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Abstract

Filtration of metal inclusions is an important step in ensuring the castings meet the standards for cleanliness.
In this respect the development of new metal filtration technology is of interest. One such technology is Rigid
Glass Weave (RGW) which may replace the Ceramic Foam Filters (CFF) in foundry applications. While CFF
is significantly better at lower flowrates, the RGW can handle very high flowrates and offers other advantages
for casting machines in general. The focus of this thesis is the characterization of the flow through this filter.
Five different weaves across two geometries were tried at various flowrates in a pressure–drop experiment.
And the data was used in an attempt at quantifying the empirical constants in regards to the Forchheimer
equation. Four methods were used in attempting to quantify these constants: Linear Regression, Ergun
Empirical, Exponential Regression, and Brute Force. Of these, the first three were a form of linear regression.
The quantification of the last method was treated as the expected value and used to quantify the p–values for
the Linear Regression Method and the Ergun Empirical Method.

In addition, the system with each geometry was modelled in 2D and 3D using COMSOL Multiphysics®.
Both the 2D models were simulated using by treating both the filter geometries as permeable media, and one
filter geometry for the 3D model. The 3D model with a flat weave was modelled as individual strands, and
simulated as such.

Sammendrag

Filtrering av metallinklusjoner er et viktig steg i støpningsprosessen for å forsikre renhetskravet. I denne
forstand er utvikling av nye metallfiltreringsteknologier interessant. En slik teknologi er Rigid Glass Weave
(RGW) som kan erstatte Ceramic Foam Filters (CFF) for bruk i støperi. Mens CFF er betydelig bedre ved
lavere væskehastigheter, kan RGW håndtere veldig høye væskehastigheter samt den tilbyr andre fordeler
for støpningsmaskiner. Fokuset til denne oppgaven er karakteriseringen av væskeflyten gjennom filteret. To
geometrier med fem forskjellige vevstyper ble testet ved flere væskehastigheter i et trykkforskjellsforsøk.
Der dataen ble brukt i et forsøk på å kvantifisere empiriske konstanter i henhold til Forchheimers likning.
Fire metoder ble brukt i forsøkene for å kvantifisere disse verdiene: Lineær Regresjon, Ergun Empirisk,
Eksponentialregresjon og Ren Gjetting. Verdiene fra den siste metoden ble brukt som forventningsverdier til
å kvantifisere p–verdier til Lineær Regresjon Metoden og Ergun Empiriske metoden.

I tillegg, ble systemet modellert i 2D og 3D med COMSOL Multiphysics® for hver geometri. I begge 2D
simuleringene ble filtrene behandlet som permeable medier, samt en geometri i 3D modellen. 3D modellen
med det flate vevet ble modellert med individuelle vev, og simulert i samme respekt.
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Figure 1.1: A geometrical shaped filter
(20x43L) of the type Rigid Glass Weave.
This type of filter is a sheet-like filter,
its structure does not have an impact on
tortuosity.

Figure 1.2: A Ceramic Foam Filter. This
type of filter has a porous structure,
which has impact on the tortuosity.

Introduction 1
Metal cleanliness is an important factor in the process of ingot produc-
tion, due to how it can affect the final products and cause undesired
performances in consumer items and industry. The metal cleanliness is
measured by the amount, size, and identity of non-metallic inclusions
in the molten metal and its products. There are therefore varying re-
quirements for metal cleanliness to avoid performance issues, where
filtration is an essential step to meet those requirements (in addition
to other cleaning methods). Filtration is usually the final step of metal
treatment before casting [1]. Today there are multiple filter solutions
for the aluminium market. For cast houses, where metals are filtered at
higher amounts and lower velocities (2 – 20 mm s−1), it is normal to use
bed filters, bonded particle tube filters, or high grid ceramic foam filters.
In foundries, where metal is filtered in smaller amounts and higher
velocities (up to several m s−1), it is common practice to use low grade
ceramic foam filters and in the future potentially the Rigid Glass Weave
(RGW) filters.

The aluminium industry being the second largest metal industry after
the steel industry, is projected to grow more rapidly in the future. As the
light metal industry is shifting into a greener economy as a response to
global warming, the demand for aluminium is increasing. Aluminium is
a highly versatile material that can be completely recycled without loss,
and is important in, among others, the transport, construction, packaging
and electrical sectors. [2].

Besides the increasing demand for more aluminium, more efficient
technology is becoming more beneficial to use. In the aluminium foundry
industry, the demand for new filter types with higher efficiency has been
increasing. Although it is favourable to develop the most efficient and cost–
efficient filters, it is required that these filters meet the quality standards
for metal cleanliness in the industry. Currently in the aluminium foundry
industry, the Ceramic Foam Filter (CFF) is normally used for filtration,
where the Rigid Glass Weave filter stands as a possible replacement.
Filters of the type Rigid Glass Weave are made of woven fiberglass
and is a sheet-like filter, as shown in Figure 1.1, as opposed to the
alumina construct that is CFF. Since the RGW–filter is a sheet–like filter,
its structure does not have an impact on tortuosity, which CFF–filter
structures have, as shown in Figure 1.2. The RGW–filter has performance
benefits while having the same casting quality as CFF and does not require
process changes or filter pocket modifications. The performance benefits
include increased savings, process efficiency, pouring time consistency,
and reduced abrasion on mould and mould coatings. Additionally, the
RGW–filter reduces metal bypass significantly and remelts easily with the
gating for recycling [3]. The focus in this thesis is setting a new reliability
standard of the new filter type Rigid Glass Weave (RGW).
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Theory 2
2.1 Permeability

Permeability is an important parameter in the characterization of Rigid
Glass Weave filters (RGW), as it is important in the characterization
of Ceramic Foam Filters (CFFs). The filter permeability can be used
to predict the obtainable flowrate for an applied pressure gradient, or
predict the required pressure drop to achieve a specific flowrate. The
parameters can be expressed as a function of the fluid flow and medium
properties, and can be obtained by fitting the experimental data with
permeability equations [4].

2.1.1 Forchheimer Equation

For a permeable medium, the velocity of a permeating liquid will cause
a pressure drop across the media. These variables correlate with one
another, and one empirical model for determining one of these variables
from the other is the Forchheimer equation. This equation is shown in
equation 2.1, and corroborates the pressure drop, Δ𝑃; the filter length,
𝐿; the liquid viscosity, �; the density of the liquid, 𝜌, and two constants,
𝑘1 and 𝑘2, which are the Darcy constant and Forchheimer constant
respectively [5].

Δ𝑃
𝐿

=
�

𝑘1
· 𝑣 + 𝜌

𝑘2
· 𝑣2 (2.1)

2.1.2 Ergun Equation

To express the Darcian and the non-Darcian permeability constant 𝑘1
and 𝑘2 respectively, Ergun proposed in 1952 the following expressions
[6]:

𝑘1 =
𝜖3𝑑2

𝑝

150 (1 − 𝜖)2
(2.2)

𝑘2 =
𝜖3𝑑𝑝

1.75 (1 − 𝜖) (2.3)

Where 𝜖 is the fractional porosity, and 𝑑𝑝 is the mean particle diameter
The Forcheimer equation can be modified using the expressions proposed
by Ergun[6]:
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Δ𝑃
𝐿

= 150
(
1 − 𝜖2) �
𝜖3𝑑2

𝑝
𝑉𝑠 + 1.75

(1 − 𝜖) 𝜌
𝜖3𝑑𝑝

𝑉2
𝑠 (2.4)

2.2 Scanning Electron Microscopy

SEM Scanning electron microscopy (SEM) is a type of electron micro-
scope, which employs an electron beam to produce images samples
with resolutions at nanometer scale. By using electrons instead of visible
light as illuminating source, SEM can provide higher magnification than
optical microscopes due to electrons having shorter wavelengths. SEM
provides high-resolution imaging with large depth of field by using
electrostatic and electromagnetic lenses to focus short wavelengths of
electrons. The generated electrons produce a variety of useful signals
when the electrons are employed on the sample. The different signals
are based on their energy and how deep they come from within the
sample. They carry different information about the sample, that can be
captured by the microscope. Backscattered electrons (BSE) are electrons
with higher energy and are scattered out of the sample while losing a
small amount of energy. BSE provides compositional information, but
lower resolution images. This is due to a strong interaction between
sample and electrons within the sample (few microns deep). Secondary
electrons (SE) reflect a few nanometers from within the sample, with a
lower energy than BSE. The electrons are sensitive to surface structure
and gives a topographic view of the sample. X–Rays are produced when
electrons hit the surface of the sample, thus giving information about
the elemental composition of the sample [7, 8]. The SEM system consists
of [8]:

▶ an electron source (electron gun);
▶ electrostatic lenses with apertures ;
▶ coils for scanning the beam;
▶ voltage and electronic controlling supplies;
▶ a electron beam deflection system for collecting and processing the

signal information;
▶ a display monitor;
▶ a vacuum system for the source, column and specimen chamber.

At higher voltages, the electron wavelength decreases, thus giving in-
creased resolution of the sample. While in scanning mode with standard
SEM techniques (magnification ranging from 20X to approximately
30,000X, spatial resolution of 50 to 100 nm), image areas can range from
approximately 1 cm to 5 microns in width [9].

2.3 Finite Element Modelling

Finite Element Method (FEM) is used to compute numerical model
equations that approximates how space- and time- dependent problems
in physics are expressed. The description of the laws of physics for space-
and time-dependent problems are usually expressed as partial differential
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Figure 2.1: Model showing the flow pat-
tern, flow velocity, and turbulent viscos-
ity [11]

[10]: COMSOL (2017), ‘The Finite Ele-
ment Method (FEM)’

equations (PDE). These PDEs can not be solved with analytical meth-
ods and are therefore approximated by discretization methods. These
discretization methods can approximate the PDEs by using numerical
model equations that can be solved with numerical methods. COMSOL
Multiphysics® can use FEM to perform computational fluid dynamic
(CFD) simulations on fluid flow models [10]. The CFD module can be
used to model the water trial system, as it includes a set of Reynolds–
averaged Navier Stokes (RANS) turbulence models, and porous media
flow simulation. Figure 2.1 shows a fluid flow model, computed with
COMSOL Multiphysics ® using the CFD module. Navier–Stokes equa-
tions can predict flow velocity, and pressure given geometry, and are
therefore essential for fluid flow modelling. For compressible Newtonian
fluid, the equation is expressed as:

𝜌

(
𝜕𝑢
𝜕t

+ 𝑢 · ∇𝑢
)

︸              ︷︷              ︸
=1

= −∇p︸︷︷︸
2

+∇ ·
(
�

(
∇𝑢 + (∇𝑢)𝑇

)
− 2

3
� (∇ · 𝑢) 𝐼

)
︸                                        ︷︷                                        ︸

3

+ 𝐹︸︷︷︸
4

(2.5)

Where u is the fluid velocity, p is the fluid pressure, p is fluid density, u
is fluid dynamic viscosity. The different terms correspond to the inertial
forces (1), pressure forces (2), viscous forces (3), and the external forces (4).
In higher turbulence models, the Reynolds number is very high, and the
inertial forces are a lot more dominant than viscous forces. In these cases,
RANS formulation of the Navier–Stokes equations is used to reduce
computing power and time. Reynolds-averaged Navier–Stokes equations
averages the velocity and pressure fields in time, and is expressed as
follows:

𝜌 (+𝑈 · ∇𝑈) + ∇ ·
(
�𝑇

(
∇𝑈 + (∇𝑈)𝑇

)
− 2

3
�𝑇 (∇ ·𝑈) 𝐼

)
︸                                                                  ︷︷                                                                  ︸

1

= −∇P︸︷︷︸
2

+∇ ·
(
�

(
∇𝑈 + (∇𝑈)𝑇

)
− 2

3
� (∇ ·𝑈) 𝐼

)
︸                                          ︷︷                                          ︸

3

+ 𝐹︸︷︷︸
4

(2.6)
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Where 𝑈 the time averaged fluid velocity, 𝑃 is the time averaged fluid
pressure and �𝑇 is turbulent viscosity [12]. The turbulent viscosity is
evaluated by using a RANS turbulence model. The various turbulence
models provided by COMSOL Multiphysics® differ in how they calculate
flow near walls, and what additional variables are computed in the RANS-
equations. The turbulence model k–ε consists of solving two additional
equations for the transport of turbulent kinetic energy k, and rate of
dissipation of turbulent kinetic energy epsilon. This turbulence model is
commonly used in the industry due to its flexibility, high convergence rate
and lower computational intensity. The model is excellent for computing
external flow problems around a geometry. Although being popular, the
turbulence model does not compute flow fields with adverse pressure
gradients and strong curvature very accurately. The turbulence model
L–VEL computes the eddy viscosity using algebraic expressions based
on the local fluid velocity and the distance to the closest wall. Unlike the
turbulence model k–ε, L–VEL does not compute additional transport
equations. The model solves for the flow everywhere, and for requiring
the least computational power of the various turbulence models, the
model provides good approximations for internal flow, for example flow
in a tube [13].
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Figure 3.1: A flowchart showing the workflow of this thesis. The workflow contains each chapters and main subchapters for the thesis.
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3.2 Pressure Drop Experiments

3.2.1 Experimental Setup

The experiment consisted of two tanks, intermediated by one pump, the
filter house and tubing. This setup is illustrated in Figure 3.2, where
the instruments used and the stations from which the experiment was
performed also is shown. During the experiment, water would be driven
out of the primary tank, either with gravity or the primary pump, through
the filter house and into the secondary tank. The pressure drop across
the filter house and the weight of the added water in the secondary tank
would be measured respectively with a pressure transducer and a weight.
This data would be logged using a digital multi-meter and a computer
respectively. When the water in the secondary tank reached its capacity,
the secondary pump would be turned on to empty its content back
to the primary tank. Followed by updating the setting on the primary
pump, and then disabling it. After the secondary pump had emptied the
secondary tank, the weight was zeroed and the primary pump enabled
to repeat the process.

