-document on the blockchain you
need to make an Ethereum transaction. To make a transaction requires gas; this
means one needs to pay some Ethereum as a transaction fee. To avoid buying
Ethereum, the group uses ethr:rinkeby, which is a free testing currency given to
developers so they can work and experiment with Ethereum.

Ethereum is a decentralized global software platform powered by blockchain
technology at its core. The first association people have with Ethereum is crypto-
currency. However, cryptocurrency is only one function of Ethereum’s smart con-



10CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

tracts. A smart contract is a program that runs on the Ethereum blockchain. Smart
contracts define rules and regulations and automatically enforce them using code.
A user interacts with the blockchain by submitting transactions to the smart con-
tracts. Instead of a currency stored on the blockchain, the did:ethr stores a DID-
document. [5]

2.2.2 DID document

A DID:method by itself is not very useful, just like a web address with only HT-
TPS is not very interesting. A web address needs a hyperlink to link to a resource;
similarly, a DID needs a DID document. A DID document is a standardized data
structure which contains metadata about the DID subject. These are typically cryp-
tographic keys, authentication methods, and other metadata describing how to
engage in trusted interactions. To retrieve a DID document, you need something
called a DID resolver. The resolver takes the standardized data structure and does
something useful, like using it to establish a trusted interaction. A DID document
is not human-readable but a document intended for identity applications such as;
digital wallets, agents, or encrypted data stores. [2, p.161]

2.3 Verifiable credentials

The concept of verifiable credentials is at the very core of self-sovereign iden-
tity. It is common to think of credentials as a piece of paper or plastic that fits
in a wallet. Credentials can be used to prove someone’s identity, like driving li-
censes, government IDs, and employment cards. The term credential extends to
any tamper-resistant set of information that some authority claims to be true about
the subject of the credential. This, in turn, enables the subject to convince others
of the validity of their claim.

Every credential has a set of claims about the subject of the credential. These
claims are made by a single authority, which is referred to as an issuer in self-
sovereign identity. The person the credential is assigned to is commonly referred to
as the credential holder. The claims made by the credential could be anything from
a person’s social security number, to their height and entitlements, like healthcare
benefits. [2, p.139]

To qualify as a verifiable credential, the claims must be verifiable in one way
or another. This means that a verifier must be able to determine who issued the
credential, that it has not been tampered with, and that it has not been revoked or
expired. With physical credentials, this is usually done with proofs of authenticity
embedded directly in the credential, like watermarks and holograms. However,
this manual verification process can be difficult and time-consuming.

Digital verifiable credentials save time and simplifies the verification process.
The first part of a verifiable credential is a unique identifier, and the second part
is metadata, like the expiration date. The third part is the claims contained in
the credential, all the other data items like date of birth, gender, marital status,



Chapter 2: Theory and Technology 11

and similar claims. The fourth and last part is a digital signature made by the
credential issuer using cryptography.

Figure 2.3: An information graph that shows the contents of a verifiable creden-
tial. [6]

Context - Schema

The credential schema is an essential part of the verifiable credential. It is a doc-
ument used to guarantee the structure and, by extension, the semantics of a set
of claims comprising a verifiable credential. The integrity of a verifiable creden-
tial heavily relies on how to structure the credential so that all the parties, issuer,
holder, and verifier may have a singular trust mechanism provided by the creden-
tial schema. [7, p. 5.4]

2.3.1 Verifiable data registries

A DID can be registered with any decentralized network or verifiable data re-
gistry. For example, on a blockchain. A blockchain is a highly tamper-resistant
transactional distributed database that no single party controls. In other words,
it may provide an authoritative source of data that many different peers can trust
without any single peer being in control. However, a blockchain trades off many
features apparent in distributed transactional databases, like performance, effi-
ciency, scalability, and searchability.

Blockchains accomplish the feat of removing central authority while maintain-
ing high trust in data integrity by using a triple play of cryptography. Firstly, every
transaction to a blockchain is digitally signed, and each peer manages their private



12CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Figure 2.4: Architecture of a centralized database. [2, p. 33]

Figure 2.5: Peer-to-peer blockchain connection. [2, p. 33]

keys and digitally signs their transactions with the blockchain. This ensures that
no new transaction is accepted unless the signature is verified. Secondly, all trans-
actions are grouped into cryptographically hashed blocks linked to the previous
block. This step ensures that the chain of transactions is immutable. Lastly, every
new block is cryptographically replicated across all peer nodes on the blockchain
network. This means that every peer ends up with a copy of the latest block, and
as long as the majority agrees on the new addition, the blockchain may never be
rewritten. [2, p. 33]

2.3.2 DIDComm

DIDComm messaging is a secure communication methodology built upon an ex-
change of DIDs to establish a communication channel. The exchange of keys is
done by resolving the DIDs and finding the keys in their respective DID-documents.
This constitutes an authentication channel, where one is given control of the DIDs



Chapter 2: Theory and Technology 13

private keys.
DIDComm allows for mutual authentication between two parties. Instead of a

sign-in interaction that much of web communication requires, where the business
vouches for one’s identity, the DID belongs to the individual. This removes the
power imbalance between the user and the business. The business does little to
identify itself and gains a great deal of data from the user accounts. This data
can be sold and used to manipulate advertisements or online behavior. Businesses
properly identifying themselves adds another security layer that makes it harder
to spoof websites intended for stealing personal data. [8]

DIDComm is a transport agnostic service. This means that the DIDComm trans-
port layer does not care how the information is transported. One can transport the
message over HTTP, BlueTooth, WebSockets, and more. In this project, we trans-
port information over the local network. This is purely for creating a demo; a
real-world implementation would have to use a different method. [8, p.8]

2.3.3 Trust anchors

A trust anchor in PKI is a certification authority that signs certificates that identify
the other part in a communication channel. SSI does not remove trust anchors
from the process. One can set up a cryptographically secure communication chan-
nel, but if one does not know whom one is communicating with, there are still
possibilities for exploitation. There are different approaches to solving this issue,
and it is almost impossible not to have a human involved in this process. [9]

It is possible to have an extensive registry with DIDs the user can look up to
confirm they are connecting to a verified entity. The drawbacks to this are the
loss of privacy and giving up some control to the people in charge of the registry.
If a DID is connected to a person, and the person is identified in a centrally run
registry, the DID can be used for tracking their online activity. In addition, the
institution that controls the registry will have much power over the system. Will
it be run by the state or a private corporation? These central databases are weak
to exploitation by malicious actors and by the institutions that run them. [9]

Another way to solve this is an exchange of VCs after the DIDComm connec-
tion is established. One connects with an unknown entity and establishes their
identity through an exchange of credentials. The drawback is that businesses and
institutions need to have a credential proving who they are. It is more natural for
the user to have a VC and the verification for a business to be more static. The
benefit is that the user does not have to rely on a certification authority to have a
centrally run registry.

2.3.4 Veramo

Veramo is a collection modular APIs that are designed for using verifiable data and
SSI. Veramo makes it possible for anyone to use DIDs and verifiable credentials in
their application. One of the drawbacks of using SSI is all the different standards.
All the different components must have the same standards for the ecosystem to



14CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

work. Veramo deals with this, so the developer does not have to. Veramo consists
of different packages that deal with the SSI flow. Below is a list of the Veramo core
functionality. [10]

• Key Manager - Creates keys for the DID documents.
• Data Store - Stores data in the wallet/database
• DID manager - Creates DIDs.
• Resolver - Resolves DIDs.
• Credential Issuer - Creates verifiable credentials.

If other Veramo packages are necessary, like DIDComm and message handler,
they must be important in addition to the Veramo core.

Figure 2.6: Veramo plugins architecture. [11]



Chapter 2: Theory and Technology 15

2.3.5 Infura

One of the most important technologies we use for this project is Infura. Infura is a
blockchain development suite with APIs and developer tools that grants easy and
reliable access to the Ethereum network. In this project, it stores decentralized
identifying documents on the Ethereum test network called Rinkeby. It is also
used whenever we want to resolve a decentralized identifying document and send
messages over DIDComm.

Figure 2.7: Infura connects to the Ethereum network. [12]

2.4 Problem description

One of the challenges with writing a bachelor thesis about SSI is that a lot of the
infrastructure required does not exist yet. The task is to create a proof of concept,
not a standalone application. When creating a proof of concept of something as
significant as changing public services to use a SSI model, data and interactions
need to be mocked. Creating the entire ecosystem would be outside the scope of
our assignment and not possible with the human resources and time available.

This thesis focuses on the particular scenario of using verifiable credentials in
the process of applying to unemployment benefits form NAV. For this interaction,
we created four digital agents to make up the SSI ecosystem. The agents are the
user agent, Symfoni agent, NAV agent, and state agent. The flow would go like
this; the user requests a person’s credential from the state to prove their identity.
The user requests employment and termination credentials from their previous
employer, who grants these based on the user’s personal credential. Finally, NAV
requests all three credentials and makes a decision based on the information they
contain. This process can be made as simple or complicated as desired. With this
framework, one can add more credential issuers and add their credentials as a
requirement for NAV. An example could be NAV requiring information about an
applicant’s education, and the user sends an education credential issued by a uni-
versity. In the same way, we could only have used an agent for the user and NAV



16CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

and mocked the rest of the data.
One of the challenges for SSI is compatibility. Veramo is used in this project,

and the Veramo API deals with many of the compatibility issues. All the digital
agents in the project are created with Veramo. Compatibility is easy to achieve
in a small self-contained project, but consistent data structures are required in a
real-life scenario. This is why all verifiable credentials have a Schema they strictly
follow. Creating schema ensures that the data issued from one issuer is the same
as the verifier uses. Hence, a verifiable credential is the same regardless of which
agents created it. These schemas do not exist and have to be made by the group.

In addition to the SSI elements of the project, we also have to develop an ap-
plication with a GUI for the demo. This app must be able to communicate between
the different agents so that they can send and verify credentials. There are many
options for the transport layer as to how the information is exchanged, which is
less important than the SSI elements. The final product uses DIDComm as a com-
munication channel, as it is a part of the veramo plugins. It establishes DID-to-DID
connections, which adds another layer of security and control for the user.



Chapter 3

Requirement specifications

This chapter is about the requirement specification set by Symfoni for this bach-
elor’s thesis. The requirement specifications are important for understanding the
state of the final product. These specifications will be illustrated by several dia-
grams with underlying text that explain the content.

3.1 Use case

The task was to create a proof of concept for SSI technology. To accomplish this,
the application needed to contain certain elements. The requirements defined by
Symfoni are as follows:

1. A VC issuer that issues credentials. Veramo is used as a framework for the
creating of VCs and the DID.

2. A VC verifier that validates the credentials.
3. An application that exchanges the credentials between the Issuer and Veri-

fier.

The students could have worked on the baseline Symfoni had already de-
veloped, but the group decided to develop an application from scratch. This was
to gain a greater understanding of the entire SSI flow and increase their skills with
app development. The workload and scope of programming the app with SSI con-
cepts are appropriate for a three-member bachelor group. The original problem
definition can be found in Appendix L

Figure 3.1: Digital agent. [2, p. 29]

We must have digital wallets to store verifiable credentials for this use case.

17



18CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

In contrast to a physical wallet, where a person directly manages credentials, a
digital wallet needs a digital agent to operate. For this project we will be using
Veramo agents, digital agents created by the Veramo JavaScript modular API for
verifiable data and SSI.

Figure 3.2: Simple use case for the actions an agent can perform.

The agents need to perform specific actions in relation to their role in the SSI
ecosystem. All digital agents can perform these actions, but they only perform
certain parts depending on whether they are the issuer, verifier, or holder.

Figure 3.3: Frequency matrix for showing often actions are preformed.



Chapter 3: Requirement specifications 19

Figure 3.3 represents how often a digital agent performs an action based on
their role as an employer or a user. A user agent that belongs to an individual
would frequently retrieve VCs from their wallet but rarely create VCs. An agent
belonging to a business or state institution would create VS but do not store VCs in
the same way a user would. The frequency matrix illustrates how often a business
and person perform different actions.

3.2 Flowchart

The flowchart can be found in Appendix I. We created a flowchart that describes
the entire flow of the problem scenario from start to end. The scenario starts with
the decision point that asks the user whether they have a DID or not. If not, the
diagram explains how to obtain a DID, so one can proceed to the next decision.
Then one is asked whether the user has a person VC; if not, it tells how to obtain
one so that the user can proceed further. The same goes for the employment VC
and termination VC. When all the VCs are collected, NAV is asked if they have a
DID; if not, a description of how this happens is given. Then the user wants to
apply for unemployment benefits, and NAV presents a QR code to do so. The user
scans the code, and a new decision point comes, does the user trust NAVs DID? If
not, a way to establish can trust NAV is presented. If the NAV DID is trusted the
user sends a VP with the VCs requested from NAV. NAV then validates the VP and
responds to the application with either a yes or a no, depending on whether the
user meets the requirements for unemployment benefits.

The flowchart helped us during the development process, and it showed us
clearly what steps were included in the scenario and helped us map out what
steps we needed to implement in the development process. It also helped us to
understand better the SSI flow in general.

3.3 Initial product outline

Figure 3.4: Proposed flow



20CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

The workflow in Figure 3.4 is what the project workflow is based on and was
provided by Symfoni as a guideline. There have been some adaptions, like using a
fake social security number instead of BankID, but the core concepts are the same.
The group went with the philosophy of acquiring the necessary credentials before
sending an application to NAV instead of establishing the connection to NAV first.
In a society where SSI is the primary source of public services, it would be natural
to receive VCs throughout the user’s life. Instead of only acquiring them when the
user applies needs them. In a less integrated system, the user would apply to NAV
and be informed of what credentials are required.

3.4 Multistage transaction model

Figure 3.5: Shows the flow of credentials, and how the different actors play dif-
ferent roles in a transaction.

The first stage of the transaction is establishing a secure DID-to-DID connection
where both parties have proof to show who they are. After the connection is es-
tablished, the user opens his digital wallet and finds the VCs that the other party
is requesting. If the user lacks one or more required credentials, the user has to
ask for the missing VC from a trusted issuer. When all credentials are in the user’s
possession, they are formed into a VP, which is sent to the other party. The other
party, in this case, NAV, verifies the VP payload and returns a credential with proof
of unemployment benefits.

As displayed in Figure 3.5, the actors can play the role of holder, verifier, and
issuer in the same transaction.



Chapter 3: Requirement specifications 21

3.5 Swim lanes

This section describes the different Swimlane diagrams made to explain the flow of
our application. These documents were prepared for the meeting with NAV, where
we pitched the SSI concept for their application process. They are a combination
of business diagrams that explain how a user would interact with the system and
more technical diagrams of how the system logic works on a technical level. These
diagrams were early drafts, and some changes have been made after they were
created. Therefore, some of the information is outdated.

Initially, the plan was for businesses to use did:web and individuals to use
did:ethr. The rationale was that every business has an official web page, and a
user can look up the DID address on their website. An individual is less likely to
have a personal web page, making it harder to use the did:web method. A user
would need to get many different credentials from the state, passports, driving
licenses, and alike. It would be simpler for the government if every person used
the same DID-method, and it is distributed in a controlled way. This idea of using
did:web was abandoned, as it seemed more logical for all the agents to use the
same did:method. The group also wanted to utilize the blockchain, which did:web
does not.

The group also changed the method for establishing DID-to-DID connections.
The plan was to use Wallet Connect, but it was later changed to use DIDComm.

3.5.1 Business

For this section SSI will be referred to as the EU-digital wallet. EU digital wallet
is part of the European Blockchain Service Infrastructure, EBSI. The EBSI aims to
create a digital identity with trusted data sharing. When proposing this idea to
NAV, we used the EBSI to gather interest, to show that large entities like the EU
are interested in verifiable credentials and digital identity.

The business Swimlane diagram in Figure 3.6 shows a simplified view of the
entire process. The first step is to download the EU digital wallet application.
In this project, the user agent acts as the EU digital wallet app. Navigate to the
national registry, which holds information for all Norwegian citizens, and log in.
In the diagram, login requires BankID to make a secure connection. We did not
have the opportunity to integrate BankID into our project, so the login is based
on one’s social security number. There are many possibilities for handling this
identity verification, and BankID is our suggestion.



22CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Figure 3.6: Shows a business flow how a user would proceed to apply for unem-
ployment benefits

3.5.2 User making a DID

Figure 3.7: A user creating a DID using did:ethr

This is the swimlane diagram for a user creating a DID. If a user do not have a DID
they must first download the EU digital wallet app. In the app there will be a option
to create a DID using the DID:ethr method. When the DID is being created a DID
document is created with it, and contains its address on the Ethereum network.
Now an outsider agent can verify the user against the owner of the address on the
Ethereum network.



Chapter 3: Requirement specifications 23

3.5.3 Company making a DID

Figure 3.8: Company creates DID:web

As mentioned above, this diagram uses did:web for businesses. This figure is kept
to show that it is possible to use different DID methods, and here is an example
for creating a did:web. For did:ether, a business would use the same flow as the
user in Figure 3.7.

First, a company registers a domain. They store their IP address on a DNS
lookup service for the domain. The company agent creates a DID using the DID:web
method with a DID document containing a did.json file. Then, the company stores
the DID-document on their domain. Other agents can resolve the DID by looking
up the DID-document on the company’s domain. The DID-document can be stored
on any website, a GitHub page if you do not have access to a domain.

3.5.4 User acquires personal ID VC

The following two diagrams are more technically oriented, as they describe how
the digital agents interact with the system, not just the users. After the user has
created a DID, they can request a person verifiable credential. This request would
be to a government agency, and in this scenario, it is the national registry. The
national registry request verification with BankID and establishes a connection.



24CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Figure 3.9: A user acquires a person credential from the national registry

3.5.5 User acquires employment VC

User acquires the employment VC is the use case we want to showcase. All the
other diagrams are the steps required to obtain an employment VC. Go back to an
earlier diagram to see how a person acquired the credential, or DID required to
complete this workflow.

One of the goals of designing this system is to use as many existing systems
as possible. When issuing a person credential, we use the data that already exists
in the national registry and convert it into a verifiable credential. In the same
way, when issuing employment credentials, one takes the information from an
accounting system and converts it into a verifiable credential. Using the business
registry, the government has to display the DID for all registered businesses. This
way, the transition to using SSI is made easier when you can use existing systems.
We want the system to be as unobtrusive as possible, requiring little technological
knowledge.

Some steps need additional explanation. In the third step, the user agent veri-
fying the business DID is not an active action. When using DIDComm, one estab-
lishes a connection before verifying the other party. "Verify business DID" is before
establishing a connection because it is on the user to ensure they are connecting
to the correct business. We imagine all Norwegian businesses need to have a busi-
ness license and be registered in a government registry somewhere. Their DID
should also be available on this registry. If it is just their DID address displayed,
it would be hard to identify, but the concepts of identity spoofing and fraud are
outside the scope of this project.



Chapter 3: Requirement specifications 25

When the DID to DID connection is established, the employer asks for a per-
sonal credential from the user. An essential step of the EU digital wallet is that
the user has more control over their data, and the user can decline to share in-
formation they do not wish to share. When the user consents, the employer agent
verifies them, and if they are in their database, they issue a credential.

Entering the employee information is put towards the end of this diagram
but would, in reality, be done asynchronously to this process. The employer hires
a person, registries them in their accounting system, and then issue credentials
based on the information in the accounting system. It is put at the end of the
diagram because that is where the information is retrieved. It is a simplification
but conveys the concept.

Due to space limitations see figure 3.10 in Appendix H for better quality.

Figure 3.10: Shows the flow of credentials, and how the different actors play
different roles in a transaction.





Chapter 4

Design

The design chapter showcases the final product’s design and how it diverged or
followed the requirements specifications. It does not cover how the design was
implemented, as that will be discussed in the implementation chapter. However,
it does describe design changes that were made during development.

4.1 Scenario

We have developed an application for creating, sending, and verifying verifiable
credentials between different digital agents in this bachelor project. The problem
statement was making a proof of concept showcasing SSI and how it could be used
to improve public services. The public service we seek to improve is the application
for unemployment benefits to NAV. This project is a cooperation between Symfoni,
NAV, and NTNU. Having multiple respected institutions involved raises credibil-
ity for the SSI project and increases awareness of this new technology. Symfoni
described this process as a long stair towards a future where public services are
distributed using SSI, and this bachelor thesis was one step up the stairs.

This project is purely designed around creating a demo for showing the con-
cepts behind SSI. Without major revisions, our application could not be deployed
on the App Store or Google Play. This is due to the project structure and the govern-
ment and businesses’ lack of information and infrastructure. Several requirements
do not exist yet for this scenario to work, and therefore, many of the requirements
need to be mocked.

The missing infrastructure from the government comes from the lack of a veri-
fiable credential for digital identity. Like a passport, this has to be issued by a state
agency, as they are in charge of managing citizenship for a country. NAV needs
to have the capabilities to receive VCs and process them to get the desired in-
formation. All the schema for the different credentials needs to match, something
that is suitable for a government agency to regulate. Credentials of the same type
need matching data structures. Therefore, they need to use the same schema. Or-
ganizing every entity to use the same schema type requires central planning and
regulation, a task best suited for a government agency.

27



28CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

In the same way as a government agency, a business needs the capability to
issue and verify credentials. If the user’s workplace does not support VCs, then
they cannot acquire one to send to NAV for verification. In this project, the em-
ployer takes information from their accounting software and creates a credential
based on this information. The business’s accounting software must be set up to
accommodate the information required for issuing an employment credential. If
the software input does not match the schema, one cannot create a verifiable cre-
dential that is compatible with other credentials of the same type.

The application for unemployment benefits is multi-faceted, and our case of
employment and termination credentials only touch upon some of the require-
ments. One requirement not covered by this project is if one is actively searching
for employment, and this is information not included in an employment or ter-
mination credential. However, one can create a verifiable credential with actively
searching for employment as the subject using this project as a framework.

4.2 System architecture

Figure 4.1: System architecture

The system is divided into a separate backend and frontend where the backend
interacts with the Firestore database, the local databases, and the Veramo API, and
the frontend interacts with the backend and Firestore database.

In this application, the group has created four digital agents to represent the
different entities involved with acquiring an employment credential.

1. The user agent represents an individual applying for unemployment bene-
fits. They receive VCs from both the state and Symfoni. They store these
credentials in their wallet and can create VPs to verify their information.



Chapter 4: Design 29

2. The Symfoni agent represents a business with the employer’s role for this
project. They add new employees in their accounting system and issue em-
ployment and termination credentials when the user requests them.

3. The NAV agents represent the Norwegian welfare agency. NAV requires in-
formation to process the application when a user applies for unemployment
benefits. They request VCs from the user to verify that these criteria are
filled.

4. The state agents represent the state agency in charge of distributing digital
ID credentials, called person credentials, in this project. It takes information
from a government registry and converts it to a verifiable credential.

4.2.1 File structure

Figure 4.2: Src folder

One of the key concepts behind our file structure is modularisation. We split the
code base into manageable chunks that are possible to understand. It is divided
into two main folders, "Src" and "App.". In "Src" are all the files related to the
back-end and the API, while the React Native code for the front-end is in the app
folder. We have tests, databases, and schemas outside these, and they are not
directly involved with the code base, just used by them.

The "Src" folder is modularised further, with the most prominent modules be-
ing the controllers and the API. The controller classes are split into one for each
agent, with one parent class they all inherit from. Similarly, the API is split into
controllers, where all the endpoints related to one agent are in that controller. To
supplement these classes, we have folders for interfaces, types, utility functions,
and the Veramo setup. Initially, the "src" folder was the only folder containing
code; it should be renamed to "backend" as this is no longer the case. Due to
avoid import problems, it has not been renamed.



30CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

The "App" folder containing the front-end is split into components, interfaces,
and views. Views are where most of the code is located and are split into one
folder for each digital agent. This way, we keep them separate and give the de-
veloper better control of what part of the GUI they are working on. Throughout
the project, we have used interfaces for important classes. To give the developer
a better understanding of what the class contains and make sure nothing import-
ant is removed unintentionally. The only outlier is "App.tsx", as it is located in the
root folder. The reasoning behind this is node requires a particular path, and it
was more consistent to move "App.tsx" than manually changing paths.

