
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Johannes Madsen Barstad
Odin Korsfur Henriksen
Jonas Kjærandsen
Peder Andreas Stuen

NTNU Threat Total

A Self-Service Threat Intelligence Solution

Bachelor’s thesis in Bachelor in Digital Infrastructure and Cyber
Security
Supervisor: Espen Torseth
May 2022

Ba
ch

el
or

’s
th

es
is

Johannes Madsen Barstad
Odin Korsfur Henriksen
Jonas Kjærandsen
Peder Andreas Stuen

NTNU Threat Total

A Self-Service Threat Intelligence Solution

Bachelor’s thesis in Bachelor in Digital Infrastructure and Cyber
Security
Supervisor: Espen Torseth
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

SAMMENDRAG

Tittel: NTNU Threat Total Dato: 19.05.2022

Deltakere: Johannes Madsen Barstad

 Odin Korsfur Henriksen

 Jonas Kjærandsen

 Peder Andreas Stuen

Veileder: Espen Torseth

Oppdragsgiver: NTNU SOC

Stikkord eller

nøkkelord:

Full stack, webteknologier, cybersikkerhet, trussel-etterretning,

 selvhjelpsløsning

Antall sider og ord: 72

sider, 19764 ord.

Antall vedlegg: 8 Publiseringsavtale inngått: Ja

Kort beskrivelse av bacheloroppgaven:

Threat Total er en full stack web applikasjon med et brukervennlig grensesnitt, som bruker

NTNUs farger og logoer. Applikasjonens backend er en robust Golang-server med caching i

Redis, som reduserer lasten på våre tredjeparts datakilder i tillegg til forespørselstiden. Tråder er

også brukt for å redusere prosesseringstiden på forespørsler hvor det er hensiktsmessig. På grunn

av integrering med Feide autentisering er det å logge inn og ut like enkelt som med andre NTNU-

tjenester. Dette gjør Threat Total til en sømløs brukeropplevelse for NTNU ansatte og studenter.

ABSTRACT

Title: NTNU Threat Total Date: 19.05.2022

Participants: Johannes Madsen Barstad

 Odin Korsfur Henriksen

 Jonas Kjærandsen

 Peder Andreas Stuen

Supervisor: Espen Torseth

Employer: NTNU SOC

Keywords: Full stack, web application, cyber-security, threat-intelligence, self-help

Number of pages and words: 72

pages, 19764 words.

Number of appendixes: 8 Availability: Open

Short description of the bachelor thesis:

Threat Total is a full stack web application with a user-friendly frontend using NTNU branding

colors and logos. The backend is a robust Golang application with caching in Redis which

reduces the load on our third-party data providers as well as the request time for our users.

Threading is also used to reduce the processing time for requests where appropriate. Due to

integration with Feide authentication logging in and out is as simple as with any of the NTNU

services, which makes using Threat Total a seamless user experience for members of NTNU staff

and students.

Prelude

Page i of x

Preface
The authors of this bachelor thesis, Johannes Madsen Barstad, Odin Korsfur Henriksen, Jonas

Kjærandsen and Peder Andreas Stuen, would like to thank our supervisor, Espen Torseth, for the

collaboration during this project period. He helped us in the form of guidance, discussion, and

advice throughout the project. The weekly scheduled meetings with Espen helped us to keep the

spirit up in tough times, as well as guided us in the right direction when questions arose. This

was really appreciated by all the group members.

We would also like to thank our employer, NTNU SOC with our contact persons Christoffer

Vargtass Hallstensen and Frank Wikstrøm. We genuinely think that this project has been a great

learning experience for us, as well as a fun way of learning new tools and how full stack web

development is conducted in a real-life setting. We would also like to thank our advisor

Christoffer and Frank for guidance throughout the project, as well as interesting and great

conversations. A thank you should also be given to NTNU SOC for entrusting us with this task,

with the hopes that this report will justify our implementation.

Prelude

Page ii of x

Table of Contents
Preface.. i

Table of Figures ... vi

Table of Tables ... vii

Glossary ... viii

1 Introduction .. 1

1.1 Task Information ... 1

1.1.1 Problem area ... 1

1.1.2 Scope .. 1

1.2 Target Group ... 2

1.3 Internal Background and Competence .. 3

1.4 Time Frames .. 4

1.5 Roles and Responsibilities .. 5

1.6 Report Structure .. 6

2 Theory .. 8

2.1 Introduction ... 8

2.2 Background and Purpose of the Project .. 8

2.3 Research Methodology .. 9

2.4 Full Stack Web Development ... 9

2.4.1 Frontend responsive web design .. 9

2.4.2 Interaction design ... 10

2.4.3 Networking operations ... 11

2.4.4 Testing .. 11

2.4.5 Authentication and authorization.. 12

2.4.6 Security in software development .. 13

2.5 The Scrum Model .. 14

3 Requirements Specification ... 16

3.1 Introduction ... 16

3.2 Functional Requirements... 16

3.3 Non-Functional Requirements .. 17

3.4 Use Cases .. 18

3.4.1 Use case 1 – Log in... 18

Prelude

Page iii of x

3.4.2 Use case 2 – Investigate URL ... 20

3.4.3 Use case 3 – Investigate file hash ... 21

3.4.4 Use case 4 – Investigate file ... 22

3.4.5 Use case 5 – Log out... 23

4 Design and Technologies ... 24

4.1 Introduction ... 24

4.2 Prerequisites .. 24

4.3 Design Decisions ... 25

4.3.1 Frontend .. 25

4.3.2 Backend .. 26

4.3.3 Caching .. 26

4.4 From Idea to Sketch .. 27

4.5 Wireframes and Prototyping ... 28

4.6 Wireframe Validation .. 28

4.7 User Interface, the End Product .. 29

5 Development Process ... 30

5.1 Introduction ... 30

5.2 Scrum .. 30

5.3 An Alternative Development Framework to Scrum .. 31

5.4 Our Development Framework ... 31

5.5 Development Environment and Tools Used ... 32

5.6 Summary of the Scrum Sprints ... 33

6 Implementation and Production Process .. 35

6.1 Introduction and an Overview of the Application Structure ... 35

6.2 Intelligence Sources .. 36

6.2.1 Google safe browsing ... 36

6.2.2 Hybrid analysis ... 37

6.2.3 AlienVault .. 38

6.2.4 VirusTotal ... 39

6.3 Login Functionality ... 40

6.4 URL and Domain Search .. 41

6.5 File Hash Search.. 44

Prelude

Page iv of x

6.6 File Upload Process ... 47

6.7 Escalate to Manual Analysis ... 48

6.8 Frontend Structure ... 48

6.9 Translation ... 49

7 Code Review and Code Quality ... 50

7.1 Introduction ... 50

7.2 Component Structure... 50

7.3 Increasing Performance with Threading ... 52

7.4 Efficient Code with Caching ... 53

7.5 Code Modularity ... 54

8 Testing and Quality Assurance .. 55

8.1 Introduction ... 55

8.2 Static Code Analysis ... 55

8.3 SonarQube ... 56

8.4 Usability Testing ... 58

8.4.1 Results From Usability Testing ... 59

8.4.2 Weaknesses ... 59

8.5 Regression Testing .. 60

8.6 Destructive Testing ... 61

8.7 Unit and API Testing... 62

8.8 Logging in Threat Total .. 64

8.9 Known Vulnerabilities .. 66

8.9.1 Potential RCE vulnerability in “file.filename” ... 66

8.9.2 Potential malicious downloads from screenshot functionality 66

9 Installation and Realisation .. 67

9.1 Introduction ... 67

9.2 Installation ... 67

10 Ending Chapters ... 68

10.1 Introduction ... 68

10.2 Results ... 68

10.3 Task Critiques ... 68

10.3.1 Internal API access ... 68

Prelude

Page v of x

10.3.2 Worklog time tracking .. 69

10.3.3 Sprint durations... 69

10.3.4 Automated testing ... 70

10.3.5 User testing and usability testing .. 70

10.4 Future Work and Development ... 70

10.5 Evaluation.. 71

10.5.1 Organization ... 71

10.5.2 Work distribution .. 71

10.5.3 Project as a form of work ... 71

10.6 Conclusion ... 72

References .. xi

Appendices:.. xiv

Page vi of x

Table of Figures
Figure 1: CSS media query example .. 10

Figure 2: An example of a scrum board, screenshot from Jira Atlassian tool 14

Figure 3: General overview of the Full stack application, made in draw.io 24

Figure 4: Example snippet of navbar component ... 25

Figure 5: Example snippet of how the Navbar component is included in homepage.js 26

Figure 6: Example of how connection to the Redis pool was implemented 27

Figure 7: First wireframe iteration of the index / homepage in balsamiq 28

Figure 8: The end product ... 29

Figure 9: Detailed overview of the application ... 35

Figure 10: Feide authentication implementation .. 40

Figure 11: Example of investigating a URL ... 41

Figure 12: Golang data structure for hybrid analysis.. 42

Figure 13: How the user response is made based on verdict from google safe browsing 42

Figure 14: Function which sets response based on source status ... 43

Figure 15: Function for checking if the process of gathering threat intelligence is finished 43

Figure 16: Example of how the result page could look like ... 44

Figure 17: Data parsing for Hybrid Analysis file hash search .. 45

Figure 18: “Setresulthash” will set the user response based on verdict from antivirus agent 45

Figure 19: File hash search results .. 46

Figure 20: File upload pipeline ... 47

Figure 21: Frontend component sharing ... 48

Figure 22: Example of a button being translated with json data... 49

Figure 23: Component structure, made in draw.io ... 50

Figure 24: Image of structure, made in draw.io .. 51

Figure 25: Visualization of threading, made in draw.io ... 52

Figure 26: cache miss vs cache hit. Visualization made in draw.io ... 53

Figure 27: Example of code before revision ... 54

Figure 28: Example of code after revising code modularity ... 54

Figure 29: Example of SonarQube report. .. 56

Figure 30: Example of a detected security flaw. ... 57

Figure 31: Regression testing flowchart - Made in draw.io.. 60

Figure 32: Logerror function .. 65

Figure 33: Loginfo function .. 65

Page vii of x

Table of Tables
Table 1: Common http request methods ... x

Table 2: Common http request methods ... 11

Table 3: Use case 1 - Log in ... 18

Table 4: Use case 1 - Basic flow ... 18

Table 5: Use case 1 - Alternative flow .. 19

Table 6: Use case 2 - Investigate url ... 20

Table 7: Use case 2 - Basic flow ... 20

Table 8: Use case 3 - Investigate file hash .. 21

Table 9: Use case 3 - Basic flow ... 21

Table 10: Use case 4 - Investigate file .. 22

Table 11: Use case 4 - Basic flow ... 22

Table 12: Use case 5 - Log out ... 23

Table 13: Use case 5 - Basic flow ... 23

Table 14: Programs and tools used ... 32

Table 15: API endpoints ... 36

Table 16: Usability testing .. 59

Table 17: Test functions.. 64

Page viii of x

Glossary
Agile: An iterative approach to project management and software development. Consists of

smaller increments, allowing to respond quickly to changes in a project.

API: Acronym of Application Programming Interface, is a connection between applications,

typically used to aid explaining how requests between applications are to be handled.

CI: Continuous Integration, refers to the automation process for developers, in which is designed

to automatically integrate code changes and updates from several team members during software

development. [38]

Client: An application that is available to the end user, such as a web-browser, typically runs

locally on a user’s device.

Client side: Refers to the operations performed by a client. Typical operations are to request

pages from the server, to display on a client. [24]

CPU: Central Processing Unit is the “brain” of the computer and takes instructions from a

program or application and performs calculations based on these.

CSS: Cascading Style Sheet is a styling language which is used in accommodation with HTML

and provides different shapes, animations, colours, fonts, and layout. CSS is a standardized

language across the entire World Wide Web for developing design. [8]

Domain: Is a name that identifies a part of the internet and is usually categorized with a domain

name, or a URL.

Feide: “Felles elektronisk identitetshåndtering” (common electronic identity management) is a

centralized identity management solution developed for the Norwegian educational sector. Feide

provides the user with SSO (Single Sign On) and SLO (Single Log Out) functionalities. [9]

File-hash: A long string of characters that works like the fingerprint of a file.

Full stack web development: Refers to web development where both client-side and server-side

code is being developed. It is up to the developers to connect these two sides and make them

communicate. [26] [27]

Gin-gonic: Is a Golang HTTP web framework with better performance than the ordinary HTTP

library which comes prebuilt in with Golang. [10]

GitLab: Is a platform which is used by organizations, NTNU among others, for software

development in a collaborative manner. GitLab provides the functionality with planning,

building, securing, and deploying software. [2]

Golang: Is a programming language that was created at and for Google in 2007. Golang is a

good language for server-side coding as it has many built in functionalities and libraries for

making web servers and communication over HTTP.

Page ix of x

HTML: Hyper Text Markup Language is the standard markup language to be displayed in a web

browser and defines the structure and meaning of the website’s content. [14]

IOC: Indicator of Compromise is an artifact that enable information security professionals and

system administrators to better detect malicious activities inside the network. [16]

IP: Internet Protocol works like an identifier or name for different services, host, and clients on

the internet. The IP address consist of four octets which represents the device or service. An

example is Google’s DNS server and has the IP address, 8.8.8.8.

JavaScript: is a widely used programming language used for web development, especially when

it comes to frontend development.

Man-in-the-middle attack: An attack where the attacker sits in the middle of traffic, intercepts,

and changes the traffic. This can be an issue if dealing with unencrypted traffic as the attacker

can then plainly see the traffic and change it. Can be mitigated using encrypted data traffic

through for example TLS and by using other confirmation methods such as checksums.

Networking snooping attacks: An attack where an attacker observes local network traffic and

reads the data sent over the network. Can be mitigated using encrypted data traffic through for

example TLS.

OS: Operating system which allocates resources to each individual component and provides the

user with a graphical user interface to interact with the computer. Windows is an example of an

operating system.

RAM: Random Access Memory is a type of computer memory which stores information that

different programs and processes need during execution of them. This memory can be accessed

in any desired order and is why it is called random access. [15]

RCE vulnerability: Remote Code Execution vulnerability allows an external attacker to execute

arbitrary code on a remote system or device. The impact of this can range between executing

malware remotely, to an attacker gaining full access over a system. [40]

ReactJS: Is a web development library, made for JavaScript and provides the functionality with

making “React Components”. These work as templates when making different pages within the

web application.

Redis: Is an open source, in-memory data storage service which is used as a cache service

among other things. [20]

Page x of x

REST API: Representational State Transfer Application Programming Interface uses REST’s

architectural style and allows for interaction with web services that is RESTful. REST APIs

allow the following most widely used methods for transferring data [25]:

Method Description

GET Retrieves information from the API.

POST Sends data and updates the API.

PUT Adds data to the API.

DELETE Deletes data from the API.

TABLE 1: COMMON HTTP REQUEST METHODS

Reverse proxy: A reverse proxy is a proxy on the host side. It sits in front of the backend

services and routes the requests to them. To the client it appears as the request data comes from

the reverse proxy itself. A reverse proxy can be set up to provide additional reliability and

security by for example implementing https on the traffic it routes, and by distributing the

requests to several backends therefore balancing the load.

Server: A computer or system with its role being providing resources to other clients.

Server side: Refers to the operations performed by a server. Typical operations are to serve

pages that are requested by the client. [24]

TLS: TLS stands for transport layer security and is a set of protocols which uses cryptographic

functions to secure data transfer.

URL: Uniform Resource Locator is a reference to a web resource somewhere on the Internet and

is usually written in the search bar of a browser.

Introduction

Page 1 of 73

1 Introduction
The introduction chapter will discuss matters such as the definition and information about the

task in hand, the target group for our final product, as well as the report itself. It will also provide

some information about the group member’s professional background and competence. Time

frames when it comes to project organization and how to use the time that we were given in a

reasonable fashion. Roles and responsibilities regarding out supervisor and contact persons in

NTNU SOC, and general information about the report, such as the layout with focus on the main

chapters, font and styling is included in this chapter.

1.1 Task Information
The following subchapters will provide task related information such as the problem area, scope,

target group, and internal background and competence. The code is publicly available at the

following GitLab repository: https://git.gvk.idi.ntnu.no/Johannesb/dcsg2900-threattotal

1.1.1 Problem area

In a world that is constantly evolving, especially when it comes to digitalization and the threats

that comes with it, it is important to have established a defence and a way to warn if an incident

or attack occurs. This brings us to the purpose of this task, which is to create a web application

for NTNU’s Security Operations Centre (NTNU SOC) which in essence will lessen their

workload in an otherwise hectic day to day job. NTNU SOC is an emergency response function

when it comes to cyber incidents and is a part of the Digital Security Section at NTNU IT. The

web application will allow all authorized “NTNU’ers” to submit URLs, domains, file hashes and

files that seems suspicious for either automatic analysis or if the user wants to, the choice of

escalating the case into a manual analysis by the SOC which is built into the application.

1.1.2 Scope

The scope of this bachelor thesis is to develop the application “Threat Total” for NTNUs SOC

department, which will be used to check URLs, Domains, and file-hashes against several

databases of IOCs, both public and private.

Our scope is to develop a user-friendly application which will be used by NTNU students and

employees to lookup if a URL, domain, or file hash is malicious or not. We will develop the

website to support both English and Norwegian. The application will use publicly available

reputation sources and hash databases, as well as NTNU’s private reputation database to check if

the domain, URL, or file hash has a reputation of being malicious. The application will be

utilizing a REST API to communicate and access data from NTNU SOC. Communication with

https://git.gvk.idi.ntnu.no/Johannesb/dcsg2900-threattotal

Introduction

Page 2 of 73

public available anti-virus agents will also be done through REST APIs. The website application

will also be utilizing the Feide portal login system and will be able to retrieve contact

information about the current logged in user. This will be used whenever a hash, domain or URL

is unknown for NTNU, it will be possible to create a case for NTNU SOC. Security analysts can

then further check it out, analyse the case, and proceed with further communication with the

user.