Figure 3.3 shows an image of the experimental setups, including where
each element of the experiment was placed in relation to Figure 3.2. In
this figure we can see that the primary pump draws the water out of
the primary tank through a piece of tubing. following this the water is
passed through a longer piece of tubing, circulating under a table until it
reaches a bend, from which point the flow is straight. The next section
the water passes is the filter house, of which a pressure transducer is
connected to each end. And the water proceeds to a section of three
bends leading to the secondary tank. This tank is placed atop the weight,
of which only the backside of the display is visible. Additionally the
secondary pump is placed inside the secondary tank, which draws it’s
power from a power strip next to the primary pump. This power strip
served as the power–switch for the secondary pump. Suspended above
the system is a section of tubing that connects the secondary pump with
the primary tank, and this was the tube used to return the water to the
primary tank. Further, a second tube can be seen in the figure leading to
the primary tank, this was the tube used to fill the tank with water. Next

Figure 3.2: A process flow diagram that
shows the experimental setup, includ-
ing the measuring devices and stations
during the experiment. (1) indicates the
primary tank, (2) the primary pump, (3)
the filter house, (4) the secondary tank
and (5) the secondary pump. The di-
agram shows that the weight receives
input from the secondary tank, while the
pressure transducer receives input from
the stream next to the filter house. Both
the weight and pressure transducer send
their signal to a computer (PC) and a digi-
tal multi–meter (DMM) respectively. The
stations during the experiments are la-
belled respectively as A, B and C, where
the instruments these stations control are
shown with incoming arrows.

(1)

(2)(3)

(4)

(5)

PT

Weight

PCDMM

A

B

C
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Filter house

The secondary
pump inside the
secondary tank

Primary tank

Primary pump

Pressure transducer

Weight

The power–switch for
the secondary pump

The equipment for
data logging

Figure 3.3: An image of the pressure–drop experiment setup, showing where each element in relation to Figure 3.2 is.

Figure 3.4: A geometric weave placed
on the protrusions in the interor for the
filter house.

Figure 3.5: A flat weave with cut corners
placed atop the square interor for the
filter house.

to the secondary tank, a pc and digital multi–meter can be seen, these
were used to log the data in the experiment. Additionally, the following
equipment was used:

Primary pump: CRE 15-1 N-A-A-E-HQQE No. 98390716
Secondary pump: Meek Tools 731-077
Weight: Ohaus Defender 3000 Model T31P
Pressure transducer: AEP DF2R
Digital multi–meter: Fluke 298 True RMS Multimeter

3.2.2 Experimental Procedure

The experiment involved five differing filter weaves and two different
geometries, resulting in 10 different filters to measure the pressure drop
for. Every filter was measured at 11 different velocities, ranging from 0;
gravity driven; to 10; the highest setting on the primary pump that was
used. The velocity measurements were done in series for each parallel.
All the filters were measured using a square interior for the filter house,
where one filter was used additionally with a circular interior. The circular
interior had the same diameter as the length of one side for the square
interior. It was the flat XW2 filter that was used with the circular interior,
where the same individual filters were used a with both interiors.

3.2.3 Filter Placements

Shaped filter:
The shaped filters were placed in the square interior for the filter
house, with vacuum grease lining a small interior protrusion at
the end, made to hold the filter. The filters were placed in this
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Figure 3.7: The filter house with the flat
interior. This figure shows the orienta-
tion the filter house interiors were placed
in the experiment. A geometric weave
can be seen inside the interior, and is
atop the protrusions. On the front of the
filter house interior, remnants of vacuum
grease can be seen, which has been used
to fix flat weaves to the interior. The flow
would go through the interior in the di-
rection the image is taken.

Figure 3.6: A CFF filter inside the inte-
rior to the filter house, placed atop the
protrusions. On the obscured faces of the
CFF filter is first a layer of cellulose paper
and second a layer of silicone grease.

[14]: Zhang (2012), ‘Liquid Permeability
of Ceramic Foam Filters’

chamber with the edge of the filter resting atop this protrusion,
using vacuum grease to secure the placement. The interior were
then placed inside the filter house, aligned such that the protrusions
are placed at the opposite face from the fluid flow. A geometric
weave in this position can be seen in Figure 3.4.

Flat filter:
The flat filters were placed atop the interior, where parts of the
filters that extended past the face of the interior was cut off. Figure
3.5 shows an example of this. The filters were placed on the same
face that the shaped filter would be inserted inside the interior
from, using vacuum grease to secure the placement. With both
filters the interior would be placed the same way inside the filter
house, such that the fluid flow would meet the flat filter prior to
meeting the interior.

CFF filter:
The CFF filters were placed inside square interiors to the filter
house, resting atop the same protrusions that hold the shaped
filters. This filter would be inserted surrounded by cellulose paper
on the obscured faces, where the cellulose papers were covered
with silicone grease. This method of inserting CFF filters was
gathered from [14], and can be seen in Figure 3.6.

An example of a filter placed inside the filter house is provided in Figure
3.7, where a geometric weave can be seen inside the square interior. In
this figure, remnant of vacuum grease which sa been used to affix a flat
weave can be seen on the camera–facing face of the filter house interior.
This grease can also be seen in Figure 3.4 and 3.6. The flow would pass
through the filters in the same direction the camera is facing, where every
filter was placed in the filter house and the accompanying interior in the
same direction as shown.

For the RGW filters the following weaves were used across a flat and
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[15]: Voigt et al. (2021), ‘Overview of the
Possibilities and Limitations of the Char-
acterization of Ceramic Foam Filters for
Metal Melt Filtration’

[14]: Zhang (2012), ‘Liquid Permeability
of Ceramic Foam Filters’

geometric geometry. A representation of the geometric weave can be
seen in Figure 3.4 and 3.7, whilst a representation of the flat weave can
be seen in Figure 3.5.

▶ 20x34L
▶ 20x36L
▶ 20x40L
▶ 20x43L
▶ 20xXW2

These weaves are referred to by the unique part of their identifier, e.g.
34L for the 20x34L weave. The CFF filters were of pure alumina and of a
10 and 20 ppi, and was handmade by Dr.–Ing. Claudia Voigt [15].

3.2.4 Data Gathering

The data that was gathered from the experiment described in this
section was manipulated programmatically, as shown in Figure 3.8. In
the data, the first datapoint was set at a point in time after the start
of the experiment. Every datapoint that followed this initial datapoint
was appended to an empty variable. This was done until the difference
between the current datapoint and the previous preceded a set tolerance,
and the appended variables was appended as an entry in a dataframe.
After which the following datapoints was discarded until this difference
exceeded the absolute value of this tolerance. This indicated a switch to
the next flowrate, where the datapoints was appended to a new empty
variable. This procedure was repeated for every flowrate that was used
in the experiment. This method for datamanipulation was used for both
the weight measurement and the current measurement.

3.2.5 Determination of the Empirical Constants

The empirical constants, 𝑘1 and 𝑘2, in regards to the Forchheimer equation,
see equation 2.1, can be determined with several methods. In this thesis
four methods for determining these constants are used, where the first
three are taken from [14].

Linear Regression:
The first method is simply the utilization of multiple linear re-
gression, with both a linear and second order term. In both these
terms, the variable is the flowrate, 𝑣, and the regression is forced
through the origin. Equation 3.1 shows the equation to wchich the
experimental data is fitted to in the regression, and equation 3.2 and
3.3 show how the 𝑘1– and 𝑘2–values respectively are determined.

Δ𝑃
𝐿

= 𝑎 · 𝑣2 + 𝑏 · 𝑣 (3.1)

𝑘1 =
�

𝑏
(3.2)

𝑘2 =
𝜌

𝑎
(3.3)

Ergun Emperical:
The Ergun Empirical Method is similar to the Linear Regression
Method, except that equation 3.1 is divided on both sides by the
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Start

Experimental Data

First variable: 𝑖
Tolerance: 𝑗
Holder ℎ = ∅
Number of Speeds: 𝑛
𝑑 = 𝐷𝑎𝑡𝑎(𝑖) − 𝐷𝑎𝑡𝑎(𝑖 − 1)

𝑠 == 0
and
𝑗 < 𝑑

FalseTrue𝑖 = 𝑖 + 1
append 𝐷𝑎𝑡𝑎(𝑖) to ℎ
𝑑 = 𝐷𝑎𝑡𝑎(𝑖) − 𝐷𝑎𝑡𝑎(𝑖 − 1)

𝑠 = 1
append ℎ to dataframe
𝑛 = 𝑛 − 1
𝑖 = 𝑖 + 1
𝑑 = 𝐷𝑎𝑡𝑎(𝑖) − 𝐷𝑎𝑡𝑎(𝑖 − 1)

| 𝑗 | > 𝑑

False

True𝑠 = 0
ℎ = ∅
𝑖 = 𝑖 + 1

𝑖 = 𝑖 + 1
𝑑 = 𝐷𝑎𝑡𝑎(𝑖) − 𝐷𝑎𝑡𝑎(𝑖 − 1)

𝑛 == 0
False

True

Stop

Figure 3.8: A flowchart describing how the experimental data was manipulated by programming to separate each flowrate in every
parallel. This was done by specifying which datapoint was registered first, to ensure the experiment had begun in the data. Then
appending every datapoint to an empty variable until the change in the values preceded a set tolerance, which indicate a termination
of the current flowrate in the experiment. After this the datapoints begins to be registered after the change in the values exceed the
tolerance, which indicate the initiation of the next flowrate in the experiment. This procedure is then repeated for every flowrate that was
used in the experiment.
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flowrate, giving equation 3.4, where this regression is not forced
through the origin an due to the equation having a constant term.
Here the empirical constants are similarly calculated as in equation
3.2 and 3.3.

Δ𝑃
𝐿

· 𝑣−1 = 𝑎 · 𝑣 + 𝑏 (3.4)

Exponential Regression:
The Exponential Regression Method is an iterative method whereby
the Forchheimer equation is rearranged to isolate the second order
term and then taking the logarithm of the equation, as shown in
equation 3.5. Here the base for the logarithm is chosen to be 2.
The iterative approach is done by guessing an initial value for 𝑘1,
such as 0, and then iteratively increasing this guess, as such the
value of 𝑘1 is constrained to be positive. This incremental increase
is coupled with fitting the experimental data to equation 3.5. In
the initial part of the iteration, the number inside the left part of
equation 3.5 could be negative, and in such instances the value of
𝑘1 was further incremented. This procedure is continued until the
regressed constant for log2 𝑣 is as close to 2 as could be managed.
This process is illustrated as a flowchart in Figure 3.9.

log2

(
Δ𝑃
𝐿 − �

𝑘1
· 𝑣

𝜌

)
= 2 log2 𝑣 − log2 𝑘2 (3.5)

Start

Experimental Data Transform the data
according to equation 3.5

Set initial guess for 𝑘1
𝑑 = the incremental increase of 𝑘1
𝑡𝑜𝑙 = the tolerated deviance from 2

Perform the Regression
𝑑𝑒𝑣 = 2−the regressed

constant for log2 𝑣
|𝑑𝑒𝑣 | ≥ 𝑡𝑜𝑙|𝑑𝑒𝑣 | ≤ 𝑡𝑜𝑙

𝑘1 = 𝑘1 + 𝑑
Perform the Regression
𝑑𝑒𝑣 = 2−the regressed

constant for log2 𝑣

False

True

Calculate 𝑘2

Stop

Figure 3.9: A flowchart showing the
method by–which the exponential re-
gression was done. The method begins
by transforming the data to a linear form,
and then guessing an initial value for 𝑘1.
The linear regression is then done, and
the deviancy of the resulting linear term
from 2 is checked. If this deviance was
greater than a preset tolerance the 𝑘1–
value would be incremented to a higher
value. This would also happen if the
𝑘1–value was to small, resulting in a neg-
ative value in the logarithm, which is not
shown in the flowchart. This incremental
increase of 𝑘1 would keep happening in
a loop until the deviance was within the
preset tolerance.



14 3 Methodology

Start

Experimental Data

𝑘1 = {𝑘1 𝜖 range_1 | round(𝑘1 to 𝑘1,0/100)}
𝑘2 = {𝑘2 𝜖 range_2 | round(𝑘2 to 𝑘2,0/100)}
𝑅2 = 0

for 𝑖 in 𝑘1

False

True for 𝑗 in 𝑘2
True

False

Stop

Calculate 𝑛𝑒𝑤_𝑅2

𝑅𝑛 = round(𝑛𝑒𝑤_𝑅2 to 0.001)
𝑅𝑜 = round(𝑅2 to 0.001)

𝑅𝑛 > 𝑅𝑜

True

False

𝑅2 = 𝑛𝑒𝑤_𝑅2

determined_𝑘1 = 𝑘1[𝑖]
determined_𝑘2 = 𝑘2[𝑗]

Figure 3.10: A flowchart describing the Brute Force Method, which starts by defining the range of both 𝑘1 and 𝑘2, with their respective
intervals. For every combination the 𝑅2–value of both these values would be calculated, starting with 𝑘1 and looping through each
𝑘2–value. The 𝑅2–value is calculated as in linear regression forced through the origin. Every 𝑅2–value is compared with the previous
saved 𝑅2–value, where both the new and old value are rounded to three decimals. By rounding to three decimals, the procedure is
biased towards lower values of both 𝑘1 and 𝑘2. If a new 𝑅2–value is found to exceed the old to three decimals, this value for the 𝑅2

would be saved, along with the accompanying 𝑘1– and 𝑘2–values.

