
Abstract

The command-line interface (CLI) is by many recognized as being re-
strained to software developers and power users. However, as users get
more experienced, they will usually start to prefer the CLI over the modern
graphical user interface (GUI), largely due to the fact that the GUI does
not allow the same range of control.

While it is clear that the CLI can achieve more efficient and effective exe-
cution of tasks, it comes with the limitation of being more challenging to
use compared to the GUI. However, when looking at other systems that
support both user interfaces, the CLI is often the most popular. Take Git
as an example, the majority prefer the CLI due to the fact that it is de-
signed to better scale the functionality and control requirements of the
system.

This thesis will explore the challenges in developing a CLI as an alternative
to the existing Blackboard LMS web interface. By examining how agile
principles and practices can contribute in the development, we will look at
advantages and disadvantages of the two systems.

Our assumption that the CLI would for many be difficult to use turned
out to be false as users quickly learned how to effectively utilize it. It
was discovered that it is difficult to measure efficiency between a CLI and
GUI as it usually comes down to preference and experience. However, an
experiment shows that the CLI is in fact more efficient when it comes to
loading times for certain tasks. The project is made open source with the
aim for further expansion with the help of contributors, as there is a clear
motivation among students and teachers at NTNU for such a product.

i

Sammendrag

Kommandolinjen er av mange kjent for å være begrenset til program-
vareutviklere og ’power users’. Derimot, når brukere blir mer erfarne vil
de vanligvis begynne å foretrekke kommandolinjen framfor det moderne,
grafiske brukergrensesnittet, i stor grad på grunn av at det grafiske bruker-
grensesnittet ikke tillater samme rom for kontroll.

Selv om det er klart at kommandolinjen kan oppnå mer effektiv utførelse
av oppgaver, kommer den med begrensningen av å være mer krevende å
bruke sammenlignet med det grafiske brukergrensesnittet. Derimot, hvis
man ser på andre systemer som støtter begge brukergrensesnittene, er
kommandolinjen ofte mest populær. Ta Git som et eksempel, majoriteten
foretrekker kommandolinjen siden den er designet for å bedre skalere til
funksjonaliteten og kravene til kontroll for systemet.

Denne avhandlingen vil utforske utfordringene rundt det å utvikle et kom-
mandolinjeverktøy som et alternativ til det allerede eksisterende grafiske
brukergrensesnittet til Blackboard LMS. Ved å undersøke hvordan smidige
prinsipper og praksiser kan bidra til utviklingen, vil vi se på fordelene og
ulempene til de to systemene.

Antagelsen vår om at kommandolinjen ville for mange bli vanskelig å
anvende viste seg å ikke stemme, da brukere raskt lærte seg hvordan
systemet kunne brukes effektivt. Det ble observert at det er vanskelig å
måle effektivitet mellom de to systemene, da dette vanligvis kommer an
på hva man foretrekker å bruke, samt hva man har erfaring med. Derimot
viste et eksperiment at lastetiden var i mange tilfeller mye lavere med
kommandolinjeverktøyet. Prosjektet har blitt lagt ut med åpen kildekode
med mål om å utvide funksjonalitet ved hjelp av bidragsytere, siden det
er et tydelig engasjement for et slikt produkt på NTNU.

ii

Problem Description

Purpose of the Assignment

Development of a command-line tool suite to interact with the Blackboard
LMS.

Short Description of Assignment Proposal

The conventional way to interact with the Blackboard LMS is by using a
web browser. For many tasks this is inefficient and awkward. The aim
of this project is to develop a full command-line toolsuite supporting as
much of the core Blackboard Learn functionality as possible (time permit-
ting).

Blackboard Learn servers expose a REST API which can be used as a start-
ing point for exploration. However, it may be necessary to design the
tools to interact with the web page endpoints and a suitable HTML parsing
framework such as BeautifulSoup. This will be determined through in the
initial phase of the project.

The command-line toolsuite should follow a simple and intuitive design.
The syntax structure of the ”git” command- line tool can be used as a
guide, with different functions of the tool accessed via command-line para-
meters. When an editor is necessary, an editor chosen from the user’s
$EDITOR environment variable can be used (e.g., Vim, Emacs, Nano), de-
pending on the OS of the user.

A core set of must-have student and staff features can be brainstormed
for the requirements documentation, and additional features added as time
permits. The tool must ensure a user is authenticated and cache the ses-
sion cookie for future invocations of the tool.

An example staff command could be:

$ bbc l i new - announcement ”IDATT2202” ”Lecture top ic f o r next Monday”
”Next Monday ’ s l e c tu r e w i l l be on CPU schedul ing on unicore and mult icore
proce s so r s . The l e c tu r e w i l l s t a r t at 12.15 in Blackboard Col laborate . ”

An example student command could be:

$ bbc l i get - assignments ”IDATT2202”

iii

Problem Description iv

Assignment1 due 2021 -10 -03
Assignment2 due 2021 -10 -23
Assignment3 due 2021 -10 -30
Assignment4 due 2021 -11 -05
$ bbc l i submit - assignment ”IDATT2202” ”Assignment1”
/home/user / courses /IDATT2202/assignment1 . pdf

The tool suite should work on any modern operating system (Linux, Ma-
cOS, Windows) via the command line. Thus, an interpreted language such
as Python would be appropriate.

The tool suite must be open-source and hosted on Gitlab/Github to facil-
itate contributions from the wider developer community.

Contents

Abstract . i
Sammendrag . ii
Problem Description . iii
Contents . v
Figures . vii
Tables . viii
Code Listings . ix
1 Introduction . 1

1.1 Research Questions . 1
1.2 Agenda . 2

2 Background and Theory . 3
2.1 Blackboard as a Learning Management System 3
2.2 User Interfaces . 4

2.2.1 Graphical User Interface 4
2.2.2 Command-Line Interface 5

2.3 Git as a Use Case . 6
2.4 Existing Alternatives . 6
2.5 Development Theory . 6

2.5.1 Agile Development . 6
3 Method . 11

3.1 Development Process . 11
3.1.1 Data Collection Methods 12
3.1.2 Data Analysis . 13

3.2 Choice of Technology and Implementation 13
3.2.1 Blackboard Learn REST API 13
3.2.2 System Architecture and MVC 13
3.2.3 Design Pattern . 14
3.2.4 Technological Dependencies 14

3.3 Measuring Efficiency . 15
4 Results . 16

4.1 Data . 16
4.1.1 Surveys . 16
4.1.2 User Tests . 17

4.2 Commands and Functionality 20
4.2.1 Functional requirements 22
4.2.2 Arguments and Options 22
4.2.3 Help Snippets . 22
4.2.4 Input . 23

v

Contents vi

4.2.5 Output . 23
4.2.6 Authorization . 24

4.3 Non-functional Requirements 25
4.3.1 Usability . 25
4.3.2 Reliability . 25
4.3.3 Performance . 25
4.3.4 Supportability . 26
4.3.5 Security . 26

4.4 Efficiency . 26
4.5 Administrative Results . 29

4.5.1 Time Management . 29
4.5.2 Agile Process Documentation 29

5 Discussion . 33
5.1 Evaluation of the Research Questions 33
5.2 Critical Analysis . 36

5.2.1 Limitations of Data . 36
5.2.2 Applicability of the CLI 37
5.2.3 Team Evaluation . 37

6 Conclusion . 38
6.1 RQ1 . 38
6.2 RQ2 . 38
6.3 RQ3 . 38
6.4 Key Findings . 39
6.5 Societal Impact . 39
6.6 Future Work . 39

6.6.1 Groups . 40
6.6.2 Grading . 40
6.6.3 Stdin . 40

Bibliography . 41
Appendices . 44
A Code Listings . 45

Figures

2.1 A CLI with commands, options and arguments. [16] 5
2.2 Most adopted agile practices . 8

4.1 Do you think the Blackboard website is user friendly? 16
4.2 Do you think the Blackboard website is effective to use? . . . 17
4.3 How experienced are you with using the command line? . . . 17
4.4 Option 1 . 18
4.5 Option 2 . 18
4.6 EndAuth POST requests being sent repeatedly until the user

accepts. 25
4.7 Milestones in roadmap. 29
4.8 Milestone goals. 30
4.9 List of the status reports. 31
4.10Milestones in GitLab connected to related issues. In sync with

roadmap milestones. 31
4.11Issue board in GitLab. 32

vii

Tables

4.1 Student user test 1 . 18
4.2 Staff user test 1 . 18
4.3 Student user test 2 . 19
4.4 staff user test 2 . 19
4.5 Student user test 3 . 20
4.6 staff user test 3 . 20
4.7 Supported commands . 21
4.8 Run-time to list contents in seconds 26
4.9 Comparison of efficiency between the CLI and the web UI . . . 28

viii

Code Listings

4.1 Help snippet . 22
4.2 Default output . 23
4.3 Json output . 23

A.1 Get children . 45
A.2 Depth-first search . 45

ix

Chapter 1

Introduction

User interfaces (UI) have been around ever since the first computers
emerged, even before the field of Human-Computer Interaction originated
[1]. Consequently, software developers and designers have been desig-
nated to create user interfaces that allow tasks to be performed efficiently
and intuitively. The Command-Line interface (CLI) is the most basic and
accessible user interface in which to interact with computers [2]. However,
in spite of its simplicity, the CLI carries some limitations in terms of user
experience, specifically towards inexperienced users. It is worth quoting
Olofsson and Husltrand [3]:

However theoretically, as users get more and more experienced
they will gradually start to prefer the command-line interface
over a graphical user interface because they are able to complete
their tasks faster and to maintain more control over what they
are doing and what’s going on, in general.

Considering the fact that Blackboard Learn is the main learning manage-
ment system at NTNU, the university with the greatest information tech-
nology related faculties in Norway, it is questionable that there does not
exist a CLI equivalent to the web user interface. We are pleased to report
that during the last semester we have developed a system that solves a
number of the issues the web UI encompasses. With focus on ease of use,
numerous tasks are now automated to account for some of Blackboards
biggest disadvantages: troublesome navigation and inefficiency.

1.1 Research Questions

The main purpose of the task was to develop a CLI to interact with the
Blackboard LMS. Hence, the following problem statement was put together:
What are the challenges in developing a CLI as an effective and ef-
ficient alternative to the existing Blackboard LMSweb interface?

A goal was to increase the efficiency of Blackboard, but efficiency is de-
pendent on different factors, especially when dealing with user bias. There-

1

Chapter 1: Introduction 2

fore, we wanted to explore how efficiency can be measured when compar-
ing the CLI to the web UI. Additionally, it is natural to discuss the advant-
ages and disadvantages when comparing the two UIs. Also, considering
that the task is purely based on development, we wanted to research how
agile practices and principles could be implemented to enhance the de-
velopment process. Thus, the following research questions were derived
from the problem description to support the problem statement:

1. How can efficiency be measured when comparing the CLI to the web
UI?

2. What are the advantages and disadvantages of the CLI in comparison
to the web UI?

3. How can agile principles and practices contribute in developing a ver-
satile CLI to increase user experience and efficiency?

