Abstract

Every year, excavation projects cause costly infrastructure damage that af-
fects convenience and livelihoods of many people in Norway. The purpose
of this report is to explore the possibility of predicting the outcome of new
projects using machine learning. Depending on the accuracy and probability
that a project leads to strike damage, safety measures can be implemented
to decrease that risk, with the goal that a machine learning model will serve
as a risk assessment tool for future projects. For it to be possible to train
machine learning models, Geomatikk AS has provided a huge backlog of
metadata about past excavation projects and their outcomes.



Sammendrag

Graveskader forarsaker hvert ar kostbare skader pa infrastruktur som pavirker
levebrgdet og skaper ulemper for mange rundt om i Norge. Formalet med
denne rapporten er & utforske muligheten til & forutsi utfallet til fremtidige
prosjekter ved bruk av maskinlaering. Avhengig av ngyaktighet og sannsyn-
lighet for at et prosjekt vil fgre til graveskader, vil det kunne implementeres
sikkerhetstiltak for & minske risikoen, dette med et mal om at en maskin-
laeringsmodell vil kunne brukes som et risikovurdering verktgy for graveskader
i fremtiden. For & kunne trene maskinleeringsmodellene har Geomatikk AS
gikk tilgang til en stor mengde metadata fra tidligere gravesprosjekter med
graveskadeutfall.
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Assignment text

Arbeidstittel: Maskinlaering innenfor graveskadeforebygging

Hensikten med oppgaven:
Vi gnsker & se hvilke muligheter maskinlaering kan gi oss for a forutse sjansen
for at en graveskade vil skje ifm et graveprosjekt.

Kort beskrivelse av oppgaveforslag:

Som landsdekkende aktgr innen gravemeldingstjenste i Norge, Sverige og
Finland sitter vi med gode data p& graveprosjekter og hvilke prosjekter som
har gitt skade pa eksisterende infrastruktur - graveskade. Vi gnsker & se
om vi ved hjelp av maskinlaering kan bruke disse dataene til @ forutse om
et graveprosjekt vil fgre til graveskade og pa den maten sette inn tiltak som
gj@r at sjansen for at det blri graveskader.

Utfyllende kommentarer til hva oppgaven gjelder:

Geomatikkgruppen h&ndterer cirka 400 000 gravehenvendelser i Norge, Sverige
og Finland §rlig. Vi mottar informasjon om graveprosjektet fra entreprengr
og gir entreprengrer informasjon om hvilken infrastruktur som ligger i bakken.
Informasjonen gies bade ved utsending av infrastrukturkart og ved fysisk op-
plytting av infrastrukturen i arbeidsomradet.

En graveskade er en skade pa eksisterende infrastruktur ifm graving. Dette
kan fgre til bortfall av strem, vann eller bredband hos sluttbrukere.

Dette pafgrer oss som samfunn betydelige kostnader hvert &r. Graveskader
lagres ogsa i vart system og er knyttet til en gravehenvendelser. Dette er
gode testsett for utprgving av AI-modeller.

Det er mye metadata knyttet til en gravehenvendelse. Eksempler pa det er
tid, utfgrer, kommentarfelt, type infrastruktur i omradet, stgrrelse osv. Vi
gnsker @ se om man ved bruk av Al kan finne om det er noen sammenheng
mellom metadata og sjansen for at infrastruktur blir skadet ifm prosjektet.
Det er ogsd aktuelt & bruke eksterne kilder som f. eks veeret pa skadedagen.
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1 Introduction

Strike damages put a huge toll on the community, so there is a massive in-
centive to avoid them. Geomatikk have done internal analysis of their data,
however they have not managed to reach any conclusions. This is why our
assignment is to figure out a way to use machine learning to predict whether
a project will have an accident or not.

Machine learning has and is being used frequently in analyzing and inter-
preting data. It's especially efficient when the amount of data is large. This
is why machine learning was chosen as a tool to solve this problem, as there
are huge amounts of data available.

Due to the nature of the project where false positives don’t really matter,
they will be treated as permissible.

This paper will be taking a look at which machine learning models can be
used to predict strike damages and which models are most suited to this
task.

1.1 Research Question

The title of the Bachelor Thesis is "Machine learning for prevention of strike
damage” with the purpose of researching and developing a ML model that will
help to assess the risk of excavation projects. In our thesis, we will look at
how and what techniques to use to preprocess the data set and then create
a ML model to classify the outcome. Some of the challenges that we have
to face in preprocessing are how to handle a dataset with mixed data types,
imbalanced data, missing values, and huge amounts of data. However, the
challenges during the development of the model are to determine which
model is the most suitable for our objective and data and which evaluation
metrics to use. Choosing evaluation metrics will be done with consideration
of Geomatikk’s recommendation to use recall as an evaluation metric. This
led the team to formulate the following research question:

How can machine learning be used for risk assessment of

excavation projects?

1.2 Report Structure

We will begin by presenting general information about machine learning and
its intricacies, followed by the methodology used to work on the project.
Then we will discuss the project and present our results and conclusion.

This report is structured into the following chapters:
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. - This chapter introduces the project. It gives a descrip-

tion of the research question of this paper, acronyms and abbreviations
and a glossary.

« Background and Theory| - This chapter explains relevant theory and
gives background to the following chapters.

» Method and Technology| - This chapter describes the process and
methodology behind the planning and execution of the experiments.
Furthermore, it gives an overview over choices of technology for this

project.

. - In this chapter the results from the experiments are pre-
sented.

. - This chapter discuss the results against the research
question.

e ([Conclusion and Future work| - In this chapter a conclusion for the
work of this paper is presented and it provides suggestions for future
work to be done related to this project.

« Broader impact - This chapter goes into the environmental, social and
ethical impacts of this project.

1.3 Acronyms and Abbreviations

Al = artificial intelligence

ANN = Artificial Neural Network

API = application programming interface
AUC = Area Under The Curve

CUDA = compute unified device architecture
CPU = central processing unit

EMK = Emergency Medical Communication
FP = False Positive

FN = False Negative

GPU = graphics processing unit

KNN = K-Nearest Neighbours

KPI = key performance indicator

ML = machine learning

PR = precision-recall SVM = Support Vector Machine
TP = True Positive

TN = True Negative

WSL = Windows Subsystem for Linux



1.4 Glossary

Strike damage[ﬂ = accidental damage on any type of underground infrastruc-
ture, for example, electric cable, water pipe, gas pipe or sewage lines.

Isource - Private communication with Geomatikk



2 Background and Theory

This chapter will present the theoretical concepts and knowledge behind the
methods and techniques that are normally used for similar objectives. Some
of the methods presented below were used in this thesis, while others were
not, either due to the lack of time or due to being irrelevant in our particular
case.

2.1 Artificial Intelligence

According to Stanford professor John McCarthy, [[L] one of the founders of
the discipline of artificial intelligence, Al is the field of making intelligent ma-
chines. and since modern machines run on commands from programs, then
Al is by extension, the field of making intelligent computer programs.
Intelligence originally was a trait exclusively for living creatures, but with Al
development machines are getting constantly more intelligent and capable.
Al is offering improvements and even breakthroughs in many sectors, rang-
ing from medicine[|2] to autonomous driving.[3]

While some Al systems are completely based on human reasoning. As in
a programmer writing an algorithm to the tune of if X, do y. Others are
made to self-learn and improve, which is the field of Machine Learning.

2.2 Machine Learning

Machine learning is the field of building systems that improve themselves
with experience. Machine learning is a part of Al, but unless the AI program
reliably learns from experience, it is not ML. Professor Tom M. Mitchell from
Carnegie Mellon University gave a more formal definition:[4, p. 1]

"...we say that a machine learns with respect to a particular task T, perfor-
mance metric P, and type of experience E, if the system reliably improves
its performance P at task T, following experience E.”

In some fields ML is already the best way to develop software. Some of
these fields are:

¢ Big level of complexity: When the solution requires algorithms too com-
plex for a human to realistically make, such as speech recognition and
classifying images. It is easy for a human to understand speech, but it
is hard to write an algorithm that does that reliably.

e constant adaptation: When software needs to constantly adapt to new
information, such as a recommendation system that recommends based
on changing spending habits and changing interests. Or spam email fil-
ters that have to flag new types of spam email. An email spam filter



from 2010 might have a hard time flagging spam email it has not seen
before, like spam about bitcoins.

ML have four main branches as shown in the figure below:

r Machine Learning Types ]

e e

Supervised Unsupervised Semi-Supervised Reinforcement
Learning Learning Learning Learning
Target Var. Target Var. Learns from Combined Data Positive Negative
(Discrete) (cO,ﬂi,m,s) Unlabeled Data {Labeled + Unlabeled) {Reward) {Penalty)
Classification Regression Clustering l Association | [Classification| | Clustering

Figure 1: Machine learning branches[5]

2.2.1 Supervised Learning

Supervised learning is typically the task of machine learning to learn a func-
tion that maps an input to an output based on sample input-output pairs[|5].
Supervised learning algorithms will analyze the training data and then pro-
duce an inferred function which is used for mapping new examples. It is the
most important methodology in machine learning.

2.2.2 Unsupervised Learning

Unsupervised learning analyzes unlabeled datasets without the need for hu-
man interference, i.e., a data-driven process[5]. In unsupervised learning
there is no specific output provided, instead one will try to infer some un-
derlying structure from the inputs[6].

2.2.3 Semi-Supervised

Semi-supervised learning can be defined as a hybridization of the above-
mentioned supervised and unsupervised methods, as it operates on both
labeled and unlabeled data[l5]. Semi-supervised learning algorithms will at-
tempt to improve the performance in one the two tasks by utilizing data
generally associated with the other[6].



2.2.4 Reinforcement Learning

Reinforcement learning is a type of machine learning algorithm that enables
software agents and machines to automatically evaluate the optimal be-
haviour in a particular context or environment to improve its efficiency[5]].

2.3 Machine Learning Models
2.3.1 Random Forest

Random forest is a machine learning method for classification and regres-
sion. It is a computationally efficient technique that operates quickly over
large datasets[|7]. A random forest is comprised of random trees which are
drawn at random from a set of possible trees with random attributes at each
node. Random trees can be generated efficiently and combined into large
sets leading to generally accurate models[7].

