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Abstract

Gradient descent through backpropagation is the most common training method in the

machine learning space. This method is however known for having some weaknesses with

generalization and noisy environments. Alternatively, evolution strategies (ES) has been

shown to be an alternative to the most recent reinforcement learning (RL) optimization

methods, but its biggest challenge is training time. Adam, a well known backpropagation

method based on gradient descent, is being compared to ES. The model is based on a

neural cellular automaton (NCA), which is a self-organizing system of cells controlled by

shared update rules. This system can be trained to achieve advanced behaviour, and we

want to investigate how Adam and ES behave when training to grow a chosen image. The

experiments are based on damaging the NCA in different ways and analyzing their reaction

using mainly loss metrics. The results show that ES achieves better persistence than Adam.

However, with Adam being specifically trained to persist, it is sometimes hard to observe

any impressive regenerative capabilities between Adam and ES.
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Sammendrag

Den mest brukte treningsmetoden i maskinlæringsfeltet er backpropagation. Men denne

metoden er kjent for å ha enkelte svakheter med generalisering og støymiljø. Evolutionary

Strategies (ES) derimot, har vist seg å kunne være et alternativ til de mer populære tren-

ingsmetodene innenfor Reinforcement Learning, men den største utfordringen er den lange

treningstiden. Det skal forskes p̊a Adam, en velkjent backpropagation metode basert p̊a

gradient descent estimering, sammenlignet med ES. Modellen baserer seg p̊a nevrale cel-

lulære tilstandsmaskiner, som er et selvorganiserende system av celler kontrollert av felles

oppdateringsregler. Denne tilstandsmaskinen kan oppn̊a avanserte egenskaper, og vi ønsker

å undersøke hvordan Adam og ES oppfører seg n̊ar tilstandsmaskinen trenes til å danne et

spesifikt bilde. Eksperimentene baserer seg p̊a å skade disse tilstandsmaskinene p̊a forskjel-

lige m̊ater og analysere resultatene. De viktigste resultatene viser at ES er mer robust enn

Adam. Likevel, n̊ar modellen med Adam er optimalisert til å gro, er det vanskelig å oppdage

signifikante forskjeller p̊a de regenerative egenskapene mellom Adam og ES.
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1 Introduction

Evolution Strategies (ES) has shown to be a scalable solution to Reinforcement Learning

(RL) problems by Salimans et al. [1] In short they managed to show that ES could train

neural networks to beat Atari games and MuJoCo-tasks etc. while heavily reducing the

training time by increasing CPU-cores. In a report by a prevoius B.Sc. group at NTNU,

Dalheim and Jacobsen [2], they discovered that ES showed some favourable qualities over

multiple backpropagating algorithms like Adam and Stochastic Gradient Descent Method.

Taking inspiration from Darwin’s evolution theory and the principles about survival of the

fittest, ES seeks to find the best possible solution to a problem by preserving the best

mutations over many generations.

In this project we train a Neural Cellular Automaton (NCA) with ES. An NCA is a self-

organizing system much like John Conway’s ”Game of Life” [3], but it uses an Artificial

Neural Network (ANN) to set the update rules. As shown by Mordvintsev et al. [4], an

NCA trained by backpropagating errors had promising results when specifically trained to

stabilize or regenerate. We want to explore ES in an NCA to see if such qualities can be

achieved without models being specifically trained for it. Perhaps there are other models

that can benefit from these extra qualities gained from ES?

We hypothesize that ES will be able to learn in a generalized manner much like how natural

selection manages to find favourable traits. Also from the discoveries in Dalheim and

Jacobsen’s [2] report, we think that ES will require a great amount of training time and

that it will be able to regenerate from unknown forms of damage without necessarily being

specifically trained to do so. Therefore, our research question is if ES is a scalable alternative

to backpropagation methods based on loss-, speed- and robustness metrics.
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2 Related work

The related work in this chapter are the main bases used for our research of evolution

strategies as an alternative to backpropagation.

2.1 Evolution strategies

A variation of ES is Natural Evolution Strategies (NES), and is developed by Wierstra et

al. [5] It involves calculating the gradients of a population and adding it to the parent

parameters. The gradients help guide the distribution to a better solution using the fitness

scores and mutation matrices for estimations. They also implemented shaping of fitnesses

by ordering the fitness non-linearly across the population.

Advancements in modern technology has allowed the artificial intelligence space to take

advantage of increasingly efficient computing capabilities. This also benefits ES as it can

potentially be easier to parallelize in comparison to other optimization techniques. ES only

requires gradients that do not need to be shared. This leads to a revisit of ES by Open

AI as a ”scalable alternative to reinforcement learning” [1]. By using a variation of NES,

they showed lower training time and stability for certain MuJoCo-tasks. With this method,

they managed to train a 3D human shaped object to walk in 10 minutes by parallelizing

the workload across 1440 CPU cores. [1]

2.2 Cellular automata

John Conway’s Game of Life [3] is an experiment based on cellular automata (CA). Although

not the first works on CA, it is certainly one of the most famous ones. The game is based

around an initial state set by the player, that from there on evolves into different patterns.

These patterns can often be interesting or visually pleasant.

Mordvintsev et al. [4] developed an NCA to generate images of emojis by growing from

a single cell. They also present the NCA’s ability to recover from damage, however only

when being trained for it. In a recent project by Dalheim and Jacobsen [2], they researched

regenerative capabilities of an NCA using various training algorithms like ES. Their findings

were similar to the ones by Open AI, such as consistency over a large amount of time steps,

stability, and better regeneration in terms of loss data over time. Still, there were a few

experiments where ES recovered worse than other optimization techniques.
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3 Theory

This chapter will provide the reader with essential knowledge to understand important ideas

in experiments and results discussed later in the paper.

