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Abstract

Research on electricity price and volatility has previously been conducted, but few
studies include effects that are probable to affect electricity prices and volatility. This
dissertation studies the system price at Nord Pool from week 1 2008, through week
52 2021. Autoregressive integrated moving average (ARIMA) and general autoregres-
sive conditional heteroskedasticity (GARCH) models are used separately, and jointly as
ARIMA-GARCH models to predict the system price and volatility. Seasonally adjusted
and population weighted temperature and rainfall for 6 Norwegian cities is included.
Rainfall captures additional expectations and supply effects alongside rainfall, whereas
temperature captures additional consumption and demand effects alongside tempera-
ture. Water magazine deviation, wind power production, and the sum of snow, surface
and ground water in Norway is included. The effects consumption, demand and tem-
perature have in contribution to explaining the system price and volatility are found
to be small. The effects expectations, supply and rainfall have on the system price
are found to be ambiguous, but the effects do somewhat contribute to explaining the
system price and volatility. The dissertation finds evidence of quarterly and half-year
seasonal effects within the modeling process. Results for the system price indicate
exponential volatility persistence. An unrestricted model including both temperature
and rainfall is the most persistent, and excluding rainfall is less persistent than exclud-
ing temperature. A model without rainfall reacts less to shocks in volatility than a
model without temperature, however the correlation in variance over 2 periods is lower.
Wind power production, sum of snow, ground, and surface water, including magazine
deviation have a statistically significant and negative effect on the system price. A

highly autoregressive system price of order 1 is found.
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Sammendrag

Studier av elektrisitetspriser og volatilitet har tidligere blitt gjennomfgrt, men fa stu-
dier inkluderer effekter som potensielt pavirker elektrisitetspriser og volatilitet. Mas-
teravhandlingen studerer nordisk systempris fra Nord Pool fra uke 1 2008, ut uke 52
2021. Autoregressive integrated moving average (ARIMA) og general autoregressive
conditional heteroskedasticity (GARCH) modeller benyttes separat og sammenslatt
som ARIMA-GARCH modeller for a predikere systempris og volatilitet. Sesongjustert
og befolkningsvektet temperatur og nedbgr for 6 byer i Norge benyttes. Nedbgr fan-
ger opp forventnings- og tilbudseffekter i tillegg til nedbgr. Temperatur fanger opp
konsum- og etterspgrselseffekter i tillegg til temperatur. Magasinavvik, vindenergipro-
duksjon og summen av sng-, mark-, og grunnvann inkluderes som kontrollvariabler.
Avhandlingen finner at effektene av konsum, etterspgrsel, og temperatur pa system-
prisen og volatilitet er sma. Videre er effektene av forventning, tilbud og nedbgr pa
systempris tvetydige, men bidrar til & forklare systempris og volatilitet. Avhandlingen
finner bevis for kvartals- og halvarseffekter. Estimeringsresultater indikerer en ekspo-
nentiell volatilitetspersistens hvor en fullspesifisert modell med temperatur og nedbgr
har hgyest persistens. Restriksjoner pa nedbgr gir lavere volatilitetspersistens enn re-
striksjoner pa temperatur. Estimering uten nedbgr gir lavere volatilitetsrespons fra
sjokk enn estimering uten temperatur, med lavere korrelasjon i varians over 2 perioder.
Vindenergiproduksjon, magasinavvik og sum av sng-, mark-, og grunnvann har en sta-
tistisk signifikant og negativ effekt pa systemprisen. Avhandlingen finner i tillegg bevis

for en svaert autoregressiv prosess av 1 orden.
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1 Introduction

Electricity prices are subject to high volatility. Between 2008 and 2021 weekly system prices
for electricity at Nord Pool varied between 1.6600€/MWh! and 201€/MWh. Electricity
prices are affected by multiple effects which contribute to volatility. For instance, Nor-
way is a hydropower dependent nation with 347 hydropower production plants producing
around 90% of Norwegian power production, and around 1/6 of global hydropower pro-
duction (Statkraft, 2022). Hydropower is affected and determined by climate, resulting in
dependence on rainfall, snowfall, temperature, seasonality, and seasonal consumption pat-
terns, which in turn affects water magazine levels and electricity prices. National water
magazine levels are determined directly by rainfall and indirectly by other effects that affect
influx to water magazines. Electricity prices surge when water magazine levels are low, for
instance in 2021, and vice versa, contributing to electricity prices subject to periods of both
highly positive and negative volatility. Furthermore, electricity prices are affected by addi-

tional effects like seasonality, production of other energy sources and imports and exports.

A range of studies have been conducted of electricity prices and electricity price volatility
across several countries. Different methods have been applied, including artificial intelligence
(AI) neural networks, fundamental models, and statistical time series models. Within the sta-
tistical time series framework, numerous studies on electricity prices and volatility have been
conducted using generalized autoregressive conditional heteroskedasticity models (GARCH)
and autoregressive moving average processes (ARMA), often combined into ARMA-GARCH
models. For instance, Frommel et al. (2014) apply a realized GARCH model, Liu and Shi
(2013) apply different ARMA-GARCH-M models, while Koopman et al. (2007) apply a
REG-ARFIMA-GARCH model to study electricity prices and volatility. While these papers
contribute to explaining electricity price and volatility, few studies found by the author ex-
plicitly model additional effects which contribute to explain electricity prices and electricity

price volatility.

This dissertation studies effects that affect electricity prices and volatility at Nord Pool

IMWh = Megawatt hour



from week 1 2008, through week 52 2021, extending available research on electricity price
and volatility. An unconstrained, theoretical electricity price, the system price for the Nordic
region is used, however the dissertation concentrates on the Norwegian market for simplic-
ity and parsimony when fitting ARIMA and ARIMA-GARCH models. Effects known to
affect electricity price and volatility are included, pooled into national effects. These include
Norwegian water magazine deviation, influx to water magazines through the sum of snow,
ground, and surface water, and Norwegian wind power production. Furthermore, the dis-
sertation examines other effects with regional rainfall and temperature as the prime focus.
Rainfall and temperature from 6 Norwegian cities on a weekly frequency are utilized and sea-
sonally adjusted. The cities included are Bergen, Kristiansand, Oslo, Stavanger, Trondheim
and Tromsg studied from week 1 2008, through week 52, 2021. Temperature and rainfall
are assigned population weights to capture expectation, supply, consumption, and demand
effects, in addition to temperature and rainfall effects. To the authors knowledge there are
no studies of equal extension. These effects are, however, important both due to potential
changes in external effects such as climate both on a regional and national level, and to

explain changes in volatility as observed in 2020 and 2021, affecting the system price.

Initially, T use a class of autoregressive integrating moving average models (ARIMA) with
emphasis on determining a preferred model specification and population weights through
the Box-Jenkins 3-step approach alongside an in-sample system price fit. Subsequently the
ARCH and GARCH framework is appended onto the ARIMA framework to study volatility
and system price through a restriction-based approach. This includes models with all effects
included, and imposed restrictions on rainfall and temperature to better understand how
seasonally adjusted and population weighted temperature and rainfall affect volatility and

system price. The dissertation has the following thesis statements:

1. To what extent does population weighted and seasonally adjusted temperature and rain-
fall affect system price and volatility?

2. Which other effects affect system price and volatility?



1.1 Contents

The rest of the dissertation is divided into 5 sections. In section 2, relevant literature is
reviewed. First, a broad overview of the most relevant and current literature relevant for
the dissertation is described before a more comprehensive revision of 3 papers relevant for
the analysis is presented. In section 3, the dataset utilized in the dissertation is presented
alongside an introduction to the dataset. Variables in the dataset are stated, including rele-
vant descriptive statistics and a review of data preparation through unit-root tests. Section
4 presents the theoretical framework used in the dissertation. A simplified mathematical as-
sessment of ARMA, ARIMA, ARCH and GARCH models is provided. Furthermore, model
selection and information criteria are presented, including a simplified summary of maximum
likelihood estimation and model-fit evaluation. Results are presented in section 5. This in-
cludes fitting the preferred ARIMA model through the 3-step Box-Jenkins approach, deter-
mination of population weights and in-sample fit. Afterwards, a range of ARIMA-GARCH
models are estimated with restrictions to seasonally adjusted temperature and rainfall. Ro-
bustness is examined, before results are evaluated and discussed. Lastly, a conclusion is

given in section 6.

2 Theory and Literature Review

This section presents a broad overview of relevant literature before reviewing the 3 most
relevant research papers for the dissertation. Electricity prices are complex, and reviewing
a selection of articles is therefore suitable for the subject. This approach has been chosen to

deepen understanding and insight of the thesis statement.

2.1 Broad Overview

There exist various relevant research papers on price and volatility for the electricity market
in different countries. In general, there are 3 main classes of study. Artificial intelligence
(AI) neural networks, fundamental models, and statistical time series models. Within time
series modeling of electricity price and volatility, electricity prices are often log-transformed

beforehand to simplify interpretation and obtain stationarity (Schlueter, 2010). The most

3



widespread models for volatility are the (general) autoregressive conditional heteroskedastic-
ity (GARCH and ARCH) models. Furthermore, autoregressive integrated moving average
(ARIMA) models are also widely used, often together with GARCH models. For instance,
Cifter (2013) log-transforms electricity price returns before estimating different GARCH vari-
ants, including a Markov-switching GARCH. Koopman et al. (2007) apply log-differenced
daily spot electricity prices with explanatory variables in a REG-ARFIMA-GARCH model
on the Nord Pool spot market and several other European power markets. Efimova and
Serletis (2014) investigate crude oil, natural gas, electricity price and volatility using both
univariate and multivariate GARCH models, while Liu and Shi (2013) estimate 10 different
ARMA-GARCH(-M) models. Furthermore, Bowden and Payne (2008) estimate an ARIMA,
ARIMA-EGARCH and an ARIMA-EGARCH-M model on 5 MISO hubs with both an in-
sample fit and an out-of-sample forecast, while Frommel et al. (2014) forecast daily electricity

price volatility by applying a realized GARCH model.

2.2 Detailed Literature Review

2.2.1 Liu and Shi (2013): Applying ARMA-GARCH Approaches to Forecast-
ing Short-Term Electricity Prices

Liu and Shi (2013) forecast hourly day-ahead electricity prices by estimating a range of
ARMA-GARCH models. The research paper falls into the category of statistical time series
and applies hourly real time location based marginal prices (LMP) from the ISO New Eng-
land Market from 1.1.2008 to 28.2.2010 and includes 18.960 observations. Within the time
period, the LMP exhibits extreme price spikes and visual evidence of volatility clustering,
further emphasized by reported descriptive statistics. Minimum LMP equal 0 and maximum
LMP equal 403.23 with an average LMP of 61.09 and a standard deviation of 33.4735, re-
ported in $/MWh. Similar behaviour has also been observed Schlueter (2010) for the EEX
Phelix Peak Load Index, the Nord Pool Spot Index, the APX Power UK Industrial Peak
Load Index and the APX Dutch Power Peak Load index between 2005 and 20009.

Moreover, electricity prices within the dataset are positively skewed and leptopkurtic. Liu

and Shi (2013) highlight that non-normally distributed electricity prices are common in elec-
4



tricity prices. Since the aforementioned non-normal behaviour is similar to other electricity
markets, it is argued that results can possibly be applied as general guidance for other elec-
tricity markets. For instance, Nord Pool day-ahead daily system prices from 1.1.2017 until
31.12.2021 exhibit similar behaviour?.

Liu and Shi (2013) apply the first 2 years of data to fit different ARMA-GARCH(-M) mod-
els, while remaining observations are used out-of-sample to test the prediction accuracy of
the fitted models. The estimated GARCH models are SGARCH, QGARCH, GJRGARCH,
EGARCH and NGARCH. ARMA-GARCH models are fitted for the first 5 models with AR
lags 1, 11, 24, 48, 72, 96, 120, 144, 168, 216, 264, 336, 504, 672 and 840, and MA lags 1 to
10, revealing a complex lag-structure. Reported results are all statistically significant at a
0.1% level, which implies daily, weekly, and monthly periodicities or seasonality in electricity
prices. Furthermore, results from ARCH(1) and GARCH(1) reports statistically signifi-
cant time varying volatility. The sum of SGARCH, QGARCH and EGARCH parameters
are > 1, indicating exponential volatility persistence. Results from NGARCH, QGARCH,
EGARCH and GJR-GARCH indicate nonlinear and asymmetric volatility, previously found
for instance by Bowden and Payne (2008) who estimate an ARIMA-EGARCH(1,1) and an
ARIMA-EGARCH-M for the Midwest Independent System Operator (MISO) in the United
States.

Adjusted R?, F-tests, AIC, and BIC are used to evaluate the fitted models, including partial
autocorrelation function (PACF) plots of residuals from model estimation. Results from
PACF are found to be consistent. The fitted ARMA-GARCH models are found highly sta-
tistically significant with p-values smaller than 0.0001. Results from AIC and BIC indicates
that ARMA models with nonlinear and asymmetric GARCH processes have a better poten-
tial to model electricity prices. For instance, AIC and BIC values from ARMA-QGARCH
are the highest, whereas values from ARMA-NGARCH are the lowest.

All respective p-values are statistically significant with significance levels below 0.1%, with

2Author has analyzed data from https://www.nordpoolgroup.com/Market-datal/data-downloads/
historical-market-data2/ in STATA. Skewness: 3.257. Kurtosis: 24.685.
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similar results as the 5 previously estimated ARMA-GARCH models. Estimated parameters
are highly statistically significant, and electricity prices exhibit daily, weekly, and monthly
periodicities or seasonality, including nonlinear and asymmetrical time-varying volatility.
These results are similar to Bowden and Payne (2008) who also discover seasonality and
time-varying volatility. Furthermore, Liu and Shi (2013) find that volatility of electricity
prices can negatively influence mean electricity prices through a statistically significant and
negative mean-term which enters through the GARCH-M specification. Adjusted R? indi-
cates that the 5 ARMA-GARCH-M models outperform the 5 former ARMA-GARCH models.
P-values from F-tests report highly statistically significant results, all below 0.0001. AIC and
BIC values are very similar, except from ARMA-SGARCH-M which report the lowest values.

Model performance is compared by utilizing RMSE, MAE, MAPE and TIC. The ARMA-
SGARCH and ARMA-GJRGARCH have the best forecasting performance out of the 5
ARMA-GARCH variants. Among the five ARMA-GARCH-M models, the ARMA-SGARCH-
M and ARMA-GJRGARCH-M models provides a superiour model fit. When comparing all
10 models against each other, a clearly dominant model cannot be argumented for. How-
ever, the ARMA-SGARCH-M may be preferred due to simplicity and robustness, while
maintaining satisfactory prediction accuracy. Nevertheless, all estimated models can accu-
rately forecast the electricity prices in-sample. Liu and Shi (2013) mention that further

research might include weather as an exogenous variable to capture electricity demand.

