
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Himali Aryal

Morphing Attacks and Detection
using Spectral Images

Master’s thesis in Applied Computer Science
Supervisor: Assoc. Prof. Kiran Raja
Co-supervisor: Prof. Raghavendra Ramachandra
June 2022

M
as

te
r’s

 th
es

is





Himali Aryal

Morphing Attacks and Detection using
Spectral Images

Master’s thesis in Applied Computer Science
Supervisor: Assoc. Prof. Kiran Raja
Co-supervisor: Prof. Raghavendra Ramachandra
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Morphing Attacks and Detection using Spectral
Images

Master’s thesis in Master in Applied Computer Science
Himali Aryal

Supervisor(s): (1) Assoc. Prof. Kiran Raja
(2) Prof. Raghavendra Ramachandra

June 1, 2022





Abstract

Face recognition systems assume that a person’s face serves as the unique link
to identify them. A morph attack happens when two people with similar facial
features morph their faces together, resulting in a face image that can be identified
as either of the two contributing individuals. Since the morphed image inherit
enough visual traits from both individuals, both humans and automatic algorithms
could be deceived by a morphed image. In terms of biometrics, changing one’s
appearance to impersonate a target identity is a direct attack on the security of
face recognition systems. Defending against such attacks necessitates the ability
to detect them as distinct identities from their target.

Although they are not always visible in the image domain, many morphing al-
gorithms introduce artifacts in the final image that can be used to detect morph at-
tacks. Since various spectral images allow us to investigate low and high-frequency
data separately, we can recognize and isolate these morphing abnormalities in the
spatial frequency domain. For this research, we develop a new database that in-
cludes the morphed images created using three different techniques and spectral
images in different spectral bands. This study studies the potential attack of vari-
ous efficient face recognition systems from the newly created database using spec-
tral images as a reference set. In addition, this thesis also investigates the human
observer’s ability to detect the morphed images while examining spectral images.
Further, we evaluate the effectiveness of different MAD approaches using spectral
bands imaging in order to detect differential morph attacks.
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Chapter 1

Introduction

1.1 Introduction and Problem statement

Face recognition is an essential biometric technique that has been widely utilized
in identity verification, such as in banking, hotels, transit, and other areas. Face
recognition technology was gradually implemented in the Automatic Border Con-
trol (ABC) system after the International Civil Aviation Organization (ICAO) [1]
approved the human face as a biometric feature in electronic machine-readable
travel documents (eMRTD). Recently, many attacks against face recognition sys-
tems have been discovered, the most significant of which is the face morphing
attack, which poses a severe threat to existing face recognition systems (FRS) [2].

Face, fingerprint, and iris are some features that distinguish one individual
from another, and the measurement and statistical analysis of these features is
known as biometrics. Based on the biometrics data, a biometric recognition sys-
tem is perceived, which refers to the identification and authentication of the user
with unique biometrics attributes. Similarly, the Face Recognition System (FRS)
is a system that uses facial characteristics to identify or verify a user’s identity. It
aims to extract distinguishing aspects from the face and authenticate user identity
using facial attributes such as the distance between the shape of the chin, depth of
eye sockets, distance between forehead and chin, curves of lips, ears, and chin, or
chin mapping. Analyzing the current biometrics recognition scenario, face recog-
nition systems (FRS) are becoming popular in image-based identity management
systems globally, such as passport, national ID cards, border access control, sur-
veillance, banking services, smartphone authentication, and so on. According to
ICAO [1], face image is required in all passports, and most European nations have
national ID cards that use a facial image as the primary mode of identification.
Face image has also become a standard modality for issuing ID cards in big ID
management systems in some countries. All of this makes FRS highly relevant to
present and future use. Furthermore, automatic facial recognition is already the
principal mode of identification verification for most automated border controls
across the world. While live enrollment is preferred when granting travel or iden-
tity documents, some countries still require applicants to submit a passport photo,

1
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thus making the system vulnerable to face morphing attack.

Face morphing is an image transformation technique that combines the faces
of two people with similar facial traits, resulting in a morphed image that looks
like both contributing subjects. As morphed image can look similar to both people
whose face is morphed, it can be challenging to human as well as face recog-
nition algorithms to detect the morphed image. If morphing images are utilized
in travel or identity documents, several subjects will be able to authenticate their
identity against the document’s owner. Thus, face morphing poses a significant se-
curity threat to the immigration system and other identity verification areas. For
example, face morphing in passport enrollment procedure allows a criminal to
morph his face into that of an accomplice, who can then apply for a passport with
the morphed face image. This way, the criminal acquires a genuine travel doc-
ument that allows them to travel borders and enter restricted areas that would
otherwise be closed to them. Since a morphed passport photo allows someone
who is not previously authorized to enter a country undetected, face morphing
attacks have become a serious security threat for face recognition systems, which
assume that a person’s identity is linked to their face.

1.2 Justification, Motivation and Benefits

The face morphing technique combines two face images of distinct people into
one image using a similar set of facial feature points such as iris, eyes, nose, face
shape, etc. The resulting morphed image looks similar to both contributing images
such that it is difficult to assert them apart with human eyes.

Although morphed images are not always visible to the naked eye, many auto-
matic face morphing algorithms, such as landmark manipulation and Generat-
ive adversarial networks (GAN) generation, introduce artifacts in the final image
that indicate an image was morphed. These morphing artifacts are mainly found
at very high or low-frequency spectra. The spectral camera captures the spec-
tral images based on an object’s reflectance and emittance properties, a spectral
imaging sensor extracts the characteristic spatio-spectral data across the spectral
images in different Visible (VIS) and Near Infrared (NIR) spectrums. Moreover,
the spectral imaging technique obtains complementary image information (i.e.,
reflectance or emittance) across discontinuous spectral bands such that the char-
acteristic discriminative features can be obtained. Taking into consideration that
spectral bands images allow to evaluate the spatio-spectral data at different fre-
quency levels independently, this thesis is especially focused on detecting these
morphing artifacts in spectral imaging. Thus, even though morphing artifacts are
often undetectable in the image domain, different spectral bands ranging from
Visible (VIS) and Near Infrared (NIR) have been explored for detecting image
morphing. This thesis builds upon this and looks for the possibility of detecting
morph attacks using the spectral images.



Chapter 1: Introduction 3

1.3 Research Questions

The thesis aims to formulate two critical research questions on morphed attack
detection using spectral images:

• Can spectral imaging helps in detecting morphing attacks?
• What proficiency does a novice Human observer have in spotting morphed

images from spectral images?

1.4 Contributions

In terms of contribution, this thesis is divided into four areas. We started by cre-
ating databases in which morphed images were generated utilizing three differ-
ent morphing generation approaches. Second, we investigated the vulnerability
of various commercial and deep learning-based FRSs in order to determine how
well they can detect morphed images from spectral images. This is followed by
a human observer analysis of the detection of morphed images from spectral im-
ages. Finally, we studied various MAD algorithms for detecting morphed images
when spectral images are provided. The main contributions of this thesis are sum-
marized below:

• Provides a new database that includes morphed images generated using
three different techniques, including two landmark-based approaches: LMA,
UBO, and one Deep Learning-based morphed generation technique (MIP-
GAN-I).
• Presents the vulnerability study to measure the attack success rate on two

commercial FRSs, COTS (Neurotech and Cognitec) and deep learning-based
FRSs (ArcFace, ArcFacePlus, CosFace, and CosFacePlus), using the newly
generated dataset.
• Human observer analysis for detecting morphs images from spectral and

regular (RGB 3-channels) images and its comparison with the automated
FRSs.
• Extensive study on the Morphing attack detection utilizing the generated

morphed images with spectral band images.

1.5 Paper Outline

The rest of the paper is organized as follows:
Chapter 2 provides an overview of face morphing and morphing attack, build-

ing the theoretical knowledge base required for this study. This is followed by
chapter 3, which details the state-of-the-art works in Morphing attack detection,
MAD databases, and human observer analysis on detecting morphed images in-
cluding related researches with their contribution in the area. Chapter 4 presents
the creation of the morphing database used in this thesis. It details the selection
of the images and the post-processing and pre-processing techniques employed
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during its creation. Furthermore, the potential attack of new database on vari-
ous facial recognition systems is presented in chapter 5. The chapter 6, beneath
it details an empirical study that has been conducted to identify the human ob-
server’s ability to detect when presented with spectral images. chapter 7, on the
other hand, describes the different MAD techniques utilized to detect the morph-
ing attack detection along with a discussion on results obtained from different
techniques. Chapter 8 presents the discussion on different observations made in
this research work. Finally, chapter 9 concludes this thesis by summarizing the
contributions and findings as well as directions for further work.



Chapter 2

Morphing Attack and Morphing
Attack Detection

2.1 Face Morphing and Face Morphing Attack

Face morphing and morphing attack are discussed in this chapter 1. It also cov-
ers the background information necessary for understanding morphing attacks.
Face morphing is a technique that uses a combination of feature points such as
the eye, nose, mouth, and face shape to combine two facial photographs of dif-
ferent people into a single image. It is almost impossible or very challenging to
distinguish between the created morphing images and the originals with human
eyes. The Figure 2.1 depicts a morphed image subjects 1-vs-2 created using ac-
tual photographs of subjects-1 and subject-2. As we can see in the Figure 2.1,
the morphed image appears to be similar to both authentic pictures. Similarly, a
face morphing attack attempts to manipulate a biometric facial recognition system
into identifying two different people with the same morphed face image. Because
a morphed image appears to be real to both images, it can be used to authenticate
image-based identification documents such as passports. Thus, a face morphing
attack puts organizations that rely on face images to confirm a person’s identity
in jeopardy, such as the Automatic Border Control system.

Figure 2.1: An example of a morphed image

1The content from this chapter has been used by the author for Advane Project Work course.

5
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2.2 Face Morphing Generation Technique

There are two common techniques to creating face morphs: 1) Landmark-based
approaches, and 2) Generative model-based approaches

2.2.1 Landmark Based Morphing Methods

The landmarks of facial photos are obtained for two images in landmark-based
morph creation. The landmark points obtained from both images are wrapped by
moving pixels to other, more averaged positions. The delaunay triangulation, or
triangular mesh, is created from landmark points of both photographs and then
blended to generate a single altered image.