1.2 Agenda

Firstly, relevant background on Blackboard, user interfaces and develop-
ment theory will be described before presenting how we progressed meth-
odically during development. Additionally, the method chapter will provide
an overview of the used technologies and dependencies and why these
were chosen. Then we will present results on the process and product, fol-
lowed by evaluating the research questions. We will discuss how efficiency
can be measured when comparing a CLI to a web UI, the advantages and
disadvantages of the CLI compared to the web UI, and how the agile mind-
set can contribute in developing alternatives to existing systems.

Chapter 2

Background and Theory

2.1 Blackboard as a LearningManagement Sys-
tem

A Learning Management System (LMS) manages and tracks interaction
between a student and the content, and the student and the lecturer.
The LMS keeps track of the students progress, test scores, help indicate
course completions, and help lecturers follow the performance of the stu-
dents. The LMS must be able to assemble and deliver learning content
rapidly, personalize content and enable knowledge reuse [4]. LMS, includ-
ing Blackboard are the most commonly used types of e-learning systems
for both students and lecturers at universities [5]. The origin of LMS has
also improved the online communication for students, motivating them to
play an active role in the learning process, in contrast to playing a passive
role in the traditional way of receiving information through textbooks and
physical notes [6].

Advantages
In a survey conducted by Bouhnik and Marcus [7], the participants noted
advantages of using e-learning systems which were concretized into the
following four categories: (1) Flexibility of the material and the time, (2)
Accessibility to the material, (3) Visibility of the multimedia and (4) Avail-
ability of the data.

Disadvantages
Servonsky, Lawrence and Bertha [8] addresses some challenges when us-
ing the Blacboard LMS, stating that the time it takes to prepare a lecture
using Blackboard LMS takes considerably more time than physical lectur-
ing. Additionally, as technology changes, content must be updated and re-
viewed constantly. This includes uploading documents, changing content,
and copying and reposting content. Bouhnik and Marcus also address dis-
advantages of e-learning platforms, in which the students’ dissatisfaction

3

Chapter 2: Background and Theory 4

was based on several experiences: (1) lack of a firm framework, which en-
courages laziness, (2) it requires high level of self-dicipline, (3) abscence
of learning atmosphere, (4) reduces contact between students, (5) the
learning process is less efficient compared to face-to-face learning and (6)
teachers have difficulty in widening answers to student questions. Con-
cerning efficiency, Bouhnik and Marcus state that the lack of it requires
students to spend more time when learning the material.

2.2 User Interfaces

UIs are used to interact with an application or a website [9]. Different
types of user interfaces include graphical user interfaces (GUI), CLI, menu-
driven user interfaces, voice user interfaces (VUI), form-based user inter-
faces, natural language user interfaces and-so-forth. GUI and CLI will be
addressed further in the following subsections.

2.2.1 Graphical User Interface

GUI uses visual objects such as buttons, input fields, menu bars etc., as
well as mouse clicks to interact with the system [10]. The visual objects
represents computation entities, and the interaction with the mouse gives
an impression of physical action on those entities [11]. A GUI has both
virtues and vices, and will be powerful for some purposes, while poor and
weak for others [12].

Advantages
Shneiderman [13] states that a GUI can help novice users learn the func-
tionality through demonstration, and experts can easily execute a wide
range of tasks. ”For instance, the immediacy of feedback and the nat-
ural translation of intentions to actions make some tasks easy” [12]. It
can be argued that a GUI is meant for making things simple, because it
relies heavily on visual representations [3]. Additionally, Schneiderman
states that error messages are rarely necessary, as the GUI is limited to
what clickable objects are available on the screen. The result of these
clicks should be obvious: either some action takes place or nothing hap-
pens.

Disadvantages
Hutchins [12] refers to several downsides of using a GUI. First and fore-
most, repetitive tasks are best performed with a script, because through
a symbolic description it is possible to specify which tasks to accomplish.
This is poorly supported in a GUI because visual objects cannot be chained
together as sets of operations. The user often relies on several clicks to
perform a task, which can lead to an inefficient experience. Hutchins also
points out that a well designed interface that exploits semantics can reduce
the time it takes to learn the interface. At the same time, it is worth men-
tioning that interface design is subject to many trade-offs. When designing
a GUI, there are certainly instances where it is desired to trade for example

Chapter 2: Background and Theory 5

efficiency for directness. A GUI might have articulatory directness when
pointing out objects, but at the same time it can be difficult to move the
hands between different input devices and have accurate precision when
pointing at visual objects [12]. Additionally, it offers less control, because
the user is limited to execute actions that are visually available.

2.2.2 Command-Line Interface

Through a CLI, the user uses text to write commands in order to interact
with a system or application [14]. Command and response interaction are
used to issue a series of commands that the system or program executes.
Commands can have arguments, options and flags [15]. Options can come
in various types, and can be both optional and required. Basic value op-
tion where an argument is accepted is the most common. If no value is
provided, the default one will be used. Arguments are similar to options,
but they are positional. Flags are options that take the value true if it is
specified and false otherwise.

Figure 2.1: A CLI with commands, options and arguments. [16]

Advantages
Preece [17] expresses several advantages with a CLI, such that it faces
less distraction as there is no need for interaction with a graphical user in-
terface. Most interactions with a CLI is only with the use of a keyboard, and
according Omanson and others [18], keyboard interactions are favored as
being more efficient than mouse interactions. Lastly, Preece expresses that
a CLI makes it possible to create advanced shell scripts to solve complex
tasks, which particularly experienced users can benefit from.

Disadvantages
Preece stated that a disadvantage with a CLI is that it requires a high
cognitive workload, because commands, arguments and options needs to
be remembered and used properly together. Hence, a CLI is often limited

Chapter 2: Background and Theory 6

to experienced users, and can be hard to learn as it is often designed with
low guessability (Wobbrock et al. [19]). New inexperienced users have to
go through help guides, man pages and other tutorials to increase their
proficiency.

2.3 Git as a Use Case

The modern system Git illustrates how having different user interfaces can
help reach a versatile user base [20]. Git is a version control system that
makes collaboration with developers easier and tracks changes to different
working directories [21]. A user can either interact with Git through a CLI
or a graphical user interface. Olofsson and Hultsrand [3] addressed that
the CLI is the most used among Git users, as it offers more control. A GUI,
on the other hand, is meant for simplifying things and offers better visual
representations. In the study that Olofsson and Hulstrand conducted, the
use of graphical user interfaces declined as knowledge of Git increased.
This meant that more experienced users preferred a CLI, because they
wanted to optimize work-flows, save time as well as have more control.
On the other hand, a CLI is harder to learn, and might be more challenging
in terms of cognitive workload as the user has to remember commands,
options and arguments. Olofsson and Hulstrand stated that none of these
user interfaces can be regarded as the best one, due to the fact that cer-
tain target groups may prefer the one over the other. Alltogether, a CLI is
associated with terms like ”control” and ”difficulty”, while GUI is related to
being ”simple”, ”easy”, ”helpful” and ”time consuming”.

2.4 Existing Alternatives

bb [22] is a CLI developed by RocHack, ”a group of hackers, program-
mers, and entrepreneurs at the University of Rochester” in 2015. It is
used for interacting with a Blackboard Learn installation, currently only
with support for University of Rochester. With the CLI users can submit
labs and projects from the command-line. The tool is written in only with
Bash (Shell script), and uses Curl to communicate with the server, not the
official Blackboard Developer API. Consequently, the tool is arguably not
future-proof, as small changes in the website will affect its functionality.
Due to being limited to University of Rochester, it cannot be tested from
people from other universities.

2.5 Development Theory

2.5.1 Agile Development

Agile is a mindset that provides values and principles on how to create and
respond to change, and how to deal with uncertainty [23]. The mindset
is implemented into software development frameworks, such as Scrum
and Kanban. Delivering working software frequently, with high quality and

Chapter 2: Background and Theory 7

low budget are the main characteristics of agile methods compared to
traditional methods [24].

The agile manifesto [25] has derived values and principles from other agile
methods and mindsets to create a more united agile movement in the
software development industry.

The agile values are:

• Individuals and interactions
• Working software
• Customer collaboration
• Responding to change

The agile principles are:

• Early and continuous delivery of valuable software
• Change is welcome
• Deliver frequently
• People interaction (business and developers)
• Motivated people
• Face-to-face communication
• Working software is progress
• Constant pace
• Technical excellence and good design
• Simplicity
• Self-organized teams
• Continuous improvement

There are several practices that agile methods usually implement. Soft-
ware development practices include pair programming and unit testing.
Management practices are for example daily stand-ups and open work
area. Software process practices include simplicity in design and iterative
workflows [23]. Figure 2.2 lists the most adopted agile practices [26]. The
key practices used in this project are described in detail below.

2.5.1.1 Daily stand-up meeting

A stand-up meeting is a meeting where the team members typically stand
up when participating. This is meant to keep the meeting short and ef-
fective. There are, however, other advantages to implementing stand-up
meetings in a project. Some usual problems that are solved when teams
implement the stand-up meeting practice are shared understanding of
goals, coordinated efforts, problem sharing and improvements, and identi-
fying as a team [27]. The meetings typically take place at the same time
and place every work day, even if some team members are not present.
The stand-up is meant to give everyone a mutual understanding of the
project status. Additionally, it is intended for the participants of the devel-
opment team only, and not for stakeholders and management. Thus, it is
informal, quick and concise.

Chapter 2: Background and Theory 8

Figure 2.2: Most adopted agile practices

2.5.1.2 Iteration planning

Iterative and incremental development is used to improve the technical
manageability of projects and avoid the risk of large integration’s at the
end of the project [28]. This ensures that the next step is implemented
successfully without errors, as well as reducing the probability that it will
negatively affect other parts of the system.

During iteration planning, the team decides how much of the team backlog
each member can complete during the upcoming iteration. The purpose of
iteration planning is to gain a common understanding of the work needed
to be done, as well as defining a realistic scope for the iteration [29].

2.5.1.3 Retrospectives

The retrospective is a meeting taken place at the end of an iteration of
agile software development [30]. This gives the team a chance to reflect
on the previous iteration, and can evaluate improvements for the next one.
Typical question that are discussed during this meetings are:

Chapter 2: Background and Theory 9

• What was successful factors?
• What did not work well?
• What can be done for improvement going forward?

A retrospective meeting shall lead to acquiring more knowledge, and ap-
plying changes based on that[31]. To quote Albert Einstein: ”The definition
of insanity is doing the same thing over and over again, but expecting dif-
ferent results”.