[16]: Eisenhauer (2003), ‘Regression
through the Origin’

Brute Force:
The brute Force Method is the only method that does not involve
regression, where this method guesses both the 𝑘1– and 𝑘2–values
for the Forchheimer equation. These values are incrementally
increased iteratively in a predetermined range, where the 𝑅2–value
is calculated for every permutation of these values. The 𝑅2–value
is calculated as in linear regression forced through the origin [16].
And the predetermined ranges are based on the determined values
from the previous three methods. During the calculation each
newly calculated 𝑅2–value is compared to the last saved 𝑅2–value,
and should the rounded value of this 𝑅2–value to three decimals
exceed the former 𝑅2–value, again to three decimals, then the new
value would be chosen in favour of the previous. The purpose of
the rounding is to bias the 𝑘1–value to a smaller magnitude, in
order to avoid the eventuality of a negative 𝑘1–value yielding the
best fit. This method is illustrated with a flowchart in Figure 3.10.
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Figure 3.11: The polishing machines used
for grinding and polishing of the sam-
ples, ATM Saphir 360.

Figure 3.12: The polishing machines
used for diamond polishing of the sam-
ples, ATM Saphir 350.

Figure 3.13: Vacuum drying of samples
after being submerged in ethanol for at
least 24 hours.

3.3 Scanning Electron Microscopy

3.3.1 Sand Casting of Metal Samples

For the sand casting, an aluminium-alloy consisting of aluminium and
silicon was used. The alloy was heated in a crucible using a casting oven
until it melted. Red oil sand and a two-part casting flask of metal was
used to create and hold the cope and drag for casting. Pockets for holding
the filters were made, as shown in figure 3.14. The inlet and gas outlets
were placed in a metal frame to create the cope. Talcum powder was
dusted on the drag for easier separation of the frames after casting. The
filters were then placed in the filter pockets in the drag, and the cope
was placed on top. Figure 3.14 shows the cope and drag with the inlet
and fume pipes. When the molten metal was sufficiently heated, it was
poured into the inlet and filtered. After leaving the casting flask overnight
for cooling, the metal solidified with the filter, and was removed from
the flask for further processing. As there were 5 different types of filters
to be sampled, the sand casting was done twice.

3.3.2 Metallographic Sample Preparation

Before starting the metallographic sample preparation, the metal samples
were cut using a bandsaw. They were cut in half along the height of
the filter. In the sample preparation, the grinding of the samples were
done using polishing machines with sand paper at different levels of
grit. The model of the polishing machines used were ATM Saphir 360
and ATM Saphir 350, and is shown in Figure 3.11 and Figure 3.12. The
sand papers were of the type Rhaco Grit by Akasel. At the first level,
the samples were grinded with 220 grit sandpaper, and at the following
levels, the level of grit were increasing until 4000 grit. At the second level
500 grit sandpaper was used; third level, 800 grit; fourth level, 1200 grit;
fifth level, 2000 grit, and last level at 4000 grit. For these levels, ATM
Saphir 360 polishing machines was used. Additionally, the samples were
diamond polished using polishing pads of cloth and 3- and afterwards
1 micron-sized particles. The diamond polishing was done using ATM
Saphir 350. Between each grinding and polishing level, the samples were
put in an ultrasonic bath for cleaning. Then, the samples were cleaned
even further by submerging them in ethanol. Lastly, they were dried with
hot air and was put in a vacuum chamber for at least 24 hours to remove
contaminants and water. Some of the samples drying in the vacuum
chamber are shown in Figure 3.13.

(1) (2)

Figure 3.14: Figure to the left (1) shows
the mould used for sand casting, which
was the bottom of two layers of sand,
where the filters were placed. Figure to
the right (2) shows the top side of the
sand casting setup, which consist of four
fume pipes and one tube in the middle
to pour molten metal into.
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Figure 3.15: Setup consisting of the JEOL
JCM-6000 scanning electron microscope,
computer and display monitor.

Figure 3.16: The outline of the 2D–
COMSOL Multiphysics® model. In this
figure a subsection of the whole system is
shown, where the filter house is shown
with the inlet and outlet tube on both
sides. The flow goes from top to bottom,
and the voids in the filter house next to
the outlet tube represent the protrusions
in the filter house.

3.3.3 Scanning Electron Microscopy

For the scanning electron microscopy, JEOL JCM-6000 scanning electron
microscope (SEM) was used. The setup is shown in Figure 3.15. The
polished samples were placed into the vacuum chamber of the SEM,
and was examinated and taken picture of one at a time. The focus of
the microscopy was the weaves of the filter, and how the casted metal
interacts with the weaves. The settings used for SEM were High-vacuum
setting, 15 kV, PC-std and SEI as analysing method. Pictures of the filters
were taken with zoom between 10x and 200x.

3.4 COMSOL Multiphysics® Modelling

Concerning the use of FEM in this project, only COMSOL Multiphysics®
5.5 was used. And two models of the geometric filters, that were made in
Solidworks, was provided for use in COMSOL Multiphysics®. Two main
models were made in COMSOL Multiphysics®, one for 2D–modelling
and another for 3D–modelling. Appendix A shows the dimensions for
the filter house with the square interior, as the circular interior was
not modelled. These main models were modified for use with the flat
or geometric weaves. Of the modules in COMSOL Multiphysics® that
Norwegian University of Science and Technology provided licences for,
only the following three were used:

▶ Free and Porous Media Flow (fp)
▶ Turbulent Flow, k–ε (spf)
▶ Particle Tracing for Fluid Flow (ftp)

In addition, there are several factors that were assumed to be negligible
during the modelling. These aspects were the hydrodynamic pressure
from the primary tank, the outlet head, backpressure and minor gaps
in the geometry. For the inlet, the flow was defined as a fully developed
flow, whilst the outlet was defined with a pressure of 0.

3.4.1 Making the 2D-Model

The 2D–model was made using parameters defined in COMSOL, and
are the following:

▶ The coordinates for the origin
▶ The filter thickness, 0.1 mm
▶ The dimensions of the filter house and the tube diameter, see

Appendix A
▶ The length of the tube, treated as 0.3 m
▶ The flowrate, a range for this variable was used mainly based on

the experimental data. All the values in the specified range was
used in a parametric sweep, and these values were: 0.1, 0.2, 0.3, 0,4,
0.5, 0.6, 0.7, 1.0, 1.5 and 2.0 m s−1

With these parameters an outline of the system was made, which consisted
of the inlet and outlet tubes, the filter house and the small protrusions
of the filter house. This outline is shown in Figure 3.16. After this, the
relevant filter was placed in this system. For the flat weave, it was defined
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Figure 3.17: Both alternative weaves that
were modelled in 2D with COMSOL
Multiphysics®. Here the leftmost image
shows the system with the flat weave,
where it is illustrated in black. And the
rightmost image shows the system with
the geometric weave, also illustrated as
black.

Figure 3.18: On the left is an image show-
ing the mesh for the 2D-model with the
flat weave, while on the right is an image
showing the mesh for the 2D-model with
the geometric weave.

as a rectangle spanning the length of the filter house and with the width
of the filter thickness. And it was placed next to the inlet tube in the
filter house. For the geometric weave, the Solidworks model of the whole
geometric weave was first loaded in a 3D–COMSOL model. A workplane
was placed inside this model, and a 2D–cutout of the model was traced
using the sketch function in COMSOL with a polygon. Afterwards a fillet
was added to the edges in the bent parts of the geometry. The geometry
was then exported, and imported to the 2D–model. The geometry was
then placed atop the protrusion inside the filter house. Both these weaves
can be seen inside the model in Figure 3.17, where the flat weave is shown
to the right, and the geometric weave is shown to the left.

The mesh for the 2D-model was made the same way for both the flat
weave and the geometric weave. A free triangular mesh was added to the
weave. This mesh was calibrated for general physics, and had a predefined
extremely fine element size. The mesh for the remaining geometry was
added as a boundary layers, with the number of boundary layers being
16; the boundary layer stretching factor being 0.1; the thickness of the
first layer being automatic; the thickness adjustment factor being 0.1 and
the element size scale being 1.1. In Figure 3.18 the mesh for the 2D-model
for both the flat and geometric weave can be seen respectively.
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Figure 3.19: The 3D–model as it was con-
structed prior to simplifying it in order
to use symmetry in the model. Here the
shape of the system is shown, where the
inlet would be on tube to the bottom left,
and the outlet on the top right. In this
figure the void where the filter house
would have occupied next to the outlet
tube represent the protrusions in the fil-
ter house. Additionally, the grid on the
face of the filter house represents the flat
weave.

3.4.2 Making the 3D-Model

The 3D–model was also made using parameters defined in COMSOL,
and are the following:

▶ The coordinates for the origin
▶ The filter thickness, 0.1 mm
▶ The dimensions of the filter house and the tube diameter, see

Appendix A
▶ The length of the tube, treated as 0.1 m
▶ The number of strands, which described how many individual

strands each axis of the flat wave was composed of. The number
that was used was 80, and is arbitrary.

▶ The flowrate, a range for this variable was used mainly based on
the experimental data. All the values in the specified range was
used in a parametric sweep, and these values were: 0.1, 0.2, 0.3, 0.7,
1.0, 1.5, 2.0 and 3.0 m s−1.

In making the 3D–model, the flat weave was added whilst the model
was built. First the basic outline for the whole system was made based
on the dimensions in Appendix A. In addition to this, the flat geometry
was added as an array of cylinders, with the same diameter as the filter
thickness, on both cross–sectional axes prior to the filter house, and
spanning the length of the filter house. This is shown in Figure 3.19,
where the model at this stage is shown. The part of the flat geometry
that extended past the inlet cylinder was cut off and removed from the
model. Following this, a geometry that covered one eight of the model
axially, from the center, was made. This geometry covered the model
from the corner of one of the diagonals to the center of the adjacent side,
and was subsequently used to remove the remaining uncovered parts of
the model. Figure 3.20 shows the model at this stage, where the diagonal
face is hidden to show the interior of the system. The fact that the filter
houses protrusion only covers a part of the access to the outlet tube is
visible in this figure, as well as the geometry for the flat weave.
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Figure 3.20: The 3D-model after one
eight of the model was cut off, to allow
for the use of symmetry. In the figure the
diagonal face is hidden to show the in-
terior of the model, where the geometry
for the flat weave is visible in addition to
the protrusion in the filter house. It can
be seen that the protrusion of the filter
house covers a part of the beginnings of
the outlet tube in the middle of the filter
house, and extends past this opening in
the diagonal.

Next, the model for the geometric weave was added. This was done
by first importing a provided Solidworks model for 12.5% of the filter
that matched the cutout of the system. Based on this model a separate
model for this weave was made in COMSOL due to a lack of a license
for the CAD import module. First a workplane was added on the face of
the imported model that matched the middle of the filter house. In this
workplane a 2D-cross-section of this face was traced using the sketch
function in COMSOL with a polygon, and a fillet was added to the edges
of the bent parts in the geometry. This 2D–model was extruded over the
imported model, and partitioned using a workplane that was added in
the initial part of the bend in the model. This workplane was used to
make a cross–section of the extrusion, which was extruded to diagonal
face of the imported model. Afterwards, another workplane was added
to the flat face of the second extrusion, that was located where the central
part of the whole geometry would be. A cross–section of this face was
extruded, and partitioned using a workplane on the first extrusion, where
this workplane was placed on the face that would be in the middle of the
filter house. The separate parts of the simplified model for the geometric
weave was joined together in a union, and this process of making this
part can be seen in Figure 3.21.

The model of the geometrical weave was scaled down to an appropriate
size and rotated to fit inside the filter house. It was moved inside the
filter house such that the central point of the geometric weave was placed
along the central axis of the system, and the middle face of the model
was placed on the middle wall of the system. The diagonal face of the
geometric weave was subsequently extruded to match the diagonal face
of the system, and the resulting hole in the center of geometric weave
was filled by extruding the face and cutting it using the faces of the
system. Additionally the part of the geometric weave that extended past
the protrusion in the filter house was cut from the model. Following,
the parts that constituted the model of the geometric weave was joined
together in an union, where Figure 3.22 shows the model at this stage.
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Figure 3.21: Four images representing
how the model for the geometric weave
was made in COMSOL Multiphysics®. (1)
shows the imported Solidworks–model
of 12.5% of the geometric weave. (2)
shows the extruded 2D cross–sectional
tracing of the right face of (1). (3) shows
the geometry after a workplane was
added to the beginning of the curvature
on (1), and used to both partition and
take a cross–sectrion of (2). This cross–
section was the extruded to the left face
of (1). (4) shows geometry after a work-
plane was added to the front face of (2),
and its cross–section was extruded. Af-
terward this extrusion was partitioned
with a workplane on the right of (2), and
the various parts of this geometry was
joined together in a union. Above each
of these images a small part can be seen
to the right, this is the 3D model of the
system.

(1) (2)

(3) (4)

This turbulence model was used due to
the Fluid and matrix properties not be-
ing compatible with the k–ε turbulence
model.

At this stage in the making of the 3D–model, the relevant weave was
deleted to facilitate the meshing and modelling. In both instances several
edges in the model was removed, where they were not necessary for
maintaining the geometry, including most of the edges in the model
for the geometric weave, particularly the ones on the bent part of the
weave. For both the versions of the model, a mapped mesh was added
in both the inlet and outlet tube from the inlet or outlet respectively
partway towards the filter house, with a predefined fine element size.
All the other meshes was done using a free tetrahedral mesh, and in
both versions the inlet and outlet faces mesh was predefined with an
extremely fine element size. Both the flat weave and geometric weave
was meshed with a predefined finer element size, and the remaining
geometry was mapped with a predefined finer element size. Every mesh
was calibrated for fluid dynamics, and the meshed model for the flat and
geometric weave respectively is shown in Figure 3.23.

