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Summary

Differential gene co-expression network analysis has recently emerged as an important
strategy for identification and investigation of potential dysregulated genes and pathways
in diseases and other conditions. The Conserved, Specific, Differentiated (CSD) approach,
a systematic framework for differential co-expression network analysis, defines three dif-
ferent types of co-expression between genes: conserved (C), specific (S) and differenti-
ated (D). Here, the CSD approach will be utilized to investigate alterations in gene co-
expression patterns in bipolar disorder (BP). As most BP data sets are characterized by
small sample sizes, this thesis has also developed and tested methods for combining sev-
eral data sets into one consensus CSD network. In general, this may be viewed as an
extension of the current CSD approach as a method for dealing with small sample sizes.

Two approaches have been tested for creation of consensus CSD networks, which both
combine Spearman rank correlation coefficients from individual data sets into averaged
values that may be used as input to the conventional CSD approach. The first method relies
on averages of Fisher’s Z transformed correlation coefficients, while the second method
utilizes weighted untransformed averages of correlation coefficients. The two methods
generated comparable combined scores and gave rise to similar networks. Moreover, both
combination methods outperformed the current approach for dealing with small sample
sizes in CSD analysis. However, the method based on weighted untransformed averages
appeared to be most suitable for CSD analysis as it is more conservative and less affected
by spurious perfect correlations than Fisher’s Z transformed averages. Structural analyses
of a consensus CSD network also indicated that this method produces networks with many
typical characteristics of conventional CSD networks.

The newly developed consensus CSD approach, based on weighted untransformed av-
erages of correlation coefficients, was used to examine potential alterations in gene co-
expression patterns in BP by combining six data sets. The functional analyses of the gen-
erated network suggested a potential role for mislocalization of proteins as at least three
of the central genes in the network (SRP9, SRP14, GOLPH3L and possibly RBM23)
are involved in this process and appeared to be dysregulated. In addition, the functional
analyses suggested alterations in the specification process in the dorsolateral prefrontal
cortex (DLPFC) of BP patients. This was supported by identification of at least two poten-
tially dysregulated hubs with roles in this process (PITX3, FBLN2 and possibly RBM23),
a gain of correlations for BP patients compared to control samples in the majority of S
links as well as a suggested shift of the BP DLPFC correlations towards correlations from
basal ganglia. It should be noted that the roles of mislocalization and alterations of spec-
ification processes were not supported by Gene Ontology (GO) analyses, illustrating that
further investigation of BP is required.
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Sammendrag

Analyser av differensielle gen-samuttrykksnettverk har nylig blitt utviklet som en viktig
strategi for identifisering og undersøkelse av potensielt dysregulerte gener og spor i syk-
dommer og andre tilstander. CSD-metoden, et systematisk rammeverk for analyser av dif-
ferensielle samuttrykksnettverk, definerer tre ulike typer samuttrykk mellom gener: kon-
servert (C), spesifikk (S) og differensiert (D). Her benyttes CSD-metoden for å undersøke
endringer i gen-samuttrykksmønstre i bipolar lidelse (BP). Ettersom mange BP datasett er
karakterisert av en liten prøvestørrelse, har denne oppgaven også utviklet og testet metoder
for å kombinere flere datasett til et konsensus CSD nettverk. Dette kan også ansees som
en generell utvidelse av den nåværende CSD-metoden for å tilpasse fremgangsmåten til
små prøvestørrelser.

To fremgangsmåter for å lage konsensus CSD nettverk har blitt testet i denne oppgaven.
Begge metodene kombinerer Spearman rang korrelasjonskoeffisienter fra individuelle data-
sett til gjennomsnittlige verdier som kan benyttes som input til den konvensjonelle CSD-
metoden. Den første fremgangsmåten er basert på gjennomsnitt av Fishers Z transformerte
korrelasjonskoeffisienter, mens den andre metoden benytter vektede utransformerte gjen-
nomsnitt av korrelasjonskoeffisienter. De to fremgangsmåtene ga sammenlignbare kom-
binerte verdier og liknende nettverk. I tillegg utkonkurrerte begge metodene den nåværende
tilnærmingen for å håndtere små prøvestørrelse i CSD analyser. Metoden basert på vektede
utransformerte gjennomsnitt virket imidlertid for å være mest passende for CSD analyse
ettersom den er mer konservativ og mindre påvirket av tilfeldige perfekte korrelasjoner enn
Fishers Z transformerte gjennomsnitt. Strukturelle analyser av et konsensus CSD nettverk
indikerte også at denne metoden produserer nettverk med mange typiske egenskaper for
konvensjonelle CSD nettverk.

Den nylig utviklede konsensus CSD-metoden, basert på vektede utransformerte gjen-
nomsnitt av korrelasjonskoeffisienter, ble brukt for å undersøke potensielle endringer i
gen-samutrykksmønstre i BP ved å kombinere seks datasett. Funksjonelle analyser av
det genererte nettverket antydet en potensiell rolle for feillokalisering av proteiner etter-
som minst tre av de sentrale genene i nettverket (SRP9, SRP14, GOLPH3L og muligens
RBM23) er involverte i denne prosessen og så ut til å være dysregulerte. De funksjonelle
analysene antydet i tillegg en endring i spesifiseringsprosessen i den dorsolaterale pre-
frontale cortex (DLPFC) hos BP pasienter. Dette var støttet av identifisering av minst
to potentielt dysregulerte nettverksnav med roller i denne prosessen (PITX3, FBLN2 og
muligens RBM23), en tilegning av korrelasjoner for BP pasienter sammenliknet med kon-
troll prøver for majoriteten av S linker og en mulig forskyving av korrelasjoner i DLPFC
hos BP pasienter mot korrelasjoner i basalgangliene. Det bør bemerkes at rollene for feil-
lokalisering og endringer i spesifiseringsprosesser ikke ble støttet av genontologi-analyser.
Dette illustrerer at videre undersøkelser av BP er nødvendig.
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Chapter 1
Introduction
The human body consists of trillions of cells [1]. These cells can be categorized into
different cell types, which differ enormously in structure and function. Initially, it was
believed that cells lost genes as they realized their cellular fates [2, p. 369]. It is now
known, however, that the distinctions between cell types are not generally caused by al-
terations of deoxyribonucleic acid (DNA), which can be seen as a ”cookbook” containing
the ”recipes” for the components of all cells. Rather, different cell types arise due to
production and buildup of different sets of ribonucleic acid (RNA) and protein molecules
[2, p. 369]. RNAs may be thought of as copies of specific ”recipes” in the DNA, while
proteins may be seen as the ”dishes” created from these recipes. The flow of genetic in-
formation from DNA to RNA and subsequently to proteins is fundamental to molecular
biology and has even been termed the central dogma [2, p. 299]. Some genes are expressed
in all cells, while others are only expressed in specific types. The level of expression may
further contribute to distinctions between cell types. Moreover, gene expression patterns
vary during the life time of a cell and are affected by external factors [2, p. 371-372]. Thus,
gene expression patterns and the interplay between the expressed components are crucial
for proper function of different cell types.

Despite a complex interplay between a cell’s components, molecular biology has tradi-
tionally adopted a reductionist thinking when studying cells [3]. This means that cells
have typically been reduced to smaller pieces, which then are studied in isolation. Such
approaches will not be able to identify emergent behaviours of cells, meaning properties
that result from the system as whole and cannot be assigned to individual components on
their own [4]. As an example, the human genome project was completed in 2001 and
produced the first draft of the human genes [5, 6]. However, a list of the human genes is
not sufficient for a complete understanding of how cells function and how diseases arise.
It is also necessary to investigate how different genes, as well as other cellular compo-
nents, interact [7]. The large growth in genomics and high-throughput technologies now
allow molecular biology to adopt a systems approach [3, 4], giving rise to systems biology.

Complex systems, including biological systems, may be represented and investigated us-
ing network approaches [7]. Let us start with a quite straightforward example, such as a
social system where it is wishful to examine friendships between individuals. The compo-
nents in the system, in this example the individuals, are typically referred to as nodes or
vertices when considering the system as a network. Direct interactions between them, such
as a friendship between two individuals, are called links or edges. As a result, the network
approach creates a representation of the individuals and their friendships in our social sys-
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Chapter 1. Introduction

tem. Similarly, a network approach may be applied to complex biological systems. An
example of a biological network is a protein-protein interaction network. Here, nodes rep-
resent proteins and two proteins are defined as ”friends” if they are capable of binding to
each other in a cell [7]. An alternative biological network is called gene co-expression
network. The nodes in these networks generally represent genes and are ”friends” if they
are co-expressed, meaning that they are simultaneously expressed (or produced) in a cell
[8]. Recently, an extension of the gene co-expression network has been developed and is
called differential gene co-expression network. Once again, the nodes typically correspond
to genes and links are based on their co-expressions. However, this network type focuses
on differences in co-expression patterns between two or more conditions [9, 10]. Such
networks may be useful for comparison of diseased and healthy samples, as well as other
case-control studies [9, 10].

Diseases can arise due to perturbation or breakdown in the molecular network of an indi-
vidual [7]. As nature is not perfect, errors may be introduced in a cell’s genetic material.
These errors are known as mutations. If the mutations arise in germ cells, and are passed
to the offspring, the mutations become inherited [11]. Most mutations have minor impact,
and may not even have noticeable effects [11], but some cause disease. Conditions such
as albinism, hemophilia and congenital deafness are caused by single mutations. Other
diseases, including diabetes and arthritis, arise from an interplay between many different
genes and may be strongly affected by environmental factors [2, p. 493]. Differential gene
co-expression networks, as well as other systems biology approaches, may be useful for
elucidating such complex interplays and may contribute to a better understanding of the
mechanisms underlying the diseases.

Bipolar disorder (BP) is an example of a genetically complex disorder, and is affected by
genetic as well as environmental factors [12, 13]. This disorder is characterized by large
mood swings, which range from emotional highs to lows [12, 13, 14, p. 123-154]. BP
confers serious consequences for affected individuals. It often leads to reduced quality
of life [12] and has the highest suicide rate among affective disorders [15]. In addition,
this disorder affects more than 1% of the world’s population [16] and has a typical onset
in young adulthood [14, p. 130,136]. Thus, BP also results in high costs to society due
to health-care costs and costs of disability [12]. The impact of BP on patients and their
family, as well as society and economy, highlights the need for further investigation and
understanding. As it has been challenging to diagnose BP due to wide-ranging symptoms,
most studies so far have been based on small sample sizes [13]. Consequently, it is of
great interest to achieve larger sample sizes to improve our understanding of genetics and
altered molecular networks in BP. According to Gordovez and McMahon [13], ”meta-
analysis of multiple independent samples have perhaps the best likelihood of success” as an
approach to increase sample sizes. Even though Gordovez and McMahon [13] presented
this claim in the context of next-generation sequencing technologies that searched for BP
risk genes, it also seems promising as a method to increase sample size for differential
gene co-expression networks.
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The aim of this thesis is to investigate differences in gene co-expression patterns be-
tween BP and control samples. This will be conducted by using a systematic framework,
known as CSD [9], for differential co-expression network analysis. The goal is to identify
genes and potential pathways that contribute to BP. As most BP data sets suffer from small
sample sizes, a second aim of this thesis is to develop and test methods for combining sev-
eral data sets into one common, or consensus, CSD network. It is believed that this will
indicate the most consistent alterations in BP.
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Chapter 2
Theoretical Background
This chapter will introduce the theoretical foundations for the methods and data analyses
included in this thesis. Some of the topics are directly relevant for the subsequent chap-
ters, while others are included to give a more profound understanding of the underlying
concepts. This chapter starts with an introduction of BP, the investigated disorder in this
thesis. Next, a general description of networks and some network characteristics are pre-
sented. This is followed by a more thorough investigation of specific network types and
their underlying measurements. In particular, these network types include (differential)
gene co-expression networks, where the CSD approach is in focus, and consensus net-
works (CNs). Finally, the chapter is ended by a presentation of several statistical methods
relevant for comparison and analysis of networks.

2.1 Bipolar Disorder
BP is a collective term for disorders characterized by biphasic patterns expressed through
changes in emotions, energy and thoughts of affected individuals. Generally, BP is mani-
fested as phases of mania/hypomania and depression [12], possibly interspaced by periods
called euthymia where individuals are free of symptoms [13]. Manic episodes include el-
evated, expansive or, in some cases, irritable mood. These episodes are also accompanied
by other symptoms, such as a feeling of increased energy and self-esteem, reduced need for
sleep and/or psychotic symptoms. Hypomania is defined as a milder and shorter version of
mania. In contrast, depressive phases typically include depressed mood (a feeling of sad-
ness), loss of interest or pleasure, reduced energy and increased need for sleep. Psychosis
may also occur in this phase [12, 14, p. 124-125]. Moreover, mixed features are common
in BP and refer to episodes where symptoms from mania/hypomania and depression are
manifested at the same time [14, p. 149, 17, p. 72] . In addition to mood episodes, BP
may also be associated with cognitive symptoms. This includes changes in reaction time,
memory and executive functions [12]. The ”Diagnostic and Statistical Manual of Mental
Disorders” (DSM-5) divides BP into several subcategories depending on the duration and
severity of mania/hypomania and depression, as well as the possibility of triggering this
disorder by substance/medication abuse or another medical condition [14, p. 123]. BP is
also known to be comorbid with other psychiatric and nonpsychiatric disorders [12, 14,
p. 132-139].

BP has a complex genetic background. It is among the most heritable psychiatric disorders
[12, 13] and has an estimated heritability between 68% and 84% (for both BP I and II) [17,
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p. 420]. According to Vieta et al. [12], the best model for this disorder is multifactorial
and includes gene-environment interactions. Genetic and environmental factors may give
rise to neuronal changes which result in altered circuitry in the brain of individuals with
BP [12]. Several genome-wide significant loci have been identified through genome-wide
association studies (GWAS) [12, 13]. In general, associated genes have been related to cal-
cium signal transmission, glutamatergic systems, hormone regulation as well as immune
and histone pathways [12]. It should be noted that individual associated genes only have a
small effect on risk [12].

Several brain areas appear to be affected in BP patients. In general, neuroimaging studies
of euthymic BP patients indicate a reduced responsiveness of dorsolateral prefrontal cortex
(DLPFC), dorsomedial prefrontal cortex and dorsal anterior cingulate gyrus. These areas
are associated with cognitive control [18]. At the same time, neuroimaging studies indicate
an increased responsiveness in ventrolateral prefrontal cortex, ventral anterior cingulate
gyrus and amygdala. These areas are involved in emotional regulation [18]. Together, this
reflects the wide-ranging symptoms observed in BP.

2.2 Network Theory
The world is full of complex systems. These are parts of our everyday life, for instance
as social systems. As explained in the introduction (Chapter 1), systems may be rep-
resented as networks which display interactions as links/edges between the components,
nodes/vertices, of the system. Networks may be used to represent biological systems, such
as a network of protein-protein interactions or differential gene co-expression networks.
The latter is the focus of this thesis, and will be explained in detail in subsequent sections.
This section will introduce some fundamental characteristics of networks.

2.2.1 Basic Network Properties
Networks are composed of nodes which are connected to each other through links. The
links are either undirected or directed, as shown in Figure 2.1. If node A is connected to
node B through an undirected link, then B is also connected to A. Directed links however,
will only go in one direction. An undirected network consists exclusively of undirected
links, otherwise it is defined as a directed network. Differential gene co-expression net-
works, which will be the main focus in this thesis, can be represented as undirected net-
works [8]. Thus, this section focuses on undirected networks and their characteristics.

A network can be represented mathematically by an adjacency matrix, A = [aij ]. The
adjacency matrix is a square matrix consisting of N rows and N columns [7]. The values
of the elements are determined by equation 2.1. This equation describes the adjacency
matrix of an unweighted network, where the value of each element is either zero or one.
For a weighted network, aij is equal to a weight, wij , if there is a link between i and j.

aij =

{
1, if there is a link from i to j
0, otherwise

(2.1)
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(a) (b)

Figure 2.1: (a) Undirected and (b) directed networks with four nodes and four links.
From [7], CC BY.

In an undirected network, the adjacency matrix will be symmetric. This means that
aij = aji [7]. The relationship between the adjacency matrix and the graphical repre-
sentation of the network is illustrated in Figure 2.2.

The degree, ki, is the number of links between a node i and its neighbours [7]. Using
Figure 2.2 as an example, node 2 has a degree of 3. Nodes with high degrees are referred
to as hubs. The average degree, 〈k〉, in an undirected network is given by equation 2.2.

〈k〉 =
1

N

N∑
i=1

ki =
2L

N
(2.2)

whereN represents number of nodes, ki represents degree of node i and L represents total
number of links.

The described network properties focus on direct interactions between two nodes. The
clustering coefficient, Ci, on the other hand, measures the extent that the neighbours of
a given node link to each other [7]. The average clustering coefficient, 〈Ci〉, indicates
the tendency for formation of groups in the network [19]. The definition of Ci for an
unweighted, undirected network is given in equation 2.3. In this case, the clustering coef-

(a) (b)

Figure 2.2: (a) An undirected network and (b) its corresponding adjacency matrix. The
relationships of node 2 are highlighted in red in the adjacency matrix and indicate that this node is

connected to all other nodes in the network. From [7], CC BY.
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ficient of node i is equal to one if all neighbours of node i link to each other.

Ci =
2Li

ki(ki − 1)
(2.3)

where ki represents number of neighbours of node i and Li represents number of links
between these neighbours.

Topological overlap (TO) is similar to the clustering coefficient, but focuses on shared
neighbours between two nodes [20]. The definition of TO in an unweighted network is
[8]:

ωTOij =

∑
u aiuauj + aij

min(ki, kj) + 1− aij
(2.4)

where i and j correspond to two nodes, and ki and kj denote the degrees of these nodes.
a corresponds to the adjacency matrix and its subscripts denote the specific element. For
a weighted network, this measure is called weighted topological overlap (wTO) [21, 22]
and is defined as:

ωwTOij =

∑
u wiuwuj + wij

min(Ki,Kj) + 1− |wij |
(2.5)

where wij denotes the weight of the link specified by its subscript and Ki corresponds to
the weighted connectivity of the node i. The weighted connectivity of node i is defined in
equation 2.6 [21].

Ki =

N∑
j=1

|wij | (2.6)

It is noteworthy that the given equation for wTO, equation 2.5, is different from the wTO
formula from Zhang and Horvath [8]. The modification allows the elements in the under-
lying adjacency matrix to take values between -1 and 1 [21]. Thus, wTO may be calculated
from an adjacency matrix where the elements correspond to correlation coefficients as any
correlation must fall on this interval.

Figure 2.3 illustrates calculation of TO from an undirected, unweighted network. In gen-
eral, TO is equal to one if the node with the fewest connections in the underlying network,
lets say node i, is connected to node j and all neighbours of node i are also neighbours
of node j. An example is provided by node A and C in Figure 2.3. If node i and j are
not linked to each other, nor share any neighbours, TO is equal to zero [20]. Originally,
TO and wTO were used to identify modules [8, 20], see Section 2.2.4. However, it may
also be used as an alternative to correlations to represent the similarity between two genes
[21–24], see Section 2.3.

To summarize, a network consists of nodes and links, and may be represented by an ad-
jacency matrix. Each link is either defined as directed or undirected. In addition, it may
have an associated weight. Furthermore, each node is characterized by several properties,
including degree, clustering coefficient and topological overlap.
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Figure 2.3: Topological overlap (TO) in an unweighted and undirected network consisting of 11
nodes. The numbers on the links correspond to TO calculated from equation 2.4. From [7], CC BY.

2.2.2 Degree Distribution and Scale-Free Networks
The probability that a randomly chosen node has degree k, is represented by the degree
distribution, pk, of the network [7]. pk is given by equation 2.7. The degree distribution is
an important network characteristic and is involved in calculations of several other network
properties [7].

pk =
Nk
N

(2.7)

where Nk is number of nodes with degree k and N is total number of nodes.

In some random network models, including the Erdős-Rényi model [25, 26], networks
are generated by randomly connecting nodes with a probability P . These networks are
characterized by a binomial degree distribution, which is typically well approximated by a
Poisson distribution [7]. Consequently, this degree distribution is characterized by a peak
around the average degree, 〈k〉, and is independent of network size [7].

In contrast, most biological networks have scale-free degree distributions [19]. A com-
parison of a Poisson and a scale-free degree distribution is presented in Figure 2.4. For
scale-free networks, pk follows, or at least approximates, a power law: pk ∼ k−γ . The ex-
ponent γ is called degree exponent and the typical value of this exponent is between 2 and
3 [7]. For these networks, 〈k〉 is finite even when the number of nodes approaches infinity.
However, the second moment, 〈k2〉, approaches infinity under the same conditions. The
second moment is involved in the calculation of the variance of the degree distribution. As
a result, the variance will approach infinity when the second moment approaches infinity.
Consequently, there is no internal ”scale” in scale-free networks [7]. The nature of the
power law degree distribution thus allows co-existence of many small-degree nodes and
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(a) (b)

Figure 2.4: (a) Linear and (b) log-log plot of two networks with Poisson and scale-free degree
distributions where 〈k〉 = 11 for both networks and γ = 2.1 for the scale-free network. The

scale-free distribution enables the presence of small-degree nodes and hubs. From [7], CC BY.

hubs in real biological networks [7].

Alternative random network models have been developed to generate random networks
with scale-free, or other, degree distributions. One example is provided by the the config-
uration model which generates networks according to a predefined degree sequence [27].
In this model, all nodes are first assigned specific degrees, which can be represented as
”stubs” or ”half-links” as in Figure 2.5. Next, a pair of stubs is randomly selected and
connected to each other. This is repeated until all stubs are paired [27]. Consequently, this
model allows the degree distribution of a real network to be used as starting point for a
random network. A visualization of the configuration model is provided in Figure 2.5.

(a) (b)

Figure 2.5: The configuration model generates networks from a predefined degree sequence. (a)
All nodes are first given specific degrees from the input degree sequence, which are represented as

stubs. The stubs are subsequently connected at random which may give rise to the exemplified
networks in (b). From [7], CC BY.
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To sum up, some random networks are characterized by binomial degree distributions.
Real networks on the other hand, have typically scale-free degree distributions which en-
able co-existence of small-degree nodes and hubs. Some random networks models, such
as the configuration model, allow creation of networks with degree distributions which
mimic real networks.