We will develop the backend in Golang, and the front-end will be developed using JavaScript,

HTML and CSS for styling. To increase the efficiency of our application it will also be important

to look at implement support for caching to store the most recently searched domains, URLs, and

file hashes.

Information about functional and non-functional requirements, use cases and user stories can be

found under the chapter, “Requirements specification”. These specifications will provide

information about what needs to be in place for the application to achieve the original goal of the

task, as well as overall good usability.

1.2 Target Group
Web application:

• The web application, which is our final product, can be used by all authorized members

of NTNU as it requires authorization with Feide. This includes all students, teachers and

scientists that are members of NTNU and have a valid NTNU email, as well as a valid

NTNU account. It is stated in the requirements for the task that the user interface must be

as simple as possible. All kind of users with different technological competence will

hence be able to use our application.

Report:

• The report is intended for our supervisor, contact persons at NTNU SOC, as well as

curious students as this report will be publicly available at NTNU Open. This report will

thus also be a source for inspiration for future bachelor students which study similar

topics as us. Internal and external exam sensors who will grade our bachelor thesis base

the final grade on this report. These people will also be amongst the target group of the

report.

Introduction

Page 3 of 73

1.3 Internal Background and Competence
The team consist of four students who attend the bachelor’s program, Digital Infrastructure and

Cyber Security, DIGSEC for short. All the members have competence in the following relevant

fields of study and is thereby also well qualified for this type of task:

A big part of the bachelor’s program itself is programming in general. We have experienced both

programming languages associated with web development, such as JavaScript, HTML and CSS

and lower-level languages such as C and C++, as well as languages for backend programming

such as Golang which was also included as a part of the bachelor’s program.

The team have good experience with establishment of digital infrastructure. By using the IaaS

solution, OpenStack, Virtual Machines, as well as the containerization service, Docker, the team

feels that this field of study is under control.

Networking is fundamental part of any IT related studies and should therefore be common

knowledge. The team have the experience of two courses which are directly related to the topics

of networking and network security. This knowledge will come in handy as it will be used during

the application development.

REST API’s will be used throughout the entire application and knowledge about this topic is

essential. Courses on this topic as well as learning-by-doing methodology will make sure that the

competence here is sufficient.

Information security is a big part of the bachelor’s program. With each course through the years,

the principal of security has been implemented in one way or another. Our mindset around

information security and securing of the application is therefore good. User authorization,

securing of endpoints and a secure handling of malicious files will be implemented accordingly.

One of the first courses at NTNU revolved around software development together with different

types of development methodologies and kinds of testing. The team holds the basic knowledge

on this field. Finding the right development methodology and testing methods will therefore be

easier.

Collaborative project work is a big part of the IT world itself. It is therefore also natural that this

topic has been a huge part of the bachelor’s program. Our knowledge in experience on this topic

will contribute positively during this project.

Backend and frontend technologies, and tools are essentials that the team needs to learn more

about and get familiar with. Despite us having the fundamental knowledge, we will be using

different frameworks and libraries regarding the chosen programming languages. These offer

different functionalities from the basic tools in the language. Together with these, there will be

other dependencies which will work in collaboration with the main application which the team

will have to get familiar with. Knowledge in these fields will be learned along the way, both in

the form of self-study and in the principle of learning-by-doing.

Introduction

Page 4 of 73

1.4 Time Frames
We were originally given a total time of a little over four months for the main project and a time

frame and management plan had to be set up to better divide the give time into different

activities. To manage the time, we chose to use a Gantt chart, as well as sprints according to our

software development methodology. Our Gantt chart is divided into 17 different categories, each

with its own timeframe, and milestones for more significant and important tasks. These

milestones are respectively:

• Project plan delivery

• Wireframe GUI TT

• Threat Total Application Prototype

• Threat Total 1.0 release

• Bachelor thesis delivery

We have taken the advantage of Jira from Atlassian which is a software for agile project

management. By using this tool, we were able to make weekly sprints with tasks that should be

finished within the week of the sprint. Tasks are firstly written on a Kanban board, then assigned

to one of the team members. The tasks start in the “TO DO” section of the board and moves on

to the “IN PROGRESS” section as soon as they are assigned to a member of the team. Once the

task is done, it gets moved into the “DONE” section of the Kanban board. After the week is

done, the sprint gets terminated and all the group members have an internal discussion about the

following week’s tasks and goals. These tasks and goals will then be transferred into the new

sprint in addition to new tasks.

Introduction

Page 5 of 73

1.5 Roles and Responsibilities
Information about employer and supervisor:

• Employer: NTNU SOC

• Contact person: Christoffer Vargtass Hallstensen, Group leader SOC

christoffer.hallstensen@ntnu.no

• Contact person: Frank Wikstrøm, Security analyst

frank.wikstrøm@ntnu.no

• Supervisor: Espen Torseth, Senior advisor

espen.torseth@ntnu.no

The team members of the project:

• Johannes Madsen Barstad, Project Leader

johanmba@stud.ntnu.no

• Odin Korsfur Henriksen

odinkh@stud.ntnu.no

• Jonas Kjærandsen

jonakj@stud.ntnu.no

• Peder Andreas Stuen

pederas@stud.ntnu.no

To have a final say in tough decisions we decided to choose Johannes Madsen Barstad as our

group leader. His responsibility lies in making the final decision when problems arise. In

addition to this, he is responsible for maintain communication with the supervisor. The group

leader is also our main connection to our contact persons at the NTNU SOC, which is our

employer.

We have also assigned Peder Andreas Stuen with the main responsibility for the report. With

responsibilities such as making sure that the quality of it is sufficient in accordance with our

goals, and generally to make sure that the progress on our report is following the goals in the

Gantt chart. His responsibility is also to make sure that the report is delivered on time, and that

both the team, and our supervisor is satisfied before delivery.

Jonas Kjærandsen and Odin Korsfur Henriksen’s main jobs are to develop the application we are

assigned to make. This includes backend and frontend coding, integrating multiple REST API’s

and researching and implementing different tools, libraries and techniques which could be of use

in the project. Barstad and Stuen will also contribute in this part as it is the basis of the

bachelor’s project.

https://studntnu.sharepoint.com/sites/o365_GR116NTNUThreattotal/Shared%20Documents/General/christoffer.hallstensen@ntnu.no
https://studntnu.sharepoint.com/sites/o365_GR116NTNUThreattotal/Shared%20Documents/General/frank.wikstrøm@ntnu.no
https://studntnu.sharepoint.com/sites/o365_GR116NTNUThreattotal/Shared%20Documents/General/espen.torseth@ntnu.no
https://studntnu.sharepoint.com/sites/o365_GR116NTNUThreattotal/Shared%20Documents/General/johanmba@stud.ntnu.no
https://studntnu.sharepoint.com/sites/o365_GR116NTNUThreattotal/Shared%20Documents/General/odinkh@stud.ntnu.no
https://studntnu.sharepoint.com/sites/o365_GR116NTNUThreattotal/Shared%20Documents/General/jonakj@stud.ntnu.no
https://studntnu.sharepoint.com/sites/o365_GR116NTNUThreattotal/Shared%20Documents/General/pederas@stud.ntnu.no

Introduction

Page 6 of 73

1.6 Report Structure
The report is divided into ten main chapters with several sub-chapters. Chapters in this report are

as follows in chronological order:

1. Introduction

2. Theory

3. Requirements specification

4. Design and Technologies

5. Development process

6. Implementation and production process

7. Code review and code quality

8. Testing and quality assurance

9. Installation and realization

10. Ending chapters

The introduction chapter contains information such as the definition of our given task and a

description of how we should use our timeframe. Information about competence within the team,

as well as roles inside and outside the team can be found here.

The theory chapter focuses more on the field of study, background, and in-depth information

about the task. Theory about this task’s subject, as well as our reasoning for choosing it can also

be found here.

Requirements specifications describes how the software is expected to perform, as well as what it

will do with respect to functional and non-functional requirements. It also describes the

functionality the product needs to fulfil all the stakeholders needs. Elements such as use cases

will be used to visualize different real scenarios.

The design and technologies chapter mainly consist of design choices from start to finish,

throughout the entire project period. From the first wireframes and sketches, to finished

application. All our decisions along the way will be explained and justified here.

The development process describes our choice of development methodology, which in our case

is a combination of scrum and Kanban. These development frameworks are quite agile and suite

the team’s way of working very well.

The implementation and production chapter describes our progress throughout the project period.

From obstacles and problems to smart solutions and general progress is described here.

Justification for coding languages, frameworks, methods, external APIs, and tools can also be

found here.

The code review and code quality chapter hold information about how the code is structed, as

well as measure we took to increase performance and shorten the code by modularising it.

Introduction

Page 7 of 73

The chapter about testing and quality assurance will describe the measures we took to test

different functions and functionalities within the application, as well as assuring the quality and

security of the code through static code analysis.

Installation and realization work like an instruction for the user to get going with the application,

and states how to deploy the application. How to install dependencies and which commands to

run. See the README.md file in the project repository for more information regarding this.

The ending chapters contain information about discussions regarding results and possible

alternatives and different solutions. Critiques based on the project start and the project end, as

well as evaluation of the entire team’s work and distribution of tasks is stated. The report will be

finished with a conclusion where we will discuss the report overall.

Appendices for this report includes:

• Spreadsheet of usability testing.

• Original Gantt scheme.

• Updated Gantt scheme.

• Project plan which gives the reader an idea of the team’s thoughts and plans prior to the

project period.

• Signed collaboration agreement with our supervisor and employer.

• Time log.

• Meeting log.

• Wireframes.

This report uses the font-style Times New Roman for text and Arial for headlines. A font size of

twelve and a line spacing of 1.15 is used for the document text. The team saw this fit for a report

like this, since the report is formal and consists of academic level writing. The line spacing of

1.15 provides better readability as the lines are more separated, but not too separated.

Theory

Page 8 of 72

2 Theory
2.1 Introduction
In this section of the report, we are to further elaborate the purpose of this project. This chapter

discusses the different fields of expertise we have been diving into during this project, as well as

introducing necessary explanations required to fully understanding concepts and definitions used

throughout the report.

2.2 Background and Purpose of the Project
Why Threat Total as a project?

The NTNU Security Operation Centre (SOC) has a need for a self-help portal for handling

security related incidents in the form of this task. The security related incidents involve a

proactive action, where a user can upload a suspected malicious item or link to the portal. The

portal will then check whether the item is malicious or not and return an accessible answer in

simple terms. This is where the application comes in, Threat Total.

The purpose of this project is to help NTNU students and employees to retrieve threat

intelligence on items through a self-help portal, as this can help protect them from potential

digital threats, and reduce the workload for the NTNU SOC. The biggest value in the Threat

Total application is the interactions of the end user. The user can through our application, receive

guidance of what to do with a potential malicious item, without needing to have a broad

understanding of cyber security. This is done by the high-level information design of Threat

Total, where the interaction design is easy to understand and displayed information is assessable

for a wide target group. In the end, the intention here is to reduce the potential overhead towards

the NTNU SOC, as the application may help reduce the amount of incidents that the SOC must

handle.

The major parts of this project were to:

• Create a user-friendly frontend.

• Create a stable and secure backend.

o Fetch data from different open sources.

o Prepare functionality for fetching data form internal NTNU sources.

• Between the making of the frontend and backend, we had to figure out a way to represent

the data in a high-level language.

• Integrate Feide authentication.

• Cache data to limit unnecessary third-party requests and improve request times.

Theory

Page 9 of 72

2.3 Research Methodology
As the team did not have one fixed, defined way of conducting the research by itself, the general

flow of research consisted of three methods. These consisted respectively of trial-and-error, self-

study and learning by doing.

The method of trial-and-error consists of trying to solve a problem based on several attempts

with different solutions. By doing this, we can observe the outcome of every solution and

exclude those that fail and move on with the next one until one proposed solution is successful.

The principle of self-study is a qualitative research method and focuses on the learning outcome

of each individual. Self-study is done among other things by reading texts, relevant documents

and watching videos, all while taking notes. The aim of this methodology is to improve the

knowledge in the specific field that is being researched.

Learning by doing is a practical research method that resolves around learning from experiences

directly from the performed actions. As with the trial-and-error method, we are able to observe

the outcome of a tried solution on move on to the next if a failure occur.

2.4 Full Stack Web Development
This project resolves largely around the process of full stack web development, which refers to

the development of both the frontend (client side) and the backend (server side) of an

application. [24] Developing a full stack application requires broad knowledge of information

systems, as transferring and handling information is a recurring theme in full stack development.

The following subchapters will focus on individual things which all relates to the principle of full

stack development.

2.4.1 Frontend responsive web design

Responsive web design is all about making the design of the application look good on devices of

all sizes, from phones to TVs. The application should look good independent from the size of the

screen, which platform the application it is being run on and the orientation of the screen. The

styling language, CSS, provides such scaling functionalities with CSS media queries. [7] These

queries allow basing things such as the placement of objects, and the general height and width of

the web application on fixed display-size breakpoints. The example below shows how the media

queries in CSS can be implemented:

Theory

Page 10 of 72

FIGURE 1: CSS MEDIA QUERY EXAMPLE

The code snippet above will set the colour of the screen to red for every pixel width less than

1000 pixels.

Responsive web design come with several different approaches of implementation. Amongst

these approaches, there are mobile first design and desktop first design. [21] Mobile first design

focuses on the assumption that the application will be used mainly on a phone. The design is

hence firstly adapted the screen size and ratio of a mobile phone, and then gradually adapted to

bigger screens with different ratios. The other approach that is quite popular to follow starts in

the other end of mobile first design. In this approach the designers and developers will firstly

design the application for usage on a pc display, and then gradually move on to smaller screens.

2.4.2 Interaction design

Interaction design, also referred as “IxD”, is the principal of designing an application that always

has the end-user in mind [17]. It focuses on understanding the user’s needs and limitations, and

thereby produce an output which precisely suites the user’s demands. Interaction design has five

different dimensions to look at during the designing process to help with understanding more of

the user’s needs and wishes. The first dimension focuses on adapting the amount of text shown at

different objects, such as buttons and interactive objects in a web application. The second

dimension focuses on the representation of the product to the user. Elements such as icons,

images, colours, images, text sizes and text fonts should be considered in this dimension. The

designers should focus on implementing these things to guide and aid the user in the right

direction, and not cause any confusion or uncertainty. The third dimension refers to what

medium the user interacts with to interact with the product. For example, the trackpad for a

laptop, or the finger for a phone. The fourth dimension focuses on elements such as sounds and

animations that changes over time. The fifth and last dimension describes how the product reacts

on user input and responds. For example, how a website responds after a customer has purchased

an item. The information provided to the customer should be detailed and not leave the customer

confused as this would lead to weaker usability.

Theory

Page 11 of 72

The principle of interaction design is an important part of the non-functional requirements for the

application that the team have developed. More information about the non-functional

requirements can be found in chapter 3.2.

2.4.3 Networking operations

Developing the backend for an application involves handling the serving of the pages and API

calls from the frontend. This involves handling networking operations, such as HTTP requests

and status codes.

General HTTP status code categories:

• 1xx – Informational response, indicates that the request has been received and

understood, and is further handling the response by communicating protocol-level

information.

• 2xx – Success, indicates that the request has been received, understood, and accepted.

• 3xx – Redirection, indicates that further actions must be taken in order to complete the

request.

• 4xx – Client error, indicates an error in the request caused by the client.

• 5xx – Server error, indicates an error in the request caused by the server.

HTTP methods:

Method Description

GET Retrieves information from the API.

POST Sends data and updates the API.

PUT Adds data to the API.

DELETE Deletes data from the API.

TABLE 2: COMMON HTTP REQUEST METHODS

These are the necessary HTTP methods which create the back end of our application, allowing

communication between the front- and backend of the program in addition to between the

backend of our program and our third-party information sources.

2.4.4 Testing

Testing is one of the most important parts in software development. For the sake of theory, we

will briefly introduce two main categories of testing, as we will further elaborate this topic in

later chapters. The main testing methods for creating a software are user- and technical testing

methods.

Theory

Page 12 of 72

User testing plays a huge role in the expenses of creating a product, both in the currency of

capital and time. The earlier the product is tested and validated, the earlier the development team

can catch up and figure what functionality needs to be changed, what can be kept and what

should be tossed. Wireframes are a great example of how to perform user testing without having

to implement code. Wireframes act as a visual representation of an application and can be as

simple as a drawing of the overall look and feel of the product. Further with the use of more

advanced wireframe software, it is possible to achieve a more accurate representation of the

product, without implementing a single line of code.

“It is estimated to be 100 times cheaper to change a product before any code has been written,

than it is to wait until the implementation is complete.” (Jakob Nielsen) [19]

Technical testing is the act of performing various input to code which has implemented features

and functions. The main goal of technical testing is to uncover potential breaking changes to the

application, which is usually an automated process by self-written automation and / or the IDE

compiler itself. There are other types of technical testing, which cannot be automated, such as

destructive and exploratory testing. These types of tests are processes that requires creativity and

manual input. This can be expensive to perform, however, returns highly valuable information

about the system.

2.4.5 Authentication and authorization

For the context of this report, it is necessary to define the term authentication and authorization,

as these terms are vital to understand the login functionality of the application.