3.4.3 2D–Modelling

For both modelling the flat and geometric weave, the Free and Porous
Media Flow (fp) module was used. With this module the whole system
was assigned water as the fluid, whilst the filter material was user defined
with the following three properties: a density of 1000 kg m−3, a dynamic
viscosity of 0.001 Pa s and a porosity of 0.4. This material was applied
to the weave. Following this, the edge at either extreme of the system
for the inlet and outlet tube was respectively defined as the inlet and
outlet. The initial conditions was defined with no velocity field and no
pressure. Fluid and matrix properties was asigned to the weave geometry,
where the permeability model that was used was Kozeny–Carman, with
a particle diameter of the filter thickness. For the module, the L–VEL
turbulence model was used.
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Figure 3.22: The 3D–COMSOL
Multiphysics® model after adding the
geometric weave. It is visible that the
placement of the geometric weave is
downstream from the placement of the
flat weave, and that the geometric weave
rests on the protrusions in the filter
house.

Only in the 2D–model was the Particle Tracing for Fluid Flow (fpt) module
used. And this module was used in conjunction with the geometric weave.
Here, release times were specified, with a maximum number of secondary
particles of 5000. The particle properties were defined to be a density of
1000 kg m−3 and a diameter of the filter thickness. The inlet was defined
as a list of values, with a release time of 0 to 0.005 s, and intervals of
0.001 s. A density based initial position was used, where the density was
proportional to the solved velocity field and the number of particles per
release was 1000. An expression based initial velocity was used, where
this expression was the solved velocity field. The outlet wall condition
was set to disappear. A drag force was added to the system, using Stoke’s
law, where the velocity was set to the solved velocity field. Additionally
the discrete random walk turbulence dispersion model was used.

Both studies for the permeability of the flat and geometric weave used
a stationary solver, with a parametric sweep. Here only the Free and
Porous Media Flow (fp) module was used. The study for particle tracing
used only the Particle Tracing for Fluid Flow (fpt) module, where a time
dependant solver was used. In this solver the time unit was a second,
and it solved for a range from 0 to 0.5 s, with a step of 0.0025 s.

3.4.4 3D–Modelling

With the 3D–model both the Free and Porous Media Flow (fp) and the
module Turbulent Flow, k–ε (spf) module was used. These modules
were used respectively for the geometric and flat weave. And the Free
and Porous Media Flow used the L–VEL turbulence model, where the
Turbulent Flow, k–ε, module used the k–ε turbulence model. Both models
defined the fluid properties from the model, where water was assigned
as the material for the whole model and a user defined material with the
following properties was assigned to the respective weaves: a density of
1000 kg m−3, a dynamic viscosity of 0.0001 Pa s and a porosity of 0 and
0.4 for the flat and geometric weave respectively. Both modules used an
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Figure 3.23: On the top, the mesh for the 3D–model with the flat weave is shown, and similarly the mesh for the 3D–model with the
geometric weave is shown on the bottom. In both images, the use of a free tetrahedral mesh for both the inlet, outlet and the respective
weave is shown. And the use of a mapped mesh next to the inlet and outlet is shown. Additionally, it is shown that the whole filter house
and part of the tubes use a free tetrahedral mesh, where this was defined as the remaining parts of the geometry.
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initial value of no pressure and no velocity field. The inlet was defined
as a fully developed flow with an average velocity for both weaves, and
the outlet with a pressure of 0. Symmetry was used for both modules,
with it being assigned to the diagonal and middle face in relation to
the filter house, and this was assigned to the faces of the tubes, filter
house and weave. For the Turbulent Flow, k–ε, module a interior wall was
added around the geometry for the flat weave, with a no slip boundary
condition. Additionally, both models used a stationary solver with a
parametric sweep.





Figure 4.1: An image of the constrained
tube, with an unconstrained tube be-
hind. Both these tubes are rated for at-
mospheric pressure, and the constrained
tube is the one connecting the primary
tank with the primary pump. This tube
experienced constraint with the use of
the higher settings of the primary pump.

Results and Discussion 4
4.1 Water Trials

4.1.1 In Regard to the Water Trials

During the experimental procedure only 10 settings for the speed on
the primary pump were used, excluding the gravity driven velocity.
These velocities were used due to two factors: (1) during the initial
run of the experiment, one filter was shot through the filter house at a
higher pressure. (2) the tube which connected the primary tank and the
primary pump was constrained during the higher velocities, which is
shown in Figure 4.1. This strain is due to this tubing only being made
to withstand atmospheric pressures, and is believed to constrain the
achievable flowrates in the experiment.

Another limiting factor for this experiment was the size of the secondary
tank, and this constraint was furthered by the secondary pump being
placed inside this tank. Thus, the size of this tank was the primary
constraint of the experiment, as it limited the number of measurements at
higher flowrates. This will accentuate any variability in the experimental
measurements, both for the weight and the pressure–transducer, as
both these instruments measurements were time dependent. This is a
bigger source of error for the weight measurements than for the pressure–
drop measurements, due to the weight measurements being used to
calculate the flowrate. Difference between the weight at the extremities
for each flowrate is used for this calculation. As such any variance in
these measurements will result in a larger error for the higher flowrates
due to a smaller time window to offset this error.

4.1.2 The Pressure Drop Results of the Flat and the
Shaped Filters

In the following sections the pressure–drop results are presented. The
first four sections show these results and the determined empirical
constants for their respective method. These methods being the Lin-
ear Regression Method, the Ergun Empirical Method, the Exponential
Regression Method and the Brute Force Method. In each of these sec-
tions the empirical constants are presented in a table, and the predicted
pressure–drop values are compared with the measured values for each
weave in separate figures. And all of these sections compares the square
and circular interior for the filter house. Following this, every method is
compared in a separate section, where weaves themselves are compared
to each other across geometry.

4.1.3 The First Regression Method: Linear Regression

Table 4.1 shows the calculated 𝑘1– and 𝑘2–values using the first method
for regression. As can be seen in this table, not all of 𝑘1–values are positive.
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Table 4.1: The calculated empirical con-
stants for each filter in regards to the
Forchheimer equation, where the values
are determined with the Linear Regres-
sion Method. The first six rows show
the flat weaves, whilst the last five show
the geometric weaves. And the follow-
ing three columns shows the 𝑘1, 𝑘2 and
𝑅2–values.

Linear Regression

Filter: 𝑘1: 𝑘2: 𝑅2:

Flat (20x34L) 1.21e-12 2.99e-07 0.995
Flat (20x36L) -9.90e-13 1.55e-07 0.989
Flat (20x40L) -6.27e-13 1.47e-07 0.989
Flat (20x43L) -4.04e-13 1.14e-07 0.984
Flat (20xXW2) square opening 1.17e-12 1.39e-07 0.991
Flat (20xXW2) circular opening 5.45e-12 1.74e-07 0.995
PO48 - 2505I (20x34L) 5.64e-13 8.13e-07 0.955
PO48 - 25052 (20x36L) -6.18e-13 2.32e-07 0.962
PO48 - 25653 (20x40L) -7.16e-13 2.70e-07 0.977
PO48 - 25054 (20x43L) -2.38e-12 2.99e-07 0.988
PO48 - 2505X (20xXW2) 7.13e-13 2.59e-07 0.989

Figure 4.2: Comparison of the 34L
flat and geometric weave, respectively
shown as red and blue. Showing the pre-
dicted pressure–drop as determined us-
ing the Linear Regression Method. In ad-
dition, the relevant pressure–drop data
is plotted in for each geometry.
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Non–positive empirical constants does not meet the expectation of an
increase in pressure drop with an increase in the flowrate, such that these
values do not make sense. The remaining filters in the table, with only
positive empirical constants, make sense in this regard, and match the
data well given the high 𝑅2–values that are greater than 95%.

In Figures 4.2–4.6 a comparison between the flat and shaped geometries
for each weave is shown. These figures use the Forchheimer equation
with the calculated empirical constants from Table 4.1, whilst also plotting
the mean of the experimentally gathered pressure drops. Additionally,
Figure 4.7 shows a graph of the pressure drop values for the XW2 filters
in the filter house with a square and circular interior respectively. This
figure also has the experimentally gathered pressure drop values plotted
for both filters.
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Figure 4.3: Comparison of the 36L
flat and geometric weave, respectively
shown as red and blue. Showing the pre-
dicted pressure–drop as determined us-
ing the Linear Regression Method. In ad-
dition, the relevant pressure–drop data
is plotted in for each geometry.
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Figure 4.4: Comparison of the 40L
flat and geometric weave, respectively
shown as red and blue. Showing the pre-
dicted pressure–drop as determined us-
ing the Linear Regression Method. In ad-
dition, the relevant pressure–drop data
is plotted in for each geometry.
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Figure 4.5: Comparison of the 43L
flat and geometric weave, respectively
shown as red and blue. Showing the pre-
dicted pressure–drop as determined us-
ing the Linear Regression Method. In ad-
dition, the relevant pressure–drop data
is plotted in for each geometry.
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Figure 4.6: Comparison of the XW2
flat and geometric weave, respectively
shown as red and blue. Showing the pre-
dicted pressure–drop as determined us-
ing the Linear Regression Method. In ad-
dition, the relevant pressure–drop data
is plotted in for each geometry.
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Figure 4.7: Comparing the square and
circular interior for the filter house us-
ing the flat XW2 weave as a filter. The
predicted pressure–drop with each open-
ing is determined using the Linear Re-
gression Method, where the circular and
square opening are shown as red and
blue respectively. Additionally the mea-
sured pressure–drop data is plotted in
with the respective colors.
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[14]: Zhang (2012), ‘Liquid Permeability
of Ceramic Foam Filters’

4.1.4 The Second Regression Method: Ergun Method

In Table 4.2 the calculated empirical constants with the Empirical Ergun
Method is shown. By comparing this table to Table 4.1, we can see that
the filters with a corresponding negative 𝑘1–value are reciprocated here,
with an additional two negative 𝑘1–values. Thus, this method has yielded
less useful results compared with the Linear Regression, as opposed to
the findings in [14]. Additionally, considering the 𝑅2–values for the filters
with a positive 𝑘1–value, the 𝑅2– value for the Linear Regression Method
exceeds the ones found with this method. This discrepancy could be the
result of the flowrates used in the experiment, where in this experiment
was based in higher flowrates, and thus outside the region of linear
pressure drop. This being that the Linear Regression Method is directly
applied to a second order function, whilst the Empirical Ergun method
first converts the second order equation to a first order one. Whilst this is
a possible explanation for the discrepancy in the 𝑘1–values where the
Linear Regression Method gave a positive value, whilst this method gave
a negative value, it is not an explanation for the filters that both method
yielded a negative 𝑘1–value for in and of itself. For these filters there
may be two factors contributing to these values being negative, with
the first factor being the flowrates that was used in the experiment, as
mentioned. Whilst the second error could be minor errors in the initial
pressure–drop data that was gathered. Minor fluctuations in the initial
pressure–drop data would be able to influence the 𝑘1–value sufficiently
to give it a negative sign, in spite of the pressure–drop increasing. This
is due to the data fitting nature of regression, where a negative linear
coefficient would be able to match the data better than a positive one.

These calculated empirical constants are also graphically represented
in figures, with the relevant pressure–drop data plotted in. These are
Figures 4.8–4.13, where the first five figures compare the flat filters with
their geometric counterparts, and the last figure compares the circular
interior with the square interior using the flat XW2 weave as a filter.

Ergun Empirical

Filter: 𝑘1: 𝑘2: 𝑅2:

Flat (20x34L) -7.70e-12 2.50e-07 0.950
Flat (20x36L) -1.40e-12 1.61e-07 0.923
Flat (20x40L) -1.51e-12 1.63e-07 0.919
Flat (20x43L) -8.95e-13 1.29e-07 0.889
Flat (20xXW2) square opening 2.13e-12 1.33e-07 0.930
Flat (20xXW2) circular opening 3.84e-11 1.71e-07 0.967
PO48 - 2505I (20x34L) -3.17e-12 3.39e-07 0.677
PO48 - 25052 (20x36L) -1.18e-12 2.71e-07 0.782
PO48 - 25653 (20x40L) -1.79e-12 3.27e-07 0.860
PO48 - 25054 (20x43L) -2.37e-12 2.99e-07 0.918
PO48 - 2505X (20xXW2) 4.93e-12 2.09e-07 0.902

Table 4.2: The calculated empirical con-
stants for each filter in regards to the
Forchheimer equation, where the values
are determined with the Ergun Empirical
Method. The first six rows show the flat
weaves, whilst the last five show the geo-
metric weaves. And the following three
columns shows the 𝑘1, 𝑘2 and 𝑅2–values.



30 4 Results and Discussion

Figure 4.8: Comparison of the 34L
flat and geometric weave, respectively
shown as red and blue. Showing the
predicted pressure–drop as determined
using the Ergun Empirical Method. In ad-
dition, the relevant pressure–drop data
is plotted in for each geometry.
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Figure 4.9: Comparison of the 36L
flat and geometric weave, respectively
shown as red and blue. Showing the
predicted pressure–drop as determined
using the Ergun Empirical Method. In ad-
dition, the relevant pressure–drop data
is plotted in for each geometry.
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Figure 4.10: Comparison of the 40L
flat and geometric weave, respectively
shown as red and blue. Showing the
predicted pressure–drop as determined
using the Ergun Empirical Method. In ad-
dition, the relevant pressure–drop data
is plotted in for each geometry.
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Figure 4.11: Comparison of the 43L
flat and geometric weave, respectively
shown as red and blue. Showing the
predicted pressure–drop as determined
using the Ergun Empirical Method. In ad-
dition, the relevant pressure–drop data
is plotted in for each geometry.
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Figure 4.12: Comparison of the XW2
flat and geometric weave, respectively
shown as red and blue. Showing the
predicted pressure–drop as determined
using the Ergun Empirical Method. In ad-
dition, the relevant pressure–drop data
is plotted in for each geometry.
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Figure 4.13: Comparing the square and
circular interior for the filter house using
the flat XW2 weave as a filter. The pre-
dicted pressure–drop with each opening
is determined using the Ergun Empirical
Method, where the circular and square
opening are shown as red and blue re-
spectively. Additionally, the measured
pressure–drop data is plotted in with the
respective colors.
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Table 4.3: The calculated exponents us-
ing the third method for determining the
empirical constants for the Forchheimer
equation. This table shows the exponent
for the second order velocity, where this
value ideally should be 2.