4.2.2 Limitations

The problem is that the functionality to have an integrated SSI system does not
exist yet. In our scenario, an employer put the information about a new employee
into an accounting software. This accounting software needs to have all the re-
quired information laid out in the employment schema; if not, the verifiable cre-
dential cannot be created. So a collaboration to use SSI needs both employers and
accounting systems to participate. If the benefits are not immediately apparent, it
will not be easy to convince them to adapt to this system.

Similarly, personal credentials need to be issued from existing information
within the state. There already exists population registries, and the government
gives out passports to its citizens, and this would have to be adapted to a person
verifiable credential. This initiative is spearheaded by the EU EBSI commission,
which aims to improve service infrastructure with blockchain technology. The be-
nefit of this is having a large, respected institution as the EU support SSI imple-
mentation. However, the EU consists of 27 countries with different standards and
methods, making it a huge undertaking to make all standards compatible. We
mocked data based on existing standards from "datatilsynet" for this project. This
infrastructure would need to be established first to make the app deployable.

4.3 Controller classes

For this project, we have different Veramo digital agents with functionality for
issuing and verifying verifiable credentials. Each agent represents one entity in-
teracting with the SSI system, so the "SymfoniAgent"represents an employer and
all the actions an employer needs to be able to perform. All the agents have a
controller class with functions related to their roles in the project.

The different agents share most of their functionality, so a parent class called
"AgentController" was created. The main functionality is in this class, and the
other agent controllers extend this class. This makes it possible to easily add new
agents in the future and ensure that all agents have the same base functionality.
It is also a time-saving measure, as there is no need for duplicate code between
agent controllers.



Chapter 4: Design 31

With several developers working on this project, being consistent and using
the correct data is important. A list of custom types has been made, so one has a
predefined type as input instead of manually typing in variables. This is to reduce
the number of errors made by mistyping and give a better overview of how the
VCs are supposed to be set up. In addition an interface for the parent class "Agent-
Controller" has been made. This interface defines what the "AgentController" class
consist of. This is for reproduce-ability and better control of all the functions in
this fundamental class.

4.4 Schema

The first interactions of the employmentVC schema needed revisions to the struc-
ture. After meetings with NAV, changes were made to reflect the desired informa-
tion better. Two important aspects not included in the first iteration were the last
day an employee worked and the last day they received payment. This did not
seem natural in an employment contract, so the employmentVC was split into an
employmentVC and terminationCV. The employmentVC would include informa-
tion included in a physical employment contract, while the terminationVC would
include information related to the employee’s termination. This includes the last
day an employee worked, the last day they received payment, and if they were
fired during their trial period.

{
"@context": [

"https://www.w3.org/2018/credentials/v1"
],
"issuer": {

"id": "did:ethr:rinkeby:[example_address]"
},
"type": [

"VerifiableCredential",
"BusinessVC"

],
"credentialSubject": {

"id": "did:ethr:rinkeby:[example_address]",
"business": {

"name": "name",
"industrialCode": "12KJ",
"organisationStructure": "AS",
"organisationNumber": 12,
"address": {

"countryCode": "NO",
"city": "Gjovik",
"zipCode": 2827,



32CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

"streetName": "gateveien",
"streetNumber": 22,
"floor": "2A"

}
}

},
"issuanceDate": "2022-02-18T10:02:18.000Z",

}

The students made the first iterations of the personVC and the businessVC
from scratch. They were created using existing models of a person and a business
by "Felles datakatalog" on "Data Norge" [13]. To create a custom schema for per-
son and business was not desirable; it is better to link to an established schema
from "Felles datakatalog." When this proved difficult, we consulted semantic web
specialist Steinar Skagemo, but no usable schema was supplied from Data Norge.
As there were no usable schema, the group created custom schema based on the
information from "Felles datakatlog" [13].

Delving a little deeper into the semantic web, options for a further link between
schema with JSON-LD was explored. JSON-LD is to increase machine readabil-
ity for data on the web. With JSON-LD, one can provide context to fields on a
webpage. If one signs up as a new user and requires a name field, one can link
to a different website that defines a name. This way, a computer knows if it is a
person’s name or just a nickname. Unfortunately, this did not translate too well
to the project. The JSON-LD linked to the different schema to define where we
got the object from but did not enforce the types defined in the other schema.
Because of this, it was decided not to use JSON-LD to give additional context to
the schema.

4.5 API

To make an easy integration from the front end to the back end, we developed an
API. This API is split into four different categories, one for each agent. The API
works as a middleman between the controller class and where one wants to call
certain functions in the application. This was used to great effect when developing
the front end; simply call the API where desired. In addition, the API is handy for
doing manual testing during the development cycle. Insomnia and Postman were
used to test the API during development.

To make it easier to use, endpoint names have been standardized to simply
use the correct name for the agent one wishes to use. Creating a DID for the user
agent is done with the "/user/did" endpoint while creating a DID for Symfoni is
"/symfoni/did". A colon in the endpoint means that specific user input is required.
For example ":id" an id is required, and ":did" a DID-URL is required. There are
tables with all the endpoints for each agent in the next few sections. Most share



Chapter 4: Design 33

the same functionality, but there is some variation in functionality between the
different agents.

4.5.1 user endpoints

The user agent has no database endpoints but has the most messaging endpoints,
as they receive VCs through these messages. A user can create credentials but will
rarely do so.

Table 4.1: Endpoints for the user agent

Endpoint name relation status codes Request method Description
/user/did DID 201, 400 POST Create a new DID
/user/did/:did DID 200, 400 GET Get a DID with DID:url
/user/dids DID 200, 500 GET Lists all the agent’s DIDs
/user/resolve/:did DID 200, 400 GET Resolves DID with DID-url
/user/mainIdentifier DID 200, 500 GET Get the main identifier from the agent
/user/credential CREDENTIAL 200, 400 POST Add a new credential
/user/credentials CREDENTIAL 200, 400 GET Get a credential
/user/credential/:type CREDENTIAL 200, 400 GET Get credential by type
/user/credential/:hash CREDENTIAL 200, 400 DELETE Delete credential
/user/presentation PRESENTATION 201, 400, 500 POST Create a verifiable presentation
/user/verifyJWT PRESENTATION 200, 400, 500 POST Verify a JWT
/user/messaging MESSAGE 200, 400 POST DIDComm messaging
/user/sendMessage MESSAGE 200, 400 POST Send DIDComm message
/user/messages MESSAGE 200, 400 GET Get message
/user/message/:id MESSAGE 200, 400 GET Get message by ID
/user/handleMessageToken/:token MESSAGE 200, 400 GET Handle DIDComm message token

4.5.2 NAV endpoints

The NAV agent has the fewest endpoints as it does not create credentials or in-
teract with a database, and NAV only needs to verify credentials in a presentation
and send a message to the user.

Table 4.2: Endpoints for the NAV agent

Endpoint name relation status codes Request method Description
/nav/did DID 201, 400 POST Create a new DID
/nav/did/:did DID 200, 400 GET Get a DID with DID-url
/nav/dids DID 200, 500 GET Lists all the agent’s DIDs
/nav/resolve/:did DID 200, 400 GET Resolves DID with DID-url
/nav/mainIdentifier DID 200, 500 GET Get the main identifier from the agent
/nav/credential CREDENTIAL 200, 400 POST Add a new credential
/nav/credentials CREDENTIAL 200, 400 GET Get a credential
/nav/credential/:type CREDENTIAL 200, 400 GET Get credential by type
/nav/presentation PRESENTATION 201, 400, 500 POST Create a verifiable presentation
/nav/verifyJWT PRESENTATION 200, 400, 500 POST Verify a JWT
/user/messaging MESSAGE 200, 400, 500 POST DIDComm messaging

4.5.3 symfoni endpoints

Symfoni has unique endpoints for creating employment and termination creden-
tials. Symfoni also has several endpoints for retrieving and uploading data to an



34CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Table 4.3: Endpoints for the Symfoni agent

Endpoint name relation status codes Request method Description
/symfoni/did DID 201, 400 POST Creates a new DID
/symfoni/did/:did DID 200, 400 GET Gets a DID with DID-url
/symfoni/dids DID 200, 500 GET Lists all the agent’s DIDs
/symfoni/resolve/:did DID 200, 400 GET Resolves DID with DID-url
/symfoni/mainIdentifier DID 200, 500 GET Gets the main identifier from the agent
/symfoni/employmentCredential CREDENTIAL 201, 400 POST Creates employment credential
/symfoni/terminationCredential CREDENTIAL 201, 400 POST Creates termination credential
/symfoni/credential CREDENTIAL 201, 400 POST Adds a new credential
/symfoni/credentials CREDENTIAL 200, 400 GET Lists credentials
/symfoni/credential/:type CREDENTIAL 200, 400 GET Gets credential by type
/symfoni/presentation PRESENTATION 201, 400, 500 POST Creates a verifiable presentation
/symfoni/verifyJWT PRESENTATION 200, 400, 500 POST Verifies a JWT
/symfoni/employmentContract DATABASE 201, 400, 500 POST Adds employment contract to database
/symfoni/employmentContract/:id DATABASE 200, 400, 500 GET Gets an employment contract from database by id
/symfoni/terminationContract DATABASE 201, 400, 500 POST Adds termination contract to database
/symfoni/terminationContract/:id DATABASE 200, 400, 500 GET Gets a termination contract from database by id
/symfoni/terminationContract/:id DATABASE 200, 400, 500 DELETE Deletes a termination contract from database by id
/symfoni/employmentContract/:id DATABASE 200, 400, 500 DELETE Deletes an employment contract from database by id
/symfoni/messaging MESSAGE 200, 400 POST DIDComm messaging

external database. This is their employee database, where they store the inform-
ation about their employees, which is used to create the credentials.

4.5.4 state endpoints

The state agent has additional endpoints for database management, as this agent
needs to verify social security numbers from an external database. There are also
endpoints for creating person and business credentials, as the state agent is the
one who issues these in this project.

Table 4.4: Endpoints for the state agent

Endpoint name relation status codes Request method Description
/state/did DID 201, 400 POST Create a new DID
/state/did/:did DID 200, 400 GET Get a DID with DID-url
/state/dids DID 200, 500 GET Lists all the agent’s DIDs
/state/resolve/:did DID 200, 400 GET Resolves DID with DID-url
/state/credential CREDENTIAL 200, 400 POST Add a new credential
/state/credentials CREDENTIAL 200, 400 GET Get a credential
/state/personCredential CREDENTIAL 201, 400, 500 POST Create person credential
/state/businessCredential CREDENTIAL 201, 400, 500 POST Create business credential
/state/credential/:type CREDENTIAL 200, 400 GET Get credential by type
/state/presentation PRESENTATION 201, 400, 500 POST Create a verifiable presentation
/state/verifyJWT PRESENTATION 400, 500 POST Verify a JWT
/state/person DATABASE 201, 400, 500 POST Create person in database
/state/person/:id DATABASE 200, 400, 500 GET Get person from database
/state/person/:id DATABASE 200, 400, 500 DELETE Delete person from database
/state/messaging MESSAGE 200, 400, 500 POST DIDComm messaging
/state/sendMessage MESSAGE 200, 400 POST Send DIDComm message



Chapter 5

Front end design

When designing the front end of the application, the goal was to be as practical
and easy to navigate while still adhering to sound design principles. The different
agents can be deployed on both android and the web, so the focus was on making it
look like an android application. This is because the application must be deployed
on both web and android, even if the agents would typically use a website. It is
easier to deploy an app made for android on the web than the other way around.

All the buttons are centered in the middle of the screen to the better fit on a
phone screen. The buttons have rounded edges, which is more common in mobile
design. Instead of utilizing all the space on a computer screen, we opted for a
scroll bar when the content needed more space. The application uses a simple
black and white color scheme, with each agent having its distinct colors and styles
on buttons. When choosing the agent-specific colors, we used colors representing
the real-life counterparts of our agents used on their website. Blue was used for
the EU, red for NAV, purple for the state, and the signature blue color for Symfoni.

The application is functionally four applications in one and is designed around
that fact. All the agents have a page with the actions they perform in this scenario.
This is to make the demo easy to use and understand. Not every page is designed
around a real-life scenario but adapted to fit a demo for showcasing the concepts.

35



36CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

5.1 Login page

Figure 5.1: Login Page

The first page when one opens the application is the login page. It has four buttons,
one for each agent. To log in to an agent, click the agent’s respective button, and
it navigates to that agent’s homepage without any verification needed. This could
have been a login with a username and password, which takes one to the right
agent based on one’s status. We decided against this, as it does not add anything to
the SSI concept the project is demonstrating. Each agent would be an independent
application in a real-world scenario, and we would not encounter this problem.
The goal is to have four agents sending and verifying credentials between each
other, so the login part is simplified for the demo.



Chapter 5: Front end design 37

5.2 User

Figure 5.2: User home page

The user agent is the agent with the most options. It has four buttons: show DID,
List VC, Send VP, and Messages. The user agent is designed for being used on
a phone, not a computer. In several cases, one must scan QR codes to establish
communication channels with other agents. This is most easily done with a phone
and is a big part of why we designed with android in mind.



38CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

5.2.1 Show DID

Figure 5.3: User display decentralized identifier in a QR code and plain text

Show DID displays the main DID created by the user agent. It displays this in
two ways. Firstly it is a QR code with the DID-URL as the payload. This is if the
user wants to send their DID to someone else with QR code reading capabilities.
Secondly, the DID-URL is shown in plain text, which makes it easy to copy and
paste the DID-URL. It is impossible to remember a DID-URL, so it is necessary to
have the option to copy the URL and paste it when a DID-URL is required input.



Chapter 5: Front end design 39

5.2.2 List VCs

Figure 5.4: Stored verifiable credentials list

List VCs is a list of verifiable credentials that are stored in the user’s wallet. The first
page takes one to a list with cards representing different VCs. The cards display the
credential type and have the essential information for identifying the credential.
A person’s credentials display name and date of birth; a business credential has
the business name, address, and more. This is to distinguish different credentials
of the same type and give context to what information the credential contains.



40CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Figure 5.5: Verifiable credential detail view

By clicking on one of the cards, it takes one to a detailed view of the credential.
In this view, all the credential information is displayed. The information is struc-
tured like the schema used to create the credential. Like on previous pages, there
is a QR code that contains the credential. At the bottom of the page is the delete
button for removing the current credential. This has a popup with verification, as
deleting credentials by mistake can have consequences. If one’s person credential
works as one’s online identity, deleting it limits one’s ability to interact with the
SSI system.



Chapter 5: Front end design 41

5.2.3 Send VP

Figure 5.6: Verifiable presentation request scanner

Send VP opens a QR reader, and the user scans a QR code provided by another
agent. This is when another agent wants to set up a connection, and they display
a QR with their request on their website. There is no website in this demo, just
another page in the application, and this means one would need several devices
to perform this action. After this, there is a popup that a verifiable presentation
request has been detected.



42CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Figure 5.7: Verifiable presentation request alert

Figure 5.8: User receive verifiable presentation request

The VP request uses the same design as the list VCs, as there are cards with
basic information regarding the VCs that are requested. The green text above the
credential list confirms if the DID persists in the verifiable registry. In this case, the
DID is verified and belongs to NAV. By pressing "send," the user consents to share



Chapter 5: Front end design 43

the requested information. By declining to send this information, the action one
is trying to unlock with one’s VP is declined. User control over sharing credentials
is a core part of SSI and is included in our project.

Figure 5.9: User message inbox

Finally, when one presses the send button, a popup appears confirming that
the VP was sent.

5.2.4 Messages

The credentials are sent to the user agent as messages using DIDComm messaging.
To save a credential, one needs to open the messages page. In the message inbox,
messages are displayed in the same way credentials are listed in list VCs.



44CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Figure 5.10: Message details

Clicking one of the cards takes one to the message details. At the top of the
screen is the DID the message is addressed to, and the credential type in the mes-
sage body. This is one area of the project that needs further work. The message
body is the JWT containing all the information of the credentials the user reques-
ted. A JWT is not human-readable, and it does not look visually appealing hav-
ing a large block of text in the message. There are two options with a message,
save the credential and delete the message. If a user requests many credentials, it
can quickly fill up the inbox. In addition, the messages are not thoroughly docu-
mented, so it can be challenging to see who sent the message and what it contains.
Therefore, it is practical to delete messages when one has saved the credential. A
popup appears when the credential is saved, confirming that the credential was
saved.

5.3 Symfoni

Like the login page, the Symfoni page has been simplified for demo reasons. It is
split into employee and employer actions. Usually, this would be a website, and
when one logs in, the appropriate actions for one’s role would be visible. Again this
adds coding work that does not have any benefit for the SSI part of the bachelor.
Therefore, both employer and employee actions are on the Symfoni page.



Chapter 5: Front end design 45

5.3.1 Add employee

Figure 5.11: Employment form part 1

Figure 5.12: Employment form part 2

Add employee is an employer action and takes one to a form with employee in-
formation. Each field has a title and a placeholder to make it easier to fill in the
correct information in the correct format. Employment status has a dropdown
menu, as there are only two valid options for this field. The three last fields are



46CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

yes or no questions, so they have checkboxes to make it more intuitive to fill in.
Add employee is one of the pages where the web and android design patterns

conflict. It is a long form that needs to be scroll-able to fit on a phone screen.
This could be avoided in web deployment, as more screen space can be utilized.
One could argue that the Symfoni agent will usually be used on a computer and
that this page should have been designed around a web deployment. However,
the team decided that deploying on android was more important, and it gives the
GUI a consistent look.

5.3.2 Terminate employee

Figure 5.13: Termination form

Terminate employee is designed with the same principles as add employee. It is
a form where each field has a title and a placeholder. There is one checkbox for
yes/no questions and a drop-down menu for termination status. Error messages
are displayed when the user clicks the submit button, as the form is not submitted
until all the information is in the correct format. The form for terminating an
employee is much smaller than the previous form, so the problem of needing to
scroll is less prominent.



Chapter 5: Front end design 47

5.3.3 Request VCs

Figure 5.14: Symfoni request credentials

Request VC is an employee action and would normally be performed on the com-
pany website, not in the same application as the user agent. However, in this
project, it is in the same application. By clicking the request VCs button, it takes
the user to a new page with a QR code. This QR code requests a VP, so the user
has to get to the send VP QR-scanner on their phone and scan this QR code. Then
it goes through the send VP stages described in Figure 5.6.



48CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

5.4 NAV

Figure 5.15: NAV home page

Figure 5.16: NAV verifiable presentation request

The NAV homepage only has one button, "søk dagpenger," which is Norwegian for
"apply for unemployment benefits." This brings up a QR code that contains NAV’s
DID and a request for the VCs required to get unemployment benefits. The images
are from the web build.



Chapter 5: Front end design 49

5.5 State

Figure 5.17: State home page

The state agent has also been made to suit a demo, not reflect a real-life scen-
ario. Typically a user would go to a government website and request a person’s
credential. Signing in, one would need some identification; it would be natural to
use Bank-ID in Norway. We did not have access to integrating Bank-ID into our
application. Instead, we use a fake social security number saved in a database.

It was possible to simply make a website with minimal functionality and create
credentials from data stored on the website. We preferred to keep everything in the
same project. Therefore, the user request person credentials from the state in the
same application. The core concept of requesting credentials from a government
agency is still there, so it does not go against the project’s aims.

The state login page requires a social security number to request a person’s
credential. It has error messages for wrong numbers and a placeholder that says
what the input should be. A correct social security number takes one to the next
page.



50CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Figure 5.18: State user page

This page has a personal greeting based on one’s social security number be-
cause the individual is a person who exists in the government database. To receive
a verifiable credential, the issuer needs one’s DID-URL. This is where it is helpful
to copy the DID URL from show DID in the user agent.

5.6 Wireframe

Before developing the front end, we created a low fidelity prototype in Figma.
A low-fidelity prototype is for getting feedback on the structure and look of an
application before starting development. Programming is expensive and time-
consuming; gathering user feedback before writing code can save both time and
money. A link to the prototype as well as images of the wireframe can be found in
Appendix G.

The general look of the application stayed the same, but some changes were
made. These changes were either because we changed the application’s logic or
removed because it was deemed unnecessary.



Chapter 5: Front end design 51

Figure 5.19: Figma employer page

The create DID view was no longer necessary, as it is handled in the back
end. In the finished version, the contract buttons are the same. Instead of creating
credentials directly, they add information into the database, which is later turned
into credentials. Because of this, we needed to add a button for an employee to
request their credentials.

Figure 5.20: Figma user home page

The user page has gone through the most iterations. This is because we did not
have the transport layer ready in the early stages when this diagram was made.
By using DIDComm, we needed to be able to handle messages, and this led to
the messaging endpoints being required. Having an option to show the user’s DID
was added after each agent got the main identifier. 5.2

5.7 Abandoned changes

A variety of features did not make it to the end product. Due to time constraints,
features that did not contribute to showcasing the SSI ecosystem were depriorit-
ized. This does not mean that the front end has no features, just that some quality
of life features were not implemented.

The main page consists of four buttons that navigate to the different agents in



52CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

the final product. We wanted to implement a login page with actual logins instead
of just buttons to make the app more professional. One would automatically be
taken to the correct page when logging in based on one’s role. After consulting
with Symfoni, this approach was abandoned, and the current design was chosen.
Adding even more databases complicates the project unnecessarily. It also disrupts
the flow when demonstrating the product, as one would need to log in every time
one goes to a new agent.

Initially, we wanted to split the Symfoni page into two separate pages, one for
employees and one for the employer. This would be handled with a login that takes
one to the right page based on one’s role. Employees would only see the "receive
VC" and employers would see the "terminate employee" and "add employee." This
was changed to the current implementation by using the same logic as for the
main login page. It complicates the project and does not add anything regarding
SSI.

Several interactions involve scanning QR codes to establish communication
between agents. We debated who would have a QR code and who would scan
them. The first iteration was that the user would supply the QR code when they
started transactions. This design was inspired by observing other crypto wallets.
Our application operates differently from crypto wallets, as the users interact with
government agencies and businesses, not other users. It would be more natural
for the user to scan the QR codes, not for a government employee to scan one.
So we changed the design to the user scanning the QR codes and other agencies
supplying them. With cryptocurrency, it is normal for users to trade with other
users, but with SSI, it is uncommon for users to send credentials to each other.



Chapter 6

Development process

The development process chapter is about how the group worked to finalize the
project. It presents the meetings that were arranged and the development frame-
work used during development.

6.1 Meetings

During development, there were four types of meetings: weekly meetings with
the employer Symfoni, guidance meetings with the faculty supervisor, business
meetings with NAV, and internal meetings with the group.

6.1.1 Symfoni meetings

Every Monday at 15:00, we had a scheduled meeting with Symfoni, the private
company that gave the task for the bachelor thesis. In these meetings, we go
over what the group has accomplished this week, discuss problems we have en-
countered, and plot out what to do for next week.

In these meetings, we were either communicating with Jon Ramvi, the CEO
and owner of Symfoni or Asbjørn, one of the developers working on SSI for Sym-
foni. In the earlier meetings, the discussion focused on the big picture, the project’s
overall design, and what methods and technologies to use. Jon Ramvi provided
us with guidance on how to proceed and explained different concepts regarding
SSI which was unfamiliar to the group.

Later in the project, there were more technical meetings with Asbjørn. Tech-
nical meetings were either scheduled where the students had prepared questions
or more impromptu where the group reached out for assistance on a subject. In
the technical meetings, Asbjørn provided examples we could study.

In addition to these scheduled meetings, there has also been asynchronous
communication in the Symfoni discord channel. In this channel, both adminis-
trative and technical details were discussed.

Meeting notes from the meetings with Symfoni can be found in Appendix D.

53



54CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

6.1.2 NAV meetings

During the project, we have been collaborating with NAV to make our project’s use
case more in line with a real-life scenario. The VCs used in the project are based
on information provided by NAV so that they can be used in their work managing
unemployment benefits applications.

In addition to getting information from NAV, we have developed several dia-
grams for demonstrating the flow of an SSI ecosystem. These were used to demon-
strate how a user would interact with all the different entities in the system. This
worked as an introduction for someone who had no previous knowledge about
SSI and how it could be implemented for NAV.

Meeting notes from the meetings with NAV can be found in Appendix E.