2.2.2 Koopman et al. (2007): Periodic Seasonal Reg-ARFIMA-GARCH Mod-
els for Daily Electricity Spot Prices

Koopman et al. (2007) focus on daily spot-prices from Nord Pool (Norway) using a REG-
ARFIMA-GARCH model framework. In addition, daily spot-prices from EEX (Germany),
Powernext (France) and APX (Netherlands) are also analyzed to check the validity of the
model in various markets that are less hydropower dependent than Nord Pool. More specifi-
cally, dynamic long memory regression models with autoregressive conditional heteroskedas-

tic errors are considered and estimated with log-likelihood maximization.



First and foremost, Koopman et al. (2007) argument for a random walk process within

daily spot prices due to 4 effects who follow:

1. Seasonal dependent electricity prices;
2. Mean reversion due to weather dominant effects which affect the spot prices;
3. Jumps and spikes in electricity prices due to storage capacities; and

4. Volatility clustering.

Therefore, electricity prices are transformed into logarithmic first differences.

Koopman et al. (2007) include 2 explanatory variables relevant for the electricity price;
daily Norwegian power consumption, dominated by yearly cycles and a weekly consumption
pattern, and weekly water magazine filling levels, dominated by yearly cycles. The seasonal

length in the paper is determined to be 7, equal to 1 week.

Initially, descriptive statistics reveal different dynamic properties within the EEX, Pow-
ernext and APX as opposed to Nord Pool. Koopman et al. (2007) argue that this is due to
the dependence on hydropower generation, which depends on long-run weather conditions

at Nord Pool, whereas APX, EEX and Powernext relies on different power mixes.

The results from the REG-ARFIMA-GARCH estimation concludes with significant holi-
day effects in demand with low return to electricity prices on holidays, and high returns
thereafter. Interestingly, the periodic AR-polynomial is stable, and the largest inverse root
of the characteristic polynomial equal 0.95, indicating a high level of autoregression within
electricity prices. Furthermore, holiday effects are statistically significant, including yearly
and half-yearly volatility effects. GARCH parameters are on the boundary of the admissible

parameter space, exhibiting high persistence within the conditional variance.

In terms of explanatory variables, water magazine filling levels are used as a proxy for
supply side effects with both demeaned levels and demeaned weekly differences. Koopman

et al. (2007) find that increase in filling levels has a statistically significant, negative effect
7



on electricity prices without affecting other parameter estimates in any noteworthy fashion.
Furthermore, yearly cycles of electricity prices through the conditional mean are replaced
by yearly cycles in water magazine filling levels. Interestingly, long-run effects of magazine
filling levels and consumption are statistically insignificant and implies no feedback from
electricity prices to consumption. However, a significant part of the short-term price move-
ment can be explained by weekly magazine filling levels and daily electricity consumption
within the ranges of the Nord Pool market. Finally, there is a strong relationship between

electricity prices and consumption in the short-run.

Koopman et al. (2007) do not find evidence of residual serial correlation through a Ljung-
Box Q statistic, with limited erratic behaviour and no evidence of non-normal behaviour.
Residual diagnostics therefore show a good model fit. When applied to the APX and EEX,
model fit is decent, however Koopman et al. (2007) highlight that market specifics should

be taken into account to control for different power mixes.

2.2.3 Bowden and Payne (2008): Short Term Forecasting of Electricity Prices
for MISO Hubs: Evidence From ARIMA-EGARCH Models

Bowden and Payne (2008) study the Midwest Independent System Operator (MISO) electric-
ity market with 3 time series models, ARIMA, ARIMA-EGARCH and ARIMA-EGARCH-M.
5 MISO-hubs are analyzed in the paper, the Cinergy Hub, First Energy Hub, Illinois hub,
Minnesota hub, and the Michigan hub. The paper assesses model fit through in-sample per-
formance, serial correlation, autoregressive conditional heteroskedasticity, and out-of-sample
performance. Hourly real time electricity prices are applied, and real time location-based

marginal priced are used in the paper between 9.7.2007 to 6.8.2007.

Unlike the system price, the real time market considers physical limitations. Physical sched-
ules and real time offers are therefore included, updated up to 30 minutes prior to the hour.
The market clearing price is calculated as in Equation (BP.1). Observe that without conges-
tion costs and transmission losses, the market clearing price equals energy costs and therefore

represents the system price which gives an identical price across all MISO hubs. With these



costs considered, the market clearing price might differ between the MISO hubs. LMP for

the period shows evidence of volatility clustering.

LMPj; = EnergyCy + MCCj — MLCy,
LMP;, = Market clearing price
EnergyCy = Energy cost at time t (BP.1)
MCCj, = Marginal congestion costs at time ¢

MLCj = Marginal cost of transmission losses at time t

To capture ARCH-effects, including possible leverage, or inverse leverage effects, an EGARCH
model is appended onto an ARIMA model. The invertibility conditions for seasonal and non-
seasonal moving average terms are statistically significant at a 1% level. Furthermore, shocks
to electricity prices are statistically significant at a 1% level with coefficients ranging from
0.4148 to 0.5787 across the MISO hubs. The sign effect is also positive and statistically
significant at a 1% level with coefficients from 0.0712 to 0.1901 across the MISO hubs, indi-
cating presence of leverage effects, except for the Illinois hub with statistical significance at

a 10% level.

Importantly, volatility persistence is statistically significant at a 1% significance level with a
coefficient ranging from 0.7718 to 0.7830 indicating a high volatility persistence. The esti-
mated ARIMA-EGARCH model is free of both serial correlation and further autoregressive
conditional heteroskedasticity, except for the Minnesota hub. Here, the Ljung-Box-(Q statis-

tic for serial correlation is marginally significant at a 10% level.

The third model estimated is an ARIMA-EGARCH-M model, to capture the impact of
the conditional volatility of electricity prices on the mean of the respective hourly electricity
prices. This is captured through the M-term. Invertibility conditions are satisfied for all
hubs, statistically significant at a 1% level. Shocks to electricity prices through the size
effect are statistically significant at a 1% significance level, with the coefficient ranging from
0.4145 to 0.5545. Sign effects are positive and statistically significant at a 1% significance
level, except for Illinois which is significant at a 10% significance level. The coefficient varies

9



from 0.0693 to 0.1914, which indicate evidence of an inverse leverage effect.

Furthermore, volatility persistence is statistically significant at a 1% level, with a coeffi-
cient from 0.7685 to 0.7835 across the MISO hubs, indicating high volatility persistence.
The residuals are free of both serial correlation and autoregressive conditional heteroskedas-
ticity, except for the Minnesota hub where the Ljung-Box-(Q statistic is marginally significant

at the 10% level.

Bowden and Payne (2008) also assess forecasting performance and model fit. Firstly, an
in-sample forecast is completed, generated from the model over the estimation period to
assess model behaviour compared to real time electricity prices for each hub. RMSE, MAE,
MAPE and Theil’s inequality coefficient are used as criteria. MAE and MAPE are lower for
certain ARIMA-EGARCH and ARIMA-EGARCH-M models. However, RMSE and Theils
inequality coefficient favour the ARIMA model for each hub. Secondly, an out-of-sample dy-
namic 24 hour forecast on the 6.8.2008 is examined. The ARIMA-EGARCH-M outperforms
ARIMA and the ARIMA-EGARCH for Cinergy, First Energy, and the Illinois hub, whereas
the ARIMA model dominates in the Michigan hub.

In summary, Bowden and Payne (2008) conclude that electricity prices exhibit time-varying
volatility across each of the MISO hubs. Furthermore, electricity prices exhibit seasonal and
time varying volatility due to the non-storability of electricity, inelastic demand and supply,
convex marginal costs and potential for market power exerted by generators. Past shocks to
the variance are asymmetric and exhibit inverse leverage effects with respect to time-varying
volatility. Positive shocks to electricity price increase volatility more than negative shocks of
equal magnitude. Lastly, incorporating GARCH models in the ARIMA-framework improves

forecasting performance out-of-sample, except for the Michigan hub.

3 Data

This section presents the dataset used in the dissertation, descriptive statistics for the system

price, other variables including results from the data preparation procedure.
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3.1 The Dataset

The dataset consists of data described in Table 17, collected from NVE3, The Norwegian
Meteorological Institute, and Nord Pool. Data is collected from week 1, 2008 through week
52, 2021, either reported in, or aggregated to weekly frequency. System price is reported in
€/MWh, rainfall is collected in millimeters and temperature in Celsius. Rainfall has been
aggregated from daily sums to a weekly sum, while temperature has been aggregated from
daily averages to a weekly average. Rainfall and temperature observations are from Bergen,
Kristiansand, Oslo, Stavanger, Tromsg and Trondheim. Wind power production is reported
on a national level and are aggregated to weekly levels from daily data, recorded in MWh.
Magazine deviation is the deviation from a 20-year magazine filling level average, and the
sum of snow, ground and surface water is an accumulated sum which determines influx to

water magazines.

3.2 Variables in Dataset

price and lnprice
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Figure 1: Weekly system price from 01.01.2008 Figure 2: Weekly system price, logarithmic,
- 31.12.2021. from 01.01.2008 - 31.12.2021.

The system price for the Nordic market is the theoretical, unconstrained market clearing

price for the Nordic region in which most standard contracts considering electricity are

3Norwegian Water Resources and Energy Directorate
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traded. Calculations are based on aggregated and anonymized orderbooks (OBK) for the
Nordic bidding zones, including hourly values of import and export flows of electricity to and
from areas neighboring the Nordic bidding zones. Internal transmission capacities between
Nordic bidding zones are set to infinity, simulating a theoretical situation with unlimited
transmission capacity within the Nordic grid system. Considering data demanded by ARCH
and GARCH models, the system price is used for simplicity and additional historical data
availability (NordPool, 2022, 2020).

The system price is taken from Nord Pool with a weekly frequency. Descriptive statistics for
price and a logarithmic transformation of the system price, 1nprice, can be observed in
Table 1. System prices are reported from 01.01.2008 to 31.01.2021 in €/MWh and includes
728 observations. Over the period, the lowest recorded system price was 1.6600 €/MWh,
while the highest system price recorded was 201.1900 €/MWh. Mean system price across the
period was 36.6318 €/MWh, while the standard deviation was 17.7646 €/MWh. Extreme
price spikes are present, which can be observed in Figure 1, and the standard deviation equal
to 48.17% of the mean indicate a highly volatile system price. Price spikes have previously
been discussed in the literature review, for instance by Liu and Shi (2013), and is a common
trait for electricity prices even with a weekly frequency. To account for the surge in system
price in 2021, a logarithmic transformation is applied which ensures stationarity and con-

tributes to a simplified interpretation, observe Figure 2 compared to Figure 1.

Variable Sum Mean SD Min Max N Skewness
price 26667.9500 36.6318 17.7646 1.6600 201.1900 728 2.4776
Inprice 1098.45 1.50886 0.2474 0.2201 2.3036 728 -1.8290

Table 1: Descriptive statistics for variables price and lnprice.

Figure 3 illustrates the system price, including a normal frequency curve, whereas Figure 4
displays the logarithmic transformation of the system price including a normal frequency
curve. From Figure 3, distribution plots indicate a right-skewed distribution and Table 1
reveals a right-skewed distribution with a skewness of 2.4776 for the system price. This is

consistent with other research by Liu and Shi (2013) and Cifter (2013). The logarithmic
12



transformation leads to less density around the mean, observed from Figure 4. Furthermore,
the distribution appears slightly left-skewed. Skewness equal -1.82900 from Table 1, closer
to a normal distribution. Nevertheless, the system price is determined to have a fat tail and

excess peakedness at the mean exhibiting leptokurtic behaviour (Brooks, 2019).
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Figure 3: Weekly system price distribution Figure 4: Weekly logarithmic system price
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S Adj. RainandS. Adj. Temp. - Weather Variables

Seasonally adjusted and population weighted temperatures and rainfall for 6 Norwegian cities
are included. These cities include Oslo, Bergen, Trondheim, Stavanger, Kristiansand and
Tromsg. Variable description can be found in Table 17, and relevant descriptive statistics
can be found in Tables 18 and 20 reported in millimeter or degree Celsius, millimeter or
degree Celsius deviation from equal week last year depending on the seasonal adjustment,

and millimeters or degree Celsius, weighted by population.

Weather variables exhibit strong seasonal patterns, and several methods have been pro-
posed to adjust for this seasonality. This include seasonal dummies, filters or differencing
with varying success (Bordignon et al., 2007). Both temperature and rain have been sea-
sonally differenced against equal week the prior year to ensure stationarity*. The finalized
model framework utilizes population weights based on cities in the dataset, and an extensive
reasoning and population weight determination can be found in Section 5.1.2 with popula-
tion weight formulas in Appendix B.1. Observe Figures 5 and 6 for temperature without

seasonal adjustment and seasonally adjusted temperature.

452nd difference taken. Ay = yir — Yir—52
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Figure 5: Temperature without seasonal Figure 6: Seasonally adjusted tempera-

adjustment. ture.

Sum Sno., Gro., Sur. wtr. and Sum Magazine Deviation

Sum of snow, ground and surface water, and sum magazine deviation from NVE are included
in the dataset with 728 observations from week 1, 2008 through week 52, 2021, based on data
used in calculation of the HBV-model from NVE (Holmgqvist, 2013). The data are national
sums and can be observed in Table 18. Sum of snow, ground and surface water are utilized
in the dissertation to capture inflow to water magazines, regardless of season. Sum of water
magazine deviation is taken from a 20-year average and is utilized to capture national direct

magazine influx effects and magazine filling level deviation effects.

Logarithmic Wind Prod.
Weekly logarithmic and seasonally adjusted wind power production in MWh for Norway is
included with summary statistics in appendix, Table 18. Inclusion allows for analyzing the

effect wind has on the system price, and therefore encapsulate additional weather effects.

3.3 Data Preparation

Before the analysis, the data has been prepared for time series estimation. Most importantly,
unit root process tests have been performed with a DF-GLS unit root process test with 3
lags, and a Philips-Perron unit root process test. The Philips-Perron test has the following

specification:
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HO: Unit root process.
HA: Stationary process.

The Philips-Perron test performs a similar test as the augmented Dickey-Fuller test, but

allows for autocorrelated residuals.

The DF-GLS test test for a unit root process through a GLS regression, which has shown
greater performance than the ADF test. The DF-GLS test has the following specification:

HO: Random walk, possibly with drift.

HA: Stationary process around a linear trend.

We reject a unit root process in all variables in contradiction to Koopman et al. (2007).
Philips-Perron and DF-GLS test results can be observed in Tables 21 and 22 (Brooks, 2019;
Elliott et al., 1996).

4 Empirical Methodology

This section presents the empirical methodology used in the dissertation. ARMA and
ARIMA models are presented, including ARCH and GARCH models. Model selection cri-

teria, maximum likelihood estimation and forecasting evalaution measures are explained.

4.1 ARMA and ARIMA Models

Autoregressive Moving Average (ARMA) models are combinations of autoregressive (AR)
processes of order p, and moving average processes of order ¢, resulting in an ARMA (p,q)
model. An ARMA (p,q) model describes that some series depends linearly on its own previ-

ous values, plus a combination of current and previous values of a white noise error term.

15



Formally, an ARMA (p,q) model could be written as in Equation (4.1) (Brooks, 2019).