Algorithm 1 Basic Random Forest[8, p. 200]
Select the number of models to build, m
fori=1tomdo
Generate a bootstrap sample of the original data
Train a tree model on this sample
for cachsplit do
Randomly select k(< P) of the original predictors
Select the best predictor among the k predictors and partition the data
end for
Use typical tree model stopping criteria to determine when a tree is com-
plete (but do not prune)
end for

2.3.2 Support Vector Machine

A support vector machine is a computer algorithm that learns by example to
assign labels to objects[9]]. This machine learning algorithm is mostly used
for pattern recognition. The SVM algorithm is a supervised type of machine
learning algorithm which takes a set of training examples which each belong
to one of many categories and builds a model that predicts the category of
new examples[|10].

2.3.3 K-Nearest Neighbors

The k-nearest neighbours algorithm is a supervised learning method. It is
used for classification and regression. In K-NN, a database is searched for
the most similar elements to the given query, and the similarity is defined
by a distance function[|11].



2.3.4 XGBoost

XGBoost(eXtreme Gradient Boosting) is an open-source library which pro-
vides regularizing gradient boosting. XGBoost is an implementation of a
generalized boosting algorithm that has become extremely popular due to
its excellent predictive performance[12]. The drawbacks to XGBoost is that
it can be very time consuming to run.

2.3.4.1 Gradient Boosting

Gradient boosting is a very important tool when it comes to supervised learn-
ing which provides state of the art performance on classification, regression
and ranking tasks[|12]].

2.3.5 Artificial Neural Network

Artificial neural networks are very popular nowadays and are usually used in
deep learning projects. They are trained to solve a particular task. Neurons
are organized into groups called layers and connected to each other precisely
to form a network[|13]. If the number of layers is high, then the ANN is
defined as deep.

2.4 Cost-Sensitive Learning

Cost-Sensitive learning is a type of learning in data mining that takes the
misclassification costs into consideration[|14]]. This approach is very common
in datasets where the class distributions of data are highly imbalanced.

2.5 Evaluation Metrics

Evaluation metrics help measure the performance of a ML model. There are
multiple evaluation metrics to choose from, and the choice of which to use
when assessing an ML solution depends on the choice of KPIs.

2.5.1 Confusion matrix

The confusion matrix is one of the most popular methods to measure the
efficacy of a classification problem[[15]. It is a two-dimensional table visu-
alizing the classification performance of a classifier as seen in Figure E] Itis
indexed in one dimension by the true or observed class of an object and by
the prediction of the class in the other.

True positives are defined as positive samples that are correctly classified.
A true negative occurs when a sample of a negative class is correctly classi-
fied by the model. For classification models with two classes, it makes two
types of errors. They are false positives and false negatives. False positives,
also known as type 1 errors, occur when samples of a negative class have
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incorrectly been classified as positive. False negatives, or type 2 errors as
they also are known as, occur when a sample of the positive class has been
wrongly classified as negative[16].

Predicted Observed
Event Nonevent

Event TP FP
Nonevent FN TN

Figure 2: Confusion matrix for binary classification with “event” and “non-
event”. The cells in the table indicate the number of true positives (TP), false
positive (FP), true negative (TN) and false negative (FN)[8]

The evaluation metrics described below are all based on the values from
the confusion matrix.

2.5.2 Accuracy score

Accuracy is defined by

TP+TN

A —
CUraY = p T FP Y FN + TN

(1)

and is a representation of how many predictions were made correctly[15].

2.5.3 Precision

Precision is defined as
Precision = _TP (2)
TP+ FP

and is the ratio of true positives divided by the total number of positives
predicted[[16].

2.5.4 Reacall

Recall is defined as of the total of all positive events, how many were correctly
classified, and is given by the formula

TP
Recall = m (3)

[15]
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2.5.5 F1-Score

F1-Score is a combination of precision and recall and solves the dilemma
of having to choose the KPI (i.e., higher recall or higher precision) when
comparing models[|15]]. It is defined as

2 x (Precision * Recall)

F1 Score = (4)

Precision + Recall

and is the harmonic mean of precision and recall, which is a kind of numerical
average. This means that a model with a high F1-Score has both good
precision and good recall[|16]].

2.5.6 ROC & AUC

Verdhan et al.[[L5] define the receiver operating characteristic or ROC as a
plot between TPR (true positive rate) and FPR (false positive rate), see Figure
E]a for an example, where TPR is the same as recall [ﬂ, and FPR is calculated
using the respective formula

FP

FPR= —————
B=TnTFp

(5)
In real life, there are finite pairs of TPR and FPR coordinates to plot the ROC
curve, and might not look as smooth as Figure@a. As the curve is only an
approximation, it will realistically look more like the plot in Figur.

ROC curve
0.8

0.6

TPR
TPR

04t .~ AUC

02F

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
FPR FPR
(a) ROC curve and AUC. (b) ROC curve and AUC with finite samples.

Figure 3: Example of graphs illustrating ROC curve and AUC[17, p. 38]

We can generally say that a model is better than another if it totally encloses
the other model’s ROC curve. in the case where there are intersections be-
tween the curves, no model is generally better than the other. A way of
evaluating the performance of two different models when the ROC curve is
overlapping is by using the Area Under the ROC curve (AUQC). It is illustrated
in Figur by the shaded area under the ROC curve. AUC is approximated
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by the formula stated in [17]] as

AUC =

DN | =

Z_: (Tig1 — ) (Yi + Yit1) (6)

where z; = 0 and z,, = 1, and is calculating the sum of areas between each
step along the curve as illustrated in Figure [ﬂb. [17, pp. 36-38]

2.6 Precision-Recall AUC

Precision-Recall AUC is the calculated area under a curve, where the curve
is defined by a trade-off between different aspects of performance as the
threshold applied to the models predictions varies[[18]. PR-AUC varies on a
scale from zero to one with random performance equal to sample prevalence
in the focal dataset[|18]].

2.7 Cross-validation

Cross-validation is a data resampling technique used to access the gener-
alization ability of predictive models and to prevent overfitting [[19]. The
technique works by splitting the data into K stratified subsets. then it trains
the model k times using k-1 subsets and tests on the last subset. Each sub-
set gets used as a test set once. the average of the k testing scores is used
as the evaluation result.

| D l
!
[p]p,[ D] D.] D[ D] D.] D] DD\

Training set Testing set

[p]p.]p]p]D]D]D DD [P.] — Testing result 1

Evaluation
result

| 0,| D.| ;| | .| D] D] D] D m — Testing result 2

Averaging

|/)._;[/.)x[/,),]/).‘[/,),,[l)fll,)\|/,)..]/)i,| 7 —+ Testing result 10

Figure 4: Illustration showing data splitting for 10 fold cross validation.[17,
p. 29]

2.8 Re-sampling techniques

When you are dealing with an imbalanced dataset, your results are likely to
be inaccurate. Which is why there are multiple re-sampling methods avail-
able. There are three methods of re-sampling, you have oversampling, un-
dersampling and methods which combine the two.
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2.8.1 Oversampling

Oversampling is generally the most frequently used re-sampling method.
Oversampling works by raising the weight of the minority class by either
replicating minority class samples, or creating new ones. There are multi-
ple different oversampling methods. Here we will go over two of the most
popular ones.

e RandomOverSampler: This method will increase the size of the dataset
by replicating existing samples. The main point of this method is that it
does not create new samples, and the variety of the samples does not
change [20].

e SMOTE: This is a method that increases the number of minority sam-
ples by generating new samples. The algorithm takes samples from the
feature space for each target class and its nearest neighbours, and then
takes the features from target case and its neighbours and combines
them into new samples [20]. New samples generated from this method
are not copies of existing samples.

2.8.2 Undersampling

Undersampling works by removing samples from the majority class until the
dataset is balanced enough. When a dataset is very imbalanced, its usually
realistic to assume that many samples are redundant. However there is
always a risk of removing relevant data [21].

e RandomUnderSampler: This method will reduce the size of the dataset
by removing samples from the majority class by random. This is the
risky part of using undersampling as you may lose critical data.

o EditedNearestNeighbours: This method applies a nearest-neighbours
algorithm and edits the dataset by removing samples that do not agree
"enough” with their neighbourhood [22].

2.8.3 Combined Sampling

Oversampling and undersampling each have different advantages and dis-
advantages. By combining the two, you can gain the benefits and drawbacks
of both methods [20].

e SMOTEENN This is one of the most used resampling methods which
combines SMOTE as the oversampling model, and ENN(EditedNearestNeighbour)
as the undersampling model.

2.9 Feature engineering

Feature engineering is the process of converting raw observation into useful
features to be used in ML. It uses statistical techniques to achieve it's goals.
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2.9.1 Dummy Variables Encoding

It is an encoding technique which maps each unique category to a vector
that has binary values 1 or 0. The vector contains the 1 if the instance is a
part of this category and 0 if it is not.[23]

2.9.2 Mean Target Encoding

It is an encoding method where each category C in the feature X is replaced
by the a ratio R calculated with regards to the target Y. In our case the target
feature is binary Y¢[0,1]. The ratio for binary targets is the number of positive
instances of to the total number of instances of the specified category. [24]

number of instances where X =C and Y =1

R= (7)

number of instances where X = C

3 Method and Technology

This chapter is based on the theory presented in Chapter 2 and provides
an overview of the methodology behind the experiments conducted. It also
covers the choice of technologies used to execute the experiments.

3.1 Process

In this section, we describe the process prior to the implementation of ma-
chine learning models and the resulting experiments.

3.1.1 Data

The data used in this project were provided by Geomatikk AS and contained
a large amount of raw data from more than 400 000 previous inquiries. It
contained features with categorical and numerical data.

The dataset contained sensitive information and prevented us from bringing
it outside of their offices. Due to the current situation regarding Covid-19
restrictions at the beginning of the project we were unable to access the
real dataset. Therefore, they also provided a smaller demo dataset contain-
ing fake data that replicated the format of the real dataset. We used this
to familiarize ourselves with the structure of the data and the data types.
Throughout the early phases of the project, we continuously discussed the
dataset with Geomatikk and we ended up with iterating through a few dif-
ferent versions of the dataset as things were discovered while analyzing the
data.