6.1.3 Supervisor meetings

Our supervisor is Mariusz Nowostawski from the faculty of information techno-
logy. Initially, we planned to have weekly meetings, but due to unavailability from
Mariusz in the early stages, they became more infrequent. These meetings focused
more on the University side of the bachelor thesis and questions about scope, the
report, and project structure. Towards the end of the project, he provided guid-
ance and feedback for writing the bachelor thesis.

Meeting notes from the meetings with our supervisor can be found in Ap-
pendix F.

6.2 Development model

For this project, we have been using the SCRUM framework. We have not strictly
followed the SCRUM methods but adapted the concepts to fit our workflow.

6.2.1 Sprints and sprint review

For this project, we have chosen to use the development method Scrum. Scrum
is an agile development method where the work is done in short intervals called
sprints. This could include coding, documentation, project planning, and more.
Agile development is an iterative method where self-reliant teams develop soft-
ware through a dynamic work process. Another essential feature is the kanban
board or the Scrum board, where different tasks are defined and assigned for the
coming sprint.

We chose Scrum for several reasons, mainly because it is a development method
the team is familiar with and enjoys. The project is organized around weekly meet-
ings with the employer, thus making it natural to organize weekly or bi-weekly
sprints[14]. The kanban board allows a more fluid work environment, where one
can assign new problems without the rigid structure of more traditional develop-
ment methods.



Chapter 6: Development process 55

The meetings with Symfoni worked as both sprint review, and sprint planning
[14]. We went through what we had accomplished in the previous sprint and
planned what to do in the next sprint. In retrospect, we should have split this
process up into two parts, as it is easier to focus on one thing, and details may be
overlooked. There were meeting notes taken during the meetings that worked as
a sprint review, and these could have been written more thoroughly, and the team
would rely less on oral information.

6.2.2 Issue tracker

For organizing the work, we have used a combination of the GitHub issue tracker
and the meeting notes from the weekly Symfoni meetings. The issue tracker makes
it easier to organize tasks into manageable chunks. It would also have been pos-
sible to assign issues to a developer, but our group usually did this orally.

Figure 6.1: Issue tracker

The meeting notes are split into two parts: a summary and reflection of our
conversation with Symfoni and bullet points on what to do for the next sprint.
There is no section on what the group did in the last sprint, as that was the basis
for the conversation with Symfoni. Adding a reflection on the last spring would
have been valuable and something to consider for the next project. In Figure 6.2
is a typical example of meeting notes for one of the weekly sprints. In this partic-
ular meeting, we discuss the flow of adding new credentials. We had more code-
oriented questions in later meetings which were not documented.



56CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Figure 6.2: Meeting notes

This is one of the aspects of the project that has not worked as intended. With a
small development team and little oversight, it is easy to fall into the anti-pattern
of not using the issue tracker and simply focusing on coding. This disrupts the
scrum structure and makes it harder to document the work that has been done.

6.2.3 Code review

In more traditional versions of SCRUM, they use daily-scrum, which is everyone
on the team briefly describes what they are working on every day [14]. Due to
the size of our team, we chose not to use this approach. Instead, we keep each
other apprised of what everyone is doing by using code-review. This is not optimal,
as one gets the information when people are done instead of when people start.
This was not a problem; due to the size and frequent communication between the
team members, everyone had a good grasp of the different tasks being performed.
Instead, one gets an in-depth review of the code produced when they are ready
to submit.

To merge a branch into development, it has to be approved by a code review.
Code review was done in two steps. First, the developer who has written the code
goes through it step by explaining the functionality and showing how it interacts
with the rest of the project. When work started on the front end, we ensured at
least two developers could run the front end both on the web and on Android.
After that, a different developer goes through all the code on GitHub, looking for
errors or inconsistencies. If anything is brought up, the initial developer changes
the files in the pull request based on feedback. The review is approved and finally
merged.



Chapter 6: Development process 57

This type of code review serves several purposes. It ensures code quality and
that the logic is internally consistent with the rest of the project. It catches errors
and ensures that only working code is merged into the dev branch. This way of
doing code review makes sure all developers understand what everyone is doing
and that they know what functionality is added to the program.

6.2.4 Reflection

In the later part of the project, we conducted a retrospective about the devel-
opment process. The meeting notes were not as extensive as possible and very
focused on tasks, not reflection. The reflection part was done in our conversations
with Symfoni and internally in the group. Reflection was present, but there were
few written notes on our thoughts. The rough outline is in our meeting notes, and
that was enough for us to develop the project, but it is hard to go back and do
a retrospective with a detailed accounting of our thoughts during development.
If this was a larger project with a bigger team, more documentation would have
been necessary for everyone to know what to do.

The group was very task-oriented and wanted to accomplish goals and mile-
stones set early in the project. One example was the decision to use Wallet Connect
or a different service to exchange credentials between wallets. The choice to use
Wallet Connect was made very early, as that was what Symfoni was using. We set
implementing Wallet connect as a goal without discussing possible alternatives.
This was partly because the team was unfamiliar with the field. We did discuss
that we only needed to transfer the JWT token, and how that was achieved was
not important. However, we tried making wallet connect work for a long time be-
fore finding an alternative. Being more flexible is a takeaway, but one reason for
the lack of flexibility is working in an unknown field. We could have decided on
the transport layer faster if we had more knowledge.

One of the most invaluable contributions was the weekly meetings with Sym-
foni. Having an authority on SSI to guide us through the concepts and how the pro-
ject would be structured was an immense contribution. Not only did they provide
knowledge if we had questions, but we also had a dialog where we could pitch
our ideas and get feedback that way. Jon always encouraged us to make our own
solutions, as long as there was a rationale behind it.





Chapter 7

Implementation

The implementation chapter goes into detail on how the project was implemented.
It consists of four parts; the Veramo digital agents, firestorm database, the API, and
React Native. For each part, code examples will be explained in detail.

7.1 Tools

This section contains a list of tools used during the development process of the
bachelor thesis.

• Veramo.io is a modular API for Verifiable Data and SSI. The API makes it
possible to use verifiable credentials and Decentralised Identifiers without
managing compatibility issues.
• Node.js is a run time environment used for traditional websites and back

end APIs.
• Express.js is a web application framework for node.js that is used to create

the API.
• Firestore is a NoSQL document-based database. It persists in the cloud, in

contrast to the local databases used by the different agents.
• SQLite is a software library that provides a relational database system.

SQLite is a server-less database and self-contained, so the database is part
of the application.
• GitHub is a version control and code management system. The reason for

choosing GitHub was mainly because we got a repository from our employer.
This way, we uphold their open-source software standards, as it is a public
repository on their GitHub page.
• Husky is a NPM package that allows custom scripts to be run against a

repository. We used husky to ensure that our code was lint-free and that our
tests passed on each commit.
• Mocha is a JavaScript testing framework used for unit testing in this project.
• React Native is an open-source JavaScript framework for developing mo-

bile applications. This enables the developers to create an application for

59



60CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

multiple platforms.
• Expo is a framework for building react native apps. It comes with tools that

simplify the creation and testing of react native apps. It also provides a more
robust and convenient development workflow.
• TypeScript is the primary and only programming language used for this

project. TypeScript is an extension of JavaScript. It is an object-oriented pro-
gramming language rather than a pure scripting language. The only draw-
back is the lack of compatibility with other programs; one must perform ex-
tra steps to make it work. An example of this is Node.js requiring "ts-node"
for running TypeScript scripts.

7.2 Building

The Expo framework was used to build the project. This was mainly because of two
reasons, the first being that the application was supposed to be able to run on the
web and a phone, and Expo can build to both. The second is that Expo allows rapid
development as the developer does not have to write any native code. However,
this comes at the price of using Expo-supported dependencies. For example, we
could not use the standard React Native bar code scanning component but had to
use Expos self-managed one.

Using the Expo framework with Veramo proved to be complicated. As men-
tioned earlier, the Expo framework only supported Expo-friendly dependencies,
and Veramo was omitted. This was discovered late in the project, and it presen-
ted us with two options. We could eject out of Expo and begin writing native
code, hoping to manage the dependencies through Gradle, or completely separ-
ate Veramo from our GUI by having the GUI interact with a server that interacts
with Veramo. As none of us were comfortable with ejecting from Expo, we chose
to have all Veramo functionality in an independent server.

Code listing 7.1: Continuous integration android build script

name: Android Build

on:
push:
branches: [ dev ]

pull_request:
branches: [ dev ]

jobs:
build:
name: Install and build
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/setup-node@v2
with:
node-version: 16.x
cache: npm

- name: Setup Expo and EAS



Chapter 7: Implementation 61

uses: expo/expo-github-action@v7
with:
expo-version: 5.x
eas-version: latest
token: ${{ secrets.EXPO_TOKEN }}

- name: Install dependencies
run: npm ci

- name: Build on EAS for Android
run: eas build --platform android --non-interactive

Implementing continuous integration with the Expo framework was very easy.
We had to create a GitHub action for Node.js and add the client commands for
building to both web and android. Though we could have built for both platforms
in one script, we chose to have separate scripts as one build could fail while the
succeeded. The web build is done locally, but the android build is a little trickier
as it has to be sent to the Expo server for building. Access to this server is achieved
by a secret token stored in GitHub secrets.

7.3 Veramo agents

The project is contains five different Veramo agents. The four agents represent
different entities in this SSI ecosystem and one test agent. The different agents
are the user agent, NAV agent, Symfoni agent (employer), and state agent.

7.3.1 Setup

All the digital agents are set up in the setup.ts file, inside the Veramo folder. The
agents are created by importing libraries from the Veramo core. When creating
a new agent with Veramo, different interfaces are defined. These interfaces are
classes in the Veramo API with different functionality, either from the Veramo
core or additional classes. This is to ensure that all the agents have the required
functionality for the program to perform their actions in the SSI ecosystem. Each
agent requires a SQLite database where the DIDs and credentials are stored. This
database works as a digital wallet in our scenario. This is done five times, one
for each agent with the correct name and database. Below is an example of cre-
ating a new DIDManager, one of the packages from the Veramo core. Here one
manually sets what kind of DID-methods the manager can create. The default
is ’did:ethr:rinkeby’, with the option to create ’did:web’ For the agent setup see
appendix Appendix J



62CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Code listing 7.2: Creating a new DIDManager

new DIDManager({
store: new DIDStore(dbConnectionNAV),
defaultProvider: 'did:ethr:rinkeby',
providers: {

'did:ethr:rinkeby': new EthrDIDProvider({
defaultKms: 'local',
network: 'rinkeby',
rpcUrl: 'https://rinkeby.infura.io/v3/'
+ INFURA_ID,

}),
'did:web': new WebDIDProvider({

defaultKms: 'local',
}),

},
})

7.3.2 Main functionality

One of the central functions is "getMainIdentifier". The project supports having
several DIDs for each agent, but to make it easier, we always use the main iden-
tifier. When a new agent is created, one of the inputs is the main identifier alias.
By setting this up in the constructor, we control what the main identifier should
be called. This becomes useful when we call the ’getMainIdentifier’ function.

export class StateAgentController extends AgentController
implements IStateAgentController{

constructor(mainIdentifierAlias: string) {
super(agentState, mainIdentifierAlias);

}

This function takes no input, as the main identifier alias is predefined. First,
it tries to get a request to see if the main identifier already exists. If it exists, it
retrieves the main identifier from the agent where it was called. If it does not
exist, it creates and returns a new main identifier. We ensure that an agent always
has the main identifier using this function. As long as we use this consistently, we
never encounter the problem of an agent not having a DID.

Code listing 7.3: The get main identifier function

async getMainIdentifier(): Promise<IIdentifier | Error> {
try {

return await this.agent.didManagerGetByAlias({
alias: this.mainIdentifierAlias,
provider: 'did:ethr:rinkeby'

});
} catch (error) {

console.log('it␣did␣not␣exist');
return await this.createDID(this.mainIdentifierAlias);

}
}

We wanted to create the main identifier in the constructor, but it caused prob-
lems as it is an async function. Instead, a workaround was created where the alias



Chapter 7: Implementation 63

is defined in the constructor, and function calls are made with that alias. Veramo
has a "didManagerGetOrCreate" which would have solved this problem. Unfortu-
nately, the team was not aware of this function at the time. As we had already
implemented our solution, we decided against changing it.

Code listing 7.4: The resolve DID function

async resolveDID(didUrl: string): Promise<DIDResolutionResult | Error> {
try {

return await this.agent.resolveDid({
didUrl: didUrl

});
} catch (error) {

console.error('was␣not␣able␣to␣resolve␣did', error);
return new Error('was␣not␣able␣to␣resolve␣did');

}
}

Resolving DIDs are at the core of the SSI pipeline. This function has one in-
put, the DID-URL. It is not enough to have the alias; one needs the DID-URL to
access the DID-document. ResolveDID is an async function with the promise of
a "DIDResolutionResult". This promise is solved when the value is returned from
the async function. If it is not a proper DID resolution, it throws an error, and the
DID cannot be resolved.

Code listing 7.5: The create credential function

async createCredential(credentialData: any): Promise<VerifiableCredential | Error>
{

try {
return this.agent.createVerifiableCredential({

credential: credentialData,
proofFormat: PROOF_FORMAT_JWT

});
} catch (error) {

console.error('unable␣to␣create␣the␣verifiable␣credential', error);
return new Error('unable␣to␣create␣the␣verifiable␣credential');

}
}

The small "create credential" function is responsible for creating the verifiable
credentials used in the project. This framework is handled by veramo, as the API
can create verifiable credentials with the correct format. In a simpler project, the
API could be called directly. However, as there are multiple agents in this project, it
is put into a function using "this" for selecting the correct agent when the function
is called.

7.3.3 Controllers

It is possible to call the Veramo functions directly, but we made custom functions
to make it easier to customize precisely how the backend logic works. To do this,
we made controller classes for the Veramo agents.



64CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Agent Controller

The AgentController class is the primary controller class that the other agents
inherit core functionality. Usually, a project would only have one agent, but we
have them in the same project to make it easier to update and maintain. Since
they share much of the same core functionality, we used inheritance to maintain
consistency. This avoids code duplication and saves time with troubleshooting and
development.

What all agents require is creating a main identifier, resolving DIDs, verifying
JWTs, adding services to DID-documents, and sending messages through DID-
Comm. This is achieved through calling the current agent through "this.agent"
and using the Veramo functions on the current agent. This way, one always calls
the correct agent.

One of the key functions is ’getMainIdentifier’. This function either gets a main
identifier with a premade alias or creates a DID with this alias. When using DIDs
to exchange information, one wants to confirm that the other DID belongs to the
right entity. Having multiple DIDs creates unnecessary confusion, and the ’get-
MainIdentifier’ makes sure there is a main identifier and that this identifier is
what is used.

NAV agent controller

The only unique action the NAV agent performs is to check if a user qualifies
for unemployment benefits or not, this function can be found in Appendix K. The
agent still needs to have a DID, resolve DIDs, verify JWT,s and such. Nevertheless,
this is handled by inheriting from the AgentController.

The NAV agent receives a Token from a user through DIDComm. The NAV
agent unbundles this token, and it needs to consist of three VCs: person VC, em-
ployment VC, and termination VC. To verify this, we use two utility functions
verifySchema, and verifyIssuer. VerifySchema makes sure the VC follows the cor-
rect schema. If required information is missing from the VC, this throws an error.
All agents must agree to use the same schema and naming conventions for VCs.
VerifyIssuer makes sure that the agents issuing the VCs is the correct source. The
state agent should always issue a person VC and Symfoni should always issue
termination- and employment VCs.

When the VCs are validated, the content of the VCs needs to be validated.
The NAV agent sends a message to the user if their application for unemployment
benefits is approved or not. This last check can be as complex or simple as one
wants, as long as the information is in the VCs. This implementation checks if the
employee was terminated in the last three months and if they are below the age
of 67.

State agent controller



Chapter 7: Implementation 65

Code listing 7.6: The create person credential

async createPersonCredential(issuerDid: string, credentialSubjectData:
personVerifiableCredential['credentialSubject']){

try {
const credential = await this.agent.

createVerifiableCredential({
credential: {

'@context': [SCHEMA_W3_CREDENTIAL,
SCHEMA_PERSON_CREDENTIAL],

type: [TYPE_VERIFIABLE_CREDENTIAL,
TYPE_PERSON_CREDENTIAL],

issuer: {
id: issuerDid

},
credentialSubject: credentialSubjectData

},
proofFormat: PROOF_FORMAT_JWT

});

return credential;

} catch (error) {
console.error('unable␣to␣create␣the␣credential', error);
return new Error('unable␣to␣create␣the␣credential');

}
}

The unique action the State agents performs is to create a person credential.
Custom types and a schema define this credential. The custom type defines what
primitive datatype the different fields are and has enums where a specific input
is required. The state agent can also create business credentials, which were an
early iteration not used in the final product.

Symfoni agent controller

Code listing 7.7: The create employment credential

async createEmploymentCredential(issuer: string, credentialData: employmentVC['
credentialSubject']) {

try {
const credential = await this.agent.createVerifiableCredential({

credential: {
'@context': [SCHEMA_W3_CREDENTIAL,

SCHEMA_EMPLOYMENT_CONTRACT],
type: [TYPE_VERIFIABLE_CREDENTIAL,

TYPE_EMPLOYMENT_CREDENTIAL],
issuer: {

id: issuer
},
credentialSubject: credentialData

},
proofFormat: PROOF_FORMAT_JWT

});
return credential;

} catch (error) {
console.error('unable␣to␣create␣the␣employment␣credential',error);



66CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

return new Error('unable␣to␣create␣the␣employment␣credential');
}

}

The unique actions the Symfoni agent performs are to create termination and
employment credentials. Similarly, as the state agent, it uses custom types and
schema to ensure the correct information is put into the credential. How the em-
ployee information is gathered is covered under the database section.

The Symfoni agent also uses an external database to store employment in-
formation. When a user requests credentials, the Symfoni agent has a function
to see if they qualify. The agent receives a JWT with a person credential, and if
the social security number matches what is in their database, the credentials are
issued.

7.4 API

The API section of the code is where most of the heavy lifting is done. It consists of
a dozen endpoints spread across the four main agents. Many are almost identical,
though some are unique to each agent. This section will describe how the most
important shared endpoints work and describe the most important unique end-
points.

We decided to create an API for a couple of reasons. First and foremost, it
was to decouple our front end from the back end. However, it was also necessary
as many of the packages used in our back end did not cooperate well when run-
ning react native with Expo. The Veramo module, for example, used a couple of
dependencies that refused to work with Expo.

Since we already used Node.js as our runtime environment and TypeScript as
our main language, we used the Express.js framework to create our API.

Code listing 7.8: Express server setup

import http from 'http';
import express, { Express } from 'express';
import morgan from 'morgan';
import routes from './routes/routes';

const router: Express = express();

router.use(morgan('dev'));
router.use(express.urlencoded({ extended: false }));
router.use(express.json());

// The rules of the API
router.use((req, res, next) => {

res.header('Access-Control-Allow-Origin', '*');
res.header(

'Access-Control-Allow-Headers',
'origin,␣X-Requested-With,Content-Type,Accept,␣Authorization'

);
if (req.method === 'OPTIONS') {

res.header('Access-Control-Allow-Methods', 'GET,␣POST');



Chapter 7: Implementation 67

return res.status(200).json({});
}
next();

});

router.use('/', routes);

router.use((req, res) => {
const error = new Error('not␣found');
return res.status(404).json({

message: error.message
});

});

const httpServer = http.createServer(router);
const PORT: string | number = process.env.PORT ?? 6060;
httpServer.listen(

PORT,
() => console.log(`The server is running on port ${PORT}`)

);

7.4.1 Endpoint functionality descriptions

Code listing 7.9: The get main identifier endpoint function

const getMainIdentifier = async (req: Request, res: Response) => {
const mainIdentifier = await navAgentController.getMainIdentifier();
if (mainIdentifier instanceof Error) {

return res.status(500).json({
error: mainIdentifier.message

});
}

return res.status(200).json({
mainIdentifier

});
};

The most used endpoint across all the agents is the endpoint that retrieves
the main identifier. The main identifier is the locally stored main identifying doc-
ument containing the main DID address, services, and keys. It is one of the more
straightforward endpoints and is not dependent on user input. Therefore the end-
point is not wrapped in a try-catch, and if anything goes wrong, it returns a status
code of 500 because it would be the Veramo API’s fault. However, if it successfully
retrieves the main identifier, it will return the status code of 200 and the main
identifier as JSON. To retrieve the main identifier, it uses the function created in
the agent controller class that either retrieves an existing identifier or creates a
new one when it is called for the first time.

Code listing 7.10: The create person credential endpoint function

const createPersonCredential = async (req: Request, res: Response) => {
try {

let issuer: string = req.body.issuer;



68CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

const validationResult = validateSchema(PERSON_VC_SCHEMA_FILE_PATH,
req.body);

if (validationResult !== true) {
return res.status(400).json({

error: 'unable␣to␣create␣VC',
errorMessage: validationResult

});
}

const credentialSubject: personVerifiableCredential['
credentialSubject'] = req.body.credentialSubject;

if (typeof issuer === 'undefined') {
await stateAgentController.getMainIdentifier().then((

identifier) => {
if (identifier instanceof Error) {

return res.status(500).json({
error: identifier.message

});
}
issuer = identifier.did;

});
}

await stateAgentController.createPersonCredential(issuer,
credentialSubject)

.then((credential) => {
if (credential instanceof Error) {

return res.status(400).json({
error: credential

});
}
return res.status(201).json({

credential
});

});
} catch (error) {

return res.status(500).json({
error: 'something␣went␣wrong,␣try␣again␣later.'

});
}

};

Another important set of endpoints is the ones used to issue credentials. Four
endpoints issue credentials in total, each with a similar endpoint structure. These
endpoints use a POST method with a body with two main parts. The first part is
the DID responsible for issuing the credential, and the second is the subject data
within the credential. The DID that issues the credential has to be managed by the
agent, and if no DID is specified in the POST body, the agent’s main identifier will
be used. The data subject passed through the body is validated against a schema
that we made to assure that the data is correctly formatted and that all required
data is present. The schema file it is being validated against exists on the projects’
GitHub page and will also be part of the verifiable credential to add context for
other parties. If the subject data passes through the schema validation and the
agent manages the DID, a credential with said subject data will be created and



Chapter 7: Implementation 69

signed by the DID. The agent uses its create credential function from its agent
controller class to create the verifiable credential. There is an example of the code
behind the endpoint that creates a person credential in the code snippet above.

Code listing 7.11: The add credential to database endpoint function

const addCredential = async (req: Request, res: Response) => {
if (typeof req.body.credential === 'undefined') {

return res.status(400).json({
error: 'no␣credential␣object␣found,␣make␣sure␣that␣the␣

verifiable␣credential␣is␣wrapped␣in␣a␣credential␣object
.'

});
}

const credential: VerifiableCredential = {
'@context': req.body.credential['@context'],
type: req.body.credential.type,
issuer: {

id: req.body.credential.issuer.id
},
credentialSubject: req.body.credential.credentialSubject,
proof: req.body.credential.proof,
issuanceDate: req.body.credential.issuanceDate

};

await userAgentController.addCredential(credential).then((credentialHash)
=> {

if (typeof credentialHash !== 'string') {
return res.status(400).json({

error: credentialHash.message
});

}

return res.status(201).json({
credentialHash

});
});

};

Naturally, if there is an endpoint for issuing credentials, there should also be
an endpoint for storing credentials. The user agent is the only agent with an en-
dpoint for storing credentials as it is the only agent with a use for them. Since
the credential they are adding can be of any data, no specific schema validation is
involved. However, the body received from the POST request is parsed into a veri-
fiable credential object in the code. If it does not provide an object that matches
the interface of a verifiable credential, the code should fail. When the request body
is parsed to the verifiable credential object, the agent’s controller class uses its add
credential function to add the credential to its local database.