¢(L)yr = p+ 0(L)u,
O(L)=1— ¢ L — ¢ol? — ... — ¢,LF
O(L) =1+6,L+0,L*+ ...+ 6,L"

Another way to specify an ARMA(p,q) follows below: (4.1)

p q
Yy = Qo + Z PilYi—i + Z Oa;ui—;
i=1 i=0
E(u) = 0; B(u}) = 0 E(ugus) = 0,t # s

The ARMA(p,q) model has a geometrically decaying autocorrelation function (ACF) and
partial autocorrelation function (PACF). The autocorrelation function describes combina-
tions of behaviour from the AR and MA processes, with AR dominating in the long run,
for lags beyond q. The extension from an ARMA(p,q) to an ARIMA (p,d,q) model relies on
the characteristic roots in Equation (4.1). If 1 or more characteristic roots of Equation (4.1)
is greater than, or equal to 1, the y; process is integrated of order d, and thus an ARIMA
model. The /-term in the ARIMA model therefore indicates the number of differences taken
(Enders, 2014).

4.2 ARCH(p) and GARCH (p,q) Models

When analyzing electricity prices, volatility clustering including high, and low-volatility peri-
ods are often observed, for example in Figure 1. Therefore, the CLRM assumption of constant
error variance®, homoskedasticity, falls short. Furthermore, electricity prices exhibit volatil-
ity clustering where volatility occurs in bursts which can be observed in Figure 7. ARCH
and GARCH can be used to model this behaviour, and an ARCH(1) model is described in
Equation (4.2).
Yo = P1 + Poay + Ba3a + Pavar + wy
o7 = ap + ayup_, (4.2)

Uy ~ N(O,Jf)

SCLRM = classical normal linear regression model. u; ~ N(0,0?) (Brooks, 2019).
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Figure 7: First differenced logarithmic system price from week 1, 2008 through week 52, 2021.

o? is the conditional variance and must be strictly positive. However, the ARCH model in
Equation (4.2), and other ARCH variants contain limitations which results in less practi-
cality. Therefore, generalized ARCH models (GARCH) are more widely used. Originally
developed by Bollerslev in 1986, the GARCH model allows for the conditional variance to
be dependent upon previous own lags, is more parsimonious, avoids overfitting, and is less
likely to violate non-negativity constraints. A general GARCH(p,q) model is described in
Equation (4.3) (Bollerslev, 1986; Brooks, 2019).

q p
ol =+ Z au? ; + Z Vior (4.3)
i=1 j=1

In Equation (4.3), the conditional variance depends on q lags of the squared error, and p
lags of the conditional variance. It can also be shown that the conditional variance of the
error is an ARMA process given by the expression in Equation (4.3) since the conditional

variance of uy is given by F;_ju? = ¢2. The disturbances of the dependent y; variable acts
17



like an ARMA process, which allows for detecting the order for a possible GARCH process
in the squared residuals. Furthermore, the GARCH model allows for both autoregressive-

and moving average components in the heteroskedastic variance (Enders, 2014).

4.3 Model Selection and Information Criteria

Apart from comparing LLF values, 2 main model selection criteria are used in this paper. 2
of the most popular selection criteria are Akaikes Information Criterion (AIC) and Schwartz
Bayesion Criterion (SBC, SBIC or BIC). Inherently, both criteria are a function of the
residual sum of squares (RSS) and a penalty for the loss of degrees of freedom from adding
extra parameters to the model, see Equation (4.4). Befittingly for model comparison and
selection, the value of the information criteria will only be reduced if the RSS outweighs the
increased value of the penalty applied. Consequently, AIC and BIC are therefore more widely
applied in time series modeling as opposed to R-squared or adjusted R-squared. The penalty
term within the AIC is less strict than the penalty term in BIC and it is therefore useful
to report both information criteria. In larger sample sizes, BIC has shown to be superior
and asymptotically consistent, while AIC will be more biased towards an overparametrized
model. On the other hand, AIC may be superior in smaller samples (Enders, 2014). This
entails that BIC is strongly consistent, but inefficient, while AIC is inconsistent, but generally
more efficient (Brooks, 2019). This emphasizes the aforementioned argument that both
criteria, including LLF values should be reported when comparing and selecting models.
Consequentially, both AIC and BIC can be negative and lower values are preferred. Since
Stata 17 has been used as the main statistical software, Stata 17’s formulas are reported in

Equation (4.4) (Stata, 2022).
AIC = =2InL + 2k
BIC = —2InL + klnN
L = Maximized log-likelihood of the model (4.4)

k = Parameters estimated

N = Sample size
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4.4 Maximum Likelihood Estimation

Maximum Likelihood Estimation (ML) is a common estimation method in econometrics,
ensuring both consistency and asymptotically normal distributions. Formally, a set of pa-
rameters that are most likely to have produced the observed data values are chosen through
construction of a log-likelihood function (LLF) (Brooks, 2019; Pan and Fang, 2002). The
LLF is then maximized to find the values of the parameters that maximize the LLF. This
method can be used for both linear and non-linear models. For simplicity, calculations are
here limited. The general method described is taken from Brooks (2019) and Enders (2014).
Derivations can be found in Brooks (2019), appendix 9.1 page 565 and Enders (2014) page
152-154.

In Equation (4.5), 81, 82,02 are to be estimated, such that an f-function f(-) can be written
as the likelihood function LF(8y, 32, 0?).

T

LF(ﬁl,BQ,O'Q) :ﬁexp{_lz:(yt_ﬁl_ﬁ%ﬁt) } (45)

o2

The parameter values, 31, 32,02, that maximizes the function in Equation (4.5) are chosen.
Since this equation is difficult to differentiate due to the T-term, logarithms of the probability

density function, Equation (4.6), is taken and then differentiated, assuming the y’s are i.i.d.C.

Fy1, y2, - yr|Br + Boxr, B + Baa, ..., B1 + Boxr, 02)

T (4.6)
= Hf(?/twl + Bomy,0%) for t = 1,...,T
t=1

Through transformation this results in the log-likelihood function (LLF), Equation (4.7).

T
r.—, T 1 (ye — B1 — Poy)?
LLF = —§ln0 - Eln(27r) ~3 tE_l p~ (4.7)

6i.i.d. = independent and identically distributed random variables.
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By differentiating Equation (4.7) w.r.t 81, 82,02, and then minimizing by equaling to zero,

the maximum likelihood estimators (denoted by hats) are obtained in Equation (4.8).
Z(yt - Bl - Bﬂt) =0
Z?/t - 281 - ZBZ%& =0
Zyt_TBI_BQth:O (4.8)
1 - A1
szt_ﬁl_62fzxt:0
B =17 Po

We can also utilize first derivatives to obtain estimators for 3, in Equation (4.9).

s ooy — Tay
P2 = 22 —T2) (4.9)

Observe that Equations (4.8) and (4.9) are equal to OLS estimates of the intercept and
2

slope coefficients. However, an estimate of &

Equation (4.10).

can be obtained which equals the result in

R 1 N
62 = T Z i (4.10)

The estimator in Equation (4.10) for the error variance is biased, albeit consistent”.

4.5 Volatility and Model Evaluation
4.5.1 Volatility Measures

The dissertation employs a realized volatility measure with inspiration from Day and Lewis
(1992) and Simonsen (2005). Formulae are set out in Equation (4.11). Observe that his-
torical volatility mainly used by Day and Lewis (1992), o(¢,T') is approximately equal to
squared returns for the dataset, similar to results from Simonsen (2005). Realized variance

- rvar as calculated in Equation (4.11) is applied (Brooks, 2019).

price + Aprice

Inreturn(t) = In( ) — Logarithmic return

price (4.11)

o(t,T) = rvar = (Inreturn(t) — u)?* ~ Inreturn(t)* — Realized variance

"AsT w00, T —k~T
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4.5.2 Model Evaluation

When comparing time series models, several methods can be applied. The methods de-
scribed here are from Brooks (2019) and Enders (2014) and include RMSE, MAE, MAPE
and Theil’s U.

T
1
RMSE = | +/————— s — frs)? 4.12
T — (Tl . 1) t:ZTl<yt+ ft, ) ( )

Where T = total sample size, T7 = first out of sample forecast observation. RMSE is the root
mean square error and defines the standard deviation of the residuals and can be interpreted

in terms of measurement units.

T
1
MAE:—E s — fts 4.13
T_ (T]_ _ 1) t:Tl |yt+ ft, | < )

MAE is the mean absolute error and the average absolute forecast error.

T

1 s s
MAPE = 00 (Yers = Jrs (4.14)
T— (T —1) =T Ytts
MAPE is the mean absolute percentage error, and thus the MAE in percentages.
\/ZT: (yt+s_ft,s )2
U= Y e (4.15)

- T Sffb ,S
VD (e tie
Where fb,, is a forecast from a benchmark model. Theil’s U-statistic is useful for comparing
models where a U-statistic equal to 1 implies equal model accuracy to a naive forecast. U-

statistics below 1 implies a superior forecast model, and vice versa for U-statistics larger

than 1.

5 Results

The section presents results from ARIMA and ARIMA-GARCH estimation. ARIMA spec-
ification and population weight determination are first presented before assessing model fit
and in-sample properties. Additionally, a variety of ARIMA-GARCH models are estimated

to study system price, volatility and in-sample fit before results are discussed.
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5.1 ARIMA Specification and Population Weight Determination

In this section an ARIMA (p,d,q) model is specified through the 3-step Box-Jenkins approach.
Next, population weights for seasonally adjusted temperature and rainfall are determined
through an ARIMA specification. Finally, the analysis is extended by analyzing autocorre-
lation functions for the residuals and testing for ARCH and GARCH effects with Engle and

Lagrange’s multiplier test.

5.1.1 ARIMA Specification

The autoregressive integrated moving average, ARIMA (p,d,q) specification has been cho-
sen due to flexibility. Inclusion of both autoregressive processes of order p, moving average
processes of order d, and integrated processes of order d allows for a flexible estimation

procedure and is therefore a desirable initial model framework.

Initially, an ARIMA(0,0,0) model with population weights based on cities in the dataset
is estimated through log-likelihood maximization in STATA. The reasoning for choosing ap-
propriate population weights are further elaborated on in Section 5.1.2. ACF and PACF
plots of residuals can be observed in Figures 8 and 9 where the series displays an AR1 signa-
ture with a gradually decaying ACF and a PACF with a sharp cutoff at lag 1 (Nau, 2020).
An AR(1) term is therefore included, and an ARIMA(1,0,0) model® is further estimated with
ACF and PACF plots in Figures 10 and 11 and model in Equation (A.0).

Inprice; = ag + B'X; + plnprice,_, + error, (4.0)
A.O

X is a vector of the regressors in Table 17, except Inprice and rvar.

8This is equivalent to an AR(1) model.
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Analyzing ACF and PACF plots for the ARIMA(1,0,0) model in Figures 10 and 11, both
the ACF and PACF are switching signs throughout the lags. However, the standard de-
viation of the residuals has decreased from the ARIMA(0,0,0), observe Table 3, and the
ACF and PACF are converging towards 0. The ARIMA(1,0,0) is therefore preferred over
the ARIMA(0,0,0). ACF and PACF plots from in Figures 10 and 11 does however indicate
a possibility for improvement. The dissertation proceeds with the Box-Jenkins 3-step ap-

proach as described in Brooks (2019):

1. Identification. ACF and PACF plots are used to determine the model order.
2. Estimation. Log-likelihood maximization in Stata 17 is applied.

3. Diagnostics checking. Residual diagnostics and Ljung-Box Q tests is applied.

Inspecting the PACF plot for the ARIMA(1,0,0) model, evidence of slight underdifferencing
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is present with 2/20 first lags outside of the 95% confidence band. Several other lags are
outside of the 95% confidence bands for longer lag-lengths. Due to parsimony, only PACF
values above 0.1 are included, AR lags 8 and 26. A similar procedure is adopted when in-

specting ACF, including MA lags 8, 11, 15 and 26 in the ARIMA model.

Therefore, an ARIMA model containing AR lags 1, 8 and 26 and MA lags 8, 11, 15 and 26 is
estimated with log-likelihood maximization in Stata. Afterwards, statistically insignificant
AR and MA-terms are removed and a Ljung-Box-Q statistic for autocorrelated residuals is
calculated for all models. The appropriate model is selected based on the criteria, including
AIC, BIC and further residual analysis. Model results can be observed in Table 12 as model
1, estimated ARIMA model in Equation (A.1), and information criteria in Table 4.

Inprice; = ag + B'X; + prinprice,_1 + palnprice,_g + pslnprice;_og
+01ui_g + Oouy_11 + Ozus_15 + Oaus_o6 + error, (A.1)

X is a vector of the regressors in Table 17, except Inprice and rvar.
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Figure 12: PACF AR(1,8,26) MA(8,11,15,26)  Figure 13: ACF AR(1,8,26) MA(8,11,15,26)

The estimated ARIMA model results in a statistically significant AR-1 lag on all relevant
significance levels and a highly autoregressive process of order 1 equal to 0.8795, including
statistically significant moving average lags. AR-lags 8 and 26 are statistically insignificant
on all relevant significance levels with coefficients equal to -0.0095 and 0.0003. A Ljung-Box-

Q statistic results in a p-value equal to 0.552, an no rejection of the null hypothesis of a
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white noise process within the residuals at a 52.2% significance level. Ljung-Box-Q statistics
can be found in Table 2. From Table 4, AIC and BIC are -1659.4367 and -1546.5319, an
improvement from the less complex ARIMA models. The model is marked as number 1 in

Table 12.

Based on results above, the 26th AR-lag is removed from the model. The model equa-
tion can be found in Equation (A.2), an ARIMA model with AR-lags 1 and 8, and MA-lags
8, 11, 15, and 26. AR-lag 1 is statistically significant on all relevant significance levels with
coefficient equal to model 1, 0.8795. All MA-terms are still statistically significant on a 5%
level. AR-lag 8 is still statistically insignificant on a 60.8% significance level. Ljung-Box-Q
statistic results in a Q-stat equal 38.8209 and a p-value equal 0.5233, rejection of the null
hypothesis on a 52.33% significance level, and therefore similar results to model 1. From
Table 12, AIC and BIC are more negative, implying an improved model specification. The
model is marked as 2 in Table 12 and Ljung-Box-Q statistics can be found in Table 2.

Inprice; = ag + B'X; + pilnprice,_1 + palnprice;_g
+01up—g + Oous—11 + O3us_15 + Osu_96 + error, (A.2)

X is a vector of the regressors in Table 17, except Inprice and rvar.
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Figure 14: PACF AR(1,8) MA(8,11,15,26) Figure 15: ACF AR(1,8) MA(8,11,15,26)

Next, the 8th AR-lag is removed from the model due to statistical insignificance and an

ARIMA model with AR-lag 1 and MA-lags 8, 11, 15, and 26 is estimated, marked as model
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3 in Table 12 is estimated, with model in Equation (A.3). The AR-1 lag and the 4 MA-lags
8, 11, 15, 26 are statistically significant on a 5% significance level. Completed Ljung-Box
Q-statistic results in a Q-statistic equal to 38.263 and a p-value equal to 0.5276 and contin-
ued rejection of the null hypothesis, now on a 52.75% significance level. From Table 12, AIC
and BIC are also more negative, indicating an improved model specification over previously

estimated models. Ljung-Box-Q statistics can be found in Table 2.