Short summary of the features:

* henvendelse_id: a unique id for each inquiry.
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henvendelse_id pavist_dato graveskade_dato hastesak

1 03.04.2019 00:00 USANN

2 27.06.2021 11:22 28.06.2021 15.20 SANN

3 07.07.2021 12:10 SANN

4 07.07.2021 12:13 15.07.2021 10.15 SANN

5 07.07.2021 12:22 SANN

gravedybde kommune_id organisasjon_id blindarbeid

2 319 348 USANN

10 64 12020 USANN

0.75 72 14206 USANN

3 72 14207 USANN

3 64 673 USANN
grunnboring berorte_fagomraader areal

USANN {"(fft,f6655656F)" 400

USANN (A ARARARARARDES 50

USANN {"(t,f,f 1,1 f5666) 85

USANN (A ARARARARARDES 150

USANN {"(t,f,f 1,1 F5f666)7) 1300

polygon

POLYGON((7041827.20 270321.45, 7041817.10 270360.15, 7041799.85
270334.20, 7041827.20 270321.45))

POLYGON((7041827.20 270321.45, 7041817.10 270360.15, 7041799.85
270334.20, 7041827.20 270321.45))

POLYGON((7041827.20 270321.45, 7041817.10 270360.15, 7041799.85
270334.20, 7041827.20 270321.45))

POLYGON((7041827.20 270321.45, 7041817.10 270360.15, 7041799.85
270334.20, 7041827.20 270321.45))

POLYGON((7041827.20 270321.45, 7041817.10 270360.15, 7041799.85

270334.20, 7041827.20 270321.45))

har_graveskade paaviser har_maskinkontroll
0 1 0

1 1 0

0 2 1

1 3 0

0 4 0

skadepunkt netteier_ids

POINT(270266.5 7041828.325)

POINT(270266.5 7041828.325)

{3010,3020,3030,3040,3050}

{7340}
{7340}
{3010}
{7340}

Table 1: Example of the dataset with columns and their values. This table
only contains dummy data
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paavist_dato: the date and time of when the Geomatikk field agent
went on a site inspection.

graveskade_dato: the date and time of when the strike damage oc-
curred.

hastesak: Boolean shows whether the project had to be addressed
quickly.

gavedypde: the depth of the excavation/drilling.
kommune_id: the id of municipality where the project takes place.
organisasjon_id: the id of the contractor which submitted the project.

blindarbeid: Boolean shows when the project have drilling under the
ground.

grunnboring: Boolean shows if the project is a drilling project.

berorte_fagomraader: a list of Boolean that shows which infrastruc-
ture type the project is working on. The list is: VA_Nett, El_nett,
Tele_fiber_kabel_tv, Fjernvarme, Grunnboring, Annet, Gassledning, Vei,
Gjerde, Autovern, Bygg_anlegg, Drenering.

areal: the total area of the project site.

polygon: UTM Zoone 33N coordinates that shows a polygon represen-
tation of the project site.

har_gravskade: Boolean that shows whether there was a strike dam-
age.

paaviser: id of Geomatikk field agent that went on site inspection.

har_maskinkontroll: Boolean that shows whether the project will use
machines that utilize coordinates for extra precision.

skadepunkt: the UTM Zoone 33N coordinate of where the strike dam-
age occurred.

netteier_ids: a list of ids of the infrastructure within a certain radius
of the project site.

3.1.2 Research

Following the acquisition of the data, we continued to look for relevant re-
search that we could use as a base for the experiments. Geomatikk informed
us that no previous research had been done in this field?. However, we did
our own literary search and were unable to find any research directly related
to the use of machine learning to make risk assessments on the chance of

2private communication with Geomatikk
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strike damage. We therefore had to resolve to research within related fields,
with the same type of problem to solve, e.g. disease prediction or fraudu-
lent credit card prediction. The research phase was concentrated around the
beginning of the project, but some research was done later, if new topics of
relevance was discovered.

3.1.3 Data Analysis

Due to the large amount of raw data, and to get better knowledge of it, con-
ducting a data analysis was necessary. The analysis provided insight into
the distribution of the values in the different columns. This gave us knowl-
edge about what numerical features had to be standardized or normalized.
It also provided information about which features contained categorical data
and the distribution of it. This helped in the decision of whether to have one
hot encoding or if some other feature engineering should be applied. During
the analysis, it was discovered that the target classes were very heavily im-
balanced, with a distribution of 97.68% of inquires with out strike damage
and 2.32% with strike damage. The distribution is illustrated in Figure [5.
This resulted in having to take more consideration when picking out models
we wanted to implement in the experiments, and having to explore different
options into how dealing with imbalances datasets.

Distribution of strike damage vs no strike damage

400000

300000

200000

100000

0.0 1.0

Figure 5: Distribution of target classes

Table illustrates an excerpt of how the raw dataset look like. It is a dataset
containing fabricated data, but with the same structure and data formats
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as the original dataset. Each row contains information about an inquiry re-
ceived by Geomatikk, where "har_graveskade” is the target class, and the
other columns are potential features.

Figure @ shows the distribution of area sizes per inquiry. From this figure we
can see the existence of outliers, and that the area feature should be scaled.

Distribution of area

(-2633.378, 263337.76]
(263337.76, 526675.52]
(526675.52, 790013.28]
(790013.28, 1053351.04]

o (1053351.04, 1316688.8]
< (1316688.8, 1580026.56]
(1580026.56, 1843364.32]

(1843364.32, 2106702.08]

(2106702.08, 2370039.84]

(237003984, 2633377.6] | NN

101 102 103 104 10°
Count - Log Scale

Figure 6: Distribution of site area sizes.

Figures , and @ show the disruption inquires per field agents, munici-
pality, and organisation/contractor respectively. the figures show what is
expected, that inquires are not distributed evenly. This will have an impli-
cation on which encoding technique we use for these categorical features.

Figure shows the distribution of the number of infrastructures around
project sites. It might prove useful to make a feature of this information.

After further analysis, it was discovered that some of the features were not
useful for our case. These feature were henvendelse_id, gravskade_dato,
and polygon. henvendelse_id is a unique id for each project. gravskade dato
and polygon where not used. It was also discovered that grunnboring was
redundant as it was also available in berorte_fagomraader.
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Count of inquiry occurences per detector

(0, 250]
(250, 500]
(500, 750]

(750, 1000]
(1000, 2000]
(2000, 3000]
(3000, 4000]
(4000, 5000]
(5000, 6000]
(6000, 7000]
(7000, 8000]

0 25 50 75 100 125 150 175
Number of detectors

Number of occurences

Figure 7: Distribution inquires per field agent.

Count of occurences per muncipality

(7,181 |

(18, 48]
(48, 125]
(125, 328]
(328, 857]
(857, 2238]

Occurences

(2238, 5843]
(5843, 15252]

(15252, 39810]

0 20 40 60 80 100 120 140
Count

Figure 8: Distribution of inquires per municipality.
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Count of occurences per organization

(1, 2]
(2, 3]
(3. 6]
(6, 10]
(10, 19]
(19, 34]

Organization id

(34, 60]
(60, 109]

(109, 195]

0 200 400 600 800 1000 1200 1400 1600
Count

Figure 9: Distribution of inquires per organisation.

Frequency of number of infrastructure owners per inquiry

100000

80000

60000

40000

No. of inquries

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14
No. of infrastructure owners

Figure 10: disruption of number of infrastructures around project sites.
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3.2 Execution

This chapter will explain how the experiments were implemented in this
project. It will also explain the scientific method that was followed.

Figure shows a simplified depiction of the process steps throughout this
project.

Acquiring data
parameter tuning

model making }< preprocessing

Figure 11: Simplified overview of the process steps throughout the project.

3.2.1 Experimentation Process

During the planning phase, the team chose to follow the hypothetico-deductive
method illustrated in figure during the execution phase.

The hypothetico-deductive model is used to scientifically explore a research
question. The model follows the steps below:

¢ Make an observation.
e Use the observation to make a research question

e Formulate a hypothesis built on the observation and research question.
Where the hypothesis should be falsifiable.

¢ Deduce predictions based on the hypothesis.
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e Perform experiments around the predictions.
e Collect the result of the experiments.
e Evaluate the hypothesis in light of the results obtained.

This model is usually run in cycles where after every evaluation you return
to the hypothesis step, make a new prediction and run tests to try and falsify
the prediction.

The experimentation made during the project aimed to utilize the Hypotheico-
deductive method to gain empirical support for our hypothesis. The method
was helpful in structuring the experiments, especially since we had a broad
research question around "how” to use machine learning in this special case.
We tried to formulate hypotheses around the different ML models and prepro-
cessing techniques, and then falsify them. The experiments were conducted
and the results were logged and evaluated in order to come to a conclusion
in the end.

Problem question I Hypothesis
A

Figure 12: Hypothetico-deductive model Illustration. [25]

3.2.2 Data Prepossessing

As stated in subsection we had a big dataset containing a backlog of
project inquiries. The dataset had a variety of features. see table .

Features henvendelse_id, gravskade _dato, and polygon, and the redundant
feature grunnboring were dropped from the dataset. There were also a rel-
atively small number of instances that had missing values. These instances
were also dropped.
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Feature extraction and engineering techniques were implemented to extract
some useful features and improve them:

e From feature pavist_dato, 19 binary features were extracted. 7 repre-
senting which day of the week the field agent inspected the site, and
12 represented which month the inspection took place.

e From feature netteier_ids a new continuous feature was extracted. the
feature represented the number of infrastructures within a certain ra-
dius from the project site.

e Feature berorte_fagomraader was split into 12 binary features repre-
senting the 12 infrastructure types.

e Four continuous feature representing count of inquiries for each cate-
gory were extracted from the categorical features kommune_id, organ-
isasjon_id, paaviser, and netteier_ids. see table [2| which shows where
they were used.

e Binary features hastesak, blindarbeid, and grunnboring which were rep-
resented in strings “SANN”/”"USANN” were replaced by number repre-
sentation “07/71".

e Feature encoding: Both Target Mean Encoding and Dummy Variable
Encoding were used on the categorical variables in the dataset. See
table [Z

e Scaling: scaling technique was used on feature areal. The count fea-
tures see table [2| were scaled as well.

Resampling techniques were used to mitigate the effect of data imbalance in
the dataset. SMOTEEN Combined sampling technique resampled the train-
ing set of each dataset. The resampled training set was fed to the model.