Code listing 7.12: The create verifiable presentation endpoint function

const createPresentation = async (req: Request, res: Response) => {
try {

const credentials: VerifiableCredential[] = [];
let holder: string = req.body.holder;



70CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

// if holder is not specified, use default DID
if (typeof holder === 'undefined') {

await userAgentController.getMainIdentifier().then((
mainIdentifier)=>{

if (mainIdentifier instanceof Error) {
return res.status(500).json({

fatal_error: 'unable␣to␣find␣or␣
create␣the␣main␣identifier'

});
}

holder = mainIdentifier.did;
});

}

if (req.body.listOfCredentials.length === 0) {
return res.status(400).json({

error: 'empty␣list␣of␣credentials'
});

}

req.body.listOfCredentials.forEach((credential: any) => {
credentials.push(credential['verifiableCredential']);

});

await userAgentController.createPresentation(holder, credentials).
then((presentation) => {

if (presentation instanceof Error) {
return res.status(400).json({

error: presentation.message
});

}
return res.status(201).json({

presentation
});

});

} catch (error) {
return res.status(400).json({

error: 'unable␣to␣create␣presenatation,␣make␣sure␣that␣the␣
credentials␣are␣inside␣an␣array.'

});
}

};

When users have saved many credentials to their database, they may want to
combine them into a verifiable presentation, to verify themselves somewhere or
to someone. There is, of course, an endpoint for this as well, and this endpoint is
user-specific as the other agents verify themselves through a verifiable registry. It is
a POST request with a body that consists of two parts, the first in the holder of the
presentation, which defaults to the agent’s main identifier. The second part is a list
of verifiable credentials that should be combined into a verifiable presentation. If
the user manages many DIDs, they may also specify another DID holder by adding
it to the request body. Suppose the list of verifiable credentials is longer than
one, and the holder has been specified. In that case, the endpoint calls the agent



Chapter 7: Implementation 71

controllers to create a presentation function to create a verifiable presentation.

Code listing 7.13: The user send message endpoint function

const sendMessage = async (req: Request, res: Response) => {
try {

// get params from body
const toDid: string = req.body.toDid;
const mainIdentifier = await userAgentController.getMainIdentifier

();

if (mainIdentifier instanceof Error) {
return res.status(500).json({

error: mainIdentifier.message
});

}

const fromDid: string = mainIdentifier.did;
const type: string = req.body.type;
const message: object = req.body.message;

// use params to send message
const messageSent = await userAgentController.sendMessage(toDid,

type, message, fromDid);

if (messageSent instanceof Error) {
return res.status(400).json({

error: messageSent.message
});

}

return res.status(200).json({
success: 'message␣sent'

});
// return positive / negative feedback
} catch (error) {

return res.status(500).json({
error: 'could␣not␣send␣message'

});
}

};

A verifiable presentation is only useful if shared with someone who can verify
it. Therefore, we had to implement an endpoint that the user could use to send a
verifiable presentation as a message. It is an endpoint with a POST method that
requires a request body with three things: to whom the message will be sent, the
message type, and the message itself. The DID address that sends the message will
be the main identifier DID of the agent. These four parameters are passed into the
send message function of the agent controller class, which packs the message and
sends it over DIDComm.



72CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Code listing 7.14: The symfoni handle messaging endpoint functionality

const handleMessaging = async (req: Request, res: Response) => {
try {

const generatedCredentials = [];

// handle incoming message to retrieve the token from the encrypted
message body

const message = await agentSymfoni.handleMessage({
raw: req.body as string,
metaData: [{type: 'message'}],
save: false

});

const messagePresentationToken = message.data.messageData;
const senderDid = message.from;

const mainIdentifier = await symfoniAgentController.
getMainIdentifier();

if (mainIdentifier instanceof Error) {
return res.status(500).json({

error: mainIdentifier.message
});

}

const mainDid = mainIdentifier.did;
const isQualified = await symfoniAgentController.

isQualifiedForContractVCs(messagePresentationToken);

if (!isQualified) {
return res.status(400).json({

error: 'person␣does␣not␣have␣the␣right␣credentials'
});

}

const handledMessage = await symfoniAgentController.agent.
handleMessage({

raw: messagePresentationToken
});

const ssn: string = handledMessage.credentials?.at(0)?.
credentialSubject.person.SSN;

const ssnHash = hashString(ssn);

const terminationContractData = await dbGetTerminationContract(
ssnHash);

const employmentContractData = await dbGetEmploymentContract(
ssnHash);

// if any contract fetch from db throws an error, just end the
transaction completly

if (terminationContractData instanceof Error ||
employmentContractData instanceof Error) {

return res.status(400).json({
error: 'something␣went␣wrong␣when␣trying␣to␣fetch␣

from␣the␣database.'
});

}



Chapter 7: Implementation 73

// only make termination vc if symfoni has the termination data
if (typeof terminationContractData !== 'undefined') {

const terminationVCObject: any = {
id: senderDid,
termination: terminationContractData['termination']

};
// make credential
const terminationVC = await symfoniAgentController.

createTerminationCredential(
mainDid,
terminationVCObject

);
if (!(terminationVC instanceof Error)) {

generatedCredentials.push(terminationVC.proof.jwt);
}

}

// only make the employment vc if symfoni has the employment data
if (typeof employmentContractData !== 'undefined') {

const employmentVCObject: any = {
id: senderDid,
employment: employmentContractData['employment']

};
// make credential
const employmentVC = await symfoniAgentController.

createEmploymentCredential(
mainDid,
employmentVCObject

);

// as long as it is not an error, push it to the
credentials array.

if (!(employmentVC instanceof Error)) {
generatedCredentials.push(employmentVC.proof.jwt);

}
}

// as long as the list of generated credentials are not empty, send
the credentials

if (generatedCredentials.length !== 0) {
for (let index = 0; index < generatedCredentials.length;

index++) {
await symfoniAgentController.sendMessage(

senderDid,
'SymfoniCredential',
generatedCredentials[index]

);
}

}

return res.status(400).json({ Error: 'unable␣to␣handle␣the␣message'
});

} catch (error) {
return res.status(500).json({

error
});

}
};



74CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

What is considered a verified presentation is up to each agent. To determine
whether a presentation is verified or not, we implemented endpoints that handle
incoming messages. These endpoints are not limited to messages containing verifi-
able presentations, though they will not respond with anything meaningful unless
they get one. Only the NAV and Symfoni agent has an endpoint for handling mes-
sages, as they are the only agents that need to verify presentations. Above is a
code snippet showing how the Symfoni agents handle messages.

Symfoni’s handle message endpoint is the most extensive endpoint we imple-
mented, and there is most likely room for refactoring and optimization. It starts
by calling the Veramo agents handle message functionality to compute a presenta-
tion token from the encrypted message. Then it runs the Symfoni agent controller
class function to check if the presentation token is valid. If the token is valid, the
presentation token is further handled to extract the verifiable credential tokens
within the presentation. The data within the verifiable credential is then used to
query the cloud database for contract data. If the person sending the presentation
token has contract data in the database, contract credentials are created and sent
back to the sender of the presentation.

7.5 Databases

The project utilizes a couple of databases. Firstly there are the five local databases
that the Veramo agents handle. Secondly, there are the cloud databases used by
our state and Symfoni agent to store information such as employment contract
data, personal data, and termination contract data.

7.5.1 Firestore

For the cloud databases, we chose Firestore. Firestore is a NoSQL document-based
database, which fits nicely with the purpose of our demo because it is very easy
to install, maintain and use. We implemented these databases because we did
not have access to real-world data like personal information that the state with-
holds, like a person’s social security number. Therefore, we opted for a homemade
personal data registry. In addition, we created a termination contract data and
employment contract data database, which one would otherwise access through
third-party vendors like Visma.



Chapter 7: Implementation 75

Figure 7.1: This is what the database looks like when directly interacting with it
in the cloud.

To set up the database, we had to create a Firebase project. There is an option
to create a Firestore database within the Firebase project. Within the Firestore
database, three collections had to be created—one collection for personal data
documents, one for employment contracts, and one for termination contracts.
Each collection contains one document that represents one person. These doc-
uments have IDs based on a secret hash made by the secure hashing algorithm of
256 bits. These hashes are unique and can identify a specific person, and the same
hash is used as an ID for the same person across all collections. In other words, a
person’s personal data document, and employment contract document, will have
the same ID.

Figure 7.2: An example of a personal data document inside the Firestore database

Many data points are used to describe a specific person within the personal



76CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

data document. Most importantly, we have the person’s social security number.
The social security number is stored in plain text, which is bad practice for security
reasons. It is kept in plain text because none of the social security numbers are
real but mocked for the demo. The person’s name and current address can also
be found in the personal data document and their date of birth, gender, marital
status, and much more. The personal data document is important because it is
used by the state when they want to issue a verifiable credential of a person.
All of the data within the personal document is also within the person’s person-
identifying credential.

Figure 7.3: An example of an employment contract data document inside the
Firestore database

The employment contract documents are used when Symfoni wants to issue an
employment contract credential, and therefore it consists of all the data required
to represent an employment contract. This data was thoroughly discussed with
NAV, as mentioned earlier. Examples of such data are the start and end date, the
expected salary, and the expected work amount.

Figure 7.4: An example of a termination contract data document inside the
Firestore database

The termination contract documents are much like the employment contract



Chapter 7: Implementation 77

documents, although these are used when Symfoni wants to issue a termination
credential. The data within the termination contract documents were also dis-
cussed with NAV. Examples of such data are how many hours the person worked
on average, their last day at work, their last payday, and why they were termin-
ated.

If these collections were not added to the project, the different agents would
have to make and store the verifiable credentials simultaneously as their data was
generated. The agents can store data without generating a verifiable credential by
having these collections, and they only have to generate a credential whenever a
person is asking for it.

Firestore code examples

Setting up the Firestore database in the code is simple. The first thing we had to do
was to go to our Firebase project and download the service account key file. The
service account key file is a way of verifying that one has the right credentials to
be using the database. Secondly, we had to install the Firebase Firestore modules
from the node package manager. Finally, we had to code the setup.

Code listing 7.15: Firestore database setup

import { initializeApp, cert } from 'firebase-admin/app';
import { getFirestore } from 'firebase-admin/firestore';

const PATH_TO_SERVICE_ACCOUNT_KEY = 'serviceAccountKey.json';

initializeApp({
credential: cert(PATH_TO_SERVICE_ACCOUNT_KEY)

});

export const db = getFirestore();

The CRUD operations of the Firestore database are easy to write out in code.
There is no relational mapping involved, and all files are stored as documents;
all one has to know is which collection to search in and which document ID one
wants to do operations on.

Code listing 7.16: Example of a read operation

export async function dbGetPersonData(id) {
try {

const docRef = db.collection(PERSON_DATA_COLLECTION).doc(id);
const doc = await docRef.get();
if (!doc.exists) {

return new Error('no␣document␣found');
} else {

return doc.data();
}

} catch (error) {
return new Error('unable␣to␣retrieve␣document␣from␣database');

}
}



78CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Above there is an example of how a read operation is carried out. For simplicity,
we have removed the type declarations, as they are not important for the flow of
the code. The first thing to notice is that the entire function is wrapped in a try-
catch; this is in case there is some server-side error that results in an unexpected
error. The second thing to notice is how we access the document we desire in just
one line of code. Firstly, we specify the collection we want to search through and
retrieve the document with whatever document ID we want. If the document does
not exist, we return an error stating that we could not find any document. On the
other hand, if it does exist, we return the data within the document.

Code listing 7.17: Example of a delete operation

export async function dbDeletePersonData(id:string) {
try {

const docRef = db.collection(PERSON_DATA_COLLECTION).doc(id);
docRef.delete();
return (await docRef.get()).data();

} catch (error) {
return new Error('unable␣to␣retrieve␣document␣from␣database');

}
}

Deleting a document from the database is equally as simple as reading from
the database. Like the read operation, it has a try-catch in case anything goes
wrong on the server-side. Finding the document to delete is done the same way
as when reading. If a document was found and deleted, the function returns the
data of the deleted document. The idea behind returning the deleted documents
data is to verify that a document was found and act as a security net if the wrong
document was deleted.

Code listing 7.18: Example of a create and update operation

export async function dbAddPersonData(id, personData){
try {

const docRef = db.collection(PERSON_DATA_COLLECTION).doc(id);
await docRef.set(personData);

} catch (error) {
return new Error('database␣insertion␣failed');

}
}

Creating a new document and updating an old one are done the same way.
Firstly, the function finds the document reference of the document it should cre-
ate or update, then it sends some JSON data to that document reference. If the
document did not exist beforehand, the function simply creates a new document.
However, if the document did exist, the function will overwrite that document,
thereby updating its data. The function is, of course, also wrapped in a try-catch.

7.5.2 Local

The local databases are handled by the Veramo API and are used for storing
everything related to verifiable data and SSI. Each agent has its separate local



Chapter 7: Implementation 79

database, although each is used a little differently. Each database is locked with
its respective secret key, meaning that only the owner of the local database has
access to it.

export const dbConnectionTest = createConnection({
type: 'sqlite',
database: TEST_DATABASE_FILE,
synchronize: false,
migrations,
migrationsRun: true,
logging: ['error', 'info', 'warn'],
entities: Entities,

});

The user agent is the one that uses its local database the most. The user’s
identifiers, verifiable credentials, keys, and messages are stored within this data-
base, and it is heavily accessed throughout the use of the application. For example,
when retrieving the user’s primary identifier, listing the stored VCs, reading the
VC details, listing messages, and viewing message details.

Although the other agents also have use cases for their local database, it is
minimal compared to the user. The other agents mainly use their local database
to access their main identifier private key when signing credentials for issuing.
This means that the security of this database is paramount, as anyone with access
to it can impersonate that agent.

The databases use SQL for accessing, meaning that they are traversed with
SQL queries. Fortunately, for simplicity, the Veramo framework comes precon-
figured with an API that generates these queries. However, this can generate some
difficult-to-understand error messages, which one can not directly fix within the
queries themselves without speaking to the Veramo developers.

7.6 React Native

The project’s different agents must be deployable on different platforms, as the
different entities the agents represent have different workflows. It would be nat-
ural for the user agent to be used on a phone, while the Symfoni agent would be
more commonly used on a computer. This requires our application to both run
on the web and mobile. The best JavaScript framework for this purpose is React
Native, as it is made for developing for mobile devices.

7.6.1 Navigation

Code listing 7.19: Navigation screen

export default function UserHomeView({navigation}: any): JSX.Element {
return (

<View style={styles.container}>
<Text style={styles.headingTextBlack}>Welcome User!</Text>

<NavigationButton



80CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

title='Show␣DID'
customStyle={buttonStyles.navigationButtonUser}
onPress={()=> navigation.navigate('

UserMainIdentifier')}
></NavigationButton>

</View>
);

}

React Native has built-in navigation functionality that keeps track of what
screen is currently displayed and the previous screen. The entire app is wrapped
in a navigation container, which is done in the entry file "app.tsx". Every screen in
the app is put on the navigation stack. Each page has a navigation bar at the top.
It states which page is displayed and has a back button leading to the previous
page.

Code listing 7.20: pasing params to a different screen

export default function UserMessageDetailView({navigation, route}: any): JSX.
Element {

const {item} = route.params;

Using the stack navigator makes it easy to pass parameters between screens.
An example of this is in the "UserMessageDetailView," which displays data from
another screen using "route.params".

7.6.2 Components

When programming the application, we tried to split as much functionality into
components as possible. Splitting into components makes it easier to understand,
as different functionalities are isolated and imported where used. Using compon-
ents also makes it possible to reuse code, as components are reusable and can be
used in multiple places in the application.

Code listing 7.21: Credential card component

export function CredentialCard({item, navigation}: {item: VerifiableCredential,
navigation: any}) {

else if (item.verifiableCredential.type[1] === TYPE_TERMINATION_CREDENTIAL) {
return (

<TouchableOpacity style={styles.credentialCard}
onPress={()=> navigation.navigate('UserVCDetail', {

item: item
})}

>
<Text style={styles.headingText}>{item.

verifiableCredential.type[1]}</Text>
<Text style={styles.defaultText}>Last day at work:

{item.verifiableCredential.credentialSubject.
termination.employee.lastDayAtWork}</Text>

<Text style={styles.defaultText}>Last payday: {item
.verifiableCredential.credentialSubject.
termination.employee.lastPayday}</Text>

<Text style={styles.defaultText}>Termination status
: {item.verifiableCredential.credentialSubject.
termination.employee.terminationStatus}</Text>



Chapter 7: Implementation 81

</TouchableOpacity>
);

Code listing 7.22: Credential detail component

TYPE_TERMINATION_CREDENTIAL) {
return (

<ScrollView>
<View style={styles.credentialDetailView}>

<Text style={styles.headingTextBlack}>{item.
verifiableCredential.type[1]}</Text>

<Text style={styles.credentialDetailHeadingText}>
Employee info</Text>

<Text>Last day at work: {item.verifiableCredential.
credentialSubject.termination.employee.
lastDayAtWork}</Text>

<Text>Last payday: {item.verifiableCredential.
credentialSubject.termination.employee.
lastPayDay}</Text>

<Text>Termination status: {item.
verifiableCredential.credentialSubject.
termination.employee.terminationStatus}</Text>

<Text>Terminated during trial period: {item.
verifiableCredential.credentialSubject.
termination.employee.
terminatedDuringTrialPeriod.toString()}</Text>

<Text>Weekly work hours: {item.verifiableCredential
.credentialSubject.termination.employee.
WeeklyWorkHours}</Text>

</View>
</ScrollView>

);

Two major components are the "credentialCard" and "credentialDetail." One
of the issues here is that there is no easy way to automate the process of display-
ing information from a verifiable credential. Every item in this credential has to
be manually accessed by going into the credential subject and getting the cor-
rect field. This project only uses four different credentials, so while there is much
manual labor, it is manageable. This becomes a bigger issue in a more extensive
system with potentially hundreds of credentials.

7.6.3 Styles

Code listing 7.23: Example of button styles

export const buttonStyles = StyleSheet.create({
submitButtonFormSymfoni: {

margin: 10,
backgroundColor: symfoniColor,
borderRadius: 6,
alignItems: 'center',
padding: 10

}...
}



82CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

Using the same principles of reusability and consistency as with components,
a styles file defines all the different styles used in the app. By importing the pre-
defined styles from this file, we ensure that everything has a consistent design.
When different developers work on different parts of the app, they use the same
style format to avoid design differences. All buttons for navigation use the nav-
igation button styles, all forms use the form style, and so on. Every agent has a
unique color scheme to make them more distinct and recognizable.

7.6.4 Forms

When developing the project, the development team tried to avoid using third-
party libraries as much as possible. An exception to this was for creating the forms
used in the Symfoni agent, as creating forms in react native is a challenge. We used
Formik with yup validation to create the employment and termination forms.

Code listing 7.24: Yup validation

const EmploymentSchema = yup.object({
socialSecurityNumber: yup.string().required(),
jobTitle: yup.string().required('Required␣Field'),
hoursOfWork: yup.number().required('Required␣Field').typeError('Invalid,␣

must␣be␣a␣number'),
startDate: yup.date().transform(parseDateString).required('Required␣Field')

.typeError('Valid␣date␣required␣YYYY-MM-DD')

Yup provides form validation based on multiple factors, with built-in function-
ality for error messages. For this project, we used required fields and type guards.
TypseScript already uses type guards, so using it twice has no purpose other than
Yup requires it. Yup does have a "Date" type not included in TypeScript, which
helps enforce the correct date format. The ability to have optional fields is good,
as our credentials also have optional fields.

An alternative to using Formik would be using React Hook Form. This would
have been a better choice as it is a newer tool utilizing react hooks. The difference
is that React Hook Form isolates the input fields, preventing the form from re-
rendering from a single field change.

7.6.5 Function components

Code listing 7.25: UseState

export default function SymfoniRecieveVPView(): JSX.Element {
const [isLoading, setLoading] = useState<boolean>(true);
const [mainIdentifier, setMainIdentifier] = useState<IMainIdentifier>();

There are two ways to write React Native applications with components: func-
tional and class components. We are using functional components for this project
as they have a simpler syntax and generally less boilerplate. A functional com-
ponent is just a plain TypeScript function that accepts props as an argument and
returns a React Native element. React hooks makes it possible to add a state to a



Chapter 7: Implementation 83

function component without converting it to a class. In the code snippet above,
"SymfoniRecieveVPView" uses the hook useState to set the main identifier for this
page.

Code listing 7.26: UseEffect

useEffect(() => {
getMainIdentifier();

}, []);

The Effect hook allows for performing side effects in a function component.
When using an Effect hook with an empty array, we make sure the effect runs only
on the first render. We only want to set the main identifier once, not every time
the component renders.

Code listing 7.27: Get main identifier

const getMainIdentifier = async () => {
try {

const response = await fetch(SYMFONI_GET_MAIN_IDENTIFIER_URL);
if (!response.ok) {

alert('unable␣to␣generate␣QR-code␣with␣the␣main␣DID␣address');
return;

} else {
const json = await response.json();
setMainIdentifier(json.mainIdentifier.did);

}
} catch (error) {

console.error(error);
alert('something␣went␣wrong');

} finally {
setLoading(false);

}
};

The API is the bridge between the back-end and the front-end. React Native
uses the fetchAPI, which works very similarly to "XMLHttpRequest". When using
these functions, we cannot be sure when the fetch is completed, so we use async-
await to ensure it is completed before continuing to the next step. Fetch takes
two inputs, a URL and the optional argument request options, such as type of
request. When receiving a response, it also receives a status code. We decide what
to do with the data based on this status code. In the example, "getMainIdentifier"
fetches a get request from a URL. This URL is a pre-defined constant to make it
easier to always use the right URL for the right agent. Since this request is a GET
request, there is no need to specify request options, as get requests are the default
option.





Chapter 8

Testing and quality assurance

Having thorough testing and good quality assurance has been a priority for us
since the beginning of the project. We were early in setting up a testing framework
and adding git hooks to our project, ensuring that all tests passed and the project
ran properly before any commits and pushes went through. The usage of branches
in our repository was also important to us, and we had strict rules for them. We did
not allow pushing changes to the main ’dev’ branch directly. We always made pull
requests from other branches, where those required a code review from another
member to see if the code held a certain standard before we were allowed to
merge. We did this to ensure that no harmful code or possibly project-breaking
code would enter our ’dev’ branch. This also led to us not spending a lot of time
refactoring old code that would not suffice later on.

8.1 Unit testing

We use unit testing to verify that our functions follow our design and give expec-
ted results for different cases. For our unit testing, we have used the JavaScript
framework Mocha. We chose Mocha because it runs on Node.js and supports test-
ing for asynchronous functions. Not every function has a corresponding test, but
the more important and frequently used functions do. For instance, we have writ-
ten tests for our agent controller functions and set up a test database to confirm
that the functions work and that the agent controller is able to meet our expecta-
tions of functionality. These are functions like creating DIDs, resolving DIDs, listing
DIDs based on different parameters, creating credentials, verifying JWTs, creating
presentations, and doing database operations on these, such as storing credentials
in a database. We also have unit tests for our utility functions, such as our schema
validation function. We have tests that ensure that good objects that follow the
schema pass and tests that confirm that bad objects not following the schema will
fail.

Code listing 8.1: Example of mocha before and after functions for tests

85



86CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

const testAgentController = new AgentController(agentTest, 'test');
const testJWT = 'jwt...';
let testDidUrl: string;
let testCredentialData: AnyObject;

before(async function () {
// Makes and saves a did for the test cases.
await testAgentController.createDID('test0').then((did)=>{

if (did instanceof Error) {
return;

}
testDidUrl = did.did;

});

// Creates a couple more dids for testing.
await testAgentController.createDID('test1', 'did:web');
await testAgentController.createDID('test2');

// Setting up a sample credential data for testing.
testCredentialData = {

type: ['VerifiableCredential', 'TestCredential'],
issuer: {

id: testDidUrl
},
'@context': [SCHEMA_W3_CREDENTIAL],
credentialSubject: {

'name': 'Ola',
'age': 25

}
};

// Override console.log and console.error with empty functions to supress
function logging when testing

// making it easier to read the test result.
// eslint-disable-next-line @typescript-eslint/no-empty-function
console.log = function () {};
// eslint-disable-next-line @typescript-eslint/no-empty-function
console.error = function () {};

});

after(async function () {
// Resets the test database after each run.
await dbConnectionTest.then((testDb)=>{

testDb.dropDatabase();
});

});

This is an example of the mocha hooks, ’before’ and ’after.’ The ’before’ function
gets called before the test case is run; it initializes the databases with DIDs and
credentials. The ’after’ function gets called after the test case is finished and clears
the database. These hooks ensure that the tests are persistent and run the same
each time.