3.1 Neural Network

A neural network (NN), in association to computer science, is a network or circuit made

up of artificial neurons. Similarities to a biological NN are how wired neurons fire together

thus forwarding a signal from the rear to the end as shown in figure 1. This means that in

order for a neuron to send a signal it has to receive a signal first. A NN is used to solve

complex problems such as classification in images, voice recognition etc. The NN adjusts the

influence of each neuron using numerical weights in between the connections. An excitatory

link has a positive weight, while inhibitory connections have a negative weight, which is

applied to to all inputs before summation. This is also known as a linear combination.

Finally, the output’s amplitude is controlled by an activation function. For example, could

an acceptable output range be between 0 and 1, or -1 and 1. The most standard ANN is

a fully connected ANN, or a so called multilayer perceptron (MLP) like in figure 1. Each

node has an input consisting of a linear combination of the nodes in the previous layer. [6]

input
layer

hidden
layer

output
layer

A simple neural network

Figure 1: A multilayer perceptron, an example of a neural network [7]

3.2 Black-Box Optimization

Black boxes are typically made of numerous points which are connected in complex patterns.

It would be difficult for a person to easily interpret such a system, therefore an ANN is an

example of a black box. Black box optimization refers to algorithms that utilize millions

of data points and correlates specific features in the data set to produce a desired output.

Generally this type of optimization is mostly self-directed, and it is difficult to interpret the

effect that the optimization has on the output.

3



3.3 Evolutionary Strategies

Evolution strategies is a class of algorithms utilizing black-box optimization to perform

heuristic search procedures, inspired by natural evolution. The algorithms work by per-

turbing a population of parent parameters and evaluating their resulting objective function

value known as the fitness score. Subsequently the parent parameters with the highest

fitness score are recombined to form children parameters that will represent the parents of

the next generation. This procedure is repeated until a best possible fitness score has been

reached. Greater fitness score is better. [1]

3.3.1 Variants of ES

The differences between algorithms in this class are often in how mutations and recombi-

nation are performed and in how populations are represented. [1]

Perhaps the most extensively known form of ES is the covariance matrix adaptation evolu-

tion strategy (CMA-ES). Here the population is represented by a full-covariance multivariate

Gaussian. This method has proven very successful at problem solving in lower dimension.

Natural Evolution Strategies (NES) are ES inspired black-box optimization algorithms

derived from first principles while simultaneously providing state-of-the-art performance.

With this the idea is to maintain and iteratively update a search distribution. The fitness is

evaluated, and the distribution is adjusted accordingly in the direction of higher expected

fitness. [1] [5]

3.3.2 OpenAI NES

Below is the pseudocode suggested by Salimans et al. [1] as presented in their article. The

algorithm employed belongs to the NES class, and is the one that will mostly be used in

onward.

Algorithm 1 Evolution Strategies, OpenAI

1: Input: Learning rate α, noise standard deviation σ, initial policy parameters θ0
2: for t = 0, 1, 2, . . . do
3: Sample ϵ1, . . . ϵn ∼ N (0, I)
4: Compute returns Fi = F (θt + σϵi) for i = 1, . . . , n
5: Set θt+1 ← θt + α 1

nσ

∑n
i=1 Fiϵi

6: end for

The algorithm works by adding normal distributed noise to all parameters. It then evaluates

fitnesses, combines them, and calculates an estimate to update the networks parameters.

4



3.3.3 Parallelizing ES

The nature of ES makes it well suited for parallelization. As ES operates in complete

episodes and the only thing necessary to communicate between episodes is a single scalar

per worker. [1]

Algorithm 2 Parallelized Evolution Strategies, OpenAI

Input: Learning rate α, noise standard deviation σ, initial policy parameters θ0
2: Initialize: n workers with known random seeds, and initial parameters θ0

for t = 0, 1, 2, . . . do
4: for each worker i = 1, . . . , n do

Sample ϵi ∼ N (0, I)
6: Compute returns Fi = F (θt + σϵi)

end for
8: Send all scalar returns Fi from each worker to every other worker

for each worker i = 1, . . . , n do
10: Reconstruct all perturbations ϵj for j = 1, . . . , n using known random seeds

Set θt+1 ← θt + α 1
nσ

∑n
j=1 Fjϵj

12: end for
end for

Just like in Algorithm 1 the noise is added to all parameters and fitness is evaluated. These

fitnesses are then shared between all workers to be combined and used to update network

parameters.

3.4 Cellular automata

A cellular automaton defines a system of cells where each cell’s state is determined by a set

of rules for how a cell should behave based on the neighbouring cell states. A state can for

example be a binary state, so that there are two indicators to determine if a cell is ”dead”

or ”alive”. The system is usually ordered in a 2-dimensional grid, and updates to the

cell states happens in discrete time steps. All cells are updated simultaneously during an

update step, and the resulting cell states after an update step is called a generation. There

exist many different CA systems, but they all inhabit the same principles of uniformity,

synchronicity, and locality. Meaning that the cells use the same set of rules, simultaneously

for all cells, and that the cell’s perception is limited to its surroundings. [8]

3.5 Gradient descent optimization

Gradient descent is a linear iterative optimization algorithm to find a local minimum of a

function F (θ) where θ denotes a model’s parameters. With repeated steps in the opposite

direction of the gradient at the function’s current point, the algorithm will reach the local

minimum.

5



For a multi-variable function F (x), if the function is differentiable in the neighborhood of

point θ, then F (x) decreases the fastest when θ is moved in the direction of the negative

gradient −∇F (θ).

With a small step size α ∈ R+, for

θt+1 = θt − α∇F (θt) (1)

then F (θt) ≥ F (θt+1)

3.5.1 Gradient descent with momentum

The issue with standard gradient descent is that the gradient could shift direction depending

on the parameter set, which could diverge the parameters from the local or global minima.