2.2.3 Assortativity and Disassortativity
In some networks, nodes with similar degrees tend to link together. This means that hubs
generally connect to other hubs and tend to have fewer connections to small-degree nodes.
The small-degree nodes on the other hand, tend to link to each other. These networks are
known as assortative networks [7]. Other networks exhibit the opposite trend, and are
known as disassortative networks. These exhibit a hub-and-spoke topology, meaning that
hubs mainly connect to small-degree nodes [7]. Networks that are not assortative nor dis-
assortative are called neutral networks. The assortativity of a network can be measured by
r [28], calculated as shown in equation 2.8, which ranges from −1 to 1. Negative values
of r indicate disassortativity, while positive values indicate assortativity [28].

r =

∑
xy xy(exy − axby)

σaσb
(2.8)

where ax and by are fractions of links that start and end at nodes with degree x and y,
respectively. exy is the fraction of all links that connect nodes with degree x and y. σa and
σb represent the standard deviations of the distributions ax and by , respectively. Note that
r corresponds to the standard Pearson correlation coefficient (see Section 2.3).

2.2.4 Communities
Many networks contain groups of nodes which form dense subgraphs. An obvious ex-
ample is provided by social networks, where groups of friends cluster together. These
groups are called communities, or modules, and consist of nodes which are more likely to
be connected to each other than to other nodes in the network. There exist three different
community definitions: cliques, strong communities and weak communities. A clique is a
complete subgraph of a network, meaning that all nodes in the subgraph connect to each
other [7]. This is the strictest definition of a community. In a strong community, each node
has more links to nodes within the community than to other nodes [7]. This requirement
is expressed as:

kinti (C) > kexti (C)

where kinti represents the number of links between node i and other nodes in the commu-
nity C. kexti represents number of links between node i and nodes outside community C.
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(a) (b) (c)

Figure 2.6: Communities can be defined as (a) cliques, (b) strong communities or (c) weak
communities. The coloured nodes correspond to nodes which are members of exemplified
communities. Additional communities are also present in the networks. From [7], CC BY.

In a weak community, the sum of links within the community must exceed the sum of
links between the nodes in the community and nodes outside the community [7]. This is
more succinctly stated as: ∑

i∈C
kinti (C) >

∑
i∈C

kexti (C)

where kinti , kexti and C are defined as above.

Note that all cliques are strong communities and that all strong communities also fulfill
the requirements for weak communities. A visual comparison of different community def-
initions is presented in Figure 2.6.

Brute-force approaches for detection of communities are computationally infeasible due
to the large number of possible partition of a network [7]. Hence, several algorithms have
been developed to aid the identification of communities in a network. One example is the
Louvain algorithm [29]. This method consists of two phases which are repeated iteratively.
Initially, all nodes in the network are assigned to different communities. Next, the effect of
moving node i from its own community to the communities of its neighbours is evaluated.
The estimated effect is based on alteration of modularity, which measures the quality of a
partition [29]. Node i is then placed in the community which gave the maximum positive
modularity gain. If no movement of node i gives a positive gain, i will remain in its own
community. This process is repeated for all nodes in the network. Phase one stops when
no individual move gives a modularity gain. Note that this implies that a node may be
considered several times [29]. The second phase allows construction of a meta-network,
meaning a network where nodes correspond to the communities identified in phase one.
The weight of the link between two community-nodes in the meta-network is equal to the
sum of the weight of links between the original nodes in the corresponding communities
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Figure 2.7: The Louvain algorithm may be used to identify communities in a network. It consists
of two phases, which are repeated iteratively until there is no gain in modularity. Phase one is based
on optimization of modularity by local changes. Phase two aggregates communities to construct a

meta-network. From [7] based on [29], CC BY.

[29]. In the next step, phase one may be reapplied to construct communities of communi-
ties. This allows investigation of several organization levels in the original network [29].
The entire process is repeated until there is no more changes in the final network [29]. A
visualization of the Louvain algorithm is provided in Figure 2.7.

In summary, networks may consist of subgraphs called communities or modules. These are
defined as cliques, strong communities or weak communities. The community structure
may be examined by the Louvain algorithm.

2.3 Correlations
The human body consists of many different cell types. The genome in all of the somatic
cells is the same, but only a subset of the genes are expressed. This subset varies between
cell types and with the environment of the cells [2, p. 503]. To evaluate the level of con-
cordance between gene expression patterns of two genes, a similarity measure needs to be
introduced [8]. All similarity measures quantify the dependence between two sequences
of measurements [30]. Examples of similarity measures include wTO [21–24], which was
introduced in Section 2.2.1, and correlation [8, 9, 30]. The latter is the focus of this section.

Pairwise correlations, such as Pearson correlation and Spearman rank correlation, are fre-
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quently used as similarity measures [8, 9, 30]. The values of correlations coefficients range
from -1 to 1. Positive correlation indicates that the value of the first variable tends to in-
crease as the second variable increases, while a negative correlation represents the inverse
relationship. The absolute value of the correlation coefficient indicates the strength of the
relationship [31, 32, p. 160]. It is important to note that a statistical significant correlation
does not correspond to a causal relationship.

The Pearson correlation coefficient is a measure of a linear relationship between two sets
of data [31, 33]. Both of the underlying variables should be continuous and normally
distributed. This measure is affected by extreme values and may therefore be strongly
influenced by outliers in the data sets [33]. The equation for the Pearson correlation coef-
ficient is given in equation 2.9.

ρij =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n
i=1(Yi − Ȳ )2

(2.9)

where X and Y represent two different variables, n corresponds to the number of data
points and X̄ and Ȳ represent the average values for variable X and Y , respectively.

The Spearman rank correlation coefficient can be calculated by inserting the ranks of vari-
able X and Y , instead of raw data, in equation 2.9 [34]. When the sequence of ranks is
identical for the two variables, the Spearman rank correlation coefficient takes a value of
1. When the ranks of X vary inversely with the ranks of Y , the Spearman rank correlation
coefficient is equal to -1 [34].

In contrast to the Pearson correlation coefficient, the Spearman rank correlation coeffi-
cient measures statistical dependency of monotonic, non-linear relationships [34]. This is
illustrated in Figure 2.8. In general, the Spearman rank correlation coefficients are more

(a) (b)

Figure 2.8: Correlation coefficients of monotonically (a) increasing and (b) decreasing
relationships where Y = ± 1

1000
eX . A monotonic relationship results in perfect Spearman rank

correlation coefficient (rs) even though the dependency is non-linear. Note that the Pearson
correlation coefficients (rp) are not perfect.
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robust to outliers than Pearson correlation coefficients [33, 34]. Furthermore, it is ap-
plicable to analysis of ordinal and/or non-normally distributed variables [33, 34]. These
properties are caused by the non-parametric nature of Spearman rank correlation coeffi-
cients [34].

Taken together, correlations may be used as similarity measures to evaluate concordance
between gene expression patterns. Pearson correlation is suitable to determine similar-
ity between patterns that are linearly related, while Spearman rank correlation measures
dependency of monotonic, non-linear relationships.

2.4 Gene Expression Analysis
The gene expression levels in cells and tissues can be investigated by two main approaches:
microarrays and RNA Sequencing (RNA-Seq) [2, p. 503]. Microarrays consist of an ar-
ray of short DNA sequences, called probes, attached to a microchip. Isolated transcripts
from the cells or tissue under investigation are converted to complementary DNA (cDNA)
and labelled with fluorescence. Next, the cDNAs are added to the microchip and allowed
to hybridize with complementary probes. The labelling of the cDNAs enables estimation
of expression levels [2, p. 503]. However, microarrays may require complicated normal-
ization methods to allow comparison of different experiments [35]. This step reduces
systematic errors which may arise due to labelling, hybridization and scanning [36]. It
exists several approaches for normalization of microarrays, including Micro Array Suite
5.0 (MAS5) [37] and Robust Multi-array Analysis (RMA) [38].

RNA-Seq sequences all RNAs present in a cell/tissue. First, the RNAs in the sample are
converted to a cDNA library which may be amplified. The cDNA library is subsequently
sequenced. The resulting reads are identified and level of expression can be calculated
[35]. Initially, Wang et al. [35] optimistically claimed that RNA-Seq ”can capture tran-
scriptome dynamics across different tissues or conditions without sophisticated normal-
ization of data sets”. However, Robinson and Oshlack [39] illustrated that normalization
methods are often an important requirement. The normalization methods may account for
within-sample or between-sample effects. Within-sample effects refer to factors that in-
fluence comparison of read counts between genes within one sample [40], such as gene
length [41] and GC-content [42]. Between-sample effects, such as sequencing depth [39],
describe factors that influence comparison of read counts for individual genes between
samples [40].

2.5 Gene Co-Expression Networks
Expression profiles from a gene expression analysis may be used to analyse co-expression
of genes. Functionally related genes are likely to be regulated in a similar way in differ-
ent conditions. Hence, gene functions may be deduced from these analyses [2, p. 504,
43]. This has been used to identify pathways associated with specific disorders, including
autism spectrum disorders [44]. However, it is important to note that genes which share a
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regulatory DNA motif by chance may be expressed in the same conditions as well. As a
result, co-expression does not automatically indicate a functional relationship [9, 43].

Gene co-expressions can be represented and analysed as an undirected network. The
nodes in this network correspond to genes, while the links correspond to (significant)
co-expressions [8]. A gene co-expression network can be created by the following steps
[8]:

1. Collect gene expression data from experiments, for instance from microarrays or
RNA-Seq.

2. Define a measure of similarity, typically pairwise correlation between gene expres-
sions.

3. Transform the similarity matrix to an adjacency matrix. All elements along the
diagonal in the adjacency matrix are set to zero. The next step depends on whether
the resulting co-expression network is unweighted or weighted:

(a) Unweighted gene co-expression network: introduce a ”hard” threshold. All
values in the similarity matrix with a value above the threshold will attain a
value of one in the adjacency matrix. The remaining values will be set to zero.

(b) Weighted gene co-expression network: introduce a ”soft” threshold. The soft
threshold converts the similarity score to a connection weight.

Microarrays and RNA-Seq are often used to compare gene expression profiles between
different cell types or cells subjected to different conditions. Thus, differences in gene
co-expressions can be evaluated [2, p. 503-504]. Differential gene co-expression networks
may be used to identify and analyse these differences. Several of the differential gene co-
expression network methods construct separate gene co-expression networks for each of
the studied conditions. The network structures are subsequently compared to investigate
potential differences in the underlying systems. Simple comparisons include evaluation
of alterations in node degrees and identification of links which are related to a specific
condition [9, 10]. Other differential gene co-expression network methods construct one
common network which represents the differences between the investigated conditions.
Each link in the network is given a score based on the alterations in gene co-expression in
the different conditions [9]. Different methods use different strategies to define this score.
The resulting links are subsequently filtered to exclude non-significant changes [9].

In sum, gene co-expression networks aid analysis of expression profiles from cells/tissue
on a system level. Differential gene co-expression networks facilitate the identification of
differences, and similarities, between different gene expression profiles. Several methods
have been develop to assist these analyses.
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2.6 CSD Analysis
The CSD approach was developed at NTNU by Voigt et al. [9] and aids the analysis
of differential gene co-expression networks. In this method, co-expressions are defined
as conserved (C), specific (S) or differentiated (D). Conserved co-expression means that a
gene pair is similarly correlated in two condition, while specific co-expression implies that
two genes are only correlated in one condition. Differentiated co-expression indicates that
a gene pair is negatively correlated in one condition and positively correlated in another
[9]. This section will describe the basic steps of the CSD approach.

The CSD approach is based on the identification of pairwise gene co-expression scores
ρij,k, where i and j denotes two genes and k denotes the condition. The calculated scores
correspond to Spearman rank correlation coefficients. The variation in co-expression
within a given condition is measured by the standard error of the mean, σij,k, calculated
form a set of Spearman rank correlation coefficients from independent subsamples from
the given condition. A detailed description of how to select subsamples is given by Voigt
et al. [9]. A minimum of 49 data points for each condition is required to obtain a satisfying
accuracy for the standard error of ρij,k [9]. Furthermore, Voigt et al. [9] argue that a mini-
mum of 49 data points will reduce the impact of stochastic effects related to small sample
sizes [9]. In case of inadequate sample size, it is recommended to omit the subsampling
[9].

Conserved, specific and differentiated co-expressions are associated with three pairwise
comparative scores, which are given in equation 2.10, 2.11 and 2.12. A visual represen-
tation of the classification of gene co-expressions as conserved, specific and differentiated
is provided in Figure 2.9.

Cij =
|ρij,1 + ρij,2|√
σ2
ij,1 + σ2

ij,2

(2.10)

Sij =
||ρij,1| − |ρij,2||√
σ2
ij,1 + σ2

ij,2

(2.11)

Dij =
|ρij,1|+ |ρij,2| − |ρij,1 + ρij,2|√

σ2
ij,1 + σ2

ij,2

(2.12)

where ρij,k and σij,k represent Spearman rank correlation coefficient and the standard er-
ror of the mean for the co-expression of gene i and j in condition k, respectively.

Cij , Sij andDij are positive values and range from zero to infinity. However, these are not
directly comparable with each other. Consequently, a new value, Xp, must be introduced.
This value maps Cij , Sij and Dij to a common scale, thus enabling the combination of
C-, S- and D-links into a single network using a common value of p [9]. In the resulting
CSD network, links are treated as unweighted. Note that p is not a significance threshold
in the calculations, but is referred to as the importance level [9]. Xp represents a threshold
value and its definition is given in equation 2.13.
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Figure 2.9: The CSD approach categorizes gene co-expressions from two different conditions as
conserved (C), specific (S) or differentiated (D). This is based on their respective Spearman rank
correlation coefficient, ρ1 and ρ2. If a gene co-expression exhibits a large value for C, S or D, it

will be located in the correspondingly coloured area in this plot (blue, green or red, respectively).
From [9], CC BY.

Xp =
1

m

m∑
i=1

max{si}X (2.13)

where X is a random variable from the underlying distribution of either C-, S- or D-links,
and m corresponds to the number of samples si, with size L, drawn from a data set of M
points. p is defined as 1/L where L << M .

Links in the final CSD network are categorized as C, S or D. A node however, may be
connected to other nodes by either of these link types. A homogeneity measure, given in
equation 2.14, is introduced to evaluate the identities and number of links between node i
and its neighbours. This measure may take values from 1/3 to 1. The lowest value (1/3)
indicates equal number of C, S and D links for the given node, while a value of 1 indicates
the presence of just one type of link from said node.

Hi =
∑

j∈{C,S,D}

(
kj,i
ki

)2

(2.14)

where kj,i corresponds to the number of j-type links (either C, S or D) between node i and
its neighbours. ki denotes total degree of node i.

In conclusion, the CSD approach classifies links in a differential gene co-expression net-
works as conserved, specific or differentiated. The links may be combined into a common
network by defining an importance level and calculating the threshold value for each link
type. Nodes in the network may be given a homogeneity value, which indicates if a node
is mainly connected to its neighbours by one or several types of connections.
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2.7 Consensus Network
Most network studies rely on data from one data set. However, when networks based on
similar data sets are compared, they often show considerable variation [23]. These differ-
ences may be due to biological or technical variation. Consequently, Berto et al. [23] and
Gysi et al. [22] have developed methods for constructing a consensus network (CN) from
multiple data sets. According to Gysi et al. [22], a CN should have higher biological con-
fidence than its input networks as the CN focuses on the commonalities across the input
networks. In this section, some potential methods for constructing CNs will be presented.

Current methods by Berto et al. [23] and Gysi et al. [22] for constructing consensus
gene co-expression networks are based on wTO. It has been argued that the use of wTO
in a network setting reduces the effect of false positives compared to networks based on
correlation coefficients [21]. Voigt and Almaas [24] also demonstrated that wTO may in-
crease the fidelity of gene co-expression networks, particularly when a data set contains
few samples. However, it is noteworthy that the topology of gene co-expression networks
based on wTO was found to be quite different from networks based on correlations [24].
Furthermore, the use of CNs based on wTO is limited for subsequent CSD analysis as
this method is based on Spearman rank correlation coefficients [9]. To my knowledge,
no method for combining gene co-expression networks or differential gene co-expression
networks based on correlation coefficients exists. However, some approaches have been
suggested for estimating mean correlation coefficients. These might be promising for the
development of a new method for constructing consensus CSD networks. The remainder
of this section focuses on these procedures.

Fisher [45, p. 199], Hedges and Olkin [46, p. 231] and Rosenthal [47, p. 73] argued that the
correlation coefficients should be transformed using Fisher’s Z transformation before esti-
mating the mean of the correlation coefficients. This transformation is shown in equation
2.15 [45, p. 200].

Z =
1

2
ln

(
1 + r

1− r

)
(2.15)

where r is the estimated correlation coefficient. The same transformation may be used
when r corresponds specifically to the Spearman rank correlation coefficient [34].

The transformation of a correlation coefficient to Z has three main advantages, which are
also reflected in Figure 2.10:

1. The standard error of Z may be regarded as independent of the true value of the
correlation in the population [45, p. 200].

2. The Zs are approximately normally distributed. In contrast, the typical distribution
of estimated correlation coefficients is far from normal, especially for high values
[45, p. 201].

3. The form of the distribution of Zs is nearly constant. In contrast, the distribution of
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2.7 Consensus Network

estimated correlation coefficients changes form if the true value of the correlation is
altered [45, p. 201].

If a fixed-effect model is assumed, meaning that the true correlation coefficient in the
population is assumed to be constant and equal for all included studies [48], the Fisher’s
Zs may be averaged as shown in equation 2.16 [47, p. 74].

Z̄ =

∑k
i=1(ni − 3)Zi∑k
i=1(ni − 3)

(2.16)

where Zi is the Fisher’s Z transformed correlation coefficient in study i and ni is the sam-
ple size of study i.

The Z value can be backtransformed to a correlation coefficient as shown in equation 2.17
[47, p. 71].

r =
e2Z − 1

e2Z + 1
(2.17)

According to Fisher [45, p. 207], there is a small bias when averaging correlation coeffi-
cients in this way. The averaged Z is slightly larger than the value of the true population
parameter that it estimates. Hence, the estimated correlation coefficient is somewhat exag-
gerated. This is reflected in Figure 2.10b where the ordinate of zero error is not centrally
placed when the true correlation coefficient is 0.8. Furthermore, Sheppard’s adjustment
(a correction for grouping errors) is omitted in the calculation of correlation coefficients
when calculating Fisher’s Zs [45, p. 207]. This results in a second systematic error, but
in the opposite direction of that described above. However, this second systematic error is
typically small [45, p. 208].

Even though the Fisher’s Z transformation is often used to estimate mean correlation co-
efficients, Schmidt and Hunter [48] are critical to this method. This is due to the bias
described above. According to Schmidt and Hunter [48], the positive bias introduced by
Fisher’s Z transformation ”is always greater in absolute value than the bias in the untrans-
formed correlation”. Hence, Schmidt and Hunter [49] suggest to calculate the weighted
mean from the untransformed correlation coefficients. This is shown in equation 2.18.
The method by Schmidt and Hunter [49] also offers the opportunity to correct for study
design artifacts, for instance sampling error. However, this requires information about the
size and nature of the artifacts from the included studies [49]. Consequently, the descrip-
tion and subsequent use of the Hunter-Schmidt method have been limited to its simplest
version in this thesis.

r̄ =

∑
niri∑
ni

(2.18)

where ni indicates the number of samples in study i and ri represents the estimated corre-
lation coefficient in study i.
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(a)

(b)

Figure 2.10: (a) Distributions of correlation coefficients from eight observations where the true
correlations are 0 and 0.8. (b) Distribution of Zs from the Fisher’s Z transformed values from (a).

Both curves in (b) are nearly normally distributed and have almost equal heights. From [45, p. 202].
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Schmidt and Hunter [48] do however acknowledge that the Fisher’s Z transformation may
be useful in some cases. As this transformation allows the standard error to only depend
on sample size [45, p. 200], and thus to be independent of the true value of the correlation
coefficient, it is useful in statistical tests [48]. Nevertheless, Schmidt and Hunter [49] ar-
gue that the weighted untransformed average of observed correlations is the best estimate
of mean correlation.

As described, Schmidt and Hunter [48] are reluctant to the use of Fisher’s Z transforma-
tion when estimating mean correlation coefficients. At the same time, Hedges and Olkin
[46, p. 230] are critical to the use of linear combinations of untransformed correlation co-
efficients for this calculation. They claimed that the sample sizes of the included studies
have to be quite large in order to recommend the use of this method [46, p. 230]. Taken
together, both Fisher’s Z transformed and weighted untransformed averages of correlation
coefficients seem to be possible methods for estimating combined correlation coefficients
and may be useful for creating consensus CSD networks. However, both methods have
limitations and lead to bias in the final estimate.

2.8 Gene Ontology
In the study of biological networks, it is often beneficial to describe and group genes and
gene products using Gene Ontology (GO). In general, an ontology formalizes knowledge
about concepts by describing and classifying them in relation to each other [50]. Each
ontology term is provided with a name, synonyms, definition and a unique ID [50]. GO
is a specific ontology related to biological processes, molecular functions and cell com-
ponents [50]. Furthermore, GO facilitates the representation of biological information in
a computer-friendly way, enables connections across different biological databases and
eases the analysis of large data sets [50]. The latter is especially useful for (differential)
gene co-expression networks, as groups of genes may be analysed to investigate if some
GO terms are over- or underrepresented in the network [50]. As a result, this may give
clues about biological functions, roles or locations of a group of genes/gene products.

2.9 Statistics
The use of statistics is necessary to analyse networks and compare potential methods for
constructing CNs. This section gives a brief introduction to statistical methods that are
relevant for this thesis, including the Jaccard index, root mean square error (RMSE), hy-
pothesis testing and the multiple comparison problem.

2.9.1 Jaccard Index
The similarity between two sample sets may be reflected by the Jaccard index, also known
as Jaccard similarity coefficient, Tanimoto index or Tanimoto coefficient. This index is
defined as the size of the intersection divided by the size of the union, as shown in equation
2.19 [51, 52]. A visualization of the intersection and union is provided in Figure 2.11. The
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(a) (b)

Figure 2.11: The Jaccard index is defined as the size of (a) the intersection divided by the size of
(b) the union of two sample sets.

Jaccard index is a useful measure as it allows quantification of overlap between two sample
sets [52]. Hence, this statistic is used in many disciplines, including ecology [51–53],
machine learning [54] and biological network analyses [24].

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(2.19)

where A and B are two sample sets, and J(A,B) = 1 if |A ∪B| = 0.