Inprice; = ag + "Xy + pilnprice;_;
+01up—g + Oouys_11 + O3u_15 + Osu_06 + error, (A.3)

X is a vector of the regressors in Table 17, except Inprice and rvar.
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Figure 16: PACF AR(1) MA(8,11,15,26) Figure 17: ACF AR(1) MA(8,11,15,26)

Furthermore, ACF and PACF plots from model 1-3 in Figures 12, 14 and 16 are inspected.
A generally tighter ACF and PACF plot can be observed, indicating a notable improvement
from the ARIMA(1,0,0). No ACF or PACF values surpasses 0.10, with fewer values exceeding
the 95% confidence band for the more complex ARIMA variants. General convergence
within ACF and PACF towards 0 is observed. Residual mean and standard deviation for
several ARIMA-models can be observed in Table 3, where the more complex ARIMA variants
results in lower residual standard deviation which further emphasizes that a more complex
ARIMA model is appropriate for the data. Observe from Table 12 that several coefficients

are statistically insignificant, where some variables produce awkward and debatable results.
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Model DF P-value Q-stat

AR(1,8,26)MA(8,11,15,26)) 40 0.5228 38.8300
AR(1,8)MA(8,11,15,26) 40 0.5233 38.8209
AR(1)MA(8,11,15,26) 40 0.5276 38.7263

Table 2: Portmanteu (Ljung-Box)-Q test.

All 3 models report the effect of temperature deviation in Trondheim and rainfall deviation
in Bergen, Kr. Sand and Tromseg on the system price as statistically significant on a 10%
significance level. However, 1 mm. additional rainfall against equal week last year in Kr.
Sand, Stavanger or Trondheim is expected to reduce the system price by ~ 252%, ~ 46.71%
or ~ 44.20% respectively, debatable results. Rainfall deviation in Bergen has an estimated
negative effect of &~ -22% on the system price by 1 mm. more rainfall deviation. Estimated
temperature effects on system price are generally small, with the largest effect in Oslo and
Kr. Sand with 2.06% and 1.77%, both positive. All other temperature estimates are below
1%, regardless of sign. Therefore, conclusions regarding expectation, supply, consumption
and demand based effects alongside temperature and rainfall cannot be drawn. The AR-1
coefficient is still statistically significant on all relevant significance levels and reveals a highly
autoregressive process of order one, &~ 0.88. The ARIMA model with AR-lag 1 and MA-lags
8, 11, 15 and 26 is deemed superior against the other ARIMA alternatives based on residual
statistics and ACF and PACF.

5.1.2 Population Weight Determination

As previously described, a population weight determination process has been applied to se-
lect appropriate population weights for temperature and rainfall. The process is a 3-step

procedure described below.

1. Appropriate population weight is chosen.
2. Each city is assigned a population weight on rainfall and temperature based on population
in the city.

3. The result is population weighted rainfall and population weighted temperature.
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Variable Mean Std. Dev
ARIMA(0,0,0) Residual 2.16e-10 0.1358477
ARIMA(1,0,0) Residual -0.0001488 0.0714143
ARIMA(2,0,0) Residual -0.0001303 0.0713314
ARIMA(3,0,0) Residual -0.0001238 0.0713241
ARIMA(0,1,0) Residual 1.42e-10 0.0733939
ARIMA(0,2,0) Residual 3.16e-10 0.1032708
ARIMA(0,3,0) Residual 1.08e-10 0.1751914
ARIMA(0,0,1) Residual 1.23e-06 0.0952594
ARIMA(0,0,2) Residual 9.14e-06 0.08298262
ARIMA(0,0,3) Residual 9.69e-07 0.0768985
AR(1,8,26)MA(8,11,15,26) Residual -0.0000983 0.0683259
AR(1,8)MA(8,11,15,26) Residual -0.0000974 0.0683259
AR(1)MA(8,11,15,26) Residual -0.0000105 0.0683325

Table 3: Residual sum and standard deviation for ARIMA variants.

e Changes in rainfall deviation are expected to affect the system price.

Population weighted rainfall capture the effect of rainfall weighted by population in
each city. In periods with heavy rainfall, the market may expect a lower system price
due to higher expected supply. This effect may vary in size, depending on regional
population. When seasonally adjusted, this is therefore both an expectations and a

supply effect with deviations from the same week last year.

Changes in temperature deviation are expected to change the system price.

Population weighted temperature captures the effect of temperature weighted by pop-
ulation in each city. In periods with high temperatures power consumption is lower
than average, contributing to less demand for power. This effect may vary in size,
depending on regional population. When seasonally adjusted, this is therefore both a
consumption and a demand effect with deviations from the same week last

year.
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The appropriate model has been chosen based on statistical significance, omitted variables,

information criteria and relevance for the thesis statement.

Model LL AIC BIC
ARIMA(0,0,0) 390.74325 ~745.4865 -664.195
ARIMA(1,0,0) 825.6698 -1613.34 -1527.532
ARIMA(2,0,0) 826.4965 -1612.993 -1522.669
ARIMA(3,0,0) 826.5677 -1611.135 -1516.295
ARIMA(0,1,0) 805.759 -1575.518 -1494.253
ARIMA(0,2,0) 574.3857 “1112.771 -1031.533
ARIMA(0,3,0) 2217.8375 -399.6751 -318.4637
ARIMA(0,0,1) 630.6604 -1223.321 -1137.513
ARIMA(0,0,2) 723.9774 -1407.955 -1317.631
ARIMA(0,0,3) 775.5875 -1509.175 -1414.335
AR(1,8,26)MA(8,11,15,26) 854.7183 -1659.4367 -1546.5319
AR(1,8)MA(8,11,15,26) 854.7182 -1661.4365 -1553.0479
AR(1)MA(8,11,15,26) 854.6489 -1663.2977 -1559.4253

Table 4: Information criteria for ARIMA variants.

The ARIMA model with AR-lag 1 and MA-lags 8, 11, 15 and 26 from the previous section
is estimated with different weights on rainfall and temperature. 1 model has been estimated
without population weights, 1 with the city’s population as a proportion of total national
population, and 1 model with the city’s population as a proportion of total population within
the dataset. Formulae can be observed in Equation (B.1) with population weights in Ta-
bles 15 and 16. Estimation results are reported in Table 11, the model in Equation (A.3)
for varying temperature and rainfall population weights, and a statistical significance table
in Table 5. Observe statistically insignificant and omitted variables due to multicollinearity

suggesting in general high correlation between variables.
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Variable Model Model Model

No Weights Nat. Weights City Weights
S.Adj Temp. Bergen 1% 1% Insignificant
S.Adj Temp. Kristiansand Insignificant Insignificant Insignificant
S.Adj Temp. Oslo 10% 10% Insignificant
S.Adj Temp. Tromsg Insignificant Omitted Insignificant
S.Adj Temp. Trondheim Insignificant Insignificant 10%
S.Adj Temp. Stavanger 5% 0% Insignificant
S.Adj Rain Bergen Omitted Omitted 10%
S.Adj Rain Kristiansand Omitted Omitted 10%
S.Adj Rain Oslo Omitted Insignificant Insignificant
S.Adj Rain Stavanger Omitted Omitted Insignificant
S.Adj Rain Tromsg Insignificant Insignificant 10%
S.Adj Rain Trondheim Insignificant Insignificant Insignificant
Log. Wind Production 5% 5% 5%
Sum Magazine Deviation 0% 0% 0%
Sum Sno., Gro., and Sur. wtr 0% 0% 1%
Dummy = 1 for 2020 0% 0% 0%
AR(1) 0% 0% 0%
MA(8) 0% 0% 0%
MA(11) 0% 0% 1%
MA(15) 1% 5% 5%
MA(26) 0% 0% 0%

Table 5: Statistical significance table in % from estimates reported in Table 11.

Estimation results along with AIC, BIC and LL are reported in Table 11. Aforementioned

and future ARIMA models are estimated with log-likelihood maximization and population

weighted and seasonally adjusted temperature and rain, logarithmic wind power production,

magazine deviation, a dummy for 2020, and the sum of snow, ground, and surface water. All

3 models report statistically significant results at a 5% significance level for logarithmic wind
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power production, magazine deviation, the dummy variable, and the sum of snow, ground,
and surface water. The effects are of similar magnitude in all models. AR and MA-terms

are statistically significant in all models.

AIC and BIC favours the estimated ARIMA model without weights, while the log-likelihood
(LL) functions favour the model with city weights. Although AIC and BIC favour the model
without population weights, 4 variables for rainfall are omitted due to collinearity. Con-
sidering the thesis statement, the model without population weights is discarded. When
comparing national weights and city weights, AIC favours the former, while BIC favours
the latter. Applying equal reasoning as before, and since BIC can be argumented for as
superiour in larger samples, see section 4.3, the model with national weights is discarded due

to relevance, and the model with city weights is preferred.

5.1.3 Model Fit and In-Sample Properties

Model fit and in-sample properties are considered through a static 1-step forecast and ac-
curacy statistics. The static forecast relies on lagged values of the data from week 1, 2009
until the end of the sample and are reported in Figure 18 for the ARIMA model with AR-lag
1, MA-lags 8, 11, 15 and 26, and population weighted rainfall and temperature by cities.
Forecast accuracy statistics, are reported in Table 6. These statistics are more relevant when
comparing models against each other, but observe that Theil’s U has a value below 1, indi-
cating a better forecast than a naive forecast. Visually from Figure 18 the model follows the

trend of the system price including periods of high volatility during 2020 and 2021.

Measure N Value

RMSE 676 0.06828198
MAE 676 0.04310136
MAPE 676 3.608341%
Theil’s U 676 0.69897952

Table 6: Forecasting criteria to assess model fit for the preferred ARIMA model.
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5.2 Heteroskedasticity

Leptokurtic behaviour, volatility clustering, and leverage effects have previously been found
present within electricity price by for instance Liu and Shi (2013); Bowden and Payne (2008)
and Koopman et al. (2007). Therefore, ARCH and GARCH models are reasonable candidates
to expend the analysis and explicitly model volatility. Several tests can be performed to
identify non-linear time series structure including the Ramsey RESET test and the BDS
test. However, the most specific method for ARCH and GARCH models are perhaps to
study ACF and PACF, including Engle’s Lagrange multiplier test for ARCH effects (Brooks,
2019; Enders, 2014).

)
N

1.5

o_

2008w1  2010w1  2012w1  2014wi 2016wl  2018w1  2020w1  2022w1
weekly

Logarithmic System Price ———— AR(1)MA(8,11,15,26) Static Forecast

Figure 18: Static in-sample system price forecast for the preferred ARIMA model. Start from week
1, 2009.

Firstly, squared residual ACF and PACF are visually analyzed with additional residual
diagnostics in Figure 19. Autocorrelations outside of the 95% confidence bands indicate

ARCH effects, which can be observed present in lags 1, 2, 3, 4, 5, 6, 11, 12, 14, 15, 21
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and 26. Furthermore, Engle’s Lagrange multiplier test for ARCH effects is computed with
the process described in Brooks (2019). A linear regression is estimated, squared residuals
are saved, and a test statistic TR? ~ x? is calculated, where T = number of observations.
Results can be observed in Table 7 with evidence of ARCH effects on 26 lags. It is therefore
evident the continuation of the dissertation should adopt models that capture ARCH and
GARCH effects.

Diagnostics for AR(1)MA(8,11,15,26) Squared Res.

Squared Residuals Autocorrelations
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Figure 19: ARCH diagnostics for squared residuals from preferred ARIMA model.

N x> DF P Lags

650 297.944 26 0.0000 26

Table 7: LM test for ARCH effects.
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5.3 ARIMA-GARCH Variants

In this section several ARIMA-GARCH models are estimated with different restrictions to
mainly study the effect temperature and rainfall has on the system price and volatility,
including expectation and supply effects from rainfall, and consumption and demand effects
from temperature. Results are comprehensively discussed in Section 5.5. Extensive work to
determine an appropriate GARCH specification has previously been done. A particularly
thorough article compares 330 ARCH-type models and determines the GARCH(1,1) superior,
which is similar to other GARCH-specifications previously discussed by Hansen and Lunde
(2005). The GARCH(1,1) model has also been widely applied in financial time series and is
therefore chosen as the dissertations initial volatility framework (Brooks, 2019; Enders, 2014).

The ARIMA-GARCH models are estimated in Stata 17 with log-likelihood maximization.

5.3.1 ARIMA-GARCH Specification

The previously developed ARIMA model with AR-lag 1 and MA-lags 8, 11, 15 and 26 is
declared as the starting point. Initially, a GARCH(1,1) is added to the ARIMA, creating
an ARIMA-GARCH model specification estimated with log-likelihood maximization simul-
taneously. Subsequently, a residual diagnosis check to analyze whether the residuals satisfy
the requirements for a Gaussian white noise process is executed, including an assessment of
model fit for the system price and volatility. This procedure is similar to Liu and Shi (2013).
Estimation results from the ARIMA-GARCH can be observed in Table 13, model 0 with the
model in Equation (G.0).

Inprice; = ag + "Xy + pilnprice;_;
+01uyg + Oty 11 + O3uy 15 + Osup 26 + &4
g =0l =ag+oaul | +v0 (G.0)
X is a vector of the regressors in Table 17, except Inprice and rvar.

¢t defines the GARCH(1,1) specification of the ARIMA-GARCH.

Temperature coefficients for all cities are statistically insignificant. The effects are smaller

than the ARIMA-estimation, indicating that temperature deviation through consumption
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and demand effects have a smaller effect on system price when including time-varying con-
ditional volatility, with estimates below 1% except for Kr. Sand. Estimates for Tromsg have

changed signs, from 1.04% to -0.15%.

Rainfall deviation coefficients are smaller against the ARIMA-model for all cities except
Trondheim, where Imm. more rainfall deviation increase the system price by =~ 60.12%,
opposed to ~ 44.20%. The large, positive effect indicates an imprecise estimate considering
previous evidence. Coefficient for Oslo have switched signs however the effect is small, equal
to -1.03%. Rainfall deviation in Bergen is statistically significant on a 1% significance level,
reducing system price by -16.6%, ceteris paribus. Empirically the effect is reasonable due to
Vestlands significance in hydropower production (Tvede, 2017). The effect is smaller than
estimates from ARIMA modeling.

However, several rainfall coefficients are statistically insignificant or produce results that
are difficult to interpret. The system price is expected to decrease over &~ 103% per mil-
limeter increased rainfall deviation in Kristiansand, ~ 43.8% in Stavanger and ~ 60.12%
in Trondheim. Even though results, except for Trondheim, are smaller than results from
ARIMA modeling, the effects rainfall has through expectation, supply and population are
implausibly large, considering the complex structure which determines the system price.
Other variables such as wind power production, magazine deviation and snow, surface and
ground water are statistically significant on a 1% significance level, and reduce the system
price accordingly. The effects are empirically intuitive, considering their importance in calcu-
lating hydrological balance and magazine filling levels. In summary, there is little evidence
that rainfall and temperature in cities through expectation, supply, consumption and de-

mand effects affects system price (NVE, 2020, 2021).