The variation with momentum allows it to converge more efficiently and avoid divergence.

If the equation (1) is separated into two parts, one of which is the change applied at the

timestep t and the other one being the parameter update, the new equations are

ct+1 = α∇F (θt) (2)

θt+1 = θt − ct+1 (3)

To apply momentum, the change c in the previous time step is added to the next one. In

addition to this, a hyperparameter m is applied to the change. If m ∈ [0, 1] and α ∈ R+

the recursive formula is

ct+1 = α∇F (θt) +m · ct (4)

θt+1 = θt − ct+1 (5)

3.5.2 Adam Optimizer

Adam, or adaptive moment estimation, is another optimization method only consisting of

first order gradients. Making it both efficient and fast to calculate optimal parameters. The

algorithm is a fusion of two other optimization methods, namely Adaptive Gradient Algo-

rithm (AdaGrad) and Root Mean Square Propagation (RMSProp). AdaGrad is effective on

sparse gradients, and RMSProp is better optimized for of handling non-stationary settings.

Adam gets all these benefits and overcomes both these algorithms according to Kingma and

Ba [9]. Given the gradient gt being defined as ∇F (θt−1), which gives the gradient of the

function F at a specific set of parameters, and without taking the bias into account, from

the AdaGrad method the equations for the moment at t is defined as

6



β1 ∈ [0, 1⟩ (6)

mt = β1 ·mt−1 + (1− β1) · gt (7)

And with RMSProp, moment is defined as

β2 ∈ [0, 1⟩ (8)

vt = β2 · vt−1 + (1− β2) · g2t (9)

Normally the betas are either 0.9 or 0.999 which will make the moments at t move closer

to the moments at t − 1. Since the moments are initialized as zeros, the moments will be

moved towards zero within the first few iterations. These estimates are known as biased

estimates, therefore the next step is to calculate the bias corrected estimates:

m̂t =
mt

1− β1
(10)

v̂t =
vt

1− β2
(11)

These moments are used to calculate the next iteration’s parameters in a similar manner

to equation (1):

θt = θt−1 − α · m̂t√
v̂t + ϵ

(12)

where θ is the function’s parameters, α ∈ R+ and ϵ is a small floating point number for

preventing division by zero.

3.5.3 Optimization through backpropagation

Backpropagation is an algorithm for supervised learning of NN. Given a NN structure and an

error function which calculates the difference of the NN output and the desired output, the

method calculates the gradient of the error function with respect to the NN’s weights. By

calculating the gradient of the output from the last layer of the NN, one can use the gradient

descent algorithm to change the weights of the next to last layer and so on. Eventually the

network will have the weights which minimizes the error function for given inputs. [10]

In mathematical terms, one is trying to minimize a given error function. If ŷ is the predicted

outcome by the NN and d is the desired output, the error function is

E =
1

2
(ŷ − d)2 (13)

7



With yj−1 as the output from the previous layer, the linear input for j-th layer is

xj = yj−1wj + bj (14)

where the weights are wj and bj are the biases. And with a(x) as the activation function

of the input from the previous layer the NN output is

ŷ = a(xj) (15)

The gradient of the error function (13) with respect to wj using the chain rule multiple

times

δE

δŷ
= ŷ − d (16)

δE

δxj
=

δE

δŷ

δa

δxj
= (ŷ − d)(a′(xj)) (17)

δE

δwj
=

δE

δŷ

δa

δxj

δxj

δwj
= (ŷ − d)(a′(xj))yj−1 (18)

Now the last layer’s weights can be updated as follows

wt+1 = wt − α(ŷ − d)(a′(xj))yj−1 (19)

The gradient of the layer j-1 then equals to

δE

δyj−1
=

δE

δŷ

δa

δxj

δxj

ˆyj−1
= (ŷ − d)(a′(xj))wj (20)

With this the weights of the j-1th layer and so on can be updated. If one were to use

multiple nodes per layer, then one would have to take the sum of error gradients
∑

i(ŷi−di)

where i ∈ R+ and use that to adjust the model weights. [10]

8



4 Method

For this chapter, we describe our NN model, training methods, and hyperparameters used

in training. The code used in this report can be found at https://github.com/tdl1304/

IDATT2900-45B.

4.1 Algorithms

Based on findings in a similar project by Dalheim and Jacobsen [2], we decided to primarily

use the NES variant of the ES algorithm on our NCA. As our control group to compare

against, we used the Adam optimizer.

OpenAI NES. This algorithm is described in 3.3.2, and references to ES will be made to

the OpenAI NES.

Adam. This optimizer is described in 3.5.2, and it is one of many gradient descent methods

with backpropagation. According to Mordvintsev et al. [4] the optimizer showed good

results with a relatively short training time.

4.2 Parallelization

ES has the potential to benefit greatly from parallelization. To help us achieve this we were

given access to a CPU-server powered by NTNU. This server ran on an AMD EPYC 7742,

a 128 core vCPU with 128GB of RAM.

To achieve parallelization in python we want to distribute the workload over all avail-

able CPU-cores. Python itself does not support this out of the box. It is hard to par-

allelize python using threading due to restrictions in CPython. We decided to use the

torch.multiprocessing library. The multiprocessing library allows for spawning of sub pro-

cesses that are allowed to run in parallel. The torch.multiprocessing library acts as a

wrapper around multiprocessing, extending it and allowing for tensors sent through a mul-

tiprocessing queue to make use of shared memory.

The division of labor was done through assigning each mutant in a population its own

process through forking, allowing them to run in parallel, reporting back to the main process

on completion.