Due to the high number of unique values in the four categorical features
kommune_id, organisasjon_id, paaviser, and netteier_ids. We decided to
make four datasets. Each one has different variation of dummy variable en-
coding and/or mean target encoding. see table [2]

3.2.3 Training Models

Six ML model types were used in this project. The start was mainly with
simpler models k-nearest neighbors, and support vector machine. Then we
experimented with progressively more complex models. Mainly random for-
est, gradient boosted trees, and neural network.

Each model’s hyper-parameters were tuned to get the best result possible.

24



Feature Dataset

EXCLUDED RATIO TOTAL_RATIO KOMMUNE_DUMMIES
netteier_id DVE DVE MTE & C DVE
kommune_id dropped MTE& C MTE&C DVE
paaviser dropped MTE& C MTE&C MTE & C
organisasjons_id || dropped MTE& C MTE&C MTE & C
Feature count 407 413 46 887

Table 2: Table of the datasets used in the project. Included is the encoding
and the total number of features. Where: DVE: Dummy variable encod-
ing. MTE: Mean target encoding. C: Count of inquiries for each category.
dropped: The feature was dropped from the dataset.

Cost-sensitive training was implemented for the models that supported it.
along with cost-insensitive training with resampled data. Table [3] shows
the model count. Each ML model type except neural network was trained
on four parameter combinations for each dataset. The aim was to get the
best possible result for each of the evaluation metrics. Neural network on
the other hand only changed the structure depending on the shape of the
input feature vector. This lead to neural network only having 8 models, one
for each dataset.

3.2.3.1 Hyperparameter tuning

Parameter tuning was implemented by supplying a list of values for each
hyper-parameter and then iterating over parameter value combinations. All
the models were trained on every combination of hyperparameters. Through-
out the tuning process all increases in evaluation metric scores were logged
along with the hyper-parameters that lead to the increase. The results were
logged and evaluated afterward. Parameter tuning was done for both cost-
sensitive and cost-insensitive learning.

3.2.3.2 Cost-sensitive training

Cost-sensitive training was used with XGBoost classifier, XGBoost random
forest, and neural network model. This training was done with the original
non-resampled datasets. The models take the class weight as a parameter.
the class weight parameter was also included in the hyper-parameter tuning
phase. the results were logged and evaluated. The support vector machine
model supported cos-sensitive learning, but we ran into issues because of
hardware limitations. Thus, SVC cost-sensitive learning was not included in
this report.
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models Dataset No. of models for every evaluation
Resampled Not resampled | metric on every dataset

KNN 4 0 16

Random 4 0 16

Forest

S.VC 4 0 16

linear

XGBoost

Classifier 4 4 32

XGBoost

Random | 4 4 32

Forest

Neural

Network 4 4 8

Total no. of mdoels 120

Table 3: table showing the total humber of models, their types and the
dataset they were trained on.

3.2.4 Analyzing model performance

Model performance evaluation began with evaluating best scores for all the
model from hyperparameter tuning phase. Analyzing these scores was done
manually afterward. We went with Geomatikk’s recommended evaluation
metric “recall” as the main metric to focus on, along with other useful eval-
uation metrics such as “precision”, "f1”, "ROC AUC", and "accuracy scores”.
After evaluating the best scores, we built a total number of 120 model each
with different hyper-parameters or structure. See table[3.2.3]

3.3 Roles and Work Distribution

Shawish and Blichfeldt did all the work related to the coding in this project.
They also contributed to most section of this report. Bakken contributed with
parts of documentation throughout this project. In this paper he provided
to sections of the theory chapter and some minor contributions elsewhere.

3.4 Choice of technology

In this section we will provide an overview of the technologies used to im-
plement the experiments described in Chapter E]

3.4.1 Hardware

We were first provided with a stationary computer, but it was quickly replaced
by a HP EliteBook 840 G6 laptop, as the Razor Core X was only compatible
with Thunderbolt 3, and the stationary did not have one.
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The laptop had 512 GB of disk space and contained at first 16GB of ram,
but we ran out of memory trying to run the models, and was later provided
another 16GB, in total 32GB.

3.4.1.1 CUDA-compatible GPU

Geomatikk provided a Razor Core X with a CUDA-compatible NVIDIA GeForce
GTX 1070 GPU. This made it possible to write code using libraries, like Rapids,
that make it run in parallel on the GPU instead of the CPU, thus drastically
increasing the processing speed of the ML models.

3.4.2 Operating system

The team was able to choose the operating system on the laptop provided
by Geomatikk. In the beginning the team decided to go for Windows 11 as
it was the one most used by all. Later on, after encountering issues with
running the Rapids-library in Windows and on WSL, the team decided to
migrate to Ubuntu 20.04.

3.4.3 Programming language and libraries

The team chose Python 3 as programming language as it is widely used in
machine learning and has an extensive set of libraries related to the field
of ML. It was also convenient that it is easy to use, and the team had prior
knowledge.

3.4.3.1 Pandas

Pandasd is an open-source library that provides simple and straightforward
data structures and data analysis tools. It was used to preform data prepro-
cessing and data manipulations on the dataset.

3.4.3.2 Rapids

Rapids@ is a collection of open-source software libraries that is compatible
with CUDA. The Rapids CuML and CuDF API, which we mainly used, mirrors
the scikit-learn and Pandas libraries. This made it very convenient to use,
as we were already familiar with them.

3.4.3.3 XGBoost

XGBoost? is a library that implements ML algorithms under the Gradient
Boosting framework, and provides optimized distributed gradient boosting.
This library is also compatible with CUDA-capable GPUs.

3Pandas - https://pandas.pydata.org/docs/index . html#
4Rapids - https://rapids.ai/index.html
5XGBoost - https://xgboost.readthedocs.io/en/stable/
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3.4.3.4 TensorFlow

TensorFlowBis an open source end-to-end platform for developing and train-
ing ML models. It provides a variety of tools, ready-to-use datasets and
libraries. TensorFlow was chosen to develop the neural network as members
of the team had previous experience using it.

3.4.3.5 Keras

Keradl is a library that runs on top of TensorFlow, providing a deep learning
API. It was developed with an emphasis on enabling fast experimentation
and being simple, flexible, and powerful to use. This API was chosen by the
team as it is simple to use and some of the members had previous experience
using it.

3.4.3.6 Scikit-learn

Scikit-learr8 is an open-source machine learning library. It was used to get
metrics from the ML models and to optimize parameters of all but the neural
network model.

3.4.3.7 Imbalanced-learn

Imbalanced-learng is a free library, providing tools for handling classification
with imbalanced classes. The library is relying on and is fully compatible
with scikit-learn. It was used to run different re-sampling techniques on the
dataset.

3.4.3.8 Jupyter Notebook

Jupyter Notebookd enables the user to combine code with rich text, and
was useful for us to visualize and comment on statistics from analysing the
dataset.

3.4.3.9 Mathplotlib

Mathplotlib is a library for visualizing different plots, static and animated.
This is a well-known and free library and was used to visualize results from
the data analysis, to better view statistics of the raw data.

3.4.3.10 Seaborn

Seaborni? s a Python library for statistical data visualization and is based on
mathplotlib. It is easy to use because of its high-level interface and makes it
straightforward to produce visually pleasing graphs without too much work.

6TensorFlow - https://www.tensorflow.org/

7Keras - https://www.tensorflow.org/api_docs/python/tf/keras
8Scikit-learn - https://scikit-learn.org/stable/
9Imbalanced-learn - https://imbalanced-learn.org/stable/
10jupyter - https://jupyter.org/

I Mathplotlib - https://matplotlib.org/

125eaborn - https://seaborn.pydata.org/index.html
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3.4.4 Hyperparameters and Structure

Model structure and hyperparameters are separated into eight tables, two
for each dataset, and four figures which show the neural network model
structure for each dataset. Tables , , , andshow hyper-parameters
for the resampled datasets models. Tables and [20] show hyper-
parameters for the non resampled datasets models. Figures , @, and
@ show the neural network structure for the 4 datasets.

Dataset: Resampled Excluded

models hyper-parameters

F1  {n_neighbors': 5}
Rec {n_neighbors': 30}

KNN -

Pre {n_neighbors': 20}

ROC {n_neighbors': 30}

F1  {max_depth': 19, 'max_features': 'auto’, 'max_samples': 0.4, 'n_estimators': 250, 'split_criterion': 0}
Random Rec {max_depth': 7, 'max_features': 'log2', 'max_samples': 1.0, 'n_estimators': 400, 'split_criterion': 0}

{max_depth'": 19, 'max_features" 'auto', 'max_samples': 0.6000000000000001, 'n_estimators': 400,
'split_criterion': 0}
ROC {max_depth': 16, 'max_features': 'auto’, 'max_samples': 0.8, 'n_estimators': 100, 'split_criterion': 0}
F1  {C" 1, 'kernel'" 'linear'}
svC Rec {C' 10, 'kernel" 'linear'}
linear Pre {C'" 1, 'kernel" 'linear'}
ROC {C': 100, 'kernel" 'linear'}
{colsample_bytree': 1, 'eval_metric' 'logloss', 'learning_rate': 0.2, 'max_depth': 6, 'min_child_weight': 5,
F1  'n_estimators': 300, 'predictor': 'gpu_predictor', 'subsample': 0.75, 'tree_method': 'gpu_hist', 'use_label_encoder"
False}
{colsample_bytree': 0.75, 'eval_metric": 'logloss', 'learning_rate'": 0.1, 'max_depth": 6, 'min_child_weight': 3,
Rec 'n_estimators': 200, 'predictor': 'gpu_predictor', 'subsample': 0.5, 'tree_method": 'gpu_hist', 'use_label_encoder"
XGBoost False}

Forest Pre

Classifier {colsample_bytree': 0.75, ‘eval_metric': 'logloss', 'learning_rate": 0.3, 'max_depth': 10, 'min_child_weight': 3,
Pre 'n_estimators': 300, 'predictor': 'gpu_predictor', 'subsample’: 0.75, 'tree_method": 'gpu_hist', 'use_label_encoder":
False}