There are three main processes in the landmark-based morphing pipeline: 1)
correspondence, 2) warping and 3) mixing [3].

The initial stage (correspondence stage) is to define landmarks on the original
facial images. As illustrated in the Figure 2.3, these landmarks correspond to key
points on the facial characteristics that form and structure the face (such as eyes,
nose, mouth, etc.). Landmarks can be defined manually [2], or they can be detec-
ted automatically. The dlib landmark detector [4] is one of the most commonly
used models [5–7] for this.

Wrapping of the correspondence points defined earlier is the next step, in
which delaunay triangulation [8] or triangle mesh [8] wraps landmark points.
Wrapping involves adjusting the images so that the correspondence points (land-
marks) between two images are aligned. Each image is aligned according to α
factor (ranges from 0 to 1) that determines the amount of contribution each sub-
ject makes to the morph. For example, the α value of 0 represents that image B

Figure 2.2: Examples of landmarks based approach

will be wrapped around the landmarks of image A, α value of 1 means that image
A will be twisted around the landmarks of image B, and a value of 0.5 indicates
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that both images will contribute equally [9]. Naturally, α value of 0.5 makes the
most sense for creating a morph that is comparable to both faces [5–7, 10]. The
figure shows an example of morphed images with different alpha values: α = 0.3,
o.5 and 0.7 respectively.

Figure 2.3: An example of morphed images with different α values

The final step is the Blending. In this stage, a morph image is formed as a
weighted average of the two aligned (wrapped) images. At a weight of 0.5, this
is the same as averaging the two images. Traditionally, the weight used for each
image is the same as α value. However, a research [11] has shown promising
results by isolating α into two different variables for wrapping and blending (α
W, α B).

Since pixel positions were modified while generating the morphed images,
some pixel misalignment may occur, making the image appear unrealistic. Thus,
image pre-processing such as image smoothing, image sharpening, edge correc-
tion, histogram equalization, manual retouching, and image enhancement are es-
sential for landmark-based approach. The Figure 4.5 illustrates morphed image
generation technique using landmark based approach. OpenCV and other open-
source programs such as FaceMorpher and WebMorph use a landmarks-based
technique to generate morph face [12].

2.2.2 Deep Learning (GAN) Based Morphing Methods

In addition to the LMA, deep learning based approach has also become a common
alternative for building morphing faces, as deep learning models have improved
steadily over the years. By combining two facial images in the latent space, Damer
et al. [10] proposed a Generative Adversarial Network (GAN), which eliminates
the time-consuming, partially manual process of building morphed images and
enables a completely automated morphed generation technique.

GANs are made up of two networks: a Generator and a Discriminator. They
both engage in an adversarial game in which the generator attempts to deceive
the discriminator by producing data that is comparable to the training set. The
Discriminator seeks to avoid being duped by distinguishing between fake and real
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Figure 2.4: Illustration of morphed image generation process

data. They both learn and train complicated data such as audio, video, and image
files at the same time. The generator model learns how to make realistic images
by generating images from random noise. Random noise is sampled using a uni-
form or normal distribution before being fed into a generator which generates an
image. The discriminator learns how to distinguish fake images from real photos
by feeding the generator output, which includes fake images and actual images
from the training set, as shown in Figure 2.5. The chance that the input is real is
represented by the output Discriminator. Discriminator should be 1 if the input is
real, and 0 if the input is generated.

Figure 2.5: Illustration of GAN based approach

The proposed MorGAN model has trained the generator to create images at a
resolution of 64×64 pixels. However, the evaluation of altered images generated
using this technique against two commercial FRS fails to meet both necessary
standards and the FRS verification level in vulnerability analysis [8]. The Styl-
eGAN [13] architecture was designed to address this concern by increasing the
spatial dimension to 1024×1024 and thereby improving the quality of the facial
image. The StyleGAN was able to achieve better spatial resolution than the Mor-
GAN by embedding the photographs in the intermediate latent space [9].

Furthermore, using an Identity Prior Driven Generative Adversarial Network,
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a new technique called MIPGAN (Morphing through Identity Prior driven GAN)
[14] has been developed. This model was derived from the StyleGAN, but with
a novel loss function that uses perceptual quality and the identity factor to pro-
duce a high-quality morphed face image with few artifacts and high resolution.
The proposed morph generation method poses a severe threat to FRS, as demon-
strated by this model. Moreover, Damer et al. [15] produced ReGenMorph, which
employs a GAN-based generation to reduce landmark-based morph (LMA) blend-
ing artifacts and manipulation in the latent space, resulting in noticeably realistic
morphed images as compared to the earlier works.

In this work, both landmark-based technique and deep learning based tech-
niques have been utilized for generating morphed images. Two approaches: (UBO),
developed by University of Bologna [2] and LMA, developed by Norwegian Bio-
metric Lab, NTNU [16] will be employed for the landmark-based approach, while
the MIPGAN-I [14] would be used for the deep learning-based method.

2.3 Face Morph Attack Detection Techniques

The two types of MAD approaches are offered: single image-based MAD (S-MAD)
and differential image-based MAD (D-MAD).

In the S-MAD based morphing attack, a single image is provided to the al-
gorithm, and the algorithm detects the potential attack based on that single im-
age, as shown in the Figure 2.7. The implementation of S-MAD is complex since
it should address a wide range of use case scenarios, including image quality vari-
ations, resilience for photographs captured by various types of cameras, different
print-scan procedures, etc.

Figure 2.6: Illustration of S-MAD approach

On the other hand, the D-MAD algorithm uses the live image or reference im-
age to determine whether the suspected image has been altered or is authentic.
The D-MAD approach is demonstrated in the figure with a border crossing scen-
ario where the suspected morph picture may be derived from the passport and
compared to the live captured facial image.
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Figure 2.7: Illustration of D-MAD approach

2.4 Vulnerability Analysis

The vulnerability analysis evaluates whether all contributory data subjects could
be validated against the altered facial photos. The FRS must successfully verify all
contributory subjects that fulfill the verification threshold when a morphing face
image is placed in it and tested with another image from a contributing subject
[9].

The vulnerability plots, which depict the scattered data of FRS comparison
scores, are shown in the figure. The plot is divided into four quadrants. The first
quadrant (QI) score indicates that the morphed image is not validated to belong to
the two contributing data subjects, thus score in this quadrant does pose a threat
to FRS. Similarly, it can only verify the morphing image as one of the contributing
subjects, data subject-2 and subject-1, in the second (QII) and fourth (QIV) quad-
rants, respectively. Hence, a large number of comparison scores in the second and
fourth quadrant imply that the morphing images do not constitute a severe threat
to FRS. On the other hand, the third quadrant (QIII) specifies that the morphing
image is validated as both contributing data subjects as subject-1 and subject-2.
Hence, the more comparison scores in this quadrant, the greater the threat posed
by the studied FRS to morphed photos [9].
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Figure 2.8: Vulnerability analysis plot





Chapter 3

State of the art in Morphing
Attack Detection

Ferrara et al. [2] first proposed the possibility of generating a morphed face image
attack utilizing two genuine images. They used two face recognition solutions to
compare altered images with the original subject images, and came to the conclu-
sion that face recognition is highly vulnerable to such attacks. Since then, many
morph detection techniques for both single (no reference) and differential morph
attack detection scenarios have been presented. The state-of-the-art in morphing
attack detection is detailed in this chapter 1. This chapter also covers some of
the databases built to study the detection of morphing attacks, as well as experi-
ments undertaken to investigate the human observer’s ability to detect morphed
images. As described in the section 2.3, single (no reference) morph attack de-
tection systems rely solely on the potential morphed image to classify a potential
morphed image. Differential morph attack detection methods, on the other hand,
compare the potential morphed image to a second trusted image. As such, differ-
ential morph attack detection algorithms have more information at their disposal
for categorization and, thus, perform better than single morph attack detection
algorithms.

3.1 Single Image MAD

Single image MAD solutions can be classified into two types: those that use hand-
crafted features and those that use deep learning features. Binarized Statistical
Image Features (BSIF) [17, 18], Local Binary Patterns (LBP) [10], Local Phase
Quantization (LPQ) [16], and features established in image forensic analysis such
as photo response non-uniformity (PRNU) [19] were among the handcrafted fea-
tures. Since the advancement of deep learning in the last decades, some approaches
have used convolutional neural networks (CNNs) to detect the morphing process
[10, 20–22]. Pre-trained networks with or without fine-tuning, such as versions of

1Some contents from this chapter has been used by the author for Advane Project Work course
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VGG [23], AlexNet [24], or networks trained for face recognition purposes, such
as OpenFace [25], were often utilized in MAD solutions based on deep learning.
The biggest drawback of these kinds of corpora is the number of samples required
to train models. For this reason, some research works employed pretrained net-
works (networks with pre-calculated weights) such as FaceNet [26] or VGG-Face
[27].

3.2 Differential Image-Based MAD (D-MAD)

Other studies looked into the possibilities of differential morph attack detection
where morphing attacks are detected by running a live probing image alongside
the reference image. The objective of D-MAD approaches is to decide whether a
suspect image is morphed or bonafide when a corresponding image captured in a
trusted environment is available. D-MAD approaches are further divided into two
categories: 1) feature-based D-MAD and 2) demorphing.

3.2.1 Feature Difference-Based D-MAD

This method works by subtracting features computed on the suspicious morph
image and a live probe image. The features are further categorized by calculat-
ing the difference in the feature vectors to detect a morphing attack. Classical
feature extraction methods have been applied to the differential application by
determining the difference of the feature vectors of the images being compared.
This difference vector, together with the original feature vector of the potential
morph, is then used to train a difference SVM and a feature SVM, respectively.
Several feature extraction techniques, including texture information, 3-D inform-
ation, gradient information, landmark points, and deep feature information, are
explored.