4.3 Model Structure

The NCA we use in this project consists of a feature extraction layer followed by a MLP as

shown in figure 2. In the MLP, there is an activation layer using the Rectified Linear Unit

9
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(ReLU) activation function, and is defined as

z ∈ R (21)

Relu(z) = max(0, z) (22)

The final layer outputs a tensor with the same dimensions as the input tensor. A tensor is

simply a multidimensional vector that stores numerical values. The number of channels is

set to 16 where the three first channels are the RGB channels and the fourth channel is the

α - channel. The 12 other channels are not predetermined and it is up to the NN to define

a rule for these. We refer to these 12 channels as hidden channels.

Figure 2: Model structure based on model by Mordvintsev et al. [4]. The input tensor is
an RGBA image with additional 12 hidden channels. There is a total of 16 channels for
the input. That tensor is fed through three filters for feature extraction, and then into a
dense or MLP layer with 128 nodes and a ReLU activation layer. The output consists of
16 nodes because of the 16 initial input channels, and this creates an output with the same
dimensions as the input tensor. A stochastic update and alive masking is performed with
the input tensor and the output tensor to create the next update step.

The feature extraction layer uses three filters and convolves the filters with the input before

feeding it through the network. This means that we utilize a matrix, or a so called ”kernel”,

and for each point in the input image the pointwise product of the corresponding cluster

of pixels are summed. The result is written to the corresponding position of each point.

Two Sobel filters, one for the x- and y-direction, and an identity filter are used. The Sobel

filters are commonly found in computer vision for edge detection, and the identity matrix

essentially makes a copy of the input to store the existing cell state information. I is the

identity filter and S are the Sobel filters in each direction, and these are shown below.

I =

0 0 0

0 1 0

0 0 0

 , Sx =

−1 0 +1

−2 0 +2

−1 0 +1

 , Sy =

−1 −2 −1
0 0 0

+1 +2 +1


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The input and output to the NN is a tensor of shape (batch size, cell grid height, cell

grid width, channels). The output is of the same shape because it is added to the input

tensor using an update mask. The process is referred to as ”alive masking”, and it performs

updates on the cell state. A living cell is a cell with its α > 0.1 or any of its neighbour’s

α > 0.1. Dead cells however, do not update or share information. During an update step

there is also an update probability, or fire rate, that determines if a cell should update

or not. The purpose of the fire rate, according to Mordvintsev et al. [4], is to achieve

asynchronous behaviour. The fire rate is by default set to 0.5. After alive masking, the

next generation should behave like it is expanding or growing outwards.

Training with smaller images greatly reduces the difficulty and a need for a big number of

neurons. Therefore, unlike the model in figure 2, we have reduced the ”Dense-128” layer

to a ”Dense-32” layer. We also decided to omit the bias since testing done by Dalheim

and Jacobsen [2] showed that it was unnecessary for an NCA. We keep these changes for

training with both algorithms mentioned in 4.1 to standardize our models. Everything else

remains the same as the model shown in figure 2.

By initiating the weights of the ”Dense-32” layer to zeros, we achieve a ”no action” behaviour

at the beginning of training. This means that there will be no updates to the cell states,

thus no growth. For ES training, we are also disabling gradients because it is not necessary

for the algorithm. If gradients are not disabled then the training will result in a memory

overflow error. With Adam optimization however, gradients are needed [9].

4.3.1 Training

The self structuring nature of the NCA can be viewed as a Reinforcement Learning (RL)

problem. An agent is tasked with grouping up a grid of cells in a specific pattern and

colour. By ”agent”, we are referring to the optimization algorithm. The NCA problem is

more supervised than other RL problems though. For this instance, the agent receives a

greater reward when the output is more similar to the target image. Therefore, we can use

a more supervised approach to calculate the rewards by utilizing the Mean Squared Error

(MSE) between the images. Since our goal is to grow an image after a certain amount of

time steps, the agent is assessed after an episode.

As a starting point, we use a cell grid that is set to zero on all channels except for the

middle which is set to one on all channels. This is referred to as the seed. The NCA grows

outwards from the seed.. An example of a target image and the seed are illustrated in figure

3.
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(a) Seed (b) Target image

Figure 3: Shows a 15x15 cell grid referred to as the seed (a) and an example of a 15x15
target image (b) which is used for the loss calculation

Early in our ES training, we found that training from a sample pool and fitness shaping

improved our model. Fitness shaping is a normalization method that is rank based, which

means that the relative positions of the fitnesses affect the overall score of the population

fitness [5]. This helps the algorithm by guiding the agent more consistently to an optimal

solution. A sample pool involves sampling from a batch and only storing the sample with

the best score. These samples were used as a starting point instead of the seed. This

technique was also implemented by Mordvintsev et al. [4].

We make use of some of the code published by Dalheim and Jacobsen [2] for our ES training,

likewise for the code published by Mordvintsev et al. [4] as the base for the model structure

and training with Adam. The model structure for both code bases are identical, they differ

only in training method. The loss functions and hyperparameters are also mostly the same.
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4.3.2 Hyperparameters

Python version 3.10.0 and PyTorch version 1.11.0 [11] were used during training and ex-

perimenting with ES and Adam. Tensorboard was useful for logging and visualizing data.

The models have the shared hyperparameters as listed in table 1.

Hyperparameter Value

In-channels 16

Grid size 9x9 and 15x15

Update steps 30-40

Fire rate 0.5

Pool size 1024

Table 1: Shared hyperparameters. In-channels refers to the amount of channels for the
input tensor, grid size decide how large our target image is, update step refers to how many
iterations the NCA have in an episode, fire rate is the probability for a cell to update and
pool size is the amount of samples to keep at the same time during training.