Inclusion of ARCH and GARCH effects reveal a highly volatile system price with statis-
tically significant coefficients on all relevant significance levels. From the ARCH-term for
model 0 in Table 8 it can be observed that shocks to volatility today through the ARCH
term, aq, equal =~ 0.7412. Correlation between the variance over two periods through the

GARCH term, 71, equal =~ 0.4043, and evidence of volatility clustering. Summarized, ARCH
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and GARCH-terms equal 1.1455 which implies exponential volatility persistence, and non-
stationary variance. The ARIMA-GARCH against realized variance can be observed in
Figure 20. Periods of high and low volatility are acknowledged, somewhat captured by the
model, confirming exponential volatility persistence. Results are similar to estimates from
the SGARCH, QGARCH, GJRGARCH and EGARCH models estimated by Liu and Shi
(2013). Lastly, AIC and BIC have both vastly improved against the ARIMA-specification,

indicating a better model fit.

o_

T | T T | T | |
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Realized Variance =~ ———— AR(1)MA(8,11,15,26)-GARCH(1,1) Static Var. FC

Figure 20: Visual model fit for the AR(1)MA(8,11,15,26)-GARCH(1,1) for conditional volatility

against realized variance.

The AR(1) and MA(11,26) terms are statistically significant, whereas MA(8,15) are sta-
tistically insignificant. Therefore, MA terms (8,15) are dropped from the model and an
ARIMA-GARCH with AR-lag 1, MA-lags 11 and 26 and a GARCH(1,1) is estimated and
denoted model 1 in Table 13.
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5.3.2 ARIMA-GARCH - Temperature and Rain Restrictions

2 restrictions are imposed on the ARIMA-GARCH model with AR-lag 1, MA-lags 11, 26
and a GARCH(1,1). Model 2 is estimated without temperature, and model 3 is estimated
without rainfall to capture possible effects on the system price and volatility. Results can be

observed in Table 13 as model 1, with the model in Equation (G.1).

Inprice; = ag + B X, + pilnprice,_;
+0aus 11 + O4us o6 + &4
g =0 =0y +oaul | +m07 (G.1)
X is a vector of the regressors in Table 17, except Inprice and rvar.

¢t defines the GARCH(1,1) specification of the ARIMA-GARCH.

Removal of MA(8,15) does not result in any noteworthy findings in terms of regression
coefficients. However, AIC decreases from -2519.7211 to -2262.9085 and BIC decreased from
-2146.8162 to -2159.0360. Thus, a model without MA(8,15) indicates an improved model
specification. The model is denoted as 1 in Table 13. ARCH and GARCH effects are
similar with a highly volatile system price including overall volatility persistence and non-
stationary variance above 1, equal to 1.1496. Furthermore, statistically significant MA(11)
and MA(26)-terms at a 1% significance level indicate the presence of quarterly and half-year

seasonal effects.

5.3.3 ARIMA-GARCH - Without Temperature

Additionally, an ARIMA-GARCH model with AR-lag 1, MA-lags 11, 26 and a GARCH(1,1)
without temperature is estimated and denoted as model 2 in Table 13, with specification

in Equation (G.2). The main purpose is to determine if temperature in cities carry any
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significance for the system price and volatility.

Inprice; = ag + Xy + pilnprice;_;
+0aus—11 + O4us 26 + &4
€ = atz = g + alu?_l + ’ylaf_l (G-Q)
X is a vector of the regressors in Table 17, except Inprice, rvar, and temperatures.

e; defines the GARCH(1,1) specification of the ARIMA-GARCH.

Estimated rainfall coefficients, except for Bergen, are smaller against the ARIMA and
ARIMA-GARCH models, implying that the effect of rainfall deviation on the system price
is smaller when temperature is excluded. However, some effects are abnormally large with
rainfall in Kr. Sand, Stavanger and Trondheim affecting the system price through 1 mm.
increased rainfall deviation by =~ -79.99%, ~ 37.45% and =~ 38.86%, respectively. Rain-
fall in Bergen now has an estimated effect of -16.91%, which is larger than both ARIMA-
GARCH models (-16.61% G.0, -15.99% G.1) and smaller than the estimates from the pre-
ferred ARIMA model (-22.29% A.3). Rainfall estimates from Oslo have switched sign from
the ARIMA estimation, with a smaller effect than all previous models at -0.86%. Rainfall in
Bergen, Trondheim and Stavanger falls outside of a 5% significance level. From the model
estimation, rainfall deviation including expectation and supply effects therefore has a smaller

effect on the system price without temperature included.

The ARCH-term, «q, decreases from 0.7488 to 0.7081, implying a 0.0407 reduction in volatil-
ity response from shocks today. On the other hand, the GARCH term, o, has increased
from 0.4008 to 0.4239, indicating a 0.0231 increase in correlation between volatility over two
periods, and further evidence of volatility clustering. In summary, overall volatility persis-
tence has decreased from 1.1496 to 1.1320, implying slightly less exponential volatility when
excluding temperature, still non-stationary in variance. The model is still highly volatile.
Quarterly and half-year seasonal effects remain present and statistically significant on a 1%
significance level. Visual model fit based on a static in-sample forecast can be found in

Figure 21.
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AIC has decreased from -2262.9085 to -2270.1139 and BIC has decreased from -2159.0360
to -2193.3386. This is no surprise considering the previously statistically insignificant and
small temperature effects. In conclusion, the ARIMA-GARCH model without temperature
is proposed as superior to the ARIMA-GARCH with temperature included.

1.7

1.2

2000w1  2011w1 2013wl 2015w1  2017w1  2019w1  2021w1
weekly

Logarithmic System Price ———— AR(1)MA(11,26)-GARCH(1,1) No Temp. Static FC.

Figure 21: Visual model fit for the AR(1)MA(11,26)-GARCH(1,1) without temperature.

5.3.4 ARIMA-GARCH - Without Rainfall

Furthermore, an ARIMA-GARCH model with AR-lag 1, MA-lags 11, 26 and a GARCH(1,1)
without rainfall is estimated to analyze effects on system price and volatility. Results can

be observed in model 3 in Table 13 with equation written in Equation (G.3). Visual model
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fit based on a static in-sample forecast can be found in Figure 22.

Inprice; = ag + Xy + pilnprice;_;
+0aus—11 + O4us 26 + &4
€ = atz = g + alu?_l + ’ylaf_l (G-3)
X is a vector of the regressors in Table 17, except Inprice, rvar and rainfall.

e; defines the GARCH(1,1) specification of the ARIMA-GARCH.

Temperature coefficients against model Equations (G.0) and (G.1) are generally larger, ex-
cept for Stavanger which now has an estimated -0.6% effect on the system price against model
(G.0) equal -0.2%, and model (G.1) equal -0.16%. Coefficients on Bergen and Tromsg have
switched signs. Estimated effect in Bergen equal 0.36% against -0.59% (G.0) and -0.64% in
(G.1). Estimated effect in Tromsg equals 2.85%, previously -0.15 % in (G.0) and -0.04% in
(G.1). Temperature in Trondheim is now statistically significant at a 1% significance level;
however, the coefficient equals a -0.12% reduction in system price, a marginal effect. Against
the ARIMA model, estimates for Tromsg and Bergen are larger, whereas the other estimates

are smaller.

However, the ARCH and GARCH-terms remain statistically significant. The ARCH-term
has decreased by 0.082 compared to model 1 and 0.0413 compared to model 2, which indi-
cates a less volatile system price from shocks today when excluding rainfall. Per contra, the
GARCH-term has increased by 0.05 from model 1 and 0.0269 from model 2, indicating a
higher correlation in variance over two periods, and additional volatility clustering. Overall
volatility persistence has decreased from model 1 and 2 and equal 1.1176. The volatility
persistence is therefore still exponential and non-stationary in variance, albeit to a slightly
smaller degree. Quarterly and half-year seasonal effects remain present. In summary, ex-

cluding rainfall in this analysis results in a slightly less volatile system price.

AIC equal -2246.7818 and is larger than both model 1 and model 2, indicating a worse
fit than prior. BIC however determines a better model fit than model 1, and a worse model

fit than model 2. In summary, a model specification without temperature is proposed as
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superior and further implies that temperature has little to no effect on the system price.

1.7
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Figure 22: Visual model fit for the AR(1)MA(11,26)-GARCH(1,1) without rainfall.

5.3.5 Model Fit and In-Sample Properties

In-sample statistics can be observed in Table 8. Visual model fit for the ARIMA-GARCH
variants can be observed in Figure 23, where all models follow the system price accu-
rately. For the system price, Theil’s U < 1 for all models. MAPE and RMSE favors
the AR(1)MA(8,11,15,26)-GARCH(1,1), whereas MAE is a tie between the aforementioned
ARIMA-GARCH and the AR(1)MA(11,26)-GARCH(1,1) without temperature. Against
the preferred ARIMA model, forecasting errors are similar. The ARIMA model has a lower
RMSE, MAPE and Theil’s U, whereas the ARIMA-GARCH models have a lower MAE.
Differences are, however, small. Nonetheless, when considering previous information criteria

such as AIC and BIC it is difficult to determine the superior model.
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Model Obs Theil MAPE MAE RMSE
AR(1)MA(8,11,15,26)-GARCH(1,1), Price 676 0.8437  3.61%  0.0411 0.0738
AR(1)MA(11,26)-GARCH(1,1), Price 676 0.8408  3.63%  0.0412 0.0739
AR(1)MA(11,26)-GARCH(1,1) No Temp., Price 676 0.8487  3.62%  0.0411 0.0742
AR(1)MA(11,26)-GARCH(1,1) No Rain, Price 676 0.8396  3.65%  0.0416 0.0746
AR(1)MA(8,11,15,26)-GARCH(1,1), Vol 676 3.2642 400.1061% 0.0088 0.0298
AR(1)MA(11,26)-GARCH(1,1), Vol 676 3.1691 399.2418% 0.0088 0.0297
AR(1)MA(11,26)-GARCH(1,1) No Rain, Vol 676 4.0304 437.2231% 0.0087 0.0294
AR(1)MA(11,26)-GARCH(1,1) No Temp., Vol 676 3.0760 404.0892% 0.0088 0.0297

Table 8: ARIMA-GARCH variants forecasting accuracy statistics.

For the volatility, conditional variance from the ARIMA-GARCH models are compared to
rvar, the realized variance as computed in Section 4.5.1. MAPE is above 400% for all models
except the AR(1)MA(8,11,15,26)-GARCH(1,1). This might be due to skewness, low values
of the variance or the over-influence of outliers. Additionally, Theil’s U is > 1 in all cases, in-
dicating a poor in-sample fit, worse than guessing. While this might be worrying, since both
the numerator and denominator are means of squared percentage errors, Theils’ U suffers
from the same shortcomings as MAPE. MAE and RMSE leans towards the model without
rain, however the differences between the ARIMA-GARCH models are diminutive, acting on
the 4th decimal. Similar to the results for the system price it is therefore accordingly difficult
to determine the superior model fit when assessing models through a statistical framework

(Davydenko and Fildes, 2013; Enders, 2014; Brooks, 2019).

5.4 ARIMA-GARCH Robustness

To test whether the ARIMA-GARCH models are properly fitted, a residual analysis on stan-
dardized residuals is performed. First, standardized residuals are illustrated in a histogram
with a normal frequency curve to visually inspect the distribution. Second, normality of
the standardized residuals are tested with a Shapiro-Wilk normality test. Lastly, Barlett’s
periodogram-based test for white noise is applied, with both values and a cumulative peri-

odogram for the standardized residuals.
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Figure 23: Visual model fit for the ARIMA-GARCH variants.

First and foremost, a standardized residual is calculated as in Equation (SR).

Histograms with normal frequency curves can be observed in Figures 24 to 27 and summary
statistics can be observed in Table 9. Histograms report a normal distribution with density
around 0 for all 4 models and a slightly leptokurtic distribution for the AR(1)MA(11,26)-
GARCH(1,1) variants. Observe from the summary statistics that all standardized residuals

have a N ~ (0, 1) distribution with outliers ranging from ~ —6 to ~ 8.

Shapiro-Wilk results can be found in Table 23, and test statistic can be observed in Equa-
tion (S-W TS) where z; are ordered sample values, and a; are a set of constants (Shapiro and

Wilk, 1965). The formulated null and alternative hypothesis follow.
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W Hy : Normally distributed standardized residuals, follows N ~ (u, 0?).

W H, : Non-normally distributed standardized residuals.
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Figure 27: Standardized residual his-
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AR(1)MA(8,11,15,26)-GARCH(1,1).

Observing results from Table 23, the null hypothesis of normally distributed random residu-



als is rejected in all of the ARIMA-GARCH models. However, the parameter estimates will

still be consistent, given a correct ARIMA-GARCH specification for the mean and variance

(Brooks, 2019).

Lastly, Barlett’s periodogram based test for white noise has been applied to the standardized

residuals. The test statistic, along with the cumulative periodogram formula can be observed

B = max1<k<q\/>|Fk:__|

Fk Z] 1Ji WJ) (B TS)
]:1 fwy)

Fy. = cumulative periodogram defined in terms of the sample spectral density.

in Equation (B TS).

Barlett’s periodogram based test for white noise has the following null and alternative hy-

pothesis:

B H, : White-noise process of uncorrelated random variables having a constant mean and a
constant variance.

B H, : Not white noise.

Results from Barlett’s test conclude that the null hypothesis cannot be rejected in all
ARIMA-GARCH specifications, indicating that the standardized residuals are not signifi-

cantly different from a white noise process. Results can be found in Figures 37 to 40.

Variable Obs  Mean StdDev  Min Max

AR(1)MA(11,26)-GARCH(1,1) 676  -0.0000  1.0000 -6.0746  8.1094
AR(1)MA(11,26)-GARCH(1,1) No Temp 676  -0.0000  1.0000  -6.0205 8.2014
AR(1)MA(11,26)-GARCH(1,1) No Rain 676  -0.0000  1.0000  -5.9887 8.0561

Table 9: Standardized residuals summary statistics for ARIMA-GARCH variants.
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5.5 Discussion and Evaluation of Results

To further expand empirically and economically on relevant findings, this subsection exam-

ines results from the ARIMA and ARIMA-GARCH estimation procedure.