2.9.2 Root Mean Square Error

The root mean square error (RMSE) is used to measure model performance [55]. This met-
ric is utilized in several disciplines, including climate research studies [56], biomedicine
[57] and epidemiology [58]. Its definition is given in equation 2.20, where it is assumed
that the errors are unbiased and follow a normal distribution [55]. In general, a lower
RMSE indicates a better fit between the observed and predicted values.

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2
n

(2.20)

where ŷi is the predicted value, yi is the observed value and n is number of observations.

Other metrics, such as mean absolute error (MAE), may be used as alternatives to RMSE
for evaluating model performance. Importantly, MAE gives equal weight to all errors.
RMSE on the other hand, gives more weight to errors with large absolute values [55].
Consequently, RMSE is more sensitive to outliers. According to Chain and Draxler [55],
there is not an agreement for which metric to use as a standard when evaluating model
performance.
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2.9.3 Hypothesis testing
Hypothesis testing is performed to test two hypotheses against each other. The first hy-
pothesis is called a null hypothesis, H0, while the other hypothesis is called an alternative
hypothesis, H1. The purpose of hypothesis testing is to determine if H0 can be rejected
[32, p. 231]. In general, there are two main ways of formulating the hypotheses of statis-
tical tests. One-tailed tests examine if the estimated value is significantly different from
a reference value in one direction, either larger or smaller. Two-tailed tests on the other
hand, examine if the estimated and reference values are significantly different in either
direction [32, p. 257].

There are two possible erroneous conclusions that can occur in hypothesis testing: type I
and type II errors [32, p. 232]. Type I errors, also called false positives, refer to rejection
of H0 even though H0 is correct. Type II errors, also called false negatives, refer to keep-
ing of H0 even though H0 is false. It is wishful to avoid both type I and type II errors in
hypothesis testing. However, there is a trade-off between them. If the goal is to minimize
type I errors, this will generally increase the occurrence of type II errors. The reverse is
also true [32, p. 232]. In general, hypothesis testing focuses predominantly on type I errors.

When hypothesis testing is performed, it is necessary to define a significance level. This
level represents the acceptable level of making type I errors [32, p. 233]. During the hy-
pothesis testing, a P value is calculated. This value represents the probability of sampling
a test statistic which is at least as extreme as the observed result, given that H0 is true [32,
p. 268]. H0 is rejected if the P value is lower than the significance level. An overview of
relevant statistical tests for this thesis is presented in Table 2.1.

In conclusion, hypothesis testing is used to test an alternative hypothesis against a null
hypothesis. This typically involves the calculation of a P value, which helps to determine
if the null hypothesis should be rejected.

Table 2.1: Summary of relevant statistical tests.
Test Description Reference(s)
One sample
t-test

Tests if the population mean is statistically different from a given value.
It is assumed that the measurements are normally distributed.

[32, p. 271].

Independent
samples
t-test

Tests if there is a statistical difference between the means of two
(unpaired) groups. It is assumed that the underlying measurements of
both groups are independent of each other and normally distributed.

[32, p. 340].

Wilcoxon
signed-rank
test

Non-parametric test to investigate if medians of two paired groups are
statistically different. It is assumed that the distribution of the differences
between the groups are continuous and symmetrical, but normally
distributed data is not required.

[32, p. 360]

Binomial
test

Tests if the number of observed successes is different from a
hypothesized probability of success. Binomial data is required and it is
assumed that the probability of success is the same in all experiments and
that the experiments are independent.

[32, p. 360,
59, p. 88-89]

Fisher’s
exact test

Tests if one binary variable is related to another. A hypergeometric
distribution of the data is assumed. This test is used by many tools to
investigate enrichment of Gene Ontology terms.

[59,
p. 355-359,
60–62]
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2.9.4 Multiple Comparison Problem
The creation of (differential) gene co-expression networks demands particular attention as
thousands of statistical tests are performed simultaneously in one analysis. This increases
the probability of finding a significant result due to chance if the conventional thresh-
olds for P values are used [63]. This problem is called the multiple comparison problem.
Typical correction methods aim to control the type I error rate when multiple tests are
performed simultaneously [63]. These methods include the Bonferroni correction and the
Benjamini-Hochberg correction presented below.

The Bonferroni correction controls the probability of making at least one type I error,
which is known as the family-wise error rate (FWER) [63]. In this method, a new thresh-
old is established by dividing the significance level by the total number of statistical tests
performed in the analysis. H0 is rejected if the P value is lower than the new threshold [63].

The Benjamini-Hochberg correction controls the false discovery rate (FDR), which is de-
fined as the expected proportion of false positives among positive tests [64]. If several
hypotheses are tested at the same time and all null hypotheses are true, then FDR is equal
to FWER. However, if only some of the null hypotheses are true, FDR is smaller or equal
to FWER. Consequently, a method which controls FDR can be less stringent than a method
controlling FWER [64]. The Benjamini-Hochberg correction method ranks the P values
by ascending values and identifies the largest k such that the requirement in equation 2.21
is fulfilled. All null hypotheses with ranks below k are rejected [64].

Pk ≤
k

m
q∗ (2.21)

where m is the number of tested null hypotheses and q∗ is the chosen FDR.
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Chapter 3
Method
This chapter will present the material and methods used in this thesis. It will first describe
the approaches used to develop and test methods for creating consensus CSD networks.
Next, it will describe the application of the developed methods to create a consensus CSD
network for BP. The approaches used to analyse and evaluate the resulting network(s)
will also be presented. A third section is included to provide an overview of the relevant
software for this thesis.

3.1 Method Development: Consensus Networks
One of the aims in this thesis is to develop and test methods for combining several data
sets into one consensus CSD network. A potential method for creating such networks is
to combine correlation coefficients from individual studies into averaged values, which
subsequently are used as input to the conventional CSD approach. Here, two methods for
estimating combined correlation coefficients in a network setting will be evaluated. This
assessment will be based on tests performed on a large data set which, due to its large sam-
ple size, may be used as a relatively accurate reference set. Consequently, a gene expres-
sion data set named ”Skin - Not Sun Exposed (Suprapubic)” (with 25 279 Gencode IDs and
517 samples) was downloaded on 25.08.21 from the Genotype-Tissue Expression (GTEx)
consortium [65] (https://gtexportal.org). The chosen data set contained Gencode IDs as
identifiers, which were translated to gene names using the translation file provided by the
GTEx Portal (https://gtexportal.org/home/datasets; file: gencode.v26.GRCh38.genes.gtf).
If two or more Gencode IDs corresponded to the same gene name, their expressions were
averaged.

To reduce the running time of the analysis, and thus allow repeated testing, the number
of genes in the data set was reduced to 1000. These were randomly chosen from the
gene expression data set. The Spearman rank correlation coefficients were calculated for
the 1000-gene data set as described by the CSD approach, see description of CSD. The
subsampling was omitted and variances were not calculated. The resulting correlation co-
efficients will be used as references when testing the methods for estimating combined
correlation coefficients (see details below).

The 1000-gene data set was subsequently divided into random subgroups, each containing
between 10 and 49 samples. Note that these individual subgroups are deemed insufficient
for CSD analysis due to their small sample sizes. In special cases, a maximum of 58 sam-
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ples was allowed in order to include all samples from the entire 1000-gene data set in the
subgroups. The random splitting process was repeated 100 times and Spearman rank cor-
relations were calculated for all subgroups (without calculation of variances). Finally, two
combined correlation coefficients were calculated for each gene pair within each repeti-
tion. These combined correlation coefficients were based on averages of Fisher’s Z trans-
formed correlation coefficients (equation 2.15, 2.16, 2.17) and weighted untransformed
correlation coefficients (equation 2.18), respectively. Note that if a Spearman rank corre-
lation coefficient is equal to 1, the Fisher’s Z value will approach infinity. In these cases,
Fisher’s Z was set equal to 5 in our method (corresponding to a Spearman rank correlation
coefficient of 0.9999). Similarly, a Spearman correlation coefficient of -1 was set equal to
a Fisher’s Z value of -5.

The estimated combined correlation coefficients, as well as individual subgroup corre-
lation coefficients, were compared with the reference correlation coefficients calculated
directly from the entire 1000-gene data set. Self-correlations were excluded from the
comparisons. The following calculations and tests were performed:

1. Calculation of Spearman rank correlation between test (combined or subgroup) and
reference correlation coefficients. The statistical difference between the correlation
of correlations for the combination methods was evaluated by the Wilcoxon signed-
rank test. Notice that the Spearman rank correlation coefficient is calculated even
though it is expected a linear relationship between reference and estimated values.
This is due to the inclusion of averaged values for the variables in the equation for
the Pearson correlation coefficient (see equation 2.9).

2. Calculation of RMSE between test (combined or subgroup) and reference correla-
tion coefficients. The statistical difference between the RMSEs for the combination
methods was evaluated by the Wilcoxon signed-rank test.

3. Calculation of Jaccard indices as a function of number of investigated gene pairs
between test (combined or subgroup) and the reference correlation coefficients. Ab-
solute values of the correlations were used as input. The Jaccard indices between
the two combination methods were also calculated in this step.

Together, these tests allow evaluation and comparison of the estimated combined correla-
tion coefficients with each other and with individual subgroup correlation coefficients (rep-
resenting the current method for dealing with small sample sizes in the CSD approach). A
flowchart of the resulting method is shown in Figure 3.1.
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Figure 3.1: Flowchart of the method development for comparison of two methods for estimating
combined correlation coefficient. Blue boxes indicate processing steps, orange boxes indicate

calculation steps and the green box represents the comparison steps.
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3.2 Network Analysis of Bipolar Disorder
In this section, the developed method from Section 3.1 is used to generate consensus CSD
network(s) for BP. The necessary steps for the creation and analyses of the networks,
as well as comparisons of the CSD networks based on the combination approaches, are
presented in Figure 3.2. The following subsections will discuss each step in more detail.

Figure 3.2: Flowchart of the method for creating consensus CSD networks for bipolar disorder
(BP). The blue box indicates processing steps, orange boxes indicate calculation steps and green
boxes represent the comparison steps. Note that the two parallel paths after the combination of

Spearman rank correlation coefficients represent the creation and analyses of CSD networks based
on either Fisher’s Z transformed or weighted untransformed averages of correlation coefficients.
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3.2.1 Network Construction

The first step of the consensus CSD network construction entails the identification of rel-
evant BP data sets. Hence, a search for ”bipolar disorder” was performed in Gene Ex-
pression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/gds) [66, 67] on 09.09.21. Re-
sults were restricted to ”Expression profiling by array” or ”Expression profiling by high
throughput sequencing”. The search was further restricted to data sets with a total of at
least 20 samples from humans. 45 search results matched these restrictions. A manual
selection of data sets with at least 10 samples for both BP and control originating from
macrodissected DLPFC was performed. The included studies and some of their charac-
teristics are provided in Table 3.1. A summary of normalization methods for each study
is provided in Appendix A.1, where only data set GSE80655 [68] required additional nor-
malization. Note that none of the identified studies contained sufficient number of BP
samples to be appropriate for CSD analysis alone.

Each relevant data set was downloaded and split into two groups, containing samples from
either BP or controls. If the studies included samples from other tissues in addition to
the DLPFC or samples from other disorders, these additional samples were omitted. The
probe IDs were converted to gene names using the provided files at GEO or an appropriate
translation file from BioMart (https://www.ensembl.org/biomart, downloaded 29.10.21).
Consequently, a common naming regime for the included studies was created. Probes that
corresponded to more than one gene were removed from the data sets. If two or more
probes corresponded to the same gene, these were also omitted. This is due to the un-
known consequence of combining averaged expressions from one data set with possible
unaveraged expressions from another data set when estimating combined correlation co-
efficients. Furthermore, genes with expression values that did not meet the requirements
for calculation of Spearman rank correlation coefficients were also removed. Specifically,
this corresponds to genes where all measured expression values were equal to zero. Thus,

Table 3.1: Included studies of bipolar disorder from Gene Expression Omnibus (GEO). All studies
contained samples originating from the dorsolateral prefrontal cortex.

GEO
accession

Number of
BP samples

Number of
control
samples

Provider of brain tissue Reference

GSE80655 23 24 Pritzker Neuropsychiatric
Disorders Research
Consortium

[68]

GSE92538 26 83 Pritzker Neuropsychiatric
Disorders Research
Consortium

[69]

GSE53987 17 19 University of Pittsburgh [70]
GSE5388 30 31 Stanley Medical Research

Institute
[71]

GSE12649 33 34 Stanley Medical Research
Institute

[72]

GSE120340 10 10 Stanley Medical Research
Institute

[73]

Total 139 201
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they could not be ranked. This finding was only apparent in the GSE80655 data set [68].
Finally, genes that were not universally represented in all six data sets removed. This gave
a total of 3148 genes that were analysed in the subsequent steps. The resulting expression
data sets were sorted to make sure that the genes were in the same order. The Spearman
rank correlation coefficients were calculated for all data sets individually as described in
the conventional CSD approach, see description of CSD. However, the variances were not
calculated due to low number of samples in each individual study.

Table 3.1 indicates that the brain tissues in some studies originated from the same brain
bank. A mapping of available patient information (Appendix A.2) from these studies sug-
gests that they might rely on (some of) the same patients. Hence, a clustering analysis was
conducted to investigate the similarity between the data sets. This analysis relied on the
creation of matrices where each element corresponded to a pairwise Spearman rank cor-
relation coefficients between the Spearman rank correlation coefficients from two studies.
The matrices for BP and control samples were used to generate hierarchically-clustered
heat maps for the data sets.

The Spearman rank correlation coefficients from each individual study were subsequently
combined using the methods from Section 3.1 (combined correlation coefficients based on
Fisher’s Z transformed or weighted untransformed averages). These results were further
processed to fit the required format for subsequent CSD analysis and led to the production
of four data sets:

1. Combined correlation coefficients for BP samples based on Fisher’s Z transformed
values.

2. Combined correlation coefficients for control samples based on Fisher’s Z trans-
formed values.

3. Combined correlation coefficients for BP samples based on weighted untransformed
values.

4. Combined correlation coefficients for control samples based on weighted untrans-
formed values.

In the last steps, the CSD scores between BP and control samples were calculated and a
final CSD network was generated using an importance level of p = 10−4 (selSize = 10
000). These two last steps were performed twice, using combined correlation coefficient
estimates based on either Fisher’s Z transformed averages or weighted untransformed av-
erages.

As the p in the CSD approach does not correspond to a significance threshold, it was
wishful to evaluate the significance of the included links in the CSD network. Each link
is associated with two correlation coefficients, one originating from BP samples and one
from control samples. In each case, the null hypothesis that there was no correlation in
the population was tested using a two-tailed t-test with degrees of freedom (df) = n − 2,
as recommended in [34]. Next, the P value for each link was calculated as the product of
the P values for its two underlying correlation coefficients. As several hypotheses have
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been tested, it was necessary to correct for multiple comparisons. Hence, the Benjamini-
Hochberg correction (with FDR < 0.05) was applied. Links that did not fulfill the signifi-
cance requirement were removed from the CSD network.

3.2.2 Comparison of Models

The method development in Section 3.1 was based on combination of gene expressions
which originated from the same underlying data set. In contrast, the network analysis of
BP has been based on gene expressions from different underlying data sets. Consequently,
a comparison of the estimated correlation coefficients was also conducted for these data
sets. This was performed by calculating the Spearman rank correlation coefficient for
estimates of correlation coefficients based on Fisher’s Z transformed averages relative to
combined scores based on weighted untransformed averages. Obvious outliers (where the
difference was greater than 0.4) were investigated manually. The combination methods
were further compared by calculating their Jaccard indices for different number of investi-
gated gene pairs. Jaccard indices were also calculated between individual BP and control
data sets relative to the combined data sets.

As a follow-up, the Jaccard indices between nodes and links in the the two CSD networks
(based on either Fisher’s Z transformed or weighted untransformed values) were calcu-
lated. Similar calculations were also conducted for each of the network subtypes from the
CSD analysis (C, S and D networks). Furthermore, the CSD networks were imported into
Cytoscape [74] for visualization. A merged network of the CSD networks was created and
used to visualize commonalities and differences between the networks based on Fisher’s Z
transformed and weighted untransformed averages. The merged network was also visual-
ized by plotting its adjacency matrix, where the nodes were first sorted by network origin
and then by community membership determined by the Louvain algorithm [29]. The CSD
networks were further compared node by node to investigate the concordance between the
specific degrees as well as the identities of the neighbours. The similarity between the
neighbours of one node in the two CSD networks was measured by calculating the Jaccard
index.

3.2.3 Network Analysis

The final CSD networks were subjected to structural network analyses to investigate if
they behave as expected from [9]. The structural analyses treated the networks as undi-
rected and unweighted. These analyses included investigation of the degree distributions
for the CSD networks, as well as calculation of network assortativity and average cluster-
ing coefficients for the CSD networks and the individual C, S and D networks. The cal-
culated assortativity and average clustering coefficients were compared with values from
random networks generated according to the configuration model [27]. Consequently, it
was investigated if the the calculated assortativity and average clustering coefficients were
significantly different from random expectations. The estimated P values were corrected
for multiple testing with the Bonferroni correction method.

31



Chapter 3. Method

In the next step, homogeneity scores were calculated for all nodes in the networks to assess
if nodes tended to be connected with one or several link types. Genes were subsequently
classified according to degree, where 3 ≤ k ≤ 9 are defined as intermediate genes and
k ≥ 10 as hubs. The tendency of hubs to be more homogeneous than intermediate genes
was tested with a one-tailed independent samples t-test. In addition, the Spearman rank
correlation coefficient between homogeneity and degree was calculated for all genes with
k ≥ 3.

In addition to structural analyses of the networks, functional analyses were also conducted.
These analyses were restricted to the CSD network based weighted untransformed aver-
ages of correlation coefficients. All nodes of the individual C, S and D networks, as well
as the full CSD network, were subjected to GO enrichment analyses using the analysis
tool from PANTHER [61, 75, 76]. Gene names of the nodes were used as input to the
GO enrichment analysis. If a gene name was not uniquely mapped, a manual inspection
of possible matches was performed and the correct ID was chosen. The analyses were
restricted to the complete GO biological process using the list of all included genes in the
CSD analysis as reference. The test type was set to Fisher’s exact test with FDR correction.

The CSD network was also subjected to a disease enrichment analysis in Cytoscape [74],
using the DisGeNET Cytoscape app [77, 78] with gene symbols as input. DisGeNET in-
tegrates data from several databases to provide information about the current knowledge
related to the genetic basis of human diseases [77]. The DisGeNET enrichment analysis
uses Fisher’s tests and corrects P values for multiple testing by the Benjamini-Hochberg
method [78]. However, the disease enrichment analysis for the CSD network has been
restricted to overrepresentation of genes related to BP. Hence, no correction for multiple
testing was required. The enrichment analysis was further restricted to curated informa-
tion.

In the next analysis step, communities in the CSD network were investigated. The com-
munities were identified using the Louvain algorithm [29]. Communities that contained
more than 5 nodes were subsequently subjected to GO enrichment analysis, using the same
settings as described above.

Finally, the top hubs in the CSD network were investigated in more detail. This included
a manual investigation of relevant genes and underlying correlations between these genes
and their neighbours. The purpose of the latter was to identify the direction of change for
correlations underlying D links and whether BP samples gained or lost a correlation in the
case of S links. This inspection was subsequently extended to all S links.

3.2.4 Comparison with Basal Ganglia
The correlations underlying the final CSD network (based on weighted untransformed av-
erages) were compared with correlations from basal ganglia. The idea was to examine
if the co-expressions of genes in the DLPFCs from BP samples were shifted towards co-
expression patterns in another brain region relative to the control DLPFCs. The basal
ganglia was chosen due to the availability of CSD data from this brain region in [9] (num-
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ber of samples: 92, available from Almaas Lab as CSD complete data.txt.gz).

For each gene pair, a binary test was conducted to check if the sign of the correlation
difference between control DLPFC and BP DLPFC was equal to the sign of the difference
between control DLPFC and basal ganglia. No transformation was required at this step as
only the signs of the differences were of interest. The number of gene pairs that fulfilled the
binary test was counted for all links in the CSD network that had a counterpart in the basal
ganglia data set. The links were also sorted according to their link types to allow more
detailed comparisons. The P values for all comparisons were calculated by comparing the
number of successes to the hypothesized probability of success (2/3) using a two-tailed
binomial test. As four hypotheses have been tested, the calculated P values were adjusted
for multiple testing with the Bonferroni correction method.

3.3 Software
The development, testing, network creation and analysis in this thesis were mainly per-
formed in Python. Plots were created using matplotlib [79] and Seaborn [80], and venn
diagrams were generated using matplotlib-venn (matplotlib venn). Processing, some data
analysis and scientific computations relied on Pandas [81] and Numpy [82]. Performance
evaluations and network analyses were conducted using SciPy [83] and NetworkX [84]. In
addition to computations and analyses in Python, C++ and DESeq [85, 86] in R were used
to calculate gene pair correlations and to normalize the data set GSE80655, respectively.
Furthermore, Excel was used for significance filtering of the final CSD networks.

The CSD networks were visualized and subjected to simple network analysis using Cy-
toscape [74]. The Cytoscape-plugins DisGeNet-app [77, 78] and setsApp [87] have been
used to perform disease enrichment analysis and to aid the community layout of the
CSD network, respectively. GO enrichment analyses have been conducted in PANTHER
[61, 75, 76]. All relevant code, as well as the CSD networks, are available on GitHub
(CSD and Consensus CSD). An overview of version numbers of the software is provided
in Appendix B. In addition, all processed data sets are provided at Figshare (DOI:
https://doi.org/10.6084/m9.figshare.19665624.v1).
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Chapter 4
Results and Analysis
This chapter will present the results of this thesis and an initial interpretation and analysis
of the findings. The first section investigates and compares the methods designed to con-
struct CNs from combined correlations. The second section presents the consensus CSD
network(s) for BP and includes structural and functional analyses of the network(s).

4.1 Method Development: Consensus Networks
The current method for dealing with small sample sizes in the CSD approach is to carry
out the analysis with just one data set and omitting the calculation of variances. One of the
aims in this thesis is to develop and test new methods for improving this approach to allow
creation of consensus CSD networks. Two strategies for estimating combined Spearman
rank correlation coefficients from several underlying subgroups, based on either Fisher’s
Z transformed or weighted untransformed averages of correlation coefficients, have been
evaluated for this purpose. The following subsections will describe the comparison of
these estimates and individual subgroup correlations to reference Spearman rank correla-
tion coefficients from the 1000-gene set originating from the data set called ”Skin - Not
Sun Exposed (Suprapubic)”.