Filters: Exponents:

Flat (20x34L) 2.005
Flat (20x36L) 2.321
Flat (20x40L) 2.237
Flat (20x43L) 2.241
Flat (20xXW2) square opening 2.000
Flat (20xXW2) circular opening 2.000
PO48 - 2505I (20x34L) 2.444
PO48 - 25052 (20x36L) 2.721
PO48 - 25653 (20x40L) 2.319
PO48 - 25054 (20x43L) 2.166
PO48 - 2505X (20xXW2) 2.009

4.1.5 The Third Regression Method: Exponential
Regression

Table 4.4 shows the determined empirical constants for the Forchheimer
equation using the Exponential Regression. The determined exponents
in this regression can be viewed in Table 4.3, where not all the exponents
are 2, as they ideally should be. These exponents are as close to this
value as they could be managed with this method. This deviance from
the ideal value for the exponent indicates errors in the pressure–drop
data that the values deviate from a second order curve. Further, this
deviance in the exponents corroborate the possibility of an error in these
measurements, as was discussed in section 4.1.4. However, the 𝑘1– and
𝑘2–values determined with this method constitute the best guess for the
filters that the earlier two methods yielded a negative 𝑘1–value for.

Both the 𝑘1– and 𝑘2–values that were determined using this method was
positive. This is as expected, where the constraint of the method forces
𝑘1 to be positive, whilst the 𝑘2–value is calculated using logarithms. A
noteworthy aspect of the determined 𝑘2–values, are that they are on the
same order of magnitude as their counterparts with the previous two
methods. This indicates that the exponential term outweights the linear
term in the expression, and thus the 𝑘2–values can be assumed to be of a
higher reliability compared to the 𝑘1–values.

These empirical values are also represented graphically in Figures 4.14–
4.19, where the relevant experimentally gathered pressure–drop data
is also plotted in. In the first five of these figures, the pressure–drop is
compared across geometries for each filter weave, whilst the last figure
compares the square and circular interior for the filter house using the
flat XW2 weave as a filter.

Table 4.4: The calculated empirical con-
stants for each filter in regards to the
Forchheimer equation, where the values
are determined with the Exponential Re-
gression Method. The first six rows show
the flat weaves, whilst the last five show
the geometric weaves. And the follow-
ing three columns shows the 𝑘1, 𝑘2 and
𝑅2–values.

Exponential Method

Filter: 𝑘1: 𝑘2: 𝑅2:

Flat (20x34L) 1.27e-11 2.59e-07 0.979
Flat (20x36L) 3.34e-08 2.04e-07 0.997
Flat (20x40L) 3.28e-08 1.98e-07 0.996
Flat (20x43L) 6.29e-08 1.63e-07 0.994
Flat (20xXW2) square opening 8.80e-12 1.28e-07 0.996
Flat (20xXW2) circular opening 1.69e-11 1.72e-07 0.999
PO48 - 2505I (20x34L) 3.75e-08 4.36e-07 0.805
PO48 - 25052 (20x36L) 3.69e-08 4.41e-07 0.922
PO48 - 25653 (20x40L) 2.74e-08 4.39e-07 0.950
PO48 - 25054 (20x43L) 1.37e-07 3.57e-07 0.970
PO48 - 2505X (20xXW2) 3.47e-07 2.03e-07 0.996
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Figure 4.14: Comparison of the 34L
flat and geometric weave, respectively
shown as red and blue. Showing the pre-
dicted pressure–drop as determined us-
ing the Exponential Regression Method.
In addition, the relevant pressure–drop
data is plotted in for each geometry.
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Figure 4.15: Comparison of the 36L
flat and geometric weave, respectively
shown as red and blue. Showing the pre-
dicted pressure–drop as determined us-
ing the Exponential Regression Method.
In addition, the relevant pressure–drop
data is plotted in for each geometry.

0.0e+00

5.0e+09

1.0e+10

1.5e+10

2.0e+10

0.0 0.5 1.0 1.5 2.0
Velocity [m/s]

P
re
ss
u
re

d
ro
p
[∆

P
/
L
]

Flat (20x40L)
PO48 - 25653 (20x40L)

Figure 4.16: Comparison of the 40L
flat and geometric weave, respectively
shown as red and blue. Showing the pre-
dicted pressure–drop as determined us-
ing the Exponential Regression Method.
In addition, the relevant pressure–drop
data is plotted in for each geometry.
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Figure 4.17: Comparison of the 43L
flat and geometric weave, respectively
shown as red and blue. Showing the pre-
dicted pressure–drop as determined us-
ing the Exponential Regression Method.
In addition, the relevant pressure–drop
data is plotted in for each geometry.
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Figure 4.18: Comparison of the XW2
flat and geometric weave, respectively
shown as red and blue. Showing the pre-
dicted pressure–drop as determined us-
ing the Exponential Regression Method.
In addition, the relevant pressure–drop
data is plotted in for each geometry.
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Figure 4.19: Comparing the square and
circular interior for the filter house us-
ing the flat XW2 weave as a filter. The
predicted pressure–drop with each open-
ing is determined using the Exponential
Regression Method, where the circular
and square opening are shown as red
and blue respectively. Additionally the
measured pressure–drop data is plotted
in with the respective colors.
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4.1.6 Utilization of Brute Force

In comparison with the three previous methods, this method does not
utilize regression. In this method the 𝑅2 is calculated as in a linear
regression, forced through the origin. And with the constraints placed
upon this method, the determined values of the empirical constants for
the Forchheimer equation are the most reliable. These values can be seen
in 4.5, where it can be noted that all the 𝑘1–values and 𝑘2–values are on
the same order of magnitude. Whilst the empirical constants are the most
reliable, that is not to say that they are correct. In particular the method
by which these constants are determined artificially reduces the value
of 𝑘1, such that the predicted pressure–drop due to the linear term is
maximized. Due to this, it is reasonable to believe that the 𝑘1–value may
be greater than the value provided in Table 4.5. This is consistent with the
earlier methods resulting 𝑘1–values, where a higher proportion of high
flowrate pressure-drop values and the fact that the Forchheimer equation
is of the second order, could lead to the 𝑘2–value overshadowing the
𝑘1–value. The determined 𝑘2–values from all the methods yielding values
on the same order of magnitude corroborate this notion. Considering
this, a better approach to determining these constants may be to include a
greater amount of low flowrate water trial. Alternatively, two experiments
could be performed: one at lower flowrates solely to determine 𝑘1, and
one with higher flowrates to determine 𝑘2, where 𝑘2 would be determined
using 𝑘1.

The empirical constants, as determined with this method, are graphically
represented in Figures 4.20–4.25, where the relevant pressure–drop
data is plotted in. Of these figures, the first five compare the pressure
drop based on each weaves geometry. And the last figure compares the
pressure–drop for the square and circular interior of the filter house,
using the flat XW2 weave as a filter.

Brute Force

Filter: 𝑘1: 𝑘2: 𝑅2:

Flat (20x34L) 6.64e-13 3.45e-07 0.995
Flat (20x36L) 8.82e-13 2.02e-07 0.988
Flat (20x40L) 6.41e-13 2.17e-07 0.987
Flat (20x43L) 6.27e-13 1.71e-07 0.982
Flat (20xXW2) square opening 3.42e-13 1.73e-07 0.991
Flat (20xXW2) circular opening 4.38e-13 2.16e-07 0.995
PO48 - 2505I (20x34L) 4.67e-13 9.96e-07 0.955
PO48 - 25052 (20x36L) 9.08e-13 4.54e-07 0.956
PO48 - 25653 (20x40L) 8.89e-13 5.45e-07 0.971
PO48 - 25054 (20x43L) 8.48e-13 4.47e-07 0.986
PO48 - 2505X (20xXW2) 3.36e-13 3.70e-07 0.989

Table 4.5: The calculated empirical con-
stants for each filter in regards to the
Forchheimer equation, where the val-
ues are determined with the Brute Force
Method. The first six rows show the flat
weaves, whilst the last five show the geo-
metric weaves. And the following three
columns shows the 𝑘1, 𝑘2 and 𝑅2–values.
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Figure 4.20: Comparison of the 34L
flat and geometric weave, respectively
shown as red and blue. Showing the
predicted pressure–drop as determined
using the Brute Force Method. In addi-
tion, the relevant pressure–drop data is
plotted in for each geometry.
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Figure 4.21: Comparison of the 36L
flat and geometric weave, respectively
shown as red and blue. Showing the
predicted pressure–drop as determined
using the Brute Force Method. In addi-
tion, the relevant pressure–drop data is
plotted in for each geometry.

0.0e+00

5.0e+09

1.0e+10

1.5e+10

2.0e+10

0.0 0.5 1.0 1.5 2.0
Velocity [m/s]

P
re
ss
u
re

d
ro
p
[∆

P
/L

]

Flat (20x36L)
PO48 - 25052 (20x36L)

Figure 4.22: Comparison of the 40L
flat and geometric weave, respectively
shown as red and blue. Showing the
predicted pressure–drop as determined
using the Brute Force Method. In addi-
tion, the relevant pressure–drop data is
plotted in for each geometry.
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Figure 4.23: Comparison of the 43L
flat and geometric weave, respectively
shown as red and blue. Showing the
predicted pressure–drop as determined
using the Brute Force Method. In addi-
tion, the relevant pressure–drop data is
plotted in for each geometry.
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Figure 4.24: Comparison of the XW2
flat and geometric weave, respectively
shown as red and blue. Showing the
predicted pressure–drop as determined
using the Brute Force Method. In addi-
tion, the relevant pressure–drop data is
plotted in for each geometry.
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Figure 4.25: Comparing the square and
circular interior for the filter house us-
ing the flat XW2 weave as a filter. The
predicted pressure–drop with each open-
ing is determined using the Brute Force
Method, where the circular and square
opening are shown as red and blue re-
spectively. Additionally the measured
pressure–drop data is plotted in with the
respective colors.
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4.1.7 In Regard to all Three Regression Methods

Every determined empirical constant in regards to the Forchheimer
equation can be seen in Table 4.6, where each of these values are separated
according to the method used. This table shows that every determined
𝑘2–value is on the same order of magnitude, and that the same does not
hold for the 𝑘1–value, where the Brute Force Method yielded the smallest
values. In addition to this, Figure 4.26 and 4.27 compares the predicted
pressure–drops for the flat and geometric weaves respectively, and the
relevant pressure–drop measurements are plotted in. These figures are
made using the empirical values from the Brute Force Method, where the
bias in the 𝑘1–values are visible, as all the predicted pressure–drop values
exceed the measured ones for every weave in the lower flowrates.

In both these figures, the different weaves have the same relative ar-
rangement for their predicted pressure–drop. This arrangement is in the
following ascending order for the predicted pressure–drop: 34L, 40L,
36L, 43L and XW2. As can be seen in the figures, the variance of the
measured pressure–drop values for the different weaves overlap with
each other. And coupled with the fact that every combination of weave
and geometry was only measured across five parallels, the resulting
determined empirical constants cannot be considered to be statistically
significant. Thus the arrangement found in the figures can be the result
of chance, where the actual relative pressure–drops of the weaves may be
different. Additionally, the weaves in the middle of this arrangement are
the ones that yielded a negative 𝑘1–value for the first two methods. And
for this reason have a higher uncertainty in their relative placements. In
Table 4.6, it this pattern is not consistent for every method and geometry,
by considering the 𝑘2–values.

Using the Brute Force Method as the expected empirical constants, we
can calculate the p–values for the empirical constants as determined
by the other methods. This is done for the Linear Regression Method
and the Ergun Empirical Method, where these p–values are shown for
each of the empirical constants respectively in Table 4.7. The p–values
are calculated using the coefficients determined in the regression and
nine degrees of freedom, and are one sided relative to the sign in the
t–test. Based on this assumption, only the constants determined by the
Ergun Empirical Method supersede the constants determined by the
Brute Force Method using a 95% confidence interval.

Table 4.6: Every determined empirical constant for the Forchheimer equation for the RGW used in the pressure–drop experiment. The
first six rows show the flat weaves, while the last five rows show the geometric weaves. The following twelve columns are subdivided for
each of the four methods used to determine the empirical constants. For each of these subdivisions the columns show the determined 𝑘1,
𝑘2 and 𝑅2–values respectively.