{colsample_bytree": 1, 'eval_metric": 'logloss', 'learning_rate": 0.1, 'max_depth': 6, 'min_child_weight": 5,
ROC 'n_estimators': 200, 'predictor': 'gpu_predictor', 'subsample': 0.5, 'tree_method": 'gpu_hist', 'use_label_encoder"
False}
{colsample_bynode': 0.5, 'eval_metric": 'logloss', 'max_bin': 256, 'max_depth" 10, 'n_estimators': 200, 'predictor':
'gpu_predictor', 'subsample': 0.5, 'tree_method": 'gpu_hist', 'use_label_encoder'": False}
{colsample_bynode': 0.5, 'eval_metric'": 'logloss', 'max_bin': 128, 'max_depth'": 7, 'n_estimators': 300, 'predictor'
'gpu_predictor', 'subsample': 0.5, 'tree_method": 'gpu_hist', 'use_label_encoder'": False}
{colsample_bynode'": 0.5, 'eval_metric': 'logloss', 'max_bin': 256, 'max_depth'": 10, 'n_estimators': 200, 'predictor':
'gpu_predictor', 'subsample': 0.5, 'tree_method': 'gpu_hist', 'use_label_encoder" False}
{colsample_bynode": 0.5, 'eval_metric': 'logloss', 'max_bin": 256, 'max_depth'": 10, 'n_estimators': 200, 'predictor':

F1

XGBoost [Rec
Random
Forest Pre

ROC
'gpu_predictor', 'subsample': 0.5, 'tree_method": 'gpu_hist', 'use_label_encoder" False}
Neural Learning rate : decaying on rate (1e-3 * 10 ** (epoch / 30)), Early stopping: monitor "val_loss" mode "min"
Network patience "5", batch size: "2048", epochs: "25"

Figure 13: hyper-parameters for resampled EXCLUDED dataset models.
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Dataset: Resampled TOTAL_RATIO

models hyper-parameters
F1  {n_neighbors" 5}
KN Rec {n_ne!ghbors'. 30}
Pre {n_neighbors': 20}
ROC {n_neighbors': 30}
F1  {'max_depth" 19, 'max_features': 'auto’, 'max_samples': 0.6, 'n_estimators'": 400, 'split_criterion": 0}
{'max_depth": 7, 'max_features': 'auto', 'max_samples': 0.6000000000000001, 'n_estimators': 100,
Random |ReC . " riterion 13
Forest | ore  max_depth' 19, 'max features™ 'auto’, 'max_samples” 1.0, 'n_estimators"- 250, 'spit_criterion’: 0}
ROC {'max_depth'" 10, 'max_features': 'auto’, 'max_samples': 0.2, 'n_estimators": 100, 'split_criterion": 0}
F1  {C"1, 'kernel" 'linear}
svC Rec {C' 100, 'kernel' 'linear'}
linear Pre {C' 1, 'kernel' 'linear’}
ROC {C" 1, 'kemnel' 'linear'}
{'colsample_bytree": 1, 'eval_metric': 'logloss', 'learning_rate'- 0.1, 'max_depth'": 6, 'min_child_weight': 5,
F1 'n_estimators': 300, 'predictor': 'gpu_predictor', 'subsample': 0.75, 'tree_method': 'gpu_hist', 'use_label_encoder"
False}
{'colsample_bytree": 0.75, 'eval_metric": 'logloss', 'learning_rate': 0.1, 'max_depth': 6, 'min_child_weight" 5,
Rec 'n_estimators': 200, 'predictor': 'gpu_predictor', 'subsample': 0.75, 'tree_method': 'gpu_hist', 'use_label_encoder"
XGBoost False}
Classifier {'colsample_bytree": 1, 'eval_metric": 'logloss', 'learning_rate': 0.3, 'max_depth': 6, 'min_child_weight" 1,
Pre 'n_estimators': 300, 'predictor': 'gpu_predictor', 'subsample': 0.5, 'tree_method': 'gpu_hist', 'use_label_encoder"
False}
{'colsample_bytree" 0.75, 'eval_metric": 'logloss', 'learning_rate': 0.1, 'max_depth': 6, 'min_child_weight" 5,
ROC 'n_estimators': 200, 'predictor': 'gpu_predictor', 'subsample’: 0.75, 'tree_method': 'gpu_hist', 'use_label_encoder':
False}
F1 {'colsample_bynode': 0.5, 'eval_metric': 'logloss', 'max_bin': 128, 'max_depth': 10, 'n_estimators': 200, 'predictor"
'gpu_predictor', 'subsample’: 0.5, 'tree_method": 'gpu_hist', 'use_label_encoder': False}
{'colsample_bynode'": 0.75, 'eval_metric": 'logloss', 'max_bin': 256, 'max_depth': 7, 'n_estimators": 200, 'predictor"
XGBoost |Rec ; : ) z .
i 'gpu_predictor', 'subsample’: 0.9, 'tree_method": 'gpu_hist', 'use_label_encoder': False}
Eorest Pre {'colsample_bynode': 0.5, 'eval_metric': 'logloss', 'max_bin': 128, 'max_depth'": 10, 'n_estimators': 200, 'predictor"
'gpu_predictor', 'subsample’: 0.5, 'tree_method": 'gpu_hist', 'use_label_encoder': False}
ROC {'colsample_bynode': 0.5, 'eval_metric': 'logloss', 'max_bin': 128, 'max_depth': 7, 'n_estimators': 200, 'predictor':
'gpu_predictor', 'subsample': 0.75, 'tree_method': 'gpu_hist', 'use_label_encoder" False}
Neural Learning rate : decaying on rate (1e-3 * 10 ** (epoch / 30)), Early stopping: monitor "val_loss" mode "min"
Network patience "5", batch size: "2048", epochs: "25"

Figure 14: hyper-parameters for resampled TOTAL_RATIO dataset models.
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Dataset: Resampled RATIO

models hyper-parameters
F1  {n_neighbors': 5}
o Rec {n_nefghbors‘, 30}
Pre {n_neighbors'" 20}
ROC {n_neighbors" 30}
F1  {max_depth' 19, 'max_features' 'auto'. 'max_samples': 0.4, 'n_estimators': 250, 'split_criterion": 0}
Rondom Rec {'max_depth' 7, 'max_features" 'log2', 'max_samples" 0.2, 'n_estimators'" 250, 'split_criterion': 1}
Eorest Pre {'max_depth': 19, 'max_features': 'auto’, 'max_samples" 0.4, 'n_estimators" 250, 'split_criterion': 0}
{'max_depth" 10, 'max_features" 'auto', 'max_samples': 0.6000000000000001, 'n_estimators': 400,
'split_criterion': 0}
F1  {C" 1. 'kernel" 'linear’}
svC Rec {C" 100, 'kernel" 'linear'}
linear Pre {C' 0.1, 'kernel" 'linear'}
ROC {C'" 1, 'kernel" 'linear'}
{'colsample_bytree': 1, 'eval_metric': 'logloss', 'learning_rate": 0.3, 'max_depth': 10, 'min_child_weight': 3,
F1 'n_estimators': 300, 'predictor': 'gpu_predictor', 'subsample’: 0.75, 'tree_method': 'gpu_hist', 'use_label_encoder"
False}
{'colsample_bytree': 0.75, 'eval_metric": 'logloss', 'learning_rate': 0.1, 'max_depth": 6, 'min_child_weight" 5,
Rec 'n_estimators': 200, 'predictor': 'gpu_predictor', 'subsample”: 0.5, 'tree_method': 'gpu_hist', 'use_label_encoder"
XGBoost False}
Classifier {'colsample_bytree': 1, 'eval_metric': 'logloss', 'learning_rate": 0.2, 'max_depth': 10, 'min_child_weight" 1,
Pre 'n_estimators'": 300, 'predictor'”: 'gpu_predictor', 'subsample': 0.5, 'tree_method': 'gpu_hist', 'use_label_encoder'":
False}
{'colsample_bytree': 0.75, 'eval_metric": 'logloss', 'learning_rate': 0.1, 'max_depth": 6, 'min_child_weight" 5,
ROC 'n_estimators': 200, 'predictor': 'gpu_predictor', 'subsample”: 0.5, 'tree_method': 'gpu_hist', 'use_label_encoder"
False}
F1 {'colsample_bynode": 0.5, 'eval_metric': 'logloss', 'max_bin": 128, 'max_depth': 10, 'n_estimators': 200, 'predictor"
'gpu_predictor', 'subsample’: 0.5, 'tree_method': 'gpu_hist', 'use_label_encoder": False}
XGBoost |Rec {'colsample_bynode'": 0.75, 'eval_metric': 'logloss', 'max_bin": 256, 'max_depth": 7, 'n_estimators': 400, 'predictor"
Bandom 'gpu_predictor', 'subsample’: 0.5, 'tree_method': 'gpu_hist', 'use_label_encoder": False}
Eorest ||pre {'colsample_bynode': 0.5, 'eval_metric": 'logloss', 'max_bin': 128, 'max_depth': 10, 'n_estimators': 200, 'predictor":
'gpu_predictor', 'subsample’: 0.5, 'tree_method': 'gpu_hist', 'use_label_encoder": False}
ROC {'colsample_bynode': 0.5, 'eval_metric": 'logloss', 'max_bin': 128, 'max_depth': 7, 'n_estimators': 300, 'predictor:
'gpu_predictor', 'subsample’: 0.9, 'tree_method': 'gpu_hist', 'use_label_encoder": False}
Neural Learning rate : decaying on rate (1e-3 * 10 ** (epoch / 30)), Early stopping: monitor "val_loss" mode "min"
Network patience "5", baich size: "2048", epochs: "25"

Figure 15: hyper-parameters for resampled RATIO dataset models.