4.1.1 Correlation of Correlations
Spearman rank correlation coefficients from the combination methods and individual sub-
groups were compared to reference Spearman rank correlation coefficients by calculating
their relative Spearman rank correlation coefficients. This is a quite intricate description
and will be simplified by referring to this metric as ”correlation of correlations”. This
comparison allows evaluation of changes in ranking of gene pairs across the entire gene
set.

Figure 4.1 shows combined and subgroup correlation coefficients plotted against the ref-
erence correlations for representative repetitions and subgroups (see Figure 3.1 for a re-
minder that there was carried out 100 repetitions, each with several subgroups). Repre-
sentative plots were selected based on closeness to the median correlation of correlations
within each group. Figure 4.1 illustrates that the concordance between the subgroups
and reference set increases as the sample size of the subgroups increases. Nevertheless,
both estimation methods for combined correlations clearly outperform the subgroups when
compared to the reference set. This is seen in Figure 4.1e and 4.1f, where the plotted heat
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maps approach straight lines and have high correlations of correlations (0.9961 for both
combination methods). The general trends from Figure 4.1 were reproduced in all repeti-
tions. This is shown in Figure 4.2 where the test method (subgroups of different sizes and
combination methods) is plotted against its correlation of correlations. Once again, it is
clear that the combination methods outperform the individual subgroups as estimators of
the reference correlations.

At first glance at Figure 4.1e, 4.1f and 4.2b, it does not appear to be an obvious differ-
ence between the two combination methods for estimating the reference correlations. As
the estimates can be paired for each repetition, the pairwise differences have also been
evaluated to generate a more detailed comparison (Appendix C.1). In general, the corre-
lation of correlations tends to be higher for the weighted untransformed averages than the
Fisher’s Z transformed averages, but the difference is only apparent in the fifth decimal
place. Hence, the difference between the estimation methods is assumed to have minor
impact and is given little importance when comparing the combination methods despite
being significant (Wilcoxon signed-rank test: P = 3.9 ∗ 10−5).

In summary, the estimation of combined correlation coefficients seems to outperform the
current approach for dealing with small sample sizes in the CSD analysis when evaluating
correlation of correlations. Weighted untransformed averages of correlation coefficients
have significantly higher correlation of correlations than Fisher’s Z transformed averages
when comparing pairwise estimates, but the difference is small.

35



Chapter 4. Results and Analysis

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Representative heat maps between test and reference Spearman rank correlation
coefficients. (a)-(d) are representative heat maps where the test data sets correspond to subgroups of

sizes 10-19, 20-29, 30-39 and 40-49, respectively. (e) and (f) are representative heat maps where
the test data sets correspond to combined correlation coefficients based on Fisher’s Z transformed
and weighted untransformed averages, respectively. The dashed lines correspond to the expected
relationship (y = x). rs represents the Spearman rank correlation coefficient between the test and

reference correlations.
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(a)

(b)

Figure 4.2: Box plots of Spearman rank correlation coefficients between test and reference
correlation coefficients, where (a) test correlations originate from subgroups of indicated sizes or
combined values using Fisher’s Z transformed averages or weighted untransformed averages. (b)

Comparison of Spearman rank correlation coefficients between combined and reference correlation
coefficients at a finer scale.
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4.1.2 Root Mean Square Error
The second comparison of combined and subgroups Spearman rank correlation coeffi-
cients entailed the calculation of their RMSEs relative to the reference Spearman rank
correlation coefficients. A box plot of the calculated RMSEs is presented in Figure 4.3.
As expected, the RMSE tends to decrease as the subgroup size increases. This indicates
a better fit between the Spearman rank correlation coefficients of the subgroups and the
reference data set as the sample size increases. Interestingly, both combination methods
clearly outperform the subgroups and display substantially lower RMSEs.

Figure 4.3b indicates a small difference in RMSEs between the combination methods. A
more detailed comparison of the pairwise differences between these methods is provided
in Appendix C.2. It appears as the Fisher’s Z transformed averages tend to generate lower
RMSEs than the weighted untransformed averages. However, these differences are only
apparent in the third decimal place and is therefore believed to have minor importance
for the choice of estimation method, despite being significant (Wilcoxon signed-rank test:
P = 4.0 ∗ 10−18).

In total, the calculated RMSEs between test and reference Spearman rank correlation co-
efficients support the use of estimated combined correlation coefficients as an alternative
approach to the current method for dealing with small sample sizes in CSD analysis. The
calculated RMSEs indicate a better fit between the reference Spearman rank correlation
coefficients and Fisher’s Z transformed averages than weighted untransformed averages,
but the difference is small.
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(a)

(b)

Figure 4.3: Box plots of root mean square error (RMSE) between test and reference correlation
coefficients. (a) Comparison of RMSEs where test data sets correspond to subgroups of varying

sizes or combined data sets (based on Fisher’s Z transformed or weighted untransformed averages
of correlation coefficients). (b) Comparison of RMSEs at a finer scale where test data sets

correspond to combined data sets.
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4.1.3 Jaccard Index
The third and final comparison of the combined and subgroup correlation coefficients in-
volved the calculation of Jaccard indices for top n gene pairs with highest absolute value
of correlation coefficients relative to the reference data set. This comparison allows eval-
uation of changes in ranking of the most strongly co-expressed gene pairs, which are the
foundation of CSD analysis.

The Jaccard index between test and reference Spearman rank correlation coefficients is
plotted as a function of number of investigated gene pairs in Figure 4.4. In general, in-
creasing sample size tends to increase the Jaccard index. Furthermore, the Jaccard indices
are higher for combined correlation coefficients than individual subgroups for all numbers
of investigated gene pairs. From a visual inspection of the plot, there is no obvious dif-
ference between the combination methods based on Fisher’s Z transformed and weighted
untransformed averages. A plot of Jaccard indices calculated between top n gene pairs
of the Fisher’s Z transformed averages relative to the weighted untransformed averages
is included in Appendix C.3. This plot supports the notion that there is a high degree of
similarity between the combination methods.

Interestingly, there is a drop in Figure 4.4 for both combination methods when the number
of investigated gene pairs is 10. This could simply be caused by stochastic effects. When
the number of investigated gene pairs increases above 30, the Jaccard indices stabilize and
remain above 0.8 for both combination methods. As a CSD network typically includes
around 1000 gene pairs [9], the drop and large variation of the Jaccard indices at low num-
ber of investigated gene pairs are expected to have minor influence on the final result. In
addition, the combination methods still perform better than the individual subgroups even
at low number of investigated gene pairs.

The analysis of Jaccard indices supports the observations from the investigation of correla-
tion of correlations and RMSEs – The use of combined correlation coefficients is a superior
method compared to the use of individual subgroups for estimating reference correlations.
The analysis of correlation of correlations weakly favours weighted untransformed av-
erages, while the RMSE analysis weakly favours Fisher’s Z transformed averages. The
Jaccard index analysis does not favour any of the combination methods above the other.
Consequently, both Fisher’s Z transformed and weighted untransformed averages seem as
viable estimation methods for combined correlation coefficients.
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Figure 4.4: Jaccard index as a function of number of investigated gene pairs. Different methods for
estimating test correlation coefficients have been compared to the reference Spearman rank

correlation coefficients. Transformed and untransformed averages refer to Fisher’s Z transformed
and weighted untransformed averages, respectively. Error bars represent standard deviations.

4.2 Network Analysis of Bipolar Disorder
The following section is devoted to the network analysis of BP. First, the results of the
clustering analysis of the data sets will be presented. Furthermore, as the method devel-
opment relied on data from just one data set, this section will also compare combined
correlation coefficients based on Fisher’s Z transformed and weighted untransformed av-
erages for BP and control samples. Subsequently, the focus will shift to comparison and
structural analysis of the generated CSD networks (based on either Fisher’s Z transformed
or weighted untransformed averages). In the final parts of this section, functional analyses
of the CSD network(s), its communities and hubs will be presented. This will also include
a presentation of functions and potential disease contributions of central genes.

4.2.1 Cluster Analysis of Data Sets
The network analysis of BP has relied on the combination of six individual data sets. As
indicated in Table 3.1, two studies (GSE80655 [68], GSE92538 [69]) have received brain
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tissue from Pritzker Neuropsychiatric Disorders Research and three studies (GSE5388
[71], GSE12649 [72], GSE120340 [73]) have received brain tissue from Stanley Medical
Research Institute. Comparisons of the available information from these studies are pro-
vided in Appendix A.2. GSE80655 [68] and GSE92538 [69] have a relatively good match
between age, gender and ethnicity of their included patients. Similarly, there is a quite
striking similarity between age, gender and age of onset of BP for patients from GSE5388
[71] and GSE12649 [72] (no available information from GSE120340 [73]). This could
suggest that studies that receive tissue from the same brain bank are based on (some of)
the same patients. Hence, a clustering analysis was conducted to investigate the similarity
between the data sets.

The clustering analysis of the data sets underlying BP and control samples relied on com-
parisons of Spearman rank correlation coefficients from the individual studies by calculat-
ing their pairwise correlation of correlations. The resulting hierarchically-clustered heat
map for the BP data sets is shown in Figure 4.5. A similar plot for control samples is
included in Appendix D. The plots do not indicate a clear clustering of data sets that orig-
inate from the same brain bank. Hence, data sets originating from the same brain bank do
not appear to be more similar to each other than the other data sets. Consequently, all data
sets will be treated as independent in this thesis.

Figure 4.5: Hierarchically-clustered heat map for bipolar disorder data sets. The elements of the
matrix correspond to the pairwise Spearman rank correlation coefficients between the Spearman

rank correlation coefficients from the two indicated studies.
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4.2.2 Model Comparison at the Level of Correlations

The construction of a consensus CSD network for BP included an intermediate step where
Spearman rank correlation coefficients between gene expressions in each conditions were
calculated and average values were estimated. This subsection presents the results from
the comparison of the two methods for estimating these averages. A total of 3148 genes
were included in these analyses.

The methods for estimating combined Spearman rank correlation coefficients from indi-
vidual BP data sets are plotted against each other in Figure 4.6. A similar plot for the
control samples is given in Appendix E.1. The Spearman rank correlation coefficients
between the combination methods are 0.9991 and 0.9993 for BP and control samples,
respectively. Together, this illustrates that there generally is a good agreement between
estimates based on Fisher’s Z transformed and weighted untransformed averages of corre-
lation coefficients.

A visual inspection of Figure 4.6 shows that the plot has a weak S-shape. This in-
dicates that the Fisher’s Z transformed averages typically generate more extreme esti-
mates than the weighted untransformed averages. Hence, the latter can be considered a
more conservative method. A manual inspection of the outliers in Figure 4.6 (where the
|difference| > 0.4) revealed that the underlying correlations of all the outliers included
one perfect correlation. The perfect correlation hijacks the Fisher’s Z transformed aver-
age, resulting in a larger estimate compared to the weighted untransformed average.

Figure 4.6: Heat map between combined Spearman rank correlation coefficients based on Fisher’s
Z transformed and weighted untransformed averages for bipolar disorder. The dashed line
represents the expected relationship (y = x). rs represents the Spearman rank correlation

coefficient between the combined correlations.
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The identified perfect correlations only appear between low-count genes in GSE80655
[68], where most of the samples have values equal to zero. Hence, the perfect corre-
lations are not believed to represent important biological features. Consequently, the
Fisher’s Z transformed averages overestimate the importance of these gene pairs. As a
result, weighted untransformed averages appear to be more suitable for CSD analysis than
Fisher’s Z transformed averages.

The top n gene pairs with highest absolute value of correlation coefficients (excluding
self-correlations) from the combination methods were compared to each other and to the
sample data sets by calculating Jaccard indices. This is illustrated in Figure 4.7 using
combined correlation coefficients based on weighted untransformed values as reference.
A similar plot using combined correlation coefficients based on Fisher’s Z transformed val-
ues as reference is included in Appendix E.2. In general, the Jaccard indices are higher for
weighted untransformed averages relative to Fisher’s Z transformed averages than for com-
bined correlation coefficients relative to sample correlations. This indicates that the com-
bined correlation coefficients based on weighted untransformed or Fisher’s Z transformed
values are more similar to each other than to the individual underlying data sets. When
comparing combined correlation coefficients to the BP sample correlations, the Jaccard in-
dices between combined correlation coefficients relative to GSE5388 [71] and GSE12649
[72] have the highest values. This is expected as GSE5388 and GSE12649 contain the
largest number of BP samples among the data sets. Similarly, the Jaccard indices between
combined correlation coefficients relative to GSE92538 [69] have the highest values when
comparing combined correlation coefficients to the control data sets. This is due to the
large number of control samples in GSE92538.

Some general trends between weighted untransformed and Fisher’s Z transformed aver-
ages may be observed in Figure 4.7. First, there is typically a lower Jaccard index between
these combination methods when the number of investigated gene pairs is low. As noted
in the results of the method development (Section 4.1.3), this may simply be caused by
stochastic effects. As the number of investigated gene pairs increases, the Jaccard index
also increases. When the number of investigated gene pairs is above 300, the Jaccard in-
dices between the combination methods are always above 0.67 and 0.80 for BP and control
samples, respectively. This indicates a substantial overlap between the top n gene pairs
when n is above 300. The difference in Jaccard indices between BP and control samples
may be caused by a different number of total samples or by differences in variation be-
tween the included samples.

Taken together, the Fisher’s Z transformed and weighted untransformed averages of Spear-
man rank correlation coefficients between gene expressions from both BP and control sam-
ples generally exhibit good agreement both in terms of correlation of combined correla-
tions and Jaccard indices. Interestingly, Fisher’s Z transformed averages tend to generate
more extreme estimates than weighted untransformed averaged and may be hijacked by
spurious perfect correlations. Consequently, weighted untransformed averages seem to be
a more suitable combination method for CSD analysis.
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(a)

(b)

Figure 4.7: Jaccard index as a function of number of investigated gene pairs between Spearman
rank correlation coefficients from indicated data sets and weighted untransformed averages

originating from (a) bipolar disorder and (b) control samples. The term ”Transformed” refers to
Fisher’s Z transformed averages of the correlation coefficients.
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4.2.3 Model Comparison at the Network Level
The last steps of the CSD approach produce a final CSD network, with links defined as
either C, S or D. In this thesis, two CSD networks have been created for BP. One of the
networks is based on Fisher’s Z transformed averages of correlation coefficients, while the
other is based on weighted untransformed averages. In this subsection, the overlap and
similarity between these final consensus networks (with p = 10−4, followed by signifi-
cance filtering) are evaluated.

The complete CSD network based on weighted untransformed averages contained 566
nodes and 747 links, while the network based on Fisher’s Z transformed values contained
623 nodes and 811 links. These networks had 472 common nodes and 591 common links,
where all common links were given the same link type (C, S or D) in the CSD networks.
The calculated Jaccard indices were 0.66 and 0.61 for nodes and links, respectively. Jac-
card indices for network subtypes are given in Table 4.1. All of these indices were cal-
culated between the given network type based on weighted untransformed averages of
correlation coefficients relative to the same network type based on Fisher’s Z transformed
averages. As seen in Table 4.1, the C networks have the highest Jaccard indices for both
nodes and links. The S and D networks have comparable Jaccard indices for links, but the
S networks have a slightly higher Jaccard index for nodes than the D networks.

A visualization of commonalities and differences between the CSD networks for BP is
provided in Figure 4.8 and 4.9. As expected from Table 4.1, C links and nodes connected
by C links are mostly shared between the CSD networks. Many S and D links are also
shared, but to a lesser extent than the C links. Interestingly, the visualization indicates that
nodes that are only present in one of the CSD networks are located in the periphery and
have low degrees. Most of these nodes are not connected to the giant component (Figure
4.9). High-degree nodes on the other hand, are always defined as common between the
networks. This interpretation is supported by Figure 4.10a, which illustrates that there is
a good agreement between node degrees in the two CSD networks. It is noteworthy that
the maximum degree of unique nodes, meaning nodes that are present in just one of the
CSD networks, is four. This confirms the observation that unique nodes are located in the
periphery of the merged network.

Table 4.1: Jaccard indices between nodes and links in the consensus CSD networks for bipolar
disorder based on Fisher’s Z transformed and weighted untransformed averages of correlation

coefficients.
Network type Jaccard index - nodes Jaccard index - links
Full CSD network 0.66 0.61
C network 0.86 0.81
S network 0.61 0.50
D network 0.56 0.50
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Figure 4.8: Graphical comparison of CSD networks for bipolar disorder based on Fisher’s Z
transformed and weighted untransformed averages of correlation coefficients. Components with
five or fewer nodes have been excluded for illustration purposes. Nodes have been coloured and

shaped according to their network origin where nodes unique for weighted untransformed averages,
Fisher’s Z transformed averages and common nodes are light orange diamonds, pink triangles and
purple circles, respectively. Links have also been marked according to their network origin, where
links unique for weighted untransformed averages, Fisher’s Z transformed averages and common
links are thin dotted, thin dashed and thick solid lines, respectively. The link colours represent the

link types, where C, S and D links are blue, green and red, respectively.
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Figure 4.9: Comparison of CSD networks for bipolar disorder based on Fisher’s Z transformed and
weighted untransformed averages of correlation coefficients using an adjacency matrix. Nodes have

first been sorted according to network origin, visualized by the dashed lines. From upper left to
lower right: (a) common nodes for both CSD networks, unique nodes for (b) weighted

untransformed and (c) Fisher’s Z transformed averages. The nodes were subsequently ordered
according to their community structure determined by the Louvain algorithm [29]. The links are

coloured according to link type and network origin, where unique refers to links present in just one
of the CSD networks.

Despite a good agreement between degrees in the CSD networks, it is not given that one
node must have the same neighbours in both networks. This is reflected in Figure 4.8 and
4.9 where several common nodes are connected by unique links. Hence, the similarity of
the neighbours for each node in the networks was investigated. Figure 4.10b illustrates
the similarity between the neighbourhoods in the CSD networks using the network based
on weighted untransformed correlation coefficients as reference. A similar plot using the
network based on Fisher’s Z transformed correlation coefficients as reference is given in
Appendix E.3. Obviously, nodes that are unique to one CSD network do not share any
neighbours with the second CSD network. Hence, they will have a Jaccard index of 0.
As seen in Figure 4.10b, the similarity of the neighbourhoods of small-degree nodes is
quite variable. Some small-degree nodes have quite low Jaccard indices, indicating that
few neighbours of the given nodes are shared between the two networks. However, most
small-degree nodes have a high similarity. For high-degree nodes, the similarity is also
generally high and all nodes with degrees above 10 have Jaccard indices above 0.38. It is
noteworthy that the neighbourhood of the top hub in the CSD network based on weighted
untransformed correlation coefficients only has a Jaccard index of 0.53 when compared to
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(a) (b)

Figure 4.10: Comparison of (a) degrees and (b) neighbourhoods in the CSD networks for bipolar
disorder based on Fisher’s Z transformed and weighted untransformed averages of correlation

coefficients. The neighbourhood analysis uses the CSD network based on weighted untransformed
averages as reference. k denotes the node degree in the CSD network indicated by its subscript.
The terms ”common” and ”unique” refer to whether the nodes are shared between the two CSD
networks or is unique to one of them. The size of the points in the plots reflects the number of

nodes with the given characteristic.

the CSD network based on Fisher’s Z transformed correlation coefficients. This is proba-
bly due to the differences in the degree of this hub between the networks.

To sum up, the two methods for generating consensus CSD networks produce quite similar
networks for BP, with comparable degrees for common nodes. The similarity is greatest
for the C networks, but also good for the S and D networks. Importantly, the nodes that
are unique for one of the combination methods are located in the periphery and have low
degrees. In addition, common small-degree nodes show considerable variation of the simi-
larity between their neighbours. High-degree nodes on the other hand, are always common
for the CSD networks and have at least some of same neighbours in both networks.

4.2.4 Structural Network Analysis
Structural network analyses of the CSD networks for BP have been carried out to evaluate
if these networks exhibit the characteristic features of CSD networks. Analyses of degree
distribution, average clustering, assortativity and node homogeneity have been conducted
and will be presented here. As the weighted untransformed averages emerged as the most
suitable combination method in Section 4.2.2, the CSD network based on this measure
will be in focus. The results from similar structural analyses of the CSD network based
on Fisher’s Z transformed averages are included in Appendix F, but are not evaluated or
discussed in any further details.

The degree distribution of the CSD network based on weighted untransformed averages of
correlation coefficients is displayed in Figure 4.11. The distribution is well approximated
by a power law with degree exponent of 1.7, indicating a scale-free character in the net-
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Figure 4.11: Degree distribution of the consensus CSD network for bipolar disorder based on
weighted untransformed averages of correlation coefficients. The green, dashed line represents the

fitted power law.

work. This illustrates that there is a co-existence of hubs and many small-degree nodes in
the CSD network. The low degree exponent also indicates an important role for the hubs
in the network topology.

The next structural analysis of the CSD network for BP involved calculation of degree
assortativity coefficients and average clustering coefficients. This is presented in Table
4.2. The full CSD network, as well as the C network, have degree assortativity coefficients
approximately equal to zero. Hence, these networks are defined as neutral and are not sig-
nificantly different from random networks with identical degree sequences. However, the
CSD and C networks have average clustering coefficients which are significantly higher
than random expectations. This indicates that the nodes, especially those connected by C
links, tend to group together in the CSD network.

The S and D networks have significant negative assortativity coefficients and are defined
as disassortative with respect to degree. This means that these networks are character-
ized by a hub-and-spoke topology. This trend is more pronounced for the D than the S
network. Furthermore, both networks have average clustering coefficients equal or close
to zero. This means that few neighbours of a node in the S network, and none in the D
network, link to each other. As indicated in Table 4.2, the average clustering coefficients
are not significantly different from random networks with identical degree sequence. This
suggests that the low clustering coefficients may result from the degree sequence itself.