Texture information includes the LBP and BSIF. The Local Binary Pattern (LBP)
[28] is an image texture descriptor that thresholds surrounding pixels based on
the current pixel’s value. After comparing the gray level with nearby pixels, LBP
assigns a binary number to each pixel in an image. A value of unity is assigned to
neighbors in a preset patch with a gray level greater than the central pixel; other-
wise, a zero value. After that, the central pixel is allocated a binary number. The
original LBP operator evaluates a 3 × 3 patch, forming an 8-digit binary number
from the surrounding pixels. LBP feature map and a histogram with 256 bins are
obtained once all pixels in an image have been tagged. The LBP histogram is then
used as a classification feature vector, with each bin representing one feature. On
the other hand, binarized statistical image features (BSIFs) [29] utilizes specific
filters learned from a set of images. By linearly projecting local picture patches
into a subspace, the approach generates a binary code for each pixel. Local image
basis vectors are learned from natural images using independent component ana-
lysis and thresholding to binarize the coordinates in this basis. The length of the
binary code string is determined by the number of basis vectors. The features such
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as Local Binary Patterns (LBP), Binarized Statistical Image Features (BSIF) are ex-
tracted and Obtained feature values are stored in a corresponding histograms.

Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features
(SURF), in contract, extract sets of local keypoints. Because morphing images are
expected to have fewer keypoint locations, which are defined as maxima and min-
ima of the difference of Gaussian functions, than real images, keypoint extractors
are used. The Histogram of Gradients (HOG) and sharpness features were also
employed to compare the gradient of features between morphed and genuine im-
ages, since the morphing procedure reduces high frequency changes and so has
a lower value of steepness of gradients. Scherhag et al. [30] has successfully per-
formed the detection of morphed image in comparison with the live probe image
captured in the ABC gate. Scherhag et al. [31] also investigated (LBP) features,
BSIF, SIFT, SURF, and HOG descriptors with SVM.

Scherhag et al. [32] explored more in the differences between directed dis-
tances of landmarks with SVM in detecting the morphed images. The 68 facial
landmarks determined utilizing the facial landmark predictor of dlib which re-
turns the absolute position of 68 facial landmarks. Euclidean distance of the rel-
ative position of each landmark points between both images probe and bonafide
is compared for detecting the morphed images. In addition, the angles of each
landmark, to a predefined neighbor (in order to obtain the most discriminative
dependencies) are computed for detecting the morphed images.

On the other hand, deep learning is fundamentally another approach defined
by the development of algorithms that search for features to extract to solve a
particular goal. These features are extracted using a deep Convolutional Neural
Network (CNNs) due to its previous success in other computer vision tasks. To de-
tect a morph attack, Scherhag et al. [33] use deep facial representations extracted
from ArcFace feature embeddings. It is demonstrated that deep face representa-
tion methods may achieve very high detection performance (less than 3% D-EER)
and robustness to various post-processing. The authors also highlighted the need
of large variance, and their network was trained on a morph database created
using a variety of morph generation approaches.

Furthermore, a Siamese disentangling network has also been proposed in
[34], which separates the landmarks and the appearance of the two images being
compared. Similarly, a Siamese network has also been explored by Soleymani et
al. [35] in the image domain. A double Siamese network architecture has also
been presented by Borghi et al. [36], which uses two Siamese networks and in-
tegrates their output to make a conclusion.

3.2.2 Demorphing

Face demorphing or reverting a face morph has yielded some promising results.
Face demorphing techniques reverse the morphing process, revealing the com-
ponent images utilized to create the morphed image. Ferrara et al. [37] made the
initial approach in this field, which was designed to operate with landmark-based
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morph generation. It utilized the idea of face demorphing by image subtraction to
reveal the identity of the legitimate document owner, given a bonafide capture.

Recent work in face demorphing utilizing robust Deep CNNs has also achieved
quality results [38, 39], when the image quality is good. However, one of the
disadvantages of this approach is that the detection performance declines, when
a face image is acquired in real-life conditions with pose and lighting variations
that are relatively prevalent in real situations.

The Table 3.1 2 summarizes the published differential methods and the ap-
proaches utilized to detect the morphing attack in D-MAD setting.

3.3 Databases for Morphing Attack Detection

The first face morph database was released by Ferrara et al. [2], who used landmark-
based face morph generation. This small collection of the database was developed
with 14 morphing photographs of both male and female participants from eight
real images. This dataset was later expanded [45] to 80 morphing face pictures
with 10 male and 9 female subjects.

Raghavendra et al. [16], on the other hand, created the first large database,
including people of various ethnicities (Caucasian, Asian, European, American,
Latin American, and Middle Eastern). It makes use of face landmarks as well as the
GIMP/GAP morph generation approach using the GNU image manipulation tool.
This dataset consisted of 450 altered facial pictures from 110 different individuals
of various ethnicities.

To create high-quality morph images, Makrushin et al. [46] used automatic
morph creation techniques. It uses a triangulation method based on 68 facial
landmarks extracted using the dlib library [4]. Complete morph (consisting of the
facial geometry of both facial photos) and splicing morph (the pixels representing
the face are cropped out of the input faces) were utilized as morph creation ap-
proaches [9]. There are roughly 1326 complete morphs and 2614 splicing morphs
in this database, which were generated from 52 data subjects, 17 females and 35
males. This database isn’t available to the general public.

Scherhag et al. [18] presented the first print-scan face morph database. For
morph generation, the authors used the landmark-based approach. There are 231
morphed images in this database, which were created from 462 real images. This
is also a private database.

Thereafter, many databases, spanning from public [47] to sequestered data-
sets [17, 23, 48–50] with varied attack strengths, have been constructed using
different attack generation mechanisms. The complete list of databases created
so far using different techniques could be found here [9]. However, since the ma-
jority of these databases were private and were not widely accessible, the author
developed new database for the implementation purpose.

2This table is inspired from a survey paper by S Venkatesh et al. [9]
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Table 3.1: Overview of relevant differential MAD algorithms

Reference D-MAD category Approach
U Scherhag et al. [31] Feature Comparison Differences in the BSIF features
U Scherhag et al. [32] Feature comparison Differences in the angles of

landmark pairs in SVM
N Damer et al. [40] Feature comparison Directed Distances with SVM
M Ferrara et al. [37] Demorphing Face demorphing by image sub-

straction
M Ferrara et al. [41] Demorphing Face Verification
N Damer et al. [25] Multi detector fusion Transferable deep CNN
J M Sigh [35] feature comparison Euclidean distance, feature dif-

ference and a SVM classifier,
and feature concatenation and
a SVM classifier

N Damer et al. [40] Landmark shift facial landmarks shifting pat-
terns between reference and
probe images in a directed dis-
tances

F Peng et al. [42] Face restoration by
demorphing GAN

Symmetric dual-newtwork ar-
chitecture

U Scherhag et al. [33] Deep face representa-
tion

ArcFace, FaceNet algorithm

C Seibold et al. [43] Deep Learning Layer-wise Relevance Propaga-
tion (LRP)

D Ortego et al. [39] Demorphing Autoencoder (encoding and
decoding process)

S Soleymani et al.
[35]

Feature comparison Euclidean distance, feature dif-
ference and feature concatena-
tion using Siamese Network

S Soleymani et al.
[34]

Feature Comparison Landmark and appearance dis-
entanglement

S Autherith et al. [44] Geometric facial fea-
tures comparison

Feature transformations of
landmark locations

3.4 Human Perception and Morphed Face Detection

Matching unfamiliar faces is a challenging task even for an expert such as passport-
issuing officers [51], who are required to have extensive training in face iden-
tification. Numerous studies [52–54] conducted over the last decade have also
revealed that humans are prone to making mistakes when comparing unknown
faces. White et al. [51] did a similar study with professionals who had received
facial identification training (such as passport officers and ID card checkers) and
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individuals who had not received any face identification training (such as student
volunteers). The purpose of this study was to compare the performance of experts
and non-experts in face verification tasks. While the average performance of pass-
port officers was bad, certain officers did exceptionally well – and this was not
connected to length of service or training.

Another study by Robertson et al. [53] looked at morph attack detection using
human observers and found that while the accuracy of smartphone face recogni-
tion systems isn’t perfect, the acceptance rate is much below the level at which
two faces are indistinguishable. Although non-expert viewers were willing to ac-
cept morphing photos made with 50% of each contributing subject as true ID at
alarmingly high rates, it is reasonably possible to lower this error rate significantly
by following some basic guidelines. However, the rates are fairly low, and they are
far from perfect—always substantially higher than acceptance of a false photo of
another person thus on some occasions, be benefit to fraudsters in using this ap-
proach. This experiment was repeated by Kramer et al. [55] with a a high-quality
morph database and the results show that people were highly error-prone when
detecting morphs, and that training had very little effect. In a live matching task,
morphs were accepted at levels that suggest they are a substantial security threat,
and detection was error-prone once again. The same experiment was carried out
with MAD algorithms, with the findings indicating that algorithm performance
was higher than that of human observers.

Furthermore, Ferrara et al. [56] conducted an experiments with human ob-
servers in which they were provided two face images in each trial, bonafide or
morphed face morph attack detection, and found that morphed images were also
accepted as a bonafide image. Similarly, Phillips [57] investigated the performance
of human observers in a differential morphing attack detection situation, in which
static images and video imagery were used. The results showed that automated
FRS systems function better with static facial images, however, human observers
ability to detect morphed face is better in video contents. This experiment also
highlighted that FRS systems had a greater morph detection rate than human ob-
servers. Similarly, separate experiment carried out by Marushin et al. [58] and
Nightingale et al. [59] also concluded that automated face recognition comparat-
ively has better accuracy in detecting morphed images. Moreover, Zhang et al. [14]
investigated the same concept using a variety of morphing algorithms, including
landmark-based morphs and GAN based morphs. The experiment was conduc-
ted with both expert and novice observers, and the results suggested that exper-
ienced observers outperform inexperienced observers, and also highlighted that
landmark-based morphs is more challenging than detecting GAN based morphs.

Godage et al. [54] did a study that included both S-MAD and D-MAD settings.
The first step in this research was to construct a new benchmark database of real-
istic morphing attacks from 48 different individuals, which results in 400 morphed
images presented to 469 D-MAD observers and 410 S-MAD observers. Both exper-
ienced and inexperienced observers were included. The research concluded that
even highly experienced professionals are likely to miss a lot of morphing attacks.
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Furthermore, when compared to automated MAD systems, the study remarked
that human observers have a lesser accuracy in detecting morphed images.

In recent decades, experiments in human observation to detect morphed im-
ages have been conducted frequently; nevertheless, all of the observations were
limited to conventional colored images (RGB images). As no similar experiments
using spectral images have been found, this work simulates human perception on
morphing images by utilizing spectral images.