Authentication involves the operations necessary of proving that the user that wants to log in, is

in fact the user who wants to log in. [5] In the context of this application, this process is done

through Feide. We have implemented this process using the OpenID Connect protocol, a product

of Microsoft. OpenID Connect is an identity layer on top of OAuth 2.0, which works in a REST

type of manner and verifies the identity of the user, based on retrieved information from the

authorization server [29].

Authorization involves the operations necessary for granting permissions to an authenticated

user. This process specifies what data the user is allowed to view and what other actions are

allowed. In the context of our application, OAuth 2.0 is responsible for handling authorization of

the user who is logged in through Feide. Further elaboration of the technology itself will be

presented at the technology section of the report, though for the sake of theory we will briefly

present the four parties involved in the OAuth 2.0 authorization process, which is paraphrased

from the Microsoft documentation [18]:

Theory

Page 13 of 72

• Authorization server

Also known as an Identity Provider (IdP), it handles user information, user access and

trust relationships between the authorization process. In this instance, the IdP is Feide,

and has the security tokens that the application uses to grant, deny, or revoke a user’s

access to different resources.

• Client

In an OAuth exchange, a client is defined as an application or web service, that requires

access to a protected source. In this instance, client is the Threat Total application.

• Resource owner

In this instance, the resource owner is defined as the end user of the application. This is

because the end-user “owns” a protected resource, their user data, in which the

application assesses. The resource owner has the capability of denying or accepting the

access to these resources. In this instance, Feide must retrieve user information to log in,

in order to use the Threat Total application.

• Resource server

The resource server is the host that either hosts or provides access to a resource owner’s

data.

2.4.6 Security in software development

When developing software, it is important to have security in mind. When security is kept in

mind throughout the development process, the result will be a more secure and robust

application. As the application deals with third-party APIs, with API keys used for

authentication, keeping these keys secure and hidden is vital. There are a lot of ways to secure

API keys, firstly by not hard coding them into variables, as they can be found in the git

repository if they are included in the code. Another method to prevent the API keys from

showing up in the git repository is to put the different keys into files in a folder which is

“gitignored” (not included in the git version control system). By including a file called,

“.gitignore” inside the git repository, with the names of the files to be ignored this is possible. A

third option we used at a later stage in development is to use environment variables, which are

local variables on the computer that can be retrieved by the application. A tool which can help

prevent leaking of API keys and other passwords is SonarQube which is a static analysis tool

described later in the document. Another thing which was implemented to secure the data of the

application, is authorization of the user before allowing the web application to retrieve

information from the backend. The backend then required authentication to retrieve information,

this protects the data sources and protects the application from unwanted traffic.

Theory

Page 14 of 72

2.5 The Scrum Model
Scrum is an agile process framework used for managing complex projects. The framework itself

does not directly aid in developing code, but instead helps the team to collaborate efficiently and

make progress [30]. The main components of the scrum framework are:

• A team, which consists of two or more team members who build the project. These are

stakeholders of engineering the product and ensuring quality of the product.

• Stand-up meetings, which are short meetings that are held at the start of each work

session, typically around 10 -15 minutes. To make the meeting as brief as possible, the

following three questions are asked and answered in the meeting:

o What did the team do last session?

o What is the team going to do now?

o Are there any obstacles that stand in the way of completing the upcoming tasks?

• Sprints are the main activity of the scrum model. A sprint consists of a work cycle with a

specific period, in which at the end of the period, a goal is to be reached. A typical sprint

lasts around two to four weeks.

• A Scrum board. Before every sprint, the sprint is planned with a scrum board, so that all

members know what their tasks and roles are, both before and during the sprint. The goal

of the sprint planning is to identify and define tasks, and further divide them into smaller

tasks to place on the scrum board. The scrum board is used to visualize the distributed

tasks and gives a brief overview of the current status of the sprint.

FIGURE 2: AN EXAMPLE OF A SCRUM BOARD, SCREENSHOT FROM JIRA ATLASSIAN TOOL

Theory

Page 15 of 72

• Sprint review. After completing a sprint, the team are to sum up the results of the sprint

and have a retrospective. This way, the team can reflect on elements that went well, and

areas that need improvement. This can improve not only the quality of a product, but also

how the team works when producing value. The outcomes of a retrospective are actions

for the next sprint, resulting in a continuous improvement throughout the upcoming

sprints for a project.

These are the main components of the scrum framework that aided in structuring and developing

the project.

Requirements Specification

Page 16 of 72

3 Requirements Specification
3.1 Introduction
This chapter consists of different requirements based on conversations with our employer, as

well as requirements which were stated in the task description. These requirements will be

demonstrated using use cases and will be described by dividing them into functional and non-

functional requirements.

3.2 Functional Requirements
Functional requirements are included in any software development project. These requirements

define what the finished project must do. [23] If it does not meet these requirements, the

application will fail. One way to test these requirements is with inputs and outputs. The

requirements should state a desired output based on a specific input. An example for this

application is that it should be able to authorize a user with the help of Feide. The excepted

output would then be a fully authorized user which was able to log in to the web application.

You can find a bullet list below of the several functional requirements that were given to the

team, both via conversations and meetings with our employer, and from the project description:

• Functionality to search for a domain, URL, or file hash.

• Login functionality using Feide.

• Retrieval of contact information from Feide.

• The possibility to create an event for analysis to NTNU SOC.

• Utilize a REST API to retrieve information from NTNU SOC.

• The application should be able to show disposition for indicators (Domain, IP, et cetera)

• Gather reputation data from both public and private (NTNU’s) reputation sources.

• Submit file, URL, domain.

• Block / allow list functionality for indicators.

• Filter for what can and cannot be displayed to the user.

• Submitted files should first be scanned automatically, and if no result is given the file

may be submitted for manual analysis. If the file previously has been analyzed, the

previous analysis should be submitted to the frontend user.

• [OPTIONAL] The application should be able to collect and display a screenshot of the

domain or URL that is sent in for analysis.

Requirements Specification

Page 17 of 72

3.3 Non-Functional Requirements
Non-functional requirements describe how the application goes about delivering a specific

function. [23] The difference between functional requirements and non-functional requirements

is that functional requirements focus on what the system must do, while non-functional

requirements focus on how the system works. Non-functional requirements do not by definition

have an impact on how the application will function, but more on how the application will

perform. [13] In short, system usability. What kind of nonfunctional requirements must be met

for the user to not be frustrated or get stuck whilst using our web application?

Non-functional requirements:

• Users should be easily able to navigate the web application.
• All essential information should be one click away.
• The web application should have a pleasing UI.
• The web application should use NTNU branding, including theme and color.
• The UI should be as simple as possible which will lead to a reduction of possible human

errors.
• The process for ending with a report should not be too advanced, and the steps should be

clearly defined and memorable.
• UI should follow Don Norman’s six principles for designing and experiencing good UX

[1]:

• Visibility – users should be able to know all their options straight away.

• Feedback – there should be always a reaction to a user interaction (button changing

color, loading animation, et cetera).

• Affordance – the relationship between how it is used and what is looks like.

• Mapping – the relationship between control and effect. For example, the scroll bar on

a web page which resembles your location on the web page.

• Constraints – the limits to an interaction or an interface.

• Consistency – the same user action must produce the same reaction from the

application, every time. If this rule is broken, the user can get frustrated, and the

usability of the application will go drastically down.

Requirements Specification

Page 18 of 72

3.4 Use Cases
Use cases visualize different scenarios that can take place when using the web application. They

represent how the application should work from the user’s perspective. Each use case is

beginning with a goal, and ending when the goal is fulfilled:

3.4.1 Use case 1 – Log in

Use case 1 NTNU student or employee wants to log in

Actor NTNU student or employee (will be referred

to as a user)

Use case overview NTNU user wants to log in to “NTNU Threat

Total” via FEIDE.

Trigger NTNU user enters their NTNU username and

password and submit them for verification in

FEIDE.

Precondition 1 User has a valid NTNU email and password.

TABLE 3: USE CASE 1 - LOG IN

Basic flow: Use case 1

Description This scenario describes the situation where

the NTNU student / employee is

successfully logged in to the web

application.

1 User navigates to “https://www.threat-

total.ntnu.no” (example URL).

3 User clicks “Log in” button.

2 User is met with log in page for FEIDE

credentials.

3 User enters the right credentials.

4 Credentials get authorized with FEIDE, and

an access token gets generated, hashed, and

stored as a cookie in the browser.

5 User is redirected to Threat Total’s home

page.

Termination outcome User gets redirected to the home page of

Threat Total.

TABLE 4: USE CASE 1 - BASIC FLOW

https://www.threat-total.ntnu.no/
https://www.threat-total.ntnu.no/

Requirements Specification

Page 19 of 72

Alternative flow 1A: Different route for logging in

Description This scenario describes a different path for

the user to log in and be able to use the

search functions.

1A1 User enters a URL or provides a file and hits

“Investigate”.

1A2 Since the user is not authorized with FEIDE,

the API call is not done, and the user gets

redirected to a different page which tells the

user to log in and has a visible log in button.

1A3 The user clicks the log in button, enters valid

credentials and gets authorized.

Termination outcome User is authorized and logged in.

TABLE 5: USE CASE 1 - ALTERNATIVE FLOW

Requirements Specification

Page 20 of 72

3.4.2 Use case 2 – Investigate URL

Use case 2 NTNU user tests a malicious URL

Actor NTNU user

Use case overview A valid NTNU user have received a

suspicious URL via email and wants to check

whether it is malicious or not.

Trigger User puts the URL in to the search field on

the home page of Threat Total and clicks the

“Investigate” button.

Precondition 1 NTNU user is logged in to Threat Total.

TABLE 6: USE CASE 2 - INVESTIGATE URL

Basic flow: Use case 2

Description This scenario describes the situation where

a logged in NTNU user enters the URL of a

potentially malicious website, investigates

it, and receives a result.

1 NTNU user copies the URL from the email

and pastes it in the search field of Threat

Total’s home page.

2 NTNU user clicks the button called,

“Investigate”.

3 URL will be sent to several anti-virus agents

and returns a response based on if it is

malicious or not.

4 NTNU user will be redirected to the result

page with a form of different anti-virus agents

as well as what the reported about the URL.

Termination outcome NTNU user has successfully obtained

information about the maliciousness of the

URL.

TABLE 7: USE CASE 2 - BASIC FLOW

Requirements Specification

Page 21 of 72

3.4.3 Use case 3 – Investigate file hash

Use case 3 NTNU user tests a file hash

Actor NTNU user

Use case overview A valid NTNU user wants to analyse a file

hash and wants to check whether it is known

to be malicious or not.

Trigger User puts the file hash in the search field on

the home page of Threat Total and clicks the

“Investigate” button.

Precondition 1 NTNU user is logged in to Threat Total.

TABLE 8: USE CASE 3 - INVESTIGATE FILE HASH

Basic flow: Use case 3

Description This scenario describes the situation where

a logged in NTNU user enters the file hash

of a potentially malicious file, investigates

it, and receives a result.

1 NTNU user copies the file hash and pastes it

in the search field of Threat Total’s home

page.

2 NTNU user clicks the button called,

“Investigate”.

3 The file hash will be sent to several anti-virus

agents and returns a response based on if it is

malicious or not.

4 NTNU user will be redirected to the result

page with a form of different anti-virus agents

as well as what the reported about the file

hash such as known filename.

Termination outcome NTNU user has successfully obtained

information about the maliciousness of the

file hash.

TABLE 9: USE CASE 3 - BASIC FLOW

Requirements Specification

Page 22 of 72

3.4.4 Use case 4 – Investigate file

Use case 4 NTNU user tests a malicious file

Actor NTNU user

Use case overview NTNU user has received a potentially malicious file and wants to

check whether it is malicious or not.

Trigger NTNU user uploads a potentially malicious files and clicks the

“Investigate” button.

Precondition 1 The NTNU user is logged in to Threat Total.

TABLE 10: USE CASE 4 - INVESTIGATE FILE

Basic flow: Use case 4

Description This scenario describes the situation where a logged in NTNU

user uploads a potentially malicious file to the Threat Total web

site and receives feedback from it.

1 NTNU user navigates to “Upload file” section.

2 NTNU user clicks the button, “Upload file”.

3 “File Explorer” is opened.

4 NTNU user navigates to the file, clicks it and adds it.

5 NTNU user clicks the “Investigate” button on the web page.

6 File is sent to Golang backend, which uses the file content to prepare

and send a request to the Virus Total API.

7 Virus Total API returns a file report ID

8 User is redirected to the result page, which then GET's the file report

contents via the returned ID.

9 The response from Virus Total displays the information provided in

the file scan report.

Termination outcome NTNU user receives information if the file is malicious or not.

TABLE 11: USE CASE 4 - BASIC FLOW

Requirements Specification

Page 23 of 72

3.4.5 Use case 5 – Log out

Use case 5 NTNU user want to log out.

Actor NTNU user

Use case overview NTNU user wants to log out from the current session.

Trigger Logged in user clicks “Log out” button.

Precondition 1 User is logged in.

TABLE 12: USE CASE 5 - LOG OUT

Basic flow: Use case 5

Description A logged in NTNU user is finished with scanning the supposed

malicious URL / file and wants to log out from the web

application.

1 Logged in NTNU user is finished with investigating URL or file

and is redirected to result page.

2 User clicks log out button.

3 Cookie about user gets deleted, as well as the Feide session.

4 User gets redirected to logout page which provides the user with

information about the log out.

Termination outcome NTNU user is successfully logged out and the session is

successfully deleted.

TABLE 13: USE CASE 5 - BASIC FLOW

Design and Technologies

Page 24 of 72

4 Design and Technologies
4.1 Introduction
This chapter contains information about prerequisites for the development of the application,

decisions during the project period, wireframes that was created for the application and how the

user interface of the finished product looks like.

FIGURE 3: GENERAL OVERVIEW OF THE FULL STACK APPLICATION, MADE IN DRAW.IO

4.2 Prerequisites
Required fundamental understanding of the following scopes regarding design and used

technologies [11]:

• Backend development in Golang.

• Frontend development in JavaScript, HTML and CSS.

• Collaboration using hosted Git instances such as GitLab or GitHub.

• Deploying the web application with a given framework.

• Fundamental understanding of the principle of caching.

• Be familiar with virtualization and containerization

• Be familiar with networking principles

Design and Technologies

Page 25 of 72

4.3 Design Decisions
During the project, the team faced some challenges when it came to frontend libraries, and where

and how to host the backend. A solution for storing data in the form of caching also had to be

implemented both according to the task specification and the effectiveness of the application

itself. The following subchapters provides explanation and reasoning as justification for our

design decisions.

4.3.1 Frontend

Once the team had decided what programming language to use for the frontend, which ended up

being JavaScript. We had to decide which library to use, we first decided to try implementing

LitElement. LitElement is in essence a JavaScript library for web development and works by

building different components and referring to them several places in the code. We ended up

spending too much time trying to implement LitElement without succeeding, so in the end we

decided to change tracks and find an alternative solution to implementing components. The

choice ultimately landed on ReactJS, which works quite similarly by building different web-

components and reusing them several places in the code by including these components on

different pages or in different components. The examples below show a snippet of the

application’s navbar and then how it is included in the “homepage.js” file:

FIGURE 4: EXAMPLE SNIPPET OF NAVBAR COMPONENT

Design and Technologies

Page 26 of 72

FIGURE 5: EXAMPLE SNIPPET OF HOW THE NAVBAR COMPONENT IS INCLUDED IN

HOMEPAGE.JS

For styling the webpages the team ended up using Tailwind CSS. This allowed for rapid

development of simple designs, as a lot of the CSS basics are prewritten and can be used. For

example, scaling of elements to different screen sizes can be done using predefined breakpoints

in Tailwind CSS using the “container” class.

4.3.2 Backend

For the backend Golang was decided upon from the beginning, as the language is well suited for

developing REST API’s, is simple to write in and has thorough error handling built in. Routing

was implemented using the gin-gonic library which is a web framework with functions such as

middleware support, panic catching and routing. The first plan for the project was to handle both

the front- and the backend using Golang, but the team early chose to split them up into two

different programs with different languages. The decision was made because we found out that

Golang did not provide anything extra as a simple webserver, and we therefore had no good

reason to limit what webserver to use.

4.3.3 Caching

Caching is a principle within IT that focuses on storing a subset of data. [6] A request for the

subset of data is being sent, and the response will both be cached / stored and sent / displayed to

the user. Then the next time the user requests the same subset of data, the response time will

reduce drastically as the data is already available in the cache and the data inside the cache will

be shown. When it comes to caching inside a physical computer, caching of data happens in two

central places. On the CPU (Central Processing Unit) and the RAM (Random Access Memory).

A modern CPU operates with caching at three different levels, L1, L2 and L3 on focuses on

operations specific to the operating system (OS) of the computer. The main difference between

these three levels of cache is the speed of data transfer and the size of the caches where L1 is the

fastest, but smallest and L3 the slowest, but largest cache. Caching in the RAM focuses on

delivering data to running processes and programs during their execution and run time. For our

task, we decided to use caching for requests for URLs, file upload id’s, file hashes and user

Design and Technologies

Page 27 of 72

authentication within our application. The storage solution we chose to incorporate is called,

Redis. This solution is an in-memory data store that is widely used in the developer community

as a streaming-engine, cache, database, and message broker. [20]

Redis was implemented into the application by using the “redigo/redis” library. For the sake of

testing our application and caching data, we hosted the Redis server locally, but the hosting can

be done other places as well. Later followed the configuration of a password for access to the

server. A pool connection was made to store and access the Redis data. The code snippet below

shows how the pool connection was implemented with Golang using the “redigo/redis” library:

FIGURE 6: EXAMPLE OF HOW CONNECTION TO THE REDIS POOL WAS IMPLEMENTED

4.4 From Idea to Sketch
It all began with the team reading the project description and deciding that this task looked quite

interesting and relevant in accordance with our field of study, as well as our interests. We then

were assigned with the task. After being assigned with the task the team proceeded to have a

meeting with the employer. In order to get more information about both the functional

requirements, as well as the nonfunctional requirements of the project. This information led to

the making of the first wireframes and worked as a starting point for the development of the

application, and the final product. The wireframes contained elements such as how the

navigation between different pages should be, and the general layout for each web page.