5.5.1 Seasonality

Within the ARIMA estimation, statistically significant MA parameters indicate 2-month,
quarterly, 15-week and half-year seasonal effects. This effect is reduced to a quarterly and
half-year effect when moving to the ARIMA-GARCH models. The finding is not very sur-
prising, considering seasonal patterns previously mentioned in other articles, for instance by
Koopman et al. (2007) and Bowden and Payne (2008). Inspecting ACF and PACF plots
from residuals, further possible seasonal effects can be observed revealing a complex lag-
structure beyond the scope of this dissertation, and the possibility of more complex seasonal
effects. This includes ACF lags 4, 6, 7, 8, 15, 16, 34 and PACF lags 4, 6, 7, 8, 33, 43, 44,
56, 58, and further lags above 60. Observe Figures 29 to 32 which include ACF and PACF
plots for the different ARIMA-GARCH models. The seasonality is empirically predictable.
Considering aforementioned effects affecting the system price, water can be interpreted as a
collection variable. Taking this into account, seasonally dependent effects such as temper-
ature, weather, seasons, holidays, and trading patterns contribute to seasonality within the
system price. For instance, electricity consumption during the winter in Nordic countries is
larger than during the summer, affecting the demand for electricity positively, which can be

captured through the half-year seasonal effect.

Furthermore, limited inflow to water magazines during the winter due to snowfall contributes
to higher system prices. Per contra, increased inflow to water magazines in the summer con-
tributes to lower system prices (NVE, 2020, 2021). The effects are captured in both the
quarterly and half-year seasonal effects when considering winter and summer lengths. Quar-
terly and half-year seasonal effects should therefore be considered as a minimum, and results
imply appreciable possibilities for a more complex seasonal lag-structure. For instance, by
studying winter lengths in southern parts of the Nordic countries versus northern parts of the

Nordic countries, more complex geographically dependent seasonal lag-lengths are probable,
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suggesting a highly complex region dependent lag-structure.

5.5.2 Temperature Effects

As previously discussed, temperature has a small effect on the system price when included
in the ARIMA or ARIMA-GARCH models. Weighted temperature is included to capture
consumption and demand effects of population density and therefore functions as a proxy
for regional consumer power demand. Higher temperature is expected to reduce electricity
consumption, and lower temperatures are expected to increase power consumption®. This
has high relevance in Norway, considering seasonal and regional differences in temperature.
Results are consistent throughout the estimation process, both for population weight deter-
mination, ARIMA selection, and ARIMA-GARCH selection. This indicate that seasonally
adjusted and population weighted temperatures have little to no effect on the system price
and contribute more to model noise than to increasing the explanatory power. Throughout
the ARIMA-GARCH modeling, the largest temperature effect is in Tromsg, equal to a 2.85%
increase in system price. The temperature effect in Bergen, Kristiansand and Oslo also affect
the system price positively. Effects in Trondheim and Stavanger are negative. Accordingly
there are no demographic and geographical underlying effects within the variables to explain
the system price. Therefore, the effects consumption, demand or temperature have on the
system price can be declared as small, and statistically insignificant within the estimated

models.

Furthermore, these small and statistically insignificant effects might be because the system
price captures the Nordic countries, and since the cities in the dataset are not necessarily sit-
uated in close proximity to hydropower plants, or since temperature acts as a moving average,
already included in ARIMA and ARIMA-GARCH models. Nonetheless, this is an interesting
discovery. Furthermore, a likelihood-ratio test on temperature effects is performed to test
whether temperature effects are nested within the fully specified ARIMA-GARCH. Results
can be found in Table 10 which determines that temperature restrictions are jointly insignif-

icant at a 57.04% significance level, which implies that seasonally adjusted and population

9For example at NVE (NVE, 2020, 2021).

47



weighted temperature for all 6 cities does not jointly contribute to explain the system price
and volatility. In summary, temperature as included in this thesis does not affect the system
price and does not contribute to explaining the system price in any statistically, empirically

or economically meaningful way.

5.5.3 Rainfall Effects

Overall, a similar conclusion can be used to describe the results for weighted seasonally
adjusted rainfall. Weighted rainfall is included to capture both expectation effects of pop-
ulation density and supply effects. Increased rainfall deviation is expected to reduce the
system price. Furthermore, increased rainfall in a densely populated area such as Oslo,
might contribute to expectations of a reduced electricity price to a higher degree than in-
creased rainfall in a city with a lower population like Tromsg. However, throughout the
analysis this is not the result which indicates that proximity to hydropower plants is more
important than expectation and supply effects within the cities, in turn explaining statistical
insignificance in Oslo. Contrasting and switching signs on coefficients, including awkward
estimates produce an ambiguous effect on the system price, and applying regional electricity
prices alongside rainfall or including extreme weather frequency might yield more precise
estimates. Estimated effect for Oslo in the ARIMA-GARCH which excludes temperature
equals a 0.86% reduction in the system price from rainfall deviation, whereas the effect equals
a system price reduction of 0.05% by increased rainfall deviation in Tromsg. Isolated, these
effects imply a very slight population weighted expectation and supply effect, but similar
conclusions cannot be established for any other rainfall variables, invalidating the effect. In
summary, this entails that the system price and volatility is more dependent on physical
and fundamental effects, rather than population-bound effects. Considering these results,
using magazine filling levels, magazine deviation, or hydrological balance in a similar way as

Koopman et al. (2007) might give better results.

Nonetheless, the proposed model includes weighted and seasonally adjusted rainfall. Al-
though the direct effect of rainfall on magazine levels is small, rainfall deviation in Bergen

for instance provides somewhat meaningful results. Considering Bergen averages approxi-
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mately 200 days of rainfall in a year, the probability of rainfall in Bergen coinciding with
magazine levels is high (YR, 2019). However, since rainfall has been adjusted for population
and seasonality, the effect carries less concern than including rainfall alone. Information
criteria in terms of AIC and BIC favours the model with rainfall. Furthermore, a likelihood-
ratio test on rainfall effects is performed to test whether rainfall effects are nested within
the fully specified ARIMA-GARCH. Results can be found in Table 10 which determine that
rainfall is jointly significant at a 0.02% significance level. This implies that seasonally ad-
justed and population weighted rainfall for all 6 cities jointly contributes to explain system
price and volatility. In summary, rainfall does contribute statistically to explaining the sys-
tem price, and does somewhat contribute empirically to explain the volatility of the system

price. However, the effect is ambiguous (NVE, 2020, 2021).

Model X305 LR test statistic Degrees of freedom P-value
Temperature 12.592 4.7946 6 57.04%
Rainfall 14.067 28.1620 7 0.02%

Table 10: LR-test for rain and temperature restrictions.

5.5.4 Wind Power Production, Snow, Ground and Surface Water, and Maga-

zine Deviation

Logarithmic wind power production, the sum of snow, ground and surface water and the
sum of magazine deviation are persistently statistically significant on a 5% significance level.
Magazine deviation capture deviations from the average influx to water magazines, aggre-
gated to a national deviation from average. Sum of snow, ground and surface water capture
indirect influx to water magazines. For instance, snow-melting due to higher temperatures
or large amounts of surface water due to heavy rainfall results in increased indirect influx to

water magazines.

i i A u u At ibu Wi
An increase in the sum of snow, ground and surface water contributes to a lower system
price, and a positive increase in the sum of magazine deviation also contributes to a lower

system price, ceteris paribus. This is an expected finding since both variables contribute
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to a higher magazine filling level through direct or indirect influx. Magazine deviation con-
tributes to a reduced system price through increased rainfall at water magazines, whereas the
sum of snow, ground and surface water contributes to a reduced system price through either
increased rainfall in close proximity to water magazines or due to increased snow-melting,
for instance through higher temperatures. The effect of magazine deviation is larger than
the sum of snow, ground and surface water, which implies that the direct effect of rainfall is
larger than the indirect effect of rainfall and temperature. Increased wind power production
is also expected to reduce the system price through a higher level of electricity supplied to
the market. The effect of wind power production on the system price will likely increase
in the following years, considering both trends, forecasts, signals from Nordic government,
and discussions with power market traders'® (Regjeringen, 2019). In summary, the sum of
magazine deviation, the sum of snow, ground and surface water, and logarithmic wind power
production does contribute to explain both the system price and its volatility. Results are
comparable to Koopman et al. (2007), who apply magazine filling levels, but are taken a

step further by including wind power production and sum of snow, ground and surface water

(NVE, 2020, 2021)

5.5.5 Autoregressive System Price

Throughout the estimation procedure, the AR(1) coefficient has been consistently above 0.9
for the ARIMA-GARCH models and statistically significant on all relevant significance levels,
which are similar to results obtained by Koopman et al. (2007). The results are close to a
unit root process, which implies that the system price is highly dependent on the system price
in the previous week. Contemplating previous rejection of a unit root, this is an interesting
finding, which should be discussed further. A feature of the Norwegian power system is
that a substantial proportion of the power production comes from hydropower production.
Considering underlying features of the hydropower system, the price is highly dependent
upon weekly reported magazine filling levels in the short run, together with expected water
inflow and electricity demand. These variables therefore determine the alternative costs for

water, and express levels retained over a shorter period when observing the system price at

0Discussion with power market traders at Tussa Energi in February.
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a higher frequency such as weekly. It is therefore expected that the system price on a weekly

basis is highly autoregressive despite rejection of a unit root (Statnett, 2022).

5.5.6 ARCH and GARCH Terms

ARCH and GARCH-terms are persistently statistically significant on all relevant signifi-
cance levels and encapsulates the highly volatile nature of the system price. In all ARIMA-
GARCH models the sum of ARCH and GARCH coefficients are above 1, indicating expo-
nential volatility persistence in all cases and non-stationarity in variance. The volatility
persistence is slightly lower for the ARIMA-GARCH without temperature, and the lowest
for the ARIMA-GARCH without rainfall compared to the ARIMA-GARCH without any re-
strictions, indicating that rainfall contributes more to explaining volatility persistence than

temperature.

Furthermore, the ARIMA-GARCH model without rainfall reacts less to shocks in volatility
than the other ARIMA-GARCH models, but with a higher correlation in variance over two
periods. The ARIMA-GARCH without temperature has a greater response to shocks in
volatility than the ARIMA-GARCH without rainfall, but with a lower correlation in vari-
ance over two periods. This is unsurprising, since rainfall can occur in bursts, for instance
during extreme weather conditions, while temperature follow averages more closely. How-
ever, temperature deviations do occur. High temperatures can contribute to increased snow
melting and evaporation, whereas cold temperatures can contribute to increased power de-
mand and consumption, affecting the volatility of the system price. These effects contribute
to more volatility clustering than rainfall, implying that rainfall has a slightly larger effect
on contemporaneous and short-run volatility, whereas temperatures have a slightly larger
effect on long-run volatility. In summary, excluding temperature or rainfall does not hold
any major effect on the volatility, but the ARIMA-GARCH without rainfall captures less
volatility persistence than the model without temperature, probably due to aforementioned

effects. The unrestricted model is the most volatile.

Figure 28 illustrates the realized variance against the AR(1)MA(11,26)-GARCH(1,1) vari-
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ants for the conditional variance. The 3 different ARIMA-GARCH models capture the trend
of the realized variance well, but fail to fully capture large spikes in volatility, for example
around week 1, 2021. However, the fully specified ARIMA-GARCH visually conveys the
impression of advantageous volatility capture. Visual results imply that there might be
other effects apart from rainfall, temperature, and other explanatory variables included in
the dissertation which affect the volatility of the system price. This likely reflects the fact
that the system price captures all bids and offers within the Nordic market. Future research
on the topic should therefore consider including the power mix in additional countries. Fur-
thermore, realized variance may be subject to noise and including other volatility measures

such as implied variance might yield other results.

5.5.7 Structural Breaks and Asymmetry

It should be mentioned that the system price exhibits evidence of structural breaks. A pa-
rameter stability test through a cumulative sum of recursive residuals was performed with
evidence of parameter instability between 2016 to early 2018, and in 2020. Empirically, this
instability was most likely due to temporary limited exporting capacities, low costs, and
domestic effects, suggesting a regime shift, rather than a structural break (Farmer, 2022).
Therefore, use of regime switching models such as the Markov-Switching class may be ap-

propriate for future extensions (NVE, 2020).

Another class of GARCH models that could have been adopted is GARCH models that
allow for asymmetric volatility responses, such as the EGARCH. An Engle-NG test for
asymmetry was performed, which confirmed the presence of leverage effects. Future exten-
sions on the topic should therefore consider appending the analysis with models that allows
for asymmetric responses, such as Liu and Shi (2013); Bowden and Payne (2008) or Cifter
(2013). Neither regime-switching nor asymmetries have been explicitly modeled in the dis-
sertation, due to the scope of the thesis statement, time, and space restrictions. However,

the performed tests deliver intriguing results for further research.
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Figure 28: Visual model fit for the ARIMA-GARCH Variants for conditional volatility against

realized variance.

6 Conclusion

Electricity prices are subject to high volatility. The dissertation has studied the system
price at Nord Pool between week 1, 2008 through week 52, 2021 which has revealed a highly

volatile system price. The main focus of the dissertation was to study:

1. To what extent does population weighted and seasonally adjusted temperature and rain-
fall affect system price and volatility?

2. Which other effects affect system price and volatility?

In summary, temperature has a minor effect on the system price. The effects consumption,

demand or temperature have on the system price can be declared as small, and statistically
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insignificant within the estimated models. Rainfall, expectation and supply effects does con-
tribute slightly to explain the system price and are statistically significant. Both temperature
and rainfall contribute slightly in explaining volatility. Other effects including magazine de-
viation, snow, surface, and groundwater, wind power production, seasonal effects and the

autoregressive effect of order 1 contribute to explain the system price and volatility.

Previous studies using ARIMA or ARIMA-GARCH models have been conducted, however,
few studies have explicitly modeled other effects affecting electricity prices, and the effect
they have on volatility. To expand research on electricity prices and volatility, the disser-
tation has therefore considered several effects which possibly affect the system price and
volatility. Temperature and rainfall from 6 cities in Norway were included, seasonally ad-
justed, and population weighted to capture expectation, supply, consumption and demand
effects including temperature and rainfall deviation. Additionally, wind power production,
magazine deviation and influx to water magazines through the sum of snow, ground and sur-

face water were included to investigate additional effects on the system price and volatility.