2.5.1.4 Unit testing

Unit testing involves testing individual parts, often known as units, of the
project [32]. This is done by defining the results that the code is expec-
ted to produce. The input data shall produce the same result, otherwise
the test will fail. There are several reasons why unit testing can be cru-
cial:

• By testing smaller units of the code, one can more precisely locate
where errors occur.

• Better code can be produced, because the code is more reusable as
it is divided into smaller units.

• Easier for other developers to better understand code, because they
can see what the code is expected to produce.

Different approaches range from testing the units before or after the code
is implemented. According to agile development, projects are built upon
iterative feedback, which means that the tests should be performed after-
wards. This is different to Test Driven Development where the tests are
written before.

2.5.1.5 User Testing

Moderated testing
One-on-one user testing is a way to unveil more than when having the user
follow the steps described in the unmoderated tests. The moderator should
never interfere the instincts of the tester, but being in the same room as
the tester and hearing their thoughts can gain a deeper understanding
that otherwise would be let out in the unmoderated tests [33].

Unmoderated testing
Unmoderated testing does not require the presence of anyone other than
the participant during the test. It can be done anytime, anywhere, and the
participant is free to complete the tasks in their own time. Unmoderated
user tests are typically sent to a large number of participants simultan-
eously, which is favourable if large sample sizes are necessary [34].

2.5.1.6 Continuous integration and deployment

Continuous integration (CI) and continuous deployment (CD) are practices
used in software development to implement changes at a more frequent

Chapter 2: Background and Theory 10

rate [35]. It leads to teams being able integrate code more consistently,
and collaborate more effectively. Changes are validated through a build
and the automated tests are executed against the build [36]. When code
has to go through tests to be merged, the same requirements are expec-
ted across the team. This gives a consistent mechanism to integrate and
validate changes. CD, on the other hand, releases all the changes that
goes through the automated tests to the customers or the users. This will
contribute in including users along the process, and thus accelerate the
feedback loop.

Chapter 3

Method

In research and development, methodology is distinguished between re-
search methodology and software development methodology, where the
former is about building knowledge based on research and the latter is a
software development framework for controlling the process in software
development.

This chapter will elaborate on the applied research and development meth-
odology, and how they were used. In addition, a section concerning the
implementation of the product will go into detail about the technical im-
plementations carried out during the development phase. Lastly, a simple
experiment that compares the efficiency between the CLI and the web UI
will be described.

3.1 Development Process

The development process was based on agile methods that revolve around
the users and their requirements. It was performed as an iterative process,
where each iteration consisted of collecting information about the users
and their requirements, followed by development and evaluation in form of
testing. Based on this methodology, an inductive approach was performed,
where data was gathered empirically first, before grounding theory on this
data.

Prior to development, data about the environment (people, technical sys-
tems and opportunities) was collected empirically through surveys. The
empirical data and our own experiences were the basis for the theory de-
tailed in chapter 2. The goal of the initial research was trifolded: (1) if there
was a motivation amongst students and teachers at NTNU for a solution,
(2) the target group’s requirements, and (3) what the solution aimed to
produce and improve.

During the development phase, three iterations were performed. Each it-
eration consisted of:

11

Chapter 3: Method 12

Iteration planning: This is where issues from the backlog was distrib-
uted between the team members. In addition, a general discussion
on the scope and goals of the following iteration was held.

Development: During development, stand-up meetings were performed
every morning. At the end of every week, an additional meeting was
held, where the weeks work was summarized.

Evaluation: At the end of each iteration, evaluation in form of user testing
was performed. This information together with newly discovered sci-
ence theories and methods laid the foundation for the next iteration.
The iterations were concluded with a retrospective.

3.1.1 Data Collection Methods

When collecting data it is important to use different methods to counteract
misconceptions and bias from the developers. The methods used were
surveys and user tests, with surveys being the dominant method of data
generation prior to the development phase. All forms of data generation
also collected the following details about the participants: field of study,
role and experience with the command-line. The data generation methods
used were:

Survey: The main development goal of the task is based on solving an
existing problem, where the hypothesis is that Blackboard’s web in-
terface lacks user friendliness and efficiency. Accordingly, surveys
were used to gather information about the scope of the problem. The
first survey consisted of the following questions:

• Do you think the Blackboard website is user friendly?
• Do you think the Blackboard website is effective to use?
• How experienced are you with using the command line?
• Which functionalities in Blackboard do you think need improve-
ment?

• Would you use a CLI that replaces the web interface to execute
tasks in Blackboard more efficiently?

Evaluation: On each iteration during development, user tests were per-
formed to understand how the user base interacts with the product.
The user tests were separated into moderated and unmoderated user
tests:

• Moderated testing: The importance in having participants from
different fields of study testing the application in greater detail is
essential, especially considering the large and diverse user base
at NTNU. A test logger was present on each test and noted in-
sights in which the unmoderated tests might have missed. The
tests were informal and open for conversation with the parti-
cipants, without assisting the user during the test. The conver-
sation assisted in getting further insight in how the participants
felt about the product.

Chapter 3: Method 13

• Unmoderated testing: For unmoderated testing, a Google forms
document with predetermined tasks was issued to a set of con-
tributors at the end of each milestone. The contributors were free
to complete the tests in their own time.

The user tests were conducted in three iterations, where the goal of
each iteration was to gather information on the status of the CLI,
e.g., perception of the CLI syntax, effectivness etc. The user tests
consisted of a set of tasks for the participants to follow, and noting
whether or not they could manage to finish the task.

In addition, every user test included the following questions:

1. How intuitive and simple do you think the CLI is?
2. Why do you think it is, or is not, intuitive?
3. Do you think the CLI is more effective and simple to use than the

web interface?
4. Why or why not?
5. General feedback or tips for improvement?
6. If you had any technical issues with the CLI or installation, please

let us know below.

3.1.2 Data Analysis

The data collected from the surveys and user tests was there to give insight
in how the users expect a learning management system to work in addition
to general testing of the CLI. The data was used to gain deeper knowledge
of the use needs of users with different backgrounds and roles. Due to its
nature, it is natural to assume the CLI is best suited for students and staff
with an IT-background, but data collection was also analysed to see how
users in other fields of study can benefit from the product.

3.2 Choice of Technology and Implementa-
tion

3.2.1 Blackboard Learn REST API

Blackboard offers a REST API to help developers communicate with Black-
board Learn through an application, plugin or other integration. It contains
a number of endpoints for communicating with Blackboard Learn, e.g., for
handling courses, announcements, contents, assignments, grading, users,
etc.

3.2.2 System Architecture and MVC

It was desired to have a separation of concerns in order to keep the code
well structured, and reduce the likeliness of large modifications at mul-
tiple places. Thus, model-view-controller was a good fit. In this project,
the controller is called commands and model is called services, because

Chapter 3: Method 14

it fits better descriptively. The commands were communicating with the
respective service, which made the call to the Blackboard API to retrieve
or submit the data. Lastly, view made sure that outputs were printed in
an easy readable format.

From the beginning of the project, it was known that the syntax structure
most likely would change during the development due to the focus on re-
sponding to user feedback. By using the software design pattern MVC, the
CLI was able to separate the code regarding the syntax structure and the
code regarding retrieving and posting data, allowing changes to be made in
the commands syntax structure without affecting the service logic.

3.2.3 Design Pattern

In terms of design patterns, a builder was implemented for creating URLs.
With an URL builder, creating URLs became a more efficient process, and
made sure that the correct URL was created, minimizing the risk of typos.
In addition, if the API endpoints change in the future, only the URLs in the
builder itself need to be modified.

3.2.4 Technological Dependencies

Python

Compatibility with Linux, MacOS, Windows, etc was one of the require-
ments for the CLI. Therefore Python was a good choice, not only because
it is an interpreted language, but also because there exists a number of
resources on CLIs.

Pip and PyPI

Pip is a package installer for python and was used in this project to down-
load dependencies that were required in the CLI. To make the CLI easily ac-
cessible, it is packaged into a python package and uploaded to PyPi where
others may use pip to install the CLI and use it in their terminal.

Beautiful soup

Beautiful soup is a library for extracting data from HTML and XML files. For
this project, Beautiful soup was used to scrape the HTML responses from
the HTTP requests sent using the Python requests library.

Requests

Requests is a python library used to send HTTP requests and is known
for its simplicity. Requests plays an essential part in the CLI since al-
most every command communicates with the Blackboard Learn REST API
through sending HTTP requests.

Chapter 3: Method 15

Click

Click is a python package used to create CLIs. It was regarded as the best
alternative, due to its possibilities to highly configure the commands with
different options and arguments. Help pages for each command were auto-
matically created, which made navigation through the CLI more conveni-
ent. The most valuable feature was the possibility to divide the commands
into groups. Hence, the different modules could be made into groups,
which strengthened the separation in the CLI. This also made it possible
to create sub-commands for the different modules.

3.3 Measuring Efficiency

For a set of tasks, efficiency was measured between the CLI and Web UI
in the form of key presses, number of commands, HTTP requests, loading
time and Time To Complete (TTC). The tasks were performed by us, the
developers due to the fact that we recognize ourselves to have the least
amount of bias toward each system. When performing the tests, the min-
imal amount of commands and clicks needed were used to fully execute
the tasks without skipping essential parts, i.e., assuming that the person
who carries out the task does not have any remembrance of IDs. Each
task was performed on the same computer and on the same Wi-Fi. The
measurements were:

Key Presses

The number of key presses performed to finish the task when using the
web UI.

Number of Commands

The number of commands performed to finish the task when using the
CLI.

HTTP Requests

The total amount of HTTP requests performed to finish the task. By in-
specting the site, the total amounts of HTTP requests were shown when
performing tasks.

Loading Time

Loading is the total time spent on each task excluding time spent on nav-
igation.

Time To Complete

Time To Complete is the total time spent on a set of tasks including time
spent on navigation.

Chapter 4

Results

4.1 Data

This section will describe the data that was collected through surveys and
user tests, to aid in the development of the CLI.

4.1.1 Surveys

As described in section 3.1.1, the data collected prior to development was
conducted using surveys. The horizontal axis represents the score from 1
to 10, and the vertical axis represents the number of responses. The first
survey got 73 responses, from a total of 15 field of studies. 90.9 percent
of the participants were students, the rest were teachers and teaching
assistants.

As figure 4.1 shows, the majority of the participants rated the user friend-
liness of the Blackboard website to be below average.

Figure 4.1: Do you think the Blackboard website is user friendly?

When asked about the effectiveness of the Blackboard website, the ma-
jority rated it to be below average, as illustrated in figure 4.2

16

Chapter 4: Results 17

Figure 4.2: Do you think the Blackboard website is effective to use?

When asked about prior experience with using the command-line, 21% of
the participants stated that they have not used the command-line before,
as shown in figure 4.3

Figure 4.3: How experienced are you with using the command line?