Chapter 4

Spectral Morph Attack Database

Almost all databases in the face morphing detection field are privately held, as
noted in the subsection 3.3. Further, there are no databases with spectral images
when considering morphing attack research. Consequently, developing a database
for this research was an essential step and this chapter details the newly collected
dataset during the thesis work.

4.1 Selection of Image Candidates

The initial step in creating the database was to analyze high-quality, high-resolution
photographs from a sequence of images linked to a subject. Such images were
provided by NTNU for the research purpose [60]. The database contains the spec-
tral images for each bonafide image taken with the spectral camera. Spectral im-
ages are made up of images in eight narrow spectral bands throughout the Vis-
ible (VIS) and Near Infrared (NIR) spectrum: 530nm, 590nm, 650nm, 710nm,
770nm, 890nm, 950nm, and 1000nm. The photographs were organized into sub-
ject folders, with one subject per person. There are altogether 145 different sub-
jects, with 86 male subjects and 67 female subjects. The images in each subject
have plain background, with an evenly illuminated face, and upper body subsec-
tions, thus the subgroup of 145 unique individuals’ face shots provided the best
quality photographs for creating morph images. The number of subjects in each
category in the database is represented in the Table 4.1.

Furthermore, each subject in each band has approximately 5-10 images, and
we chose one regular (RGB, 3-channels) image from a series of 10-15 images to
generate the morphing image, while the remaining images were used to analyze
the vulnerability analysis and evaluation of the face recognition system (FRS).

4.1.1 Image Enhancement

As stated above, the database contains spectrum images ranging from visible to
infrared. Without image enhancement, images from some spectral bands were not

21
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Table 4.1: Number of subjects in the database

Category Total
Total subjects 145
Male subjects 88
Female subjects 67

visible. Thus, image enhancement is utilized such that the face recognition sys-
tem can detect images from all spectral bands. We enhanced the image contrast,
brightness, and image sharpness. Various enhancement factors ranging from 1.5
to 16 have been utilized, where factors greater than 1.0 make the image stronger
and factors fewer than 1.0 make it weaker. For example, brightness factors greater
than 1.0 brighten the image, while factors less than 1.0 darken it, and a factor of
0.0 produces a completely black image. The factors for each category utilized for
each spectral band are listed in the table 4.2.

Table 4.2: Image enhancement in each band

Band Contrast Brightness Sharpness
530 3 16 3
590 3 10 7
650 1.5 2.5 2
710 2 3 2.5
770 2 2 2
830 2 2.5 2
890 2 3 2
950 2 5 2
1000 5 6 3

The comparison of images in each spectral band before and after image en-
hancement is shown in the figure 4.1.

4.1.2 Face alignment and cropping face region

Face alignment is important because it can be an entry point in the face recog-
nition process, and poor alignments can greatly affect recognition performance.
We adjusted the alignment of the faces from each spectral band using appropri-
ate scaling, rotation, and padding/cropping with respect to the eyes placement
to ensure that the passport standards were met. Face landmarks are recognized
using the Dlib algorithm [4], and alignment is accomplished using the detected
eye coordinates, with a fixed intra-eye distance of 180 pixels. The facial alignment
is done for all images from the database including spectral images, and regular
RGB images. A sample of aligned images is shown in the Figure 4.2.

Furthermore, to focus on the image’s region of interest, some non-essential
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Figure 4.1: Comparison of images in each spectral band after image enhancement

Figure 4.2: A sample of an aligned image

components can be deleted. This process is called cropping, which refers to re-
moving the image’s exterior elements to improve the frame, emphasize the sub-
ject matter, or adjust the aspect ratio. Cropping is necessary to remove the image
background because the background effect affects the feature space discrimina-
tion power. The face is cropped from the whole image depending on the position
of the left and right eyes as well as the mouth [61]. Finally, all of the new photos
must have the same dimensions. Therefore, the new photos are normalized to a
standard size of 112 x 112 pixels after cropping the face from the original image.
A sample of cropped image is shown in the Figure 4.3

After image enhancement and cropping of the aligned face region, the data-
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Figure 4.3: A sample of an cropped face image

base contains 16927 genuine images, including all spectral band images and stand-
ard RGB images. The Table 4.3 represents the number of images in the database
in each spectrum after face alignment and cropping.

Table 4.3: Number of images in each spectrum

Band Spectral bands
530 590 650 710 770 830 890 950 1000 RGB

Total 965 1536 1653 1713 1719 1704 1732 1647 1605 2626

4.2 Morphed image generation

In order to develop morphed images, one image from each subject from the data-
base that exhibit uniform illumination, good focus, a neutral face expression with
wide eyes and no visible teeth, neutral backdrop, and no reflections in glasses was
chosen.

We separated the bonafide reference images from the morph input images
as much as possible, avoiding the usage of the same image or image sections
again throughout MAD training, which increases the variance of training data.
The morph input images are lexicographically sorted for the creation of morphs,
and then each input image is morphed with one of the next subsequent input
images that meet the following criteria: both represented subjects are of the same
gender; they look similar to each other; they are of the same age range; and they
have the same color complexion. The input images for morphs are only utilized
once, for the creation of a single morph. Since we aim to avoid a repeated use of
the same image or same image parts in the training stage of MAD algorithms to
prevent from over-fitting caused by over-represented image parts [33].

Furthermore, three different morph images generation tools are utilized to
create the morphed images, which are listed below:
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1. LMA [16]: Morphing Attack Generation Software provided by the Biometric
Lab NTNU, Norway
Generation of morphed images with Landmark based attacks (LMA) is per-
formed by detecting 68 landmarks on the face using Dlib [4] model. The
mean face points for each image are computed and each image is sub-
sequently warped to sit on these coordinates after performing the Delaunay
Triangulation on 68 facial points. Only the facial area is morphed, and trans-
formed and merged into one of the original morphed images.

2. UBO: Automatic Morphed Face Generation Tools Version 1.1 [2, 41, 56],
provided by the Biometric System Laboratory from University of Bologna,
Italy

In this technique, free GNU Image Manipulation Program v2.8 (GIMP) [62]
and the GIMP Animation Package v2.6 (GAP) [63] were used to morph two
facial images. Two faces are supplied as separate layers in the same im-
age and aligned according to the position of the eyes. The GAP morph tool
designates a series of essential facial points (e.g., eye corners, eyebrows,
nose tip, chin, and forehead) on the two faces, as these points allow for bet-
ter alignment and smoother morphing. After finding the feature points, the
GAP morph function automatically generates a sequence of frames depict-
ing the transition from one face to the other by interpolating these points.
These frames are gradually shaded from subject 1 (applicant) to subject 2
(criminal). Finally, the frame selection is made by scanning the frames (be-
ginning with the applicant photos) and continuing until the current frame
has a matching score with the criminal subject greater than or equal to the
matching criteria. Eventually, the selected frame is manually edited to im-
prove its authenticity by removing ghost shadows and other minor flaws
generated during the morphing process.

3. MIPGAN-I [14]
The MIPGAN-I framework is designed based on the StyleGAN model [13]. In
the first stage, corresponding latent vectors are predicted using facial photos
from the accomplice (subject 1) and malicious (subject 2) data subjects.
The predicted latent vectors thus provide the initialization for the morphed
face generation obtained using a weighted linear average of two faces. The
resultant weighted linear average vector is fed into the synthesis network,
which produces a morphing image with a resolution of 1024×1024 pixels.
The generated morphed face image is optimized using the perceptual loss
function to generate the high-quality morphed face image.

The Figure 4.4 shows a sample of morphed images generated using all three
approaches. Both landmark-based (as explained in the subsection 2.2.1) and deep
learning-based approaches (as detailed in the subsection 2.2.2) were utilized to
construct the morphed photos. As explained above, first two techniques are based
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Figure 4.4: An example of morphed images generated using all three methods

on landmarks, while the third is based on deep learning based approach. A total
of 484 morphed photos are generated using the tools mentioned above, includ-
ing 322 morphed images using the landmark based approach and 162 using the
deep learning based approach. The number of morphed images generated in each
category is shown in Table 4.4.

Table 4.4: Number of morphed images

Category UBO LMA MIPGAN-I
Female morphed images 71 77 74
Male morphed images 81 87 88
Total morphed images 152 164 162
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4.2.1 Post-processing of morphed images

Since pixel positions were changed when generating the morphed images in the
landmark-based approach, some pixel misalignment occurred, thus making the
image appear unrealistic. Thus, image post-processing techniques such as image
smoothing, image sharpening, edge correction, and hand retouching were per-
formed on these images. Adobe Photoshop was used to post-process the landmark-
based morphed images such that the morphing images look as natural as possible.
Double background, unnatural artifacts, double iris, and so on are corrected in the
post-processing task. Figure 4.5 depicts the face photo after and before the post-
processing.

Figure 4.5: An example of morphed image post-processing

https://www.adobe.com/products/photoshop.html




Chapter 5

Attack Potential of New Database
and Vulnerability Analysis

5.1 Validation of Attack Potential

As mentioned in the chapter 4, the new database has been created which con-
sists of morphed images generated from both landmark based and deep learning
based techniques. The vulnerability study will help in determining the impact
of the generated morphed images on the commercial face recognition system.
Thus, this chapter presents the vulnerability analysis of morphed face generation
techniques employed in this study to quantify the impact of attacks on different
FRSs. It details the attack success by verifying the morphed images against six dis-
tinct face recognition systems, including two Commercial Off-The-Shelf (COTS)
and four open-source deep-learning-based FRS. The COTS FRS includes the Cog-
nitec (Version 9.6.0) [64] and Neurotechnology (Version 11.1) [65] and the set
of open-source FRS includes ArcFace [66], ArcFacePlus [67], CosFace [68], and
CosFacePlus [67].