Chapter 8: Testing and quality assurance 87

8.2 API testing

The API is a central part of our application and has many endpoints. Therefore it
is important to make sure that they meet our expectations of how they function
and their uses. Like unit testing, API testing works by sending a request to the en-
dpoints, and the test passes if the correct status code or response body is returned
from the endpoints. These tests can either be automatically completed through
code or done manually through the use of API tools. For our project, we have
chosen not to write automated API tests because the simplicity and familiarity of
the API tools ’Postman’ and ’Insomnia’ have saved us time, and their functionality
suffice our scope. We created a document with predefined reusable requests to all
the endpoints in Postman. This made it easy to test our API and see that we got
the status codes and responses we wanted.

8.3 GUI testing

During development, the GUI was tested manually as functionality was added.
Every developer made sure it was deployed on both web and android before mer-
ging their changes into the development branch. We had strict procedures for
developing new parts of the system, like code review, but they were manual, not
automated. This manual testing is not to replace written GUI testing and is a weak-
ness in our project. The lack of GUI testing is due to technological difficulties and
time constraints. While this did not impact our project in a significant way, it is
unsustainable in the long run. More developers and a more extensive codebase
would inevitably lead to mistakes when GUI testing is not present.

In early development, we chose Mocha as our testing framework. This was
based on research for the best testing frameworks for TypeScript, and the two op-
tions were Mocha and Jest. Based on the initial reaction, Mocha had better doc-
umentation, which is why Mocha was used. In retrospect Jest would have been a
better option. The main reason is that Jest supports snapshot testing. This is when
the testing framework renders a UI component and takes a snapshot. The UI can
be compared to this previous snapshot in later testing to see any difference. This
only fails when there are changes in the application, so if an update is made, the
test needs to be rerun to update the snapshot. This type of testing requires some
vigilance by the developer to not simply update the snapshot without checking if
the intended results were achieved.

There are some solutions to this, using third-party libraries for Mocha snapshot
testing, adding an additional framework to the project, and migrating from Mocha
to Jest. We try to avoid using third-party libraries as much as possible; even if
it works, it creates new problems with compatibility and updates in the future.
Migrating to Jest was also possible, but it is unknown what consequences this
would have for the existing unit tests, as there are some differences in syntax
between the two. Adding Jest alongside Mocha proved to be challenging as we
could not get Jest to work with TypeScript. In the end, we simply ran out of time.



88CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

With more time, we likely would make it work. While it does lack some polish,
the application is operational now, and we did not want to make major changes
this late in the process. We decided it was more important to focus on the end
product than developing the desired GUI tests.

Snapshot testing is not the only way of GUI testing, as React Native also sup-
ports unit-testing, component-testing, and integration-testing. Unit testing tests
small code snippets, like individual functions or classes. Integration testing is
when multiple units are combined and are working together. Component testing
is for testing individual components. Integration testing is a challenge because
we use the Ethereum test network for our did:method, with its limited ability to
provide Ethereum to run the application. This process has not been automated
satisfactorily and is complicated to do manually. The tests are hard to accomplish
because of the manual labor necessary to add the currency for transaction fees
when updating the DID document for the required DIDs. Component testing is
something that we should implement but was cut due to time constraints. [15]



Chapter 9

Conclusion

9.1 Discussion

9.1.1 SSI

The early parts of the bachelor’s were heavily theoretical. SSI is cutting-edge tech-
nology and a subject matter unfamiliar to the group. Much time was dedicated to
discussing how SSI works, how a user would interact with the system, the more
considerable implications for public services, and how it would be implemented
in the project.

One point of debate was if SSI would replace centrally controlled registries or
supplement them. In the scenario where a person’s credential replaces a passport,
would there still be a database containing their personal information, or does this
go against the concept of decentralization? After consulting with our employer,
the group shifted focus towards creating a digital credential to replace physical
credentials, not replacing all centralized registries. Removing all forms of regis-
tries and databases for public services would not be possible, as a central authority
is required. A digital credential gives the user greater control of what information
they send and the convenience of having the information digitally.

While the technology has much potential, a proof of concept with no basis, in
reality, is of limited use. To increase the legitimacy and practical use of the thesis,
the group has been in collaboration with NAV to get input on how a government
service functions and its internal routines. This collaboration was made possible
through Jon Ramvi, the CEO of Symfoni, as he organized the meetings between
the different parties.

9.1.2 Collaboration with NAV

One of the benefits of working with NAV was explaining the project to someone
unfamiliar with SSI. A considerable amount of time was spent creating differ-
ent swim-lane diagrams to demonstrate how a user would interact with the sys-
tem. Overall, this gave us a greater understanding, as we had to plan out and

89



90CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

discuss every step a user would perform. More business-oriented diagrams were
explained on a surface level, and more technical diagrams explained how the dif-
ferent agents interacted.

Another important factor for verifiable credentials is the schema. The group
invented a schema based on what we thought would be useful to include in an
employment contract. A group of students with limited working life experience is
not ideally suited for this task. This first iteration was updated with input from
NAV about what information they were interested in. One aspect was splitting the
employment credential into two credentials, employment, and termination. Not
all information relevant to an unemployment benefits application fits inside an
employment credential.

The schema structure is created for the specific use case of unemployment
benefits. An issue will occur if these schemas become too long and unmanageable.
The idea is that an employer fills in the information in their accounting system, and
if there are too many input fields, employers will be hesitant to use the system. A
benefit with verifiable presentations is that you can have many smaller credentials
for specific scenarios and put them together in a verifiable presentation. This way,
there is no need for one large credential, but have several small ones.

9.1.3 Redundant code

Part of the codebase was made early in the development cycle and became ob-
solete when design changes were made for the project. In a real-life scenario,
code that is not used should be removed. However, as this is a bachelor thesis,
we decided to keep it in the project to show the thought process and work during
development. Another reason for keeping everything in the project is that it can
be used for further development.

An example of this is the business credential. Initially, we wanted a business
to exchange a credential the same way a person does when establishing a DID-
Comm connection. After consultation with our employer, the flow of both parties
presenting credentials was changed. A more static approach to verifying a busi-
ness’ identity was established, with a registry for businesses maintained by the
government. While we do not use a business credential in this project iteration, it
does not mean a business credential will never be used. Therefore it was kept in
the project.

In the same way, as business credentials were not used in the final product,
some of the API endpoints fall into the same category. Some endpoints were cre-
ated and used during manual testing but did not serve the final product’s purpose.
In our project, a user does not create credentials, but that does not mean a user
never will create a credential. One possibility we discussed with NAV was the user
giving a power of attorney credential to their lawyer. It seemed wasteful to de-
lete work that could be a foundation to build upon just for a cleaner repository.
Neither the business credential nor the extra endpoints take much space, and they
naturally fit into the project structure.



Chapter 9: Conclusion 91

9.1.4 Schema

Early in the development process, the group spent a considerable amount of time
on Schema for different VCs. This was to establish the baseline of verifiable in-
formation to build the project upon. Some of the work done was outside the pro-
ject’s scope, as they relate to large structural decisions on a government level.
When creating the person credential, the group tried to find pre-existing similar
data structures. The schema was based on the Norwegian Data Catalog, which has
entries for defining a person. In the end, the structure of the person’s credential
did not matter a great deal, as the application does not use most of the informa-
tion it contains. Receiving a person’s credential is sufficient to verify an identity.
This does not mean the work regarding schema was wasted, as it was useful for
learning more about the concepts of SSI.

The struggle with deciding data for the Schema showcased the challenges with
adopting SSI for public services. In this application, several layers of schema val-
idation are utilized. This means only credentials using the correct Schema will be
validated. To work with public services, every public service and business related
to those services must agree to use the same standards for a credential schema.
That is just on a national level; when collaborating with NAV, the idea was presen-
ted for using the EU Digital Wallet, where every member state of the European
Union must use the same standards. This is a challenge, and the group debated
using both data from the Norwegian Data Catalog [13] and the EBSI[16].

During this process, our employer recommended using JSON-LD. It was im-
possible to use the existing schema directly, but a new schema that referenced the
existing schema could be possible. This way, the schema in the project would have
a greater sense of legitimacy, as they are backed by real data, not just invented for
this project. However, after consulting with a semantic web expert, it was revealed
that this was not possible. The final schema for the application was created based
on the data from "Data Norge" [13] and can be used outside our limited scope of
unemployment benefits application.

9.1.5 Limited amount of issuers

Some changes were made to the original task description as the project evolved.
The application is not deployed to multiple servers, and there are fewer credential
issuers than initially intended. The multiple servers were reduced to fit the scope
of the thesis better. Instead of having multiple credential issuers, the group utilized
the collaboration with NAV to focus on the use case of applying for unemployment
benefits. The main problem scenario was exchanging employment information.
This upheld the requirement of using SSI but kept the scope more manageable for
a bachelor’s thesis.

Originally, the demo was supposed to showcase the SSI flow between up to
eight actors. However, we only managed to demo the flow between four actors due
to time constraints. This is a direct consequence of not building on the Symfoni
baseline, and this required more coding work, and the number of issuers was



92CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

reduced. Adding more actors would not further prove anything, but it would make
the demo seem more realistic. Because of the project’s structure, it is easy to create
another actor through the controller classes, but it will be time-consuming as new
endpoints, schema, and verification functions need to be made.

Symfoni proposed that we could use their already built proof of concept app
and further build on it to make our demo. However, we thought that would take
away a lot of our learning experience and make the bachelor thesis slim. Symfoni
agreed with this, and we began building the project from scratch. If we were to
use the pre-built app, we would most likely, have gotten a lot further in the demo,
making a more realistic case.

9.1.6 Type guards in TypeScript

One of the core concepts of TypeScript is using types for protection from run-
time errors and giving the developer assistance when writing code and general
readability. The developers have held a high standard of utilizing types throughout
the project. This has been a great assistance when programming, as types, gives
a better idea of the content of some data. An example would be a function that
requires a verifiable credential type; there is no mistaking what kind of input it
needs.

This pattern was broken when developing the front end using React Native.
When using React Native, the developers ran into issues with types. The developer
simply used the "any" type when running into these issues. Using the "any" type
defeats the point of having types, but it makes the code executable. The draw-
back is making it more difficult to understand the data flow between components.
This becomes clear in react-navigation, where the development team failed to add
types.

9.1.7 Alternatives

The most significant decisions made in the thesis were choosing to develop the
application from scratch, the transport layer for the application, and the use case
of unemployment benefits. These decisions have been discussed earlier, but this
is a retrospective of what we have learned.

Developing our own application and not using the Symfoni baseline was the
right decision. While it hurts the demo, as it is less complete than we wanted,
the additional learning from developing an android application outweighs the
negatives. It gave more substance to the thesis and helped the group reach their
learning goals.

The choice was between using wallet connect or DIDComm. We chose DID-
Comm, as veramo has built-in DIDComm functionality, and we use veramo for the
base of the digital agents in the project. This avoids adding more dependencies to
the project and complicating it further. Wallet connect is more catered toward de-
centralized apps, which does not apply to our application. DIDComm was easier
to use and fits better with our application.



Chapter 9: Conclusion 93

In hindsight, the use case of applying for unemployment benefits was not the
best choice. For someone unfamiliar with the technology, the benefits of switching
to a SSI system are not clear. It would appear to gather information similarly to
today’s systems to an outside observer. Using verifiable credentials loses some
usefulness when it is not integrated into society, but the user needs to gather all
the credentials manually. This is not clear in the demo, but it can be reused once
a credential is obtained.

9.2 Critique

The bachelor thesis is very conceptual, without a clear end goal. When we got our
assignment, it was more a description of Symfoni and what kind of technology
they work with than a well-defined task. After collaborating with Symfoni and
NAV, we specialized in creating Verifiable Credentials for unemployment benefits
applications. Before this, our only guideline was using the SSI concept to send
and verify Verifiable Credentials. This did give the group a degree of freedom in
choosing the direction of the thesis. However, it was not easy to comprehend the
end goal and how to get there early on.

We are already working in a new field with limited documentation and ex-
amples. Using TypeScript alongside this also caused some problems. TypeScript
has many benefits, and type guarding has been a great help when developing the
application. However, TypeScript has compatibility issues with many programs
and libraries. When programming in React Native, we frequently troubleshot a
problem, only to find out it is a TypeScript issue. If we were to freely chose a
programming language, we would probably still use TypeScript, but it has caused
some issues.

The communication between the group and our university supervisor was less
frequent than ideal. This was due to time constraints on the supervisor’s end, as he
has other responsibilities. This should be coordinated better with the university, as
they are in charge of delegating responsibilities to the supervisors. We have been
in contact with other bachelor groups that have been. This has not had the most
prominent impact on the project, as it mostly filled the role of providing guidance.
Towards the later stage of the bachelor’s, it became more of an issue, as that is
more university-related with writing the thesis itself.

9.3 Further work

This bachelor project had the scope of delivering a working demo that showcases
the SSI ecosystem with a practical case. This baseline can be further developed
and built upon.

An application would typically only contain one digital agent. Having four
agents in the same project was to effortlessly update and debug all agents at once.
For further work, all the digital agents need to be decoupled from the main repos-



94CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

itory and the necessary functionality implemented for each agent. The API handles
the interaction between the user and the back-end. All the decoupled applications
would require a new API.

This project has also been focused on one use case, automating the application
of unemployment benefits for NAV. Specifically creating credentials containing
employment information. This is an incomplete flow for unemployment benefits,
as multiple factors are considered. The system needs to be extended to include
military service, education, actively searching for employment, and other criteria.
Credentials for these proofs can be created by using the same methodology as the
employment credentials.

This scenario is only one possible use for verifiable credentials and the SSI
infrastructure. Another use case could be transferring power of attorney to a
lawyer or having a digital driver’s license. The core concepts will be the same,
for example, by having a secure DID-to-DID connection and sending credentials
between digital agents. There are possibilities to explore by granting access of
credentials to trusted parties or having autonomous sensors issuing credentials in
a production line. SSI is a new technology, and this bachelor’s thesis is only the
tip of the iceberg.

9.4 Evaluation of group efforts

This section describes how the group worked together to solve the assignment
and how the work was organized.

9.4.1 Organizing

A variety of factors disrupted the planned work schedule. During the first five
sprints, this schedule with physical meetings was upheld strictly but was disrup-
ted by additional schoolwork outside the bachelor’s. Another mandatory subject
was held simultaneously, requiring group work with other students and watching
lectures. This made it difficult to have regular physical meetings, as a conference
room is not well suited for watching lectures. After this subject was over, reserving
rooms on campus was difficult as there was high demand.

Because of this, and that the group had gotten used to online collaboration,
the majority of the remaining project was conducted online. There are both pros
and cons to online work. The pros being working in an environment one is com-
fortable in and having access to all the amenities of a home office. It is also easy
to share screens and follow along when another developer demonstrates code or
pair programming.

9.4.2 Workload distribution

The workload distribution became a bit uneven. Most of the coding was done by
one group member, for which there could be a couple of reasons. It could be the



Chapter 9: Conclusion 95

fault of a lack of good issue tracking. Although issues were made at the beginning
of the project, they were never delegated to a specific person, meaning anyone
could attack a given issue. As the project progressed, fewer issues were made,
making the meeting notes the primary task source.

It might also have been a combination of not having a group leader and group
members lacking personal motivation. The group did not have a leader that in-
tervened when group members did not carry their load, and neither to motivate
the group members to do their job. Lack of leadership meant that each member
worked from personal motivation, which should not be taken for granted.

When we began documenting our project, the workload distribution evened
out. All members contributed equally to proofreading, documenting, and making
models. However, we did not change the group organization. Each member found
something they wanted to do independently, notifying the rest of the group when
they found something.

In retrospect, the group should have pointed out a group leader. The group
leader should have held meetings each week to ensure everyone had a task to do
and that the group members were making progress. These meetings should also
have been used to help each other complete our tasks if we were stuck. We should
also have delegated issues to the group members, as we found that assigning them
to oneself made it easy to avoid issues and not finish them.

9.4.3 Project as a form of work

Working on a project as a team for the bachelor thesis has proven to be challen-
ging yet rewarding. As a group, we had to learn about new technologies and how
to work together to achieve a common goal. Being more than one student in a
project and discussing the subjects helped tremendously during the learning pro-
cess. Moreover, working together meant that we could achieve more than if we
were working alone.

9.5 Conclusion

The goal of the bachelor’s thesis was to create a demo with a proof of concept for
SSI workflow for public services. This goal has been achieved as the group has
developed an application for demonstrating a use case utilizing SSI. While the
application lacks some polish and some aspects need further development, it is a
working demo. As laid out in the problem description, the application has several
digital agents with the capability to both issue and verify verifiable credentials.
DIDComm handles the transport layer to ensure secure encrypted communication.

The application meets the requirements defined by Symfoni, but it is only a
proof of concept. It cannot be used for any practical purpose outside of demon-
strating an SSI workflow. For this application to be deployed on an app store, major
changes would need to be made. This was the intention, but the final product is



96CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

far removed from a real-life scenario. This makes the thesis a tool for showcasing
SSI, or a baseline for other developers.

While the final product is only a proof of concept, the technology behind
the concepts is how a real-life implementation would be created. Every digital
agent has a unique DID that is stored on the Ethereum blockchain. These agents
are entirely independent and can communicate through DID-to-DID connections.
Through this communication channel, they exchange verifiable credentials with
relevant data.

The data is split into three verifiable credentials developed in collaboration
with NAV. A person credential for a digital identity, an employment credential with
the data from an employment contract, and a termination credential containing
the details when an employee exits a job. The group went to great lengths to have
the verifiable credentials contain information relevant to the use case.

By combining these elements, the application creates cryptographically secure
communication channels where the user has control of the exchanged data. The
information uses the data structure of verifiable data, and the different entities
use decentralized identifiers stored on the Ethereum blockchain.



Bibliography

[1] E. commission. ‘European digital identity.’ (), [Online]. Available: https:
//ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-
digital-age/european-digital-identity_en (visited on 16/05/2022).

[2] A. Preukschat, Self Sovereign Identity: Decentralized digital identity and veri-
fiable credentials. Manning Publications, 2021.

[3] D. Reed, S. Manu, S. Markus, L. Dave and C. Allen. ‘Decentralized identi-
fiers (dids) v1.0.’ (), [Online]. Available: https://www.w3.org/TR/did-
core (visited on 19/05/2022).

[4] C. Gribneau, M. Prorock, O. Steele, O. Terbu, M. Xu and D. Zagidulin.
‘Did:web method specification.’ (), [Online]. Available: https : / / w3c -
ccg.github.io/did-method-web/ (visited on 19/05/2022).

[5] Ethereum. ‘Introuction to smart contracts.’ (), [Online]. Available: https:
//ethereum.org/en/developers/docs/smart-contracts/ (visited on
19/05/2022).

[6] M. Sporny, D. Longley and D. ChadWick, Credential graph, [Online; ac-
cessed 2022], 2022. [Online]. Available: https://www.w3.org/TR/vc-
data-model/diagrams/credential-graph.svg.

[7] ‘Verifiable credentials data model v1.1.’ (), [Online]. Available: https://
www.w3.org/TR/vc-data-model/ (visited on 19/05/2022).

[8] S. Curren, T. Looker and O. Terbu. ‘Didcomm messaging.’ [chapter 2, 5,
8]. (), [Online]. Available: https://identity.foundation/didcomm-
messaging/spec/ (visited on 19/05/2022).

[9] IBM. ‘Trust anchors.’ (), [Online]. Available: https://www.ibm.com/docs/
en/transparent-supply?topic=roles-trust-anchors.

[10] Veramo. ‘Pligins architecture.’ (), [Online]. Available: https://veramo.
io/docs/veramo_agent/plugins (visited on 19/05/2022).

[11] Veramo, Veramo plugins architecture, [Online; accessed 2022], 2022. [On-
line]. Available: https://veramo.io/assets/images/veramo_plugins_
simple-e61eae0077b0d914a305cb9750a6d300.svg.

97

https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://www.w3.org/TR/did-core
https://www.w3.org/TR/did-core
https://w3c-ccg.github.io/did-method-web/
https://w3c-ccg.github.io/did-method-web/
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/
https://www.w3.org/TR/vc-data-model/diagrams/credential-graph.svg
https://www.w3.org/TR/vc-data-model/diagrams/credential-graph.svg
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://identity.foundation/didcomm-messaging/spec/
https://identity.foundation/didcomm-messaging/spec/
https://www.ibm.com/docs/en/transparent-supply?topic=roles-trust-anchors
https://www.ibm.com/docs/en/transparent-supply?topic=roles-trust-anchors
https://veramo.io/docs/veramo_agent/plugins
https://veramo.io/docs/veramo_agent/plugins
https://veramo.io/assets/images/veramo_plugins_simple-e61eae0077b0d914a305cb9750a6d300.svg
https://veramo.io/assets/images/veramo_plugins_simple-e61eae0077b0d914a305cb9750a6d300.svg


98CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

[12] I. Liljeqvist, Infura ethereum api, [Online; accessed 2022], 2022. [Online].
Available: https://lh4.googleusercontent.com/M7m2-IOMnZDmHdrKz5aCH4Hbv3EIWNkUbK577Uci1hvPOWEZWJQ4JQInN26mqDc-
hg8t5eN3SoUz1lbRI6ex1KASESM1JsYCF3_6swavH_Zl-8ElkBAIcvd9DTLLKXLyd4gGc3Y.

[13] F. Datakatalogen. ‘Felles informasjonsmodell for person og enhet.’ (), [On-
line]. Available: https://data.norge.no/informationmodels/8bfa055a-
9b0c-40df-a7c2-2e58173eb2e0.

[14] Scrum. ‘Scrum glossary.’ [Sprint],[Sprint review],[Scrum board]. (), [On-
line]. Available: https://www.scrum.org/resources/scrum-glossary
(visited on 19/05/2022).

[15] React. ‘Testing.’ (), [Online]. Available: https://reactnative.dev/docs/
testing-overview (visited on 19/05/2022).

[16] E. B. S. Infrastructure. ‘What is ebsi?’ (), [Online]. Available: https://ec.
europa.eu/digital-building-blocks/wikis/display/EBSI/What+is+
ebsi.

https://lh4.googleusercontent.com/M7m2-IOMnZDmHdrKz5aCH4Hbv3EIWNkUbK577Uci1hvPOWEZWJQ4JQInN26mqDc-hg8t5eN3SoUz1lbRI6ex1KASESM1JsYCF3_6swavH_Zl-8ElkBAIcvd9DTLLKXLyd4gGc3Y
https://lh4.googleusercontent.com/M7m2-IOMnZDmHdrKz5aCH4Hbv3EIWNkUbK577Uci1hvPOWEZWJQ4JQInN26mqDc-hg8t5eN3SoUz1lbRI6ex1KASESM1JsYCF3_6swavH_Zl-8ElkBAIcvd9DTLLKXLyd4gGc3Y
https://data.norge.no/informationmodels/8bfa055a-9b0c-40df-a7c2-2e58173eb2e0
https://data.norge.no/informationmodels/8bfa055a-9b0c-40df-a7c2-2e58173eb2e0
https://www.scrum.org/resources/scrum-glossary
https://reactnative.dev/docs/testing-overview
https://reactnative.dev/docs/testing-overview
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/What+is+ebsi
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/What+is+ebsi
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/What+is+ebsi


Appendix A

Project Contract

99





1 NTNU 10.12.2020 

 

 
    

  
 

 

Norges teknisk-naturvitenskapelige universitet 

 

  

 
Fastsatt av prorektor for utdanning 10.12.2020 

 

STANDARDAVTALE 
 
om utføring av studentoppgave i samarbeid med ekstern virksomhet 
 
Avtalen er ufravikelig for studentoppgaver (heretter oppgave) ved NTNU som utføres i 
samarbeid med ekstern virksomhet. 
 
Forklaring av begrep  
 
Opphavsrett  
Er den rett som den som skaper et åndsverk har til å fremstille eksemplar av åndsverket og 
gjøre det tilgjengelig for allmennheten. Et åndsverk kan være et litterært, vitenskapelig eller 
kunstnerisk verk. En studentoppgave vil være et åndsverk.  
 
Eiendomsrett til resultater 
Betyr at den som eier resultatene bestemmer over disse. Utgangspunktet er at studenten 
eier resultatene fra sitt studentarbeid. Studenten kan også overføre eiendomsretten til den 
eksterne virksomheten.  
 