The participants were also asked to list which functionalities in Blackboard
that they think need improvement. The most requested functionality im-
provements were improved navigation, more specifically reducing number
of clicks and enhancing the overview of contents in a course. In addition,
there was a desire to have the same layout on every course. Key points on
surveys can be found in appendix F. Lastly, the participants were asked if
they would use a CLI that replaces the web interface to execute tasks in
Blackboard more efficiently. Out of the participants, 55.4 percent would
use a CLI that replaces Blackboards web interface. 19.6 voted no, and the
remaining 25 percent voted that they do not know.

The second iteration of surveys had the goal of finding the preferred CLI
syntax. It consisted of two surveys, one for students and one for teach-
ers.

Out of 35 students, 57 percent preferred option 1. The teacher survey got
36 responses, where 52.8 percent voted for option 1.

4.1.2 User Tests

A total of three user test iterations were performed, where each compon-
ent of the command line tool was tested. The full user tests are listed in
appendix E.

Chapter 4: Results 18

Figure 4.4: Option 1 Figure 4.5: Option 2

Two teachers and nine students participated in the first iteration of user
tests. The student participants that lacked experience with using the command-
line needed a quick introduction with how the command-line worked. A re-
peated misconception was that the participants did not understand the use
of subcommands. This happened primarily with participants who lacked
experience with the command-line. It was noted, however, after realiz-
ing the use of the help-command, that the participants picked up on the
structure of the CLI much easier. As listed in table 4.1, the majority of the
tasks were successful for all student participants.

Student user test 1
Task Success

rate
Log in 100%
List courses 100%
List announcements from a course 88.9%
Get a specific content based on its ID 100%

Table 4.1: Student user test 1

The teachers that participated noted that the use of the IDs was too cum-
bersome, specifically when creating content requires both course ID and
content ID. The teacher did specify that the task was feasible, but had
spent more time than the user test asked already. The satisfaction results

Staff user test 1
Task Success

rate
Log in 100%
List courses 100%
List announcements from a course 100%
Create an announcement 100%
List contents from a course 100%
Get a specific content based on its ID 100%
List only content folders of a course 100%
Create a content in a course 50%

Table 4.2: Staff user test 1

Chapter 4: Results 19

based on user friendliness were 65% and 76% from teachers and students
respectively.

On the second iteration, the content visualization was being tested. All
participants managed to execute the tasks, but with the following remarks
from the test logger. The participants experienced that the help-flag was
very useful, and when they understood how commands, options and argu-
ments were structured, the CLI was very intuitive to use. Again, as in the
first iteration, the participants requested allowance of using external IDs
(e.g. IDATT2900). Several participants stated that the primary drawback
to ease of use is the difficulty in remembering the IDs.

Student user test 2
Task Success

rate
List all courses 100%
List contents from a course 100%
List folders in a course 100%
List content from a specific folder 100%
List all contents of type ”document” 100%

Table 4.3: Student user test 2

Only moderated user tests were performed on teachers on the second
iteration. Similar to the student tests, all tasks were successfully executed.
When asked whether the CLI was intuitive or not, the response was that the
hierarchy of commands and modules was clear and consistent. In addition,
all commands and subcommands have a help-command that explains its
arguments, options and commands. Contrary, the lack of a progress bar
when listing announcements got the participant wondering whether the
program was stuck.

When asked if the CLI is more effective and simple to use than the web
interface, the response was positive, considering the possibility to wrap
the program and write scripts for certain tasks and reuse them later. In
addition, the participant noted that the web interface makes the user click
through several pages to perform a specific tasks, which the CLI avoids.

Staff user test 2
Task Success

rate
List all courses 100%
List announcements from a course 100%
Create an announcement using markdown 100%
List content from a course, folders only 100%
Create a hidden content with a start date for
when to make it available for students

100%

Table 4.4: staff user test 2

Chapter 4: Results 20

The satisfaction results based on user friendliness were 90% and 82.5%
from teachers and students respectively.

Student user test 3
Task Success

rate
List all courses 100%
List all assignments from a course 100%
Submit an assignment 100%

Table 4.5: Student user test 3

Staff user test 3
Task Success

rate
Log in 100%
List all courses 100%
List assignments from a course 100%
Create an assignment 100%
Grade an attempt 100%

Table 4.6: staff user test 3

The third iteration had to be performed as a moderated test due to the
need of using a sandbox course to submit assignments. The user was
able to execute all tasks successfully. However, the user mentioned that
it was ineffective to only grade one assignment attempt at the time. A
recommendation from the user was to download all attempts, grade them
in a CSV file before uploading them simultaneously.

4.2 Commands and Functionality

Table 4.7 lists all supported commands at time of delivery. The commands
are structured into groups, where each group can have a set of subcom-
mands. The main commands are announcements, assignments, contents
and courses. In addition, login and logout are singular commands not at-
tached to any group. The modularity is there to ensure support for simple
expansion of the tool, in order for contributors to easily modify and expand
as they please.

Chapter 4: Results 21

C
o
m
m
an

d
/G

ro
u
p

C
o
m
m
an

d
/G

ro
u
p

C
o
m
m
an

d
D
es
cr
ip
ti
o
n

E
xa
m
p
le

u
sa
g
e

lo
g
in

Lo
g
in

u
se
r

bb
lo

gi
n

lo
g
o
u
t

Lo
g
o
u
t
u
se
r

bb
lo

go
ut

A
n
n
o
u
n
ce
m
en

ts
cr
ea
te

C
re
at
e
an

an
n
o
u
n
ce
m
en

t
bb

an
no

un
ce

m
en

ts
cr

ea
te

--
co

ur
se

_
12

3_
1

d
el
et
e

D
el
et
e
an

an
n
o
u
n
ce
m
en

t
bb

an
no

un
ce

m
en

ts
de

le
te

--
co

ur
se

_
12

3_
1

--
an

no
un

ce
m

en
t

_
11

1_
1

lis
t

Li
st

o
n
e
o
r
m
o
re

an
n
o
u
n
ce
m
en

ts
bb

an
no

un
ce

m
en

ts
lis

t
--

co
ur

se
_

12
3_

1
u
p
d
at
e

U
p
d
at
e
an

ex
is
it
in
g
an

n
o
u
n
ce
m
en

t
bb

an
no

un
ce

m
en

ts
up

da
te

--
co

ur
se

_
12

3_
1

--
an

no
un

ce
m

en
t

_
11

1_
1

A
ss
ig
n
m
en

ts
at
te
m
p
ts

g
et

G
et

a
sp
ec
if
ic
at
te
m
p
t
fo
r
an

as
si
g
n
m
en

t
bb

as
si

gn
m

en
ts

at
te

m
pt

s
ge

t
--

co
ur

se
_

12
3_

1
--

as
si

gn
m

en
t

_
22

2_
1

--
at

te
m

pt
_

33
3_

1
lis
t

Li
st

at
te
m
p
ts

fo
r
an

as
si
g
n
m
en

t
bb

as
si

gn
m

en
ts

at
te

m
pt

s
lis

t
--

co
ur

se
_

12
3_

1
--

as
si

gn
m

en
t

_
22

2_
1

su
b
m
it
-d
ra
ft

S
u
b
m
it
as
si
g
n
m
en

t
d
ra
ft

bb
as

si
gn

m
en

ts
at

te
m

pt
s

su
bm

it
-d

ra
ft

--
co

ur
se

_
12

3_
1

--
as

si
gn

m
en

t
_

22
2_

1
--

at
te

m
pt

_
33

3_
1

cr
ea
te

C
re
at
e
an

as
si
g
n
m
en

t
bb

as
si

gn
m

en
ts

cr
ea

te
--

co
ur

se
_

12
3_

1
--

fo
ld

er
_

44
4_

1
g
ra
d
e

G
ra
d
e
an

as
si
g
n
m
en

t
bb

as
si

gn
m

en
ts

gr
ad

e
--

co
ur

se
_

12
3_

1
--

as
si

gn
m

en
t

_
22

2_
1

--
at

te
m

pt
_

33
3_

1
lis
t

Li
st

al
l
as
si
g
n
m
en

ts
fr
o
m

a
co
u
rs
e

bb
as

si
gn

m
en

ts
lis

t
--

co
ur

se
_

12
3_

1
su
b
m
it

S
u
b
m
it
as
si
g
n
m
en

t
at
te
m
p
t

bb
as

si
gn

m
en

ts
su

bm
it

--
co

ur
se

_
12

3_
1

--
as

si
gn

m
en

t
_

22
2_

1
C
o
n
te
n
ts

cr
ea
te

as
si
g
n
m
en

t
C
re
at
e
an

as
si
g
n
m
en

t
bb

co
nt

en
ts

cr
ea

te
as

si
gn

m
en

t
--

co
ur

se
_

12
3_

1
--

fo
ld

er
_

44
4_

1
at
ta
ch
m
en

t
A
d
d
at
ta
ch
m
en

t
to

co
n
te
n
t

bb
co

nt
en

ts
cr

ea
te

at
ta

ch
m

en
t

--
co

ur
se

_
12

3_
1

--
co

nt
en

t
_

55
5_

1
co
u
rs
e-
lin
k

C
re
at
e
co
u
rs
e
lin
k
co
n
te
n
t

bb
co

nt
en

ts
cr

ea
te

co
ur

se
-l

in
k

--
co

ur
se

_
12

3_
1

--
fo

ld
er

_
44

4_
1

--
ta

rg
et

_
66

6_
1

T
IT

LE
d
o
cu
m
en

t
C
re
at
e
d
o
cu
m
en

t
co
n
te
n
t

bb
co

nt
en

ts
cr

ea
te

do
cu

m
en

t
–c

ou
rs

e
_

12
3_

1
--

fo
ld

er
_

44
4_

1
T

IT
LE

fi
le

C
re
at
e
fi
le

co
n
te
n
t

bb
co

nt
en

ts
cr

ea
te

fil
e

--
co

ur
se

_
12

3_
1

--
fo

ld
er

_
44

4_
1

T
IT

LE
PA

T
H

fo
ld
er

C
re
at
e
fo
ld
er

bb
co

nt
en

ts
cr

ea
te

fo
ld

er
--

co
ur

se
_

12
3_

1
T

IT
LE

w
eb

-l
in
k

C
re
at
e
w
eb

-l
in
k

bb
co

nt
en

ts
cr

ea
te

w
eb

-l
in

k
--

co
ur

se
_

12
3_

1
--

fo
ld

er
_

44
4_

1
T

IT
LE

U
R

L
d
el
et
e

D
el
et
e
co
n
te
n
t

bb
co

nt
en

ts
de

le
te

--
co

ur
se

_
12

3_
1

--
co

nt
en

t
_

55
5_

1
g
et

G
et

a
sp
ec
if
ic
co
n
te
n
t

bb
co

nt
en

ts
ge

t
--

co
ur

se
_

12
3_

1
--

co
nt

en
t

_
55

5_
1

lis
t

Li
st

co
n
te
n
ts

bb
co

nt
en

ts
lis

t
--

co
ur

se
_

12
3_

1
u
p
d
at
e

U
p
d
at
e
co
n
te
n
t

bb
co

nt
en

ts
up

da
te

–c
ou

rs
e

_
12

3_
1

--
co

nt
en

t
_

55
5_

1
C
o
u
rs
es

lis
t

Li
st

co
u
rs
es

bb
co

ur
se

s
lis

t

T
a
b
le
4
.7
:
S
u
p
p
o
rt
ed

co
m
m
an

d
s

Chapter 4: Results 22

4.2.1 Functional requirements

Following is a list of all functionality at time of delivery, supported by the
commands listed in table 4.7.