The attack potential is demonstrated by computing the comparison score dis-
tributions of an imposter, genuine, and morphed and compared against original
probe identities contained in the database. We presented the comparison scores
between the morphing attacks and their two original identity images in the probe
set to test the attacks’ ability to match both original identities. As mentioned in the
section 4.1, for the vulnerability analysis, one image from each subject was extrac-
ted from the database; these images were used as reference images. For the probe
images, spectral images from the database were used to compute genuine and
impostor scores, along with reference images. Since the database comprises 145
people, each with 10-15 sample images, the total number of comparisons would
be huge for imposter, around 144 X 144 X (10-15). Therefore, only random 25
subjects and three images from each sample subject were considered to simplify
the number of impostor scores. In addition, for morphed scores, images from both
the reference (which includes the morphed images generated using three differ-
ent techniques) and probe sets which includes the images from different spectral
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bands are compared. The morphing attacks score distribution is based on compar-
ing the 484 morphed images, each with their corresponding two identities in the
probe set. Table 5.1 summarizes the number of bonafide and imposter compar-
isons (all potential cross-comparisons of reference and probe images of distinct
subjects) used for this study.

Table 5.1: Number of comparisons per test set

Band Bonafide
Morphed

Imposter
UBO LMA MIPGAN-I

530 874 1906 2046 2021 8861

590 1464 3157 3388 3349 10584

650 1650 3504 3762 3715 10466

710 1710 3620 3885 3837 10501

770 1715 3619 3883 3835 10694

830 1700 3591 3855 3807 10634

890 1727 3645 3910 3863 10874

950 1645 3487 3736 3699 10520

1000 1579 3435 3681 3633 10547

For the deep learning based face recognition systems, the embeddings from the
pre-trained models are employed as face authentication features, and the cosine
similarity [42] between the features from two face images is used as the face
authentication similarity score Ss i m_ f , which is defined as follows:

Ssim_ f = 0.5+ 0.5
f1 f ′2
q

�

f1 f ′1
� �

f2 f ′2
�

(5.1)

where f1 and f2 are two feature vectors of two face images. The threshold
of the deep learning models is tuned by LFW [69] database. For bonafide face
images, a threshold of FMR = 0.1% was utilized following the guideline of Fron-
tex [70]. The graphs of distance (dissimilarity) score distributions for the selected
morphed, genuine, and impostor pairs are shown in Appendix A. The graph shows
that imposter and genuine scores overlap for all deep-learning-based face recog-
nition systems in all spectral bands. Since we used the pre-trained deep learning
networks, which were trained on the regular RGB images. Therefore, we fine-
tuned the models using spectral images and computed the scores (the graphs in
the figures are after fine-tuning). Although the models have been fine-tuned, the
impostor and genuine scores were still overlapping. This overlap in genuine and
imposter score indicates that the newly created database could not be used to
identify a potential attack on these deep-learning based face recognition systems.
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The distribution plots for COTS FRSs (Cognitec and Neurotechnology) for all
three types of morphed images are shown in Figure 5.1, Figure 5.2, Figure 5.3,
Figure 5.4, Figure 5.5, Figure 5.6. The graphs show that both COTS FRSs are
vulnerable to the morphed attack using all three types of morphed generation
techniques: UBO, LMA, and MIPGAN-I. The attack potential of these COTS FRSs
are seen on all nine spectral bands.

Figure 5.1: A vulnerability study of Cognitec with UBO morphed images in all
spectral bands

5.2 Evaluation Metrics

The vulnerability for a particular morph image M I1,2 acquired using two subjects
by enrolling M I1,2 and confirming it against probe images from the contributing
subjects I1 and I2 were computed. If acquired comparison scores S1 and S2 for both
probe images I1 and I2 against the morphing image M I1,2 cross the verification
threshold, then this morphed image is considered as a threat to FRS. The vulnerab-
ility is examined using different evaluation metrics: Mated Morphed Presentation
Match Rate (MMPMR) [71], Fully Mated Presentation Match Rate (FMMPMR)
[8] and Relative Morph Match Rate (RMMR) [71] using the validation threshold
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Figure 5.2: A vulnerability study of Cognitec with LMA morphed images in all
spectral bands

for each FRS. The threshold utilized for Cognitec is 0.5 and 36 for Neurotechno-
logy. If the score falls below the threshold, the morphed image is not considered
a real threat as the comparison scores can’t effectively verify the morphed image
against both contributing subjects, rendering the morphing attack ineffective [8].

5.2.1 MMPMR: Mated Morphed Presentation Match Rate

Mated morph comparison compares a morphing sample to another independent
sample from the same contributing individual. Thus, only one mated morph com-
parison per subject is possible. Only the minimum (for similarity scores) or max-
imum (for dissimilarity scores) of all mated morph comparisons of one morphed
sample is of interest, since the morphing attack works if all contributing subjects
are correctly validated. The MMPMR for similarity scores is defined as:

M M PMR(τ) =
1
M
·

M
∑

m=1

§�

min
n=1,...,Nm

Sn
m

�

> τ

ª

(5.2)
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Figure 5.3: A vulnerability study of Cognitec with MIPGAN-I morphed images in
all spectral bands

where τis the verification threshold, Sm
n is the mated morph comparison score

of the n-th subject of morph m, and M is the total number of morphed images,
and Nm is the total number of contributing subjects contributing to morph m.

5.2.2 FMMPMR: Fully Mated Morphed Presentation Match Rate

When comparing the FMMPMR to the MMPMR, the FMMPMR will take into ac-
count both pair-wise comparisons of contributory subjects and the number of at-
tempts. The corresponding metric FMMPMR [8], is calculated as follows:

F M M PMR=
1
P

∑

M ,P

�

S1P
M > τ
�

AN D
�

S2P
M > τ
�

. . . AN D
�

SkP
M > τ
�

(5.3)

where P=1,2,...,p represents the number of attempts made by presenting all
probe images of the contributing subjects against the Mth morphed image, K =
1,2,...k represents the number of composite images used to generate the morphed
image, SkP

M represents the comparison score of the Kth contributing subject ob-
tained with the Pth attempt corresponding to the Mth morphed image.
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Figure 5.4: A vulnerability study of Neurotechology with UBO morphed images
in all spectral bands

5.2.3 RMMR: Relative Morph Match Rate

Another vulnerability metric is the Relative Morph Match Rate (RMMR(%) [71],
which combines the recognition accuracy with vulnerability measures. Specific-
ally, when τis used to calculating either the MMPMR or the FMMPMR, the RMMR
can be defined as follows.

RMMR(τ)MMPMR =1+ (MMPMR(τ)) − [1− FNMR(τ)] (5.4)

RMMR(τ)FMMPMR =1+ (FMMPMR(τ)) − [1− FNMR(τ)] (5.5)

where FNMR indicates the false rejection rate of the FRS under consideration
obtained at the threshold τ.

5.3 Results from Vulnerability analysis

Table 5.2 presents the quantitative values of MMPMR, and FMMPMR computed
from all COTS FRS techniques 1 for all three types of morphed images (UBO,

1Scores obtained for Nuerotechology are normalized in range o to 1
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Figure 5.5: A vulnerability study of Neurotechology with LMA morphed images
in all spectral bands

LMA and MIPGAN-I) in each spectral band. It is noted that, higher the value of
the FMMPMR the higher the threat from morphed images and correspondingly
a higher vulnerability of FRS towards morphed images. Based on the obtained
results, the key observations are listed below:

• Among the COTS FRS, the highest vulnerability is noted in Cognitec FRS,
which is comparatively more vulnerable to all three kinds of face morphing
attack methods.
• Among three different morph generation methods, UBO-Morpher indicates

a higher vulnerability than all other FRSs.
• The vulnerability of landmark-based morph generation methods is higher

than that of deep learning-based morph generation methods. This is obser-
vation is made in all spectral bands for both COTS FRSs.
• When UBO morphed images were used for Cognitec FRS, the MMPMR is

higher in 710nm spectral band with value 98.16% , which indicates that the
Cognitec FRS more vulnerable to the morphed attack using UBO-morpher
in this band. This case is also similar with LMA, MIPGAN-I morphed images,
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Figure 5.6: A vulnerability study of Neurotechology with MIPGAN-I morphed
images in all spectral bands

which have the MMPMR scores of 98.3%, 90.03% in this spectral band.
• For the Neurotechnology FRS, the spectral band 650nm is found compar-

atively more prone to the attack with MMPMR score of 98.01%, 96.75%,
86.5% repectively for UBO, LMA and MIPGAN-I morphed images.
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Table 5.2: MMPMR-FMMPMR result for COTS FRSs

Band

UBO LMA MIPGAN-I

Cognitec Neurotec Cognitec Neurotec Cognitec Neurotec

MMPMR FMMPMR MMPMR FMMPMR MMPMR FMMPMR MMPMR FMMPMR MMPMR FMMPMR MMPMR FMMPMR

530 93.64 95.02 81.74 85.32 92.75 94.82 77.93 81.68 80.32 84.32 65.49 68.05

590 97.86 97.88 92.84 93.35 96.96 97.11 89.67 90.17 88.81 89.01 77.32 77.67

650 97.29 97.6 98.01 98.03 97.81 98.11 96.75 96.7 90.37 90.85 86.5 86.44

710 98.16 98.18 97.67 97.68 98.3 98.25 95.25 95.14 90.03 89.92 80.56 80.33

770 97.97 97.96 92.83 92.73 96.37 96.34 88.12 87.98 82.92 82.87 71.24 71.04

830 95.14 95.07 85.97 85.97 92.99 92.87 82.69 82.6 66.52 66.31 57.04 56.93

890 96.99 97.04 83.58 83.74 93.11 93.1 80.61 80.72 74.51 74.4 51.39 51.55

950 94.22 94.32 81.15 80.71 90.97 90.98 75.39 75.01 70.68 70.3 48.62 47.78

1000 90.07 90.19 66.58 66.59 85.36 85.5 61.83 61.71 58.76 58.72 36.53 36.43





Chapter 6

Human Observers in Morphing
Attack Detection

6.1 Database creation

As noted in section 3.4, there are lack of experiments on human observer analysis
of morphing attack detection that utilizes spectral images, thus, we performed a
human experiment on how well human can detect morphed images in compar-
ison with spectral images. We began with generating a new database for spectral
images and morphed images which included a combination of both regular face
images (RGB images) and spectral images. The morphed images used here are cre-
ated using both landmark-based approaches (LMA, and UBO) and deep learning-
based approach (MIPGAN-I), as explained in the section 4.2. Since the morphed
attacked detection using spectral imaging can only be utilized in the D-MAD en-
vironment, where both bonafide and probe images are included for comparison,
the database only corresponds to the D-MAD setting. To make the testing more
reliable, we made sure that each image corresponded to a different data subject,
and avoided repeating data subjects. Also, to avoid gender bias by participants,
a near equal distribution of male and female data subjects were selected in each
group.