Linear Regression Ergun Empirical Exponential Method Brute Force

Filter: 𝑘1: 𝑘2: 𝑅2: 𝑘1: 𝑘2: 𝑅2: 𝑘1: 𝑘2: 𝑅2: 𝑘1: 𝑘2: 𝑅2:

Flat (20x34L) 1.21e-12 2.99e-07 0.995 -7.70e-12 2.50e-07 0.950 1.27e-11 2.59e-07 0.979 6.64e-13 3.45e-07 0.995
Flat (20x36L) -9.90e-13 1.55e-07 0.989 -1.40e-12 1.61e-07 0.923 3.34e-08 2.04e-07 0.997 8.82e-13 2.02e-07 0.988
Flat (20x40L) -6.27e-13 1.47e-07 0.989 -1.51e-12 1.63e-07 0.919 3.28e-08 1.98e-07 0.996 6.41e-13 2.17e-07 0.987
Flat (20x43L) -4.04e-13 1.14e-07 0.984 -8.95e-13 1.29e-07 0.889 6.29e-08 1.63e-07 0.994 6.27e-13 1.71e-07 0.982
Flat (20xXW2) square opening 1.17e-12 1.39e-07 0.991 2.13e-12 1.33e-07 0.930 8.80e-12 1.28e-07 0.996 3.42e-13 1.73e-07 0.991
Flat (20xXW2) circular opening 5.45e-12 1.74e-07 0.995 3.84e-11 1.71e-07 0.967 1.69e-11 1.72e-07 0.999 4.38e-13 2.16e-07 0.995
PO48 - 2505I (20x34L) 5.64e-13 8.13e-07 0.955 -3.17e-12 3.39e-07 0.677 3.75e-08 4.36e-07 0.805 4.67e-13 9.96e-07 0.955
PO48 - 25052 (20x36L) -6.18e-13 2.32e-07 0.962 -1.18e-12 2.71e-07 0.782 3.69e-08 4.41e-07 0.922 9.08e-13 4.54e-07 0.956
PO48 - 25653 (20x40L) -7.16e-13 2.70e-07 0.977 -1.79e-12 3.27e-07 0.860 2.74e-08 4.39e-07 0.950 8.89e-13 5.45e-07 0.971
PO48 - 25054 (20x43L) -2.38e-12 2.99e-07 0.988 -2.37e-12 2.99e-07 0.918 1.37e-07 3.57e-07 0.970 8.48e-13 4.47e-07 0.986
PO48 - 2505X (20xXW2) 7.13e-13 2.59e-07 0.989 4.93e-12 2.09e-07 0.902 3.47e-07 2.03e-07 0.996 3.36e-13 3.70e-07 0.989
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Figure 4.26: A comparison of the pre-
dicted pressure–drop with the Brute
Force Method for the different weaves
used in this experiment, with a flat ge-
ometry. Here the lines represent the pre-
dicted pressure–drop, while the points
represent the measured pressure drops.
The different weaves are represented by
different colors: 20x34L, Red; 20x36L,
Blue; 20x40L, Green; 20x43L, Black, and
20xXW2, Purple.
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Figure 4.27: A comparison of the pre-
dicted pressure–drop with the Brute
Force Method for the different weaves
used in this experiment, with a shaped
geometry. Here the lines represent
the predicted pressure–drop, while the
points represent the measured pressure
drops. The different weaves are repre-
sented by different colors: 20x34L, Red;
20x36L, Blue; 20x40L, Green; 20x43L,
Black, and 20xXW2, Purple.
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Table 4.7: The calculated p–values for the
empirical constants determined by the
Linear Regression Method and the Ergun
Empirical Method. These p–values use
the calculated empirical constants for the
Brute Force Method as the assumed null
hypothesis.

Linear Regression Ergun Empirical

Filter: 𝑘1: 𝑘2: 𝑘1: 𝑘2:

Flat (20x34L) 0.2715 0.2742 0.00153 0.00274
Flat (20x36L) 0.1805 0.1830 0.01982 0.03189
Flat (20x40L) 0.0901 0.0927 0.00870 0.01604
Flat (20x43L) 0.1116 0.1134 0.01993 0.03259
Flat (20xXW2) square opening 0.2113 0.2149 0.00988 0.01717
Flat (20xXW2) circular opening 0.2113 0.2149 0.00988 0.01717
PO48 - 2505I (20x34L) 0.4232 0.4416 0.00533 0.00925
PO48 - 25052 (20x36L) 0.1307 0.1328 0.01526 0.02392
PO48 - 25653 (20x40L) 0.0669 0.0686 0.00417 0.00770
PO48 - 25054 (20x43L) 0.1235 0.1264 0.00234 0.00443
PO48 - 2505X (20xXW2) 0.1235 0.1264 0.00234 0.00443

4.1.8 The Pressure–Drop Results of the Ceramic Foam
Filters

In addition to the measurements of the RGW, two CFF filters were
measured in the pressure–drop experiment. This was 𝐴𝑙2𝑂3 CFF filters
at 10 and 20 ppi. The empirical constants in regards to the Forchheimer
equation was determined using the Linear Regression Method. The
determined 𝑘1–values were -5.65e-12 and -1.41e-12 respectively for the
10 and 20 ppi CFF filters. Additionally the determined 𝑘2–values were
1.39e-06 and 3.46e-07 respectively for the 10 and 20 ppi CFF filters. In
Figure 4.28 a comparison between these two CFF filters is shown, where
the 20 ppi filter has a higher pressure drop than the 10 ppi filter.

A comparison between the CFF filters and the RGW with the highest
pressure–drop is shown in Figure 4.29. Here, both the CFF filters and the
flat XW2 weave are graphed using the determined empirical constants
from the Linear Regression Method, and the relevant measured pressure–
drop values are plotted in. In this figure we can see that the predicted
pressure–drop is highest for the flat XW2 weave, and this is likely due to
the difference in the thickness. This difference in the thickness between
these CFF filters and the RGW are at a factor of ~2000. And as such the
flat XW2 weave can be expected to have a smaller total pressure–drop
compared with these CFF filters.

Additionally, the measured pressure–drop values for the RGW appear
to have a tendency to gather at the higher flowrates, which is apparent
in Figure 4.26 and 4.27. Where this tendency was previously attributed
to the constraint experienced by the tube intermediating the primary
tank and primary pump, see Figure 4.1. This tendency does not seem to
be reciprocated for the CFF, as seen in Figure 4.28, where the measured
pressure–drop values appear to be placed at more even flowrate intervals.
It is possible that the higher total pressure–drop from the CFF also
constrain the flow, which leads to a more even flowrate intervals in the
pressure–drop measurements. And as such, the placements of the mea-
sured pressure–drop values corroborate the notion of the CFF yielding
higher total pressure–drops in comparison to the RGW further.
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Figure 4.28: A graph of both the CFF
filters measured in the pressure–drop
experiment. Where the blue and red
lines were graphed using the regressed
values for 𝐴𝑙2𝑂3 at 10 and 20 ppi re-
spectively, using the Linear Regression
Method. The plotted values are the mea-
sured pressure–drop values, and their
colors correspond to the same of the
lines.
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Figure 4.29: Comparison between the
CFF filters and the Flat XW2 weave us-
ing the square interior. Here the blue and
red line respectively represent 𝐴𝑙2𝑂3 at
10 and 20 ppi, while the green line repre-
sents the Flat XW2 weave. All the lines
are graphed using the Linear Regres-
sion Method, and have their respective
pressure–drop measurements plotted in
with the same colors.

Figure 4.30: Successful casting of metal.
The molten metal was able to penetrate
the weaves and fully submerge the filter
before solidification.

4.2 Sand Casting and Scanning Electron
Microscopy

Figures 4.30–4.32 shows results of sand casted aluminium through the
geometrical rigid glass weave filters. All the samples for SEM were
casted successfully and could directly be used further processing, such as
cutting and polishing. Nevertheless, due to too low casting temperature
and too little metal for the sand casting, an unsuccessful casting trial did
occur, as shown in Figure 4.31 and Figure 4.32. The metal in this casting
was not able to penetrate the filter, and in Figure 4.31 where it did, the
metal set before fully submerging the filter. This metal trial was repeated
with appropriate casting temperature and amount of metal. For the two
successful castings that were done, the metal was heated until 840°C
and 915°C, respectively. The metal was then set for cooling overnight.
Following this, the casting were cut along their middle axis, and these
images can be seen in Apendix B.
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Figure 4.33: Filters (1) before and (2) met-
allographic sample preparation of PO48
- 2505I (20x34L).

(1) (2)

Figure 4.31: An unsuccessful casting of
metal. The molten metal was able to pen-
etrate the weaves but solidified before
fully submerging the filter.

Figure 4.32: An unsuccessful casting of
metal. The molten metal was not able to
penetrate the weaves and solidified.

In Figure 4.34 four SEM image of the weaves are shown: (1), the 34L
weave; (2), the 36L weave; (3), the 40L weave, and (4), the 43L weave.
The first three images in this figure shows the presence of grains in the
castings, which can have mixed in during the casting, mixing with the
liquid aluminium alloy and making a heterogeneous solution. Such a
grain is shown most prominently in image (3), where it is present in the
middle of the top and in the middle of the right part of the image. In both
instances the grain is placed inside a cavity in the metal. In addition to
the cavities, the aluminium alloy experienced additional forms of casting
shrinkage. This being primarily visible as the cavities in image (2) and the
fractures in (4), as well as the space intermediated by the weaves. All the
images shows the weave surviving the casting process and remain intact,
indicating that they are able to withstand the heat and bypass of the
molten metal. Two aspects of the weaves structure can be seen in these
images, where (1) and (3) shows a cross section of the strands individually,
while (2) and (4) shown the intersection of the orthogonal weaves. The
individual strands are visible in all the images, appearing to not be wetted
by the metal. Although, image (3) and (4) shows wetting at the interface
between the weave and the metal. Surrounding the weaves, dark regions
are visible in image (1), (2) and (4). These dark regions can be attributed
to the ethanol used to clean the samples, as these regions varied in size
during imaging. It is likely that some of the ethanol permeated into the
vacant area surrounding the weaves. Additionally, lighter regions can be
seen in all of the images, which are most prominent in (3) and (4). These
lighter regions may be phases in the solidified aluminium alloy. Further
SEM images are shown in Appendix C.
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(3) (4)

(1) (2)

Figure 4.34: SEM pictures of the samples: (1) Weave structure and casting shrinkage in sample of 20x40L (Zoom = x15), (2) Weave
structure and casting shrinkages in sample of 20x43L (Zoom = x20), (3) Lodged sand grains, weave structure and casting shrinkage in
sample of 20x34L (Zoom = x80), and (4) Weave structure and some form of casting shrinkage in sample of 20x36L (Zoom = x100). (SEI.
High-Vacuum.)

4.3 COMSOL Multiphysics® Modelling

Regarding the modelling using COMSOL Multiphysics®, the simulations
of the flow patterns were similar across the flowrates used in the para-
metric sweep. This applies to both the 2D– and 3D–models, as well as
to whether the flat or geometric weaves were modelled. The resulting
flow patterns for the weaves were similar across the 2D– and 3D–model,
where a major difference was the lack of jets in the 2D–model of the flat
weave. This difference is the result of how the flat weave was modelled
in both models, where it was treated as a square permeable surface in
the 2D–model and as an array of cylinders in the 3D–model. Following
this, this section will primarily focus on the results with a flowrate of
an average velocity of 1.5 m s−1.Additionally, COMSOL Multiphysics®
uses the Brinkman equation to simulate flow through a permeable media
when using the Free and Porous Media Flow (fp) module. This equation
assumes laminar flow, which is not a valid condition for flowrates used
here. As such, the assumption done in this modelling work is that the
difference caused by treating the flow in the domains for the weaves as a
laminar flow is negligible. This assumption is reasonable considering the
thickness of the weaves.
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Figure 4.35: The flow pattern of the
2D–model with the flat weave, with a
flowrate of an average velocity of 1.5
m s−1. Here a section of the whole sys-
tem is shown, where this section encom-
passes the filter house, as well as a part
of the inlet and outlet tube. In this im-
age the colours correspond to the mag-
nitudes of the velocities that the sim-
ulation converged on, and the legend
on the right shows which velocity corre-
sponds to which colour. The flow here
goes from left to right. Further, it can
be seen that the flowrate increases near
the walls prior to the flat weave, and as
such there is no expansion of the flow
pattern inside of the filter house. There is
only a contraction as the flow passes the
protrusions in the filter house. After the
flow passes the protrusions in the filter
house, it expands into the outlet tube
as the space between the protrusions is
narrower than the diameter of the tubes.

4.3.1 2D–Modelling

The first simulation done with COMSOL Multiphysics® was the simula-
tion of the flat weaves in the 2D–model. The resulting flow pattern for
the average flowrate of 1.5 m s−1 can be seen in Figure 4.35, which shows
a section of the model with the colours corresponding to the magnitude
of the velocity. One notable feature of this figure is the expansion of the
flow pattern prior to permeating through the flat weave. This expansion
could have been caused due to the weaves resistance to being permeated,
leading to a spread of the flow on the surface of the weave. As the
tubes diameter is similar to the diameter of the filter house, there is
little space for the flow to expand into after permeating the weave. Due
to the filter house having protrusions next to the outlet tube, and the
distance between these protrusions being less than the tube diameter in
the middle section of the filter house, the flow pattern will contract prior
to this protrusion and expand in the outlet tube. The higher flowrates in
the outlet tube can be attributed to this contraction.

Figure 4.36 shows the simulation with the geometric weave at 1.5 m s−1.
In this figure we can see expansion inside the filter house and four areas
of high flowrate. This expansion could be caused by the same mechanism
as with the flat weave, where the flow pattern spreads upstream of the
weave due to the weave’s resistance to being permeated. This notion is
supported by the two of the high flowrate areas, the ones upstream of
the weave. These areas are on the weave, and next to the both walls of the
filter house. As such, the surface of the weave in this area has a smaller
volume compared to rest of the geometric weave, and this yields the high
flowrates. Comparatively the two high flowrate areas downstream of the
weave begin next to the bend in the weave that is closest to the walls
of the filter house, and therefore next to the first high flowrate areas.
Additionally, the initial part of the high flowrate areas downstream of the
weave, are adjacent to two faces of the geometric weave. This adjacency
implies that the flow that permeates these faces ends up in this region,
as the streamlines in the figure shows the flow permeates the weave in
it’s normal direction. As it is water that is simulated in this model, and
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Figure 4.36: The flow pattern of the 2D–
model with the geometric weave, with
a flowrate of an average velocity of 1.5
m s−1. Here a section of the whole sys-
tem is shown, where this section encom-
passes the filter house, as well as a part
of the inlet and outlet tube. In this im-
age the colours correspond to the mag-
nitudes of the velocities that the simula-
tion converged on, and the legend on the
right shows which velocity corresponds
to which colour. The flow here goes from
left to right. It can be seen that the flow
pattern expands inside the filter house.
Also, four areas with a high flowrate is
visible, where two of these areas are up-
stream of the weave, next to the walls of
the filter house. And the other two high
flowrate areas are downstream from the
geometric weave, each beginning next to
the bends in the weave nearest the walls
of the filter house and ending inside the
outlet tube.