Including elements such as branding, forms, and buttons.

Some of the key points for the nonfunctional requirements were to keep the user interface as

simple as possible, and thus more accessible to people without advanced technical knowledge.

Design and Technologies

Page 28 of 72

With that, as well as the task description in mind, the team collaborated on a set of wireframe

sheets which worked as a fundamental basis for the design and development of the application.

4.5 Wireframes and Prototyping
A requirement we had was to make an accessible user interface with NTNU branding. So, to

quickly prototype the frontend, and to get early feedback on our thoughts we made wireframes in

balsamiQ. The wireframe was interactive with different pages linked together, this allowed us to

test the basic use-flow of the pages before creating them. Below you can see the first iteration of

the index / homepage:

FIGURE 7: FIRST WIREFRAME ITERATION OF THE INDEX / HOMEPAGE IN BALSAMIQ

4.6 Wireframe Validation
After we had created a functional wireframe, we had a meeting with the NTNU SOC where we

asked for feedback and approval of the plans. We got the feedback and approval from Frank

Wikstrøm, who was mainly responsible for the non-functional design requirements of the

application. He wanted the design to be as simple and accessible as possible. After showing him

the wireframes, they were approved, and we could move on with implementing the design with

HTML, JavaScript, and CSS.

Design and Technologies

Page 29 of 72

4.7 User Interface, the End Product

FIGURE 8: THE END PRODUCT

The final user interface of the application’s homepage is similar to the original wireframe as

shown above. As the design is simple and does not hold to many functionalities, we decided not

to change the design too much before writing the code. The only things that were changed for the

actual application is the option with clicking the button, “About” for information about the

application, a “Log in/ log out” button was added to the top right, and a dynamic page view was

added to the top left of the pages. This view changes based on the page the user is visiting. For

example, the user is visiting the upload page, and the page view shows “Home > Upload”.

Development Process

Page 30 of 72

5 Development Process
5.1 Introduction
This chapter contains information about the development process of the web application. What

kind of software development framework the team chose to use, alternatives to it, tools used, and

a summary of each scrum sprint we went through.

5.2 Scrum
Scrum is an agile framework for helping a team collaborate. [30] As described earlier in the

theory part of the report, Scrum consists of several Sprints. In these sprints, there are defined

tasks which are to be completed within the duration of the sprint. The duration is ideally around

two to four weeks long. The actual duration of the sprints can be decided upon within the team.

In the scrum development framework, several sprint backlogs are included which keep track of

tasks for a specific sprint, as well as for the entire project. A sprint backlog is in essence a “wish

list” for prioritized tasks to be completed and creates the product backlog for the entire project

when combined. The product backlog contains all the tasks for the entire project and provides the

user a good overlook over the entire project process. This backlog can also work as a

troubleshooting guide for looking at which person that oversaw a specific task at a specific time.

The sprint backlog however contains all tasks for a specific sprint and lasts as mentioned ideally

about two to four weeks.

As with all things, this framework comes with its advantages and disadvantages. When it comes

to the advantages, scrum provides a clean and readable overview with the provided scrum board

through Atlassian’s Jira software. By using sprints to define periods to work on a set of tasks, the

chance of them being completed on time is greater than when not dividing and assigning people

to the tasks. This goes hand in hand when it comes to larger projects. For this type of project, it is

essential to have a good overview of the tasks and the management of them. Scrum being an

agile framework allows for continuous feedback, both internally and from the stakeholder or

employer. The received feedback can then help to direct the project to the correct path if it ever

goes off course, as well as help to verify or disprove the completion of a milestone or a goal.

After each sprint, the team should conduct a meeting to discuss the sprint in retrospective. This

meeting should be quite short in duration and meeting focus on what went well during the sprint,

what problems arose during the sprint and the solution to these problems. If the problems were

solved in the end.

The scrum development framework also comes with its fair share of disadvantages. Perhaps the

biggest flaw with scrum is the high possibility of scope creep. This means that the scope of the

project gradually becomes bigger than originally planned without anyone on the team noticing as

it can be a gradual process. As this framework is agile and dependent on the cooperation of all

Development Process

Page 31 of 72

team members, the project may fail if team members are not especially cooperative by nature.

This is a consideration that should be made when putting the team together. Deciding how long a

sprint should last can also be troublesome, especially if using the scrum framework is quite new

to the team or the tasks are new to the team members. This can lead to sprint activities not being

finished on time, and in the worst-case scenario this can lead to failing to complete the project.

5.3 An Alternative Development Framework to Scrum
Kanban is a popular framework like agile and scrum. Kanban is based heavily around DevOps

principles and principles of continuous development. [28] In contrast to scrum, Kanban does not

have any time frames, whereas scrum has sprints. These two are also quite different when you

look at the approach to each framework’s concepts. While scrum focuses heavily on fixed

timelines for sprints, the concept of time is perceived different with Kanban. The delivery and

flow should happen continuously. The division of roles are non-existing, in contrast to scrum,

where roles play a big part. Changes can also be made at any time when using Kanban, unlike

with scrum where changes and tasks are directly connected to sprints.

Some of the benefits of Kanban includes flexibility of planning, visual metrics, and termination

of bottlenecks. Instead of assigning tasks to a specific person, members of the team are free to

pick the task of their choice from the product backlog. This allows for a flexible way of working.

A flow diagram can be implemented into the project to keep track of issues and spent in these.

By visualizing this data in a diagram, the team might be able to spot the bottlenecks even faster.

The aim with this diagram is to minimize the time spent on issues. Another key principle when

working with Kanban is the amount of Work in Progress (WIP). Which can be a downside, as

more work items are worked on in parallel, leading to more switching of context, and can then

lead to tasks not being finished.

5.4 Our Development Framework
When deciding which development framework to use, we had to consider several different

frameworks, look at pros and cons of the different frameworks, and eventually pick one. When

deciding a framework there are some primary things to consider:

• The type of system which is being developed.

• How requirements and needs are defined, and whether they can be changed later.

• What the existing preferences are in the development team.

• The possibility of using a combination of different models.

For our team’s case, we ended up with a mixture of scrum and Kanban, which are two agile

frameworks for development. Combined, they can be called, “scrumban”. During our

development process we used the Kanban board from the Kanban framework and combined it

Development Process

Page 32 of 72

with the principle of sprints in scrum for better time management. While allowing more time to

finish a task than was originally stated in the sprint. Scrumban is hence a combined framework

that suited us well, as we attended other courses next to the bachelor’s thesis. With the good

visualization by using sprints from scrum, the Kanban board from Kanban, and the openness

when it comes to finishing tasks in Kanban. We managed to implement the framework into our

way of collaborative work.

The fact that we already had knowledge about scrum from previous projects and courses also

contributed to our decision to use scrum as part of the chosen framework. Sprint retrospect

meetings were done weekly with the aid of our supervisor, Espen Torseth. The topics of these

meeting included what we had done the previous week, what we planned to do the following

week and if there were any obstacles in the way of accomplishing these tasks.

5.5 Development Environment and Tools Used

Task Description Tool

Backend and frontend

development

Visual Studio Code with the following addons:

• HTML and CSS Support

• Simple React Snippets:

• Tailwind CSS IntelliSense

• Go

Creating wireframes BalsamiQ

Report Writing Microsoft Word

Diagram creation Draw.io

Gantt scheme creation Teamgantt.com

Hosting Redis Windows Subsystem for Linux instance (WSL2)

Hosting SonarQube

(static code analyser)

Docker

Sharing code amongst

team members

• Git

• Gitlab

TABLE 14: PROGRAMS AND TOOLS USED

Development Process

Page 33 of 72

5.6 Summary of the Scrum Sprints
Sprint 1 Project Plan Delivery: January 25, 2022 - February 1, 2022

After defining what working framework to use and getting further information from our client,

we started the first sprint. During this time period, the main goal was to create the project plan.

The project plans main purpose were to define scope of the project, delegating responsibilities

and accepting agreements. Having a good project plan was one of the requirements of starting

the bachelor project and had to be approved by our supervisor before we could continue. This

requirement laid a beneficial foundation for our main project work and report structure.

Sprint 2 Wireframes and main report: January 31, 2022 - February 7, 2022

The main goal of this sprint was to create Wireframes of our application and get feedback from

our client. After getting the project plan approved, the team had to do some research to find a

frontend- and backend framework that would fit our use case the most. This is the phase where

the team started getting to know with the development frameworks we ended up with, in addition

to establishing a structure of the main report of the project. The team also started dividing into

separate areas of focus, since we were still in the research phase. Each member assigned

themselves to tasks and took on different responsibilities related to the project.

Sprint 3 Threat Total Development: February 4, 2022 - February 28, 2022

The expected result of Sprint 3 was to have a user-testable prototype of our application. The user

testable prototype involved making a basic web-application using the newly found frameworks

of ReactJS + TailwindCSS. The main delegation of work here, were to create the different pages

of the frontend, while also making some small progress on the backend. The main part here was

to understand the usage of JSX with React and to create a viewable frontend.

Sprint 4 Threat Total Prototype Development: February 28, 2022 - March 13, 2022

The main goal of Sprint 4 was to create a complete frontend prototype of the website that

included calls to the backend. The team spent most of their time researching the backend

structure and developing it in Golang. The frontend was also redesigned, and the team got a

greater understanding of how to make and use functions in React through research and testing.

As presented in the updated Gantt scheme this is the point where the actual time scheme started

to stray away from what our original plan looked like.

Development Process

Page 34 of 72

Sprint 5 Complete Threat Total with no API: March 21, 2022 - April 8, 2022

This sprint ended up being an extension of Sprint 4, due to the complexity of the sprint and other

time-consuming school tasks. This resulted in the team needing more time to develop this

version of the application. The goal of this sprint remains the same, aiming towards making a

more complete version of the application. Towards the end of March, we ended up with a version

of the application that we were able to perform a live demo on. This led us to schedule a meeting

with our client, to receive feedback on our design and technical decisions. On April 1st we had a

meeting with the NTNU SOC, where we performed a live demo on the implemented functions of

Threat Total. The functions implemented at the time were the search functions for hashes,

domains, and URLs, and displaying results from various scanning engine sources in the frontend.

After getting feedback and more information regarding API access, we went ahead and started

planning our next sprint based on the information exchange of the meeting.

Sprint 6 Complete Threat Total with no API: April 4, 2022 – May 13, 2022

The end goal of this sprint was to finalize our full stack application as far as possible without

access to the NTNU’s internal API sources. Due to the war in Ukraine and a changed threat

picture for the NTNU SOC, we were informed that we will not have access to the necessary

sources for the internal functions’ implementations.The reasoning behind this was a framework

used for the SOC’s API having a vulnerability which doesn’t have a good fix yet. Therefore, we

went ahead and fully implemented functions for Threat Total using public resources. In this

period, we fully implemented caching, Feide login, improved search functionality and fully

implemented file upload functionality. As well as implementing the final version of the “result”

page, including a total verdict of the search, based on the results. Around the first week of May,

the team gradually focused resources to finalizing the bachelor report, as we had to prioritize the

report to finish in time.

Implementation and Production Process

Page 35 of 72

6 Implementation and Production Process
6.1 Introduction and an Overview of the Application Structure
This chapter will focus on the structure of our full stack application and attempt to illustrate the

main processes of the Threat Total application, namely URL and domain search, file hash search

and file analysis. The figure below shows a detailed overview of our application’s dataflow from

login to a completed search or analysis. This figure will be elaborated on and explained in further

detail in the chapters 6.2, 6.3 and 6.4.

FIGURE 9: DETAILED OVERVIEW OF THE APPLICATION

Implementation and Production Process

Page 36 of 72

6.2 Intelligence Sources

This application utilizes several public intelligence sources to collect information about searched,

URL’s, domains, file hashes and uploaded files. The intelligence we collect is collected through

API endpoints. The endpoints we contact are shown in the table below:

Source

name

Endpoint What is

collected?

REST

Method

Google Safe

Browsing

API

https://safebrowsing.googleapis.com/v4/threat

Matches:find?key=[API_KEY]

URL and Domain

intelligence

POST

Hybrid

Analysis
https://www.hybrid-analysis.com/api/v2/quick-

scan/url

URL and Domain

intelligence

POST

Hybrid

Analysis
"https://www.hybrid-

analysis.com/api/v2/search/hash

File hash

intelligence

POST

AlienVault https://otx.alienvault.com//api/v1/indicators/url/

[URL]/general

URL and Domain

intelligence

GET

AlienVault https://otx.alienvault.com//api/v1/indicators/file

/[File hash]/general

File hash

intelligence

GET

VirusTotal https://www.virustotal.com/api/v3/files

Upload file to

analysis

POST

VirusTotal https://www.virustotal.com/api/v3/files/[ID]

Retrieve analysis

data

GET

TABLE 15: API ENDPOINTS

6.2.1 Google safe browsing
Google Safebrowsing is an intelligence source that has been utilized to collect URL and domain

intelligence. The threat data retrieved from the Google Safebrowsing API is divided into five

main threat types: “malware”, “”, threat unspecified, “unwanted software”, and “potentially

harmful application”. The API response received from the Safe Browsing API is based on

matches to these threat types on all platforms. If a searched URL or domain has been marked as

one of the five threat types, a response will be given from the Google Safe Browsing API

containing information about which threat it has been associated with. Feedback to the frontend

user will then be created based on which threat type was triggered. If the Google Safe Browsing

has no entries for a given URL, or domain, the response object received will be empty. This

makes it simple to filter the data received from the intelligence source, as when there is a

response it can be assumed that there is an entry for the URL or domain, categorized under one

Implementation and Production Process

Page 37 of 72

of the five threat types. The quota for lookups through the API is 10,000 requests per day, and

1,800 requests per hour. A bigger quota can be requested if needed.

6.2.2 Hybrid analysis
Hybrid Analysis is a threat intelligence source which is utilized to provide intelligence on file

hashes, URLs, and domains. The Hybrid Analysis file hash intelligence is gathered from the

Hybrid Analysis database of file samples and file hashes. The response from this API endpoint

contains a verdict that states if the file is malicious, safe, or allow-listed or if Hybrid Analysis

does not have any information of this file hash. This data along with the submitted filename if

known, is utilized in the Threat Total application to generate a response to the frontend user

about the file hash.

The URL intelligence gathered from Hybrid Analysis is information that Hybrid Analysis

requests from external APIs, namely VirusTotal and Urlscan.io. The response data gathered from

Hybrid Analysis contains a list of “scanners” namely VirusTotal and urlscan.io as well as a

boolean stating if the analysis is completed or not. More on the individual scanner sources and

information gathered can be read in the chapters 6.2.2.1 and 6.2.2.2

6.2.2.1 Hybrid Analysis – VirusTotal

Virus Total is an intelligence source that contains a large amount of data, and “VirusTotal

inspects items with over 70 antivirus scanners and URL/domain block listing services, in

addition to a myriad of tools to extract signals from the studied content.” [32]. This means that

by utilizing VirusTotal as one of our intelligence sources, we with great certainty trust the

analysis of an URL or domain. This is because of the large amount of data sources utilized by

VirusTotal in their analysis. The downside of this utilization is that it takes time. On average the

analysis of a new URL or domain that is not cached on their platform takes up to a minute. The

team has however decided that the amount of information and the security the application is able

to provide by including VirusTotal as one of our sources of intelligence is so valuable that it

outweighs the cost of time.

In the response object that Hybrid Analysis provides on VirusTotal, there are a few fields that are

utilized in our application. The “status” field which contains information about whether a

domain/URL is malicious, safe, allow-listed or in awaiting analysis. The “total” field which

contains how many sources the VirusTotal API has utilized in the scan of the submitted URL or

Domain. And finally, the “positives” field which contains the number of intelligence sources that

has triggered on malicious content on a URL or domain. All these fields are then handled by our

backend functionality to deliver feedback on a URL or domain to the user as seen in figure 16.

The reason why we implemented the VirusTotal API through the Hybrid Analysis API, instead

of directly contacting VirusTotal API, was because of the quota provided. The free quota for

making requests to the VirusTotal API is four lookups per minute, with a daily quota of 500

lookups and a total monthly quota of 15 500 lookups. This quota would not be big enough to use

Implementation and Production Process

Page 38 of 72

in a web application like Threat Total, which will be open to several thousands of students and

staff. The free quota we receive from the use of Hybrid Analysis as a middleman, is limited to

200 requests per minute and 2000 requests per hour. In addition to, an unlimited number of total

requests, outside of these restrictions are free. This quota along with the implementation of our

caching solution, see 4.3.3, makes it possible to use Hybrid Analysis in the Threat Total

application.

6.2.2.2 Hybrid Analysis – Urlscan.io

Urlscan.io is a service that scans and analyzes websites.

“When a URL is submitted to urlscan.io, an automated process will browse to the URL

like a regular user and record the activity that this page navigation creates. This includes

the domains and IPs contacted, the resources (JavaScript, CSS, et cetera) requested from

those domains, as well as additional information about the page itself.” [37]

Urlscan.io has also been implemented as one of the intelligence sources we gain intelligence

from and is along with VirusTotal, retrieved through the Hybrid Analysis API. Fetched data from

the urlscan.io analysis response, is mainly the status field, which delivers information about

whether a URL or domain is malicious, safe or has no classification. This data is processed in the

backend to deliver feedback to the end user, as seen in figure 16.