The final structural analysis focused on homogeneity and evaluation of the tendency of
nodes to be connected with different link types. Figure 4.12a illustrates that 99 of the
566 nodes in the CSD network based on weighted untransformed averages of correlation
coefficients, are connected to other nodes through two different link types. In contrast,
only four nodes have interactions of all types (C, S and D). A further exploration of the
homogeneity as a function of degree in the CSD network is given by the box plot in Figure
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Table 4.2: Assortativity and average clustering in the CSD network for bipolar disorder based on
weighted untransformed averages of correlation coefficients. P values are calculated from

expectations from random networks with identical degree sequence as the indicated network.
Significant P values are marked in red and the directions of significant differences are indicated.
Network
type

Degree assortativity Average clustering

Coefficient Adjusted
P value

Compared to
expectation

Coefficient Adjusted
P value

Compared to
expectation

Full CSD
network

-0.0065 > 0.05 – 0.094 < 0.05 Higher

C network -0.039 > 0.05 – 0.41 < 0.05 Higher
S network -0.15 < 0.05 Lower 0.015 > 0.05 –
D network -0.22 < 0.05 Lower 0 > 0.05 –

4.12b. In most cases, high-degree nodes (k ≥ 10) have high homogeneity scores. This
indicates that they are dominated by one type of interaction. Intermediate-degree (3 ≤
k ≤ 9) nodes exhibit more variation in their homogeneity scores. This is expected as there
is a higher number of nodes within these categories. The mean homogeneity scores tend to
be lower for intermediate-degree nodes than high-degree nodes, but this difference is not
significant (t-test: P = 0.059). However, there is a significant correlation between degree
and homogeneity for genes with k ≥ 3 (rs = 0.17, P = 0.020). Genes with k ≤ 2 have
been omitted from this evaluation as they can have a maximum of one or two interaction
types. In particular, a node with degree of one will always have a homogeneity score of
one. For a node with degree of two, the homogeneity score must be 0.5 or one.

(a) (b)

Figure 4.12: (a) Number of nodes involved in each type of interaction and (b) node homogeneity
scores in the CSD network for bipolar disorder based on weighted untransformed averages of

correlation coefficients. Red bars and red diamonds indicate median and mean homogeneity scores,
respectively.
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Taken together, the structural analyses show that the degree distribution of the CSD net-
work for BP is well approximated by a power law. Furthermore, the full CSD and C
network are neutral, but have relatively high average clustering. S and D networks on
the other hand, are disassortative with low average clustering coefficients. Finally, homo-
geneity analysis indicated that hubs are mainly dominated by one interaction type and few
nodes have interactions of all types.

4.2.5 Functional Analyses of the CSD Network
The structural analyses of the CSD networks revealed important information about the
network topology. However, it does not provide clues about the biological interpretation
of the network. Consequently, additional functional investigations of the networks have
been performed. The aim is to reveal genes and interactions that can provide information
about the biological underpinnings of BP. These analyses have been restricted to the
CSD network based on weighted untransformed averages due to its emergence as the most
suitable combination method in Section 4.2.2.

Enrichment analyses

The CSD network fro BP, as well as the individual C, S and D networks, were subjected to
GO enrichment analysis of biological processes. Surprisingly, none of the networks were
significantly enriched for biological processes when requiring FDR < 0.05. It should
be noted that eighth IDs from the reference set and two IDs from the CSD network were
registered as unmapped and omitted by PANTHER [61, 75, 76] in the enrichment analysis.

The analysis tool from PANTHER [61, 75, 76] investigates both under- and overrepre-
sented GO terms in the input list relative to the reference lists. However, only overrepre-
sented GO terms are of interest here. Hence, the requirement of FDR < 0.05 may be too
strict. The analyses were therefore repeated with FDR < 0.1. This still yielded no signifi-
cant results for the full CSD network nor the S and D networks. Hence, the GO analysis of
the CSD network does not provide clues about potential pathways that are dysregulated in
BP. The C network on the other hand, was enriched for proton transmembrane transport
(FDR = 0.09) with a fold enrichment of 7.93. Transport of protons across a membrane is
vital for many cell functions, including generation of proton gradients which are important
for energy transduction. Even though this function is not restricted to the brain, it is not
surprising that proton transmembrane transport emerges as an enriched GO term in the C
network.

The GO enrichment analysis was followed by a disease enrichment analysis of the full
CSD network. At this point, the analysis was restricted to curated information from Dis-
GeNET [77, 78] and only overrepresentation of genes related to BP was investigated. This
enrichment analysis indicated that 29 genes in the CSD network (P = 0.007) have pre-
viously been associated with BP. It is noteworthy that only 363 (of 566) nodes in the
CSD network were mapped to the DisGeNET database (if Entrez IDs were used as input,
only 361 nodes were mapped to the database). Hence, it cannot be ruled out that addi-
tional genes in the network have been associated with BP in other studies. Nonetheless,
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an enrichment of BP genes in the CSD network supports a biological interpretation of the
network as relevant for BP. A table with degrees and homogeneity scores for all of the 29
genes is included in Appendix G.1. It is noteworthy that most of these genes are dominated
by S or D links.

Table 4.3 reports the top genes in the CSD network which have previously been associated
with BP according to DisGeNET [77, 78]. In this case, the top genes are defined as genes
with degrees above five. Surprisingly, four of these genes (AGT, MLC1, S1PR1, NR2E1)
are mainly connected by C links. This indicates that their co-expressions with their neigh-
bours are mainly conserved between BP and control samples. Thus, their involvement in
BP is not readily apparent from their gene co-expressions in the CSD network.

The fifth and final node with a degree above five which has been associated with BP in
previous studies, is DRD4 (Dopamine Receptor D4). DRD4 encodes a G-protein coupled
receptor which, upon binding of dopamine, triggers intracellular signaling. Dopamine
mediates a variety of functions, including reward, sleep regulation and cognitive functions
[88]. These functions appear to be related to typical symptoms of BP (see Section 2.1). In
the CSD network, DRD4 has mainly D links, but also one S link. This indicates a dysreg-
ulation of DRD4, thus supporting the involvement of this gene in BP. Interestingly, Zhao
et al. [89] found an association between a single nucleotide polymorphism (SNP) variant
in the promotor of DRD4 and BP I patients. It was suggested that this SNP could per-
turb transcription factor binding sites in DRD4 and is associated with DNA methylation of
DRD4 [89]. This may explain the dysregulation of DRD4 observed in the CSD network.
At the same time, Zhao et al. [89] claim that DRD4 may have a general role in symptoms
associated with a variety of disorders and is not necessarily unique to BP.

In summary, the GO enrichment analysis did not highlight any specific biological process
as dysregulated in BP. However, the CSD network is enriched for genes that have been
associated with BP in previous studies. In particular, the dysregulation of DRD4 in the
CSD network supports its potential role in BP.

Table 4.3: Top genes with degrees above five, as well as their degrees and homogeneity scores,
from disease enrichment of the CSD network for bipolar disorder. The rows are coloured according

to the main interaction type of the nodes, where C and D types are coloured blue and red,
respectively. S is not the main interaction type for any of these genes.

Node k kC kS kD H
AGT 18 18 0 0 1.0
MLC1 15 14 1 0 0.88
S1PR1 12 11 1 0 0.85
NR2E1 9 8 1 0 0.8
DRD4 6 0 1 5 0.72

53



Chapter 4. Results and Analysis

Functional Analysis of Communities

The enrichment analyses of the CSD network were followed by identification of commu-
nities in the network. A community refers to a group of nodes in a network that are more
likely to be connected to each other than to other nodes in the network. The communi-
ties in the CSD network were identified with the Louvain algorithm [29]. This revealed
15 communities which contained more than five nodes. A visual representation of these
communities is provided in Figure 4.13.

The identified communities were subsequently subjected to GO enrichment analysis of
biological processes. 11 of the communities showed no overrepresentation of GO terms.
Three communities (community number 5, 8 and 13 in Figure 4.13) showed overrepre-
sentation with FDR < 0.05. One additional community (number 10 in Figure 4.13) was
enriched for biological processes when the requirement was adjusted to FDR < 0.1. Table
4.4 lists the enriched GO terms for each of these communities. In this table, related classes
in an ontology are represented by the most specific subclass. Complete lists of all enriched
GO terms in the four communities are provided in Appendix G.2.

Table 4.4: Enriched Gene Ontology (GO) terms in the communities of the CSD network for
bipolar disorder. The community numbers correspond to the numeration in Figure 4.13. Only

enriched GO terms with false discovery rate (FDR) < 0.05 are listed for communities 5, 8 and 13.
For community 10, this requirement has been adjusted to FDR < 0.1. The presented GO terms

correspond to the most specific subclass if related GO terms are enriched for a community.
Community
number

GO biological processes Fold
enrichment

FDR

5 Proton transmembrane transport 15.51 0.0253
ATP metabolic process 11.63 0.0411

8 Complement activation. classical pathway >100 0.0112
Vertebrate eye-specific patterning >100 0.0271
Complement-mediated synapse pruning >100 0.0325
Neuron remodeling >100 0.0348
Innate immune response 13.86 0.0369

10 Regulation of bone remodeling 23 0.0939
Regulation of localization 7.05 0.0824
Cell migration 4.22 0.0908
Generation of neurons 4.09 0.0611

13 Myelination 44.86 0.0132
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Figure 4.13: Visualization of communities and hubs in the CSD network for bipolar disorder based
on weighted untransformed averages of correlation coefficients. Components with five or fewer

nodes have been excluded for illustration purposes. The colour and shape of the nodes reflect their
community membership. Numbers represent numeration of the communities. Links are coloured

according to their interaction type, where C, S and D links are blue, green and red, respectively. In
addition, nodes with degrees above nine are labelled for emphasis.
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It is noteworthy that communities which showed overrepresentation of GO terms mainly
consist of nodes connected by C links. This means that most of the co-expressions of these
genes are conserved between BP and control samples. It is reassuring that many of these
enriched GO terms are related to nervous functions as data from brain tissue has been
analyzed. The remaining terms include proton transmembrane transport, ATP metabolic
process, regulation of localization, cell migration and terms related to immune responses.
It is not surprising to find enrichment of these terms as many represent general and im-
portant functions for all cells/tissues. It is however, more surprising that the communities
are also enriched for vertebrate eye-specific patterning and regulation of bone remodeling,
given that the samples originate from the DLPFC. This could simply be caused by overlap
of genes involved in the GO terms. For instance, the two genes (C3, C1QA) annotated to
vertebrate eye-specific patterning are also annotated to all other GO terms for community
8 in Table 4.4. A similar overlap may cause genes related to regulation of bone remodeling
to become overrepresented in community 10. It is also noteworthy that the FDR require-
ment has been adjusted to 0.1 for community 10, making it more likely to have a false
positive among the overrepresented GO terms for this community.

As mentioned above, all of the communities with enriched GO terms consist mainly of C
links (or exclusively C links in the case of community 13). In general, S and D links are
of more interest as they may provide clues about potential disease mechanisms. Conse-
quently, the following paragraphs are devoted to genes with mainly S and D links in the
communities which showed enrichment of GO terms, starting with community 5 (Figure
4.13). In this community, the two nodes C2orf42 (Chromosome 2 Open Reading Frame
42) and RPA2 (Replication protein A 32 kDa subunit) have only D and S links. This
may indicate a dysregulation of C2orf42 and RPA2 with respect to the other community
members. C2orf42 is an uncharacterized protein, and its potential role in BP is thus un-
known. RPA2 functions as a subunit of the replication protein A (RPA) complex which
binds single-stranded DNA [90]. This complex is involved in many aspects related to DNA
metabolism, including DNA replication, recombination and repair, as well as cellular re-
sponse to DNA damage as a result of stress [90]. A previous study [91] found that RPA2
is a hub in the interaction network of valproate, a medication commonly used to stabilize
mood in BP. It is known that some of the patients in the studies included in the consensus
CSD network for BP have been treated with valproate [71, 72]. Thus, the suggested dys-
regulation of RPA2 in the CSD network may reflect valproate treatment.

Interestingly, community 10 (Figure 4.13) is only connected to the giant component of the
CSD network through one S and one D link. These S and D links connect S1PR1 and
PHGDH (members of community 10) to SRP9 and SRP14, respectively. Furthermore,
both SRP9 and SRP14 have only S and D links to other nodes in the CSD network. Based
on transitivity of strong correlations, it is also expected that SRP9 and SRP14 exhibit spe-
cific or differential co-expression patterns to the neighbours of S1PR1 and PHGDH (as
they are connected by C links). However, these patterns have not been detected in the
CSD network under the given importance and significance levels. Nevertheless, this may
indicate a dysregulation of SRP9 and SRP14 in BP. Interestingly, SRP9 and SRP14 are
known to encode proteins that, together with the Alu portion of the signal recognition par-
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ticle (SRP) RNA, form the elongation arrest domain of the SRP complex [92]. The SRP
complex is a ribonucleoprotein complex with a role in targeting specific proteins to the
endoplasmic reticulum (ER). The elongation arrest domain is required to cause a delay
of ribosomal elongation of nascent peptide chains. This delay allows delivery of proteins
to correct compartments during their biosynthesis [92]. Faoro and Ataide [93] suggest
that ”the glutamate network might be a key target of SRP in the brain”. This fits well
with a potential role for SRP9 and SRP14 in BP, given that the glutamatergic system has
been suggested to be involved in BP pathophysiology [12]. However, the individual SRP
components have also been related to new roles outside the SRP complex, where SRP9
and SRP14 have been shown to function as regulators of translation and in stress response
[93]. The multiple functions of SRP9 and SRP14 make it difficult to draw firm conclusions
about their specific contributions to BP.

Taken together, the GO enrichment of community number 5, 8, 10 and 13 suggests a con-
servation of many important biological functions between BP and control samples. These
are related to specific processes in the nervous system, but also to more general terms that
are important for many cell types and tissues. The analysis has also suggested potential
roles for C2orf42, RPA2, SRP9 and SRP14 in BP. However, the observed changes in
co-expression patterns of RPA2 may be due to valproate treatment.

Functional Analysis of Hubs

The next functional analysis of the CSD network involved identification of hubs. Hubs
refer to highly connected nodes in a network, although there is no strict degree require-
ment. In a CSD network, hubs have potential functional importance as they represent
genes that are co-expressed with several other genes. A visual representation of all nodes
with degrees above nine is included in Figure 4.13. A more detailed overview of the de-
gree and homogeneity scores of these nodes is provided in Table 4.5. Nodes with mainly
S and/or D links are of most interest as these are specific or differentiated between BP
and control. Thus, these nodes may provide clues about disease mechanisms in BP.
Consequently, the following analysis is limited to these genes (PITX3, RBM23, SRP9,
GOLPH3L, SLC22A1 and FBLN2).

PITX3 (Pituitary homeobox 3) is the main hub in the CSD network for BP. It has a degree
of 49, and all links are defined as S links. PITX3 is a transcriptional regulator important for
differentiation and function of mesodiencephalic dopaminergic (mdDA) neurons [94, 95].
These neurons have a role in regulation of emotion-related behaviour and are affected in
many neurological and psychiatric disorders [95]. Consequently, a dysregulation of PITX3
seems likely to be involved in the disease mechanism of BP. However, PITX3 expression
is typically restricted to the midbrain dopamine neurons in the adult brain [96]. As the
consensus CSD network for BP is based on samples from the DLPFC, it is thus surprising
that PITX3 emerges as the largest hub in the network. This could suggest a potential al-
teration in the specification process in the DLPFC of BP patients. It would also have been
interesting to perform a new CSD analysis of BP patients to investigate gene expression
patterns in the typical brain regions for mdDA neurons (substantia nigra pars compacta,
ventral tegmental area or retrorubral field [95]). It would be interesting to examine if these
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Table 4.5: Degrees and homogeneity scores of nodes in the CSD network for bipolar disorder with
degrees above nine. The rows are coloured according to the main interaction type of the nodes,

where C, S and D types are coloured blue, green and red, respectively.
Node k kC kS kD H
PITX3 49 0 49 0 1.0
RBM23 33 0 33 0 1.0
AP2M1 24 23 0 1 0.92
GJA1 21 21 0 0 1.0
KIFAP3 20 18 2 0 0.82
TP53BP2 19 19 0 0 1.0
AGT 18 18 0 0 1.0
GOT1 18 16 2 0 0.8
MDH1 17 15 2 0 0.79
SRP9 16 0 7 9 0.51
EMX2 15 15 0 0 1.0
MLC1 15 14 1 0 0.88
ATP6V1B2 15 15 0 0 1.0
SERPINI1 15 14 1 0 0.88
GPC5 14 14 0 0 1.0
NECAP1 13 11 2 0 0.74
GOLPH3L 12 0 2 10 0.72
S1PR1 12 11 1 0 0.85
SLC22A1 12 0 12 0 1.0
LRP4 11 11 0 0 1.0
FBLN2 11 0 9 2 0.7
TM6SF1 10 7 3 0 0.58
F3 10 9 1 0 0.82
SDC4 10 10 0 0 1.0
ATP6V1G2 10 9 1 0 0.82

brain regions exhibit a similar dysregulation of PITX3 as this is expected to have the most
functional consequences.

RBM23 (Probable RNA-binding protein 23) is the second largest hub in the CSD network
with a degree of 33. Similar to PITX3, RBM23 is only connected to its neighbours by
S links. Although RBM23 was not identified in the disease enrichment analysis of the
CSD network, it has shown a suggestive association with BP in a previous GWAS study
[97]. However, it should be noted that the association was only apparent in one family
cohort [97]. RBM23 functions as a transcription coactivator in steroid hormone receptor-
mediated transcription and as a precursor mRNA (pre-mRNA) splicing factor [98]. In con-
trast to related constitutive splicing factors, RBM23 is believed to have a role in regulation
[98]. Consequently, a potential dysregulation of RBM23 is expected to have consequences
for regulated expression and splicing of other genes. Both of these functions are expected
to influence complex traits [99]. Furthermore, alternative splicing may potentially affect
protein function of its targets without altering their overall expression [99]. This suggests
a role of alternative splicing in BP, a disease mechanism which has received little attention
so far.

The potential disease function of SRP9 (Signal recognition particle 9 kDa protein) has
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been described above, as a part of the functional investigation of community 10. Even
though the potential function of SRP9 in BP will not be repeated here, it is noteworthy that
SRP9 emerges as an important gene in several of the functional analyses.

GOLPH3L (Golgi phosphoprotein 3-like) is mainly connected to its neighbours in the CSD
network by D links, indicating differential co-expression between BP and control samples.
GOLPH3L binds to phosphatidylinositol-4-phosphate and localizes to Golgi [100]. It is
believed to antagonize GOLPH3 (Golgi phosphoprotein 3), a protein involved in main-
tenance of the Golgi architecture as well as vesicle budding important for anterograde
transport [100]. The involvement of GOLPH3L in BP seems thus plausible as its dys-
regulation may affect transport of receptors, ion channels and other signaling molecules.
This gene has also been implicated in schizophrenia [101], a disorder which share many
similarities with BP [68, 70, 73, 102]. This further supports a potential role of GOLPH3L
in BP.

SLC22A1 (Solute carrier family 22 member 1) has a degree of 12 in the CSD network
and is connected to all its neighbours by S links. SCL22A1 encodes a transmembrane
protein which transports organic cations [103]. It is primarily expressed in the liver [103],
but its messenger RNA (mRNA) has also been detected in the brain [104]. In the brain,
SCL22A1 is believed to be involved in translocation of cations, such as norepinephrine,
serotonin, dopamine, acetylcholine and histamine, across the blood-brain barrier [104]. It
is thus tempting to suggest that a potential dysregulation of SCL22A1 in BP, as indicated
by the CSD network, may disrupt flux of organic cations across the blood-brain barrier.
However, the biomedical relevance is still unclear due to overlapping functions of related
cation transporters [104]. Moreover, several antipsychotic and antidepressant administered
to BP patients, at least in the data set GSE12469 [72], act as substrates and/or inhibitors
of the protein encoded by SCL22A1 [104]. Consequently, the indicated dysregulation of
SCL22A1 in the CSD network may reflect medication rather than involvement in the dis-
ease mechanisms for BP.

The final node that will be investigated here is FBLN2 (Fibulin-2), which has a degree
of 11 in the CSD network. FBLN2 encodes a glycoprotein which is secreted to become
a constituent of the extracellular matrix in basement membranes, elastic fibers and other
connective tissue structures [105]. Consequently, FBLN2 is believed to be involved in the
formation of scaffolds for cells and tissues [105]. In addition, FBLN2 has been identi-
fied as a key mediator of pro-neurogenetic effects on neural stem cell (NSC) via TGF-β1
[106]. As a result, a dysregulation of FBLN2 in BP may potentially affect neurogenesis.
On the other hand, knockouts of FBLN2 in mice produce viable, fertile and anatomical
normal mice [105]. Thus, the consequences of a potential dysregulation of FBLN2 in BP
are unclear and are possibly compensated for by other members of the fibulin family.

To sum up, the major hubs with S and D links are generally involved in quite broad pro-
cesses and their gene products affect many downstream proteins. PITX3 and RBM23
are involved in transcription, and RBM23 is also involved in alternative splicing. SRP9
and GOLPH3L are involved in transport and localization of proteins, while SLC22A1 has
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a role in transport of several organic cations. FBLN2 is an extracellular matrix protein
which has also been shown to affect neurogenesis.

Comparison with Basal Ganglia

In addition to investigations of the biological function of hubs, a manual investigation of
their underlying correlations for S and D links was also conducted. For the D links of
SRP9 and GOLPH3L, there is a shift from negative correlations in control samples to
positive correlations in BP samples. For all investigated S links of the hubs, there are gen-
erally strong correlations for the gene pairs in BP samples and insignificant correlations
in control samples. For PITX3, SLC22A1 and FBLN2, the S links are mainly negatively
correlated in BP samples. For RBM23, SRP9 and GOLPH3L, the S links are mainly posi-
tively correlated in BP samples. In any case, this indicates a gain of correlation for several
gene pairs in BP. An extension of this analysis to all S links indicated that this was a
general finding where 282 S links represent a gain of correlation in BP. In contrast, only
18 S links represent a lost correlation in BP.

The emergence of strong correlations in the BP samples compared to insignificant cor-
relations in the control samples could indicate an alteration of the specification process
of the DLPFC in BP samples. This hypothesis is further supported by the emergence of
PITX3 and FBLN2 as hubs in the CSD network. An alteration of the specification process
could shift the DLPFC in BP samples in the direction of other brain regions relative to the
control DLPFC. Consequently, the underlying correlations of the CSD network (based on
weighted untransformed averages) were compared with correlations from basal ganglia.
There is no reason to believe that the BP DLPFC has been shifted towards basal ganglia in
particular, but this brain region was chosen due to the availability of relevant data from [9].

A total of 747 links were included in the CSD network for BP (with p = 10−4, followed
by significance filtering). However, only 727 of these links have been evaluated in the
data set from basal ganglia. Hence, the comparison will be based on these 727 links. An
overview of the comparisons is provided in Table 4.6. Interestingly, Table 4.6 indicates a
shift in BP DLPFC towards basal ganglia. This is true for all link types, both individually
and combined. This supports the hypothesis of a potential alteration in the specification
process of the DLPFC in BP.