Bruksrett til resultater 
Den som eier resultatene kan gi andre en rett til å bruke resultatene, f.eks. at studenten gir 
NTNU og den eksterne virksomheten rett til å bruke resultatene fra studentoppgaven i deres 
virksomhet. 
 
Prosjektbakgrunn 
Det partene i avtalen har med seg inn i prosjektet, dvs. som vedkommende eier eller har 
rettigheter til fra før og som brukes i det videre arbeidet med studentoppgaven. Dette kan 
også være materiale som tredjepersoner (som ikke er part i avtalen) har rettigheter til.  
 
Utsatt offentliggjøring 
Betyr at oppgaven ikke blir tilgjengelig for allmennheten før etter en viss tid, f.eks. før etter 
tre år. Da vil det kun være veileder ved NTNU, sensorene og den eksterne virksomheten som 
har tilgang til studentarbeidet de tre første årene etter at studentarbeidet er innlevert.    
 
 
 
 
 
 



2 NTNU 10.12.2020 

 

1. Avtaleparter 
 

Norges teknisk-naturvitenskapelige universitet (NTNU) 
Institutt: Institutt for datateknologi og informatikk  
 

Veileder ved NTNU: Mariusz Nowostawski  
e-post og tlf.:  mariusz.nowostawski@ntnu.no, +47 483 42 678 

Ekstern virksomhet: Symfoni AS 
Ekstern virksomhet sin kontaktperson, e-post og tlf.:  
Jon Ramvi, jon@symfoni.id, +47 408 70 027 

Student: Mikkel Aas 
Fødselsdato: 29.02.2000 

Student: Magnus Johan Gluppe 
Fødselsdato: 05.04.1997 

Student: Erlend Johan Vannebo 
Fødselsdato: 20.09.2000 

 

Partene har ansvar for å klarere eventuelle immaterielle rettigheter som studenten, NTNU, 
den eksterne eller tredjeperson (som ikke er part i avtalen) har til prosjektbakgrunn før bruk 
i forbindelse med utførelse av oppgaven. Eierskap til prosjektbakgrunn skal fremgå av eget 
vedlegg til avtalen der dette kan ha betydning for utførelse av oppgaven.  
 

 

2. Utførelse av oppgave 
Studenten skal utføre: (sett kryss) 
 
 

Masteroppgave      

Bacheloroppgave X 

Prosjektoppgave     
Annen oppgave  

 

Startdato: 11.01.2022 

Sluttdato: 20.05.2022 

 
 

Oppgavens arbeidstittel er: 
Sammenhengende tjenester: Bedre innbyggertjenester med Verifiable 
Credentials — Digitalisering av «Søknad om dagpenger» 
 
 
 

 
Ansvarlig veileder ved NTNU har det overordnede faglige ansvaret for utforming og 
godkjenning av prosjektbeskrivelse og studentens læring. 
 
 



3 NTNU 10.12.2020 

 

3. Ekstern virksomhet sine plikter 
Ekstern virksomhet skal stille med en kontaktperson som har nødvendig faglig kompetanse 
til å gi studenten tilstrekkelig veiledning i samarbeid med veileder ved NTNU. Ekstern 
kontaktperson fremgår i punkt 1.  
 
Formålet med oppgaven er studentarbeid. Oppgaven utføres som ledd i studiet. Studenten 
skal ikke motta lønn eller lignende godtgjørelse fra den eksterne for studentarbeidet. 
Utgifter knyttet til gjennomføring av oppgaven skal dekkes av den eksterne.  Aktuelle 
utgifter kan for eksempel være reiser, materialer for bygging av prototyp, innkjøp av prøver, 
tester på lab, kjemikalier. Studenten skal klarere dekning av utgifter med ekstern virksomhet 
på forhånd.  
 

Ekstern virksomhet skal dekke følgende utgifter til utførelse av oppgaven: Ingen relevante 
utgifter 
 
 
 

 
Dekning av utgifter til annet enn det som er oppført her avgjøres av den eksterne underveis 
i arbeidet.  
 
 

4. Studentens rettigheter  
Studenten har opphavsrett til oppgaven1. Alle resultater av oppgaven, skapt av studenten 
alene gjennom arbeidet med oppgaven, eies av studenten med de begrensninger som følger 
av punkt 5, 6 og 7 nedenfor. Eiendomsretten til resultatene overføres til ekstern virksomhet 
hvis punkt 5 b er avkrysset eller for tilfelle som i punkt 6 (overføring ved patenterbare 
oppfinnelser).   
 
I henhold til lov om opphavsrett til åndsverk beholder alltid studenten de ideelle rettigheter 
til eget åndsverk, dvs. retten til navngivelse og vern mot krenkende bruk.  
 
Studenten har rett til å inngå egen avtale med NTNU om publisering av sin oppgave i NTNUs 
institusjonelle arkiv på Internett (NTNU Open). Studenten har også rett til å publisere 
oppgaven eller deler av den i andre sammenhenger dersom det ikke i denne avtalen er 
avtalt begrensninger i adgangen til å publisere, jf. punkt 8.  
 
 

5. Den eksterne virksomheten sine rettigheter 
Der oppgaven bygger på, eller videreutvikler materiale og/eller metoder (prosjektbakgrunn) 
som eies av den eksterne, eies prosjektbakgrunnen fortsatt av den eksterne. Hvis studenten 
skal utnytte resultater som inkluderer den eksterne sin prosjektbakgrunn, forutsetter dette 
at det er inngått egen avtale om dette mellom studenten og den eksterne virksomheten.  
 
Alternativ a) (sett kryss) Hovedregel 

 
1 Jf. Lov om opphavsrett til åndsverk mv. av 15.06.2018 § 1  



4 NTNU 10.12.2020 

 

 
X Ekstern virksomhet skal ha bruksrett til resultatene av oppgaven 

 
Dette innebærer at ekstern virksomhet skal ha rett til å benytte resultatene av oppgaven i 
egen virksomhet. Retten er ikke-eksklusiv. 
 
 
Alternativ b) (sett kryss) Unntak 
 

 Ekstern virksomhet skal ha eiendomsretten til resultatene av oppgaven og 
studentens bidrag i ekstern virksomhet sitt prosjekt  

 
 

Begrunnelse for at ekstern virksomhet har behov for å få overført eiendomsrett til 
resultatene: 
 
 
 

 
 

6. Godtgjøring ved patenterbare oppfinnelser 
Dersom studenten i forbindelse med utførelsen av oppgaven har nådd frem til en 
patenterbar oppfinnelse, enten alene eller sammen med andre, kan den eksterne kreve 
retten til oppfinnelsen overført til seg. Dette forutsetter at utnyttelsen av oppfinnelsen 
faller inn under den eksterne sitt virksomhetsområde. I så fall har studenten krav på rimelig 
godtgjøring. Godtgjøringen skal fastsettes i samsvar med arbeidstakeroppfinnelsesloven § 7. 
Fristbestemmelsene i § 7 gis tilsvarende anvendelse.  
 
 

7. NTNU sine rettigheter  
De innleverte filer av oppgaven med vedlegg, som er nødvendig for sensur og arkivering ved 
NTNU, tilhører NTNU. NTNU får en vederlagsfri bruksrett til resultatene av oppgaven, 
inkludert vedlegg til denne, og kan benytte dette til undervisnings- og forskningsformål med 
de eventuelle begrensninger som fremgår i punkt 8.  
 
 

8. Utsatt offentliggjøring   
Hovedregelen er at studentoppgaver skal være offentlige. 
 
Sett kryss 

X  Oppgaven skal være offentlig  

 
I særlige tilfeller kan partene bli enige om at hele eller deler av oppgaven skal være 
undergitt utsatt offentliggjøring i maksimalt tre år. Hvis oppgaven unntas fra 
offentliggjøring, vil den kun være tilgjengelig for student, ekstern virksomhet og veileder i 
denne perioden. Sensurkomiteen vil ha tilgang til oppgaven i forbindelse med sensur. 
Student, veileder og sensorer har taushetsplikt om innhold som er unntatt offentliggjøring. 



5 NTNU 10.12.2020 

 

 
Oppgaven skal være underlagt utsatt offentliggjøring i (sett kryss hvis dette er aktuelt): 
 
Sett kryss                         Sett dato 

     ett år   

     to år  
     tre år  

 
    
 

Behovet for utsatt offentliggjøring er begrunnet ut fra følgende: 
 
 
 
 

 
Dersom partene, etter at oppgaven er ferdig, blir enig om at det ikke er behov for utsatt 
offentliggjøring, kan dette endres. I så fall skal dette avtales skriftlig. 
 
Vedlegg til oppgaven kan unntas ut over tre år etter forespørsel fra ekstern virksomhet. 
NTNU (ved instituttet) og student skal godta dette hvis den eksterne har saklig grunn for å 
be om at et eller flere vedlegg unntas. Ekstern virksomhet må sende forespørsel før 
oppgaven leveres.   
 
De delene av oppgaven som ikke er undergitt utsatt offentliggjøring, kan publiseres i NTNUs 
institusjonelle arkiv, jf. punkt 4, siste avsnitt. Selv om oppgaven er undergitt utsatt 
offentliggjøring, skal ekstern virksomhet legge til rette for at studenten kan benytte hele 
eller deler av oppgaven i forbindelse med jobbsøknader samt videreføring i et master- eller 
doktorgradsarbeid. 
 
    

9. Generelt 
Denne avtalen skal ha gyldighet foran andre avtaler som er eller blir opprettet mellom to av 
partene som er nevnt ovenfor. Dersom student og ekstern virksomhet skal inngå avtale om 
konfidensialitet om det som studenten får kjennskap til i eller gjennom den eksterne 
virksomheten, kan NTNUs standardmal for konfidensialitetsavtale benyttes.  
 
Den eksterne sin egen konfidensialitetsavtale, eventuell konfidensialitetsavtale den 
eksterne har inngått i samarbeidprosjekter, kan også brukes forutsatt at den ikke inneholder 
punkter i motstrid med denne avtalen (om rettigheter, offentliggjøring mm). Dersom det 
likevel viser seg at det er motstrid, skal NTNUs standardavtale om utføring av 
studentoppgave gå foran. Eventuell avtale om konfidensialitet skal vedlegges denne avtalen.    
 
Eventuell uenighet som følge av denne avtalen skal søkes løst ved forhandlinger. Hvis dette 
ikke fører frem, er partene enige om at tvisten avgjøres ved voldgift i henhold til norsk lov. 
Tvisten avgjøres av sorenskriveren ved Sør-Trøndelag tingrett eller den han/hun oppnevner. 
 



6 NTNU 10.12.2020 

 

Denne avtale er signert i fire eksemplarer hvor partene skal ha hvert sitt eksemplar. Avtalen 
er gyldig når den er underskrevet av NTNU v/instituttleder.  
 
 
 
 
Signaturer:  
 

Instituttleder: 
 

Dato: 
 

Veileder ved NTNU: 
 

Dato: 
 

Ekstern virksomhet: 
 

Dato: 
 

Student: 
 

Dato: 
 

Student: 
 

Dato: 
 

Student: 
 

Dato: 
 

 
 
 
  

17.01.2022

17.01.2022

17.01.2022

17.01.2022



Appendix B

Project Plan

107





Project plan
IDATG2900 - Bacheloroppgave

Authors:

Mikkel Aas

Magnus Gluppe

Erlend Johan Vannebo

31. jan. 2022



Goals and constraints 3

Background 3

Project goal 3

Constraints 3

Time 3

Money 4

Legal and ethical 4

Scope 5

Subject area 5

Limit 6

Task description 6

Project organizing 7

Responsibilities and roles 7

Code 7

Documentation 8

SCRUM 8

Manager 8

Routines and group rules 9

Attendance 9

Git 9

Work ethic 9

Planning, follow-up and documenting 10

Main division of project 10

Choice of SD-model 10

Schedule for status meetings 10

Decision points in the period 11

Quality assurance 11

Standards 11

1



Code standards 11

Documentation standards 12

Meeting standards 12

Configuration management 13

Tools 13

GitHub 13

Google Drive 13

Google documents and spreadsheets 13

WebStorm and VScode 14

Discord 14

Microsoft Teams 15

Overleaf 15

Windows as an operating system during development 15

Veramo 16

ESlint 16

TypeScript 16

Plan for inspection and testing 17

Risk analysis at project level 17

Risk Assessment 17

Plan 18

Gantt-diagram 18

Activities 18

Milestones 18

Project specific activities 19

2



Goals and constraints

Background
This bachelor's thesis aims to simplify applying for unemployment benefits from Nav,

Norway's Work- and Welfare Management. Currently, your personal information is stored in

big centrally controlled databases, and we aim to give people back control of their

information. By utilizing SSI and the blockchain, we want to gather all this information in a

digital wallet that the user controls. This gives the user greater control of their information

and simplifies the process of verifying it.

Project goal
A bachelor thesis's primary goal is to study and work in-depth on a limited subject area. We

have the opportunity to learn about SSI and implement a practical solution in a business

setting. Working closely with a private company and learning about a developer's

responsibilities and work environment is central to our project. We want the most authentic

experience possible to prepare us for working life.

The bachelor thesis is the most significant undertaking we will have as students, and it

provides valuable experience with working on larger projects. Completing such an extensive

assignment requires planning, organizing, and consistent work routines. Our group will be

focusing on the learning outcomes of the project. We will work hard to complete the

application, but what we can learn from working on the application is the primary goal.

Constraints

Time

The project is a bachelor thesis, so certain time constraints need to be considered. This

project represents two-thirds of a normal workweek, so roughly 25 hours per week or 1600

hours on the project in total. The students involved are relatively inexperienced in the subject

matter and conducting a project on this scale, so learning new concepts and a new

programming language will take time.

3



The goal is not only producing a product for a private business, so a substantial amount of

time must be dedicated to writing the report and other tasks involved with writing a bachelor

thesis. It is common among bachelor students to get excited and try to develop their product

as far as possible and neglect the other aspects of a bachelor thesis.

Money

This project is mainly development-focused, where the only high cost is labor. Since this is a

student project, there are no labor costs to speak of. The only other issue is servers, but the

school can provide this or other free options available to students.

Legal and ethical

The biggest ethical issue with this product is handling private and sensitive information. The

intended function is for different government agencies to communicate and pass personal

data. We must ensure this data is not compromised and used for nefarious means. It is

unlikely we will work with anything other than dummy data, and if we get involved, we have

to take the necessary precautions.

We have signed a cooperation agreement between the faculty, students, and Symfoni, our

employer. Any disagreements or problems will first be solved internally and, if they persist,

taken up with the faculty. There is an additional contract for maintaining anonymity provided

by the faculty, but it is unlikely this will be necessary.

Both Symfoni and our bachelor group are committed to the concept of open-source software.

Our code will be available to be studied and used by all. Our goal is to make a practical and

secure solution so that others can build upon what we create.

Scope

Subject area
The subject area for this thesis is SSI, which stands for Self-Sovereign Identity. To

understand what SSI is, we need to study some of the fundamentals it is built on. This

includes public-key cryptography, crypto wallets, and distributed ledgers.

4



SSIs goal is to establish trust in an interaction where an individual ID is required. To establish

this trust, one party will present their credentials to the other parties involved in an exchange.

The relying parties may verify that the credentials came from an issuer they trust. A verifier

may then verify the signatures given by the issuer requesting a claim and the holder's

identity.1 It is generally recognized that the user, known as the holder, has complete control of

the verifiable credentials for the system to be self-sovereign, and their consent is required to

use those credentials.2

In most SSI systems, holders generate and control unique identifiers called decentralized

identifiers. Decentralized identifiers are a type of identifier that enables a verifiable

decentralized digital identity. The identifiers and credentials are managed using crypto

wallets and verified using public-key cryptography anchored on a distributed ledger.3

Crypto wallets used in SSI, commonly referred to as SSI wallets, are wallets where users can

store their digital identity. It can resemble a physical leather wallet used to store one's driver's

license. The user manages it, and the user may choose which credentials they wish to show.

In the context of self-sovereign identity, it is a software application and encrypted database

that stores credentials, keys, and other secrets necessary to identify oneself. Each participant

in the SSI ecosystem (issuer, holder, and verifier) needs an SSI wallet to issue, hold, and

verify verifiable credentials.4

Public-key cryptography is used to ensure a secure connection between two entities. The

usage of encryption and private-public key-pair makes for a secure data transfer. Encryption

is done by a mathematical algorithm taking, for example, in SSI, the credentials as input and

giving unreadable alphanumeric characters as output. It is important to have a safe data

transfer to ensure that the credentials are only shared with trusted entities.5

A distributed ledger is a database that exists across several locations or among multiple

participants. In contrast, most companies use a centralized database in a fixed location. A

distributed ledger is decentralized to eliminate single point failure and the need for a central

5 Role of Public Key Cryptography in Self-Sovereign Identity | by Affinidi | Affinidi
4 Trinsic Basics: What Are SSI Digital Wallets? • Trinsic
3 https://www.eublockchainforum.eu/sites/default/files/report_identity_v0.9.4.pdf
2 The Path to Self-Sovereign Identity (lifewithalacrity.com)

1 https://www.sciencedirect.com/science/article/pii/S1574013718301217?via%3Dihub

5



authority to validate and authenticate transactions.6 In SSI, distributed ledgers establish

immutable recordings of lifecycle events for globally unique decentralized identifiers.7

Limit
The scope of the project limits us. It is uncertain how much of Symfoni's technology we

should build upon, how much we are developing ourselves, and how much data we will mock

instead of fully implement. If we build things from scratch, then a considerable amount of

time will be spent setting up the SSI wallets. If they are more or less ready, we can focus on

the app's front end and back end.

Task description
When using different government agencies, the agencies require information across various

issuers. Today, gathering the needed information is sometimes a manual process. The

applicant serves as a mailman for the agency by collecting data from the different issuers

manually and bringing it back to the agency. After the information is gathered, an agency

worker must check the information and either approve or deny the applicant's request. This

process for both parties can be automated using Verifiable Credentials.

Our task is to cooperate with the Norwegian Labor and Welfare Administration to create a

demo for automating the process of applying for unemployment benefits. To complete this,

we will create a Verifiable Credential issuer that can issue the necessary proof, a Verifiable

Credential verifier that can verify the received proof, and an app that can exchange the proofs

between the issuer and verifier. For the issuer and verifier, we will use the javascript

framework: Veramo, and we will use Symfoni AS's proof-of-concept version of the app and

further build on it for our needs.

Project organizing

Responsibilities and roles
We have split the main parts of the project into different categories and delegated the main

responsibility for each category to one of the members. Every group member has

7 Self-sovereign identity: Why blockchain? IBM Supply Chain and Blockchain Blog
6 https://marcopolonetwork.com/articles/distributed-ledger-technology/

6



responsibility for the entire project and is expected to work on each part of the project;

however, the person with the main responsibility is responsible for doing the final quality

check of the content being produced. This makes us use our different strengths to our

advantage and distribute the workload evenly between us when performing quality assurance.

Code

Erlend is in charge of Code quality. We will try to uphold a high and consistent standard,

using good practice throughout the project. Erlend will ensure we share the same principles

like high cohesion, low coupling, sensible variable names, among others. The plan is to have

code review every time a sizable part is merged into dev, and the code master will have a

greater responsibility to make sure this happens.

Being in charge of the code quality is by far the most significant responsibility, as this

includes: code conventions and standards, continuous integration, pipeline, code quality, and

testing. This is a big task for one person, so the code master has to delegate some of these

responsibilities to make sure not too much falls on one person.

Documentation

Mikkel is in charge of the overall documentation for the bachelor thesis. This includes

documentation for code, the main report, and all the necessary attachments required. All

members are expected to document the work, and the documentation master is not meant to

micromanage everything but ensure that the overall style and standard are upheld.

SCRUM

The Scrum master for this team is Magnus. His job is to ensure that every team member is

familiar with the Scrum process and follows the appropriate guidelines. With agile

development, it is easy to exclusively focus on writing code and neglect the documentation

and planning parts of the project. Scrum is lighter on the planning and documentation part

compared to more traditional development methods, but it is still essential to use the issue

tracker and sprint reviews. The Scrum master will ensure that the development process does

not slide into chaos.

7



Manager

In addition to his role of overseeing the documentation, Mikkel will have the responsibilities

of a manager. This will include ensuring deadlines are upheld, organizing meetings, ensuring

information flow between the team members and external stakeholders, and the general

morale of the team. There is some overlap between the Scrum master and the manager, but

there should not be a coordination issue considering the team is small. .

Routines and group rules

Attendance

We have three scheduled physical sessions per week, and it is expected that each group

member is present at those meetings unless given notice of absence in a reasonable time

frame prior to the meeting. In addition to these physical sessions, there is one weekly online

meeting with the employer where attendance is mandatory. The development team consists of

3 members, so communication is conducted informally—no need for official meeting

summons.

Git

To ensure that good code is being produced, lowering the risk of critical errors in our project,

and making sure everyone is up to date with what is being done, we have a rule that every

git-merge needs to be reviewed by each member. We are not pushing changes directly into

the development/master-branch to further ensure this, and every change in the

development/master-branch happens through merging with another branch.

Work ethic

We want to have a good work environment, to achieve this we have a few group rules

regarding our working sessions:

Rule #1: Everyone shall contribute equally.

Rule #2: Everyone should respect deadlines imposed by the group or the faculty.

Rule #3: Everyone is responsible for ensuring everyone has a task to do.

8



Rule #4: Everyone should give a short minute presentation of what they have worked on at

the end of the day. Especially when we have done individual work.

Rule #5: Everyone shall lend a helping hand to a fellow group member that is stuck.

Conflicts regarding the rules will be solved internally. The adviser will be contacted if it is

impossible to solve the conflict internally.

Planning, follow-up and documenting

Main division of project

Scrum as software development model

For this project, we have chosen to use the development method Scrum. Scrum is an agile

development method, where the work is done in short intervals called sprints. This could

include coding, documentation, project planning, and more. Agile development is an iterative

method where self-reliant teams develop software through a dynamic work process. Another

essential feature is the kanban board or the Scrum board, where different tasks are defined

and assigned for the coming sprint.

We chose Scrum for several reasons, mainly because it is a development method the team is

familiar with and enjoys. The project is organized around weekly meetings with the

employer, thus making it natural to organize weekly or bi-weekly sprints. The kanban board

allows a more fluid work environment, where one can assign new problems without the rigid

structure of more traditional development methods.

Scrum is more commonly used in teams with 3-8 members, so our group is on the lower end

of the scale, but it was still the best fit for our group. Usually, one would have a sprint review

within the team and then present the results to the product owner. However, we will work

more closely with Symfoni, our employer, and the scheduled weekly session will work as

sprint reviews.

9



Schedule for status meetings
We will organize three large status meetings during our project's development segment—one

for each milestone.

The first big status meeting will be at the end of February, when we plan to finish the first

milestone in our development stage. We will discuss our progress in creating our first issuer

and verifier in this meeting.

The second meeting will take place at the end of March. Here we will discuss how far we

have come in finishing the application's backend.

The last status meeting will be in mid-April. We will discuss how far we have come in

implementing our backend to the Symfoni app.

Quality assurance

Standards
We have set standards for the different parts of the project to ensure everyone has the same

agreement on how the project should be run. We also have set these standards to keep the

quality consistent across the entire project.

Code standards

To ensure our code is high quality, we need some standards when writing code. All code will

be run through a linter, code readability will be in focus, and all files will follow the same

structure.

To lint our code, we will be using ESlinter. Linting is important because it improves overall

code quality, and it can accelerate our development by finding errors at an early stage.

Communicating the code one has written is consequential, especially when working as a

team. We are therefore going to value code readability rather than performance. Code

readability best practices will be used actively. All variables will be given sensible names,

functions will only do one thing, and comments will be used to explain our code if needed.

10



Documentation standards

To ensure that the documentation is high quality, we have to set some standards. Some

documentation standard topics we will enforce are citing sources, grammar, and when to

document.

Sources must be stated whenever information is gathered from external resources. We will be

using the LaTex built-in citing tool to cite these sources, and the citing style that will be used

is APA.

Grammar is important to improve readers' comprehension. Therefore, we will use Google

Docs' built-in grammar check in unity with Grammarly. Furthermore, a fellow group member

will proofread each written paragraph to further improve the text's readability.

Information is often lost during the process if not documented immediately. Hence,

documentation will be done continuously during the process. Early-stage documentation does

not have to be of high quality.