Update steps determine how many iterations the cell grid is updated, and it is set to a

random number ranging from 30 to 40. We use a sample pool of size 1024. This technique

acts as a tool to prevent destroying fully grown images during training. Before the update

steps, we retrieve cell grids from the sample pool, at random, depending on our batch size.

After the update steps we only commit the best result to the indices it was sampled from.

This is due to the randomness of the ES algorithm that are more likely to produce outliers.

Additionally, to prevent a sample pool of only dead cells in the cell grids, we only commit

the grids that have living cells. A variation of this, used by Mordvintsev et al. [4], is to

first swap out the worst result with a seed and then commit the whole batch to the sample

pool. But using this variation for ES is more likely to produce a sample pool of outliers.

Therefore, we use the variation by Mordvintsev et al. [4] for Adam, and the other one for

ES.

Our models trained on a 9x9 grid size to compare against the results of Dalheim and

Jacobsen [2] since they also used a 9x9 grid size. In addition to this, we also trained models

on a 15x15 grid size, as incremental testing showed that this size gave a good compromise

between training time and image quality. Mordvintsev et al. [4] trained on a 40x40 grid

size. We could not train on such a large cell grid using ES as we found that the training

time increased tremendously at this size.

As mentioned before, the loss is calculated as the MSE between the generated image and

the target image. If x is the generated image, y is the target image and i iterates through

a batch with size n, MSE is defined as

1

n

n∑
i=1

(xi − yi)
2 (23)

13



ES use the negative MSE loss to sort a population’s score in an ascending order. Given

the fitnesses, the population is evenly mapped from -0.5 to 0.5. The shaped fitness F of an

instance in the sorted population with size n is given by

F =
position

n− 1
− 0.5, position ∈ {0, 1, 2 . . . , n− 1} (24)

We also use a normalized shaped fitness to decrease the importance of a few single fitnesses,

or outliers. If A denotes a one-dimensional array of numerical values, mean(x) returns

the average of a list and std(x) returns the standard deviation, then the normalization is

defined as

Normalized(A) =
A−mean(A)

std(A)
(25)

ES use a σ of 0.01 to scale the noise added to the model weights. The population size

varies in the experiments, but parallelization allows for scalability in terms of increasing

population size. We will later discuss the effect that the population size has on the training

time in chapter 7.

For ES, we are decaying the learning rate, or step size, by a factor of 0.3 if the mean loss ≤
0.03. This occurs again when the mean loss ≤ 0.01 by a factor of 0.5. By contrast, Adam

uses the default learning rate of 0.001 provided by PyTorch, which does not decay [11].
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5 Experiments

This chapter covers all experiments done on the models using ES and Adam with different

configurations. These experiments aim to compare the model’s growing- and regenerative

capabilities, while also aiming for shorter training time.

5.1 Training a model to grow into an image

The models used for these experiments are trained with and without sample pools. We

tested these model’s growing and regenerative capabilities without being trained for self

healing properties and stability over time.

5.1.1 Parallelization

We tested our implementation of parallelization to see if we could find improvements to the

training time on ES.

5.1.2 Different image sizes

We trained with 9x9 and 15x15 cell grids for our models. We used a rabbit emoji and a

carrot emoji as our target images. The main differences between these images were the

amount of leftover white pixels in the canvas and the texture details as shown in figure 4.

(a) 9x9 Carrot emoji (b) 9x9 Rabbit emoji

(c) 15x15 Carrot emoji (d) 15x15 Rabbit emoji

Figure 4: Shows a 9x9 and 15x15 cell grid of the target images used in our experiments.
Figure (a)(c) has more similar texture in terms of colours in one area, while (b)(d) has a
wider spread of colours in one area.
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5.2 Damage to trained models

In this section we apply different kinds of damage to trained models to see how they respond.

We are testing with:

Quadratic erasing on 51st update step. By setting all channels, including the RGBA

channels, to zero. We test with three different sizes of damage, 2 x 2-, 3 x 3-, and removing

the bottom half of an image. An visualization of the latter is shown in figure 5. The

damage is done at the 51st update step. By giving it approximately 10 update steps above

the number of update steps during training we can better see how many steps are required

to fully regenerate.

(a) Fully grown rabbit (b) Rabbit 15x15 erased lower half

Figure 5: Quadratic erasing example

Adversarial attacks under and after growth. A very minor amount of noise is added

to the whole cell grid at each update step, and also with a fully grown image at the 51st

step. The noise use the error gradient from the backward propagation and adds it to the

input image to maximize the loss. This algorithm is called the Fast Gradient Sign Attack

(FGSA) and is developped by Goodfellow et al. [12] We adjust the scale of noise by the

parameter ϵ.

(a) Fully grown rabbit (b) After adversarial attack

Figure 6: Adversarial attack example using FGSA with ϵ = 0.07
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6 Results

In this chapter the results from the experiments mentioned in chapter 5 are shown and

visualized. The experiments are ran several times. Not all models are included in all

experiments as we found some results to be largely similar.

6.1 Parallelization results

The training time is measured for training a model with parameters as specified in chapter

4.3.2. The models trained in these runs are 9x9 carrots, all to a fitness goal of -0.003. All

the models are trained with ES once, and time is taken for each run.

Parallelization results

Pop size Gen/s Mut/s Time Tot gen

6 25 150 36m 7s 53.9k

10 20 200 43m 36 s 51.2k

40 7 280 2h 24m 58s 63.53k

100 3 300 5h 38m 38s 57.85k

1000 0.25 250 - -

Table 2: Mut/s is a metric for the number of mutants per second, and is the product of
pop size (population size) and gen/s (generations per second). We did not finish training
with pop size 1000.

6.2 Models trained to grow - without sample pools

Hyperparameters are shown in table 3. In total there are four models trained for 9x9 and

15x15 cell grids for the images shown in figure 4.