Table 4.6: Comparison of correlations from all gene pairs in the CSD network for bipolar disorder
(BP) to corresponding correlations in basal ganglia. For each gene pair, the potential shift of

correlations from the dorsolateral prefrontal cortex of BP samples towards correlations from basal
ganglia has been evaluated.

Link type BP shifted towards basal ganglia BP not shifted towards basal ganglia Adjusted
P value

Count Percentage [%] Count Percentage [%]
C 231 75 76 25 0.0052
S 221 75 72 25 0.0050
D 110 87 17 13 1.6∗10−6

CSD 562 77 165 23 1.7∗10−9
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Discussion
The major aim of this thesis is to investigate differences in gene co-expressions between
BP and control samples. Previous studies of BP have typically suffered from small sample
sizes [13], as illustrated by the six data sets [68–73] included in this thesis. Gordovez and
McMahon [13] claimed that ”meta-analysis of multiple independent samples have perhaps
the best likelihood of success” to resolve this issue. This prompted the second aim of this
thesis: to develop and test methods for constructing consensus CSD networks. In addition
to specifically increase the sample sizes for BP, this would also generate an improvement
of the CSD approach when dealing with small sample sizes in general. The following
discussion will be divided into three main sections, where the first evaluates and com-
pares the combination methods underlying the creation of consensus CSD networks. The
second section will discuss the structural consequences of using combined correlations in
CSD analyses. Finally, the last section will describe the functional findings, as well as
limitations, of the consensus CSD approach for investigation of BP.

5.1 Combining Correlation Coefficients
Two methods for creating consensus CSD networks have been tested in this thesis. Both
of these approaches rely on the combination of individual Spearman rank correlation co-
efficients into averaged values, which subsequently are used as input for the calculation of
C, S and D scores in the CSD approach. The first method relies on Fisher’s Z transformed
averages of correlation coefficients, while the second method relies on weighted untrans-
formed averages. From the method development, using a data set called ”Skin - Not Sun
Exposed (Suprapubic)”, both methods clearly outperformed subgroup correlations as esti-
mators of the reference correlation coefficients. However, the method development did not
point out any combination method as superior to the other. Consequently, both combina-
tion methods were used to generate combined correlation coefficients for BP and control
samples in the second part of this thesis. In this case, some important distinctions between
the methods emerged.

The combination of correlation coefficients from BP and control samples showed that
Fisher’s Z transformed averages tend to generate more extreme estimates than the weighted
untransformed averages. This is in line with previous studies which have illustrated that
Fisher’s Z transformed averages introduce a positive bias while weighted untransformed
averages generate a negative bias in the estimates of reference correlation coefficients [45,
p. 207, 48, 107, 108]. Hence, weighted untransformed averages can be viewed as a more
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conservative method for estimating combined correlation coefficients. This is generally
preferable in network analyses as it is expected to give a lower number of false positives.

The combination of correlation coefficients from BP and control samples further illus-
trated that the Fisher’s Z transformed averages could be hijacked by spurious perfect
correlations. Consequently, weighted untransformed averages appeared to be most suit-
able for CSD analysis. It was attempted to circumvent the influence of spurious perfect
correlations in the Fisher’s Z transformed averages by setting Fisher’s Zs equal to 5 for
these values (or -5 for perfect negative correlations). This appeared to be sufficient in the
method development. However, the analysis of BP and control samples indicated that this
simplification was inadequate. This is most likely due to different number of included
studies/subgroups in the method development and BP analysis. If it is still wishful to use
Fisher’s Z transformed averages, the spurious perfect correlations could probably have
been avoided by filtering out low-count genes at an earlier processing step. This step is
generally recommended for analysis of RNA-Seq data [86], but has been omitted in this
thesis due to the inclusion of several studies. As a gene with low expression in one data
set may have a biologically relevant expression in another data set, it could be relevant for
the disease/condition in question. Hence, these genes have been included in the analyses
in this thesis. A similar procedure is applied in Co-expression Differential Network Anal-
ysis (CoDiNA) [109], a method for comparison of multiple networks.

In this thesis, the calculation of combined correlation coefficients using Fisher’s Z trans-
formation assumes a fixed-effect model. This means that it has been assumed that the
”true” correlation coefficients in the population are constant and equal across the included
data sets. This assumption might be justifiable for the method development, as the sub-
groups originate from the same underlying data set. However, there is no guarantee that
the same assumption is applicable to the BP and control data sets as these originate from
different studies. Furthermore, no tests for homogeneity of correlations have been per-
formed. Hence, it is possible that the fixed-effect assumption is invalid for the BP and
control samples. In fact, heterogeneous-effect models are generally more representative
models for real-world data [110]. The weighted untransformed averages of correlation
coefficients on the other hand, have been categorized as a random-effect model [48]. This
means that weighted untransformed averages allow the ”true” correlation coefficient to
vary between data sets [48]. These theoretical considerations support the interpretation
of weighted untransformed averages as superior to the fixed-effect version of Fisher’s Z
transformed averages for application in CSD analysis.

There are several possible reasons for the emergence of differences between the combina-
tion methods for BP and control samples and the absence of these differences in the skin
data set (”Skin - Not Sun Exposed (Suprapubic)”) utilized for the method development.
This might be due to different number of investigated gene pairs, different number of to-
tal samples or different number of included studies/subgroups. Another possibility is that
this discrepancy arises from differences in the underlying data sets, including differences
in variation or technical differences. As the combined BP and control data set originate
from several different studies, these might be affected by technical differences such as the
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RNA extraction methods, expression platforms and RNA library preparation procedures
[22, 23]. The 1000-gene skin data sets, used in the method development, originated from
the same underlying data set (which was divided into subgroups to allow re-combination).
Hence, there are no technical differences between the subgroups of this data set.

Even though the weighted untransformed averages emerged as a more suitable method
than the Fisher’s Z transformed averages for CSD analysis, both methods appeared to
produce comparable estimates for the reference correlations in the method development.
The analysis of combined correlations of BP and control samples cannot reveal which of
the combination methods that is closest to the ”true” values, as these ”true” values are
unknown. Other studies have also compared the combination methods, but with varying
results. Silver and Dunlap [107] found that the method based on Fisher’s Z transformed av-
erages is less biased than weighted untransformed means. They have later been criticized
for ignoring the effect of number of studies. Consequently, their conclusion is expected to
only apply to analysis of a small number of studies [108]. Furthermore, Strube [108] noted
that the size of the biases of the two combination methods approaches each other as the
number of studies increases. This fits well with the observed similarity between the com-
bination methods during the method development in this thesis. In contrast, Schmidt and
Hunter [48] advocate the use of weighted untransformed correlations as they claim that
the positive bias introduced by Fisher’s Z transformation ”is always greater in absolute
value than the bias in the untransformed correlation”. Hence, the choice of combination
method in terms of size of the bias is still unclear. It is also unclear how many subgroups
that must be combined, and how large the summed sample size must be, in order to gener-
ate acceptable estimates of the reference correlations.

In this thesis, it has been chosen to focus on combination of correlation coefficients as a
method for creating consensus CSD networks. One could imagine alternative strategies
that combine data sets at the level of raw data or the final C, S and D scores. However, it
was chosen to combine Spearman rank correlation coefficients due to the non-parametric
and generality of this measure. As outlined by Voigt et al. [9], the non-parametric na-
ture of Spearman rank correlation coefficients makes it unnecessary for expression values
emerging from different sources to be normalized against each other. Consequently, it is
justifiable to combine Spearman rank correlation coefficients, without comprehensive nor-
malization, from different studies which may have used different approaches for estimating
gene expression values. This will also allow the creation of consensus CSD networks to
be standardized and easily applied to other diseases or conditions.

The use of correlation coefficients for creation of networks has been criticized for inclusion
of many false positive associations [23]. Hence, wTO has been suggested as a replacement
for correlation coefficients in network studies [21–23]. Furthermore, it has been shown
that wTO improves the fidelity of co-expression networks when dealing with small sample
sizes [24]. Nonetheless, it was chosen to focus on correlation coefficients in this thesis
due to the reliance of the CSD approach on Spearman rank correlation coefficients. As
the sample size will increase when estimating combined correlation coefficients, it is also
believed that the expected positive effects of wTO will be reduced [24].
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In conclusion, combination of Spearman rank correlation coefficients as estimates of the
”true” correlation coefficients outperforms the current method for dealing with small sam-
ple sizes in CSD. Weighted untransformed averages of correlation coefficients appear to
be most suitable for CSD analysis. This method is more conservative and less affected by
spurious perfect correlations than Fisher’s Z transformed averages. There are still some
unanswered questions related to the size of bias in the combination methods, requirements
for total sample sizes and requirement for number of data sets to be combined.

5.2 Structural Evaluation of Consensus CSD Network for
Bipolar Disorder

The combined correlation coefficients for BP and control samples were used as input to
the CSD approach to create consensus CSD networks for BP. This illustrated that the two
combination methods generate quite similar networks, especially for the conserved (C)
links and nodes connected by them. The two CSD networks exhibited most variability
in identities and neighbourhoods for small-degree nodes. Hubs on the other hand, had
similar identities, degrees and neighbourhoods in both CSD networks. This means that
the same hubs are generated with both combination methods, indicating that the choice
of method may have low impact on the most important nodes in the final CSD network.
Nevertheless, the remainder of this discussion will be limited to the CSD network based
on weighted untransformed averages as this is believed to be the most suitable method for
CSD analysis. Hence, the term ”CSD network for BP” will from this point refer specifi-
cally to the network based on weighted untransformed averages.

The structural analysis of the CSD network for BP indicated that its degree distribution
is well approximated by a power law. This indicates that the network topology is quite
different from random Erdős-Rényi networks, which have binomial degree distributions.
According to Barabási [7], most real networks approximate a power law with a degree ex-
ponent between 2 and 3. Noticeable, the degree exponent (1.7) of the fitted power law in
the CSD network for BP is lower than typical degree exponents in real networks. Barabási
claims that ”the number of links connected to the largest hub grows faster than the size of
the network” [7] when the degree exponent is lower than 2. Thus, these networks cannot
exist [7]. It is important to note that this argument is based on networks where the number
of nodes approaches infinity. In contrast, the CSD network for BP is of finite size with 566
nodes. Consequently, the low degree exponent indicates an important role for the hubs in
the network rather than an impossibility of the network topology.

The structural analyses of the CSD network for BP also indicated that the network has
similar structural characteristics as conventional CSD networks. Specifically, the homo-
geneity assessment of the CSD network for BP indicated that homogeneity is correlated
with degree, a typical characteristic for CSD networks [9]. In addition, the S and D net-
works for BP behave as expected from previous CSD analyses in terms of low average
clustering coefficients and disassortative characteristics [9]. This means that these net-
works are characterized by hub-and-spoke topologies, where few neighbours of a node, or
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none in the D network, are directly connected to each other. Moreover, the C network has
a relative high average clustering coefficient as expected for this subnetwork type [9]. This
means that nodes connected by C links tend to group together in the network. Combined,
this illustrates that weighted untransformed averages of correlation coefficients seem suit-
able as input for the construction of CSD networks. Conversely, the C network for BP
has a degree assortativity coefficient approximately equal to 0 and is defined as neutral.
Typically, C networks are defined as assortative [9]. Voigt et al. [9] argued that this as-
sortativity is a natural consequence of transitivity of strong correlations. Specifically, gene
A tends to be connected to the neighbours of gene B if gene A and B are strongly corre-
lated. Hence, gene A and B are expected to share a similar number of neighbours [9]. The
absence of this finding in the CSD network for BP may simply be a consequence of the
chosen importance and significance levels in this thesis. It is possible that the assortative
character of the C network would emerge if these requirements were relaxed.

In contrast to typical CSD analyses, the subsampling algorithm and calculation of vari-
ances have been omitted in the construction of consensus CSD networks for BP. There
are three main reasons for this choice. First, this thesis has been restricted to testing meth-
ods for generating combined correlation coefficients. Thus, the investigation of possible
methods for generating combined variance scores is beyond its scope. Second, it is recom-
mended to omit subsampling and calculation of variances when dealing with small sample
sizes in CSD analyses [9]. Consequently, both the current CSD approach and the newly
developed consensus CSD networks lack calculation of variances when dealing with small
sample sizes. As a result, the consensus CSD network is expected to be an improved rep-
resentation of the condition in question as the combined correlation coefficients emerged
as better estimates of the ”true” correlation coefficients in this thesis. Third, a previous
master thesis [111] has shown that omitting calculation of variances has minor impact on
the robustness of identifying disease-related genes. Taken together, this justifies the exclu-
sion of variance calculations in the consensus CSD analysis.

In this thesis, an additional step with significance filtering was introduced in the construc-
tion of the CSD network for BP. The conventional CSD approach is normally only based
on an importance level with the purpose of mapping the C, S and D scores to a common
scale [9]. This is a weakness with the conventional CSD approach as it may allow non-
significant links to be included in the final network. This is probably most important for
analyses with small sample sizes or where a relatively large fraction of the input gene pairs
is included in the final CSD network. It is also important for investigation of disorders,
diseases or other conditions where there may be few consistent differences between con-
dition and control.

Taken together, the structural analyses of the CSD networks indicate that the choice of
combination methods may have minor impact on the final network. The CSD network for
BP based on weighted untransformed averages of correlation coefficients further illustrated
that this method produces networks with many typical characteristics of CSD networks.
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5.3 Functional Network Analysis of Bipolar Disorder
The above discussion indicates that weighted untransformed averages of correlation coef-
ficient may be suitable for creation of a consensus CSD network for BP. The remainder of
the discussion is restricted to functional analyses of this CSD network and will investigate
differences in gene co-expressions between BP and control samples. The last part of this
section will describe limitations and potential sources of errors in the functional analyses.

The functional analyses of the CSD network for BP highlighted three potentially dysreg-
ulated genes (SRP9, SRP14 and GOLPH3L) involved in localization of proteins. RBM23
could also be involved in localization as it has a role in alternative splicing [98], a pro-
cess which may influence subsequent mRNA location of the targets [112]. Deregulation
of components in the trafficking machinery could inactivate or misregulate target proteins,
or even give the mislocated proteins harmful properties [113]. Mislocalization of pro-
teins have been associated with a range of human diseases, including Alzheimer’s disease,
kidney stones and cancer [113]. Consequently, its potential contribution to disease mech-
anisms in BP seems biologically plausible. However, it is difficult to pinpoint its exact
effects as it may influence a broad range of targets.

The functional analyses of the CSD network for BP also suggested a potential alteration
in the specification process of the DLPFC. This alteration is indicated at the level of in-
dividual genes, where the major hub PITX3 is known to be involved in differentiation
of mdDA neurons [94, 95] and the extracellular protein FBLN2 has a suggestive role in
neurogenesis [106]. It is also possible that a dysregulation of RBM23, the second major
hub in the network, may affect the specification process of the DLPFC. RBM23 is be-
lieved to be involved in steroid receptor-dependent regulation [98], but its precise role is
unknown. A potential alteration of the specification process of the DLPFC is also apparent
at the network level. Specifically, the majority of S links in the network indicates a gain of
correlations in BP relative to control. In addition, the underlying correlations in the CSD
network for BP indicate a shift of BP DLPFC from control DLPFC towards basal ganglia.
Changes in the specification process seem as a plausible contributor to disease mecha-
nisms in BP as subtle alterations in developmental processes may give rise to neurological
changes that become functionally significant later in life [114, 115]. Nonetheless, the ex-
plicit consequences of such alterations in BP remain to be elucidated.

A potential contribution of defects in NSC proliferation and differentiation has previously
been suggested for several brain disorders, including BP [115–117]. Importantly, Chen
et al. [115] studied the differences between neurons originating from induced pluripo-
tent stem cells (iPSC) and suggested an alteration of neuronal identity in BP compared
to control. The control neurons had a significantly higher expression of genes conferring
dorsal telencephalic fate. In contrast, BP neurons had an increased expression of ventral
determinants. These determinants are typically involved in generation of the medial gan-
glionic eminence and differentiation of GABAergic interneurons [115]. This supports the
observations in this thesis, which suggest an alteration of the specification process in BP
DLPFC.
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It is possible that observations supporting the suggested alterations of specification pro-
cesses in this thesis reflect other disease mechanisms in BP. For instance, the CSD net-
work has relied on macrodissected brain tissue. Hagenauer et al. [69] claim that it is
unlikely that psychiatric illnesses affect all cell types equally. As a result, it is difficult
to distinguish between differences that arise due to alterations in gene expression patterns
representing changes in relative number of cell types (population changes) and alterations
that reflect dysregulation of cells at the individual level [69]. Consequently, it is possible
that the functional analyses reflect changes in cell type proportions rather than changes
in the specification process. Specifically, the shift of BP DLPFC towards basal ganglia
could indicate that the cell type proportions in BP DLPFC are shifted towards proportions
in basal ganglia. Changes in cell type proportions could be related to the disease mecha-
nisms for BP, as suggested by Ramaker et al. [68], or be caused by confounding factors.
As an example, prolonged hypoxia may give low pH which could alter cell type propor-
tions. At the same time, it is important to note that pH can be caused by other factors
than hypoxia, including BP itself [69]. As a result, it is challenging to disentangle which
changes in cell type proportions that are caused by BP and which are caused by other fac-
tors.

The comparison of BP DLPFC to basal ganglia requires some additional attention. Ini-
tially, it may be surprising that the BP correlations underlying C links in the CSD network
also appear to be shifted towards basal ganglia. This observation may be explained by
the following hypothetical example: imagine that the co-expression of gene A and B in
BP DLPFC is shifted towards basal ganglia, but the co-expression is also conserved be-
tween control DLPFC and basal ganglia. In this case, transitivity of strong correlations
implies that the co-expression must also be conserved between BP and control DLPFC.
This explains the emergence of observed C links in the CSD network, even though the BP
correlations may be shifted towards basal ganglia. It is also important to note that the com-
parison of the underlying correlations in the CSD network to basal ganglia may be affected
by non-disease factors. For instance, there are smaller sample sizes underlying BP DLPFC
and basal ganglia data compared to control DLPFC. As indicated by significance tests of
correlations [34], high correlations are more likely to arise when analysing data sets with
small samples sizes than large sizes. In some cases, this may shift BP correlations towards
basal ganglia even when there is no biological reason for this shift. In addition, the design
of the comparison will count cases where basal ganglia and control DLPFC are nearly
identical, but small differences make BP DLPFC slightly shifted towards basal ganglia.
This may exaggerate the observed number of times BP is shifted towards basal ganglia.

The disease enrichment of the CSD network for BP showed an overrepresentation of BP
genes. This is reassuring as it supports a biological interpretation of the network. How-
ever, it should be noted that the disease enrichment of BP does not offer an option to
provide a reference gene set. Hence, this analysis may suffer from sample source bias
(discussed below). Furthermore, it is surprising that four of the top five genes identified
by the disease enrichment for BP are mainly connected to other genes in the CSD net-
work by C links. This indicates that these nodes are mainly conserved between BP and
control samples. It is of course possible that these genes would have shown specific or
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differentiated interactions with genes that have not been analysed in this thesis, illustrating
a consequences of a relatively small number of included genes in the CSD analysis. It
is also important to point out that genes may contribute to disease mechanisms at other
levels than gene co-expressions. For instance, mutations in the coding region of a gene
[10] or alternative splicing [99] may influence the function of a gene without altering its
expression. Similarly, post-translational modifications may also contribute to disease and
act on protein level [10]. As a result, many known disease genes are not registered as dif-
ferentially expressed [10] and this could explain why some disease-related genes appear
to be conserved in the CSD network for BP. This illustrates that co-expressions cannot
capture the complete picture of a complex disease.

The functional analysis of the communities in the CSD network for BP indicated that
four communities, with mainly C links, were enriched for biological processes (with FDR
< 0.1). In most cases, the identified overrepresentation makes sense as the GO terms
correspond to general, important functions for all cells/tissues or are directly related to
nervous functions. Despite this, the emergence of myelination as overrepresented in com-
munity 13 was surprising. This community contains exclusively C links and is expected
to represent a completely conserved community. In contrast, a previous study [118] has
found myelination changes in BP. As the CSD network is only based on 3148 genes, it is
possible that non-included myelin-related genes would have shown a dysregulation in BP.
The discrepancy may also be caused by differences in medication or other confounding
factors (discussed below).

The most likely explanation for the inconsistency between the observed and expected role
of myelination in BP is differences in investigation methods. Importantly, Tkachev et al.
[118] found that some myelin-related genes identified as significantly changed with quanti-
tative polymerase chain reaction (PCR) were unchanged in their own microarray analyses.
This was attributed to differences in dynamic range between the platforms [118], which is
also applicable to the CSD analysis. In addition, Tkachev et al. [118] investigated samples
from 15 BP and 15 control samples. In contrast, the analyses in thesis have been based on
139 BP and 201 control samples. Hence, the expected heterogeneity of BP [13] may have
obstructed the identification of myelin-related genes as differentiated in the CSD network.
Furthermore, Tkachev et al. [118] have investigated differential gene expression. The CSD
analysis on the other hand, identifies changes in gene co-expressions. It is thus possible
that the entire group of myelin-related genes may be up- or down-regulated in BP, while
their co-expressions are still conserved. This is in line with the discussion above where it
was argued that gene co-expressions cannot capture the complete picture of a disease.

The network analysis of BP has been based on samples originating from the DLPFC. This
brain region was selected due to its potential role in BP. For instance, dendritic spine loss
[119] and reduced activity [18, 120] have been observed in the DLPFC of BP patients.
Furthermore, some studies have indicated an involvement of cellular and molecular al-
terations in the BP DLPFC. This includes cell growth and nervous system development
alterations [121], oligodendrocyte and myelination changes [118] and mitochondrial dys-
function [72, 122]. Consequently, it was surprising that the CSD network for BP, as well
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as the individual S and D networks and communities mainly consisting of S and D links,
did not exhibit enrichment of any biological processes. However, this is in line with other
studies that have found few or no significant changes in the DLPFC of BP patients [68, 71].
Ryan et al. [71] suggested that this could reflect that the DLPFC is weakly affected in BP.

It is also possible that the enrichment and functional analyses of the CSD network for
BP have suffered from an inadequate number of included genes. A reference set of 3148
genes was evaluated in the construction of the CSD network. In contrast, about 13 300
genes are expressed in the human brain [123]. Consequently, it is possible that the CSD
network misses some pathways and genes that contribute to disease mechanisms in BP
as many genes have not been investigated. As an example, none of the three genes most
commonly associated with BP (ANK3, CACNA1C and TRANK1) [13] were included in
the reference gene set. Consequently, none of them are present in the CSD network even
though they might be dysregulated in BP.