Meeting standards

The plan is to have two weekly meetings, one with Symfoni and one with the faculty advisor.

If possible, all members should be present for both these meetings, but it is not essential.

Meeting notes are taken at each meeting, describing what to do in the coming week. Meeting

minutes will be taken at the more infrequent, more extensive status meetings. These status

meetings should be organized around the project's milestones to discuss that part of the

project in detail.

In the beginning, all meetings will be digital, but as the Covid situation develops, we will

attempt to have meetings with the faculty advisor in person. The digital meetings will be held

over Microsoft Teams or in Discord. Internal meetings with the student group will be less

official and conducted in one of the scheduled work sessions, usually in person at the

campus.

11



Configuration management

Tools
This segment contains all the relevant tools we plan to use in our bachelor thesis. We describe

what each tool is and how we intend to use them.

GitHub

GitHub is a code hosting platform for version control and collaboration. In other words, it

makes it easy for a group of developers to work together on the same project.8

We chose to use GitHub instead of the many other version control software because of our

employer. Our employer's business exists on GitHub, and they opened a repository in their

organization that we could utilize. Having our repository in their organization makes it easy

for them to keep track of our progress and aid us if we are stuck on an issue. GitHub also

offers other helpful tools like repository analytics and an issue board.

Google Drive

Google Drive is a file storage and synchronization service. It was developed by Google and

launched on April 24, 2012.9

In our project, we will use Google Drive to share important documents. These documents will

consist of diagrams, reading material, meeting notes, contracts, and many more that are not

directly a part of the main report. Furthermore, Google Drive features neat documenting tools

like google documents and spreadsheets that will come in handy.

Google documents and spreadsheets

In our project, we are using Google Docs. Google Docs is a part of Google Docs Editors as

an in-browser word processing software10. It is software that lets us write simultaneously in

the same document, updates it for everyone in real-time, and automatically saves it to the

10 Google Docs: Free Online Document Editor | Google Workspace
9 Official Google Blog: Introducing Google Drive... yes, really
8 About wikis - GitHub Docs

12



cloud after every change. Google Docs is also very well integrated with Google Drive, which

makes creating, sharing, and writing documents a seamless experience for us. Google

Spreadsheets is also a software within the Google Docs Editors package and has the same

benefits as Google Docs, but for spreadsheets instead.

We use Google Docs for documents related to, but not a part of the final report such as the

project plan, meeting notes, etc. We use Google Spreadsheets for our Gantt-chart and

timekeeping.

WebStorm and VScode

WebStorm and VScode are the IDEs we will be using for this project. An IDE is an integrated

development environment used for source code editing, build automation and debugging.

WebStorm is built upon IntelliJ with the programming language TypeScript in mind. VScode

is flexible and supports many different languages, including typescript.1112

We will mainly use WebStorm as it has many desirable features, mainly how easy it is to

build projects. WebStorm requires quite a lot of power, so for smaller simpler coding tasks

VScode is more suitable. By using GitHub for version control we can switch between IDE’s

without issue.

Discord

Discord is an online communications platform with both voice and text channels. It uses

voice communications and multimedia sessions over IP networks. Discord was developed by

Discord Inc., released in May 2015, and is one of the most commonly used platforms in the

tech world.

Discord is the main communication between the students, the faculty supervisor and the

employer. You can create different channels where you invite members of your choice. We

have an internal discord chat just between the students, and a larger chat with Symfoni, our

employer.13

13 https://discord.com/company
12 https://www.jetbrains.com/webstorm/
11 https://code.visualstudio.com/docs/editor/whyvscode

13



Microsoft Teams

Microsoft teams is primarily a business communication platform. It was developed by

Microsoft, and launched in March 2017 to join the Microsoft 365 family of products. People

are organized into different teams with text channels, and you also have video conferences

where you can share your screen to hold presentations.14

The official meetings with our employer are conducted through Microsoft teams. While more

unofficial correspondence is done through discord, teams have a calendar function where you

can schedule meetings, so it is a more organized way to hold meetings.

Overleaf

Overleaf is a collaborative cloud-based LaTeX editor that is used for writing, editing, and

publishing, primarily scientific documents. The beta version of Overleaf launched on 16

January 2014.15

We will be using Overleaf to write our bachelor thesis, often referred to by us as the main

report. LaTeX is widely acknowledged as one of the best text editors to produce scientific

articles. However, its features often rely on the user to write LaTeX code. On the other hand,

Overleaf provides the same features, but it is a rich-text editor, meaning that LaTeX code

knowledge is not required. Using LaTeX in Overleaf makes the produced article look more

refined and allows for complex designs.

Windows as an operating system during development

For our project development, we have decided to use Windows as the operating system. The

reason behind this is that everyone in the group is familiar with using Windows, and to avoid

complications with developing and building across different operating systems. If any

systems require Linux to operate we can use WSL, which is Windows Subsystem for Linux.

It is a compatibility layer that makes it possible to run Linux executables.

15 About us - Overleaf, Online LaTeX Editor
14 https://www.compete366.com/blog-posts/microsoft-teams-what-is-it-and-should-we-be-using-it/

14



Veramo

Veramo is a JavaScript framework that aims to make it easier for developers to use

cryptographically verifiable data in their applications. It is designed to make it easy to use

next-generation features like DIDs, verifiable credentials, and data-centric protocols.16

ESlint

ESLint is a static code analyzing tool created by Nicholas C. Zakas in 2013. It controls code

quality and code style by analyzing code to see if it fulfills certain rules. Furthermore, it

comes with many preset rules for common standards, but it also allows one to create and

define rules that code shall follow. 17 In our project, we will use ESLint to help us keep our

code clean and maintain good code quality.

TypeScript

TypeScript is a strongly typed programming language built on JavaScript, and it is better

suited than JavaScript on larger projects due to it being a typed language. It allows for tighter

integration with the editor, which can catch errors in the editor.18

We will be using TypeScript due to our employer's wish. It is the language used in the

Veramo framework and our employer's company codebase.

18 TypeScript: JavaScript With Syntax For Types. (typescriptlang.org)
17 https://eslint.org/docs/about/
16 Introduction | Performant and modular APIs for Verifiable Data and SSI (veramo.io)

15



Plan for inspection and testing
For our project, we will ideally use unit testing to test our code actively. The testing

framework we have chosen is Mocha, and we will use ESlint to ensure the same code

standards and conventions for the entire project.

We will do some simple user testing towards the end of the development phase. Once we

have connected our backend to the Symfoni app, we can do some basic testing to see if the

wallet is operational and the verifiable information is relevant. Our team will not be involved

with the design decisions, so the user tests will solely focus on the technical aspects of the

wallet.

Risk analysis at project level

Risk Assessment

Risk Likelihood Impact

1 or more team members

getting sick with covid
High Low: Can continue with development

digitally

Time constraints making it

impossible to finish the

product on time

Moderate Moderate: Creates a crunch period,

which makes a suboptimal product

Break in communication/loss

of interest from employer
Low High: Without input from the employer

the product might not meet their desired

expectations and specifications

Loss of communication with

adviser
Low High: Essential for guidance and

feedback

Internal complications within

the bachelor group
Low High: Conflicts within the group is the

biggest risk, as it would greatly impact all

aspects of the project

16



Plan

Gantt chart
Gantt chart.pdf

Activities
The group has scheduled three physical work sessions at the campus a week. During these we

will work with the current tasks laid out in the project plan: pre-project planning, developing

code, writing the rapport, and preparing for the final presentation. We will have digital

sessions over discord when physical meetings are not scheduled, and these consist of the

same tasks as the physical sessions. Later in the development stage, it is more open for

individual work, both on the codebase and the rapport.

In addition to having meetings with the group, we have regular meetings with our faculty

advisor and our employer. These meetings will be digital on discord or teams. We have also

set aside some time for user testing, and ideally, this will be done in person, with a random

sample of participants.

17



Milestones
Milestone 1: 31. jan 2022, finish the project plan and sign the standard agreement for

academic collaboration.

Milestone 2: 28. feb 2022, create our first issuer and verifier.

Milestone 3: 31. mar 2022, finished implementing most of our issuers.

Milestone 4: 30. apr 2022, connect our back-end to the Symfoni app.

Milestone 5: 16. may 2022, finish the bachelor thesis report

Milestone 6: 6. jun 2022, finish our presentation

18





Appendix C

Task Description

129





Symfoni – blockchain 
 
Denne oppgaven trenger en nærmere beskrivelse før den endelig godkjennes.  
 
 
Kontaktperson :  Jon Ramvi - jon@blockchangers.com 
 
Symfoni AS is a startup with five people operating out of Oslo. We work for and with the Norwegian 
government, and Innovation Norway and the Ethereum Foundation fund us. 
 
The technologies are the same, but there are different students can choose from. 
 
The projects are all in the intersection between blockchain, Verifiable Credentials (VC), and 
government services. 
 
Communication can be done in Norwegian or English. 
 
Technologies: 

• Blockchain, Ethereum, Smart Contracts, Solidity, Hardhat, Typescript 
• Cloud, Azure, Docker, NestJS, Prisma, Postgresql 
• Frontend: (React, React Native, HTML, CSS, JS, NPM…) 
• WalletConnect, Veramo, DIDs, SSI, and eIDAS 2.0 

 
Brønnøysundregistrene (BR), The Norwegian Business Registry 
We are developing two solutions for BR. 
 

1. BR Økosystem (BRØK), an infrastructure for data exchange and seamless services. It's built 
blockchain technology and is planned to be released on public Ethereum on a Layer 2 scaling 
solution (Arbitrum). The work is all open-source. There are problems to be solved within 
authentication, shared services, and privacy. 

2. A cap table platform on top of BRØK. Unlisted companies can move their cap tables to BRØK, 
where the private sector utilizes them to offer customers insights, second-hand markets, 
issuance, etc. The work is all open-source. There are problems to be solved within data 
exchange (verifiable credentials), among others. 

Patentstyret, the Norwegian Patents Office 
We are part of a project to evaluate using BRØK for Trademarks and Licenses. Technically these can 
be represented as NFTs (Non-fungible Tokens). This project hasn't started, so there are infinite 
problems to frame and solve. 
 
Symfoni ID 
We are developing solutions for issuing VCs and verifying them. We are also developing an app for 
communication between these parties. Their work is part of the EU's ambition of a new digital wallet 
for the whole of Europe (eIDAS 2.0). The work is all open-source. The actual problems will have to be 
defined when the project starts. 
 
Mvh 
Jon Ramvi 
Gründer av Symfoni AS 
 





Appendix D

Symfoni Meeting Notes

133





|12. jan. 2022 Meeting: Symfoni

Deltakere: Mikkel Aas, Magnus Johan Gluppe, Jon Ramvi, Asbjørn Riddervold, Jonas Johan Solsvik,

og Erlend Johan Vannebo

Notater

● Faste møter mandag kl 15

● SSI-bok og andre ressurser

https://www.bookdepository.com/Self-Sovereign-Identity-Decentralized-digital-identi

ty-verifiable-credentials-Alex-Preukschat/9781617296598?ref=grid-view&qid=1641

993165127&sr=1-1

○ https://www.w3.org/TR/did-core/

○ https://www.w3.org/TR/vc-data-model/

○ https://identity.foundation/didcomm-messaging/spec/

● Sprint, kanban (sprint en uke av gangen, planlegge med oppdragsgiverne i de faste møtene på

mandager)

● Gå gjennom kontrakt med veileder, fylle ut, gi til Symfoni før møtet

● Hvilken utfordring, forsøker å finne problemet mens vi jobber med det (bruker deres verktøy

til å begynne med)

○ Trenger litt tid til å lage en oppgave

○ Bruke deres verktøy (ikke spesielt interessant ifølge dem) burde finne mer spennende

utfordringer som kan drøftes

○ Utfordringer dukker kanskje opp underveis

● Se på GitHub for inspirasjon (app)

Gjøremål

Gå gjennom kontrakt med Mariusz

Lese på ressursene

Sjekke ut Symfoni sin GitHub

Utarbeide prosjektplan

Videreformidle møtet til Mariusz (skal han være med på ukentlige møter?)



|18. jan. 2022 Meeting: Symfoni

Deltakere: Mikkel Aas, Magnus Johan Gluppe, Jon Ramvi, og Erlend Johan Vannebo

Notater

● Det finnes en APP som kan brukes

● Veramo har laget en ferdig SDK som gjør mye av VC arbeidet, Web resolving, og DIDs

○ Vi burde bruke Veramo til å utstede data (issuer) den er de forskjellige aktørene

● Mesteparten av dataen er mocked

○ Nav må ha data fra Symfoni (utesteder), for at NAV skal vite at det er Jon Ramvi fra

Symfoni så må NAV slå opp i DID domene i Web for å se at det faktisk er Jon Ramvi

fra Symfoni

● Holder har vi fra Symfoni

● Issuer og Verifier lager vi med Veramo

● Skatteetaten

○ NAV i utlandet som trenger bevis fra skatteetaten om at barnet bor i Norge

■ mocked

○ Det interessante er at det har verdi i samfunnet

● NAV kommer med QR kode for bevis, du bruker appen din

● Lager en VC med bankID som du sender til skatteetaten osv…, sender bevisene tilbake til

NAV

● Strukturert data

○ Kontekst i VC for å definere nøkkelpunkter

● Lage en kontekst som er tilpasset NAV og høre med NAV om det inneholder

● Appen scanner en QR-kode og gir beskjed til en back-end om hvilken Issuer og hvilken data

● Symfoni har laget bankID ekte og test

● Få data til å flytte seg fra issuer til verifier gjennom appen

○ Bruke veramo til å opprette issuers og verifiers

● Ingen sterke meninger om studentlisens på IDE

● Håper at APP er forhåndsdefinert bra nok

● Symfoni mener at vi burde legge listen lavt og sette vanskeligere mål etterhvert

Gjøremål

Lage diagrammer

Lære Veramo



|31. jan. 2022 Meeting: Symfoni

Deltakere: Mikkel Aas, Magnus Johan Gluppe, Jon Ramvi, og Erlend Johan Vannebo

Notater

● Bare ansettelseskontrakten er nok

○ Som strukturert data

■ lønn

■ stillings..

○ sendes i flyten til nav

○ De vil gjerne hjelpe med å definere parametere

● Fokusere på arbeidsgiver og ansettelse

● Ingen preferanse rund did: metode

○ kan argumentere litt for begge deler

○ vi kan komme med anbefalinger

○ Det skal ikke være så viktig

○ Skal kunne samhandle basert på did:anything

● DID

○ hvilke koblinger

○ sqlite er en fin måte

● Trenger ikke server til å begynne med

● Kan prøve å spinne opp servere senere

● Bruk EU Digital Wallet som konsept

○ Det kan bety slik … for dagpenger

● Konkretisering av EU digital wallet

○ ENDGAME

■ mer desentralisering og mindre store

■ enklere å integrere med andre systemer

■ Du er sjef over din data og hvordan den flyter

● Både klienter og servere kan gjøre begge deler



|10. feb. 2022 Meeting: Symfoni

Deltakere: Mikkel Aas, Magnus Johan Gluppe, Jon Ramvi, og Erlend Johan Vannebo

Notater

● Slide about how to should be removed

● More focus on VC data

● find an employment agreement online

○ create a VC based on that word file

● create a context for the claims

○ explains the thought behind the context

● Transfer from contract to VC

● Create a hash of the pdf and put it in the VC

● Steg 5 is the main step, this is the end goal

● We need to create DIDS, VCS, and VC presentation

○ VC presentation is important as it can showcase data from many different

● Presentation should include a VP

● did:web:Symfoni, did:blockchangers.com:Symfoni

○ Should use blockchangers.com

○ need a private key from symfoni so that anyone

● well-known json

○ go to the signature and see that it works

● did method defines where the did document should be

● Universal resolver

● suggest that we use did web for nav

● read the spec

● Jump straight to how the sausage is made

○ Take off the fluff

○ When writing a thesis we have to take it back

○

● To present, DID document for Symfoni, DID document NAV, and VC

● jwt checker

● Make schema for employment contracts

Gjøremål

Create DID document for Symfoni

Create VC for employment contract

If we have time, create DID document for NAV



|14. feb. 2022 Meeting: Symfoni

Deltakere: Mikkel Aas, Magnus Johan Gluppe, Jon Ramvi, og Erlend Johan Vannebo

Notater

● Bryte opp VC til to person VC’er istedenfor å ha employer og employee i samme VC

● Lage context/schema i JSON

○ Lenker for referanse:

■ Verifiable Credentials JSON Schema Specification (w3c-ccg.github.io)

■ https://www.w3.org/ns/did/v1

● Lage VP

● Fargekode JSON dokument (low pri)

Gjøremål

Se på verifiable presentation



|21. feb. 2022 Meeting: Symfoni

Deltakere: Mikkel Aas, Magnus Johan Gluppe, Jon Ramvi, og Erlend Johan Vannebo

Notater

● frontend hypotetisk

● betaler lønn gjennom et regnskapssystem - bruke data derfra

● visma - frontend - > legger inn en ny ansatt ->

● QR - kode tar deg til en frontend hvor du kan vise hvem du er med en ID VC og få

arbeidskontrakt VC tilbake

● wallet connect for å overføre data

● regnskapssystem -> arbeidsgiver har et frontend som legger inn en ny ansatt, taster inn

stillingsprosent osv, trykker registrer ansatt også sender vc til ansatt, hvordan skjer dette?

● QR kode sendes på E-post

● Semantic web

Gjøremål

fikse slik at VC’ene faktisk bruker digdir

teknisk diagram for flyt

laste opp schemas på Git

lage flytdiagram for trust



|14. mar. 2022 Meeting: Symfoni

Deltakere: Mikkel Aas, Magnus Johan Gluppe, Jon Ramvi, og Erlend Johan Vannebo

Notater

● bytte rekkefølge, først connecte, så lage VC

○ trenger motpartens did fra connection

● Slå sammen de tre øverste, front-end, back-end og mobiltelefon

● får epose med qr kode - fra hvem og til hvem

● ikke så farlig om vi bruker did:ethr eller did:web

● nav oppretter sin egen wallet, database register verifiserer NAV

○ ikke businessVC for NAV, heller et register

● list use case

● lage matrise brukes ofte vs brukes lite

● flowchart - user må kontrollere nav did’en

○ gjør det ‘valgbart’

● ikke bry oss om terminologi

● vi lager eksempel skjemaer, eu kommer med virkelige skjemaer senere

● mulig å lage



|21. mar. 2022 Meeting: Symfoni

Deltakere: Mikkel Aas, Magnus Johan Gluppe, Asbjørn Riddervold, og Erlend Johan Vannebo

Notater

● sende QR på e-post

● bytte om mellom arbeidsgiver og avsender (sende QR kode)

● wallet-connect

○ 2 enheter vil snakke sammen

○ må dele en hemmelighet

○ deles ved at man “off the band” scanner qr-kode til en kanal hvor man kan møtes

○ AES nøkkel

● register finnes ikke

● v1/v2 problem

● når dapp er koblet med wallet må de støtte samme RCP

● wallet har 1 agent

○ lager 4 dapper

■ bytter logo schema, generell funksjonalitet

■ 1 dapp for stat

■ 1 dapp for arbeidsgiver

■ 1 dapp for bruker

■ 1 dapp

■ 1 wallet-connect som alle bruker for å snakke sammen

● taster inn person id i front-end, front-end sender deg en

bruker er allerede registrert i firmaet



|28. mar. 2022 Meeting: Symfoni

Deltakere: Mikkel Aas, Magnus Johan Gluppe, Jon Ramvi, og Erlend Johan Vannebo

Notater

● async storage lagrer på enheten du er på

● fylle form for å lagre person data

○ generer senere når person vil ha VCen sin

■ genereres basert på personnummer

● express tungvint med mobil enhet

● express nødvendig for lagring av persondata

● react context for flyt av data mellom components

● bruke mer types i react native kan være lurt, men er ikke strengt nødvendig på top-level

● vurdere å bruke didComm

Gjøremål

lage user database for både stat og symfoni

lese om react context





Appendix E

NAV Meeting Notes

145





|18. feb. 2022 Vs: Verifiable credentials og dagpenger

Deltakere: Mikkel Aas Jon Ramvi magnusgluppe97@gmail.com ejvanneb@stud.ntnu.no

magnujg@stud.ntnu.no andre.roaldseth@nav.no asbjorn@symfoni.solutions

eivind.havnelid.royrvik@nav.no elin.vethe@nav.no mikkelaa@stud.ntnu.no

Notater

● Data NAV ønsker å ha med:

○ VC fra forsvaret

■ fra dato til dato

○ VC om personinformasjon

○ VC arbeidsførhet

○ VC om arbeidsforhold (viktig)

■ tidligere inntekt (har mye, men ikke i utlandet)

■ tidligere arbeidstid (har mye, men kvalitet ikke nødvendigvis god)

● hvor mye du har jobbet

● fast stilling / varierende (kan lage array med start og slutt dato)

● bruker ukentlig arbeidstid, plusser sammen siste år eller 3 år og deler

på 52 eller 156

■ status på arbeidsforholdet

■ oppsigelsestid (viktig)

● ulikt om det er siste lønningsdag og siste arbeidsdag

● Når man slutter å få lønn en ting

● siste dag med lønn en annen ting

■ oppsigelsesdato

■ sluttårsak

■ avskjed

■ sluttavtale

■ Hvem har signert avtalen (ID)

■ Årsak til oppsigelse

○ Egen VC for oppsigelse (viktig)

■ siste betalingsdag

■ siste arbeidsdag

■

■ oppsagt innad prøveperiode



■ oppsigelsesgrunnlag

○ VC om arbeids og forsikringsperioder i andre eøs-land (liten andel søkere)

■ lovvalg

■ grensearbeider

■ arbeidsland

■ bostedsland

■ utveksling av denne informasjonen skjer via sed - strukturerte elektroniske

dokumenter

○ VC utdanning

■ hvor

■ når

■ grad? (se ppt)

● Annet

● 80% ordinære dagpenger

● 200 000-300 000 søknader i året

○ 21 dagers frist på svar

○ ekstremt mye manuelt arbeid

● Alle vilkår må være oppfylt

○ 40% får avslag

● bruker mye tid på å få tak i dokumentasjonen (nav må hjelpe?)

● mangelbrev i 1 av 3 saker

● trenger ikke et helt dokument, bare noe av informasjonen

● subsumsjon

○ ha regel og relevant fakta som backer regelen

○ 16 hovedvilkår

■ under her hovvedtiltak finnes det unntak

■ krever presise opplysninger

● minste arbeidsinntekt

○ minst 1,5g (150 000) siste 12mnd, minst 3 G siste 36 mnd

○ avmelding til skatteetaten, nav henter data fra skatteetaten

○ verneplikt er unntak (3mnd de siste 12mnd)

● når du ble agt opp

● Finnes unntak, f.eks hvis du ikke har tjent nok, men har vært i førstegangstjenesten i 3

måneder går det bra likevel.

● må ha 50% redusert arbeidstid

● utdanning



○ lite til ingen strukturert data

case arbeidsavtale:

● arbeidsgiver

● arbeidstaker

● arbeidssted

● arbeidsforholdstype

● Rammeavtaler

● yrkesbeskrivelse

● stillingstittel

● lønn

● lønningstype

● tariffavtale

● startdato

● eventuelt avtalt sluttdato

● avtale rundt oppsigelse

○ dato

○ tre måneder fra den første

○ minimum 1 mnd i prøveperioden

● arbeidstid

○ stillingsprosent

○ når

○ eventuell sesong

○ ikke skift, skift turnus, rotasjon

○ antall timer pr. uke som tilsvarer full stilling

● DIGDIR

○ Definerer verdiene

● Harmonisering av begreper er viktig

○ NAV bestemmer

● A-ordning

○ issuer VC’er?

● Flytdiagram for NAV



○ brukerflyten

■ hvordan du forholder deg til de ulike aktørene

● Vise hvilke

● Viktig å skille mellom siste arbeidsdag og siste dag med lønn

● Ulike typer turnus osv. mer dybde i employmentStatus?