Furthermore, the database was then divided into three primary subsets for
individual analysis of spectral and regular color images with morphed images. The
first subset consists of 38 pairs of bonafide images and probed (bonafide images
or morphed) images. All images in this subset are regular RGB images. A sample
image from the first subset is presented in the Figure 6.1.

Similarly, the second subset is presented with 36 pairs of one spectral band
image with probe (bonafide or morphed) images. The images from the spectral
band 650nm are included here. A sample image from the second subset in the
human observation database is presented in the Figure 6.2. In contrast, the last
subset includes 26 pairs of one probe (bonafide or morphed) image with all nine
spectral band images. The included probe image is the regular (RGB, 3-channel)
image. A sample image from the third subset in the human observation database

39
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Figure 6.1: A sample image from first subset in the Human observation database

Figure 6.2: A sample image from second subset in the Human observation data-
base

is presented in the Figure 6.3.

Figure 6.3: A sample image from third subset in the Human observation database

A total of 100 images were selected where morphed images generated from
all three techniques are incorporated. The experiment was confined to 100 photos
due to the time restrictions involved in assessing these images for human observ-
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ers. As it was crucial to keep in mind that the detection experiments should not
cause the observers to lose attention, 100 images was determined a preferred
number of images in initial experiment done on three participants which is fur-
ther discussed below. The Table 6.1 shows the statistics of images used in each
subset.

Table 6.1: Statistics of number of images used for human observation experiment

Category Experiment-1 Experiment-2 Experiment-3 Total
Female subjects 18 16 11 45
Male subjects 20 20 15 55
Bona fide images 19 18 13 50
Morphed images 19 18 13 50
MIPGAN-I morphed images 7 7 5 19
Bologna morphed images 6 6 5 17
LMA morphed images 6 5 3 14
Total 38 36 26 100

6.2 Human Observer Platform for Evaluation

In order to facilitate the experiment while taking consideration of confidentiality
of the data being used, a platform hosted by NTNU server QuickEval was used. In
addition, the human observer platform is designed by incorporating the guidelines
of the General Data Protection Regulation (GDPR) to protect and preserve parti-
cipants’ privacy with full considerations of the anonymity of participants.

Furthermore, the new evaluation platform simulates a real-world scenario in
which photographs are shown to observers to determine whether they are genuine
or morphed. It consists of three different experiments, each of which incorporates
subsets of data in the database (as explained in the section 6.1).

The platform is designed to be operated in a desktop environment. Before in-
viting participants to the experiment, we took an initial experiment with three ob-
servers. In this experiment, 144 images were included for detection. However, this
number was reduced to 100 in the final observation by considering the feedback
received from the initial observer: as participants might lose interest in detecting
the images if a high number of images are included for comparison. Thus, a total
of 100 images were finalized for the final experiment.

A brief introduction to the experiment and its objectives was presented to each
participant on the home page, where users were directed to enter their inform-
ation, including their age range (such as 21-25, 26-30) and gender. The portal
then takes the user to the first experiment, in which they are shown two images
side-by-side and asked to detect if they are of the same person.

In experiment 1, images from the first subset of the database were presen-
ted, where each image consists of regular RBG images. After reviewing 38 pairs
of images in the first experiment, participants were presented with images from

https://quickeval.no/
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(a) Experiment-1 (b) Experiment-2 (c) Experiment-3

Figure 6.4: Graphics user interface of each experiment

a second subset of the database in the second experiment. In the second experi-
ment, regular RGB images and one spectral band image were presented. The im-
ages from the spectral band 650 nm are utilized for this comparison. At last, the
third experiment was shown, where images from the third subset of the database
were presented. Here, we presented a regular RGB probe with nine spectral band
images and asked to detect the RGB images by comparing them with all spec-
tral band images. The idea is to identify how effectively the user can detect the
morphed images by analyzing the spectral images. The third experiment The Fig-
ure 6.4 shows the graphical user interface for the human observers’ experimental
setup in each experiment used in this work.

6.3 Observer Evaluation

Three alternative configurations related to Differential Morphing Attack Detection
(D-MAD) in respect to spectral images make up the online evaluation platform for
benchmarking the human observer ability to detect morphed images. Participants
from both inside and outside NTNU who indicated no prior knowledge on morph-
ing process were invited via the link https://quickval.no/observer/883. Each par-
ticipant was given a brief introduction and instructions to the goals of the study
and were further asked for consent under GDPR. In addition, each participant was
instructed to participate anonymously in order to protect their personal inform-
ation. Furthermore, in the set of questionnaire, the participants were asked to
provide information regarding age range such as 21-25, 26-30 and their gender.

The Table 6.2 shows the different information of 51 human observers particip-
ated in the experiment. All these participants noted not having any prior know-
ledge, training or experiment on detecting morphed images.

6.4 Findings, Analysis, and Discussion

The experiment results and analysis the findings are presented in this section,
along with a complete analysis of the trends in human observer evaluation.

https://quickval.no/observer/883


Chapter 6: Human Observers in Morphing Attack Detection 43

Table 6.2: Classification of participants in gender and age range

Age range Female Male Total
16-20 0 1 1
21-25 4 12 16
26-30 8 16 24
31-35 3 5 8
36-40 0 1 1
41-45 0 1 1
Total 15 36 51

6.4.1 Metrics for Evaluations

To illustrate the findings, we use an accuracy metric, defined as the total number
of correct classifications of morph as morph and bonafide as bonafide, aligning
the results to the NIST FRVT MORPH challenge. The accuracy of automated MAD
algorithms is provided as the Attack Presentation Classification Error Rate (AP-
CER) and Bonafide Classification Error Rate (BPCER). The accuracy is defined as
follows:

Accurac y =
(1− APC ER) + (1− BPC ER)

2
(6.1)

6.4.2 Accuracy of detection: Experiment Type

The Table 6.3 shows the quantitative results of each experiment obtained from
51 observers, including 15 female and 36 male participants. It also includes the
accuracy of each gender in each experiment. The main observation are presented
below:

• The overall accuracy of recognizing morphed photos compared to the spec-
trum images presented in this experiment is 69.39%, which suggests that
human observers are more likely to overlook the morphed images when
spectral images are used as a reference. Similarly, in each experiment, de-
tecting morphing photos is 80.49%, 68.57%, and 64.80%, respectively, for
experiment-1, experiment-2, and experiment-3.
• Human observers show higher accuracy (80.49%) in spotting morphed im-

ages when both images in a comparison pair are conventional RGB images.
• In all three experiments, female observers exhibited higher detection ac-

curacy than male observers, with 82.34%, 71.43%, and 66.92% accuracy
in each experiment, respectively. It implies that female observers are more
likely to notice morphed images; nevertheless, it is worth noting that only
15 female observers participated in the study, compared to 36 male observ-
ers.
• Among all three different types of the experimental setup, the combination

of probe images with all nine spectral images is challenging compared to
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other experiment types. The accuracy of detection observed for this setting
(Experiment-3) is 64.80%.

Table 6.3: Human observers’ accuracy on detecting morphed images in each ex-
periment

Gender Experiment-1 Experiment-2 Experiment-3 Overall Accuracy
Female 82.34 71.43 66.92 71.06
Male 79.69 67.35 63.90 68.68
Overall Accuracy 80.49 68.57 64.80 69.39

6.4.3 Accuracy of detection: Gender of observers

The Table 6.4 shows the quantitative results of Experiment obtained from 51 ob-
servers on detecting the different types of morphed images. The Table 6.4 also
presents the how well the observers can detect different types of morphed im-
ages. As noted from the Table 6.4 following are the main observations:

• The findings from 51 human observers show that detecting morphed facial
images is challenging.It aligns with the results obtained on other similar
studies as also discussed in chapter 3.
• The ability of a human observer to detect deep-learning-based morphed

images is higher than that of landmark-based morphed images.
• From the observation, it is observed that the human observer’s ability to

detect the bonafide images is comparatively higher than detecting morphed
images. The detection accuracy of 89.43% for bonafide images; on the other
hand, for UBO, LMA, and MIPGAN-I morphed images is 62.22%, 32.30%,
and 62.96% respectively.
• The detect percent of LMA morphed images is deficient (32.30%), indicating

that when LMA morphed pictures are presented to cross the border, the
human inspector is more likely to miss them.

Table 6.4: Gender wise observers’ accuracy on detecting morphed images

Gender Bonafide image UBO morphed Mipgan morphed LMA morphed
Female 95.36 60.74 64.82 26.0
Male 86.88 62.86 62.17 35.0

Overall Accuracy 89.43 62.22 62.96 32.30

An analysis has also done on accuracy of male and female to differentiate the
images with their own and opposite gender. The Table 6.5 shows the result of the
experiment and following are the main observations:

• Female observers, on average, show a more remarkable ability to recognize
either gender than male observers. It suggests that female observers are
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more likely than male observers to recognize morphing images; neverthe-
less, it is essential to note that the number of female observers is 15, while
male observers are 36.
• Furthermore, female observer demonstrated higher accuracy in recognizing

morphed images in each experiment.

Table 6.5: Classification of accuracy on same or different gender data

Gender Experiment-1 Experiment-2 Experiment-3
Male Female Male Female Male Female

Female 83.14 81.63 64.74 78.94 65.33 69.09
Male 80.46 78.82 62.80 72.44 63.32 64.69





Chapter 7

Morphing Attack Detection

7.1 Morphing Attack Detection using spectral images

Using the workflow of a generic biometric system as an example, this idea is feas-
ible in detection at the time of authentication, where a live capture from an au-
thentication attempt serves as an additional source of information for the morph
detector in addition to reference images from the passport. The spectral camera
would be utilized to capture live images, which creates multiple spectral band
images. Along with the images from the passport, these spectral images would
then be employed in the face morphing attack detection algorithm. The morph-
ing attack detection algorithms extract features from comparing images and thus
decide whether the image is genuine or morphed based on the extracted features.