31



Dataset: Resampled RATIO
models hyper-parameters
F1  {n_neighbors': 5}
Rec {n_neighbors': 10}

KNN 2
Pre {n_neighbors': 10}
ROC {n_neighbors': 10}
F1  {'max_depth" 19, 'max_features': 'auto', 'max_samples': 0.4, 'n_estimators': 400, 'split_criterion': 0}
e Rec {'max_depth" 7, 'max_features' 'log2', 'max_samples': 1.0, 'n_estimators': 100, 'split_criterion': 1}
Forest Pre {'max_depth': 19, 'max_features': 'auto’, 'max_samples': 0.2, 'n_estimators': 100, 'split_criterion': 0}
ROC {'max_depth': 10, 'max_features': 'auto’, 'max_samples': 0.6000000000000001, 'n_estimators': 400,
'split_criterion': 0}
F1  {C'"1, 'kernel' 'linear’}
svC Rec {C' 10, 'kernel" 'linear'}
linear Pre {C'" 1, 'kernel" 'linear'}

ROC {C': 100, 'kernel' 'linear'}
{'colsample_bytree': 1, 'eval_metric': 'logloss', 'learning_rate': 0.3, 'max_depth': 8, 'min_child_weight': 5,
F1  'n_estimators': 300, 'predictor’ 'gpu_predictor', 'subsample': 0.5, 'tree_method'": 'gpu_hist', 'use_label_encoder":
False}
{'colsample_bytree': 0.75, 'eval_metric': 'logloss', 'learning_rate'": 0.1, 'max_depth': 6. 'min_child_weight": 5,
Rec 'n_estimators': 200, 'predictor': 'gpu_predictor', 'subsample': 0.5, 'tree_method': 'gpu_hist', 'use_label_encoder"
XGBoost False}

Classifier {'colsample_bytree" 1, 'eval_metric": 'logloss', 'learning_rate" 0.3, 'max_depth': 10, 'min_child_weight": 5,
Pre 'n_estimators': 300, 'predictor": 'gpu_predictor', 'subsample': 0.75, 'tree_method': 'gpu_hist', 'use_label_encoder':
False}

{'colsample_bytree": 0.75, 'eval_metric': 'logloss', 'learning_rate': 0.1, 'max_depth" 6, 'min_child_weight": 3,
ROC 'n_estimators": 200, 'predictor': 'gpu_predictor', 'subsample’: 0.5, ‘tree_method': 'gpu_hist', 'use_label_encoder":
False}
{'colsample_bynode": 0.5, 'eval_metric": 'logloss', 'max_bin': 128, 'max_depth" 10, 'n_estimators": 400, 'predictor":
'gpu_predictor', 'subsample': 0.5, 'tree_method': 'gpu_hist', 'use_label_encoder": False}
{'colsample_bynode": 0.5, 'eval_metric': 'logloss', 'max_bin': 256, 'max_depth": 7, 'n_estimators': 200, 'predictor'":
‘gpu_predictor', 'subsample': 0.9, 'tree_method': 'gpu_hist', 'use_label_encoder": False}
{'colsample_bynode": 0.5, 'eval_metric": 'logloss', 'max_bin': 128, 'max_depth" 10, 'n_estimators": 400, 'predictor":
'gpu_predictor', 'subsample': 0.5, 'tree_method': 'gpu_hist', 'use_label_encoder": False}
{'colsample_bynode'": 0.5, 'eval_metric": 'logloss', 'max_bin": 256, 'max_depth': 7, 'n_estimators': 200, 'predictor":

F1

XGBoost [Rec
Random
Forest Pre

Reg 'gpu_predictor', 'subsample': 0.5, 'tree_method': 'gpu_hist', 'use_label_encoder": False}
Neural Learning rate - decaying on rate (1e-3 * 10 ** (epoch / 30)), Early stopping: monitor "val_loss" mode "min"
Network patience "5", batch size: "2048", epochs: "25"

Figure 16: hyper-parameters for resampled KOMMUNE_DUMMIES dataset
models.
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Dataset: NON Resampled EXCLUDED

no. CV-

models hyper-parameters P

{'colsample_bytree': 0.75, 'eval_metric'- 'logloss', 'learning_rate': 0.3, 'max_depth': 10,

F1  'min_child_weight': 1, 'n_estimators': 300, 'predictor': 'gpu_predictor', 'scale_pos_weight': 43, 3
‘subsample': 0.75, 'tree_method": 'gpu_hist', 'use_label_encoder'": False}
{'colsample_bytree': 1, 'eval_metric': 'logloss', 'learning_rate': 0.1, 'max_depth': 6, 'min_child_weight" 3,

Rec 'n_estimators': 200, 'predictor'”: 'gpu_predictor', 'scale_pos_weight': 80, 'subsample': 0.75, 3
XGBoost ‘tree_method": 'gpu_hist', 'use_label_encoder': False}
Classifier {'colsample_bytree': 0.75, 'eval_metric': 'logloss', 'learning_rate": 0.1, 'max_depth": 6, 'min_child_weight":
Pre 5, 'n_estimators': 200, 'predictor”: 'gpu_predictor', 'scale_pos_weight'": 1, 'subsample': 0.5, 3

‘tree_method': 'gpu_hist', 'use_label_encoder': False}
{'colsample_bytree': 0.75, 'eval_metric': 'logloss', 'learning_rate'": 0.1, 'max_depth'": 6, 'min_child_weight':
ROC 5, 'n_estimators': 200, 'predictor': 'gpu_predictor', 'scale_pos_weight': 43, 'subsample’: 0.75, 3
‘tree_method': 'gpu_hist', 'use_label_encoder': False}
{'colsample_bynode': 0.5, 'eval_metric': 'logloss', 'max_bin': 256, 'max_depth': 10, 'n_estimators': 200,
F1  'predictor': 'gpu_predictor', 'scale_pos_weight': 43, 'subsample’: 0.5, 'tree_method': 'gpu_hist’, 3
'use_label_encoder'": False}
{'colsample_bynode': 0.5, 'eval_metric': 'logloss', 'max_bin': 256, 'max_depth": 7, 'n_estimators': 400,
Rec 'predictor': 'gpu_predictor', 'scale_pos_weight': 80, 'subsample’: 0.9, 'tree_method': 'gpu_hist', 3

)s::gg:: 'use_label_encoder': False}
Forest {'colsample_bynode': 0.5, 'eval_metric": 'logloss', 'max_bin": 128, 'max_depth': 10, 'n_estimators": 200,

Pre ‘'predictor': 'gpu_predictor', 'scale_pos_weight': 43, 'subsample’: 0.5, 'tree_method': 'gpu_hist', 3
'use_label_encoder'": False}
{'colsample_bynode'": 0.5, 'eval_metric': 'logloss', 'max_bin": 256, 'max_depth': 10, 'n_estimators': 200,

ROC 'predictor': 'gpu_predictor', 'scale_pos_weight': 43, 'subsample’: 0.5, 'tree_method": 'gpu_hist', 3
'use_label_encoder'": False}
Neural Learning rate : decaying on rate (1e-3 * 10 ** (epoch / 30)), Early stopping: monitor "val_loss" mode
Network "min" patience "5", batch size: "2048", epochs: "25"

Figure 17: hyper-parameters for non resampled EXCLUDED dataset models.
Also shows the number of k-folds for cross-validation

Dataset: NON Resampled TOTAL_RATIO

no. CV-

models hyper-parameters o

{'colsample_bytree': 1, 'eval_metric": 'logloss', 'learning_rate': 0.2, 'max_depth': 10, 'min_child_weight':

F1 5, 'n_estimators': 300, 'predictor" 'gpu_predictor', 'scale_pos_weight': 43, 'subsample': 0.75, 3
‘tree_method": 'gpu_hist', 'use_label_encoder": False}
{'colsample_bytree': 0.75, 'eval_metric": 'logloss', 'learing_rate': 0.1, 'max_depth': 6, 'min_child_weight':

Rec 3, 'n_estimators': 200, 'predictor”: 'gpu_predictor', 'scale_pos_weight': 80, 'subsample’: 0.75, 3
XGBoost 'tree_method': 'gpu_hist', 'use_label_encoder': False}
Classifier {'colsample_bytree': 0.75, 'eval_metric": 'logloss’, 'learning_rate": 0.1, 'max_depth': 6, 'min_child_weight':
Pre 5, 'n_estimators': 200, 'predictor": 'gpu_predictor', 'scale_pos_weight" 1, 'subsample': 0.75, 3

'tree_method': 'gpu_hist', 'use_label_encoder': False}
{'colsample_bytree': 0.75, 'eval_metric": 'logloss', 'learning_rate": 0.1, 'max_depth': 6, 'min_child_weight':
ROC 1, 'n_estimators': 200, 'predictor”: 'gpu_predictor', 'scale_pos_weight': 43, 'subsample’: 0.75, 3
‘tree_method': 'gpu_hist', 'use_label_encoder': False}
{'colsample_bynode': 0.75, 'eval_metric": 'logloss', 'max_bin'": 256, 'max_depth': 10, 'n_estimators': 400,
F1 ‘'predictor': 'gpu_predictor', 'scale_pos_weight": 43, 'subsample’: 0.5, 'tree_method': 'gpu_hist', 3
'use_label_encoder': False}
{'colsample_bynode': 0.5, 'eval_metric': 'logloss', 'max_bin': 128, 'max_depth': 7, 'n_estimators': 200,
Rec 'predictor': 'gpu_predictor', 'scale_pos_weight": 80, 'subsample’: 0.9, 'tree_method': 'gpu_hist', 3

é::ggr? 'use_label_encoder': False}
Forest {'colsample_bynode": 0.5, 'eval_metric': 'logloss', 'max_bin': 128, 'max_depth': 10, 'n_estimators'": 300,

Pre ‘'predictor': 'gpu_predictor', 'scale_pos_weight": 1, 'subsample’: 0.5, 'tree_method': 'gpu_hist', 3
‘use_label_encoder": False}
{'colsample_bynode': 0.5, 'eval_metric': 'logloss', 'max_bin": 128, 'max_depth": 9, 'n_estimators': 300,

ROC 'predictor": 'gpu_predictor', 'scale_pos_weight": 43, 'subsample”: 0.9, 'tree_method': 'gpu_hist', 3
‘use_label_encoder": False}
Neural Learning rate : decaying on rate (1e-3 * 10 ** (epoch / 30)), Early stopping: monitor "val_loss" mode
Network "min" patience "5", batch size: "2048", epochs: "25"

Figure 18: hyper-parameters for non resampled TOTAL_RATIO dataset mod-
els. Also shows the number of k-folds for cross-validation
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Dataset: NON Resampled RATIO

no. CV-

models hyper-parameters s

{'colsample_bytree": 0.75, 'eval_metric' 'logloss', 'learning_rate'": 0.2, 'max_depth": 10,

F1  'min_child_weight' 5, 'n_estimators": 300, 'predictor": 'gpu_predictor', 'scale_pos_weight': 43, 3
‘subsample': 0.75, 'tree_method": 'gpu_hist', 'use_label_encoder': False}
{'colsample_bytree" 0.75, 'eval_metric'" 'logloss', 'learning_rate'": 0.1, 'max_depth": 6, 'min_child_weight':