The requests for urlscan.io analysis are coupled with the requests for analysis in VirusTotal

through the Hybrid Analysis API. They operate on the same quota as mentioned above. Even

though a request is made to both VirusTotal and Urlscan.io through Hybrid Analysis, this only

counts as one request in the minutely and hourly quota.

6.2.3 AlienVault
AlienVault is a threat intelligence provider we utilize for URL, domain and file hash intelligence

gathering. AlienVault is an open-source tool where users can register pulses which are a

collection of traffic to URLs, domains, IPs, and files seen in relation to various network traffic

mostly related to malicious activity. For example, a pulse registered on RAT (Remote Access

Trojan) traffic may contain domains or IP addresses that have been utilized in C&C (Command

and Control) traffic.

The utilization of this intelligence source varies slightly based on if it is searching for

intelligence on file hashes, or URL/domain intelligence. The essence however is that it is looking

for registered pulses.

When the AlienVault API is utilized for the retrieval of file hash intelligence the information, we

are interested in mainly two fields. We are interested in if there are any registered pulses on the

file hash and which type of malware, or potentially malicious program/utility this file hash is

related to. These fields are taken from the response and handled in our backend to determine if a

file is related to a malicious activity or not.

Implementation and Production Process

Page 39 of 72

The utilization of AlienVault for URL and domain intelligence gathering, works much in the

same way as file hash. The URL intelligence mainly utilizes the field that contains registered

pulses and whitelists. The backend functionality determines if a URL or domain poses a risk or

not based on if there are any registered pulses on the URL or domain, and on if it has been added

to any whitelists. If the URL or domain are included in a pulse and not in a whitelist the backend

translates this as a “risk” which it displays to the user. If a URL or domain is also added to any

whitelist, the backend deems the URL or domain to be safe. It is worth to note that, because the

intelligence that the application utilizes to deem something malicious or safe is heavily reliant on

user generated pulses, there is a possibility of the generation of false positives. However, the

generation of false negatives should not be possible, unless there is a lack of data from

AlienVault. Moreover, the reason why we have multiple intelligence sources, to be able to

deliver extra certainty in the analysis of URLs, domains and file hashes.

The quota for the AlienVault API is set to 10 000 requests per hour, which is more than enough

for the Threat Total application, especially when coupled with the Redis caching solution, see

4.3.3.

6.2.4 VirusTotal
VirusTotal is a free intelligence platform that analyses files and URLs for malicious items. The

endpoint utilizes the collaboration with antivirus engines to produce scanning results of

malicious content, such as URL, domains, hashes, and files. We utilized the VirusTotal API v3

endpoint directly for the file analysis functionality in the Threat Total application. The reason

why we chose this endpoint for our file analysis, is that the website follows the REST principle

and returns predictable JSON data. Using the REST principles, it is possible to extract the

necessary fields for creating a verdict to display in a high-level language. Additionally, it was

relatively easy to implement using the API v3 documentation, as VirusTotal provides some basic

code in various languages that allows for testing the API. Even though the free version of the

VirusTotal API only limits our requests to four requests per minute, it is sufficient to display a

proof of concept. Though this is not sufficient for production use. As the ideal way to create the

file upload functionality, would be to send and run uploaded files in a local malware

environment. This would limit the potential of a data leak. The files uploaded from users of the

Threat Total application can be anything, and files uploaded to the VirusTotal malware scanner

is outside of our control. File analysis was intended to be done in a local malware environment,

accessed through the NTNU SOC’s API. However due to the situation resulting in us not having

access to the API, we instead implemented similar functionality by using the VirusTotal API v3

to show a proof of concept.

Implementation and Production Process

Page 40 of 72

6.3 Login Functionality

FIGURE 10: FEIDE AUTHENTICATION IMPLEMENTATION

Another requirement was to implement Feide authentication to secure the application. To log in,

the user presses a log in button which redirects the user to Feide’s log in page. This page returns

a code which is then forwarded to the backend. The backend uses the code to retrieve an id token

and a JWT (JSON web token) with user information. The token is then hashed and stored in

Redis with the user information. Finally, the hashed token is sent to the user again and stored as a

cookie. This hashed token is then used to authenticate the user for the duration of the token’s

lifespan.

Implementation and Production Process

Page 41 of 72

6.4 URL and Domain Search

FIGURE 11: EXAMPLE OF INVESTIGATING A URL

When the user inputs a URL or domain in the search field as seen in figure 11 above and clicks

“investigate”, the user is redirected to the “results” page. Input data is then fetched from the form

by the “result” function in the frontend. The frontend then fetches the “URL-intelligence”

endpoint in the REST API and passes the user authentication token and the submitted URL or

domain as URL parameters. The API endpoint then checks whether the user that made the

request is authenticated or not, before processing the actual URL or domain submitted in the

request.

If the user has been authenticated, all functionalities of the web application will be unlocked for

the user. The backend utilizes several public APIs to gather intelligence about the content. The

backend uses the following APIs: “Google Safe Browsing”, “AlienVault” and “Hybrid

Analysis”, which gathers data from “urlscan.io” and “VirusTotal”. This means that when you

look up a URL or domain in the Threat Total application, the URL is cross-referenced with more

than 70 antivirus agents, and several intelligence lists and blocklists. More on the data gathering

methods from the different intelligence sources can be found in chapter 6.2

Implementation and Production Process

Page 42 of 72

FIGURE 12: GOLANG DATA STRUCTURE FOR HYBRID ANALYSIS

When the data has been retrieved from the different public intelligence sources, it is stored in

data structures depending on the intelligence source. An example of a data structure can be seen

in figure 12 above. This data structure is utilized when data is retrieved from the Hybrid

Analysis’ API.

FIGURE 13: HOW THE USER RESPONSE IS MADE BASED ON VERDICT FROM GOOGLE SAFE

BROWSING

The data in the structures are then parsed by helper functions which determines if the data

indicates that the URL or domain is malicious or not. Separate functions for each public

intelligence source handles this process and adds the processed data to a “Frontend response”

data structure, which contains the data from all intelligence sources. The example code snippet

above shows how the “SetResponseObjectGoogle” function processes different output from the

Safe Browsing API, and deems a URL or domain malicious or not, before adding this data to the

“Frontend Response” data structure.

Implementation and Production Process

Page 43 of 72

The frontend response is the data structure that will be passed back to the frontend and displayed

to the user. After all the individual sources has been parsed and the data has been added to the

frontend response, the function “SetResultHash” is called. This function checks all the gathered

data for any indication deeming that a URL or domain is malicious and stores the verdict in a

result string which is displayed to the user. An image of this function is shown in the image.

FIGURE 14: FUNCTION WHICH SETS RESPONSE BASED ON SOURCE STATUS

After all the parsing of data is complete, a screenshot is gathered from the URL or domain that is

requested an analysis of. The screenshot is taken by using the “chomedp” GitHub package,

which utilizes Chrome in headless mode to visit the URL or domain to take a screenshot.

Information on this functionality and the risk can be read about in chapter 8.9.2

FIGURE 15: FUNCTION FOR CHECKING IF THE PROCESS OF GATHERING THREAT INTELLIGENCE

IS FINISHED

After the data has been set in the “Frontend response” structure and the screenshot has been

gathered, it must be determined if the data is complete and ready to be cached or not. The

function called, “checkIfIntelligenceComplete”, does this and can be seen in the figure above. If

the function determines that one of the public endpoints has not yet completed their information

gathering or has encountered an error during data gathering process, the data will not be cached

before it is displayed to the front user. This is a measure we have implemented in case of smaller

downtimes or minor errors in one or more of our public intelligence sources. Or if one of our

sources uses too much time to gather the data. It would not be correct if we had a cache

containing information about a data source having an error when the data source is able to give

proper data.

After the data has been cached or not it is returned to the frontend “result” function which

displays the data to the user. The image below shows an example of how a response can look

Implementation and Production Process

Page 44 of 72

like when investigating a URL. The response includes an overall assessment if the visiting this

URL is advised or not in the upper left corner. Next to it is a screenshot of how the user interface

of the web site looks like. Below these sections is the response from all the antivirus agents that

we use, and verdict based on their threat intelligence.

FIGURE 16: EXAMPLE OF HOW THE RESULT PAGE COULD LOOK LIKE

6.5 File Hash Search
The file hash search functionality is much like the search URL or domain functionality. The user

adds the file hash they want to know information about in the search field on our frontend, as

seen with a URL in figure 11.

The content of the search field is then parsed by the frontend “result” function and a GET request

is made to the “hash-intelligence” endpoint in our REST API. The REST API then checks if the

user is authenticated before it parses the content of the request.

If the user has been authenticated, the backend gathers data from both Hybrid Analysis and

AlienVault about the file hash. If the file hash is known to any of the intelligence sources, it will

return which file and or malware the file hash has been associated with if any. The returned data

from the intelligence sources are added to individual data structures before being parsed and

added to the frontend response structure. This can be seen in the figure below an example of data

parsing of file hash analysis from Hybrid Analysis.

Implementation and Production Process

Page 45 of 72

FIGURE 17: DATA PARSING FOR HYBRID ANALYSIS FILE HASH SEARCH

After being parsed individually, the data is checked for any indication of being malicious before

the result string is set. The result string is displayed to the user and is a summary of the

detections made by the intelligence sources. This is seen in the figure below.

FIGURE 18: “SETRESULTHASH” WILL SET THE USER RESPONSE BASED ON VERDICT FROM

ANTIVIRUS AGENT

After the validation of the frontend response is complete, there is a final check to determine if the

data is “complete”. This means that the data does not contain any errors or incomplete analysis.

This is checked to determine if the data should be cached or not. This is done to avoid the

possibility of caching errors, or analysis that is not yet completed. This functions the same way

for both hash intelligence and for URL/domain intelligence. See figure 15. After the data has

been cached, or not, the backend returns the frontend response struct to the frontend. This data

structure is parsed into result data and displayed to the user. See figure below.

Implementation and Production Process

Page 46 of 72

FIGURE 19: FILE HASH SEARCH RESULTS

Implementation and Production Process

Page 47 of 72

6.6 File Upload Process

FIGURE 20: FILE UPLOAD PIPELINE

The file upload pipeline involves using the VirusTotal API v3 to receive a file scan report, which

is then displayed on the frontend. After a user has logged in and navigated to the “upload” page,

the user is presented the option to upload a file for analysis. Assuming the user has selected and

clicked the “investigate” button, the pipeline for the file upload functions has started. As

described in the image above, the file is forwarded to the backend. The backend prepares a POST

request to the VirusTotal API. In the response, after the file has been analysed, the backend

decodes the output, extracts, and returns an MD5 hashed ID. The id is then used for fetching scan

reports from VirusTotal.

After the return, the user is redirected to the “result” page and the ID is sent back to the backend.

If the data on the ID is not already cached, the ID is used to prepare a GET request to get the

scan report information from VirusTotal. The backend then prepares a verdict, using the fields

found in the report, to create a summary of the scan results in a high-level language. The verdict

is based on different comparisons of the fields and is customizable. Meaning that developers who

later pick up this tool, can also make more accurate assessments by adding more comparisons or

create different verdict results. The results are then cached with Redis and then presented to the

end user. The user receives a total verdict of the analysis and can observe results from every

antivirus engine VirusTotal returned information from.

Implementation and Production Process

Page 48 of 72

This example also presents how efficient caching is, as it shows how we can skip performing a

request back to VirusTotal by using the cached data from previous requests.

6.7 Escalate to Manual Analysis
After an analysis, the results page contains an option for the end user to click the “Submit for

manual analysis” button. See figure 19. This button activates a function which retrieves the users

email from the cache based on their user authorization token, and then sends a confirmation

email back to the user. This email contains information about the request and how further

handling will be done. In addition, the frontend displays an alert to the user that an email has

been sent to their e-mail address. Further correspondence in reference to manual analysis can

then be handled by e-mail.

6.8 Frontend Structure
The frontend was written using a combination of plain JavaScript, HTML, ReactJS and

TailwindCSS. We structured the ReactJS project into pages, components, and resources. The

pages contain the base structure of each of the different webpages. The components are reusable

pieces of code which are used in different pages. For example, the navbar is a component which

is included in every single webpage on the site. This component structure allows for modularity

and simple reuse of parts where relevant. Having reusable components and shared imports makes

the codebase simpler to view, manage and maintain. It also reduces duplicate code, as the

duplicates can instead be turned into components which can then be used by several pages or

components.

FIGURE 21: FRONTEND COMPONENT SHARING

Implementation and Production Process

Page 49 of 72

6.9 Translation
Since one of the requirements of the application was to have both English and Norwegian

versions of each of the different webpages, we ended up using the i18next package for

translation. With this package each piece of plain text on the different webpages are replaced

with text from a JSON object.

FIGURE 22: EXAMPLE OF A BUTTON BEING TRANSLATED WITH JSON DATA

This JSON object is further divided into namespaces and languages. So, each piece of text on the

website has two different versions corresponding to the different languages we support, and the

text will update in real-time upon the press of the language change button. The main advantage

to this approach is that the translations are easy to manage as they are in a simple JSON data

format, it is extendable, as more languages can simply be added to the JSON object and finally

the translations can be applied without refreshing the webpage. Which leads to a better user

experience and reduces the number of unnecessary requests to the backend.

Code Review and Code Quality

Page 50 of 72

7 Code Review and Code Quality
7.1 Introduction
This chapter contains information about the structure of the application when it comes to

modularity within the project repository. Information about usage of computer threads, caching

and code optimization can also be found under this chapter.

7.2 Component Structure

FIGURE 23: COMPONENT STRUCTURE, MADE IN DRAW.IO

As we wanted the project to have an understandable structure to make it accessible, we focused

on structuring the code. In the backend we structured different parts of the project into logical

packages. As an example, the API functions were structured in the “api” package, while the

global variables such as constants and structs were gathered in the “utils” package. This allowed

us to reuse variables across different packages and helped make the structure readable and

accessible.

Code Review and Code Quality

Page 51 of 72

FIGURE 24: IMAGE OF STRUCTURE, MADE IN DRAW.IO

In the frontend the webpages were located together in the “pages” subfolder while components

used by the different webpages were in the “components” folder.

Code Review and Code Quality

Page 52 of 72

7.3 Increasing Performance with Threading

FIGURE 25: VISUALIZATION OF THREADING, MADE IN DRAW.IO

Because of the processing time of one of our data sources we had to implement a wait time, this

in addition to processing the different data requests sequentially resulted in long wait times. To

reduce wait times for the requests, we then ended up implementing goroutines which are

lightweight threads in Golang. This allowed the different requests to run in parallel, which

reduced the processing time.

Code Review and Code Quality

Page 53 of 72

7.4 Efficient Code with Caching

FIGURE 26: CACHE MISS VS CACHE HIT. VISUALIZATION MADE IN DRAW.IO

Another step we made to reduce wait times for the end user is to implement caching. Once a

request has been made the response data is cached in Redis with a configurable cache duration.

This makes it so that the wait time for common requests go down drastically, while also reducing

load and requests to our data sources.

Code Review and Code Quality

Page 54 of 72

7.5 Code Modularity

FIGURE 27: EXAMPLE OF CODE BEFORE REVISION

FIGURE 28: EXAMPLE OF CODE AFTER REVISING CODE MODULARITY

Code modularity is also an important concept for making structured and understandable code.

Using code modularity, in addition to actively revise the code with this method, contributes to

making good quality code. Take the above picture as an example, where we initially had a

sizeable chunk of code in which was difficult to read and follow. Separating the code packages

allowed for better readable and understandable code. Sometimes this also deems as necessary for

the overall programming logic. This is something which our project experienced, as the file

upload functionality needed a handle for GET requests and another handle for POST. Separating

this, not only made the code more readable, but also made the planned logic work as intended.

Testing and Quality Assurance

Page 55 of 72

8 Testing and Quality Assurance
8.1 Introduction
This chapter contains information about how the team went forward about testing the application

regarding usability and functionality, as well as analyzing the code. The code alone was analyzed

by using a publicly available static analyzer and provides information about the code’s security

and quality. The best way of testing the usability of an application is through human interaction.

The team have done this to get a clearer picture of our application’s level of usability and a good

user experience.

8.2 Static Code Analysis
Static code analysis is the process of debugging the source code of an application with automated

tests and a set of rules for the tests to follow. [31] This type of code analysis is good to detect

vulnerabilities in the source code, as most tools have these sets of rules already built in. In

difference to unit testing, static analysis is performed before the program is being run and can

provide the information about flaws and defects that way.

Static code analysis brings along some limitations, as well as pros and cons. Some built in rules

that is used by the analyzer can interpreter the commenting in the code according to a specific set

of standards, while the commenting has been done according to another standard. Other

scenarios can cause false positives and negatives. The analyzer will then probably report a

possible defect in that area, but no more specific reasoning.

The greatest benefits of using such a tool are the speed, depth and accuracy compared with

manual code reviews. Time is a valuable resource while developing a web application. By using

automated tests, possible problems can be reported much earlier than by doing manual code

reviews, and therefore also lead to less errors. Unlike manual code reviews where every possible

execution path will both take time and knowledge, static code analyzers will execute every path

and provide a report with good readability. Manual code reviews are prone to human errors.

Static analysis tools are therefore also a more accurate solution than manual code reviews.