In and are complementary
animated GIFs, that are embedded in
this document, for Figure 4.37 and 4.38
respectively.

water is incompressible, this results in a higher flowrate. Therefore, both
pairs of either ends of the weave can be considered as extensions of each
other.

Both Figure 4.35 and 4.36, show the 2D–model simulated at the same
flowrate of an average velocity of 1.5 m s−1. And both of these simulation
has areas that exceed the average velocity. In both instances these areas can
be considered as caused by constrictions, where it is only the protrusions
of the filter house for the flat weave, and primarily the geometry of the
weave for the geometric weave. For both of these simulation the maximal
flowrate can be seen in the legend, where it is 2.06 m s−1 for the flat
weave, and 3.79 m s−1 for the geometric weave. The higher flowrates in
the simulation with the geometric weave can be attributed to the area
in which the flow is constricted. Whereas the simulation constricts the
whole flow pattern in–between the protrusions in the filter house. The
geometric weave constricts the flow pattern, that is distributed across it’s
surface, according to it’s geometry. Thus it constricts the flow in a subset
of the area constricted by the protrusions in the filter house.

Following this, the Particle Tracing for Fluid Flow (ftp) module was
used to simulate particles moving in the flow pattern of the 2D–model
with the geometric weave. And a particle tracing and particle movement
plots of the solution are shown in Figure 4.37 and 4.38 respectively. In
the particle tracing figure, the flow through the geometric weave in it’s
normal direction is not as noticeable as in Figure 4.36, although it is still
noticeable. What is evident in this figure is that the flow in high flowrate
areas upstream from the weave have a direction that is nearly tangential
to the face of the geometric weave next to it. And that the flow that passes
through this area primarily permeates the geometric weave in the parts
of this face that is further downstream. Thus this corroborates the notion
of this higher flowrate being caused by a constraint in the volume. In
the figure for the particle movement, and shows chronological aspect to
the flow pattern. Here it is evident that the bends in the middle of the
filter, and furthest downstream, are being permeated by the flow prior
to the bends near the walls of the filter house. This figure shows the
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Figure 4.37: In this figure the trajecto-
ries of the simulated particles at 0.5 s
using COMSOL Multiphysics® is shown.
It can be seen that the flow mainly perme-
ates through the geometric weave along
it’s normal, resulting in the two sloped
faces of the weave delivering the flow
to the same area. Additionally it can be
seen that the high flowrate area above
the bends upstream in the weave has it’s
trajectory along the bend. Thus provid-
ing the geometry with a void out of the
weaves face that the high flowrate area
touches, indicating a lower tendency of
the flow to permeate this section of the
weave.

Figure 4.38: This figure shows the parti-
cle movement simulated at 0.1525 s with
COMSOL Multiphysics®. In this image
the particles in the center of the system
has permeated through the geometric
weave, and are situated in a pattern that
matches the flow pattern seen in Fig-
ure 4.36. And the particles that were to
the sides of the system has yet to per-
meate through the weave, where they
are moving along the bend of the weave
that is furthest upstream. As such the
bends in the geometric weave that are
the furthest downstream are permeated
first, followed by the ones upstream. It
can also be seen that the particles to the
sides of the system flow and meet the
upstream bend, and this gives the flow
at this position a higher flowrate along
the bend.

distribution of the flow along the weave, where the particles to the sides
of the system flows in such a pattern as to meet the bend and pass into
the high flowrate area. This corroborate the earlier notion of a volume
constraint leading to higher flowrates, as a higher amount of the flow
passes through this area. Otherwise the flow pattern of both these figures
match, and this is show in the two attached animations to this report,
saved as gif files.

4.3.2 3D–Modelling

As both the 2D– and 3D–model describe the same system, we can expect
similar results in the simulations. And, the main differences between the
results can be attributed to minor differences in the geometry, particularly
the in the models of the geometric weave and the different approach for
the flat weave, and the inherent difference between a 2D– and 3D–model.
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Figure 4.39: A figure showing an isosur-
face plot of the converged solution of the
system with the geometric weave using
COMSOL Multiphysics®. The solution
used here is with a flowrate of an aver-
age velocity of 1.5 m s−1, and showing
the system through the middle axis of the
filter house. There are 10 levels of the iso-
surface, each having a colour that corre-
sponds to their flowrate. Here we can see
four high flowrate areas, two upstream
and two downstream of the geometric
weave. And two comparatively higher
flowrate areas in the later section of the
outlet tube. The area just downstream of
the center of the geometric weave is of a
comparatively lower flowrate.

Figure 4.40: A figure showing an iso-
surface plot of the converged solution
of the system with the geometric weave
using COMSOL Multiphysics®. The so-
lution used here is with a flowrate of
an average velocity of 1.5 m s−1, and
showing the system through the mid-
dle axis of the filter house. There are 10
levels of the isosurface, each having a
colour that corresponds to their flowrate.
Here we can see four high flowrate ar-
eas, two upstream and two downstram
of the geometric weave. The two high
flowrate areas downstream of the geo-
metric weave appear to join together in
the later section of the outlet tube. The
area just downstream of the center of the
geometric weave is of a comparatively
lower flowrate.

In Figure 4.39 and 4.40 two sides of the converged flow pattern for
the 3D–model with the geometric weave is shown. Both figures show
an isosurface representation of the velocity magnitude, with 10 levels
and corresponding colours to this magnitude and at a flowrate of an
average velocity of 1.5 m s−1. Figure 4.39 shows this isosurface in an axial
cross–section through the middle of the filter house, whilst Figure 4.40
shows this cross–section through the diagonal of the filter house. In both
figures the flow goes from the bottom right to the top left. We can see the
same four high flowrate areas in both these figures, which indicates that
the respective areas either upstream or downstream of the geometric
weave are part of the same high flowrate volume. Additionally, the size
of these areas appear to vary between the middle and diagonal of the
filter house, where the area upstream from the geometric weave decrease
in size and conversely the areas downstream of the weave increase in
size.
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This could be caused by the distribution of the flow favouring the interior
of the geometric weave on the diagonal, as the length of the interior of
the weave takes up a larger fraction of the whole compared to the middle
of the filter house. As such more of the flow would pass through the
interior of the geometric weave in this axis, and thus the flow favours the
interior face next to the bend in the upstream portion of the weave to the
exterior face. This would facilitate a higher flowrate nearer to the center
of the system, and as such this flow would also have a higher potential
of spreading to the center.

This potential of spreading to the center of the system would not be
present to the flow in the middle axis of the system, as the prioritised
flow through the exterior face of the weave, facilitate flows to the edge
of the system. In Figure 4.39 we can see the continuation of the high
flowrate area downstream of the geometric weave, where it appears that
this stream expands as it flows through the system. Next to this stream
another stream manifests in the center of the outlet tube. It is proposed
that this stream is the extension of the high flowrate area downstrem
of the geometric weave in the diagonal axis, where this flow spreads
to the center of the system, as can be seen in Figure 4.40. And as both
of these high flowrate areas can be interpreted to be of the same area,
the flow pattern downstream of the geometric weave can be thought of
a pattern that is reminiscent of a spherical spiral. The flow pattern in
both the middle and diagonal axis of the filter house can also be seen in
Figure 4.41, which shows a 2D representation of a subsection of the same
simulation that is shown in Figure 4.39 and 4.40.

(1) (2)

Figure 4.41: This figure show two plot of the flow pattern simulated at a flowrate of an average velocity of 1.5 m s−1 with the geometric
weave using COMSOL Multiphysics®. Both are 2D–plots of the system shown in Figure 4.39 and 4.40, where (1) shows the flow pattern
along the middle axis of the filter house whilst (2) shows the diagonal axis. In both images the colour correspond whit the magnitude of
the flowrate, and they are scaled to the aspect ratio and the flow goes from the top of the images to the bottom. We can see the four
high flowrate areas in both (1) and (2), two of which are upstream of the geometric weave and two downstream of the weave. The high
flowrate areas upstream of the geometric weave appears to be larger in the middle plane than the diagonal plane. Additionally the high
flowrate area downstream of the geometric weave appear to stay along the edge of the outlet tube for the middle plane, whilst it spreads
towards the center of the outlet tube for the diagonal plane.

Replicating the experimentally gathered pressure–drop data in COM-
SOL Multiphysics® has not been attempted, however the pattern in the
pressurechanges on the weaves can be assumed to be consistent with a
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(1) (2)

(3) (4)

Figure 4.42: The pressure contour of
one eight of the whole geometric weave:
where (1), the top of the front side; (2),
the top of the back side; (3), the bottom
of the front side, and (4), the bottom of
the back side. In this figure it can be seen
that the top side has the most pressure
changes on top of the upstream bend,
and the pressure is highest nearest the
center of the geometric weave. Similarly
the bottom side has also has the highest
pressure changes on the upstream bend,
where this location is also the site of the
highest pressure. Of both these sides, the
lowest pressure values of the topside is
greater than the highest pressure value
of the bottom side. A difference between
the topside and bottom side is that the
pressure levels on the topside is more er-
ratic, whilst the levels on the bottom side
is more even. And the pressire levels on
the front side of the top sides show that
each pressure level moves downstream
from the middle to the diagonal, where
it moves up on the diagonal.

varying flowrate and permeability. In this manner the pressure contour
on both sides of the geometric weave, can be considered. Figure 4.42,
shows four images of two plots of the pressure contour, at the flowrate
of an average velocity of 1.5 m s−1. Two plots, one for the topside and
bottom side, is used due to the resulting pressure difference across the
weave in the simulation, where this pressure difference makes one plot
of the whole weave impractical, as such two different scales are used for
the topside and bottom side respectively. Only one eight of the geometric
weave is shown in this figure, and the colors of the pressure contour
correspond with the pressure level, where blue is the lowest pressure and
red the highest. It can be seen that the highest pressure gradient is on the
weaves upstream bend, and this is the site with the highest pressure on
the bottom side. Conversely, the place with the highest pressure on the
topside is the center of the weave. The faces on the topside of the weave
show pressure contours that bend down into the edge of the model.
These bends are more apparent further upstream on the face, and these
bends become steeper for the face on the diagonal axis of the filter house.
On this diagonal axis, the contors reach furthest upstream the further
downstream on the face the contours are, compared with the middle axis.
The converse is true near the bends upstream on these interior faces.

When comparing these pressure contours with the flow pattern in Figure
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4.39 and 4.40, where the inlet flowrates are coaxial, the only difference
in the pressure contours on the interior of the geometric weave is the
location where the flow meets the geometry. It can therefore be considered
that the shapes of the pressure contours on the topside of the geometric
weave are caused by the difference in this geometry compared with a
circle. In the edges, which are caused by a simplification in the modelling
of the geometric weave, this discrepancy from a circle is most evident
as the two faces meet. And because of this simplification, this dip in
the pressure contour can be considered to be softer in reality. Similarly,
as the diagonal face also is the result of a simplification in the model,
the upstream bends in the pressure contours can be considered to be
exaggerated in this simulation and therefore to be softer in reality.

On the bottom side of the geometric weave, the pressure contours are
more even that on the topside. The unevenness on the topside, coupled
with the evenness on the bottom side stride with the earlier notion of
the flow passing through the weave in it’s normal direction. However
the evenness on the bottom side implies that the flow emerges from the
weave in it’s normal direction. And as such, the flow inside the weave can
be assumed flow in a direction close to the weaves normal, and adjust
towards the normal direction of the weave as the flow permeates through
the weave.

The last simulation is the simulation of the flat weave in the 3D–model.
This simulation is done purely through the Turbulent Flow, k–ε (spf),
module, and does not model the weave as a permeable media. Here the
weave is modelled as two arrays of cylinders, superimposed on each
other. This approach assumes that the flow does not wet the weave, and
as discussed in section 4.2 this assumption is valid. Due to the different
approach in the 2D– and 3D–model of this weave, this simulation shows
more details regarding the permeation of the flow through this weave. In
Figure 4.43 the flow pattern of the system with the flat weave is shown
with a flowrate of an average velocity of 1.5 m s−1, where the flowrate is
shown as isosurfaces and the colours correspond with the flowrates. The
flow in this figure goes from the bottom right to the top left. And a high
flowrate area is reciprocated in this simulation, as was the result in the
2D simulation of the flat weave, see Figure 4.35. This high flowrate area
can also be viewed in Figure 4.45, which is a 2D–plot of the middle axis
for the filter house.

Concerning the flat weave in the simulation, Figure 4.44 shows a close–up
view of the isosurface of this weave. Conversely, Figure 4.46 shows a
similar close–up view of this weave in a 2D–plot. In both these figures the
flowrate in the space between the weaves reaches the highest flowrates
in the simulation. These jets reach the the maximal flowrate in the
simulation, which is 2.63 m s−1 as can be seen in the legend from Figure
4.46. In the first both these figures, a region around the weave strands
of a comparatively low flowrate can be seen, where this film seems to
constrict the high flowrate area in–between the strands. This constraint
can also be seen on the flow towards the weave in Fgure 4.44, where the
isosurface overlays the weave in a net, and inter–mediated by isosurfaces
that are reminiscent of half an oblate spheroid, curving inward towards
the strands. After the constriction, these jets appear to flow beyond the
weave in a pattern that is reminiscent of an prolate spheroid. These jets
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Figure 4.43: A 3D–plot of the converged
solution for the system with the flat
weave using COMSOL Multiphysics® at
a flowrate of an average velocity of 1.5
m s−1. Here the flow goes from the bot-
tom right to the top left, and the flowrate
is represented as isosurfaces using 10
levels, where each level correspond to a
colour and the magnitude of the flowrate.
In this figure there are two regions with
a high flowrate, the first area is primar-
ily inside the outlet tube and the second
region is at the flat weave. In the flat
weave there are several areas with a high
flowrate, each correspond to the space
between the strands of the flat weave,
and these areas appear as jets, where a
close–up of this region is shown in Fig-
ure 4.44.