● Oppsigelse VC

Gjøremål

lage et flytdiagram (forretning og teknisk)

Lage en egen VC for oppsigelse

Oppdatere arbeidskontrakt VC’en med data vi fikk fra nav



|16. mar. 2022 VC og dapenger

Deltakere: Mikkel Aas Jon Ramvi magnujg@stud.ntnu.no andre.roaldseth@nav.no

asbjorn@symfoni.solutions eivind.havnelid.royrvik@nav.no

Notater

● Ønsker mer automatisering, ingen personer går igjennom søknaden

● Noen har ikke bank-ID, ikke så mange hos nav men flere hos IDI?

● Utfordringer med bedrifters regnskapssystemer og at de ikke gir tilstrekkelig med informasjon

- schemas løser dette?

● Faktisk usikker på om det er nødvendig å utstede en dagpenger-VC

● Har en detaljert særordning for oppsigelsesgrunnlag?

● Varierende arbeidstid bruker gjennomsnitt siste år. Ellers fast ordning?

● ulike kategorier for vanlig ansatt, frilanser(oppdragstaker)/fast frilanser, næringsdrivende osv

også har de egne kategorier for hvor mye man jobber under disse

● forskjell på fast stilling og heltid, man kan jobbe fast 50%. Medarbeid utover den faste

stillingen, men usikker på hvordan en slik kontrakt ser ut?

● Dagpengeregelverket tar ikke hensyn til når man får penger og hvor ofte. De bruker

A-ordningen som forholder seg til månedlig.

●

● Definere begreper for større gjennomgang

Gjøremål

lage liste med data som NAV kan se over



|8. apr. 2022 VC, dagpenger og NAV

Deltakere: Mikkel Aas Jon Ramvi magnujg@stud.ntnu.no andre.roaldseth@nav.no

hakon.rostad@nav.no petter.hafskjold@nav.no asbjorn@symfoni.solutions

eivind.havnelid.royrvik@nav.no

Notater

● gi andre tilgang til å bruke VC’er er en stor business case

● Hvordan differensierer det seg fra andre signerings-dynamikker?

○ at brukeren er i sentrum

● godt case på fordeling av data brukeren burde ha selv og registerdata

● FULLMAKT

● må være et alternativ til den “vanlige” måten å gjøre det på.

● må integreres med lønns og personalsystemer

● samfunnsperspektiv sett i fra bølger av arbeidsledighet

● et alternativ hvis vi ikke skal bruke registerdata

○ rett og slett alternative kilder, hvor de foreligger etc.

● hva skal til for at dette systemet faktisk blir tatt i bruk

● nokios 3. oktober ish, 3 dagers workshop

● konkretisere case

● kan være nyttig i mange caser

● ikke konkurrere mot gode registerdata

● todelt

○ hvilken informasjon kan vi gi

○ hvilke data kan vi utstede



Appendix F

Adviser Meeting Notes

153





|14. jan. 2022 Meeting: Mariusz

Participants: Mikkel Aas, Magnus Johan Gluppe, Mariusz Nowostawski, and Erlend Johan Vannebo

Notes

● Redraw form based on what needs to be developed. Models and infrastructure for it to be run.

Diagram for existing building blocks. UML

● Compatible SDK for different wallets

● Mocked or real, talking to the REST API, handshakes etc.

● Decide what data should be mocked (bankID, certain VC)

○ To narrow down or expand the scope

● Native mobile app vs web front-end

● Bigger status meetings: Organize by milestones (around once a month-ish)

● Include management plan in project plan

● Take notes on improvements for the thesis report

● Fill out the contract

Tasks

Create a list of questions regarding which modules already exists and what data we are going

to mock etc.. to further narrow down or expand the scope

Create diagram of existing tools and protocols after questioning Symfoni

Go through the project plan with Mariuszs input in mind

Fill out the NTNU contract and present it to Symfoni



|21. apr. 2022 Bacheloroppgave-arbeid

Deltakere: Mariusz, Erlend, Mikkel, og Magnus

Notater

● add mariusz to overleaf report

● code snippets are good, but don't over do it

● If code snippets become too big, consider putting code snippet in the appendix

● working backwards is fine, not illegal

● writing a reflection summary from the notes we made in the meeting

● process adjustments

● don’t add all the weekly notes

● write about what went wrong, what we learned

● EVERYTHING that we did wrong and would not repeat.

● How would we re-do the process?

● How do we decompose our project

○ api design

○ dependencies

○ architecture

○ UML - diagram

○ quality insurance

○ CI

● Original design vs. end product

● split introduction

○ the issue at hand and the technologies at hand

○ another part that is the team

● conclusion AND future work

● maybe make a discussion part that is more chatty and reflecting than the conclusion part.

● Not an installation, more like how to run the demo.

○ Present and discuss the scenario.

■ How is the demo supposed to be run

● conceptual design paragraphs

○ user is in the center

● compare our scenario to bankID

● ping mariusz when we have a draft / when we are done with the chapter

● Who is the trust anchor?

○ How it works non SSI



○ How it works in SSI

● did:web vs. did:ethr

○ did:web trust anchor is domain name

Tasks

add Mariusz to the overleaf report





Appendix G

Low fidelity prototype

A fully functioning low-fidelity prototype can be found at:
https://www.figma.com/proto/Ytlv4tvPCH8dOiw2pd9LQN/EU-Digital-Wallet-DEMO?
node-id=1%3A6&scaling=scale-down&page-id=0%3A1&starting-point-node-id=
1%3A6&show-proto-sidebar=1

159

https://www.figma.com/proto/Ytlv4tvPCH8dOiw2pd9LQN/EU-Digital-Wallet-DEMO?node-id=1%3A6&scaling=scale-down&page-id=0%3A1&starting-point-node-id=1%3A6&show-proto-sidebar=1
https://www.figma.com/proto/Ytlv4tvPCH8dOiw2pd9LQN/EU-Digital-Wallet-DEMO?node-id=1%3A6&scaling=scale-down&page-id=0%3A1&starting-point-node-id=1%3A6&show-proto-sidebar=1
https://www.figma.com/proto/Ytlv4tvPCH8dOiw2pd9LQN/EU-Digital-Wallet-DEMO?node-id=1%3A6&scaling=scale-down&page-id=0%3A1&starting-point-node-id=1%3A6&show-proto-sidebar=1




State

Create personVC



State

Scan for recepient

Country of birth

Place of birth

Date of birth

Gender

First name

.....



did:method:example



rinkeby:0x03f2f05ec17e8c905a610adc3a4b5

6fa928db884110420caa1b90c9b196ba5d59f

User DID:
Copy

Not a scam :)



User

Send VP

List VCs

Recieve VC



Login

User Agent

Employer Agent

Nav Agent

State Agent



TerminationVC
Last day at work

Last payday

Termination status

Terminated during trial period

Weekly work hours

.....

01-01-2022

01-01-2022

Fired

True

37.5



Credentials

TerminationVC

EmploymentVC

PersonVC



Employer

Create termination 

contract

Create DID (?)

Create employment  
contract



EmploymentVC Form

Employee Id

Job Title

Place of work

Hours of work

Start date

.....

Scan for recepient



did:method:example



TerminationVC
Employee Id

Job Title

Place of work

Hours of work

Start date

.....

Engineer

Symfoni AS

37.5

01-01-2022

rinkeby:0x03f2f05ec17e8c905a610adc3a4b5

6fa928db884110420caa1b90c9b196ba5d59f

Finished VC



did:method:example



VCs requested

Send

TerminationVC

EmploymentVC

PersonVC

Tap the VC to verify



TerminationVC Form

Scan for recepient

Last day at work

Last payday

Termination status

Terminated during trial period

Weekly work hours

.....



did:method:example



Finished VC

TerminationVC
Last day at work

Last payday

Termination status

Terminated during trial period

Weekly work hours

.....

01-01-2022

01-01-2022

Fired

True

37.5



Søk dagpenger

NAV



Søk dagpenger





Appendix H

Swimlanes

This is a link to our Miro page where we have created most of our diagrams. The
diagrams can be viewed in better quality inside the Miro page. https://miro.
com/app/board/uXjVOLsrucU=/?share_link_id=640869062584

181

https://miro.com/app/board/uXjVOLsrucU=/?share_link_id=640869062584
https://miro.com/app/board/uXjVOLsrucU=/?share_link_id=640869062584




 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 

 

 





Appendix I

Flowchart

This is a link to the Miro page where you can find the flowchart in higher quality
https://miro.com/app/board/uXjVOJOoMd0=/?share_link_id=947488918471

187

https://miro.com/app/board/uXjVOJOoMd0=/?share_link_id=947488918471








Appendix J

User agent setup

191





Chapter J: User agent setup 193

Code listing J.1: Example of user agent setup

export const agentUser = createAgent<IDIDManager & IKeyManager & IDataStore &
IDataStoreORM & IResolver & ICredentialIssuer>({

plugins: [
new DIDComm(),
new KeyManager({

store: new KeyStore(dbConnectionUser),
kms: {

local: new KeyManagementSystem(new PrivateKeyStore(
dbConnectionUser, new SecretBox(USER_KEY))),

},
}),
new DIDManager({

store: new DIDStore(dbConnectionUser),
defaultProvider: 'did:ethr:rinkeby',
providers: {

'did:ethr:rinkeby': new EthrDIDProvider({
defaultKms: 'local',
network: 'rinkeby',
rpcUrl: 'https://rinkeby.infura.io/v3/' +

INFURA_ID,
}),
'did:web': new WebDIDProvider({

defaultKms: 'local',
}),

},
}),
new DIDResolverPlugin({

resolver: new Resolver({
...ethrDidResolver({ infuraProjectId: INFURA_ID }),
...webDidResolver(),

}),
}),
new CredentialIssuer(),
new MessageHandler({

messageHandlers: [new JwtMessageHandler(), new
W3cMessageHandler(), new DIDCommMessageHandler()],

}),
new DataStore(dbConnectionUser),
new DataStoreORM(dbConnectionUser)

],
});





Appendix K

isQualifiedForUnemploymentBenefits
function

195





Chapter K: isQualifiedForUnemploymentBenefits function 197

Code listing K.1: isQualifiedForUnemploymentBenefits function from NAVAgent-
Controller.ts

/**
* isQualifiedForUnemploymentBenefits takes a presentation token and checks

if the VCs within the presenation
* token qualifies for unemployment benefits.
* @param presentationToken a presentation token containing multiple VCs.
* @returns a boolean stating whether the token qualifies or not.
*/
async isQualifiedForUnemploymentBenefits(presentationToken: string):

Promise<boolean | Error> {
try {

let isVerifiedPersonVC = false;
let isVerifiedEmploymentVC = false;
let isVerifiedTerminationVC = false;

// handle message with token
const handledMessage: any = await this.agent.handleMessage

({
raw: presentationToken

});

// get array of credential tokens
const credentials = handledMessage.credentials;

// handle each credential token
for (let index = 0; index < credentials.length; index++) {

// get credential message by handling credential
token

const credentialMessage: any = await this.agent.
handleMessage({

raw: credentials[index].proof.jwt
});

// get credential message data
const credentialMessageData: any =

credentialMessage.data;

switch (credentialMessageData.vc.type.at(1)) {
case TYPE_EMPLOYMENT_CREDENTIAL:

if (
! await verifySchema(

credentialMessageData) ||
! await verifyIssuer(

credentialMessageData, issuers.
symfoni)

) {
return false;

}
isVerifiedEmploymentVC = true;
break;

case TYPE_TERMINATION_CREDENTIAL:
if (

! await verifySchema(
credentialMessageData) ||

! await verifyIssuer(
credentialMessageData, issuers.



198CoPCSE@NTNU: Using Self-Sovereign Identity and Verifiable Data to improve public services

symfoni) ||
! this.verifyTerminationVCData(

credentialMessageData)
) {

return false;
}
isVerifiedTerminationVC = true;
break;

case TYPE_PERSON_CREDENTIAL:
if (

! await verifySchema(
credentialMessageData) ||

! await verifyIssuer(
credentialMessageData, issuers.
state) ||

! this.verifyPersonVCData(
credentialMessageData)

) {
return false;

}
isVerifiedPersonVC = true;
break;

default:
break;

}
}

// if all necessary credential are verified, return true.
if (isVerifiedEmploymentVC && isVerifiedTerminationVC &&

isVerifiedPersonVC) {
return true;

}

return false;

} catch (error) {
console.error(error);
return new Error('unable␣to␣qualify');

}
}



Appendix L

Original Problem Definition

199





Sammenhengende tjenester: Bedre innbyggertjenester med Verifiable 
Credentials — Digitalisering av «Søknad om dagpenger» 
 
 
 
Skal man søke dagpenger fra NAV trenger man dokumentasjon fra diverse utstedere. Se 
tabellen. Dette er manuelle prosesser i dag hvor søkeren fungerer som «postbud for staten». 
Med Verifiable Credentials (VC) kan hele søknaden automatiseres. Både for søker og for 
godkjenning hos NAV. 
 
 

 Utsteder 

Bekreftelse på sluttårsak/nedsatt arbeidstid (ikke permittert) 
NAV 04-08.03 

Arbeidsgiver 

Har du forsørgeransvar eller bidragsplikt for barn under 18 
år, og barna har ikke bodd i Norge? 
Fødselsattest/bostedsbevis for barn under 18 år 

Skatteetaten i barnets bostedsland 

 
Har du forsørgeransvar for barn eller barn under 18 år som 
er bosatt i et annet EØS-land? SED U006 Familieinformasjon 

trygdemyndighetene i barnets 
bostedsland 

Har du nylig avtjent verneplikt/siviltjeneste? Tjenestebevis 
Forsvaret/Vernepliktsverket 

Er du eller har du vært skoleelev eller student de siste seks 
månedene? Dokumentasjon av sluttdato 

Skolen/universitetet 

Tar du utdanning eller går på kurs? Elevdokumentasjon fra 
lærested 

Skolen/universitetet/annet lærested 

Får du sluttkompensasjon fra arbeidsgiveren din? Kopi av 
sluttavtale 

Arbeidsgiver 

Har du jobbet i et annet EU/EØS-land? U1 Perioder av 
betydning for retten til dagpenger 

 
 

Attesten er dokumentasjon på arbeids- og 
trygdeperioder i annet EØS-land, og utstedes av 

myndighetene i det landet der har arbeidet. 

Har du vært til sjøs?  Sjøfartsbok/hyreavregning 

 
Sjøfartsdirektoratet i det respektive landet? 

 
 
 
Det som skal lages i denne bachelor-oppgaven er 



• En VC Issuer som kan utstede det nødvendige beviset. «Veramo» brukes som 
rammeverk for opprettelse av DID og VC 

• En VC Verifier som kan godkjenne mottatte bevis. «Veramo» brukes også her 
• En app som utveklser bevisene mellom Issuer og Verifier. Istedenfor å utvikle også 

denne modulen fra bunn, har Symfoni AS har utviklet en proof-of-concept av appen. 
Studentene tilpasser denne til å løse oppgaven 

 
 
Videre spinner studentene opp servere for de forskjellige utstederne, og gjør det mulig å 
gjennomføre en full demo av caset.  
 

 
 
 
 
1: https://www.nav.no/soknader/nb/person/arbeid/dagpenger/NAV%2004-01.03/brev#15 



Appendix M

Timesheet

203





Date Mikkel Magnus Erlend Notes

10.01.2022 240 240 90

- Created document template for the main report
- Made typescript run on out computers
- Downloaded WebStorm
- Made and shared a google drive folder
- Created a GitHub repository, made branches, and branch rules

11.01.2022 75 75 75

- Prepeared questions for the meeting with employer
- Read the contract
- Looked at earlier bachelor thesis'
- Created important documents in google drive

12.01.2022 90 90 90
- Meeting with Symfoni
- Discussed the meeting afterwards

13.01.2022 240 240 195
- Read about SSI
- Wrote on the project plan

14.01.2022 300 300 300

- Organized weekly meetings with adviser
- Worked on the project plan
- Meeting with our advisor, Mariusz (60 min)

17.01.2022 240 240 240

- Prepared questions for meeting with symfoni
- Filled out the contract
- Wrote on the project plan

18.01.2022 240 240 240
- Started a Codecademy course on TypeScript
- Meeting with Symfoni

19.01.2022 240 240 240
-Typescript Codecademy
-Worked on project plan

20.01.2022 240 240 240
- Wrote on the project plan
- Read the Veramo documentation

24.01.2022 210 210 210 - Read about SSI and discussed what we read
25.01.2022 180 180 180 - Made a model for our issuer, holder, and verifier scenario

27.01.2022 240 240 240

- Did the Veramo Cli Tutorial
- Setup WSL
- Revised the project plan
- Creating async meeting document for Mariusz
- Everyone got ESlint and Mocha working

31.01.2022 300 300 300
- Worked on setting up servers
- Discussed the environmental effects of SSI

03.02.2022 240 240 240
- Started working on a presentation for NAV
- Tried making a couple of VCs with the veramo client



04.02.2022 240 240 240 - Akademisk tekst (placeholder)

10.02.2022 360 360 360
- Meeting with symfoni and our advisour
- Added different Agents for user, NAV and Symfoni

11.02.2022 240 240 240
- Revicing the VC to add more detailed meta data for previous 
employmet contract

14.02.2022 120 120 120 - Møter med symfoni
15.02.2022 120 120 120 - Made first attemt at a schema for a work contract

16.02.2022 180 180 180
- Fixing the schemas made yeasterday, and digging into meta data for 
did:web document

17.02.2022 150 150 150 - Added and troubleshooted a PDF hasher

18.02.2022 300 300 300

- Meeting with NAV
- Revised VC's and made some new ones
- Made a swim lane diagram for user interaction with the system

21.02.2022 120 120 120
-Further revised VC's
-Meeting with Symfoni

23.02.2022 300 300 300
- Updated the technical swim lane diagram
- Did some minor coding work

25.02.2022 0 0 90 - Individual work
28.02.2022 240 240 240
02.03.2022 120 120 120 -rapport skrive kurs
03.03.2022 360 360 240 -Made a agent controller class that the other controllers will inherit
09.03.2022 360 360 360 - Working on JSON-LD

10.03.2022 360 360 360
- working on unit tests
-fixing a default did for all agents

14.03.2022 300 300 300
- worked on API endpoints
-meeting with symfoni

15.03.2022 120 - failed to make dapps

16.03.2022 360 360 360

- Meeting with NAV
- Creating wireframe for app
- revising some of the swimlane documents

17.03.2022 300 300 300 - further work on wireframe/figma
18.03.2022 120 120 0
21.03.2022 90 90 90 -technical meeting with Asbjørn
24.03.2022 300 300 300 -working on front-end react native



25.03.2022 360 360 240 -working on front-end react native

28.03.2022 420 420 420

- worked on GUI forms
- worked on GUI credential list view
- technical meeting with Asbjørn

29.03.2022 420 420 420
- worked on view credential details and employment form
- troubleshoot expo and android emulator

30.03.2022 360 360 360

31.03.2022 360 360 360
- worked on walletconnect, styling, state agent and submitting forms
to a database

01.04.2022 300 300 300
- Started on databases
- implemented json validation

02.04.2022 360 360 360

- Updated schema
- Made database and database endpoint for the symfoni agent
- short technical meeting about wallet connect

04.04.2022 330 330 330
- Technical meeting with symfoni
- Refactored schema

05.04.2022 240 0 0 - wrote unit tests

06.04.2022 360 360 360
- Started work on didcomm
- Form to database and state database

07.04.2022 180 240
- Technical meeting with asbjørn, working on DIDComm
- Adding gas to ethr did

08.04.2022 420 420 420
- Meeting with NAV
- Pair programming setting up endpoints for DIDComm

11.04.2022 300 0 0 - worked on the nav recieve VP page
12.04.2022 300 0 0 - worked on the nav verify VP for unemployment benefit functionality

13.04.2022 300 0 0
- continued working on nav VP verification functionality
- started working on user messaging system

14.04.2022 360 0 0
- continued working on the user messaging system
- started working on symfoni VP verification functionality

15.04.2022 300 0 0 - finished symfoni recieve VP and issue VC 
18.04.2022 420 420 420 - documentation, proofreading, etc.
19.04.2022 420 420 420 - documentation, proofreading, etc.
20.04.2022 420 420 420 - documentation, proofreading, etc.
21.04.2022 420 420 420 - documentation, proofreading, etc.
22.04.2022 420 420 420 - documentation, proofreading, etc.



25.04.2022 420 420 420 - documentation, proofreading, etc.
26.04.2022 420 420 420 - documentation, proofreading, etc.
27.04.2022 420 420 420 - documentation, proofreading, etc.
28.04.2022 420 420 420 - documentation, proofreading, etc.
29.04.2022 420 420 420 - documentation, proofreading, etc.
02.05.2022 420 420 420 - documentation, proofreading, etc.
03.05.2022 420 420 420 - documentation, proofreading, etc.
04.05.2022 420 420 420 - documentation, proofreading, etc.
05.05.2022 420 420 420 - documentation, proofreading, etc.
06.05.2022 420 420 420 - documentation, proofreading, etc.
09.05.2022 420 420 420 - documentation, proofreading, etc.
10.05.2022 300 300 300 - documentation, proofreading, etc.
11.05.2022 420 420 420 - documentation, proofreading, etc.
12.05.2022 420 420 420 - documentation, proofreading, etc.
13.05.2022 360 360 360 - documentation, proofreading, etc.
15.05.2022 420 420 420 - documentation, proofreading, etc.
16.05.2022 420 420 420 - documentation, proofreading, etc.
18.05.2022 420 420 420 - documentation, proofreading, etc.
19.05.2022 720 720 720 - documentation, proofreading, etc.



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Aas, G
luppe, Vannebo

Self-Sovereign Identity and Verifiable D
ata

Mikkel Aas
Magnus Gluppe
Erlend Johan Ringen Vannebo

Using Self-Sovereign Identity and
Verifiable Data to improve public
services

Bachelor’s thesis in Computer Science
Supervisor: Mariusz Nowostawski
May 2022

Ba
ch

el
or

’s 
th

es
is


	Abstract
	Sammendrag
	Preface
	Repository
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Background
	Project Description
	Target audience
	Constraints
	Time
	Physical
	Legal and ethical

	Group background
	Responsibilities and roles
	Code
	Documentation
	SCRUM
	Manager
	Symfoni and supervisor

	Report structure
	Introduction
	Theory and technology
	Requirement specifications
	Design
	Front-end design
	Development process
	Implementation coding production
	Testing and quality assurance
	Conclusion


	Theory and Technology
	Self-Sovereign Identity
	Trust triangle

	Decentralized Identifiers
	DID methods
	DID document

	Verifiable credentials
	Verifiable data registries
	DIDComm
	Trust anchors
	Veramo
	Infura

	Problem description

	Requirement specifications
	Use case
	Flowchart
	Initial product outline
	Multistage transaction model
	Swim lanes
	Business
	User making a DID
	Company making a DID
	User acquires personal ID VC
	User acquires employment VC


	Design
	Scenario
	System architecture
	File structure
	Limitations

	Controller classes
	Schema
	API
	user endpoints
	NAV endpoints
	symfoni endpoints
	state endpoints


	Front end design
	Login page
	User
	Show DID
	List VCs
	Send VP
	Messages

	Symfoni
	Add employee
	Terminate employee
	Request VCs

	NAV
	State
	Wireframe
	Abandoned changes

	Development process
	Meetings
	Symfoni meetings
	NAV meetings
	Supervisor meetings

	Development model
	Sprints and sprint review
	Issue tracker
	Code review
	Reflection


	Implementation
	Tools
	Building
	Veramo agents
	Setup
	Main functionality
	Controllers

	API
	Endpoint functionality descriptions

	Databases
	Firestore
	Local

	React Native
	Navigation
	Components
	Styles
	Forms
	Function components


	Testing and quality assurance
	Unit testing
	API testing
	GUI testing

	Conclusion
	Discussion
	SSI
	Collaboration with NAV
	Redundant code
	Schema
	Limited amount of issuers
	Type guards in TypeScript
	Alternatives

	Critique
	Further work
	Evaluation of group efforts
	Organizing
	Workload distribution
	Project as a form of work

	Conclusion

	Bibliography
	Project Contract
	Project Plan
	Task Description
	Symfoni Meeting Notes
	NAV Meeting Notes
	Adviser Meeting Notes
	Low fidelity prototype
	Swimlanes
	Flowchart
	User agent setup
	isQualifiedForUnemploymentBenefits function
	Original Problem Definition
	Timesheet