• The user is able to login to Blackboard using the two-factor authen-
tication.

• The user can logout.
• The user can list courses that they are currently taking or that they
have taken.

• The user can list all announcements across several courses, as well
as within a specific course.

• Announcements can be created, updated or deleted for a specific
course.

• All contents can be listed within a course.
• Specific folders can be listed.
• Contents such as documents, assignments, folders, external links,
forum links and blank pages can be listed within a course.

• Assignment, attachment, document, file, folder and web-link can be
created, updated and deleted.

• Documents and files can be retrieved and opened.
• Web-links, external links and course links can be opened.
• Blank pages can be opened.
• The user can get an assignment and download the attachments.
• Assignments can be graded.
• Assignment attempts can be listed.
• A specific assignment attempt can be listed.
• Both assignments and draft assignments can be submitted.
• Assignments can be updated.

4.2.2 Arguments and Options

Each command supports either positional arguments or options or both.
Arguments do not require flags as options do. For example in the com-
mand

$ bb contents c reate document [- c <COURSE_ID>] [- f <FOLDER_ID>]
[- - s tar t - date <START_DATE>] [- - end - date <END_DATE>] [- - rev iewable]
[- - hide - content] TITLE [ATTACHMENTS]

TITLE is a positional argument and --start-date, --end-date, --reviewable and
--hide-content are optional. For easier usability, -c (--course) and -f (--folder)
are also required, despite technically being options.

4.2.3 Help Snippets

Each command contains a --help option which lists a concise description of
the command and its arguments and options, as can be seen in example
snippet 4.1.

$ bb contents c reate document - - help
Usage : bb contents c reate document [OPTIONS] TITLE [ATTACHMENTS] . . .

Chapter 4: Results 23

Creates a document content , op t i ona l l y with f i l e attachments

Options :
- c , - - course TEXT COURSE ID , o f the course you want to create content .

[requ i red]
- f , - - f o l d e r TEXT FOLDER ID , o f the f o l d e r you want to create content in .

[requ i red]
- - end - date TEXT When to make content unava i lab le . Format : DD/MM/YY

HH:MM: SS
- - s tar t - date TEXT When to make content ava i l ab l e . Format : DD/MM/YY

HH:MM: SS
- r , - - rev iewable Make content rev iewable
-h , - - hide - content Hide contents f o r students
- - help Show th i s message and ex i t .

Code listing 4.1: Help snippet

4.2.4 Input

When dealing with text input for HTML bodies the editor from the user’s
$EDITOR environment variable is used, e.g., when creating announce-
ments, creating assignments etc. The different input options are plain text,
Markdown or HTML syntax.

4.2.5 Output

The default output is shown in code listing 4.2, where essential information
is printed in a tabular format.

$ bb announcements l i s t - c _33050_1 -a _394612_1

Id : _394612_1
Ti t l e : Announcement
Date : 2022 -05 -12

This i s an announcement .
Code listing 4.2: Default output

Optionally, the --json flag can be used to print the entire response message
in json format as shown in code listing 4.3.

$ bb announcements l i s t - c _33050_1 -a _394612_1 - - j son
{

” id ” : ”_394612_1” ,
” t i t l e ” : ”Announcement” ,
”body” : ”<p>This i s an announcement.</p>” ,
” c rea to r ” : ”_111522_1” ,
” dra f t ” : f a l s e ,
” a v a i l a b i l i t y ” : {

” duration ” : {
” type” : ” Rest r i c ted ” ,
” s t a r t ” : ” 2022 -05 -12T16 : 12 : 26 . 238Z” ,
”end” : nu l l

}
} ,

Chapter 4: Results 24

” created ” : ” 2022 -05 -12T16 : 12 : 26 . 240Z” ,
”modif ied ” : ” 2022 -05 -12T16 : 12 : 26 . 277Z” ,
” po s i t i on ” : 1

}
Code listing 4.3: Json output

4.2.6 Authorization

To authorize a user, the CLI executes the same HTTP POST requests as the
Blackboard web interface until the cookies and headers needed to com-
municate with the Blackboard Learn REST API are retrieved. However, for
these requests to be successful, each request needs certain cookies and
headers and one or more hidden values from the HTML response body of
the previous request.

These hidden values are required in the next HTTP POST request for them
to give a success response and either a new hidden value or the Blackboard
session cookie which is the end goal of the login process.

4.2.6.1 Simple login

A user who has not activated 2-step authentication only need to enter
username and password. The CLI can skip a step in the login process and
only send four HTTP POST requests.

4.2.6.2 Login with 2-step authentication

If the user has activated 2-step authentication, a few extra steps is re-
quired in the login process. First, the CLI tries to find the default authentic-
ation method in one of the HTML responses. However, if no default option
is found, the user is prompted with 3 alternatives:

1. PhoneAppNotification
2. PhoneAppOTP
3. OneWaySMS

PhoneAppNotification: a series of HTTP POST requests are sent to check
whether the user has accepted the login attempt in the Microsoft Authen-
tication app. These requests can be seen in figure 4.6 and have the name
”EndAuth”.

PhoneAppOTP: the CLI waits for the user to enter the code from Microsoft
Authentication app, which is included in the next HTTP POST request to
verify if the code was correct.

OneWaySMS: a code is sent to the users phone which is then included in
the next HTTP POST request to verify if it is valid.

Chapter 4: Results 25

Figure 4.6: EndAuth POST requests being sent repeatedly until the user
accepts.

4.3 Non-functional Requirements

4.3.1 Usability

Initially, the root command was bbcli, but results from the first user sur-
vey showed that the most preferred root command was bb followed by
subcommands with different options and arguments. The syntax that was
chosen in the end was a slightly modified version of option 1 in figure 4.4.
Most users preferred having less commands, and more options for each
command. For example, bb contents list was preferred over bb list-contents.

4.3.2 Reliability

Error handling was implemented to give the user a meaningful feedback if
something unexpected would occur, instead of the standard json response
provided by the REST API.

4.3.3 Performance

Across the user tests, it was emphasized the inconvenience of having to go
in and out of folders to fetch content. The solution was a visual represent-
ation of the folder structure as a tree. To retrieve all the content, multiple
requests to the Blackboard API was needed. For each folder, there was a
need to check content within that folder, which resulted in a complexity
of O(n2) (appendix A.1). When all the content was retrieved, a depth-first
search (DFS) was used to traverse the tree. DFS has a complexity of O(n),
because all the n-nodes needs to be traversed (appendix A.2). This gives
a total complexity of O(n2)+O(n), and could be time consuming due to the
fact that some courses are large and packed with content. By separating
the execution, the run-time was was in certain cases remarkably reduced.
Table 4.8 shows the time to retrieve and print contents with and without
threads.

Chapter 4: Results 26

Course Name Total contents Total threads W/O threads W/ threads
IFYT1001 Fysikk (2021 VÅR) 967 24 17.085 s 5.576 s
IDATT2105 Full-stack applikasjonsutvik-
ling (2021 VÅR)

53 5 1.521 s 1.237 s

IDATT2101 Algoritmer og datastrukturer
(2020 HØST)

37 5 0.814 s 0.607 s

IDATT1001 Programmering 1 (2019
HØST)

107 8 2.428 s 1.562 s

INGT2300 Ingeniørfaglig systemten-
kning (2022 VÅR)

115 7 2.747 s 1.868 s

Table 4.8: Run-time to list contents in seconds

4.3.4 Supportability

The CLI is supported on both Mac, Linux and Windows with only one com-
mand required for installation. The only prerequisites is that the user has
Python installed.

At time of delivery, the product is being made publicly accessible, i.e., open
source and is designed to be easily modified so that other developers can
add or modify functionality to their preference.

4.3.5 Security

The username is stored in an environment variable and the password is
not stored anywhere.

4.4 Efficiency

The results from the efficiency experiment are listed in table 4.9.

Key presses

The amount of key presses needed to execute simple tasks were usually
not noteworthy more than the amount of commands required for the same
task. For more complex tasks, however, the amount of key presses were
significantly higher.

Number of Commands

The number of commands needed to execute a task or set of tasks were
never more than 3 commands. The length of the commands varied some,
but no command was inconveniently long.

HTTP Requests

The amount of HTTP requests that was sent during the execution of the
task varied greatly between the CLI and web UI. The web UI uses for some
tasks more than 200 times more HTTP requests than the CLI.

Chapter 4: Results 27

Loading time

The total loading time was for almost all tasks significantly lower on the
CLI.

Time To Complete

For simple tasks, time to complete is almost equal for both systems. For
more complex tasks, the TTC on the CLI was significantly lower.

Chapter 4: Results 28

K
ey

p
re
ss
es

C
o
m
m
an

d
s

H
TT
P
R
eq

u
es
ts

Lo
ad

in
g
ti
m
e

T
im

e
to

C
o
m
p
le
te

W
eb

U
I

C
LI

W
eb

U
I

C
LI

W
eb

U
I

C
LI

W
eb

U
I

C
LI

Lo
g
in

2
1

2
6
0

1
0

6
.4
3
s

4
.0
4
s

1
6
.0
5
s

1
2
.8
3
s

Li
st

co
u
rs
es

1
1

3
6

2
9

1
.5
6
s

2
.1
7
s

2
.6
2
s

5
.0
1
s

Li
st

co
u
rs
e
an

n
o
u
n
ce
m
en

ts
3

2
3
4
8

2
8

5
.6
7

3
.6
0
s

8
.3
9
s

1
1
.9
1
s

C
re
at
e
an

an
n
o
u
n
ce
m
en

t
8
-1
2

1
1
2
1
0

2
8

8
.2
9
s

0
.5

s
2
0
.5
2

1
9
.0
2

G
et

sp
ec
if
ic
co
n
te
n
t
it
em

5
3

7
4
4

4
7

5
.8
3
s

6
.3

s
1
2
.5
7

3
1
.3
5

C
re
at
e
a
d
o
cu
m
en

t
6

2
1
4
4
6

3
7

7
.6
9
s

5
.3
1
s

1
8
.4
8
s

2
9
.8
4
s

Fi
n
d

al
l
as
si
g
n
m
en

t
d
u
e

d
at
es

fr
o
m

a
co
u
rs
e

4
0

2
7
2
9
5

2
9

2
8
.4
7
s

3
.8
5
s

6
9
.0
6
s

1
2
.5

s

Li
st

al
l
d
o
cu
m
en

ts
fr
o
m

a
co
u
rs
e

2
3

2
7
3
0
7

4
5

3
8
.1
7
s

2
.8
9
s

5
3
.1
3
s

1
6
.7
2
s

Li
st

al
l

an
n
o
u
n
ce
m
en

ts
fr
o
m

co
u
rs
es

fr
o
m

th
e

la
st

tw
o

se
m
es
te
rs
)

1
3

1
1
3
6
8

1
2
2
.3
5
s

4
.2
1
s

2
9
.3
7
s

7
.0
6
s

T
a
b
le
4
.9
:
C
o
m
p
ar
is
o
n
o
f
ef
fi
ci
en

cy
b
et
w
ee
n
th
e
C
LI

an
d
th
e
w
eb

U
I

Chapter 4: Results 29

4.5 Administrative Results

This section contains an overview over what was gained from the adminis-
trative tools that were used to keep track of progress, time management,
and tasks in general.