Testing and Quality Assurance

Page 56 of 72

8.3 SonarQube
SonarQube is a popular static code analyser that we chose to use. The tool will provide the user

with information about the security and code quality of the codebase which can be quite handy in

code reviews. SonarQube supports 27 programming languages, and some of them are those that

we use. [3] SonarQube provides two different solutions to deploy the service, either by

downloading it and all its dependencies, or download a docker image and run it. After fiddling

around with the first method for several hours, and not being able to make it work, we decided to

try the docker image and instance which was a success. The next thing to do was to open the

instance in the browser at “http://localhost:9000”, log in with the provided username and

password and make a new project for which will store the finished reports. All the code files are

then analysed with the tool called “sonar-scanner.bat”. This tool sends the results to the newly

established project in SonarQube’s web browser interface. The image below is an example of a

SonarQube report:

FIGURE 29: EXAMPLE OF SONARQUBE REPORT.

SonarQube will also have more extensive notes for each of these categories by clicking on the

respective category that the user wants to know more about. By clicking on the “1” in the same

column as “Security review”, the user can sort out why the report received an “E” in that

category:

http://localhost:9000/

Testing and Quality Assurance

Page 57 of 72

FIGURE 30: EXAMPLE OF A DETECTED SECURITY FLAW.

In this case, SonarQube detected the variable, “Password”, and a hardcoded value to it, which is

a problem with high priority according to SonarQube. This value was used for testing and

development and was later changed to an environment variable so that it was not hard-coded and

not accessible from the git repository. Another reason for the failed test, was the lack of unit

testing. A built-in rule is the coverage of unit testing. If this percentage is not past a certain level,

the analysis will also automatically receive a “Failed”.

During the project development, the team stumbled upon an example of a not so uncommon

security incident, which is data leakage. In the context of testing, there was performed some

hardcoding of API keys into variables, without necessarily realizing the potential consequences

of this later. After performing the required change in the code, the code was committed and

pushed to the team’s GitLab repository. The team then realized the API key was now leaked

through the commit history in GitLab. In the hands of an attacker, this can lead to API abuse.

The team handled this incident professionally, by removing the hardcoded variables and

deactivating the account linked to the leaked API keys. Additionally, the team moved on to using

key files for API keys. These files where put in the “.gitignore” so they were not a part of the

version control system. Later this was replaced with using environment variables for the different

secrets and API keys. As described above, using tools such as SonarQube, can aid in detecting

mistakes like this and help prevent similar incidents from occurring.

Testing and Quality Assurance

Page 58 of 72

8.4 Usability Testing
Testing is a critical part of web application development as it will provide feedback in form of

things that can be improved for a better user experience. [12] Usability testing is quite relevant

part of testing when it comes to feedback on the user experience. This type of testing is a non-

functional testing method and is part of a user-centred design philosophy. The testing is done

with real users in real scenarios. Better understanding of issues and concerns regarding the

usability from the test subject, the better the developer or designer will become at correcting

them.

Usability testing comes with its pros and cons. On the one hand, testing helps the developer or

designer understand the users’ needs and points at frustrating things as mentioned earlier. [4] The

discoveries of hidden issues and anomalies can easily be unrevealed with real users in real

scenarios. On the other hand, selecting a target group can be tricky. As a rule of thumb, the

testing should be done with a sizeable audience, both when it comes to age and technical

experience. Usability tests are also more tedious and time demanding than questionnaires as they

need to be done manually.

Testing and Quality Assurance

Page 59 of 72

8.4.1 Results From Usability Testing
By performing user testing we were able to uncover some errors regarding logging in with Feide,

investigating a URL and investigating a file hash. View the appendices for the complete

spreadsheet from the usability testing. The table below contains the result from the testing:

Person Age Technical

knowledge

Successful

test

Comments

1 22 Intermediate Yes Overall good and structured layout. Easy to

navigate. An improvement to implement could

be to add a text when loading investigation

results. The text should state the expected

amount of time for the user to be waiting before

receiving a result. There were no problems

during the tasks for the usability testing.

2 25 Intermediate Yes The web page is not hard at all to navigate.

Everything is provided in a clean way on the

homepage. There were no problems during the

tasks for the usability testing.

3 26 Advanced Yes No problems with executing the tasks given in

the usability testing. The application’s homepage

looks clean and can easily to navigated. As of

now the application is not well optimized for a

wide computer monitor ratio.

TABLE 16: USABILITY TESTING

8.4.2 Weaknesses
The testing was done with a limited audience and will hence not provide as broad of response, as

if the audience consisted of a wider selection based on age and technical knowledge. This can be

seen as a source of error. This is thus explained previously as some of the general weaknesses

with this kind of testing. By having such a limited selection, we could also miss features which

different aged audiences would appreciate.

Testing and Quality Assurance

Page 60 of 72

8.5 Regression Testing

FIGURE 31: REGRESSION TESTING FLOWCHART - MADE IN DRAW.IO

Testing and Quality Assurance

Page 61 of 72

During the development phase of the project, most of the feature implementations were tested by

semi-automated regression testing. This involves the process of running a test of the function

before and after an implementation change. Evaluating a component with regression testing,

involved using the same input data, as this allowed for a measurable consistency. This way, it

was easy for the developer to know when a change would break the functionality of a

component. The regression testing process was semi-automated, and the workflow is visualized

in the image above. A team member would implement a new change to the code and the

compiler checks for any syntax errors. The member would then navigate to the already booted up

application in the browser, and input data that would make sense as an end user. Followingly

would the team member check the log for any unexpected output or crashes and verify if the

dataflow went through the application was as expected. If the application did not crash or have

any unexpected output, the developer can then safely commit and push to the git repository with

the updated change. If the application did not behave as expected, the developer would instead

start troubleshooting and repeat the process.

8.6 Destructive Testing
Destructive testing is the process of actively trying to break the application. The goal here is to

figure out what input data leads to breaking the application. This can be used to remediate

possible bugs and vulnerabilities that may uncover from application breaking inputs. An example

of destructive testing that we found during the implementation of the URL, domain and hash

uploading functionality, was that if we added any trailing whitespaces after the data input, the

dataflow would cause a false-negative return output on one of the public antivirus engines. This

was because we did not have any functions that would correctly parse the input of the query

parameter, for instance a hash to search for. Thereafter, the way we handled the parameter, it

would then send an invalid string to search for through the public antivirus sources and resulted

in an error that would cause the results from Hybrid Analysis to become invalid. This is an

example of how effective destructive testing can be, as we would have never found this bug with

using valid inputs only. In addition, this would be a common mistake for the average front-end

user, where the user could potentially enter the data input and mistakenly press spacebar to add a

whitespace at the end of the input. In production, this bug would have been a negative impact

back to the end-user, as it would return a false negative as a result. This would potentially

present false data to the end user and create a deficient verdict. This could have been critical, as

if the file would have been indeed malicious, the user would not have known. In the end, this bug

was simply fixed by using Golang’s built-in functions for parsing input data correctly. Another

way to find such errors is to use property tests, where the test inputs random data to try to find

errors in the functions tested.

Testing and Quality Assurance

Page 62 of 72

8.7 Unit and API Testing
This project has incorporated API tests that both test components of our functionality and the full

functionality of our API endpoints. The implemented testing focuses primarily on the “/url-

intelligence” endpoint, the “/hash-intelligence” endpoint and on authorization. These endpoints

contain the functionality of delivering an analysis on submitted URLs and Domains and

delivering an analysis of a submitted file hash respectively.

The full list of our implemented tests can be viewed in the table below:

Test function name Type Description What is tested?

TestUrlIntelligenceOK

API Test that checks if the url-

intelligence endpoint returns

the expected return code 200

if the user requests analysis as

an authenticated user.

Return code 200

as an authorized

user.

TestUrlIntelligenceUnauthorized

API Test that checks if the

authorization block on the

endpoint functions properly,

this test attempts to perform a

request to the URL-

intelligence endpoint

unauthenticated and expects a

return code of 401.

Return code 401

as an

unauthenticated

user.

TestHashIntelligenceOK

API Test that checks if the hash-

intelligence endpoint returns

the expected return code 200,

if the user requests analysis as

an authenticated user.

Return code 200

as an

authenticated user

TestHashIntelligenceUnauthorized

 Test that checks if the

authorization block on the

endpoint functions properly,

this test attempts to perform a

request to the hash-

intelligence endpoint

unauthenticated and expects a

return code of 401.

Return code 401

as an

unauthenticated

user.

TestUrlIntelligenceValidOutput

API This is a test that tests the

validity of the output received

from the URL-intelligence

endpoint. Because our

- If status code is

200

- If the data can

be unmarshalled

Testing and Quality Assurance

Page 63 of 72

backend code is structured in

packages this test will

indirectly also function as

unit tests for the subfunctions.

This is because each part of

the expected output is

generated by multiple smaller

functions, and by viewing the

output it is possible to

determine where an error lies.

to the struct

ResultResponse

- If data can be

accessed in the

struct

- If the first

sourceName is

"Google

Safebrowsing

API" as expected

-If there is a

screenshot of the

requested URL

-If status or

content is not set

in any of the data

objects from the

intelligence

sources

TestHash_IntelligenceValidOutput

API This is a test that tests the

validity of the output received

from the hash-intelligence

endpoint. Because our

backend code is structured in

packages this test will

indirectly also function as

unit tests for the subfunctions.

This is because each part of

the expected output is

generated by multiple smaller

functions, and by viewing the

output it is possible to

determine where an error lies.

- If status code is

200

- If the data can

be unmarshalled

to the struct

ResultResponse

- If data can be

accessed in the

struct

- If the first and

second

sourceName is

"Hybrid Analysis

and AlienVault"

respectively

- If status or

content is not set

in any of the

Testing and Quality Assurance

Page 64 of 72

responses from

the intelligence

sources both in

English and

Norwegian.

- If the status of

AlienVault is risk

as expected.

TestNotSpecifiedEndpoint

API

This test checks if requests

towards a random non

existing endpoint on our API

returns 404.

If the return code

is 404 if the

endpoint does not

exist.

TABLE 17: TEST FUNCTIONS

It can be seen here that we have not implemented testing for anything related to file uploads.

This is because of the complexity of the file upload endpoint. From our experience it has been

easier to perform manual testing on this endpoint, and debugging is simple because of well

executed logging functionality and thorough error handling, see chapter 8.8. The same can be

said for unit testing of smaller utility functions in our Golang backend. Most of our utility

functionality handles the output data that is displayed to the user or forwards the requests for

intelligence to external APIs. By checking if the output is valid through the test functions,

“TestUrlIntelligenceValidOutput” and “TestHash_IntelligenceValidOutput”, we are indirectly

testing the smaller utility functions, and can determine if the utility functions work as intended.

8.8 Logging in Threat Total
The Threat Total application has been implemented with both command line and global file

logging of both errors and information. To create this functionality, the standard “log” library in

the Golang programming language is utilized. We have defined our own “logging” package in

the Golang backend which is included in every package we have created.

The error logging function utilized in the application is the “Logerror” function in the

“logging.go” file, see figure below. This function takes an error and a message string as

parameters. When the “Logerror” function runs, it opens and appends text to the file “errorlog”.

If the file does not exist, it will be created. This function handles all types of errors in the

application, such as marshalling errors and request errors.

Testing and Quality Assurance

Page 65 of 72

FIGURE 32: LOGERROR FUNCTION

To perform information logging to a file, the function “Loginfo” is utilized. The “Loginfo”

function is also defined in the “logging.go” file, see figure below. This function is very similar to

“Logerror” but takes different parameters and logs to a separate file. This function takes a string

as a parameter and writes logs to the “infolog” file. When the function runs, it opens and appends

to the file “Infolog.txt”, and in the case of a non-existing file it creates a new “infolog” file. The

information logged is the information log message, along with a timestamp. An example of a

typical informational log input is when the application starts up.

FIGURE 33: LOGINFO FUNCTION

Testing and Quality Assurance

Page 66 of 72

Logging is an asset to have in every application, and the Threat Total application is implemented

with both command line logging and file logging. This makes it both possible to pipe the output

from the application to a file when started from a shell, and just view errors and general

information in the “errorlog” and “infolog” files respectively. The main advantages gained from

logging, are for work with debugging and maintenance, as well as error tracing.

8.9 Known Vulnerabilities
8.9.1 Potential RCE vulnerability in “file.filename”
There was identified a possible remote code execution vulnerability (which will be henceforth

referred to as RCE) in the file upload function. Referring to the Gin-Gonic web framework [33]

and one of their issues [34], it was discovered that the “file.filename” property is not to be

trusted, when handling form files. When handling a form file type, you are issued with different

properties to display, such as the file size, header and filename. In the issue, there was discovered

that when uploading a file to a specific destination, the file is also uploaded in the parent

directory of the function. In the Threat Total code, the “file.filename” property is used when

calling a function to a convenience wrapper in “CreateFromFile()”, to fetch file contents. [35]

With this wrapper, the file contents are also copied and stored in memory. The multipart-form-

data header is handling a file that is separated by delimiters or boundaries and is sent as a binary

[36]. Hypothetically, if a threat actor were to change the filename to anything that has the

capabilities of sending malicious code, this could be a potential RCE vulnerability in the code.

This vulnerability is a concept of a scenario that is highly unlikely to happen but is worth noting

as a possibility.

8.9.2 Potential malicious downloads from screenshot functionality
Another potential vulnerability in the application, is usage of the screenshot functionality. As the

screenshot functionality is a good tool for displaying to the user what kind of website they have

visited, there is a potential flaw here. The application uses the library, “chromedp” [39] for this

functionality. Followingly, the library runs Chrome engine in headless mode, meaning the

chrome browser is run without a user interface. The potential security flaw here, is running a

browser which is visiting potentially malicious sites, on the same machine as the web

application’s backend which runs important functions. The ideal setup would be to have a

malware environment and run the screenshot functionality from there. This would minimize the

damage from any potential infections from viewing malicious websites.

Installation and realisation

Page 67 of 72

9 Installation and Realisation
9.1 Introduction
This chapter contains information about running the application and information about deploying

the application into production.

9.2 Installation
To run the application, the user needs to go through some configuration steps. It is assumed that

the user has already installed “node.js” and Redis. The first thing to do is to clone down a local

version of the GitLab repository through SSH (Secure Shell) with the command: “git clone

git@git.gvk.idi.ntnu.no:Johannesb/dcsg2900-threattotal.git”. Secondly, the node dependencies

can be downloaded with “npm -i” from within the “threat-total” folder, then environment

variables need to be set for both the frontend and backend as described in the project

README.md file. Finally, Redis needs to be configured with a password. When the setup is

complete, the frontend can be run using “npm start” from the “threat-total” folder. The backend

can be run using “go run main.go”, which will also install the backend dependencies. After

starting the front- and backend, the website can be accessed through a web-browser at

“http://localhost:3000”. This whole setup process is described in greater detail in the readme file

found in the project repository.

For deploying the code into production, the frontend can be optimized using the command “npm

run build” which will build an optimized version of the whole website into the “build” folder.

This data can then be used with any website hosting software such as Nginx, Apache, or any

website hosting provider. As we have not implemented TLS, we recommend setting up the

backend, frontend and Redis instance behind reverse proxies which will then handle TLS to

secure the network-traffic in transit. Nginx for example can easily be set up as a reverse proxy

with TLS. This will encrypt the traffic when it moves between the different components, which

will stop simple network snooping attacks and man-in-the-middle attacks.

mailto:git@git.gvk.idi.ntnu.no:Johannesb/dcsg2900-threattotal.git

Ending Chapters

Page 68 of 72

10 Ending Chapters

10.1 Introduction
This chapter contains closing thoughts and reflections on the overall project work, followed by

an evaluation of the project. The chapter will be rounded off with a general project conclusion.

10.2 Results
The team collectively learned a lot throughout the development and documentation of the

project. This includes deeper knowledge in full stack application development, limitations to

different technologies we used, cache-implementations, OAuth 2.0 authentication and structuring

of data flow. The final product is a functional full stack application which uses external API’s,

implements caching and has a user-friendly interface. The interface makes it accessible, and the

aggregation of information makes using it more convenient than the alternative of visiting

several different websites for the same information.

10.3 Task Critiques

10.3.1 Internal API access
We were originally told that we would get access to intelligence data on URLs, domains, file

hashes and a malware environment through NTNU SOCs API. We were to base our searches on

this, as well as publicly available anti-virus agents. A variety of circumstances led to this not

being possible. So as of now, we only use publicly available data for testing URL’s, domains,

and files through hashes and uploads. The NTNU SOC had to focus resources elsewhere due to

the changed threat picture from the ongoing war in Ukraine. The API access was also not secure

enough, and due to the lack of resources available at the time, this error was not fixed in time.

Our scope included NTNU SOC data as one of the primary elements of the project. But due to

the circumstances discussed earlier, we ended up not receiving API access in time. This led to

some elements of the scope being impossible to implement. To counteract this, we implemented

most of the functionality which would be integrated with the NTNU SOC API as functionality

connecting to third party sources, or with our own implementations. This includes for example

filtering of requests where we created a proof-of-concept model with a list of URLs to filter for

one of the sources as safe. This shows that the functionality can easily be implemented in the

future when the API is ready. We also created a simple case system which sends email to users

with information about the item sent to manual analysis, as well as information on how future

contact will be made. In the end we implemented what was possible to implement given the

constraints that were in place. We implemented proof-of-concept versions of what was not

possible to implement fully due to these constraints.

Ending Chapters

Page 69 of 72

10.3.2 Worklog time tracking
Another critique to the project work, is the method of tracking working hours. During our

project, we went simplistic and attempted to track our hours within an Excel document. The idea

was to take a note of when we started working, until we called it a day and to write it in the

timesheet document along with a description of the work. The problem with this method, was

that the team was inconsistent on noting working hours and therefore leading to inaccurate

tracking of hours. Inconsistency usually appeared from not taking note of when the work period

started and ended or forgetting to log the hours in the timesheet document. Looking back, the

team realize they should have been using a software tool for automatic time tracking. For

instance, a stamp in and stamp out service. This would have eliminated the need for a manual

process of hour logging and therefore making it more consistent. The result of our current

solution is an estimate of the hours committed to work and what was done. This spreadsheet can

be viewed in the appendices.