Hyperparameters

Model lr Pop size Batch size Using sample pool

ES 0.005 6 1
No

Adam 0.001 - 8

Table 3: Hyperparameters used for training models without activating sample pools

Figure 7 shows the loss over update steps. The models used for this test was trained with

sample pools disabled as stated in table 3. During training the models are only evaluated

after an episode with 30-40 update steps each episode. Table 4 is showing the growth from

the fully trained models for size 15x15. Models trained with 9x9 images are excluded from

the table, but several graphs showing loss can be found in figure 7.
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Iteration 0 1 2 3 4 10 30 40 100 1000

Carrot ES

Carrot Adam

Rabbit ES

Rabbit Adam

Table 4: Table of multiple growing 15x15 NCA. The horisontal axis are showing the growth
stages with a number specifying the update step. The vertical axis orders the NCA into
target images and training methods.

(a) Growing a 9x9 carrot emoji (b) Growing a 9x9 rabbit emoji

(c) Growing a 15x15 carrot emoji (d) Growing a 15x15 rabbit emoji

Figure 7: Shows loss graph over 2000 update steps. For each image size and type. The loss
is measured as log of MSE from the growing NCA to the actual target image.
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6.2.1 Quadratic erasing

Loss before and after quadratic erasing done at the 51st update step. The graphs in the

figures show an increasing amount of damage done to the models, starting with removing

a 2x2 box in the middle of the image, then 3x3 in the middle and then removing the entire

bottom half in the right graph.

(a) 2x2 (b) 3x3 (c) Bottom half

Figure 8: Loss graph after damage over 400 update steps for 9x9 carrot

(a) 2x2 (b) 3x3 (c) Bottom half

Figure 9: Loss graph after damage over 400 update steps for 15x15 carrot
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6.2.2 Adversarial attacks

Different values for ϵ was tested. With an ϵ larger than 0.007, which is a default value, it

cannot grow at all. Therefore, we induce the NCA with a very small noise dosage so that

the model is able to stabilize. We used a value of ϵ = 7 · 10−7 for every update step till

update step 40. This is shown in figure 10. The other test is with the FGSA on the 51st

update step, and these results are visualized in figure 11.

(a) 9x9 carrot emoji (b) 9x9 rabbit emoji (c) 15x15 carrot emoji

Figure 10: Shows loss graph over 1000 update steps. FGSA with ϵ = 7 · 10−7 is applied on
each update step until update step 40.

(a) 9x9 carrot emoji (b) 9x9 rabbit emoji (c) 15x15 carrot emoji

Figure 11: Shows loss graph over 1000 update steps. FGSA with ϵ = 0.007 is applied on
update step 51.
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6.3 Models trained to grow - with sample pools

Hyperparameters

Model lr Pop size Batch size Using sample pool

ES 0.005 40 1
Yes

Adam 0.001 - 8

Table 5: Hyperparameters

The following graphs and tables shows the growth of each of the four models. The only

difference between the models trained in chapter 6.2 is the inclusion of sample pools. The

results are shown below.

(a) Growing a 9x9 carrot emoji (b) Growing a 9x9 rabbit emoji

(c) Growing a 15x15 carrot emoji (d) Growing a 15x15 rabbit emoji

Figure 12: Shows loss graph over 2000 update steps, but compared to figure 7, the models
are instead trained with sample pools. In graph (c), ES has increasing loss, but stabilizes
after roughly 500 update steps.
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Iteration 0 1 2 3 4 10 30 40 100 1000

Carrot ES

Carrot Adam

Rabbit ES

Rabbit Adam

Table 6: Table of multiple growing 15x15 NCA

6.3.1 Quadratic erasing

Loss before and after quadratic erasing done at the 51st update step. The graphs in the

figures show an increasing amount of damage done to the models, starting with removing

a 2x2 box in the middle of the image, then 3x3 in the middle and then removing the entire

bottom half in the right graph.

(a) 2x2 (b) 3x3 (c) Bottom half

Figure 13: Loss graph after damage over 400 update steps for 9x9 carrot

(a) 2x2 (b) 3x3 (c) Bottom half

Figure 14: Loss graph after damage over 400 update steps for 15x15 carrot
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6.3.2 Adversarial attacks

We used an ϵ = 7 · 10−7 to be able to better compare results to the models trained without

sample pools. The loss is recorded after noise induction in each update step. For the

damaging after growth, it is done with the same method as in chapter 6.2.2.

(a) 9x9 carrot emoji (b) 9x9 rabbit emoji

(c) 15x15 carrot emoji (d) 15x15 rabbit emoji

Figure 15: Shows loss graph over 1000 update steps. FGSA ϵ = 7 · 10−7 is applied on each
update step until update step 40.

(a) 15x15 carrot emoji (b) 15x15 rabbit emoji

Figure 16: Shows loss graph over 1000 update steps. FGSA ϵ = 0.07 is applied on update
step 51.
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7 Discussion

In this chapter we discuss the results and findings from chapter 6 related to the thesis

question presented in chapter 1.

7.1 NCA growth over many update steps

As mentioned in chapter 4, all models are trained with update steps between 30 and 40.

This means that the NCA is only trained to grow to the target image at max 40 update

steps. In figure 17 below, the loss for the 200th update step is also sinking after many

training iterations although it only being evaluated at 30-40 steps. The difference in loss

for the 40th and 200th updates step is converging to 0. Referring to table 4, the models

trained without sample pools retained the integrity of the target images for the first 100

steps. However, after many iterations, we found that the loss was rapidly increasing for

the Adam trained models. The fast increase in loss may be due to the complexity of large

scale images, and also due to the rabbit emoji’s perhaps more complex colour patterns.