A low number of included genes in the reference gene set may also have affected the sta-
tistical power for identifying enriched biological processes with PANTHER [61, 75, 76].
Moreover, it may be statistically challenging to identify overrepresented processes, espe-
cially if there are few relevant genes in the data set for the disorder in question, as all
enrichment tests should be adjusted for multiple testing. The number of reference genes
for the CSD network could have been increased by relaxing the processing steps of the
individual data sets, such as allowing combination of averaged expressions from one data
set with possible unaveraged expressions from another data set. However, this would have
come at a cost of potentially erroneous combinations. Hence, this was not conducted in
this thesis. According to PANTHER [61, 75, 76], ”uploading a reference list is optional”
[60] when evaluating enrichment of biological processes. As a result, the loss of statistical
power caused by a small reference set may have been circumvented by using a default
reference list. However, this would have created a sample source bias in the results [124].
This means that if an input list of expressed genes in the brain is compared to a reference
set with all genes expressed in the human body, it is expected that the input list will show
overrepresentation of genes related to the brain. In this case, the overrepresented GO terms
would merely reflect the sample source rather than the disease state [124]. Consequently,
it was chosen to upload a reference list at PANTHER that corresponded to all genes eval-
uated in the CSD analysis to avoid such sample source bias.

The lack of overrepresented GO terms for the CSD network for BP, as well as the individ-
ual S and D networks and communities mainly consisting of S and D links, may have been
caused by an inherent limitation to GO enrichment analyses. As the biological functions
of all genes are not known, GO analyses suffer from an incomplete annotation of genes
[125]. This is exemplified by C2orf42, an uncharacterized protein that emerged as poten-
tially dysregulated in community 5 in the CSD network. This is an extreme case, where
little is known about the functional properties of this genes. Other genes may have some
known functions, but could participate in additional biological processes as well. As an
example, SRP9 and SRP14 have canonical roles in the SRP complex, but have also poten-
tial roles in regulation of translation and stress response [93]. As a result, the functional
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roles of some genes may have been overlooked in the GO enrichment analyses.

There are several additional explanations, and possible sources or errors, for the lack of
enrichment of biological processes which also apply to all functional analyses of the CSD
network. Importantly, BP is characterized by phases of mania/hypomania, depression and
euthymia [12, 13]. Hence, gene co-expressions may change during the course of BP. It is
difficult to capture such dynamic changes with a static model, making it more challenging
to capture potentially affected biological processes in BP with the CSD approach.

The lack of enrichment of biological processes may also reflect the heterogeneity of BP
as a disorder. As described in Section 2.1, BP may be divided into several subgroups
[14, p. 123] and potentially several biological distinguishable disease entities [13]. To my
knowledge, none of the six studies [68–73] included in the CSD analysis of BP list the
specific diagnosis of their patients. Hence, it is possible that the CSD network is based
on patients with different sub-types of BP. In addition, BP is known to be comorbid with
other psychiatric and nonpsychiatric disorders [12, 14, p. 132-139]. This may have further
occluded the CSD analysis. Despite these shortcomings, it was expected that the CSD
analysis should highlight the commonalities between the patients.

Currently, several medications may be administered to BP patients. Two studies included
in the CSD analysis [71, 72] list all medication administered to their patients, where most
patients have taken one or more types of medications. Ideally, the analysis of BP would
rely on unmedicated patients. However, this would be an unethical study design as BP may
have detrimental consequences for affected individuals [12, 15]. As the effect of medica-
tion is not investigated in this thesis, it is difficult to determine if the observed effects are
caused by medications rather than BP. As an example, it is possible that the potential dys-
regulation of RPA2 and SLC22A1 in the CSD network reflects medication. Furthermore,
it is likely that medication may have affected gene co-expressions that would otherwise
emerge as specific or differentiated in the CSD network. As an example, a previous study
found that medication-free BP patients exhibited an up-regulation of some mitochondrial
genes [72]. In contrast, medicated BP patients typically showed a global down-regulation
of mitochondrial genes [72]. Consequently, pathways and biological processes that are al-
tered in unmedicated patients, and may contribute to the disease mechanisms of BP, may
have been missed in this thesis due to medication.

It is also important to remember that the CSD network for BP relies on postmortem brains.
Hence, the analyses are based on snapshots of the brains and are expected to focus on
changes apparent in the end stage of the disorder [117]. Information about underlying
mechanisms, which may be important at earlier stages, may be missed [117]. Furthermore,
postmortem brains are associated with several confounding factors, including sample pH,
terminal condition (often called agonal state), post-mortem interval (PMI), age, gender and
relative number of cell types [69, 72]. As an example, a prolonged agonal state is typically
associated with hypoxia or acidosis in the brain. This may reduce the sample pH, which
again is associated with an alteration of gene expressions patterns [72]. Prolonged hypoxia
may also affect relative cell numbers in the brain, thus also affecting observed global gene
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expression patterns [69]. Similarly, aging has been associated with a reduction in neuronal
gene expression patterns [69]. None of these factors have been explicitly accounted for in
the CSD analysis and may have influenced the final outcome. However, the importance
of these factors remains unknown and matched controls have been utilized to reduce their
impact.

Lastly, the construction of a consensus CSD network for BP has relied on the combination
of data sets from six different studies. Unfortunately, some of these studies have received
brain tissue from the same brain bank. An investigation of the available patient informa-
tion suggested a potential overlap between the patients in these studies. Consequently, it
is possible that some patients are included in several data sets. One could argue that the
specific cells in the DLPFC samples are the biological unit of interest, and these are unique
to each of the included data set. However, this ignores the hierarchical nature of biological
data where two cells from one patient are expected to be more similar than two cells from
two different patients [126]. As a consequence, some patients may have been given an
increased importance and a higher weight when combining correlation coefficients. Fur-
thermore, this would have lead to an exaggeration of the total sample size in the consensus
CSD network. Hence, a potential dependence of the data sets increases the chance of false
positive findings [126]. Anyhow, the consensus CSD network must be based on at least
76 and 136 independent BP samples and control samples, respectively, as three different
brain banks have provided the brain tissue. Furthermore, the clustering analysis indicated
that data sets from the same brain bank do not appear to be more similar to each other than
the other data sets. As a result, all analyses have been based on all six data sets where they
are treated as independent.

Taken together, the functional analyses have suggested a potential role for mislocalization
of proteins and alterations in the specification process in the DLPFC of BP patients. How-
ever, this was not supported by GO enrichment analyses which indicated no enrichment of
biological processes in the CSD network for BP.
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Conclusion and Outlook
This thesis aimed at investigating differences in gene co-expressions between BP and con-
trol samples. As most studies of BP suffer from inadequate sample sizes, it was of great
interest to extend the analysis to several data sets. Consequently, this thesis has been di-
vided into two main parts. The first part focused on developing and testing methods for
combining correlation coefficients which could be used as input to the conventional CSD
approach. The second part utilized the newly developed procedure to investigate differ-
ences between BP and control samples.

The method development of this thesis relied on splitting a large data set into smaller sub-
groups. The Spearman rank correlations for all gene pairs in all subgroup were calculated
and then recombined using either Fisher’s Z transformed or weighted untransformed av-
erages. In real cases, a large data set will not be split in this way and the subgroup will
correspond to independent studies. However, this step was included to establish reference
Spearman rank correlation coefficients to which the estimates could be compared. Subse-
quently, the consensus CSD approach was used to create a network for BP by combining
correlation coefficients from six different BP data sets. Together, these analyses indicated
that combination of correlation coefficients outperforms the current method for dealing
with small sample sizes in the CSD approach. The two combination methods produced
comparable results. However, the method based on weighted untransformed averages ap-
peared to be more suitable than Fisher’s Z transformed averages for CSD analysis as it is
more conservative and less affected by spurious perfect correlations.

In addition to the use of combined correlation coefficients, the consensus CSD approach
differs from the conventional CSD approach in two aspects. First, the subsampling al-
gorithm and calculation of variances are omitted in the construction of consensus CSD
networks. Moreover, an additional step for significance filtering has been introduced. In
general, it is recommended to include this step when utilizing the CSD approach to in-
vestigate conditions where there may be few consistent differences between condition and
control or when it is wishful to include a relatively large fraction of the input gene pairs
in the final network. This step may also be important for the conventional CSD analysis if
the investigation is based on a data set with small sample size.

Structural analyses of the consensus CSD network for BP, based on weighted untrans-
formed averages of correlation coefficients, indicated that this network exhibited many of
the typical characteristics of CSD networks. Importantly, the degree distribution was well
approximated by a power law, homogeneity was correlated with degree and the S and D
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networks were disassortative and had low average clustering coefficients, while the C net-
work had a relatively high average clustering coefficient. However, the C network did not
exhibit the expected assortative character.

The consensus CSD network for BP, based on weighted untransformed averages, was
subsequently subjected to functional analyses. This included identification of hubs and
communities, as well as disease enrichment of the CSD network and GO enrichment anal-
yses of the CSD network, its subnetworks (C, S and D) and communities. The functional
analyses were extended to a comparison of correlations underlying the CSD network and
correlations from basal ganglia. The functional analyses of BP suggested that mislocal-
ization of proteins might contribute to disease mechanisms in BP. This was mainly based
on the emergence of at least three genes involved in localization of proteins as central
and potentially dysregulated in the CSD network (SRP9, SRP14, GOLPH3L and possibly
RBM23). Furthermore, the functional analyses of the CSD network for BP suggested a
potential alteration in the specification process of the DLPFC of BP patients. This was
supported by identification of at least two hubs (PITX3, FBLN2 and possibly RBM23)
with potential roles in differentiation or neurogenesis. The possible alteration in the spec-
ification process of DLPFC in BP patients was also supported at the network level as the
majority of S links indicated a gain of correlation in BP and that many correlations in the
BP DLPFC were shifted towards correlations from basal ganglia. Potential defects in NSC
proliferation and differentiation have also been suggested by previous studies of BP. On
the other hand, the roles of mislocalization and alterations of specification processes were
not supported by GO analyses. This illustrates that further investigation of BP is required.

This thesis leaves some unanswered questions which may be explored in more detail in
future studies. Even though weighted untransformed averages of correlation coefficients
appeared to be most suitable for consensus CSD analysis, some aspects remain to be elu-
cidated. Specifically, there are some uncertainties regarding the size of the bias for both
combination methods, requirement for total sample size and requirement for number of
data sets to be combined. This may be investigated by extending the method development
to evaluate effects of combining correlations from different numbers of subgroups, and
thus different total sample sizes. As the number of subgroups and total sample size are
reduced, it is also expected that the differences between the combination methods will be
revealed. This could allow an estimation of the size of bias for both combination methods
by comparing the combined correlations with reference correlations.

As BP is expected to be a quite heterogeneous disorder, it would have been interesting
to test the consensus CSD approach with a disease where more consistent differences be-
tween condition and control are expected. Such a disease is probably less affected by
the chosen importance and significance levels. Hence, this may improve the structural
analyses and verify if consensus CSD networks do exhibit the characteristic features of
conventional CSD networks.

The heterogeneity of BP may also explain the lack of GO enrichment in the consensus CSD
network for BP. Consequently, later studies may benefit from investigating patients with
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more specific sub-diagnoses of BP as these patients may share more similarities in their
gene co-expressions. However, such analyses are expected to suffer from even smaller
sample sizes. Moreover, the lack of GO enrichment in the CSD network for BP may also
indicate that the DLPFC is weakly affected in BP. As a result, follow-up studies may
want to focus on other brain regions. As an example, it could be interesting to investigate
co-expressions in the substantia nigra, ventral tegmental area or retrorubral field. These
regions are important sites of mdDA neurons [95], which are expected to be affected by
the main hub (PITX3) from the CSD network.

The use of the consensus CSD approach to investigate gene co-expression in BP may have
suffered from the inherent dynamic changes of BP and the use of postmortem brain. It is
difficult to imagine a viable method which can follow gene co-expressions in the brains of
living BP patients. As an alternative, one could follow the changes in neurons generated
from iPSC from BP patients as performed by Chen et al. [115] and Madison et al. [116].
This allows an evaluation of changes in gene co-expressions as the neurons differentiate
as well as potential fluctuations at the terminal stage. However, it will be difficult to know
which phase (mania/hypomania, depression, euthymia) the neurons exhibit at the given
time point. Hence, the expected dynamics of BP will complicate the analysis of disease
mechanisms for this disorder.

Finally, this thesis has been restricted to analysis of changes in gene co-expressions in
BP. To create a more complete picture of complex diseases, it has been suggested to per-
form multi-omics analyses [127, 128]. These types of analyses integrate data from several
omics, such as genomics, transcriptomics, proteomics and metabolomics [127, 128]. If
only one type of omics data is used, as in the CSD analyses, one may miss relevant infor-
mation and it is difficult to conclude if observed differences are causes or results of disease
[128]. Hence, future studies could benefit from investigating multi-omics data for BP.
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[32] Løvås GG. Statistikk for universiteter og høgskoler. 4th ed. Oslo: Universitetsfor-
laget; 2018.

[33] Mukaka MM. A guide to appropriate use of correlation coefficient in medical re-
search. Malawi Medical Journal. 2012;24(3):69–71.

[34] Zar JH. Spearman rank correlation: overview. Wiley StatsRef: Statistics Reference
Online. 2014.

[35] Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics.
Nature Reviews Genetics. 2009;10(1):57–63.

[36] Shakya K, Ruskin HJ, Kerr G, Crane M, Becker J. Comparison of microarray pre-
processing methods. In: Arabnia HR, editor. Advances in computational biology.
New York, NY: Springer; 2010. p. 139–147.

[37] Hubbell E, Liu WM, Mei R. Robust estimators for expression analysis. Bioinfor-
matics. 2002;18(12):1585–1592.

[38] Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al.
Exploration, normalization, and summaries of high density oligonucleotide array
probe level data. Biostatistics. 2003;4(2):249–264.

[39] Robinson MD, Oshlack A. A scaling normalization method for differential expres-
sion analysis of RNA-seq data. Genome Biology. 2010;11(3):1–9.

[40] Evans C, Hardin J, Stoebel DM. Selecting between-sample RNA-Seq normalization
methods from the perspective of their assumptions. Briefings in Bioinformatics.
2018;19(5):776–792.

[41] Oshlack A, Wakefield MJ. Transcript length bias in RNA-seq data confounds sys-
tems biology. Biology Direct. 2009;4(1):1–10.

[42] Risso D, Schwartz K, Sherlock G, Dudoit S. GC-content normalization for RNA-
Seq data. BMC Bioinformatics. 2011;12(1):1–17.

[43] Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global
discovery of conserved genetic modules. Science. 2003;302(5643):249–255. Avail-
able from: https://science.sciencemag.org/content/302/5643/
249.

77

https://doi.org/10.1007/978-1-4471-2458-0_2
https://science.sciencemag.org/content/302/5643/249
https://science.sciencemag.org/content/302/5643/249


[44] Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, et al. Transcrip-
tomic analysis of autistic brain reveals convergent molecular pathology. Nature.
2011;474(7351):380–384.

[45] Fisher RA. Statistical methods for research workers. 14th ed. Edinburgh: Oliver
and Boyd; 1970.

[46] Hedges LV, Olkin I. Statistical methods for meta-analysis. Orlando: Academic
Press; 1985.

[47] Rosenthal R. Meta-analytic procedures for social research. vol. 6 of Applied social
research methods series. Rev. ed. Newbury Park, Calif: Sage; 1991.

[48] Schmidt FL, Hunter JE. Technical questions in meta-analysis of correlations. In:
Methods of meta-analysis: correcting error and bias in research findings. 3rd ed. 55
City Road: SAGE Publications, Ltd; 2015. p. 212–242.

[49] Schmidt FL, Hunter JE. Meta-analysis of correlations corrected individually for ar-
tifacts. In: Methods of meta-analysis: correcting error and bias in research findings.
3rd ed. 55 City Road: SAGE Publications, Ltd; 2015. p. 87–164.

[50] Bard JB, Rhee SY. Ontologies in biology: design, applications and future chal-
lenges. Nature Reviews Genetics. 2004;5(3):213–222.

[51] Jaccard P. The distribution of the flora in the alpine zone. New Phytologist.
1912;11(2):37–50.

[52] Chung NC, Miasojedow B, Startek M, Gambin A. Jaccard/Tanimoto similarity test
and estimation methods for biological presence-absence data. BMC Bioinformatics.
2019;20(15):1–11.

[53] Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F, Sievers C, et al. As-
semblage time series reveal biodiversity change but not systematic loss. Science.
2014;344(6181):296–299.

[54] Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong SP. A critical review of machine learning
of energy materials. Advanced Energy Materials. 2020;10(8):1903242.

[55] Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error
(MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model
Development. 2014;7(3):1247–1250.

[56] van der Velde IR, van der Werf GR, Houweling S, Maasakkers JD, Borsdorff T,
Landgraf J, et al. Vast CO2 release from Australian fires in 2019–2020 constrained
by satellite. Nature. 2021;597(7876):366–369.

[57] Inglis B, Schwarzenberg P, Klein K, von Rechenberg B, Darwiche S, Dailey HL.
Biomechanical duality of fracture healing captured using virtual mechanical testing
and validated in ovine bones. Scientific Reports. 2022;12(1):1–13.

78



[58] Alali Y, Harrou F, Sun Y. A proficient approach to forecast COVID-19 spread via
optimized dynamic machine learning models. Scientific Reports. 2022;12(1):1–20.

[59] Salkind NJ. Encyclopedia of measurement and statistics. vol. 3. Thousand Oaks:
SAGE Publications; 2006.

[60] Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, et al. Protocol update
for large-scale genome and gene function analysis with the PANTHER classification
system (v. 14.0). Nature Protocols. 2019;14(3):703–721.

[61] Mi H, Ebert D, Muruganujan A, Mills C, Albou LP, Mushayamaha T, et al. PAN-
THER version 16: a revised family classification, tree-based classification tool, en-
hancer regions and extensive API. Nucleic Acids Research. 2021;49(D1):D394–
D403.

[62] Rivals I, Personnaz L, Taing L, Potier MC. Enrichment or depletion of a GO cat-
egory within a class of genes: which test? Bioinformatics. 2006 12;23(4):401–
407. Available from: https://doi.org/10.1093/bioinformatics/
btl633.

[63] Ge Y, Dudoit S, Speed TP. Resampling-based multiple testing for microarray data
analysis. Test. 2003;12(1):1–77.

[64] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society Series
B (Methodological). 1995;57(1):289–300.

[65] Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-
Tissue Expression (GTEx) project. Nature Genetics. 2013;45(6):580–585.

[66] Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Research.
2002;30(1):207–210.

[67] Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids
Research. 2012;41(D1):D991–D995.

[68] Ramaker RC, Bowling KM, Lasseigne BN, Hagenauer MH, Hardigan AA, Davis
NS, et al. Post-mortem molecular profiling of three psychiatric disorders. Genome
Medicine. 2017;9(1):1–12.

[69] Hagenauer MH, Schulmann A, Li JZ, Vawter MP, Walsh DM, Thompson RC, et al.
Inference of cell type content from human brain transcriptomic datasets illuminates
the effects of age, manner of death, dissection, and psychiatric diagnosis. PLOS
ONE. 2018;13(7):e0200003.

[70] Lanz TA, Reinhart V, Sheehan MJ, Rizzo SJS, Bove SE, James LC, et al. Post-
mortem transcriptional profiling reveals widespread increase in inflammation in
schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus

79

https://doi.org/10.1093/bioinformatics/btl633
https://doi.org/10.1093/bioinformatics/btl633


among matched tetrads of controls with subjects diagnosed with schizophrenia,
bipolar or major depressive disorder. Translational Psychiatry. 2019;9(1):1–13.

[71] Ryan M, Lockstone H, Huffaker S, Wayland M, Webster M, Bahn S. Gene expres-
sion analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and
alterations in synaptic genes. Molecular Psychiatry. 2006;11(10):965–978.

[72] Iwamoto K, Bundo M, Kato T. Altered expression of mitochondria-related genes
in postmortem brains of patients with bipolar disorder or schizophrenia, as re-
vealed by large-scale DNA microarray analysis. Human Molecular Genetics.
2005;14(2):241–253.

[73] Abdolmaleky HM, Gower AC, Wong CK, Cox JW, Zhang X, Thiagalingam A,
et al. Aberrant transcriptomes and DNA methylomes define pathways that drive
pathogenesis and loss of brain laterality/asymmetry in schizophrenia and bipolar
disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics.
2019;180(2):138–149.

[74] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape:
a software environment for integrated models of biomolecular interaction networks.
Genome Research. 2003;13(11):2498–2504.

[75] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
Ontology: tool for the unification of biology. Nature Genetics. 2000;25(1):25–29.

[76] Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine.
Nucleic Acids Research. 2021;49(D1):D325–D334.
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Appendix A
Supplement to Bipolar Disorder
and Control Data Sets
A.1 Normalization of Microarrays and RNA-Seq
The construction of a consensus CSD network for BP relative to control samples was based
on six individual studies. The normalization methods used in these studies are summarized
in Table A.1.

Table A.1: Normalization methods for bipolar disorder data sets from Gene Expression Omnibus
(GEO). All studies contained samples originating from the dorsolateral prefrontal cortex. RMA:

Robust Multi-array Analysis, MAS5: Micro Array Suite 5.0
GEO
accession

Platform Normalization in study Additional
normalization

Reference

GSE80655 Illumina HiSeq
2000

No information about
normalization

Between-
sample
normalization
with DESeq
[85, 86]

[68]

GSE92538 Affymetrix
HG-U133A or
HG-U133 Plus
2

Log(2)-transformed RMA and
quantile normalized,
gender-checked and per-batch
median-centered.

None [69]

GSE53987 Affymetrix
HG-U133 Plus
2

RMA normalized. None [70]

GSE5388 Affymetrix
HG-U133A

RMA normalized. None [71]

GSE12649 Affymetrix
HG-U133A

Processed by MAS5 and
normalized by median
centering.

None [72]

GSE120340 Affymetrix
HG-U133 Plus
2

Log(2)-transformed, RMA
normalized.