10.3.3 Sprint durations
Additionally, following the scrumban framework more strictly could have made for a better plan

and overview of the work-task structure. At the beginning of the project, the team followed the

newly learned framework to the book. This included things such as assigning simple tasks and

completing them. Though as the project began to grow larger, some assigned tasks consisted of

many smaller and more “abstract” tasks. This is where the team had their own sense of whether

these smaller tasks should be a new task to assign, or the task was simply too obvious bother

making a new ticket on. This is where the team should have trusted the framework a bit more

and started assigning new tasks and delegating them amongst the members. The essential core of

scrumban is the availability for team members to perform smaller tasks over the whole board,

during a sprint, without having to delegate larger main areas for the individual members to focus

on.

Followingly, better planned and followed deadlines, could have contributed to an improved

project structure. As mentioned in the sprint summaries, at some point we had to keep extending

our sprints, because the deadlines were usually too short, or the tasks were too time consuming to

meet the deadline. To fix this we should have set the sprints to a longer duration. A typical sprint

in the scrum model is around two to four weeks, and most of our sprints consisted of one to two-

week sprint periods. This led to the team having to keep extending the ongoing sprints and made

the work messy and unstructured at times.

In conclusion, critiques to our project sprints are clearly something that have enveloped from

lack of experience using the framework. This has been a great learning experience that the team

will bring into future projects.

Ending Chapters

Page 70 of 72

10.3.4 Automated testing
Learning more about automated testing and how to implement it earlier on, could potentially

have made the application development process more efficient. As mentioned earlier, the project

development had a lack of unit testing, which could have proven to be helpful if implemented.

For instance, to catch bugs we would not have been able to identify as fast or easily otherwise.

Writing unit tests, in which are easily automated, is a key part of continuous integration software

development. Having more knowledge of this earlier on in the project, could have contributed to

making better quality code. In addition, automating time-consuming manual processes, such as

using scripts for testing and pushing code to Git, could have contributed to time savings when we

produced the code.

10.3.5 User testing and usability testing
Lack of user testing early on in software development can lead to large setbacks in producing

code. This is an element that the project could potentially have benefitted a lot from, if the team

had prioritized this earlier. A main point in usability testing, is to test as early as possible and

preferably before implementing any code. This is because it is much easier to change the design

before implementing code, than it is to implement changes to the design through changing the

code. This project should have followed the modern software development process more strictly,

and for instance, focused more on user-testing our wireframes to verify if the design is in fact

user-friendly for a wide audience. In our case, we ended up performing most of the user testing

at the end stages of the product development, which could have led to some potentially costly

changes.

10.4 Future Work and Development
Future work might include implementing TLS for Redis, the webserver and the backend to

secure the requests. This will also help to prevent MITM (Man-In-The-Middle), and traffic

snooping attacks. Another task is implementing the NTNU data sources. The screenshot function

should also be implemented differently as it is now a possible attack vector. Thus, a vulnerability

of the software due to it simply downloading and viewing the URLs in a local headless chrome

instance. Another potential improvement would be to use a proper database solution for the user

authentication and the allow list. A final potential improvement would be the implementation of

more extensive automatic unit testing. As it now stands, the sub-functionality of the application

is only automatically tested through the output from the API endpoints, and manual testing. The

implementation of automatic unit testing would increase certainty in the consistency of various

sub-functionality in the application

Ending Chapters

Page 71 of 72

10.5 Evaluation

10.5.1 Organization

Group work was organized in work sessions where the team met digitally and worked on the

project collaboratively. The work for each week was planned on Monday and reviewed again the

following Monday through short stand-up meetings with our supervisor. This way we had a good

structure and plan for the work each week, which helped with assessment of progress. In the later

stages of the project, we had physical meetings and daily work sessions at NTNU. Meeting

physically ended up being a good motivator for the team, and increased productivity drastically.

It also helped in making the work more organized.

10.5.2 Work distribution

Progress on the project was mostly consistent throughout the work period, although there were

some periods where work with other deliverables was prioritized. Throughout the project, all

team members were able to maintain their assigned role. In the end stages of the project phase,

workload also picked up a bit as the project and report had to be finalized.

10.5.3 Project as a form of work

Project work is a good way to organize work. As with project work there is a defined task and

result which makes it simple to assess if the work is successful, and of if it is of good quality. As

you can compare the result to the task, including scope and requirements. Having a clear end

goal is also good inspiration for the team members as it is possible to visualize the end result and

therefore get inspirated to work towards a common goal.

Ending Chapters

Page 72 of 72

10.6 Conclusion
Threat Total is a full stack web application for displaying threat intelligence information in a

high-level language. The frontend has a user-friendly interface, using NTNU branding colours

and logos. The application’s target group is a wide audience of NTNU staff and students. The

backend is a robust Golang application with caching in Redis, for reducing the load on our third-

party data providers as well as the request time for our users. Threading is also used to reduce the

processing time for requests where appropriate. Due to integration with Feide authentication,

logging in and out is as simple as with any of the NTNU services, which makes using Threat

Total a seamless experience for members of NTNU staff and students.

The development framework the team chose to use was structured using a combination of the

agile frameworks, Scrum and Kanban. The combination, “scrumban”, utilizes sprints and

distribution of tasks to aid teamwork while not relying on any hard deadlines.

We used a variety of tests, including both real user scenarios, static code analysis and API tests

among other things. By utilizing different testing methods, we were able to both receive

feedback on the usability of the application, as well as more technical answers when it came to

discovering bugs and errors in the code.

Overall, the Threat Total project has been a great learning experience, impacting positively in

both teamwork organizing and programming knowledge.

Postlude

Page xi of xiv

References

[1] Enginess. (2014, November 3rd). The 6 Principles Of Design, a la Donald Norman.

https://www.enginess.io/insights/6-principles-design-la-donald-norman

[2] GitLab. About GitLab. https://about.gitlab.com/company/

[3] SonarQube. About SonarQube. https://www.sonarqube.org/about/

[4] UTOR. (2021, March 31st). Advantages of Usability Testing and Some Drawbacks You

Should Know. https://u-tor.com/topic/advantages-of-usability-testing

[5] Microsoft. (2022, February 18th). Authentication vs. authorization.

https://docs.microsoft.com/en-us/azure/active-directory/develop/authentication-vs-

authorization

[6] Amazon Web Services. Caching Overview. https://aws.amazon.com/caching/

[7] W3Schools. CSS Media Queries - Examples.

https://www.w3schools.com/css/css3_mediaqueries_ex.asp

[8] MDN Web Docs. (2022, May 2nd). CSS: Cascading Style Sheets.

https://developer.mozilla.org/en-US/docs/Web/CSS

[9] Feide. Feide. https://docs.Feide.no/general/Feide_overview.html

[10] Gin. (2022, May 14th). Gin Web Framework. https://github.com/gin-gonic/gin

[11] Johnston, J. (2019, April 23rd). How to build a web app: A beginner's guide (2021).

https://budibase.com/blog/how-to-make-a-web-app/

[12] Roose, J. How to Conduct Usability Testing in Six Steps.

https://www.toptal.com/designers/ux-consultants/how-to-conduct-usability-testing-in-6-

steps

[13] Lane, C., & Krüger, N. (2021, December). How to Write a Software Requirements

Specification (SRS Document). https://www.perforce.com/blog/alm/how-write-software-

requirements-specification-srs-document

[14] MDN Web Docs. (2022, May 2nd). HTML: HyperText Markup Language.

https://developer.mozilla.org/en-US/docs/Web/HTML

[15] DELL Technologies. (2021, February 21st). Hva er minne (RAM)?

https://www.dell.com/support/kbdoc/no-no/000148441/hva-er-minne-ram

https://www.enginess.io/insights/6-principles-design-la-donald-norman
https://about.gitlab.com/company/
https://www.sonarqube.org/about/
https://u-tor.com/topic/advantages-of-usability-testing
https://docs.microsoft.com/en-us/azure/active-directory/develop/authentication-vs-authorization
https://docs.microsoft.com/en-us/azure/active-directory/develop/authentication-vs-authorization
https://aws.amazon.com/caching/
https://www.w3schools.com/css/css3_mediaqueries_ex.asp
https://developer.mozilla.org/en-US/docs/Web/CSS
https://docs.feide.no/general/feide_overview.html
https://github.com/gin-gonic/gin
https://budibase.com/blog/how-to-make-a-web-app/
https://www.toptal.com/designers/ux-consultants/how-to-conduct-usability-testing-in-6-steps
https://www.toptal.com/designers/ux-consultants/how-to-conduct-usability-testing-in-6-steps
https://www.perforce.com/blog/alm/how-write-software-requirements-specification-srs-document
https://www.perforce.com/blog/alm/how-write-software-requirements-specification-srs-document
https://developer.mozilla.org/en-US/docs/Web/HTML
https://www.dell.com/support/kbdoc/no-no/000148441/hva-er-minne-ram

Postlude

Page xii of xiv

[16] Trend Micro. Indicators of compromise.

https://www.trendmicro.com/vinfo/us/security/definition/indicators-of-compromise

[17] Interaction Design Foundation. Interaction Design. https://www.interaction-

design.org/literature/topics/interaction-design

[18] Microsoft. (2022, April 16th). OAuth 2.0 and OpenID Connect (OIDC) in the Microsoft

identity platform. https://docs.microsoft.com/en-us/azure/active-directory/develop/active-

directory-v2-protocols

[19] Nielsen, J. (2003, April 13th). Paper Prototyping: Getting User Data Before You Code.

https://www.nngroup.com/articles/paper-prototyping/

[20] Redis. Redis. https://redis.io/

[21] Friedman, V. (2018, August 11th). Responsive Web Design - What It Is And How To Use It.

https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/

[22] usability.gov. Use Cases. https://www.usability.gov/how-to-and-tools/methods/use-

cases.html

[23] Gorbachenko, P. (2021, April 9th). What are Functional and Non-Functional Requirements

and How to Document These. https://enkonix.com/blog/functional-requirements-vs-non-

functional/

[24] Software Engineering. (2018, September). What are the differences between server-side and

client-side programming?

https://softwareengineering.stackexchange.com/questions/171203/what-are-the-

differences-between-server-side-and-client-side-programming

[25] Red Hat. (2020, May 8th). What is a REST API?

https://www.redhat.com/en/topics/api/what-is-a-rest-api

[26] GeeksforGeeks. (2022, January 18th). What is full stack development?

https://www.geeksforgeeks.org/what-is-full-stack-development/

[27] W3Schools. What is Full Stack? https://www.w3schools.com/whatis/whatis_fullstack.asp

[28] Radigan, D. What is kanban? https://www.atlassian.com/agile/kanban

[29] OpenID. What is OpenID Connect? https://openid.net/connect/

[30] Microsoft. (2021, May 14th). What is Scrum. https://docs.microsoft.com/en-

us/devops/plan/what-is-scrum

https://www.trendmicro.com/vinfo/us/security/definition/indicators-of-compromise
https://www.interaction-design.org/literature/topics/interaction-design
https://www.interaction-design.org/literature/topics/interaction-design
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-v2-protocols
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-v2-protocols
https://www.nngroup.com/articles/paper-prototyping/
https://redis.io/
https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://enkonix.com/blog/functional-requirements-vs-non-functional/
https://enkonix.com/blog/functional-requirements-vs-non-functional/
https://softwareengineering.stackexchange.com/questions/171203/what-are-the-differences-between-server-side-and-client-side-programming
https://softwareengineering.stackexchange.com/questions/171203/what-are-the-differences-between-server-side-and-client-side-programming
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.geeksforgeeks.org/what-is-full-stack-development/
https://www.w3schools.com/whatis/whatis_fullstack.asp
https://www.atlassian.com/agile/kanban
https://openid.net/connect/
https://docs.microsoft.com/en-us/devops/plan/what-is-scrum
https://docs.microsoft.com/en-us/devops/plan/what-is-scrum

Postlude

Page xiii of xiv

[31] Bellairs, R. (2020, Februray 10th). What Is Static Analysis? Static Code Analysis Overview.

https://www.perforce.com/blog/sca/what-static-analysis

[32] VirusTotal. How it works. https://support.virustotal.com/hc/en-us/articles/115002126889-

How-it-works

[33] Gin Web Framework. (2022, April 29th). Single file. https://gin-

gonic.com/docs/examples/upload-file/single-file/

[34] ganlvtech. (2018, December 11th). file.Filename should not be trusted. There should be a

sanitize function, or give a warning in docs. https://github.com/gin-gonic/gin/issues/1693

[35] Golang. Package multipart. http://www.golang.pw/pkg/mime/multipart/#Writer.CreatePart

[36] Golang By Example. (2021, January 19th). HTTP- Understanding multipart/form-data

content-type. https://golangbyexample.com/multipart-form-data-content-type-golang/

[37] urlscan.io. urlscan.io A sandbox for the web. https://urlscan.io/about/

[38] Cisco. What is CI/CD? https://www.cisco.com/c/en/us/solutions/data-center/data-center-

networking/what-is-ci-cd.html

[39] Martí, D., & Shaw, K. (2021, April 27th). About chromedp.

https://github.com/chromedp/chromedp/blob/master/README.md

[40] Check Point. What is Remote Code Execution (RCE)? https://www.checkpoint.com/cyber-

hub/cyber-security/what-is-remote-code-execution-rce/

https://www.perforce.com/blog/sca/what-static-analysis
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://gin-gonic.com/docs/examples/upload-file/single-file/
https://gin-gonic.com/docs/examples/upload-file/single-file/
https://github.com/gin-gonic/gin/issues/1693
http://www.golang.pw/pkg/mime/multipart/#Writer.CreatePart
https://golangbyexample.com/multipart-form-data-content-type-golang/
https://urlscan.io/about/
https://www.cisco.com/c/en/us/solutions/data-center/data-center-networking/what-is-ci-cd.html
https://www.cisco.com/c/en/us/solutions/data-center/data-center-networking/what-is-ci-cd.html
https://github.com/chromedp/chromedp/blob/master/README.md
https://www.checkpoint.com/cyber-hub/cyber-security/what-is-remote-code-execution-rce/
https://www.checkpoint.com/cyber-hub/cyber-security/what-is-remote-code-execution-rce/

Appendices

Page xiv of xiv

Appendices:

Appendix 1: User Testing Spreadsheet

Appendix 2: Original Gantt Scheme

Appendix 3: Updated Gantt Scheme

Appendix 4: Project Plan

Appendix 5: Collaboration Agreement

Appendix 6: Time Log

Appendix 7: Meeting Log

Appendix 8: Wireframes

Person Age Technical
knowledge
(Bad - Basic -
Intermediate -
Advanced)

Log in Investigate URL Investigate file Log out Change
language

If some of the tasks were
unlcear of not finished,
comment on this (Mark
sections on the left green
or red based on if task was
successfully done)

1 22 Intermediate

2 25 Intermediate

3 26 Advanced Layout of website does not
scale good to wide screen

USER TESTING SPREADSHEET

ORIGINAL GANTT SCHEME MADE IN APP.TEAMGANTT.COM

UPDATED GANTT SCHEME SHOWING THE ACTUAL TIMELINE MADE IN APP.TEAMGANTT.COM

Project plan:

Group 116

Authors:

Johannes Madsen Barstad

Odin Korsfur Henriksen

Jonas Kjærandsen

Peder Andreas Stuen

January, 2022

Page 2 of 17

Contents
1 Goals and framework .. 3

1.1 Background ... 3

1.2 Project goals .. 3

1.3 Framework .. 4

2 Scope ... 5

2.1 Scope ... 5

2.2 Task description .. 7

3 Project organization .. 8

3.1 Roles and responsibilities.. 8

3.2 Routines and rules ... 9

4 Planning and reporting .. 10

4.1 Main division of project .. 10

4.2 Plan for status meetings and decision points .. 10

5 Risk analysis and organization of quality assurance... 11

5.1 Risk analysis at project level ... 11

5.2 Risk reduction measures ... 13

5.3 Resources .. 15

5.4 Plans for inspections and testing ... 15

6 Plan for implementation .. 16

6.1 Main activities ... 16

6.2 Milestones ... 16

6.3 Gantt chart ... 17

Tables and Figures

Table 1: Weekly meeting schedule ... 9

Table 2: Risk analysis table .. 11

Table 3: Incident descriptions ... 12

Table 4: Risk reduction measures ... 14

Table 5: Risk analysis after mitigations .. 14

Figure 1: Gantt Chart .. 17

Page 3 of 17

1 Goals and framework

1.1 Background

The background for this project is a task that is made by the Security Operation Centre (SOC)

at NTNU in Gjøvik. They need a web-based solution which can be used by all authorized

NTNU users to check if a file, a suspicious URL, or a domain has any malicious intents.

After careful consideration of the different Bachelor thesis tasks, we could choose from, all

the team members agreed upon this task. The reason behind this is our interest with the field,

as well as the relevancy of it.

The team has had a meeting with one of our contact persons at NTNU’s SOC to get a better

understanding of the task and some key points such as programming language, framework for

development and collaboration tools. The team have had a meeting with our supervisor as

well. During this meeting we discussed matters such as weekly scheduled meetings, the scope

of the Bachelor thesis and what kind of framework development to use.

1.2 Project goals

Our goal is to create a functional product, which includes an application with an accessible

API, Norwegian and English support, documentation, and automated tests. The team has

ambitions on getting a B for the Bachelor thesis, but this will require a good amount from all

members, both when it comes to work amount, as well as work precision. We think however

if these criteria are met, the grade B should be achievable.