4.5.0.1 Progress plan

The roadmap was used as a progress plan, with goals regarding the de-
velopment of the product, documentation and report writing, as shown in
figure 4.7 and 4.8. Each milestone and its goals works similar to sprints
and and backlogs. The roadmap put everyone on the same page regarding
process, defined a clear path from start to delivery, and aid in prioritizing
and re-prioritizing tasks.

Figure 4.7: Milestones in roadmap.

4.5.1 Time Management

A status report was created at the end of each week to keep track over
hours worked and what was done, shown in table 4.9.

4.5.2 Agile Process Documentation

The agile process of this project was primarily built on the roadmap with
milestones similar to iterations. Each iteration consisted of gaining feed-
back from users, review feedback, and apply changes which contributed in
a more versatile CLI. In addition, other process tools like retrospectives,
daily stand-ups and project status reviews gave structure and flow in the
development process.

4.5.2.1 Backlog

As mentioned above, the milestones, shown in figure 4.10 had goals cat-
egorized in development of the product, documentation and report writ-
ing. All goals regarding development of the product were again split up
into even more detailed issues in GitLab, as seen in figure 4.11. To avoid
misinterpretation of the issues, the aim was to create them as small and
concrete as possible. All issues were linked to a milestone in GitLab which

Chapter 4: Results 30

Figure 4.8: Milestone goals.

again reflected the goals in the roadmap concerning development of the
product.

4.5.2.2 Retrospectives

At the end of each milestone, a retrospective was performed to reflect on
the completed iteration. This was to find out what worked well, what did
not work well, and possible areas of improvement. Some subjects that was
brought up during the retrospectives were working without distractions,
more frequent updates about each others work, and more consistent work-
hours.

4.5.2.3 Daily stand-up meetings

The daily stand-up meetings consisted of every member standing up, ex-
plaining what they did the previous day and what they planned to work on
that day, which was an efficient way of keeping all team members on the
same page. In addition, it prevented misunderstandings like two mem-
bers working on the same task and improving the communication in the
group.

Chapter 4: Results 31

Figure 4.9: List of the status reports.

Figure 4.10: Milestones in GitLab connected to related issues. In sync with
roadmap milestones.

4.5.2.4 Project status reviews

Each Friday, a project status review was held to reflect upon the progress,
and plan the upcoming week. This was an additional tool to make sure
everyone was on the same page and made it easier to prioritize tasks. The
difference between the project status reviews and retrospectives is that
the former purely focuses on progression in the project, not work meth-
odology. A status review could also take place in the middle of the week
or whenever it was necessary to take a step back and gain an overview of
the overall status of the project.

4.5.2.5 Unit testing

To easily detect whether any new implementations in the code introduced
new errors, unit tests were created for all service methods and could be
run by executing the command pytest. This made it less complicated to
debug the code if an error occurred.

Chapter 4: Results 32

Figure 4.11: Issue board in GitLab.

4.5.2.6 Continuous Integration and Deployment

The unit tests were also used when implementing continuous integration
and deployment. Every time a branch was pushed to remote main branch,
all unit tests were run to make certain no unknown bugs were present
in the code. The project was automatically uploaded to PyPi as a python
package, but only if all unit tests were successfully passed.

Chapter 5

Discussion

5.1 Evaluation of the Research Questions

The researched questions will be evaluated based on the background the-
ory in chapter 2 in relation to the results produced from chapter 4.

RQ1. How can efficiency be measured when comparing
the CLI tool to the web UI?

When comparing the CLI to the web UI, convenience and time spent on a
task are metrics to measure the efficiency.

Convenience in this context more specifically means the users satisfaction,
and their prior knowledge with using the UI. A UI can be regarded as
convenient if tasks can be performed with the most amount of efficiency
and the least amount of effort. Some may be biased to the web UI because
they have been using it for a longer period of time. Therefore, they might
find it more convenient and efficient to use.

Another way of measuring efficiency between the CLI and the web UI is by
looking at the time it takes to complete tasks. For simple tasks, it can be
difficult to see any real difference in TTC, a consequence of the tasks being
small. However, it is easier to see clear differences in TTC when performing
a large number of tasks consecutively, e.g. when retrieving large sets of
data from different locations. It is often difficult to compare the CLI to the
web UI since some of the functionality is not comparable. For example, it
is not possible to list all assignments at once in the web UI, but the CLI
does it in a few seconds.

Related to time spent is loading time. In other words the time spent waiting
for pages to load or a response from a command. In addition, measuring
the number of HTTP requests sent during a task seems to have a positive
correlation with the loading time. However, this is not absolutely accurate
because two HTTP requests do not necessarily take the same amount of
time to load. This depends on the size of the payload.

33

Chapter 5: Discussion 34

It is also important to address how experience affects efficiency. A user
does not require the same amount of experience to comfortably use the
web UI compared to the CLI. As stated in section 2.2.1, the GUI’s visual
representation makes it easy for novice users to navigate and execute
tasks. However, as users get more experienced, they will usually prefer
the command-line as it allows them to maintain more control and increase
efficiency.

In the survey conducted by Omanson and others, it was found that key-
board interactions are more efficient. However, it is important to emphas-
ize that preferences and different use cases play an important role. If
keyboard interactions are favored, the user might find the CLI to be more
convenient as they can type commands fast, and use arrow keys to re-
trieve previously used commands. On the other hand, if the user is quick
with a mouse pointer, interactions with a web UI can be beneficial.

Measuring efficiency can be difficult, because it is highly dependent on per-
sonal preference and prior experience. Additionally, the results will highly
differ from person to person depending on how they prefer interacting with
the UI.

RQ2.What are the advantages and disadvantages of the
CLI in comparison to the web UI?

For simple tasks such as listing course announcements, the CLI and web UI
are quite similar in TTC. That being said, it is clear from the results in table
4.9 that when retrieving large amounts of information the CLI is noticeably
faster than the Web UI. These are tasks where the Web UI does not have
any good alternative functionality, which causes the user to navigate back
and fourth exceedingly.

Feedback from the first survey showed interest in including custom func-
tionality that addresses these issues. Among the feedback was the disad-
vantage of having to go in and out of folders to retrieve content. The CLI
offers a command to list all the contents in a course to get an overview
of locations and content IDs. Not to mention that the command offers an
option to list only folders, documents, assignments, external links and so
fourth. A drawback, however, is that the user has to find the course ID
first, which results in two commands in total.

Additionally, the CLI offers functionality to list all the assignments of a
course. This is significantly more convenient compared to the web UI where
the user needs to search and interpret what are assignments or not. In
table 4.9, results show that it takes five times longer to get the assign-
ments using the web UI compared to the CLI.

It is important to note that during the efficiency experiment, the contents
location were known, which resulted in minimal search time when navig-
ating. Had the IDs of the courses and contents been known, the TTC would
be reduced noticeably on the CLI. As discussed in the evaluation of RQ1,
it is difficult to compare remembrance since it is easier to memorize loc-
ations in a web UI than IDs in a CLI. However, a number of participants

Chapter 5: Discussion 35

mentioned that Blackboard’s web UI is not user friendly when it comes to
navigation. Courses rarely have the same structure, which results in hav-
ing to spend a lot of time navigating to find the desired content. The CLI
fixes this issue by having identical commands for every course. Addition-
ally, course IDs should not be difficult to remember since a student rarely
uses more than four course IDs each semester.

In addition to efficiency, the CLI only shows the necessary output and
avoids distracting visuals that increases loading times. On the other hand,
the CLI has an arguable disadvantage regarding the use of IDs. The user
tests showed that among those who preferred the Web UI over the CLI,
the biggest reason was that the IDs were too cryptic to remember and it
was cumbersome to use several different IDs for one command. It would
be easier to use the course code and title of contents and announcements,
however these are not guaranteed to be unique and therefore the format
of the IDs still remains a weakness in the CLI. Despite this fact, almost all
participants were successful in getting the content based on IDs.

Illustrating Git as an example conducted by Olofsson and Hulstrand in
section 2.3, it was stated that a CLI was most preferred for Git users,
but that the GUI was an alternative for less proficient users. It was also
revealed that users would prefer using a CLI as their experience increased.
This substantiates the results gained from the user tests, namely that
a CLI is advanced to learn but effective once you get a certain level of
proficiency. This was a consistent finding across the moderated user tests,
were it was observed that the user became more comfortable after having
read the help messages and executed some commands. However, it is
important to emphasize that there are no results that will tell how the
proficiency will look like in the long run. At the same time, it is difficult to
tell whether the potential proficiency gained will be compared with the high
cognitive workload required of using the CLI. Different commands with
their respective arguments, options and flags need to be memorized.

If the users become familiar and experienced with the CLI, there is also
a possibility to expand the usage of the CLI to be more advanced. For
example it is possible to create scripts that uses the CLI to automate tasks.
An advantage with creating scripts to automatically execute commands is
that the cryptic IDs will not be as big of an issue anymore since the IDs
will be written in the script and saved.

RQ3. How can agile principles and practices contribute
in developing a versatile CLI to increase user experi-
ence and efficiency?

The agile mindset provides, as mentioned in section 2.5.1, values and
principles on how to respond to change. These values and principles were
followed thoroughly during the project. Change has always been welcome,
and the design and motivation behind the product has changed several
times. A key motivation has been to keep the design simple, in order to
encourage quick and easy expansion of functionality.

Chapter 5: Discussion 36

As described in chapter 2 and chapter 4, several agile practices were im-
plemented in the development process. However, looking back at these
practices, it is difficult to see how they actually contributed in increasing
the versatility. No metrics were taken during development to see for ex-
ample how unit testing contributed to the research question. In fact, for
many practices this would not make any sense, since their only purpose is
to assist the development of the product itself, not its functionality. There-
fore, it is pertinent to address that many agile practices are solely meant
to aid the development.