Rec 5, 'n_estimators'": 200, 'predictor'”: 'gpu_predictor', 'scale_pos_weight': 80, 'subsample': 0.75, 3
XGBoost ‘tree_method": 'gpu_hist', 'use_label_encoder': False}
Classifier {'colsample_bytree': 0.75, 'eval_metric': 'logloss', 'learning_rate': 0.1, 'max_depth': 6, 'min_child_weight'":
Pre 3, 'n_estimators': 200, 'predictor': 'gpu_predictor', 'scale_pos_weight" 1, 'subsample': 0.5, 3

‘tree_method': 'gpu_hist', 'use_label_encoder": False}
{'colsample_bytree" 0.75, 'eval_metric': 'logloss', 'learning_rate': 0.1, 'max_depth": 6, 'min_child_weight":
ROC 5, 'n_estimators': 200, 'predictor": 'gpu_predictor', 'scale_pos_weight': 43, 'subsample': 0.75, 3
‘tree_method': 'gpu_hist', 'use_label_encoder": False}
{'colsample_bynode": 0.75, 'eval_metric": 'logloss', 'max_bin': 128, 'max_depth" 10, 'n_estimators': 200,
F1 ‘predictor' 'gpu_predictor', 'scale_pos_weight": 43, 'subsample': 0.5, 'tree_method": 'gpu_hist', 3
'use_label_encoder'": False}
{'colsample_bynode": 0.5, 'eval_metric': 'logloss', 'max_bin": 256, 'max_depth" 7, 'n_estimators': 400,
Rec 'predictor': 'gpu_predictor', 'scale_pos_weight": 80, 'subsample': 0.9, 'tree_method'": 'gpu_hist', 3

XGBoost
Random 'use_label_encoder': False}
Forest {'colsample_bynode": 0.5, 'eval_metric': 'logloss', 'max_bin': 256, 'max_depth': 10, 'n_estimators': 300,

Pre ‘'predictor': 'gpu_predictor', 'scale_pos_weight": 1, 'subsample': 0.5, 'tree_method': 'gpu_hist', 3
‘use_label_encoder'" False}
{'colsample_bynode": 0.5, 'eval_metric': 'logloss', 'max_bin': 128, 'max_depth": 9, 'n_estimators': 300,

ROC 'predictor': 'gpu_predictor', 'scale_pos_weight": 43, 'subsample': 0.9, 'tree_method': 'gpu_hist', 3
'use_label_encoder": False}
Neural Learning rate : decaying on rate (1e-3 * 10 ** (epoch / 30)), Early stopping: monitor "val_loss" mode
Network "min" patience "5", batch size: "2048", epochs: "25"

Figure 19: hyper-parameters for non resampled RATIO dataset models. Also
shows the number of k-folds for cross-validation

Dataset: NON Resampled KOMMUNE_DUMMIES

no. CV-

models h r-parameters
Pt folds

{'colsample_bytree" 1, 'eval_metric": 'logloss', 'learning_rate': 0.3, 'max_depth": 10, 'min_child_weight':

F1 5, 'n_estimators": 300, 'predictor': 'gpu_predictor', 'scale_pos_weight': 43, 'subsample': 0.75, 3
'tree_method': 'gpu_hist', 'use_label_encoder': False}
{'colsample_bytree" 0.75, ‘eval_metric": 'logloss', 'learning_rate': 0.1, 'max_depth': 6, 'min_child_weight':

Rec 5, 'n_estimators": 200, 'predictor': ‘gpu_predictor', 'scale_pos_weight': 80, ‘'subsample': 0.75, 3
XGBoost 'tree_method': 'gpu_hist', 'use_label_encoder': False}
Classifier {'colsample_bytree" 0.75, 'eval_metric": 'logloss', 'learning_rate': 0.1, 'max_depth': 6, 'min_child_weight':
Pre 3, 'n_estimators": 200, 'predictor': 'gpu_predictor', 'scale_pos_weight": 1, 'subsample’: 0.5, 3

'tree_method': 'gpu_hist', 'use_label_encoder': False}
{'colsample_bytree': 0.75, 'eval_metric': 'logloss’, 'learning_rate': 0.1, 'max_depth': 6. 'min_child_weight':
ROC 1, 'n_estimators': 200, 'predictor': 'gpu_predictor', 'scale_pos_weight': 43, 'subsample’: 0.75, 3
‘tree_method': 'gpu_hist', 'use_label_encoder" False}
{'colsample_bynode': 0.75, 'eval_metric": 'logloss', 'max_bin': 256, 'max_depth": 10, 'n_estimators': 200,
F1  'predictor': 'gpu_predictor', 'scale_pos_weight': 43, 'subsample': 0.5, 'tree_method": 'gpu_hist', 3
'use_label_encoder" False}
{'colsample_bynode': 0.5, 'eval_metric': 'logloss', 'max_bin" 128, 'max_depth': 7, 'n_estimators': 300,
Rec 'predictor': 'gpu_predictor', 'scale_pos_weight': 80, 'subsample': 0.9, 'tree_method": 'gpu_hist', 3

)égr?gg:: 'use_label_encoder': False}
Forest {'colsample_bynode': 0.5, 'eval_metric': 'logloss', 'max_bin": 256, 'max_depth': 7, 'n_estimators': 300,

Pre ‘predictor" 'gpu_predictor', 'scale_pos_weight': 1, 'subsample': 0.5, 'tree_method': 'gpu_hist', 3
'use_label_encoder": False}
{'colsample_bynode": 0.5, 'eval_metric': 'logloss', 'max_bin": 128, 'max_depth': 9, 'n_estimators': 300,

ROC ‘predictor'": 'gpu_predictor', 'scale_pos_weight': 43, 'subsample’: 0.9, 'tree_method": 'gpu_hist', 3
'use_label_encoder": False}
Neural Learning rate : decaying on rate (1e-3 * 10 ** (epoch / 30)), Early stopping: monitor "val_loss" mode
Network "min" patience "5", batch size: "2048", epochs: "25"

Figure 20: hyper-parameters for non resampled KOMMUNE_DUMMIES
dataset models. Also shows the number of k-folds for cross-validation
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dense 2 input | input:

None, 406)] | [(None, 406
InputLayer | output: [(None )] | [(None )]

\

dense 2 | input:

(None, 406) | (None, 512)
Dense | output:

dropout_1 | input:

(None, 512) | (None, 512)
Dropout | output:

dense 3 | input:

(None, 512) | (None, 1)
Dense | output:

Figure 21: neural network structure for the EXCLUDED dataset.

dense_input | input:

[(None, 45)] | [(None, 45)]

InputLayer | output:

dense | input:

(None, 45) | (None, 256)

Dense | output:

dropout | input:

(None, 256) | (None, 256)

Dropout | output:

dense 1 | input:

(None, 256) | (None, 1)

Dense | output:

Figure 22: neural network structure for the TOTAL_RATIO dataset.
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dense 4 input | input:
[(None, 412)] | [(None, 412)]

InputLayer output:

A
(None, 412) | (None, 512)

dense 4 | input:

Dense | output:

dropout_2 | input:
(None, 512) | (None, 512)

Dropout | output:

dense 5 | input:
(None, 512) | (None, 1)

Dense | output:

Figure 23: neural network structure for the RATIO dataset.

dense 6 input | input:

[(None, 886)] | [(None, 886)]

InputLayer output:

\
(None, 886) | (None, 1024)

dense 6 | input:

Dense | output:

dropout_3 | input:

(None, 1024) | (None, 1024)

Dropout | output:

A
(None, 1024) | (None, 1)

dense 7 | input:

Dense | output:

Figure 24: neural network structure for the KOMMUNE_DUMMIES dataset.
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4 Results

To evaluate the performance of the models, we had a focus on recall, but
were still interested in seeing the results of other performance metrics for
comparison. This was done to get a more accurate and nuanced picture of
the performance of the models on the different datasets.

—— xgb rec excluded, auc = 0.0561
xgbrf rec excluded, auc = 0.0558
—— nn rec excluded, auc = 0.0503
—— knn rec excluded, auc = 0.1244
rf rec excluded, auc = 0.0650
—— svc rec excluded, auc = 0.0329
xgb rec total_ratio, auc = 0.0816
xgbrf rec total_ratio, auc = 0.0972
nn rec total_ratio, auc = 0.0564
knn rec total_ratio, auc = 0.0864
— rf rec total_ratio, auc = 0.0871
svc rec excluded, auc = 0.0285
——— xgb rec ratio, auc = 0.0852
——— xgbrf rec ratio, auc = 0.0905

08

06 nn rec ratio, auc = 0.0574

— knn rec ratio, auc = 0.1260
rf rec ratio, auc = 0.0750
svc rec excluded, auc = 0.0310

precision

04

02

00

00 02 04 06 08 10
recall

Figure 25: Precision-Recall curve with AUC score for models trained on re-
sampled datasets

4.1 Results from all models

Tables [ and show evaluation metrics scores for the models that were
trained on resampled and not resampled datasets respectively. For every ML
model type except for neural network, we tested the four hyper-parameter
combinations that got the best scores when parameter tuning. In the case
of the models run on resampled datasets, when we tried to test the hyper-
parameter combinations on KOMMUNE_DUMMIES dataset, we ran into is-
sues caused by hardware limitations. Thus, we only have the best score
in each evaluation metric but not the rest of the score for the parameter
combinations. In the case of models trained on non-resampled datasets.
All the models were trained using the Cost-sensitive technique, and Both
the XGBoost classifier and XGBoost random forest models’ test scores were
cross-validated.

Figures and @ show the plots and score values of the precision-recall
AUC. The first figure shows AUC results for the models trained on the reasm-
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—— xgb rec excluded, auc = 0.0796
xgbrf rec excluded, auc = 0.0741
nn rec excluded, auc = 0.0704

10

xgb rec total_ratio, auc = 0.1273
xgbrf rec total_ratio, auc = 0.1074
nn rec total_ratio, auc = 0.0535
xgb rec ratio, auc = 0.1310
08 xgbrf rec ratio, auc = 0.1110
nn rec ratio, auc = 0.0660
‘ nn rec kommune_dummies, auc = 0.0660

precision

0.0 0.2 0.4 0.6 0.8 1.0
recall

Figure 26: Precision-Recall curve with AUC score for models trained on non-
resampled datasets

pled datasets. The second figure have the AUC results of the models trained
on the non resampled datasets. The first figure does not have any score for
the models trained on the KOMMUNE_DUMMIES dataset as we were faced
with the same hardware limitations. The second figure only has neural net-
work model trained on KOMMUNE_DUMMIES.