Figure 4.44: A close–up of the flat weave
as shown in Figure 4.43. In this figure
the side of the flat weave that meets the
flow is shown, where the flowrate is at
an average velocity of 1.5 m s−1. The jets
with the high flowrates han be seen be-
ginning in the space between the strands
of the flat weave, and resembling a pro-
late spheroid precede by a constraint of
the flowrate by the strands of the weave.
The isosurface of this constrain resem-
bles a prolate spheroid in appearance.
Following this the strands of the weave
appear to have a region of low flowrate
around them, where this region trails
between the jets downstream of the flat
weave.

appear to be separated by regions of a relatively lower flowrate that
follow beyond the strands of the weave.

Modelling the geometric weave with individual strands is also possible,
where the resulting model would be more complex than the model for the
flat weave. Additionally such a model would need to be comprised of bent
strands, as the geometric weave is not only comprised of linear strands.
However the difference between making a model of the geometric weave
with straight or bent strands could be assumed to be negligible. Such
a model could be used to compare the flow pattern through the flat
and geometric weave, and not relegating the comparisons to the flow
pattern around the weaves. From the flow pattern downstream of the
weaves, it is clear in the simulation that the geometric weave produces
a more complex flow pattern than the flat weave. No simulation with
the geometric weave in the reverse position as was used in both the 2D–
and 3D–model was done. As such the resulting complex flow pattern
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Figure 4.45: A 2D–plot of the middle
plane for the filter house for the system
with the flat weave. This plot shown half
of the plane, such that the lower line
is the central axis of the system. The
flowrate in this plot is the same as for
Figure 4.43, with an average velocity of
1.5 m s−1 and a flow that goes from left to
right. The colours of the plot correspond
to the magnitude of the flowrate, and has
streamlines. We can see the constraint of
the flowrate along the protrusions in the
filter house and extend into the outlet
tube. The jets from the flat weave are
visible, and the legend shows that these
jets reach a flowrate of 2.63 m s−1. a close–
up of these jets are shown i Figure 4.46.

Figure 4.46: This figure shows a close–
up of the jets in the solution plotted in
Figure 4.45. And shows the solution to
the simulated 3D–model with the flat
weave at a flowrate of an average velocity
of 1.5 m s−1, where the flow goes from the
left to the right. The only visible feature
of this figure is the flow regarding the flat
weave itself, where the lowest position
in the image is the center of the system,
and is in the middle plane for the filter
house. The jets are visible, and begin in–
between the filter strands, and extend
past the filter strands, intermediated by
lower flowrate areas. And the strands
of the flat weave appears to have a low
flowrate region surrounding itself.

from these simulations are not definitive, due to the possibility of the
resulting flow pattern of the geometric weave in the reverse position
being simpler.
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In short the results from this project can be summarised as the follow-
ing:

▶ The geometry of the RGW influenced the pressure–drop, where the
flat weaves had a higher pressure–drop than the geometric weaves.

▶ Lengthwise the CFF had less pressure–drop than the RGW filters,
whilst the total pressure–drop was less for the RGW filters.

▶ The pressure–drop of all samples could be analysed experimentally
and analytically.

▶ The most reliable empirical constants was found using the Brute
Force Method.

▶ Both the 𝑘1– and 𝑘2–values could be identified for all filters.
▶ Modelling the RGW with COMSOL Multiphysics® was confirmed

a possibility.

From the pressure–drop data the flat weaves were observed to yield a
higher pressure–drop compared to the geometric weaves. And both these
geometries observed the same following arrangement for the different
weaves, from (1) highest pressure–drop to (5) lowest:

1. XW2
2. 43L
3. 36L
4. 40L
5. 34L

Concerning the CFF, the 10 ppi filter was found to have a lower pressure–
drop compared to the 20 ppi filter. Both of these filters yielded a higher
total pressure–drop compared to the RGW, while also having a lower
lengthwise pressure–drop. Adding to this, the circular interior was found
to have a smaller pressure–drop relative to the square interior, in spite
of it’s smaller area, where both interiors had the same diameter and
length.

Four methods were used to determine the empirical constants in regards
to the Forchheimer equation, and were the Linear Regression Method,
Ergun Empirical Method, Exponential Regression Method, and the Brute
Force Method. Of these methods the first two gave negative 𝑘1–values for
some of the weaves and in this respect are unreliable. The third method
did not regress the exponent for the velocity in the second order term for
some of the weaves to 2, and in this respect these values are unreliable.
For these three methods the cause for this unreliability was considered
to be the same: the high flowrates used in the experiment and the nature
of fitting variables to data. Regarding the fourth method, this method
yielded empirical constants that were biased towards lower values, which
was considered to be more reliable compared to the results from the
other three methods.

Modifying the methodology for the water trials to either weigh lower
flowrates more, or determine the 𝑘1–value separate from the 𝑘2 value
would eliminate the source of error in the determination of the empirical
constants. And by eliminating this source of error, the use of the first
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three methods for determining the empirical constants would regain
their reliability, thus eliminating the need for the fourth method. Even so,
every determined value for 𝑘2 was in the same order of magnitude, as
can be seen in Table 4.6. For this reason, the determined 𝑘2–values were
determined to be reliable.

Due to the low number of parallels used for every combination of geom-
etry and weave, the determined empirical constants were determined to
not be statistically significant. Further trials are needed to determine these
values to determine these constants to statistically significant values.

Beyond this, the possibility of modelling the RGW was confirmed in
COMSOL Multiphysics®. And the results from the SEM images confirmed
the assumption that the RGW can be modelled as individual strands. One
such 3D–model was simulated, and showed jets between the strands, see
Figure 4.46. The resulting flow pattern for the flat weave was primarily
determined by the system itself, as shown in both the 2D and 3D
simulations. And the flow pattern of the geometric weave produces
four distinct jets in a plane and a spiral flow pattern, where these jets
were determined to be of two distinct volumes of a high flowrate. The
simulation of the geometric weave was only done with one orientation
of the weave, and no conclusion can be drawn from the flow pattern this
weave would produced in the reverse orientation.
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A better quantification of the empirical constants in regards to the
Forchheimer equation can be accomplished by increasing the number of
parallels and eliminating the identified sources of error. And by increasing
the number of flowrates used in the experiment, while controlling the
intervals between each flowrate. In such a way statistically significant
values for the empirical constants can be determined. These values can
be compared with other additional approaches. For quantifying these
values the following statistical methods can be used:

▶ Investigating the contribution of the identified sources of error on
the empirical constants.

▶ Perform similar experiments using liquid aluminium.
▶ Corroborate the empirical constants with simulations of the system.

In addition, the empirical values for the geometric weave can be investi-
gated in the reverse direction from the direction used in this project. And
the flow pattern of the geometric weave can be simulated as individual
strands.

Further, the filtration efficiency for RGW filters can be investigated and
compared with CFF. A time–dependent investigation of the fatigue,
performance and wetting properties of the RGW filters in liquid alu-
minium. Following, the reusability and recyclability of the RGW can be
investigated.

Additionally, the RGW can be treated as being made of particles. Where
an attempt at corroborating the size of these particles with measurable
aspects of the weave, e.g. the thickness of the weaves strands or the space
in the weave.
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Appendix





Filter House Dimensions A
In Table A.1 the measurements for the filter house are presented.

Tube diameter: [mm] Filter house measurements [mm]

diameter: holder height: holder width:

50.00 51.94 8.26 4.75

Table A.1: The measured dimensions of
both the filter house and tube diameter
for the pressure drop experiments.





B SEM Samples

Figure B.1: Cut casting sample of PO48
- 25052 (20x36L) before metallographic
preparation for SEM

Figure B.2: Cut casting sample of PO48
- 25653 (20x40L) before metallographic
preparation for SEM
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Figure B.3: Cut casting sample of PO48
- 25054 (20x43L) before metallographic
preparation for SEM

Figure B.4: Cut casting sample of PO48 -
2505X (20xXW2) before metallographic
preparation for SEM

Figure B.5: Cut casting sample of PO48
- 25052 (20x36L) after metallographic
preparation for SEM
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Figure B.6: Cut casting sample of PO48
- 25653 (20x40L) after metallographic
preparation for SEM

Figure B.7: Cut casting sample of PO48
- 25054 (20x43L) after metallographic
preparation for SEM

Figure B.8: Cut casting sample of PO48
- 2505X (20xXW2) after metallographic
preparation for SEM





C SEM Pictures

Figure C.1: Close-up of a weave in the
sample of geometrical shaped filter PO48
- 2505I (20x34L). Zoom = x100. SEI. High-
Vacuum.

Figure C.2: Weaves and casting shrink-
ages in the sample of geometrical shaped
filter PO48 - 2505I (20x34L). Zoom = x13.
SEI. High-Vacuum.
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Figure C.3: Weaves and casting shrink-
ages in the sample of Geometrical shaped
filter PO48 - 2505I (20x34L). Zoom = x13.
SEI. High-Vacuum.

Figure C.4: Close-up of a weave in the
sample of geometrical shaped filter PO48
- 25052 (20x36L). Zoom = x70. SEI. Paral-
lel 1. High-Vacuum.

Figure C.5: Close-up of a weave in the
sample of geometrical shaped filter PO48
- 25052 (20x36L). Zoom = x200. SEI. Par-
allel 1. High-Vacuum.
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Figure C.6: Close-up of a cavity caused
by casting shrinkage in the sample of
geometrical shaped filter PO48 - 25052
(20x36L). Zoom = x100. SEI. Parallel 1.
High-Vacuum.

Figure C.7: Close-up of a weave in the
sample of geometrical shaped filter PO48
- 25052 (20x36L). Zoom = x100. SEI. Par-
allel 1. High-Vacuum.

Figure C.8: Close-up of a weave in the
sample of geometrical shaped filter PO48
- 25052 (20x36L). Zoom = x500. SEI. Par-
allel 2. High-Vacuum.
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Figure C.9: Weaves and cavities caused
by casting shrinkages in the sample of
geometrical shaped filter PO48 - 25052
(20x36L). Zoom = x20. SEI. Parallel 2.
High-Vacuum.

Figure C.10: Close-up of a weave and
a degree of wetting in the sample of
geometrical shaped filter PO48 - 25052
(20x36L). Zoom = x1000. BEI. Parallel 2.
High-Vacuum.

Figure C.11: Weaves and cavities caused
by casting shrinkages in the sample of
geometrical shaped filter PO48 - 25052
(20x36L). Zoom = x20. SEI. Parallel 2.
High-Vacuum.
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Figure C.12: Close-up of a weave in the
sample of geometrical shaped filter PO48
- 25052 (20x36L). Zoom = x500. SEI. Par-
allel 2. High-Vacuum.

Figure C.13: Close-up of a weave in the
sample of geometrical shaped filter PO48
- 25052 (20x36L). Zoom = x1000. SEI. Par-
allel 2. High-Vacuum.

Figure C.14: Weaves and cavities caused
by casting shrinkages in the sample of
geometrical shaped filter PO48 - 25052
(20x36L). Zoom = x20. SEI. Parallel 2.
High-Vacuum.
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Figure C.15: Weaves and cavities caused
by casting shrinkages in the sample of
geometrical shaped filter PO48 - 25052
(20x36L). Zoom = x13. SEI. Parallel 2.
High-Vacuum.

Figure C.16: Close-up of a weave and
possible permeation of ethanol in the
sample of geometrical shaped filter PO48
- 25653 (20x40L). Zoom = x85. SEI. High-
Vacuum.

Figure C.17: Close-up of a cavity caused
by casting shrinkage in the sample
of Geometrical shaped filter PO48 -
25653 (20x40L). Zoom = x85. SEI. High-
Vacuum.
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Figure C.18: Close-up of a weave and
possible permeation of ethanol in the
sample of geometrical shaped filter PO48
- 25054 (20x43L). Zoom = x130. SEI. High-
Vacuum.

Figure C.19: Weaves and cavities caused
by casting shrinkages in the sample of
geometrical shaped filter PO48 - 25054
(20x43L). Zoom = x11. SEI. High-Vacuum.

Figure C.20: Weaves and cavities caused
by casting shrinkages in the sample of
geometrical shaped filter PO48 - 25054
(20x43L). Zoom = x11. SEI. High-Vacuum.
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Figure C.21: Close-up of a weave, cavities
caused by casting shrinkage and possi-
ble permeation of ethanol in the sam-
ple of geometrical shaped filter PO48 -
25054 (20x43L). Zoom = x80. SEI. High-
Vacuum.

Figure C.22: Close-up of a weave, cav-
ities caused by casting shrinkage and
possible permeation of ethanol in the
sample of geometrical shaped filter PO48
- 25054 (20x43L). Zoom = x100. SEI. High-
Vacuum.

Figure C.23: Close-up of a weave and
cavities caused by casting shrinkage in
the sample of geometrical shaped filter
PO48 - 2505X (20xXW2). Zoom = x11. SEI.
High-Vacuum.
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Figure C.24: Close-up of a weave in the
sample of geometrical shaped filter PO48
- 2505X (20xXW2). Zoom = x100. SEI.
High-Vacuum.

Figure C.25: Close-up of a weave and pos-
sible wetting in the sample of geometri-
cal shaped filter PO48 - 2505X (20xXW2).
Zoom = x85. SEI. High-Vacuum.

Figure C.26: Close-up of possible wetting
in the sample of geometrical shaped filter
PO48 - 2505X (20xXW2). Zoom = x100.
SEI. High-Vacuum.
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Figure C.27: Close-up of a weave in the
sample of geometrical shaped filter PO48
- 2505X (20xXW2). Zoom = x100. SEI.
High-Vacuum.
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