7.1.1 Morphing attack detection using feature differentiation

Focusing on morph detection, image morphing is expected to cause changes in tex-
tual features between bonafide and morphed face images. Local Binary Patterns
(LBP) and Binarized Statistical Image Features (BSIF) are well-known general-
purpose texture descriptors that have proven effective in various texture classi-
fication problems. Thus, LBP features and BSIF features are extracted from the
aligned cropped face images. Obtained feature values are stored in correspond-
ing histograms. The LBP feature descriptors are extracted according to patches of
3×3. The values of the LBP binary code are represented by the feature vectors,
which are normalized histograms of size 256. Similarly, 12-bit filters are used
to create 8-bit BSIF feature vectors. The feature vectors are then loaded into an
Radial Basis Function (RBF) kernel-based SVM. Since the linear SVM was first
utilized but failed to provide adequate training accuracy, we switched to the Grid-
Search SVC. Grid search is a hyperparameter tuning technique that may facilitate
building and evaluating a model for every combination of algorithm parameters
per grid.

Furthermore, since a morphed face image contains the attacker’s biometric
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Figure 7.1: Proposed model of morphing attack detection technique

information and that of the accomplice, thus its deep face representation is likely
to differ considerably from that detected in the probe image, at least in some
aspects. By incorporating this idea, we also employed in the ArcFace to get the
embedding vectors. Therefore, we examined two MAD techniques based on tex-
ture descriptors: LBP [72] and BSIF [29] with 12-bits filter and one MAD based
on deep face representations (feature vectors) retrieved using ArcFace [66].

The feature vectors are then loaded into an RBF kernel-based SVM. For all
classical baseline models, the feature representation of the image to be tested is
subtracted from the feature representation of the RGB images before feeding it to
the SVM classifier as proposed in [30]. Using a disjoint training set, feature vectors
for each technique are retrieved, and support vector machines (SVM) with RBF
kernels are trained to distinguish between genuine and morphed face images. For
the training and testing purpose, we divided the dataset created in the chapter 4
into train and test segments in a 60/40 ratio to analyze the morphing attack de-
tection. The split is done in such a way that none of the trains set participants
have images in the test set, neither in the genuine nor in the morphed set of test
class. Table 7.1 shows the number of images used in each set. All three MAD tech-
niques are trained in three different approaches, employing three different sets of
morphed images developed in this work.
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Table 7.1: The number of images in train and test set for experimental evaluations

Category Training Set Testing Set
Morph 98 55

Bonafide 7206 4741

7.2 Evaluation metrics

This subsection includes the evaluation of the accuracy of different MAD ap-
proaches using spectral images on different morphed images generated in this
study. We used the standard measures such as APCER, BPCER, and EER rates
for morph attack detection to evaluate network performance. APCER stands for
Attack Presentation Classification Error Rate and is defined as the proportion
of attack images incorrectly classified as bonafide images. APCER is the rate at
which morphs pass undetected. In contrast, BPCER stands for Bonafide Presenta-
tion Classification Error Rate and is defined as the proportion of bonafide images
incorrectly classified as attack images. The APCER and BPCER rates represent the
Type 1 and Type 2 error, or the false positive and negative rates. The point when
BPCER and APCER are equal is called as Equal Error Rate (EER). Furthermore,
BPCER is also called a false alarm rate, and highly recommended to restrict it to
fixed thresholds. The rates at a defined threshold are also reported for morph de-
tection, often to control the false alarm rate. APCER5 is the APCER rate, where
BPCER is 5%. Similarly, APCER10 is the rate when BPCER is 10%. These rates are
plotted in a Detection Error Tradeoff (DET) curve.

The accuracy of different MAD approaches obtained utilizing the LBP, BSIF,
and ArcFace feature embedding, respectively, is shown in the Table 7.3, Table 7.2
and Table 7.4. The main observations from the DET curve for the feature differ-
entiation using ArcFace embedding are as following:

• The deep face differentiation technique has a good detection accuracy com-
pared to other approaches. The performance is even better in detecting
morphed images created using the deep-learning-based method (MIPGAN-
I). In all spectral bands, the error rate for this combination is 0.0 as shown
in Table 7.2.
• In terms of landmark-based morphed images, the detection performance

of the deep face differentiation technique (ArcFace embedding) compares
favorably to LMA based morphed images, with an error rate of 0.0 for all
bands except 650nm, which has a 1.82 percent error rate.
• The performance of the deep face differentiation technique (ArcFace em-

bedding) in terms of spectral bands is best at 1000nm, with an error rate of
0.0 in all three types of morphed images.

Similarly, observations for the texture feature differentiation (LBP and BSIF)
from Table 7.3, Table 7.4 are as follows:

• Good detection rates are obtained for texture descriptors, with BSIF obtain-
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Table 7.2: APCER/BPCER result for ArcFace-SVM MAD approach

Band

UBO LMA MIPGAN-I

EER
APCER[%]

EER
APCER[%]

EER
APCER[%]

5 10 5 10 5 10

530 1.82 0 0.00 0 0 0.00 0 0 0.00

590 1.82 0 0.00 0 0 0.00 0 0 0.00

650 1.82 0 0.00 1.82 0.36 0.18 0 0 0.00

710 1.82 0 0.00 0 0 0.00 0 0 0.00

770 1.82 0 0.00 0 0 0.00 0 0 0.00

830 1.82 0 0.00 1.82 0 0.00 0 0 0.00

890 1.82 0 0.00 0 0 0.00 0 0 0.00

950 1.82 0 0.00 1.82 0 0.00 0 0 0.00

1000 0 0 0.00 0 0 0.00 0 0 0.00

ing the greatest performance of D-EER=0.0 %.
• Using the BSIF texture descriptors, good performance is achieved in the

spectral bands in the intermediate range, such as 650, 710, 770, and 830,
when LMA based morphing images are employed. However, for the MIPGAN-
I and UBO morphing images, detection accuracy is good in the higher and
lower frequency ranges such as 530 and 1000nm with D-EER = 0.0%.
• On the other hand, when LPB feature differentiation is used for detection,

better results are obtained in the higher frequency ranges, such as 530 and
590nm. The D-EER of 0.0 is observed for these bands.

The DET curve is shown in the Figure 7.2, Figure 7.3 and Figure 7.4. The
following observation are made DET curve results:

• ArcFace embedding performs better in detecting UBO morphed images with
error rate of D-ERR = 0.0, as shown in Figure 7.2. Furthermore, the LBP-
SVM MAD method has a lower performance rate, implying that when the
LBP-SVM MAD algorithm is applied, it is more likely to overlook the UBO
morphing images.
• Similarly, when MIPGAN-I morphing images are presented to three MAD

techniques, the same result is observed, as illustrated in Figure 7.3. When
using a deep feature differentiation MAD strategy, the MIPGAN-I morphed
images are more likely to be recognized, however using an LBP-based MAD
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Table 7.3: APCER/BPCER result for BSIF-SVM MAD approach

Band

UBO LMA MIPGAN-I

EER
APCER[%]

EER
APCER[%]

EER
APCER[%]

5 10 5 10 5 10

530 0 0 0.00 1.82 0.37 0.37 0 0 0.00

590 1.82 0.83 0.21 1.82 0.21 0.21 0 0.41 0.00

650 3.64 1.09 0.00 1.82 0 0.00 3.64 0 0.00

710 3.64 2.44 0.17 3.64 0 0.00 3.64 2.79 0.17

770 1.82 0.17 0.00 3.64 0 0.00 3.64 0.17 0.00

830 1.82 0 0.00 0 0 0.00 3.64 0.87 0.00

890 3.64 2.04 0.85 3.64 3.07 2.73 3.64 1.36 0.00

950 3.64 4.78 1.59 5.45 3.36 1.42 3.64 1.24 0.00

1000 0 0 0.00 0 0.19 0.00 0 0 0.00

Table 7.4: APCER/BPCER result for LBP-SVM MAD approach

Band

UBO LMA MIPGAN-I

EER
APCER[%]

EER
APCER[%]

EER
APCER[%]

5 10 5 10 5 10

530 0 0 0.00 0 0 0.00 0 0 0.00

590 0 0 0.00 0 0 0.00 0 0 0.00

650 12.73 19.64 12.91 16.36 27.09 22.18 7.27 8.73 4.73

710 18.18 29.97 22.30 18.18 41.29 31.01 12.73 22.3 15.16

770 1.82 2.51 1.67 5.45 4.52 2.84 5.45 3.18 2.34

830 1.82 0.7 0.00 5.45 4.52 2.43 1.82 0.52 0.35

890 21.82 40.55 29.64 25.45 55.03 46.34 16.36 35.26 24.19

950 14.55 22.65 15.93 25.45 55.58 47.96 9.09 15.93 9.56

1000 5.45 5.73 3.63 14.55 23.47 18.70 7.27 6.68 4.58



52 H.Aryal: Morphing Attacks and Detection using Spectral Images

(a) UBO-ArcFace (b) UBO-BSIF

(c) UBO-LBP

Figure 7.2: DET curve for UBO-Morpher with three different MAD techniques

approach has the possibility to miss the detection.
• Likewise, similar result is found when LMA morphed images are provided,

as depicted in Figure 7.4.
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(a) MIPGAN-I-ArcFace (b) MIPGAN-I-BSIF

(c) MIPGAN-I-LBP

Figure 7.3: DET curve for MIPGAN-I with three different MAD techniques
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(a) LMA-ArcFace (b) LMA-BSIF

(c) LMAI-LBP

Figure 7.4: DET curve for LMA with three different MAD techniques



Chapter 8

Discussion

Border control and other security applications requiring identification, such as
official identity cards, surveillance, and law enforcement have increasingly in-
corporated biometric facial recognition technology. These systems provide high
accuracy at a low operational cost, with an automated fail-safe that allows a hu-
man expert on-site to verify the scenario if the algorithm generates a false alarm.
In particular, face recognition systems have a significant edge over other biomet-
ric systems because of these factors as a result, the International Civil Aviation
Organization (ICAO) has recommended that all electronic documents include a
facial reference image. The face is thus the only biometric identifier included in
important documents like passports worldwide.