None [73]
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A.2 Patient Information
Several of the studies used to generate a consensus CSD network for BP received brain
tissue from the same brain bank. This could mean that these studies are based on the
same patients. A mapping of age, gender and age of onset for the included BP and con-
trol samples from GSE12649 [72] and GSE5388 [71] is included in Table A.2 and A.3,
respectively. GSE120340 [73] has received brain tissue from the the same brain bank as
GSE12649 [72] and GSE5388 [71], but is omitted from the patient mapping due to lack
of available patient information. A mapping of age, gender and ethnicity for the included
BP and control samples from GSE80655 [68] and GSE92538 [69] is included in Table
A.4 and A.5, respectively. No patient information from GSE53967 [70] is included here
as it is the only one of the included studies that has received brain tissue from the Uni-
versity of Pittsburgh. Additional information about the patients, such as cause of death,
brain weight, medication, drug abuse, alcohol abuse and PMI, are in some cases available
form the studies and interested readers are referred to the relevant references for more
information [68–73].
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Table A.2: Patient information mapping for bipolar disorder samples from GSE12649 [72] and
GSE5388 [71], which both have received samples from Stanley Medical Research Institute.

Patients with same age, gender and age of onset in the two studies are indicated in green. Patients
that must be unique to one study are indicated in red.

GSE12649 GSE5388
Age Gender Age of

onset
Age Gender Age of

onset
19 Male 17 19 Male 17
29 Male 17 29 Male 17
29 Male 22 29 Male 22
29 Female 18 29 Female 18
33 Female 15 33 Female 15
35 Female 21 35 Female 21
35 Male 19 35 Male 19
35 Male 14
41 Male 21 41 Male 21

41 Male 22
41 Female 14 41 Female 14
42 Male 18 42 Male 18
42 Female 20 42 Female 20
43 Female 25 43 Female 25

43 Female 29
44 Male 33 44 Male 33
44 Female 26 44 Female 26
45 Male 16 45 Male 16
45 Male 35 45 Male 35
48 Female 33 48 Female 33
48 Male 31 48 Male 31
49 Female 22
49 Female 20 49 Female 20
50 Female 25 50 Female 25
51 Female 35
51 Male 23 51 Male 23
54 Male 45 54 Male 45
55 Female 40
56 Male 28 56 Male 28
56 Female 14 56 Female 14
58 Female 27 58 Female 27
59 Male 25 59 Male 25
59 Female 48
63 Female 43 63 Female 43
64 Male 19 64 Male 19
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Table A.3: Patient information mapping for control samples from GSE12649 [72] and GSE5388
[71], which both have received samples from Stanley Medical Research Institute. Patients with
same age and gender in the two studies are indicated in green or in yellow if there are multiple

potential matches. Patients that must be unique to one study are indicated in red.
GSE12649 GSE5388

Age Gender Age Gender
31 Male 31 Male
32 Male 32 Male

32 Male
33 Female
34 Male 34 Male
34 Female 34 Female
35 Male 35 Male
35 Male
37 Male 37 Male
38 Female 38 Female
38 Female 38 Female
39 Female 39 Female
40 Male 40 Male
41 Female
42 Male 42 Male
44 Female 44 Female
44 Female 44 Female
45 Male 45 Male
45 Male 45 Male
46 Male 46 Male
47 Male 47 Male
47 Male 47 Male

47 Male
48 Male 48 Male
48 Male 48 Male

48 Male
49 Male 49 Male
49 Male
49 Female 49 Female
50 Male 50 Male
51 Male 51 Male
51 Male

52 Male
53 Male 53 Male
53 Male
55 Male 55 Male
57 Male

59 Male
60 Male
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Table A.4: Patient information mapping for bipolar disorder samples from GSE80655 [68] and
GSE92538 [69], which both have received samples from Pritzker Neuropsychiatric Disorders

Research Consortium. Patients with same age, gender and ethnicity in the two studies are indicated
in green or in yellow if there are multiple potential matches. Patients that must be unique to one

study are indicated in red.
GSE80655 GSE92538

Age Gender Ethnicity Age Gender Ethnicity
23 Male Caucasian 23 Male Caucasian
25 Female Caucasian
26 Male Caucasian 26 Male Caucasian
32 Male Caucasian 32 Male Caucasian

33 Male Caucasian
34 Female Caucasian

36 Female Caucasian 36 Female Caucasian
36 Male Caucasian
39 Female Caucasian

40 Male Caucasian 40 Male Caucasian
42 Male Caucasian
49 Male Other 49 Male Other
49 Female Caucasian 49 Female Caucasian
51 Female Caucasian 51 Female Caucasian
51 Female Caucasian
51 Male Caucasian
52 Male Caucasian 52 Male Caucasian
52 Male Caucasian
52 Male Caucasian
53 Male Caucasian
56 Female Caucasian 56 Female Caucasian
59 Female Caucasian 59 Female Caucasian
59 Male Caucasian 59 Male Caucasian

63 Female Caucasian
63 Male Caucasian 63 Male Caucasian

66 Female Caucasian
68 Female Caucasian

69 Male Caucasian 69 Male Caucasian
69 Male Caucasian

69 Female Caucasian 69 Female Caucasian
70 Male Caucasian 70 Male Caucasian

73 Male Caucasian
81 Female Caucasian
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Table A.5: Patient information mapping for control samples from GSE80655 [68] and GSE92538
[69], which both have received samples from Pritzker Neuropsychiatric Disorders Research

Consortium. Patients with same age, gender and ethnicity in the two studies are indicated in green
or in yellow if there are multiple potential matches. Patients that must be unique to one study are

indicated in red.
GSE80655 GSE92538

Age Gender Ethnicity Age Gender Ethnicity
18 Male Caucasian
19 Male Caucasian
25 Male Caucasian
30 Male Caucasian

32 Male Caucasian 32 Male Caucasian
32 Male Caucasian 32 Male Caucasian
35 Male Caucasian 35 Male Caucasian
39 Male Pacific Islander
39 Male Caucasian 39 Male Caucasian
40 Male Caucasian 40 Male Caucasian
40 Male Caucasian 40 Male Caucasian
41 Male Caucasian 41 Male Caucasian
43 Male Asian 43 Male Asian
44 Male Caucasian 44 Male Caucasian
45 Male Caucasian 45 Male Caucasian
45 Female Caucasian 45 Female Caucasian

47 Female Asian
47 Female Caucasian

48 Male Caucasian 48 Male Caucasian
48 Male Caucasian
48 Female Caucasian

49 Male Caucasian 49 Male Caucasian
50 Male Caucasian
50 Male Asian
52 Male Caucasian
52 Male Caucasian
52 Female Caucasian
53 Male Caucasian
54 Male Caucasian
54 Male Caucasian

55 Male Caucasian 55 Male Caucasian
55 Male Caucasian
55 Male Caucasian
55 Male Caucasian

56 Male Caucasian 56 Male Caucasian
56 Male Caucasian
56 Male Caucasian
57 Female Caucasian

58 Male Caucasian 58 Male Caucasian
58 Male Caucasian
58 Male Caucasian
59 Male African American
59 Male Caucasian
60 Male Caucasian
60 Female Caucasian
60 Male Caucasian
62 Female Caucasian

Continued on next page
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Table A.5 – continued from previous page
GSE80655 GSE92538

Age Gender Ethnicity Age Gender Ethnicity
62 Female Caucasian

63 Male Caucasian 63 Male Caucasian
63 Male Caucasian
63 Male Caucasian
63 Female Caucasian
64 Male Caucasian
64 Male Caucasian

64 Female Caucasian 64 Female Caucasian
64 Female Caucasian
64 Male Caucasian
65 Female Caucasian

65 Male African American 65 Male African American
66 Male Caucasian 66 Male Caucasian
67 Male Caucasian 67 Male Caucasian

67 Male Caucasian
67 Male Asian
68 Female Caucasian
68 Female Caucasian
69 Male Caucasian
69 Male Caucasian

70 Male Caucasian 70 Male Caucasian
70 Female Caucasian 70 Female Caucasian

70 Female Caucasian
70 Female Caucasian
71 Male Caucasian
71 Male Caucasian
72 Female Caucasian
72 Male Caucasian
73 Female Caucasian
73 Female Caucasian
73 Female Caucasian
75 Male Caucasian
77 Male Caucasian
77 Male Caucasian
78 Male Caucasian
78 Female Caucasian
79 Male Caucasian
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Appendix B
Overview of Software Versions
The development, testing, network creation and analysis in this thesis have relied on sev-
eral third-party software resources. A complete list with version numbers is provided in
Table B.1. Analyses relying on the steps from the CSD approach [9] have used older
versions of the software.

Table B.1: List of software version numbers used in analyses. Libraries/apps have been grouped
with their associated programming language/software platform. Note that scripts from the CSD

approach [9] relied on older versions of the software (not listed).
Software Version
Python 3.9.7
Matplotlib 3.4.3
Seaborn 0.11.2
Matplotlib-ven 0.11.6
Pandas 1.3.4
Numpy 1.20.3
SciPy 1.7.1
NetworkX 2.7
R 3.6.1
DESeq 1.26.0
Excel 2202 (Build 16.0.14931.20128)
Cytoscape 3.7.2
DisGeNet-app 7.3.0
SetsApp 2.2.0
PANTHER 17.0
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Appendix C
Supplement to Method
Development
C.1 Pairwise Comparison of Correlation of Correlations
The method development in this thesis has been devoted to construction of consensus CSD
networks and has focused on combination of correlation coefficients using either weighted
untransformed or Fisher’s Z transformed averages. Spearman rank correlation coefficients
were calculated for these combined correlation coefficients relative to the correlation co-
efficients from the reference data set (a 1000-gene data set originating from ”Skin - Not
Sun Exposed (Suprapubic)”). A Wilcoxon signed-rank test indicated that these Spearman
rank correlations were significantly different for the two combination methods. A plot of
the pairwise differences and the distribution of the differences are displayed in Figure C.1.
Note that the distribution of the differences is approximately symmetrical, thus justifying
the use of a Wilcoxon signed-rank test.

(a) (b)

Figure C.1: (a) Scatter plot and (b) histogram of pairwise differences between correlation of
correlations for weighted untransformed and Fisher’s Z transformed averages. Correlation of

correlations has been calculated as the Spearman rank correlation coefficient of a combination
method (weighted untransformed or Fisher’s Z transformed averages) relative to reference

correlations from a 1000-gene data set originating from ”Skin - Not Sun Exposed (Suprapubic)”.
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C.2 Pairwise Comparison of RMSEs
The methods for combining correlation coefficients (Fisher’s Z transformed or weighted
untransformed averages) have been evaluated by calculation of RMSEs relative to the cor-
relation coefficients from the reference data set (a 1000-gene data set originating from
”Skin - Not Sun Exposed (Suprapubic)”). A Wilcoxon signed-rank test indicated that these
RMSEs were significantly different for the two combination methods. A plot of the pair-
wise differences and the distribution of the differences between the RMSEs are displayed
in Figure C.2. The distribution of the differences is nearly symmetrical, thus justifying the
use of a Wilcoxon signed-rank test.

(a) (b)

Figure C.2: (a) Scatter plot and (b) histogram of pairwise differences between root mean square
errors (RMSEs) for weighted untransformed and Fisher’s Z transformed averages of correlation
coefficients. The RMSEs were calculated relative to the reference correlations from a 1000-gene

data set originating from ”Skin - Not Sun Exposed (Suprapubic)”.
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C.3 Jaccard Indices for Combined Correlation Coefficients
The overlap between the top n most strongly co-expressed gene pairs based on the com-
bined correlation coefficients from 1000-gene data sets originating from ”Skin - Not Sun
Exposed (Suprapubic)” has been evaluated by calculating Jaccard indices. The Jaccard
index for the weighted untransformed averages relative to Fisher’s Z transformed averages
of correlation coefficients is plotted as a function of number of investigated gene pairs in
Figure C.3.

Figure C.3: Jaccard index as a function of number of investigated gene pairs for combined
Spearman rank correlation coefficients based on weighted untransformed averages relative to

Fisher’s Z transformed averages of correlation coefficients from 1000-gene data sets originating
from ”Skin - Not Sun Exposed (Suprapubic)”. Error bars represent standard deviations.
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Appendix D
Clustering Analysis of Control
Samples
The construction of consensus CSD networks for BP relied on the combination of six data
sets. As some of these sets have received tissue from the same brain bank, a clustering
analysis was conducted. The hierarchically-clustered heat map for the control data sets is
shown in Figure D.1.

Figure D.1: Hierarchically-clustered heat map for control data sets. The elements of the matrix
correspond to the pairwise Spearman rank correlation coefficients between the Spearman rank

correlation coefficients from the two indicated studies.
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Appendix E
Supplement to Model Comparison
E.1 Model Comparison at the Level of Correlations –

Control Samples

The construction of a consensus CSD network for BP involved calculation of combined
correlation coefficients. The combined correlation coefficients can be estimated by the
use of either weighted untransformed or Fisher’s Z transformed averages. The resulting
estimates from the combination methods have been plotted against each other in Figure
E.1 for control samples.

Figure E.1: Heat map between combined Spearman rank correlation coefficients based on Fisher’s
Z transformed and weighted untransformed averages for control samples. The dashed line
represents the expected relationship (y = x). rs represents the Spearman rank correlation

coefficient between the combined correlations.
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E.2 Jaccard Indices for Correlation Coefficients in
Bipolar Disorder and Control Samples

The combined correlation coefficients from BP and control samples have been compared
to each other and to underlying data sets by calculation of Jaccard indices of top n most
strongly co-expressed gene pairs. This is displayed in Figure E.2 using Fisher’s Z trans-
formed averages as reference values.
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(a)

(b)

Figure E.2: Jaccard index as a function of number of investigated gene pairs between Spearman
rank correlation coefficients from indicated data sets and Fisher’s Z transformed averages

originating from (a) bipolar disorder and (b) control samples. The term ”Untransformed” refers to
weighted untransformed averages of the correlation coefficients.
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E.3 Similarity of Neighbourhoods in the CSD Networks
for Bipolar Disorder

The construction of consensus CSD networks for BP has been based on two different
combination methods: weighted untransformed and Fisher’s Z transformed averages of
correlation coefficients. The similarity between the neighbourhoods in the resulting CSD
networks is presented in Figure E.3 using the network based on Fisher’s Z transformed
averages of correlation coefficients as reference.

Figure E.3: Comparison of neighbourhoods in the CSD networks for bipolar disorder using
Fisher’s Z transformed averages of correlation coefficients as reference. The nodes are organized
by degree in the reference network (denoted by ktransformed) and Jaccard indices are calculated
between the neighbours of node i in this networks relative to the CSD network based on weighted
untransformed averages. The terms ”common” and ”unique” refer to whether the nodes are shared
between the two CSD networks or are unique to the reference network. The size of the points in the

plot reflects the number of nodes in the reference network with the given characteristic.
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Appendix F
Structural Analysis of CSD
Network Based on Fisher’s Z
Transformed Averages

Structural analyses of the CSD networks for BP have been conducted to evaluate if these
networks are similar to typical CSD networks. The CSD network based on weighted
untransformed averages of correlation coefficients has been the main focus in this the-
sis. However, structural analyses of the CSD network based on Fisher’s Z transformed
averages are presented here. This includes analyses of degree distribution (Figure F.1),
assortativity (Table F.1), average clustering coefficients (Table F.1) and node homogeneity
scores (Figure F.2).

Figure F.1: Degree distribution of the consensus CSD network for bipolar disorder based on
Fisher’s Z transformed averages of correlation coefficients. The purple, dashed line represents the

fitted power law.

101



Table F.1: Assortativity and average clustering in the CSD network for bipolar disorder based on
Fisher’s Z transformed averages of correlation coefficients.

Network type Degree assortativity
coefficient

Average clustering
coefficient

Full CSD network 0.097 0.088
C network -0.090 0.40
S network -0.17 0.025
D network -0.15 0

(a) (b)

Figure F.2: (a) Number of nodes involved in each type of interaction and (b) node homogeneity
scores in the CSD network for bipolar disorder based on Fisher’s Z transformed averages of

correlation coefficients. Red bars and red diamonds indicate median and mean homogeneity scores,
respectively.
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Appendix G
Supplement to Functional Analysis
G.1 Disease Enrichment
The CSD network for BP was subjected to disease enrichment for BP, which indicated
that 29 genes in the CSD network had previously been associated with BP. These genes,
as well as their degrees and homogeneity scores, are provided in Table G.1.

Table G.1: Genes, and their degrees and homogeneity scores, from disease enrichment of the CSD
network for bipolar disorder. The rows are coloured according to the main interaction type of the
nodes, where C, S and D types are coloured blue, green and red, respectively. Nodes with equal

proportions of two interaction types are not coloured.
Node k kC kS kD H
AGT 18 18 0 0 1.0
MLC1 15 14 1 0 0.88
S1PR1 12 11 1 0 0.85
NR2E1 9 8 1 0 0.8
DRD4 6 0 1 5 0.72
GLO1 5 0 5 0 1.0
ALDH2 4 4 0 0 1.0
SST 4 1 3 0 0.62
ADRA2C 2 0 1 1 0.5
ATP1A1 2 1 1 0 0.5
CSRP1 2 2 0 0 1.0
DPYSL2 2 0 1 1 0.5
GRM3 2 0 0 2 1.0
VGF 2 0 2 0 1.0
ADM 1 0 1 0 1.0
APOD 1 0 1 0 1.0
ITIH1 1 0 1 0 1.0
CNR2 1 0 0 1 1.0
CNTN6 1 0 1 0 1.0
GNB3 1 0 1 0 1.0
PC 1 0 1 0 1.0
GPRC5D 1 0 1 0 1.0
IL6 1 0 1 0 1.0
PVALB 1 0 1 0 1.0
TAC1 1 0 1 0 1.0
HPGDS 1 0 0 1 1.0
IL2RB 1 0 0 1 1.0
SPR 1 0 0 1 1.0
RELN 1 0 1 0 1.0
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G.2 GO Enrichment of Communities
Communities in the CSD network for BP were identified using the Louvain algorithm [29].
The communities were then analysed for overrepresentation of GO terms. Three of the
communities (number 5, 8 and 13 in Figure 4.13) were enriched for biological processes
when requiring FDR < 0.05. One additional community (number 10 in Figure 4.13) were
enriched for biological processes when using FDR < 0.1. Table G.2, G.3, G.4 and G.5
provide complete lists of all enriched GO terms for the four communities.

Table G.2: Complete Gene Ontology (GO) enrichment of community number 5 in the CSD
network for bipolar disorder. Only results with false discovery rate (FDR) < 0.05 are displayed.
GO biological process Number

of genes
Fold en-
richment

Raw
P value

FDR

Proton transmembrane transport (GO:1902600) 6 15.51 4.70E-06 2.53E-02
ATP metabolic process (GO:0046034) 7 11.63 3.82E-06 4.11E-02
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Table G.3: Complete Gene Ontology (GO) enrichment of community number 8 in the CSD
network for bipolar disorder. Note that related classes of an ontology are grouped together. Only

results with false discovery rate (FDR) < 0.05 are displayed.
GO biological process Number

of genes
Fold en-
richment

Raw
P value

FDR

Vertebrate eye-specific patterning (GO:0150064) 2 > 100 3.02E-05 2.71E-02
Neuron remodeling (GO:0016322) 2 > 100 4.53E-05 3.48E-02
Neuron maturation (GO:0042551) 2 > 100 1.09E-04 4.87E-02
Complement-mediated synapse pruning
(GO:0150062)

2 > 100 4.53E-05 3.25E-02

Synapse pruning (GO:0098883) 3 > 100 4.61E-07 4.96E-03
Cell junction disassembly (GO:0150146) 3 > 100 6.33E-07 3.41E-03
Cell junction organization (GO:0034330) 4 24.34 9.00E-06 1.38E-02
Synapse organization (GO:0050808) 3 33.40 7.31E-05 3.75E-02
Complement activation, classical pathway
(GO:0006958)

3 > 100 3.11E-06 1.12E-02

Humoral immune response mediated by
circulating immunoglobulin (GO:0002455)

3 > 100 3.11E-06 8.38E-03

Immune response (GO:0006955) 5 8.25 6.00E-05 3.80E-02
Immunoglobulin mediated immune response
(GO:0016064)

3 49.06 2.47E-05 2.66E-02

B cell mediated immunity (GO:0019724) 3 49.06 2.47E-05 2.41E-02
Adaptive immune response based on somatic
recombination of immune receptors built from
immunoglobulin superfamily domains
(GO:0002460)

3 34.89 6.46E-05 3.48E-02

Lymphocyte mediated immunity (GO:0002449) 3 35.68 6.06E-05 3.62E-02
Immune effector process (GO:0002252) 4 19.38 2.16E-05 2.59E-02
Complement activation (GO:0006956) 3 65.42 1.11E-05 1.49E-02
Activation of immune response (GO:0002253) 4 31.24 3.46E-06 7.44E-03
Positive regulation of immune response
(GO:0050778)

4 16.23 4.29E-05 3.55E-02

Regulation of immune system process
(GO:0002682)

5 8.15 6.38E-05 3.61E-02

Positive regulation of immune system process
(GO:0002684)

5 12.28 8.66E-06 1.55E-02

Innate immune response (GO:0045087) 4 13.86 7.87E-05 3.69E-02
Response to biotic stimulus (GO:0009607) 5 8.31 5.82E-05 3.92E-02
Defense response (GO:0006952) 5 7.88 7.51E-05 3.68E-02

Table G.4: Complete Gene Ontology (GO) enrichment of community number 10 in the CSD
network for bipolar disorder. Note that related classes of an ontology are grouped together. Only

results with false discovery rate (FDR) < 0.1 are displayed.
GO biological process Number

of genes
Fold en-
richment

Raw
P value

FDR

Regulation of bone remodeling (GO:0046850) 4 23.00 5.23E-05 9.39E-02
Regulation of localization (GO:0032879) 18 2.55 6.12E-05 8.24E-02
Cell migration (GO:0016477) 11 4.22 4.22E-05 9.08E-02
Cell motility (GO:0048870) 12 4.29 1.43E-05 5.12E-02
Localization of cell (GO:0051674) 12 4.29 1.43E-05 7.68E-02
Locomotion (GO:0040011) 12 3.61 7.68E-05 9.19E-02
Generation of neurons (GO:0048699) 12 4.09 2.27E-05 6.11E-02
Neurogenesis (GO:0022008) 12 3.70 5.98E-05 9.19E-02

105



Table G.5: Complete Gene Ontology (GO) enrichment of community number 13 in the CSD
network for bipolar disorder. Note that related classes of an ontology are grouped together. Only

results with false discovery rate (FDR) < 0.05 are displayed.
GO biological process Number

of genes
Fold en-
richment

Raw
P value

FDR

Myelination (GO:0042552) 4 44.86 2.46E-06 1.32E-02
Axon ensheathment (GO:0008366) 4 44.86 2.46E-06 8.81E-03
Ensheathment of neurons (GO:0007272) 4 44.86 2.46E-06 2.64E-02
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