Throughout the dissertation various ARIMA and ARIMA-GARCH models have been fit-
ted and estimated. Firstly, a set of ARIMA models were estimated to determine optimal
lag-length while pursuing parsimony through the 3-step Box-Jenkins approach. Results con-
cluded with an ARIMA model with AR-lag 1, and MA-lags 8, 11, 15 and 26 as the preferred
model. ARIMA model fitting revealed a complex seasonal pattern and lag structure, where
some lags were excluded to persevere parsimony. Moreover, population weights for season-
ally adjusted temperature and rainfall were determined through the preferred ARIMA model.
Population weights determined through dataset population and therein population in the 6
cities was the preferred method due to collinearity. Next, a GARCH(1,1) was appended
on the ARIMA model, including a correction of lag-length. Due to insignificant MA-terms,
an ARIMA-GARCH with AR-lag 1 and MA-lags 11 and 26, including a GARCH(1,1) pro-
cess was chosen. The ARIMA-GARCH model was estimated with restrictions on seasonally
adjusted and population weighted rainfall and temperature. All ARIMA-GARCH models

followed the trend of the system price and volatility well.
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Somewhat surprisingly, seasonally adjusted and population weighted temperature and rain-
fall had little to no effect on the system price, and a marginal effect on volatility. Temperature
in the 6 cities over the 14-year estimation period resulted in no evidence of an consumption-
or demand effects of any relevance. Coeflicient estimates were small, statistically insignificant
and difficult to interpret. Furthermore, there is little evidence of seasonally adjusted and
population weighted rainfall affecting the system price. Considering rainfall has a direct em-
pirical effect on magazine filling levels it was somewhat surprising that only estimates from
Bergen had statistical and empirical significance. The effect was therefore determined am-
biguous and imprecise. Accordingly, expectation, supply, consumption and demand effects
had impractical results and subsequent temperature and rainfall effects were not affecting
the system price in any noteworthy way. Results throughout the estimation procedure re-
vealed a highly autoregressive system price of order 1 despite rejection of a unit root process
in all variables. A reasoning considering underlying features of the Norwegian hydropower
system concluded with empirically predictable results. Quarterly, and half-year seasonal ef-
fects were found in the ARIMA-GARCH model. Considering the complex lag-structure by
studying ACF and PACF, more complex seasonal patterns are probable and consistent with
previously reviewed literature. Wind power production, snow, ground and surface water,
and magazine deviation were statistically significant throughout the estimation procedure.
Accordingly, increased wind power production, increased inflow to water magazines and in-

creased positive magazine deviation were all expected to reduced the system price.

ARCH and GARCH terms were consistently statistically significant throughout the ARIMA-
GARCH estimation procedure. Evidence of exponential volatility and non-stationary vari-
ance was found, regardless of model specification, with the sum of ARCH and GARCH
coefficients above 1 in all estimated models. This was consistent with literature previously
reviewed. Volatility persistence was the highest for the fully specified model, followed by
the model without temperature, and lastly the model without and rainfall. The unrestricted
model had the highest response to volatility shocks through the ARCH term, followed by the
model without temperature and the model without rainfall. The model without rainfall had
the highest correlation in variance over two periods, followed by the model without temper-

ature and lastly the unrestricted model. Results were likely due to temperature acting as a
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moving average and rainfall occurring in bursts. In summary, rainfall had a slightly larger ef-
fect on contemporaneous and short-run volatility, whereas temperatures had a slightly larger

effect on long-run volatility.

All estimated models followed the volatility measure as calculated through realized vari-
ance, rvar, but failed to fully capture spikes in volatility. This might be due to model
specification, or an imprecise measure of volatility. Lastly, evidence of structural breaks
and asymmetric volatility response was found. Future research should therefore consider

including Markow-switching (MS) and GARCH specifications that capture asymmetry.
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A Model Estimates

A.1 Table 11: ARIMA Population Weight Model Estimates

Variable (No Weights) (Nat. Weights) (City Weights)
S.Adj. Temp. Bergen 0.0066 0.1521 -0.0081
(0.0057) (0.0004) (0.5809)
S.Adj. Temp. Kr. Sand -0.0024 -0.0888 0.0177
(0.2430) (0.4138) (0.6171)
S.Adj. Temp. Oslo -0.0032 -0.0270 0.0206
(0.0665) (0.0543) (0.1516)
S.Adj. Temp. Tromsg 0.0002 Col. 0.0097
(0.8415) (0.9224)
S.Adj. Temp. Trd. -0.0003 -0.0066 -0.0017
(0.8191) (0.8705) (0.0608)
S.Adj. Temp. Stvg. -0.0047 -0.2828 -0.0031
(0.0447) (0.0000) (0.7365)
S.Adj. Rain Trd. 0.1799 0.2291 0.4420
(0.5152) (0.4138) (0.3775)
S.Adj. Rain Tromsg -0.0016 -0.0017 -0.0043
(0.3102) (0.2855) (0.0538)
Log. Wind Prod. -0.0194 -0.0195 -0.0214
(0.0214) (0.0231) (0.0172)
Sum Magazine Deviation -0.0197 -0.0198 -0.0204
(0.0000) (0.0000) (0.0000)
Sum Sno., Gro., Sur. Watr -0.0105 -0.0108 -0.0104
(0.0000) (0.0000) (0.0000)
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Dummy=1, 2020 -0.2524 -0.2549 -0.2436

(0.0000) (0.0000) (0.0000)
AR(1) 0.8864 0.8801 0.8769
(0.0000) (0.0000) (0.0000)
MA(8) 0.1652 0.1763 0.1578
(0.0000) (0.0000) (0.0000)
MA(11) -0.1507 -0.1320 -0.1202
(0.0000) (0.0000) (0.0001)
MA(15) 0.0942 0.1070 0.1085
(0.0099) (0.0101) (0.0106)
MA(26) -0.1476 -0.1648 -0.1756
(0.0000) (0.0000) (0.0000)
S.Adj. Rain Oslo Col. 0.0030 0.0060
(0.8747) (0.7642)
S.Adj. Rain Bergen Col. Col. -0.2229
(0.0865)
S.Adj. Rain Kr. Sand Col. Col. -2.5348
(0.0519)
S. Adj. Rain Stvg. Col. Col. 0.4671
(0.4282)
AIC -1686.9521 -1676.6916 -1663.2977
BIC -1601.3138 -1590.8839 -1559.4253
Log likelihood 862.4760 857.3458 854.6489

Table 11: AR(1) MA(8,11,15,26) Estimates with different population weights. P-values in paren-

thesis.
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A.2 Table 12: ARIMA Model Estimates

Variable (1) (2) (3)
S.Adj. Temp Bergen -0.0080 -0.0080 -0.0081
(0.5912) (0.5878) (0.5809)
S.Adj. Temp Kr.Sand 0.0177 0.0177 0.0177
(0.6163) (0.6163) (0.6171)
S.Adj. Temp Oslo 0.0204 0.0204 0.0206
(0.1531) (0.1527) (0.1516)
S.Adj. Temp Tromsg 0.0104 0.0104 0.0097
(0.9176) (0.9175) (0.9224)
S.Adj. Temp Trondheim -0.0016 -0.0016 -0.0017
(0.0680) (0.0678) (0.0608)
S.Adj. Temp Stvg. -0.0032 -0.0032 -0.0031
(0.7338) (0.7335) (0.7365)
S.Adj. Rain Bergen -0.2246 -0.2247 -0.2229
(0.0837) (0.0834) (0.0865)
S.Adj. Rain Kr.Sand -2.5265 -2.5271 -2.5348
(0.0531) (0.0527) (0.0519)
S.Adj. Rain Oslo 0.0060 0.0060 0.0060
(0.7661) (0.7637) (0.7642)
S. Adj. Rain Stvg. 0.4685 0.4691 0.4671
(0.4293) (0.4259) (0.4282)
S.Adj. Rain Tromsg -0.0043 -0.0043 -0.0043
(0.0539) (0.0535) (0.0538)
S.Adj. Rain Trondheim 0.4340 0.4340 0.4420
(0.3865) (0.3821) (0.3775)
Log. Wind Prod. -0.0213 -0.0213 -0.0214
(0.0178) (0.0177) (0.0172)
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Dummy=1, 2020 -0.2451 -0.2449 -0.2436

(0.0000) (0.0000) (0.0000)
Sum Sno., Gro., Sur. wtr. -0.0104 -0.0104 -0.0104
(0.0000) (0.0000) (0.0000)
Sum Magazine Deviation -0.0204 -0.0204 -0.0204
(0.0000) (0.0000) (0.0000)
AR(1) 0.8795 0.8795 0.8769
(0.0000) (0.0000) (0.0000)
AR(8) -0.0095 -0.0095
(0.6084) (0.6088)
AR(26) 0.0003
(0.9885)
MA(8) 0.1649 0.1649 0.1578
(0.0000) (0.0000) (0.0000)
MA(11) -0.1149 -0.1149 -0.1202
(0.0020) (0.0020) (0.0001)
MA(15) 0.1105 0.1105 0.1085
(0.0126) (0.0112) (0.0106)
MA(26) -0.1744 -0.1741 -0.1756
(0.0000) (0.0000) (0.0000)
AIC -1659.4367 -1661.4365 -1663.2977
BIC -1546.5319 -1553.0479 -1559.4253
Log likelihood 854.7183 854.7182 854.6489

Table 12: 1: AR(1,8,26)MA(8,11,15,26). 2: AR(1,8)MA(8,11,15,26). 3:AR(1)MA(8,11,15,26). P-

values in parenthesis.
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A.3 Table 13: ARIMA-GARCH Model Estimates

Variable (0) (1) (2) (3)
S.Adj. Temp Bergen -0.0059 -0.0064 0.0036
(0.2849) (0.2408) (0.2483)
S.Adj. Temp Kr.Sand 0.0100 0.0114 0.0137
(0.5297) (0.4740) (0.3606)
S.Adj. Temp Oslo 0.0067 0.0064 0.0038
(0.3151) (0.3238) (0.4926)
S.Adj. Temp Tromsg -0.0015 -0.0004 0.0285
(0.9723) (0.9930) (0.4414)
S.Adj. Temp Trondheim -0.0003 -0.0003 -0.0012
(0.6045) (0.5160) (0.0059)
S.Adj. Temp Stavanger -0.0020 -0.0016 -0.0006
(0.5836) (0.6445) (0.8652)
S.Adj. Rain Bergen -0.1661 -0.1599 -0.1691
(0.0009) (0.0014) (0.0002)
S.Adj. Rain Kr. Sand -1.0363 -0.9924 -0.7977
(0.1371) (0.1441) (0.2398)
S.Adj. Rain Oslo -0.0103 -0.0098 -0.0086
(0.1443) (0.1575) (0.2034)
S.Adj. Rain Stavanger 0.4380 0.4038 0.3745
(0.0299) (0.0415) (0.0607)
S.Adj. Rain Tromsg -0.0010 -0.0009 -0.0005
(0.2953) (0.3216) (0.4059)
S.Adj. Rain Trondheim 0.6012 0.5940 0.3886
(0.0038) (0.0033) (0.0014)
Log. Wind Prod. -0.0109 -0.0108 -0.0104 -0.0111
(0.0001) (0.0001) (0.0002) (0.0002)
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Sum Magazine Deviation -0.0193 -0.0194 -0.0184 -0.0167

(0.0000) (0.0000) (0.0000) (0.0000)
Sum Sno., Gro., Sur. wtr. -0.0073 -0.0073 -0.0074 -0.0071
(0.0000) (0.0000) (0.0000) (0.0000)
Dummy=1, 2020 -0.0477 -0.0468 -0.0538 -0.0365
(0.3486) (0.3582) (0.2559) (0.4406)
AR(1) 0.9387 0.9376 0.9421 0.9351
(0.0000) (0.0000) (0.0000) (0.0000)
MA(8) 0.0201
(0.4737)
MA(11) -0.0686 -0.0722 -0.0768 -0.0767
(0.0008) (0.0001) (0.0001) (0.0000)
MA(15) -0.0089
(0.6407)
MA(26) -0.0504 -0.0562 -0.0560 -0.0680
(0.0006) (0.0001) (0.0000) (0.0000)
ARCH(1) 0.7412 0.7488 0.7081 0.6668
(0.0000) (0.0000) (0.0000) (0.0000)
GARCH(1) 0.4043 0.4008 0.4239 0.4508
(0.0000) (0.0000) (0.0000) (0.0000)
AIC -2259.7211 -2262.9085 -2270.1139 -2246.7818
BIC -2146.8162 -2159.0360 -2193.3386 -2170.0065
Log likelihood 1154.8605 1154.4542 1152.0570 1140.3909

Table 13: 0. AR(1)MA(8,11,15,26)-GARCH(1,1). 1. AR(1)MA(11,26)-GARCH(1,1). 2.
AR(1)MA(11,26)-GARCH(1,1) No temp. 3. AR(1)MA(11,26)-GARCH(1,1) No rain. P-values

in parenthesis.
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B Population Weights

B.1 Population Weights

Year 2013 has been chosen, which is the middle of the data period. Data has been extracted
from SSB!!.

B.1.1 Tables 14 to 16 and Equation B.1: Population Weights and Formula

Location Population
Total Population (2013) 5051275
Oslo 623966
Bergen 267950
Stavanger 129191
Trondheim 179692
Tromsg 70358
Kristiansand 84476

Sum 1355633

Table 14: Population statistics for 2013.

Formula

City Population

= Population Weight (total
Total Population opulation Weight (total)

(B.1)
Total City Population

= Population Weight (city in dataset
City Population P ght (city )

HData can be found at SSB (2013), see table 57 and table 60.
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Location

Weight

National Population (2013)

1

Oslo 0,123526436
Bergen 0,053046013
Stavanger 0,025575919
Trondheim 0,035573593
Tromsg 0,013928761
Kristiansand 0,016723698
Sum 0,26837442
Table 15: Population weights based on total population.
Location Weight
Oslo 0,460276491
Bergen 0,19765674
Stavanger 0,095299392
Trondheim 0,132552099
Tromsg 0,051900477
Kristiansand 0,062314801
Sum 1

Table 16: Population weights based on dataset population.
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C Descriptive Statistic Tables

C.1 Table 17: Variable Description for Variables in Dataset

Variable Description

Inprice Day-ahead logarithmic system price Nord Pool
rvar Realized variance

Inwind_no Logarithmic wind power production in Norway

magavvik_sum
smg_sum
d2020
swtp_brgc
swtp_krsc
swtp_oslc
swtp_troc
swtp_trd
swtp_stvge
swrain_brgc
swrain_krsc
swrain_oslc
swrain_stvgc
swrain_troc

swrain_trdec

Magazine Deviation from 20-year average

Sum snow, surface and groundwater

Dummy for 2020

Seasonally adj. and weighted temperature, Bergen
Seasonally adj. and weighted temperature, Kr.Sand
Seasonally adj. and weighted temperature, Oslo
Seasonally adj. and weighted temperature, Tromsg
Seasonally adj. and weighted temperature, Trondheim
Seasonally adj. and weighted temperature, Stavanger
Seasonally adj. and weighted rainfall, Bergen
Seasonally adj. and weighted rainfall, Kr. Sand
Seasonally adj. and weighted rainfall, Oslo
Seasonally adj. and weighted rainfall, Stavanger
Seasonally adj. and weighted rainfall, Tromsg

Seasonally adj. and weighted rainfall, Trondheim

Table 17: Variables in dataset.
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C.2 Table 18: Descriptive Statistics for Variables