5 Discussion

The results in chapter as we can see in Table E], are missing some values.
This is due to issues with hardware restriction and therefore not being able
to finish training models because of out-of-memory errors. Due to a strict
privacy policy, the team had to keep the dataset in Geomatikk’s offices and,
therefore, use the hardware provided. Because of that we were unable to
get complete results for kommune_dummies

At the beginning of the project, we discussed strike damage in both offi-
cial meetings and unofficial meetings with Geomatikk to understand what
a strike damage is and what the causes of strike damage are. Geomatikk
informed the team that strike damage has two main causes. About 50% of
the cases are caused by human operator error. The other 50 % is caused by
measurement error by the equipment used to find underground infrastruc-
ture or inaccurate mapping of infrastructure when they were buried in the
ground.
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We observed values in the precision-recall curv for the kNN models where
it looks like calculations are missing compared to the shape of the other mod-
els. We are not 100% sure of the cause, but think it has to do with the prob-
ability estimates of kNN returning probabilites with intervals of 1/number of
neighbours. Since the precision-recall curve method in Sklearn returns val-
ues based on the number of unique probabilities from the dataset and the
number probabilities returned in kNN is set to be within a certain range, the
odd shape of the graph made sense. Comparing the other metrics retrieved
from the kNN model, the high PR-AUC does not make sense and we chose
to disregard the results given by the precision-recall curve for the kNN model.

Looking at the results in Table {4 over the models trained on resampled data
the best preforming model on recall overall is random forest, followed by kNN
and XGBoost random forest not far behind. From Table where the models
were trained on the dataset not resampled, but by using cost-sensitive train-
ing, XGBoost random forest model preformed the best looking at recall. Re-
flecting on our result from the angle of how to handle data imbalance. We had
two techniques we tried, resampling the data and cost-sensitive learning. If
we take the evaluation metric of Recall. we find the best performance is
with resampling. The Random forest model trained on KOMMUNE_DUmmies
got a recall score of 93%, but since we could not run the test on the model
with the hyper-paramters after parameter tuning, and the second best re-
call score is not so far off 91%, we choose to disregard the 93% score. The
91% score came from the XGBoost random forest model trained with cost-
sensitive learning on non resampled data. the second best will be from the
same model trained on non resampled data as well. Other than Recall we
can look on F1 score or precision-recall AUC. The highest value for both of
the metrics is less than 16%. Still, the highest F1 score came from XGBoost
model trained using cos-sensitive learning on non resampled dataset.

In regards to the issue of non binary categorical features in datasets. We
planed to test two encoding technique. DVE and MTE. The plan was originally
to make 5 datasets, where one of them will only have DVE used on the non
binary categorical features. This Was proven to not possible because of the
hardware limitaions. The resulting dataset after encoding was so big that
the operating system could not hold it in memory to finish the preprocess-
ing. We then decided to make four datasets instead with varying variation
of DVE to TME applied.

Checking the recall metric score, and disregarding the 93% in resampled
KOMMUNE_DUMMIES. We find the second best score is 91% a tie between
three datasets KOMMUNE_DUMMIES, RATIO and TOTAL_RATIO. They have
(2 DVE, 2 MTE) , (1 DVE, 3 MTE), and (0 DVE, 4 MTE) respectively. Two have
a combination and one only have MTE. This points to that the odds of getting
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a better results when using a combination of both technique are higher.

Considering the question of which is the best ML model for our objective.
If we check the recall values we find the even if we disregard the 93% score
of the random forest model, we still find that all of the best recall results are
from tree ML models. Random Forest getting 2, and XGBoost random forest
getting 5 out of the 7 best recall scores for the datasets.

On the other hand if we check the precision-recall AUC scores in figures
[6] and , and we disregard we disregard kNN model scores. We still find
that tree ML models are outperforming the rest. We ran the test on 6 of the
datasets, as hardware limitation prevented the test from running on both
KOMMUNE_DUMMIES resampled and non resampled datasets. Out of the 6
datasets’ the best AUC values were, random forest got one of the best scores,
XGBoost got two and XGBoost Random forest got three. This makes it clear
that tree ML models and specially decision boosted trees show promising
results for our objective.

We suspected that the neural network model was overfitting. The model
showed good recall scores on and off during training, but these result did
not translate to good recall scores on the test set. To combat that we imple-
mented measures such as dropout layers, early stopping and we decreased
the complexity of the model by decreasing the number of nodes and number
of layers. We got somewhat better result after this, but still not as good as
some of the other models.

The results show that it is difficult to achieve both high recall and high preci-
sion. Looking at Figure 25 and Figure 26 we can see that all values for AUC
are relatively low, with 0.131 being the highest for XGBoost classifier with
RATIO dataset on non-resampled data. Still, it is not preforming drastically
better than any of the other models. We can also see from Table 4 and Table
that where recall is high precision is low and vice versa.

6 Conclusion and Future work

6.1 Conclusion

The major focus of this report was to explore if machine learning could be
used to predict if a strike damage will occur. In order to determine this the
following research question was formulated:

How can machine learning be used for risk assessment of

excavation projects?

From what we found in the results and discussed in Chapter , there are no

42



model and dataset combination from the experiments executed that clearly
out-preforms another. Still, there are some promising result, the random
forest models preformed well on both the resampled and non-resampled
dataset. The boosted trees have a good performance when trained on non
resampled datasets. Still, even the best performer random forest xgboost,
has 91% recall and only 4% precision. This means that for every one true
positive the model is identifying, 24 false positives are misidentified. This
will lead to wasting the resources that are meant to mitigate strike damages
on the false positives. When it comes to the performance of the different
datasets, there is no one preforming significantly better than the other. This
can possibly have something to do with the data not fully representing the
real world, and that the data is not reflecting all the variables leading to a
strike damage happening.

6.2 Future work

As there is no previous research on the topic of this paper, there is still
much to explore. First, including different data is an option that should be
considered. Other data that could be included are weather conditions or
temperature, on or around the day of strike damage occurring or the day
of detection. In a practical application of the machine learning model in
the future, weather forecasts could be used in making risk assessments,
same as weather observations would be used in the training of the model.
Topographical data of the terrain or data on the type of ground under the
surface of were the project is happening is also an option that could be
experimented on. This was discussed with Geomatikk at the beginning of
the project, as their data analyses had given some indications that weather
might be a factor into causing strike damages. Each inquiry in the dataset
also contains information on GPS coordinates of the area, which makes it
possible to implement data based on geography. Due to the scope of im-
plementing external data such as this, it was decided not to be implemented.

Second, we have only explored some supervised learning models. Other
supervised machine learning models, e.g logistics regressing could be con-
sidered. Implementing something like term frequency-inverse document
frequency (tf-idf) on organization id is something that was discussed as a
possible solution, instead of one-hot-encoding, to deal with the extent of
unique values in that column. Semi-supervised or self-supervised learning
could also be applied to imbalanced data[26[]] and might yield better results,
as supervised learning has so far not shown great results.

Lastly, we did not apply any feature selection or feature extraction tech-

niques other than those already implemented in any of the models used.
This is something to consider implementing.
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There are also a few things we were not able to implement or try out due to
hardware, software, or time limitations. These are thing that could be tried
out in future work. One thing we were unable to do was to run the models
on a dataset with kommune_id one-hot-encoded as we did not have large
enough memory on the computer provided. Also, we used some feature en-
gineering to transform all categorical features, and ran all models on those
datasets. Some of the models we used can handle categorical data, and it
is an option to try out.

Another interesting topic that can be explored is whether feature selection
should be implemented before or after re-sampling. We only had the time
to implement re-sampling, but it would be interesting to see if the order of
feature selection and re-sampling would have an affect on the result as it
seems to vary from case to case[27].

We only implemented a very simple neural network model, and did not do
a lot of optimization. This could be to further explore trying out different
optimizers and fine-tuning the learning rate and layers of the model.

7 Broader impact

The use of machine learning to prevent strike damage is a new field of re-
search and is still far from being used in the real world. This report provides
only a brief overview of some of the possibilities. Nevertheless, we know
that preventing strike damages will have a huge impact on society on mul-
tiple areas.

From a report[28] published by the Norwegian Ministry of Local Government
and Modernization, research has been done into the socio-economic conse-
quences of strike damages. There they estimated the direct repair cost on
the electrical grid to be 69.9 millions NOK yearly[28, p. 40]. In addition indi-
rect cost (e.g, loss of income and cost related to postponement of project),
and KILE[29] (Cost of Energy Unserved), also impact the total economical
costs related to damage on the electrical grid. For damage to the electrical
communication grid, the cost is estimated to be even higher. Dalen et al.
did an analysis of 12 real-world cases relating to damage on the electrical
communication grid and estimated a total cost of 348 million NOK yearly.
Only looking at the costs of these two examples, we can see that being able
to minimize strike damage by a few percent would save the society for a
substantial financial amount yearly.

There are also non-financial consequences related to strike damages. So-
cial costs[|28, p. 28], such as an increase in traffic, and increased pollution
or noise, have an impact on peoples health and the environment. Another
example which could pose a great risk to peoples health is if the mobile net-
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work is to be damaged and unavailable. We have examples[30][|31] where
the EMK has been unavailable to the public for periods of time. A worst case
scenario would be if the public was unable to reach emergency services due
to the loss of mobile service and a loss of life happened because of the inabil-
ity to access medical service or the fire department. Therefore, decreasing
strike damages and as a result possibly decreasing possible downtime of the
EMK could help save lives.

The dataset we worked with contained ids that can be mapped to individual
people or companies. When using machine learning with data containing
personal information, some ethical questions arise. We have to be aware of
potential bias in machine learning. If not careful machine learning models
can put false accusation on an individual or company. In the case with risk
assessment of strike damages, it could potentially falsely accuse a company
of being high risk, while the actual cause of the higher risk might be due to
a factor not contributed by the company or detector.
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