However, a practice that clearly contributed was the user tests. Some re-
quested markdown as input, while others desired HTML syntax, as stated in
4.2.4. Additionally, it was discovered during the user tests that there was
a desire for different output formats, such as tabular and json. Therefore,
it is safe to say that user tests are essential in increasing versatility.

All the practices mentioned earlier did encourage a constant pace during
development, which resulted in quickly noticing issues and responding to
change. Consequently, it can be said that the practices indirectly contrib-
uted in including more users and increasing efficiency and effectiveness of
the CLI.

5.2 Critical Analysis

In order to evaluate the project as a whole, it is appropriate to provide a
critical analysis of the results.

5.2.1 Limitations of Data

A number of agile principles and practices were implemented in the devel-
opment process. However, not enough data about the use of agile prin-
ciples and practices were gathered to adequately support the evaluation
of RQ3. The only way of evaluating the research question was by reflect-
ing around the experiences gathered throughout the project. It is difficult
to find how agile principles and practices can contribute in development
when the only metric is prior experiences. Had different agile practices
been tested against non-agile practices during the development process,
more data could be used to evaluate the research question.

The user tests also provided unsatisfactory data when used to evaluate
RQ3. The research question asks how agile principles and practices can
contribute in increasing efficiency and effectiveness. However, the tasks
performed on each user test only focuses on whether the task was suc-
cessful or not. Had other metrics been taken to measure efficiency and
effectiveness, RQ3 could have been evaluated more thoroughly.

The data gathered from surveys were partly unsatisfactory due to the fact
that too few metrics were taken. In addition, more contributors from a
wider range of field of studies, especially more teachers, would give better
insight in how the CLI should be implemented. Towards the end of the
project, it was discovered that teachers would benefit the most from using

Chapter 5: Discussion 37

the CLI. That is because teachers need to perform tasks that are a lot
more complex than what the students need. These are tasks that can be
automated or made a lot more efficient to execute. Had interviews been
conducted or more surveys with more metrics been made in the beginning,
more of this functionality could have been implemented.

5.2.2 Applicability of the CLI

Long-term Use

The longest lasting user tests lasted around 20 minutes, which limits to
show how users would handle the tool in a real working environment. The
user tests fail to give insight in how effectiveness and efficiency is affected
after long-term use, as an effect of learning and customization by the
user.

Whilst the long-term use of the CLI has not been tested, it is reason-
able to assume that it will stay functional for a long time. The tool was
programmed against Blackboard’s own REST API, which is more reliable
than web scraping directly from the website. Rockhack’s CLI bb, which was
mentioned in the background theory chapter, does not use the REST API,
which greatly decreases the reliability of the tool. Our tool almost solely
relies on the REST API, which theoretically increases it’s lifetime compared
to Rockhack’s tool.

Expansion and Customization

The CLI is designed to be easily expanded and customized by contribut-
ors. The open source project includes issues for future work and detailed
explanations on how expansion can be done. The different options for in-
put and output give the user more freedom to write scripts against the
tool.

5.2.3 Team Evaluation

It was important to get the team organized with roles, goals and process.
The responsibilities for each roles were clear and consistent throughout the
project. The team chemistry was good and conflicts were handled quickly
and efficiently.

Chapter 6

Conclusion

6.1 RQ1

Measuring the efficiency when comparing the CLI tool to the web UI can
be done by evaluating the convenience of use, time to complete a task and
loading time. However, meanwhile these measuring methods may give an
indication of how efficient the two alternatives are, users’ personal prefer-
ences and prior experience will affect the results.

6.2 RQ2

The CLI has implemented functionalities that serve as a supplement to the
web UI’s weaknesses. By removing the necessity of navigation, the effi-
ciency is increased for certain tasks, like listing contents and assignments.
Another advantage is the potential for contributors to expand the function-
ality of the CLI to better suit their needs, or include the CLI in their own
scripts to automate tasks.

To the contrary, the use of cryptic IDs are cumbersome. Some tasks re-
quire several commands to be executed, as multiple IDs are needed. Es-
pecially for less proficient CLI users, this can lead to a high cognitive work-
load.

6.3 RQ3

It was experienced that the agile mindset and principles encouraged in
developing a versatile CLI.

Critical functionality was discovered through close cooperation with a ver-
satile user base. Of the used practices, it was evident that user tests were
the most crucial in increasing versatility, efficiency and effectiveness of
the CLI.

38

Chapter 6: Conclusion 39

Other agile practices gave the impression of utility, but there are no quant-
itative data and metrics that support this. They had an indirect impact in
improving the development, which facilitated better opportunities for cre-
ating a versatile product.

6.4 Key Findings

This thesis has explored some of the challenges entailed in the develop-
ment of a CLI as an alternative to an existing web UI. Following are the
challenges that were found the most significant:

• Measuring efficiency of use in different UIs often depends on personal
preference and experience.

• Quantifying how agile principles and practices can contribute in the
development of an efficient and effective alternative to an already
existing system.

• Tailoring the system to satisfy the utmost user preferences.

6.5 Societal Impact

Arguably, the work does not have any significant impact on the society. It
however opens up for better learning opportunities, as certain tasks can be
executed more efficiently. Users can have a better workflow and save time
when performing day to day tasks. Additionally, it includes more versatile
user base because of people having different preferences to what UI they
want to use.

Focusing on the environmental impact, results show that the CLI sends
less HTTP requests than the web UI. It is hard to say whether this impact
has any significance at all, since size of the payloads are not known. How-
ever, cloud computing is costly in general, and therefore the motivation
for the CLI is reduce the carbon footprint as opposed to the web UI. On the
other hand, these HTTP requests are in certain cases drastically reduced,
which arguably leads to both better energy cost savings and climate foot-
print. It is safe to say that the project does not have any major impact
on other sustainability assessments including gender differences, disabled
people, underrepresented minorities and so fourth. The CLI can be used
efficiently no matter what gender you are. People with disabilities may find
it more difficult to use this tool as results show that the CLI is advanced to
learn and has small amounts of visual objects. It is available for all people
independent of birth place and what religion is supported.

6.6 Future Work

The CLI has not included all the functionality provided by the Blackboard
Learn REST API. New features can be requested on the GitHub page (Blackboard-
LMS-CLI) by contributors. Even though the team used GitLab as the version-

https://github.com/Magnus2142/Blackboard-LMS-CLI
https://github.com/Magnus2142/Blackboard-LMS-CLI

Chapter 6: Conclusion 40

control system during development, the project was eventually transferred
to GitHub to reach out to more people. Additionally, the following issues
are facilitated through the open source project.

6.6.1 Groups

The groups module should contain functionality for listing, creating, up-
dating and deleting groups or whole sets of groups. Importing groups and
group sets should also be supported in this module.

In addition, a command for listing users based on different filters is desired.
Some examples of filters are: all users that are not in a group, all users
that are in at least one group, all users from a specific groups.

For students, a command to register for a group is needed.

6.6.2 Grading

In the assignments module, it would be convenient to have a command
for downloading all assignment attempts in a CSV file with an open score
field. After reviewing and grading the attempts, the CSV can be uploaded to
automatically update the grade of all the assignments simultaneously.

6.6.3 Stdin

A --stdin flag should be added as an option for all commands that require
text input, to allow for standard input instead of input from the editor.
This is to increase flexibility when creating custom scripts that use the
CLI.

Bibliography

[1] A. H. Jørgensen and B. A. Myers, ‘User interface history,’ CHI ’08 ex-
tended abstracts on Human factors in computing systems, pp. 2415–
2418, 2008.

[2] P. Verma, ‘Gracoli: A graphical command line user interface,’ CHI EA
’13: CHI ’13 Extended Abstracts on Human Factors in Computing
Systems, pp. 3143–3146, 2013. [Online]. Available: https://doi.org/
10.1145/2468356.2479631.

[3] R. Olofsson and S. Hultstrand, ‘Git - cli or gui,’ 2015.

[4] S. A. DAVID. ‘A critical understanding of learning management sys-
tem.’ (), [Online]. Available: https://www.academia.edu/3681177/A_
Critical_Understanding_of_Learning_Management_System. (accessed:
25.04.2022).

[5] C. C. Chang, ‘Exploring the determinants of e-learning systems con-
tinuance intention in academic libraries, library management,’ pp. 40–
55, 2014. [Online]. Available: https://doi.org/10.1108/01435121311298261,
(accessed: 25.04.2022).

[6] A. Tella, ‘Reliability and factor analysis of a blackboard course man-
agement system success: A scale development and validation in an
educational context,’ pp. 50–80, 2011. [Online]. Available: https :
//doi.org/10.28945/1368, (accessed: 26.04.2022).

[7] D. Bouhnik and T. Marcus, ‘Interaction in distance-learning courses,’
Journal of the American Society for Information Science and Tech-
nology, pp. 299–305, 2005. [Online]. Available: https://doi.org/10.
1002/asi.20277, (accessed: 25.04.2022).

[8] B. L. D. E Jane Servonsky W Lawrence Daniels, ‘Evaluation of black-
boards as a platform for distance education delivery,’ The ABNF
Journal, pp. 132–135, 2005, (accessed: 06.05.2022).

[9] F. Churchville. ‘User interface (ui).’ (), [Online]. Available: https://
www. techtarget . com/searchapparchitecture/definition/user - interface - UI.
(accessed: 10.05.2022).

[10] ‘Gui (graphical user interface).’ (), [Online]. Available: https://www.
gartner.com/en/information-technology/glossary/gui-graphical-user-interface.
(accessed: 10.03.2022).

[11] R. B. Cabot, ‘Re-imagining the command line user experience for
problem solving,’ pp. 20–30, 2017, (accessed: 09.05.2022).

41

https://doi.org/10.1145/2468356.2479631
https://doi.org/10.1145/2468356.2479631
https://www.academia.edu/3681177/A_Critical_Understanding_of_Learning_Management_System
https://www.academia.edu/3681177/A_Critical_Understanding_of_Learning_Management_System
https://doi.org/10.1108/01435121311298261
https://doi.org/10.28945/1368
https://doi.org/10.28945/1368
https://doi.org/10.1002/asi.20277
https://doi.org/10.1002/asi.20277
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.gartner.com/en/information-technology/glossary/gui-graphical-user-interface
https://www.gartner.com/en/information-technology/glossary/gui-graphical-user-interface

Bibliography 42

[12] D. A. N. Edwin L. Hutchins James D. Hollan, ‘Direct manipulation in-
terfaces,’ 1985. [Online]. Available: http://www-ihm.lri.fr/~mbl/ENS/
FONDIHM/2013/papers/Hutchins-HCI-85.pdf, (accessed: 29.03.2022).