However, despite their widespread success, facial recognition systems still are
not impervious to attack. The widespread use of automatic biometric systems in
border control has highlighted critical vulnerabilities in the border security sys-
tem, especially the systems’ inability to recognize a fraudulent image. Moreover,
some countries require that applicants give a face reference image either digitally
or as a physical print instead of a live photo during the registration process which
exacerbate the issue allowing criminals to alter the picture and use a morphed
photograph instead of a real image. As face morphing attacks create face images
that multiple people may use to authenticate themselves, morph attack is one type
of deceptions that has lately been identified as a serious threat.

8.1 Vulnerability analysis of different FRS using spectral
images

When automated face morphing technologies, such as landmark manipulation
and GAN generation create artifacts, some distinguishing features can suggest that
the image was morphed even though they are not always apparent to the human
eye. These morphing anomalies can be observed in very high or low-frequency
spectra. The spectrum imaging technique obtains complementary image informa-
tion (i.e., reflectance or emittance) across discontinuous spectral bands to produce
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typical discriminating features.
This study explored the attack success of images against the contributing sub-

jects using six different FRSs, including two commercial Off-The-Shelf (COTS)
and four open-source deep-learning-based FRSs. COTS FRS includes Cognitec FRS
and Neurotec, whereas open-source FRS includes ArcFace, ArcFacePlus, CosFace,
and CosFacePlus. The attack potential is depicted via a distribution plot of the
impostor, genuine, and morphing attack comparison scores. While analyzing the
distribution plot in the deep-learning-based FRSs, the imposter and genuine scores
overlapped. The attack potential of the created morphed images are challenging to
detect using the spectral images for the deep learning-based face recognition sys-
tem. One of the possible reasons for this could be because these face recognition
systems are designed to operate on conventional colored (RGB) images. Thus, we
fine-tuned the FRS models to deal with spectral images, however, the distribution
plot was still found to be overlapping. When the plots are overlapping, evaluat-
ing these deep-learning algorithms’ attack potential using the morphed images
created in this study and spectral images becomes a challenging task.

In contrast, the distribution of imposter and genuine comparison scores shows
a clear distinction between them for the COTS FRSs. In addition, the scores of
all types of morphed images lie between genuine and imposter scores. Thus, it
indicates that morphed images created in this study have potential to attack these
COTS FRSs. This shows that the spectral images could be utilized for determining
the attack potential of the COTS FRSs (Cognitec and Neurotechnology).

8.2 Human observation in detecting morphed images

As the morphed image seems identical to both contributing subjects, it presents
a greater challenge for human viewers to detect morph images. While an am-
ateur attacker may create a morphed image with ghost artifacts that are easy to
spot, a professional attacker could create a high-quality image by removing unnat-
ural artifacts introduced during the morphing process. Such images are especially
more challenging for a human observer to spot the morphs. Several studies also
concluded that human observers often fail to detect the morphed images. An ex-
ception could be granted for experts who have been specially educated to identify
morphing and can accurately detect the facial morph.

In this study, an experiment was also carried out to determine the human
observer’s capacity to detect morphed images using spectral images. Observers
were provided with the morphed images in three distinct ways: ordinary color
images, one spectral band image, and all spectral band images. This study, like
others that looked at human error in detecting morphed photos, showed that hu-
mans are prone to making mistakes when it comes to detecting morphed images.
If the reference photos are spectral images, the rate was observed to be signific-
antly higher. In a preliminary experiment performed with three participants to get
feedback before making the experiment available to everyone, participants were
asked on factors that makes it challenging to them to detect morphed images when
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presented with spectral images. The observer noted that they usually use texture
features, shades, lighting, and so on as a reference while detecting the morphed
images in regular RGB images; however, these features were absent in spectral
images making it hard to detect morphs. Furthermore, they stated that they are
accustomed to looking at conventional images, but since they were provided with
spectral images for the experiment, they did not feel very confident and were
rather indecisive.

8.3 Spectral images in detecting morphed images

Three different MAD approaches have been evaluated, including the texture fea-
ture descriptors (LBP, BSIF) and deep feature descriptor (ArcFace embeddings)
methods using the SVM classifier. The results reveal that when several MAD ap-
proaches are trained and tested with spectral images, they perform well in de-
tecting morphed images. This performance is significantly higher in the higher
and lower frequency bands (such as 1000nm and 530nm). It indicates that there
is a high possibility of detecting morphed images when high or lower frequency
band reference images are used. This statement is also supported by the study per-
formed by Chaudhary et al. [73]. This states that most morphing artifacts reside
in the high-frequency spectrum, and they are discernible when we examine the
low frequency and high-frequency data separately. However, it is worth mention-
ing that we employed a small set of morphed images in the training and testing
set (98, 55, respectively) for this experiment, and the results may vary if a more
extensive morphed dataset is used.

Overall, although some challenges regarding limited data set and inexperi-
enced observer may have affected the result to some extent, the study could still
set as a stepping stone in future research to detect morphing attacks using spectral
images.





Chapter 9

Conclusion

The main purpose of this study was to identify the attack potential of efficient
FRSs using the morphed images created when spectral images are presented as a
reference. This research project also aims to assess the efficiency of various MAD
techniques for detecting morphed images with respect to spectral images.

A new database was created which consist of the 484 morphed images cre-
ated using three different morphing techniques: UBO, LMA and MIPGAN-I. The
database also included spectral images in nine different spectral bands: 530nm,
590nm, 650nm, 710nm, 770nm, 830nm, 890nm, 950nm, 1000nm. It could serve
as a referenced database for future research for similar projects and studies. The
possibility of attack by newly created database is determined with six different
FRSs including two COTS (Cognitec, and Neurotechnology) and four different
deep learning based FRSs (ArcFace, ArcFacePlus, CosFace, CosFacePlus). The at-
tack potential was demonstrated by computing the comparison score distributions
of an imposter, genuine, and morphed and was compared against original probe
identities contained in the database. Cosine distance between two face feature em-
bedding was used to compute the comparison score. For the deep learning based
approach, it was observed that imposter and genuine score are in the same range
indicating that the determination of the vulnerability study of these methods are
challenging when spectral images are used as a reference.

In contrast, COTS FRSs were found to be vulnerable to the potential attack.
This attack rate is highest for Cognitec than the Neurotechnology. The UBO morphed
images have the highest potential of attack in 710nm spectral band with value
MMPMR 98.16% and 98.18% FMMPMR in Cognitec while 650nm spectral band
has highest threat to attack for Neurotechnology with 98.01% and 98.03% score in
MMPMR and FMMPMR, respectively. However, the MIPGAN-I generated morphed
images are comparatively less threatening to both FRSs.

At the end of the thesis work, we succeeded in answering the following re-
search question:

1. Can spectral imaging help in detecting morphing attacks?
Evaluating different MAD approaches such as LBP and BSIF texture feature
differentiation and ArcFace deep feature differentiation with Support Vector
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Machine shows that even though the attack potential is high, the highest
detection accuracy is achieved. These approaches offer good performance
in detecting all three types of morphed images, and the best detection is
achieved at higher and lower frequency ranges (530nm and 1000nm) with
EER = 0.0. The findings also reveal that deep face differentiation has a
higher detection accuracy than texture feature differentiation techniques.
The performance is even better in detecting morphed images created using
the deep-learning-based method (MIPGAN-I). Therefore, from the analysis,
we can conclude that the spectral images could be useful in detecting the
morphed attacks.

2. What proficiency does a novice Human observer have in spotting morphed
images from spectral images?
An experiment was conducted to determine the human observer’s capacity
to detect the morphed images when spectral images are presented as a ref-
erence. It was observed that humans are more prone to miss morphed im-
ages. When morphed images are given with standard color images, the ob-
servers achieved an accuracy of 80.49%; however, when presented with all
spectral bands, the accuracy dropped to 64.80%. Therefore, according to
experiment results, an inexperienced human observer’s capacity to recog-
nize morphed images while examining spectral images is relatively poor.
However, it should be noted that the experiment consisted of inexperienced
human observers, and the result could be different when experts with ex-
perience and training on detecting frauds in identity documents were taken
for the experiment.

9.1 Limitation and Future Work

Although this paper presents different reference image for detecting morphing
attacks tested empirically using COTS FRS, it has few limitations. In the current
scope of work, we evaluated the impact of only digital images. However, the MAD
mechanism used in this study has not been tested with different image configura-
tions, such as print and scan (re-digitizing) images, which needs to be addressed
in future research.

Because the dataset we used in this investigation was captured in an exper-
imental context rather than a real-world scenario, the performance measured in
this study lacks critical information on how well it adjusts in real-world scenarios.
Furthermore, the number of morphed images in the training and testing sets from
each morphing generating approach is relatively low (98 and 55, respectively).
This small collection may not necessarily represent the performance of detecting
morphed attacks. Thus, better study could have been made if MAD techniques
were performed on bigger morphed dataset.

Furthermore, the current scope of study only examined morphing attack de-
tection using feature differentiation for individual spectral bands; nevertheless, it
is critical to investigate how MAD approaches work when feature differentiation
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of all bands is performed together. Thus, this aspect needs to be investigated in
future studies.
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Additional Material

Figure A.1: A vulnerability study of ArcFace with UBO morphed images in all
spectral bands
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Figure A.2: A vulnerability study of ArcFace with LMA morphed images in all
spectral bands
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Figure A.3: A vulnerability study of ArcFace with MIPGAN-I morphed images in
all spectral bands
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Figure A.4: A vulnerability study of ArcFacePlus with UBO morphed images in
all spectral bands
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Figure A.5: A vulnerability study of ArcFacePlus with LMA morphed images in
all spectral bands
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Figure A.6: A vulnerability study of ArcFacePlus with MIPGAN-I morphed images
in all spectral bands
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Figure A.7: A vulnerability study of CosFace with UBO morphed images in all
spectral bands
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Figure A.8: A vulnerability study of CosFace with LMA morphed images in all
spectral bands
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Figure A.9: A vulnerability study of CosFace with MIPGAN-I morphed images in
all spectral bands
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Figure A.10: A vulnerability study of CosFacePlus with UBO morphed images in
all spectral bands
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Figure A.11: A vulnerability study of CosFacePlus with LMA morphed images in
all spectral bands
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Figure A.12: A vulnerability study of CosFacePlus with MIPGAN-I morphed im-
ages in all spectral bands
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