Albeit these challenges with NCA, the ES trained models manage to retain the image

characteristics even at 1000 update steps. To support this further, we can also observe that

the loss graphs for ES on all the models in figure 7 show a constant loss after the first initial

update steps. The fact that ES models can learn to stop growing without being trained to

do so is also confirmed by Dalheim and Jacobsen [2] in their research. They also theorize

that this behaviour could be the result of passing the fully grown image to the first layer

which then will pass negative values to the ReLu functions so that the fully grown image is

updated with a zeroed grid. Therefore, this leads to no change after the growing phase.

Figure 17: Shows loss after 40 and 200 update steps for an ES model trained for 300 000
iterations/generations. During training the model was evaluated at 30-40 update steps,
without sample pool.
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Training the NCA using sample pools greatly improved the stability of Adam trained models

beyond 40 update steps. This technique seems to lead the models to stop growing out of

control, something that ES managed to achieve without sample pools. However, using

sample pools on ES seemed to grant consistency during training. Due to the nature of

ES, it can randomly mutate its parameters to something that will leave the grid with

an undesired state. During our testing, we found that learning rates greater than 0.005

often lead to such problems. Incrementally, we also optimized ES using for example fitness

shaping and normalization to prevent this behaviour. It is also possible that it was a pure

coincidence with an unknown bug in our program since we had many iterations of ES during

development.

In the report by Dalheim and Jacobsen [2] all their models were trained to reach a loss

lower than or equal to 0.0033. With this target loss, the Adam model did not show any

signs of stability over many update steps. When training with the Adam method with an

even lower target loss, it was able to achieve the same results as ES in terms of stability

over many update steps. In the model by Mordvintsev et al. [4], they used Adam and also

reached stability using sample pools. Hence Adam, while using sample pools, seems to be

able to compete with the ES method’s stability when growing.

During out testing we we decided to check how the models would behave in environments

not seen during training. Our models were trained on canvases as large as their own size,

that is, a 9x9 model would be trained on a 9x9 canvas. We tried to examine the models

on grids larger than what they were initially trained for, and discovered some interesting

results. We saw that the Adam model was not able to retain its shape on larger canvases,

while ES generally maintained it although there were some small artifacts. We also tested

on smaller canvases, but here both models gave the same results.

(a)

(b)

Figure 18: The figures shows the update steps: {4, 10, 30, 40, 100, 1000}. Figure (a) shows
a model trained with Adam using sample pools for a 15x15 rabbit emoji, and figure (b) is
using a ES trained model without sample pools. The models were used with a 39x39 grid
which was larger than the initial training size.
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7.2 Learning to regenerate

Mordvintsev et al.’s [4] NCA models showed no sign of regenerative capabilities when only

trained to grow, and this is equivalent to training the NCA with the Adam optimizer without

sample pools. They also trained an NCA for persistence using sample pools, which they

found to have some regenerative capabilities even at bigger grid sizes like 40x40. Referring

to experiment 3 in their paper, the CA was damaged during training to become more

robust. The outcome was a highly durable model, but after many update steps there were

signs of random artifacts occurring in the CA. Even though, ES is only trained on smaller

images, one can observe a constant loss in figure 7 and figure 12. This signals stability

when undisturbed during growth. As our Adam models trained without sample pools are

unstable, it is purposeless to look for regenerative capabilities in those models. Therefore,

we only compare ES with Adam models trained with sample pools.

In our experiments we found that ES regardless of it being trained with sample pools or not,

showed to have the same regenerative qualities. In figure 9 and 14, the loss on ES is quickly

increasing after being damaged, then slightly recovers and stabilizes. This seem to be true

for all the damage experiments therefore, sample pools do not seem to affect the results for

ES. In this case Adam has an overall lower loss than ES when being subjected to quadratic

erasing as shown in the results in chapter 6.3.1. Figure 19 illustrates the differences of

regeneration for the models. The model trained with Adam is regenerating better in the

central area than ES, but despite this, both models seem to retain the shape and key traits

of the rabbit emoji.

(a)

(b)

Figure 19: The figures shows the update steps: {50, 51, 60, 80, 100}. At update step 51,
the bottom half of the image is removed. Figure (a) shows quadratic erase on a model
trained with Adam using sample pools for a 15x15 rabbit emoji, and figure (b) is using a
ES trained model without sample pools.
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When applying the FGSA during growth there were unexpected results. As mentioned

earlier, whether ES is trained with or without sample pools, it should not affect the overall

results when excluding natural randomness within the model structure. The different results

shown in figure 20 could be caused by how differently the ES models were trained and at

which loss they ended their training at. However, we could observe that ES had a lower

loss during growth with adversarial attacks than for the Adam trained models as shown in

figure 15.

(a) (b)

(c) (d)

Figure 20: Figure (a) is showing the loss during adversarial attacks in the growth stages for
an ES model with and without sample pool for a 15x15 carrot emoji, and (b) is showing
the same for a rabbit emoji. (c) and (d) are showing the same, but for the size 9x9.

Despite ES having better results than Adam in this experiment, adversarial attacks during

growth, the images that were generated were not that impressive. The 100th update step

of both NCA are shown in figure 21, and we decided to showcase these models as they had

the best results from the graphs shown above in figure 20. Still, it is hard to decipher what

the generated image is supposed to resemble.
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(a) Carrot 15x15 FGSA during growth (b) Rabbit 15x15 FGSA during growth

Figure 21: Figure (a) shows the 100th update step of an ES trained model without sample
pools for a 15x15 carrot, and figure (b) shows the 100th step for a 15x15 rabbit trained ES
model with sample pools. Both NCA are subjected to adversarial attacks during growth.
FGSA with ϵ = 7 · 10−7 is used to damage the NCA.