[13] B. Shneiderman, ‘Direct manipulation: A step beyond programming
languages,’ 1983. [Online]. Available: https : / / ieeexplore . ieee . org /
stamp/stamp.jsp?tp=&arnumber=1654471, (accessed: 29.03.2022).

[14] J. Ellis. ‘Command line interface.’ (), [Online]. Available: https://www.
comms-express.com/infozone/article/command-line-interface/. (accessed:
14.03.2022).

[15] ‘Click documentation.’ (), [Online]. Available: https://click.palletsprojects.
com/en/8.1.x/#documentation. (accessed: 16.02.2022).

[16] G. Nguyen. ‘Make cli apps great again.’ (), [Online]. Available: https:
/ / codeburst . io / make - cli - apps - great - again - c93221422cdb. (accessed:
16.02.2022).

[17] J. Preece, Human-Computer Interaction: Concepts And Design. Ad-
dison Wesley, 1994, (accessed: 09.04.2022).

[18] R. C. Omanson, C. S. Miller, E. Young and D. Schwantes, ‘Compar-
ison of mouse and keyboard efficiency,’ [Online]. Available: https :
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1087.6916&rep=rep1&
type=pdf, (accessed: 30.03.2022).

[19] J. O. Wobbrock, H. H. Aung, B. Rothrock and B. A. Myers, ‘Maxim-
izing the guessability of symbolic input,’ [Online]. Available: https:
//dl.acm.org/doi/pdf/10.1145/1056808.1057043, (accessed: 09.04.2022).

[20] C. Coyier. ‘Graphical user interfaces for git.’ (2019), [Online]. Avail-
able: https://css-tricks.com/graphical-user-interfaces-for-git/. (accessed:
11.03.2022).

[21] ‘What is git and why should you use it?’ (), [Online]. Available: https:
//www.nobledesktop.com/learn/git/what-is-git. (accessed: 06.03.2022).

[22] RocHack, Bb, https://github.com/RocHack/bb, 2015.
[23] M. REHKOPF. ‘Agile 101.’ (), [Online]. Available: https://www.agilealliance.

org/agile101/. (accessed: 22.02.2022).
[24] V. E. Jyothi and K. N. Rao, ‘Effective implementation of agile prac-

tices ingenious and organized theoretical framework,’ International
Journal of Advanced Computer Science and Applications, pp. 41–
48, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?
doi = 10 . 1 . 1 . 674 . 6165 & rep = rep1 & type = pdf # page = 45, (accessed:
28.02.2022).

[25] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland and
D. Thomas. ‘Manifesto for agile software development.’ (), [Online].
Available: http://agilemanifesto.org/. (accessed: 28.02.2022).

[26] A. S. Campanelli and F. S. Parreiras. ‘Agile methods tailoring – a
systematic literature review.’ (), [Online]. Available: https ://www.
sciencedirect.com/science/article/pii/S0164121215001843. (accessed: 26.04.2022).

http://www-ihm.lri.fr/~mbl/ENS/FONDIHM/2013/papers/Hutchins-HCI-85.pdf
http://www-ihm.lri.fr/~mbl/ENS/FONDIHM/2013/papers/Hutchins-HCI-85.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1654471
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1654471
https://www.comms-express.com/infozone/article/command-line-interface/
https://www.comms-express.com/infozone/article/command-line-interface/
https://click.palletsprojects.com/en/8.1.x/#documentation
https://click.palletsprojects.com/en/8.1.x/#documentation
https://codeburst.io/make-cli-apps-great-again-c93221422cdb
https://codeburst.io/make-cli-apps-great-again-c93221422cdb
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1087.6916&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1087.6916&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1087.6916&rep=rep1&type=pdf
https://dl.acm.org/doi/pdf/10.1145/1056808.1057043
https://dl.acm.org/doi/pdf/10.1145/1056808.1057043
https://css-tricks.com/graphical-user-interfaces-for-git/
https://www.nobledesktop.com/learn/git/what-is-git
https://www.nobledesktop.com/learn/git/what-is-git
https://github.com/RocHack/bb
https://www.agilealliance.org/agile101/
https://www.agilealliance.org/agile101/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.674.6165&rep=rep1&type=pdf#page=45
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.674.6165&rep=rep1&type=pdf#page=45
http://agilemanifesto.org/
https://www.sciencedirect.com/science/article/pii/S0164121215001843
https://www.sciencedirect.com/science/article/pii/S0164121215001843

Bibliography 43

[27] J. Yip. ‘It’s not just standing up: Patterns for daily standup meetings.’
(2016), [Online]. Available: https ://www.martinfowler . com/articles/
itsNotJustStandingUp.html. (accessed: 12.03.2022).

[28] J. Link, ‘The role of unit tests in the software process,’ 2003. [On-
line]. Available: https://www.sciencedirect.com/topics/computer-science/
incremental-development, (accessed: 02.04.2022).

[29] ‘Iteration planning.’ (), [Online]. Available: https://www.scaledagileframework.
com/iteration-planning/. (accessed: 02.04.2022).

[30] ‘Agile retrospective.’ (), [Online]. Available: https://www.techtarget.
com/searchsoftwarequality/definition/Agile-retrospective. (accessed: 02.04.2022).

[31] ‘Retrospective 101.’ (), [Online]. Available: https : / / www . retrium .
com/ultimate-guide-to-agile-retrospectives/retrospectives-101. (accessed:
06.04.2022).

[32] J. Hofmann, ‘Unit testing in agile web projects,’ 10th May 2017.
[Online]. Available: https://medium.com/aperto-an-ibm-company/unit-
testing-in-agile-web-projects-4db5547a733b, (accessed: 10.04.2022).

[33] ‘Moderated testing 101.’ (), [Online]. Available: https://www.usertesting.
com/blog/moderated-testing-101. (accessed: 06.04.2022).

[34] J. DeRome. ‘Moderated vs. unmoderated usability testing: The pros
and cons.’ (), [Online]. Available: https://www.usertesting.com/blog/
moderated-vs-unmoderated-usability-testing. (accessed: 06.04.2022).

[35] I. Sacolick, ‘What is ci/cd? continuous integration and continuous
delivery explained,’ 15th Apr. 2022. [Online]. Available: https://www.
infoworld.com/article/3271126/what- is- cicd- continuous- integration- and-
continuous-delivery-explained.html, (accessed: 20.04.2022).

[36] S. Pittet. ‘What are the differences between continuous integra-
tion, continuous delivery, and continuous deployment (ci/cd)?’ (),
[Online]. Available: https : / / www . atlassian . com / continuous - delivery /
principles/continuous- integration- vs- delivery- vs- deployment. (accessed:
02.05.2022).

https://www.martinfowler.com/articles/itsNotJustStandingUp.html
https://www.martinfowler.com/articles/itsNotJustStandingUp.html
https://www.sciencedirect.com/topics/computer-science/incremental-development
https://www.sciencedirect.com/topics/computer-science/incremental-development
https://www.scaledagileframework.com/iteration-planning/
https://www.scaledagileframework.com/iteration-planning/
https://www.techtarget.com/searchsoftwarequality/definition/Agile-retrospective
https://www.techtarget.com/searchsoftwarequality/definition/Agile-retrospective
https://www.retrium.com/ultimate-guide-to-agile-retrospectives/retrospectives-101
https://www.retrium.com/ultimate-guide-to-agile-retrospectives/retrospectives-101
https://medium.com/aperto-an-ibm-company/unit-testing-in-agile-web-projects-4db5547a733b
https://medium.com/aperto-an-ibm-company/unit-testing-in-agile-web-projects-4db5547a733b
https://www.usertesting.com/blog/moderated-testing-101
https://www.usertesting.com/blog/moderated-testing-101
https://www.usertesting.com/blog/moderated-vs-unmoderated-usability-testing
https://www.usertesting.com/blog/moderated-vs-unmoderated-usability-testing
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuous-delivery-explained.html
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

Appendices

• Appendix A - Code Listings
• Appendix B - Vision Document
• Appendix C - Requirements Document
• Appendix D - System Document
• Appendix E - User Tests
• Appendix F - Surveys
• Appendix G - Project Handbook

44

Appendix A

Code Listings

Code listings

Code listing A.1: Get children

def get_chi ldren (ctx , course_id , work l i s t , fo lder_ids , node_ids) :
i f l en (work l i s t) == 0:

return
e l s e :

node = work l i s t . pop (0)
node_id = node . data [’ id ’]
response = contents_serv ice . get_chi ldren (

ctx . obj [’SESSION ’] , course_id , node_id)
i f check_response (response) == False :

return
e l s e :

ch i ld r en = response . j son () [’ r e s u l t s ’]
f o r ch i l d in ch i ld ren :

child_node = Node(ch i l d)
node . add_child (child_node)
i f i s_ fo lde r (ch i l d) :

work l i s t . append (child_node)
fo lder_ids . append (ch i l d [’ id ’])

e l s e :
node_ids . append (ch i l d [’ id ’])

return get_chi ldren (ctx , course_id , work l i s t , fo lder_ids
, node_ids)

Code listing A.2: Depth-first search

def preorder (s e l f) :
root = s e l f

root_node = Nd(root . data [’ id ’] + ’ ’ + root . data [’ t i t l e ’])
def d f s (node : Node , root_node : Nd, parent : Nd) -> None :

i f not node : return
e l i f parent i s None :

parent = root_node
e l s e :

45

Chapter A: Code Listings 46

nd = Nd(node . data [’ id ’] + ’ ’ + node . data [’
t i t l e ’] , parent)

parent = nd
fo r c in node . ch i ld r en :

d f s (c , root_node , parent)

d f s (root , root_node , None)
return root_node

	Abstract
	Sammendrag
	Problem Description
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Research Questions
	Agenda

	Background and Theory
	Blackboard as a Learning Management System
	User Interfaces
	Graphical User Interface
	Command-Line Interface

	Git as a Use Case
	Existing Alternatives
	Development Theory
	Agile Development

	Method
	Development Process
	Data Collection Methods
	Data Analysis

	Choice of Technology and Implementation
	Blackboard Learn REST API
	System Architecture and MVC
	Design Pattern
	Technological Dependencies

	Measuring Efficiency

	Results
	Data
	Surveys
	User Tests

	Commands and Functionality
	Functional requirements
	Arguments and Options
	Help Snippets
	Input
	Output
	Authorization

	Non-functional Requirements
	Usability
	Reliability
	Performance
	Supportability
	Security

	Efficiency
	Administrative Results
	Time Management
	Agile Process Documentation

	Discussion
	Evaluation of the Research Questions
	Critical Analysis
	Limitations of Data
	Applicability of the CLI
	Team Evaluation

	Conclusion
	RQ1
	RQ2
	RQ3
	Key Findings
	Societal Impact
	Future Work
	Groups
	Grading
	Stdin

	Bibliography
	Appendices
	Code Listings