Variable Sum Mean SD Min Max N

Realized variance 5.1809 0.0071 0.0294 0.0000 0.4897 727
Log. sys. Price 1098.45 1.50886  0.2474 0.2201 2.3036 728
Weekly sys. Price 26667.9500 36.6318  17.7646  1.6600 201.1900 728
Log. Wind Prod. 7752.7969 10.6494  0.9211 8.1261 12.9957 728
Temp. Bergen 6265.8365 8.6069 5.5599 -8.2429 22.7286 728
Rain Bergen 34993.4000  48.0679  43.2944  0.0000 255.8000 728
Temp. Kr.Sand 5739.7264 7.8951 6.6852 -13.7143  22.1429 728
Rain Kr.Sand 19418.9000 26.6743  27.8376  0.0000 178.0000 728
Temp. Oslo 5298.6237 7.2783 7.7659 -14.6286  23.9000 728
Rain Oslo 12423.1000  17.0647 17.5219  0.0000 86.5000 728
Temp. Stavanger 6292.7761 8.6677 5.5222 -9.4571 22.3286 728
Rain Stavanger 17453.5000  23.9746  21.2982  0.0000 122.8000 728
Temp. Tromsg 2599.4603 3.5707 6.0314  -10.6571 17.6714 728
Rain Tromsg 14680.0000  20.1648  18.7730  0.0000 102.7000 728
Temp. Trondheim 4428.1657 6.0826 6.6737  -14.4143 21.8714 728
Rain Trondheim 12157.6000  16.7000  16.3719  0.0000 95.6000 728
Sum Magazine Deviation 405.8659 0.5575 6.7613 -20.3078  16.7198 728
Sum Sno., Gro., Sur., wtr. -23.7335 -0.0326  9.4112 -25.4913  41.2494 728
Dummy=1, 2020 52.0000 0.0713 0.2576 0.0000 1.0000 729

Table 18: Descriptive statistics for variables (no temperature and rain adjustment).
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C.3 Table 19: Descriptive Statistics for

Variables in ARIMA-

GARCH
Variable Sum Mean  SD Min Max N Skewness
Realized Variance 5.1809 0.0071  0.0294 0.0000 0.4897 727 9.7795
Logarithmic System Price 1098.4501 1.5089 0.2474 0.2201 2.3036 728 -1.8290
Sum Mag. Dev. 405.8659  0.5575 6.7613 -20.3078 16.7198 728 -0.5424
Sum Sno, Gro, Sur. wtr. ~ -23.7335  -0.0326 9.4112 -25.4913 41.2494 728 0.8442
Dummy=1, 2020 52.0000 0.0713  0.2576 0.0000 1.0000 729 3.3311
S.Adj. Log Wind 134.1119  0.1984 0.4875 -1.2157 1.5599 676 -0.1317
S.Adj. Temp Bergen -124.6242  -0.1844 2.9770 -11.1817 12.0957 676 0.2100
S.Adj. Temp Kristiansand -1.0336 -0.0015 0.0800 -0.2681  0.2459 676 -0.0079
S.Adj. Temp Oslo -3.4285 -0.0051 0.2181 -0.8360  0.6820 676 -0.0993
S.Adj. Temp Tromsg 0.3926 0.0006 0.0313 -0.1147 0.1236 676 -0.0382
S.Adj. Temp Trondheim  -28.2204  -0.0417 3.9174 -18.0612 18.1048 676 -0.1758
S.Adj. Temp Stavanger 3.5175 0.0052  0.3016 -1.2090 1.0183 676 0.0024
S.Adj. Rain Bergen -0.1813 -0.0003 0.0424 -0.1652 0.1601 676 -0.1754
S.Adj. Rain Kr. Sand -0.0488 -0.0001 0.0037 -0.0144 0.0133 676 -0.1750
S.Adj. Rain Oslo -0.1697 -0.0003 0.1998 -0.5812  0.6660 676 -0.0373
S.Adj. Rain Stavanger -0.1120 -0.0002 0.0108 -0.0378  0.0353 676 -0.0713
S.Adj. Rain Tromsg -16.9645  -0.0251 1.9779 -6.7389  5.8793 676 -0.0596
S.Adj. Rain Trondheim -4.8626 -0.0072  0.0906 -0.1960  0.2417 676 0.4459

Table 19: Descriptive statistics for variables used in ARIMA-GARCH estimation and postestima-

tion (temperature and rain adjustment).
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C.4 Table 20: Descriptive Statistics for Population Weights

Variables (No seasonal difference)  Weight =~ Mean SD Min Max N

Temperature Bergen City -0.0084 1.8539 -5.0385 8.1532 728
Rain Bergen City 0.0754 0.0819 -0.1534 0.2506 728
Temperature Kr. Sand City 0.0562 0.0579 0.0000 0.2859 728
Rain Kr.Sand City 0.0089  0.0058 -0.0099 0.0233 728
Temperature Oslo City 0.1833 0.1639 0.0000 0.9453 728
Rain Oslo City 0.2003 0.3433 -0.6059 1.0047 728
Temperature Stavanger City 0.2358 0.2208 0.0000  1.2090 728
Rain Stavanger City 0.0147 0.0163 -0.0351 0.0533 728
Temperature Tromsg City 0.0220 0.0217 0.0000  0.1269 728
Rain Tromsg City 1.9129 1.5105 -1.2434 7.9631 728
Temperature Trondheim City 4.8990 4.0933 0.0000 25.6549 728
Rain Trondheim City 0.0026  0.0585 -0.1381 0.1651 728
Temperature Bergen National 0.4528 0.2973 -0.4373 1.2057 728
Rain Bergen National 2.5348 2.2939 0.0000 13.5692 728
Temperature Kr.Sand National 0.1304 0.1130 -0.2294 0.3703 728
Rain Kr.Sand National 0.4445 0.4646 0.0000 2.9768 728
Temperature Oslo National 0.8877 0.9654 -1.8070 2.9523 728
Rain Oslo National 2.1013 2.1625 0.0000 10.6850 728
Temperature Stavanger National 0.2192 0.1429 -0.2419 0.5711 728
Rain Stavanger National 0.6090 0.5445 0.0000  3.1407 728
Temperature Tromsg National 0.0491 0.0841 -0.1484 0.2461 728
Rain Tromsg National 0.2790 0.2613 0.0000  1.4305 728
Temperature Trondheim National 0.2138 0.2384 -0.5128 0.7780 728
Rain Trondiem National 0.5896 0.5821 0.0000  3.4008 728

Table 20: Descriptive statistics for population weighted weather. City indicates adjustment for

dataset population and National indicates adjustment for national population.
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D Unit Root Tests

D.1 Table 21: Philips-Perron Unit Root Test Results

Variable P-value T P Cp Cr

-4.0713 -34.0489 -14.1000  -2.8600
-3.7388 -27.8285 -14.1000  -2.8600
-23.7025  -618.0936  -14.1000  -2.8600
-22.0231  -603.6100  -14.1000  -2.8600
-22.1202  -576.1667  -14.1000  -2.8600
S.Adj. Temp. Trondheim) -14.5371  -325.8138  -14.1000  -2.8600
S.Adj Temp. Tromsg) -22.7953  -620.7906  -14.1000  -2.8600

(Log. sys. price) ( )
( ( )
( ( )
( ( )
( ( )
( ( )
( ( )
(S.Adj Rain Bergen) (0.0000) -5.3094 -54.5349 -14.1000  -2.8600
( ( )
( ( )
( ( )
( ( )
( ( )
( ( )
( ( )
(

S.Adj. Temp. Bergen)
S.Adj Temp. Kr. Sand)
S.Adj. Temp. Oslo)
S.Adj. Temp. Stavanger)

S.Adj Rain Kr. Sand) -6.2579 -73.2116 -14.1000  -2.8600
S.Adj Rain Oslo) -5.9628 -68.2447 -14.1000  -2.8600
S.Adj Rain Stavanger) -6.6405 -82.5260 -14.1000  -2.8600
S.Adj Rain Trondheim) -2.9179 -17.6915 -14.1000  -2.8600
S.Adj Rain Tromsg) -19.5993  -564.2525  -14.1000  -2.8600
Log. Wind. Prod) -4.8080 -43.5756 -14.1000  -2.8600
-3.9694 -31.4806 -14.1000  -2.8600
Sum Magazine Deviation) (0.0026) -3.8282 -30.0552 -14.1000  -2.8600

Sum Sno,, Gro., Sur., wtr.)

Table 21: Philips-Perron unit root test results. 5% critical value.
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D.2 Table 22: DF-GLS Test Results

Variable N Lir CL1 L2t C L2 L3t CL3
Log. System Price 724 -4.2501 -2.8641 -4.0983 -2.8623 -3.7354 -2.8604
S. Adj. Temp. Bergen 672 -4.0285 -2.8661 -4.1079 -2.8641 -4.3303 -2.8621
S. Adj. Temp. Kr. Sand 672 -14.0418 -2.8661 -10.7527 -2.8641 -8.9064 -2.8621
S. Adj. Temp. Oslo 672 -15.3764 -2.8661 -13.2395 -2.8641 -11.4268 -2.8621
S. Adj. Temp. Stavanger 672 -15.9740 -2.8661 -13.4188 -2.8641 -12.4325 -2.8621
S. Adj. Temp. Trondheim 672 -12.5682 -2.8661 -9.8432 -2.8641 -10.6233 -2.8621
S. Adj. Temp. Tromsp 672 -13.3058 -2.8661 -11.6167 -2.8641 -9.8538 -2.8621
S. Adj. Rain Bergen 672 -10.8274 -2.8661 -8.8329 -2.8641 -7.4633 -2.8621
S. Adj. Rain Kr. Sand 672 -11.8542 -2.8661 -9.4941 -2.8641 -7.7349 -2.8621
S. Adj. Rain Oslo 672 -10.1351 -2.8661 -7.4369 -2.8641 -5.7903 -2.8621
S. Adj. Rain Stavanger 672 -12.0951 -2.8661 -9.4228 -2.8641 -7.7888 -2.8621
S. Adj. Rain Trondheim 672 -2.8744 -2.8661 -2.9699 -2.8641 -3.1250 -2.8621
S. Adj. Rain Tromsg 672 -14.4443 -2.8661 -11.9911 -2.8641 -10.7778 -2.8621
Log. Wind. Prod 724 -5.1321 -2.8641 -4.0791 -2.8623 -3.1076 -2.8604
Sum Sno., Gro., and Sur., wtr. 724 -4.1877 -2.8641 -4.1751 -2.8623 -4.5311 -2.8604
Sum Magazine Deviation 724 -3.8592 -2.8641 -3.7787 -2.8623 -4.1459 -2.8604

Table 22: DF-GLS unit root test results. 5% critical value.
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E ACF and PACF Plots

E.1 Figures 29 and 30: AR(1)MA(8,11,15,26)-GARCH ACF/-
PACF
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Figure 29: PACF ARIMA-GARCH. Figure 30: ACF ARIMA-GARCH.

E.2 Figures 31 and 32: AR(1)MA(11,26)-GARCH ACF/PACF
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Figure 31: PACF ARIMA-GARCH. Figure 32: ACF ARIMA-GARCH.
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E.3 Figures 33 and 34: AR(1)MA(11,26)-GARCH ACF/PACF
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Figure 33: PACF ARIMA-GARCH No temp. Figure 34: ACF ARIMA-GARCH No temp.

E.4 Figures 35 and 36: AR(1)MA(11,26)-GARCH ACF/PACF
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Figure 35: PACF ARIMA-GARCH No rain. Figure 36: ACF ARIMA-GARCH No rain.
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F ARIMA-GARCH Robustness

F.1 Table 23: Shapiro-Wilk Test Results

Variable N \Y W P-value Z-stat
AR(1)MA(8,11,15,26)-GARCH(1,1) 676  102.0361  0.7691 0% 11.2674
AR(1)MA(11,26)-GARCH(1,1) 676  101.1419  0.7711 0% 11.2460

AR(1)MA(11,26)-GARCH(1,1) No T. 676  102.4251  0.7682 0% 11.2767

AR(1)MA(11,26)-GARCH(1,1) No R. 676  100.6095  0.7723 0% 11.2331

Table 23: Shapiro-Wilk test results.

1

F.2 Table 24 and Figures 37 to 40: Barlett’s Periodogram Based

Test
Variable P-value B-stat
AR(1)MA(8,11,15,26)-GARCH(1,1) 20.30% 1.0693
AR(1)MA(11,26)-GARCH(1,1) 17.76% 1.1001
AR(1)MA(11,26)-GARCH(1,1) No Temp 12.49% 1.1776
AR(1)MA(11,26)-GARCH(1,1) No Rain 11.31% 1.1984

Table 24: Barlett’s periodogram bases test results.
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78



@ NTNU —

Kunnskap for en bedre verden DNV



	Preface
	Abstract
	1 Introduction
	1.1 Contents

	2 Theory and Literature Review
	2.1 Broad Overview
	2.2 Detailed Literature Review
	2.2.1 Liu and Shi (2013): Applying ARMA–GARCH Approaches to Forecasting Short-Term Electricity Prices
	2.2.2 Koopman et al. (2007): Periodic Seasonal Reg-ARFIMA–GARCH Models for Daily Electricity Spot Prices
	2.2.3 Bowden and Payne (2008): Short Term Forecasting of Electricity Prices for MISO Hubs: Evidence From ARIMA-EGARCH Models


	3 Data
	3.1 The Dataset
	3.2 Variables in Dataset
	3.3 Data Preparation

	4 Empirical Methodology
	4.1 ARMA and ARIMA Models
	4.2 ARCH(p) and GARCH (p,q) Models
	4.3 Model Selection and Information Criteria
	4.4 Maximum Likelihood Estimation
	4.5 Volatility and Model Evaluation
	4.5.1 Volatility Measures
	4.5.2 Model Evaluation


	5 Results
	5.1 ARIMA Specification and Population Weight Determination
	5.1.1 ARIMA Specification
	5.1.2 Population Weight Determination
	5.1.3 Model Fit and In-Sample Properties

	5.2 Heteroskedasticity
	5.3 ARIMA-GARCH Variants
	5.3.1 ARIMA-GARCH Specification
	5.3.2 ARIMA-GARCH - Temperature and Rain Restrictions
	5.3.3 ARIMA-GARCH - Without Temperature
	5.3.4 ARIMA-GARCH - Without Rainfall
	5.3.5 Model Fit and In-Sample Properties

	5.4 ARIMA-GARCH Robustness
	5.5 Discussion and Evaluation of Results
	5.5.1 Seasonality
	5.5.2 Temperature Effects
	5.5.3 Rainfall Effects
	5.5.4 Wind Power Production, Snow, Ground and Surface Water, and Magazine Deviation
	5.5.5 Autoregressive System Price
	5.5.6 ARCH and GARCH Terms
	5.5.7 Structural Breaks and Asymmetry


	6 Conclusion
	Bibliography
	 Appendices
	 A Model Estimates
	A.1 Table 11: ARIMA Population Weight Model Estimates
	A.2 Table 12: ARIMA Model Estimates
	A.3 Table 13: ARIMA-GARCH Model Estimates

	 B Population Weights
	B.1 Population Weights
	B.1.1 Lg


	 C Descriptive Statistic Tables
	C.1 Table 17: Variable Description for Variables in Dataset
	C.2 Table 18: Descriptive Statistics for Variables
	C.3 Table 19: Descriptive Statistics for Variables in ARIMA-GARCH
	C.4 Table 20: Descriptive Statistics for Population Weights

	 D Unit Root Tests
	D.1 Table 21: Philips-Perron Unit Root Test Results
	D.2 Table 22: DF-GLS Test Results

	 E ACF and PACF Plots
	E.1 Lg
	E.2 Lg
	E.3 Lg
	E.4 Lg

	 F ARIMA-GARCH Robustness
	F.1 Lg
	F.2 Lg