The results from the adversarial attack after growth is put together into one graph for each

emoji type in figure 22. By only observing the results in the figures, it seems like Adam

is performing best on the carrot emoji, while ES is doing better on the rabbit emoji. For

both graphs, ES is again performing similarly even with the difference in sample pools.

Both Adam and ES losses are constant after being subjected to FGSA at update step 51.

Unlike how the models behaved with quadratic erasing, there does not appear to be any

regeneration happening. This is observed by the loss instantly decreasing after receiving

damage at step 51 as in figure 14, which does not occur here.

(a) (b)

Figure 22: Shows loss comparisons for models trained with Adam with no sample pools,
and ES with- and without sample pools over 400 update steps. FGSA ϵ = 0.07 is applied on
update step 51 for all models. Figure (a) is displaying the loss comparisons for the 15x15
carrot emoji models, and figure (b) is showing it for the 15x15 rabbit emoji.

At the 100th update step as shown in figure 23, even when subjected to a strong adversarial

attack of ϵ = 0.07, the models shows robustness. Although the ES trained model for the

15x15 carrot emoji had a greater loss than the Adam method, when viewing the images

side by side, the only difference are the artifacts around the carrot itself. However, both
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generated images can be classified as carrot emojis. For the rabbit emojis, it seems like the

Adam model is cloning itself, while the ES model manages to keep its shape. The difference

between the loss on the rabbit- is greater than the carrot emojis, which shows that the ES

method appear to be more robust than Adam.

(a) 15x15 Adam (b) 15x15 ES (c) 15x15 Adam (d) 15x15 ES

Figure 23: The figures show the 100th update step after an adversarial attack at step 51.
The models are trained as 15x15 NCA with either Adam or ES, and all models were trained
with sample pools.

7.3 ES training time

It quickly becomes clear that training time for ES is a major challenge, and that in this

case ES are not able to compete with the likes of Adam. Although, the implementation of

ES used in this report is largely written in non-optimized Python, and the libraries used for

Adam are much more optimized. It is possible that given as much optimization, ES could

be more competitive in this regard. Given enough time ES is able to evolve models that

reach results that are comparable to what is produced by Adam, and in some cases seems

to develop favourable traits. Given traits that are favourable enough, one could argue that

the extra training time is worth it. Also, given enough computing power on models that

are able to benefit from such, ES might also be able to compete on the time aspect as well.

7.3.1 ES parallelization

In our testing with parallelization we did not see any clear advantages or significantly

reduced training times. We think that the models trained during this project may simply be

to small to gain any practical benefit from parallelization. Also taking into account that our

implementation of parallelization, might not be optimal. And that with the choice of Python

as our programming language, while it is very viable for proof of concept implementations,

it might not be the best choice for implementations where efficiency is key.
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8 Conclusion

ES appear to have a natural ability to adapt to different environments and has shown to

compete well against backpropagation methods like Adam. However, based on Mordvintsev

et al’s [4] model, we have found both methods to have issues with regeneration when testing

for variations of adversarial attacks and quadratic erasing. Depending on the target image

and the image size, we have found both methods to perform better than the other. In

the core element of each optimizer, without using sample pools, ES has proven to be more

general and robust than Adam. An example of this behaviour is how ES learns how to stop

growing after the initial growing stage.

The main drawback of ES is without a doubt its training time. During training, we ex-

perienced the most complex model, a 15x15 rabbit emoji NCA to take up to two days to

finish training with a comparable loss to an Adam trained model for 10 minutes on a GPU.

Although, training with only Adam resulted in a less robust model, when applying specific

techniques it could be able to have the robustness of ES while also being able to scale to

larger images in a shorter training time. The techniques could involve sample pools, damage

during training as Mordvintsev et al. [4] did, and possibly add negative rewards when the

model does unnecessary changes.

With only 2 main types of experiments, we do not deem this research sufficient to explore

the differences of generalization and regeneration between ES and Adam. However, by

experimenting with relatively large scale images, and with better optimization and paral-

lelization, then ES could become a worthy contender to backpropagation methods. It has

already been shown that ES could compete in RL problems, so with the inclusion of the

aforementioned optimization techniques the ES method could become a beneficial asset to

the artificial intelligence space.
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9 Future work

To improve upon this research, we would have tested the differences with ES and Adam, or

other training methods, in more ways. A random thing we happened to find was the test

with growing on a larger grid as explored in figure 18. Perhaps there are more experiments

like this one, that could provide several interesting differences.

Another approach to CA, could be with the GAN or the generative adversarial network,

which explores classifier models and their ability to distinguish between altered images and

the actual image. Instead of using altered images, one could use CA generated images and

in that way improve both the classification model and the NCA. That way the classification

becomes more precise and the NCA improves on mimicry.

It may also be an interesting idea to use smaller models to grow bigger ones. With the

smaller models having the same basic characteristics of the bigger model, similar to how

RL problems within games have a checkpoint when the player has progressed to a certain

point. ES and NCA could also take advantage of this. By starting with a small cell grid size,

the model could incrementally increase the grid size after each training session has reached

a certain loss threshold. Since the model should be able to grow into the fundamental shape

with the same texture and colours, we think it should be able to learn faster than starting

from a seed.
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Broader impact

Real world use cases for the technologies discussed such as cellular automata and an im-

proved form of evolution strategies, though far in the future, could be interesting and many.

Of course one needs to account for research like this potentially being used in a negative

sense, like for military purposes, and review the ethics surrounding this. But otherwise we

imagine that implementations could involve generating false images to train classification

models for more efficient training. Perhaps medicinal research, aiding fields like folding in

chemistry. Lastly, maybe teach programmable cells, either biological or in form of a swarm

to organize them into specific shapes or clusters, be it lab grown meat, body parts, or

structures.
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