An overview of the time usage, resource usage and milestones/ sub-goals can be found under

chapter 6 which contains a Gantt chart for the entirety of the project period.

Page 4 of 17

1.3 Framework

The framework we have decided to use for this bachelor project is scrum. The scrum

methodology is divided in four meetings, sprint planning, stand-up, review, and retrospective.

• Sprint planning:

In the Sprint planning it is discussed what the next sprint is going to achieve and who is doing

what. A sprint is a task.

• Stand-up meetings:

Stand-up is a small meeting where we give a report on how we are doing, what we have done,

what we are going to do, and if we are going to make the deadline for the sprint.

• Review:

During the review, the results are delivered, and we receive feedback on the sprint.

• Retrospective:

During the retrospective meeting we are looking back on the process of the sprint and look at

what can be improved for the next sprint.

A sprint can be defined as a small task / sub-project of our Threat-Total project which is each

a part of the complete Threat-Total product we will be developing. To help with tracking of

sprints and assignments we will be using Atlassian Jira.

Page 5 of 17

2 Scope

2.1 Scope

The scope of this bachelor thesis is to develop the application “Threat Total” for NTNUs

SOC department, which will be used to check URLs, Domains, and file-hashes against

several databases of IOCs both public and private.

Our scope is to develop a user-friendly application which will be used by NTNU students and

employees to lookup if a URL, domain, or file hash is malicious. We will develop the website

to support both English and Norwegian. The application will use publicly available reputation

sources and hash databases, as well as NTNU’s private reputation database to check if the

domain, URL, or file hash has a reputation of being malicious. The application will be

utilizing a REST API to communicate and access data from NTNU SOC. The website

application will also be utilizing the FEIDE portal login system and will be able to retrieve

contact information. This will be used whenever a hash, domain or URL is unknown for

NTNU, it will be possible to create a case for NTNU SOC. Security analysts can then further

check it out, analyze the case, and proceed with further communication with the user.

We will develop the backend in Golang, and the front-end will be developed using

JavaScript.

To increase the efficiency of our application it will also be important to look at implement

support for caching to store the most recently searched domains, URLs, and file hashes.

Page 6 of 17

Functionality:

• Functionality to search for a domain, URL, or file hash.

• Login functionality using FEIDE.

• Retrieval of contact information from FEIDE.

• The possibility to create an event for analysis to NTNU SOC.

• Utilize a REST API to retrieve information from NTNU SOC.

• The application should be able to show disposition for indicators (Domain, IP, etc.)

• Gather reputation data from both public and private (NTNU’s) reputation sources.

• Submit file, URL, domain.

• Block/allow list functionality for indicators.

o Filter for what can and cannot be displayed to the user.

• Submitted files should first be scanned automatically, and if no result is given the file

may be submitted for manual analysis. If the file previously has been analyzed, the

previous analysis should be submitted to the frontend user.

• [OPTIONAL] The application should be able to collect and display a screenshot of

the domain or URL that is sent in for analysis.

Content:

• A user-friendly easy to understand GUI.

• GUI supports both Norwegian and English.

• Text to display if this domain, URL, or file hash is known to be malicious.

• Display what reputation the domain or URL has.

• Display what file the file hash corresponds to.

• Must use NTNU’s color and branding.

What is not included in our scope:

• Discussed with the client that this will has to be determined as we are starting to

work. It is too early in the project to assign what we won’t be handling.

Page 7 of 17

2.2 Task description

The task is to develop a full-stack application “NTNU Threat Total”. The application is a

self-help solution in the form of a web portal where registered NTNU users can check if a

link or a file is dangerous, get feedback from the operation center about the risk of the file or

the site and finally view the status of eventual measures taken. If the file or page is unknown

there will be an option to send it to analysis and to create a case. In addition to NTNU sources

the application should retrieve information from open sources on the internet. The application

will be developed with automated tests and an accessible API to make integration with other

programs possible.

Page 8 of 17

3 Project organization

3.1 Roles and responsibilities

Information about client and supervisor:

• Client: NTNU SOC

• Contact person: Christoffer Vargtass Hallstensen, Group leader SOC

christoffer.hallstensen@ntnu.no

• Contact person: Frank Wikstrøm, Security analyst

frank.wikstrøm@ntnu.no

• Supervisor: Espen Torseth, Senior advisor

espen.torseth@ntnu.no

The team members of the project:

• Johannes Madsen Barstad, Project Leader

johanmba@stud.ntnu.no

• Odin Korsfur Henriksen

odinkh@stud.ntnu.no

• Jonas Kjærandsen

jonakj@stud.ntnu.no

• Peder Andreas Stuen

pederas@stud.ntnu.no

Our clients / stakeholders are Christoffer Vargtass Hallstensen and Frank Wikstrøm. Our

supervisor is Espen Torseth. In order to have a final decision if conflict arise, we will have a

project leader. The project leader we have chosen is Johannes Madsen Barstad. In email and

similar forms of communication our main contact will therefore be Johannes Madsen

Barstad.

christoffer.hallstensen@ntnu.no
frank.wikstrøm@ntnu.no
espen.torseth@ntnu.no
johanmba@stud.ntnu.no
odinkh@stud.ntnu.no
jonakj@stud.ntnu.no
pederas@stud.ntnu.no

Page 9 of 17

3.2 Routines and rules

• Be professional.

• Be a team player.

• Give notice in advance when you are unable to attend a meeting.

• It is expected of each of the team members to work an average of 25-30 hours

a week.

• If a member works less a day or a week it is expected for the member to

compensate for the missed work individually.

To organize the work throughout the week we will have daily scheduled meetings:

Meeting schedule:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

10:30 12:30 12:30 11:00 14:30

Table 1: Weekly meeting schedule

Page 10 of 17

4 Planning and reporting

4.1 Main division of project

The project will be divided into two main parts. First part being building the application, and

secondly documenting the work through the main project report. These two parts will be

progressed in parallel throughout the project period.

4.2 Plan for status meetings and decision points

The team thinks that weekly status meetings with supervisor is sufficient. By doing this we

can maintain a close communication and keep the supervisor updated on our progress. The

weekly status meeting will be held Mondays, from 12:00pm to 12:30pm. Minutes of meeting

should always be written and added as an attachment in the bachelor thesis report. We will

also have meetings with the clients where it is relevant, such as when a prototype is

completed, or another milestone is reached.

Page 11 of 17

5 Risk analysis and organization of quality assurance

5.1 Risk analysis at project level

Risk Analysis table:

Impact

Likelihood Low (1) Medium (2) High (3)

High (3)

Medium (2) No. 2

Low (1) No. 6 No. 1, No. 3, No.

4, No. 5, No. 7

Table 2: Risk analysis table

Incident descriptions:

Incidents Risk score Reasoning

No. 1 A team member gets sick and

unable to work.

3 Somewhat elevated likelihood

during the current pandemic.

Though can lead to backlog as

sickness will slow down project

work

No. 2 A team member is unable to

work due to personal matters,

such as going to their job.

4 3 out of 4 students in the group has

a job as SOC or student assistant.

Therefore, if not properly planned,

this can lead to a lot of backlogged

hours of work. Potentially leads to

exhausting all-nighters to catch up

lost work.

No. 3 Due time for delivery is not met. 3 Leads to project failure.

No. 4 Confidentiality is violated. 3 Could lead to potential project fail

No. 5 Unexpected specification

adjustments from client

3 Not likely that the SOC changes the

specifications, though if it were to

happen it would be critical, as this

would lead to a lot of do-over work

Page 12 of 17

No. 6 Conflict between team

members.

2 Low likelihood as we have worked

as a team over the whole course of

the bachelor, though there is always

a chance of conflict. Would create

some overhead as we spend time on

the problem instead of work but

should be manageable since it's

expected to happen rarely.

No. 7 Applications used for work

becomes deprecated.

3 Very low likelihood for modern

tools, though the possibility still

exists. If a tool we're using were to

be deprecated, the group would

have to re-organize work and create

a lot of work-overhead.

Table 3: Incident descriptions

Page 13 of 17

5.2 Risk reduction measures

Incidents:

Incidents Mitigation Rest risk

No. 1 A team member gets sick

and unable to work.

Hard to mitigate this incident as it is

often out of our control, good planning,

and collection of notes to not make us

fully dependent on a missing team

member would limit the damage this

has. Good notes would reduce the

impact of this incident.

2

No. 2 A team member is unable

to work due to personal

matters, such as going to

their job.

Hard to mitigate this incident as it is

often out of our control, but we would

try to plan around this to the best of our

ability to not decrease our product-

ability if one team member is missing.

Possible mitigation here includes

keeping our notes collected so we will

not be fully dependent on a missing

team member.

2

No. 3 Due time for delivery is not

met.

Weekly status meetings and organized

sprints to make sure work is completed

on time and delivery dates are met.

This will reduce the likelihood of the

incident happening, though impact

stays the same, which is project failure.

3

No. 4 Confidentiality is violated. By creating a policy that clearly states

what should be shared with whom,

reduces the risk of sharing sensitive

information to unintended parties.

Maintaining routines related to the

policy will further reduce the likelihood

of this risk. Impact stays the same.

3

Page 14 of 17

No. 5 Unexpected specification

adjustments from client

By keeping an open channel for

dialogue throughout the project and

having meetings where necessary we

hope to mitigate this risk. Reduces

likelihood and impact, as a good

dialogue would give better odds in

finding potential adjustments

2

No. 6 Conflict between team

members.

Open dialogue can mitigate the risk of

escalation of conflicts, allowing

members to view different point of

views. Also having the team leader to

have the final say, if discussion leads to

decisions. This would reduce the

impact of the risk, as the final word will

end discussion without further

escalation.

1

No. 7 Applications used for work

becomes deprecated.

Evaluation of the tool can mitigate the

risk of it being deprecated while the

project is ongoing. The impact of this

incident stays the same.

3

Table 4: Risk reduction measures

Risk Analysis table after mitigations:

Impact

Likelihood Low (1) Medium (2) High (3)

High (3)

Medium (2) No. 2

Low (1) No. 6 No. 1, No. 5, No. 3, No. 4, No.

7

Table 5: Risk analysis after mitigations

Page 15 of 17

5.3 Resources

README.md or GitLab wiki with detailed explanation of application usage, setup, and

deployment. The code will be documented and commented during the development period. In

addition to documentation and comments we will be writing automated tests for the software

to verify functionality where it is relevant.

Tools:

• Microsoft Teams, email, and Discord for communication.

• Jira for support with scrum and sprints.

• OpenStack for hosting VM’s for testing the web application and belonging

functions.

• GitLab and git for code collaboration and version control.

Resource specifications:

In NTNU’s virtualization platform SkyHigh we have been allotted the following resources:

• 32 VCPU cores

• 64 GB RAM

• 300 GB Storage

These are resources we will use to setup a common testing and hosting environment for

Threat Total.

5.4 Plans for inspections and testing

We will develop unit tests for the software so that you will be able to run automated tests for

different functions in the software. We will also perform user tests, if possible, to gauge the

usability of the frontend.

Quality in the report will be assured using scrum sprints in Jira. This is something we will

continuously work on, as well as to the end of the project period.

Page 16 of 17

6 Plan for implementation

6.1 Main activities
We have divided the project into the following main activities:

• Project plan: Writing this document, a precursor focused on planning the main

project work.

• GUI prototype: A frontend prototype for the website, used for receiving feedback on

and improving the frontend.

• User Testing: Two different activities for receiving feedback on the prototypes.

• Backend Development: Developing the backend of the software, API integration,

data handling and such.

• Frontend Development: Developing the frontend of the software, the website design.

• API & Unit testing: Creating unit tests for the software and testing the API

endpoints.

• Documentation: Writing documentation to the software, including how to use it, the

API endpoints and how to deploy it.

• Application improvement: Using feedback received from the clients and possibly

user testing to improve the application.

• API Integration: Integrating with external APIs as data sources.

• Research Phase: Researching relevant technology, methodology and such for the

project.

• Bachelor Thesis writing: Writing the bachelor thesis, the final report and relevant

attachments.

6.2 Milestones
The milestones we have set for the project include:

• Project plan delivery: The delivery of this document, this signals the start of the

main phase of the project where we work on the software we are developing.

• Wireframe GUI: Where we have finished a prototype of the frontend of the web

application which will be, if possible, tested on users, to receive feedback and start on

improvements.

• Threat Total Application Prototype: A prototype of the software which will allow

us to test the software, receive feedback and plan changes and improvements.

• Threat Total 1.0 Release: The final 1.0 release of the software, signaling a working

product.

• Bachelor Thesis Delivery: A finalized bachelor thesis, signaling the end of the

project.

Page 17 of 17

6.3 Gantt chart

Figure 1: Gantt Chart

Time logs

Page 1 of 4

Team time log

Date: Hours: Type: Description:

14/01/2022 2 Team

Meeting with the client, and work

after.

17/01/2022 2.5 Team Starting work with the project plan.

18/01/2022 2 Team

Work on the project plan,

scheduling future meetings.

19/01/2022 3.5 Team

Work on the project plan and the

gantt chart.

20/01/2022 2 Team

Meeting and work on the project

plan.

21/01/2022 2 Team Meeting with supervisor.

24/01/2022 2.5 Team

Meeting with supervisor and project

plan work.

25/01/2022 3.5 Team

Implemented scrum sprints with

Jira, project plan work.

26/01/2022 1 Team Gantt chart work.

28/01/2022 3 Team

Meeting with client and project

work

31/01/2022 3 Team

Meeting with supervisor and project

plan work. Wireframe work.

01/02/2022 4 Team

Setting up a basic web server.

Looking into css framework, will

most likely use tailwind. Looked

into web framework for golang

(gin). Signed documents.

02/02/2022 2 Team

Setting up our development

environment for tailwind and

prototyping.

03/02/2022 3 Team

Further prototyping with tailwind.

Preparation for meeting with Frank

regarding wireframes and frontend

development. Ubuntu server set up

in skyhigh.

04/02/2022 1 Team

Meeting with Frank regarding front-

end development. Organization of

sprint for next week.

07/02/2022 2 Team

Status meeting with supervisor.

Improvement of project plan.

Discussing ReactJS implementation

vs og templates

08/02/2022 2 Team Frontend and backend work

09/02/2022 2 Team Frontend and backend work

14/02/2022 1 Team
18/02/2022 1 Team Discussing further work

21/02/2022 1 Team Standup meeting and work planning

Time logs

Page 2 of 4

03/03/2022 5 Team

URL search functionality, checking

its validity with a regular

expression. Translating meeting

logs. Making a skeleton for main

report.

04/03/2022 2 Team TT development

07/03/2022 1 Team

Meeting with supervisor and TT

development

16/03/2022 3 Team Work on external api's

21/03/2022 1 Team

Monday meeting, API from NTNU

has been confirmed done, though the

access has not been set up yet.

01/04/2022 1 Team

Meeting with NTNU SOC regarding

demo and API access

04/04/2022 1 Team

Meeting with supervisor and

creation of new sprint

07/04/2022 1 Team

Status updates and how we're doing

on the current sprint

23/04/2022 1 Team

Meeting with supervisor and

divition of tasks

28/04/2022 4 Team

Collaborative work on implementing

OpenID Connect

29/04/2022 5 Team

Colaborative work on creating

reverse proxy in golang, and file

upload and handling

02/05/2022 7.5 Team

Setting up sonar qube for code

quality assurance and security

testing, implementing FEIDE

authentication, finished file

uploading for backend

03/05/2022 7.5 Team

Main report work, FEIDE and OIDC

work, started with implementing

logging to seperate log file, file

upload work

04/05/2022 4 Team

Main report work, FEIDE and OIDC

work, representation of file analysis

result work

05/05/2022 5 Team

Main report, FEIDE authentication,

upload file and show response.

06/05/2022 5 Team

Main report work, tieing up FEIDE

authenitcation, implementin of

logging functionality

07/05/2022 4 Team

Internal discussion and work with

main report, dividing fileupload

functions into separate file, securing

fileupload endpoint

Time logs

Page 3 of 4

08/05/2022 6 Team

Main report work, finishing up code

and implementing TLS for redis and

backend

09/05/2022 6 Team

Implementation of URL screenshots,

implementation of simple filter

functionality for URL's, main report

work

10/05/2022 6 Team

Finishing URL screenshot,

implementation of simple email

system for case escalation, main

report work

12/05/2022 4 Team

Main report work, minor bug fixes

(log in with FEIDE, wait group for

url-filter check, fetching of file hash

information and displaying to user)

13/05/2022 6 Team Main report work

14/05/2022 4 Team Main report work

15/05/2022 4 Team Main report work

16/05/2022 6 Team

Main report work, merging React-

branch into main branch

18/05/2022 5 Team

Main report work, commenting code

and removing unused functionality

19/05/2022 9 Team Finalizing report and delivering

Time logs

Page 4 of 4

Summarized time log

Estimated weekly summary of hours per person, considering both

team and individual work
Week

nr Hours: Description:

Week 2 12 Bachelor task startup meetings, Meeting with the client and work after.

Week 3 20 Project plan work

Week 4 21 Jira, scrum and Gantt

Week 5 25 Prototyping

Week 6 20 Frontend and backend work, getting used to the tools

Week 7 25 More frontend and backend work

Week 8 20 More frontend and backend work

Week 9 25 Various functionality work, skeleton for main report

Week

10 31 Threat Total development

Week

11 29 External API integration

Week

12 30 More development

Week

13 32 More development and live demo prototype for NTNU soc

Week

14 19 Further development after feedback from SOC

Week

15 15 Threat Total development

Week

16 17 Development and delegating more tasks

Week

17 12 On site development working

Week

18 39 See team time log

Week

19 36 See team time log

Week

20 22 See team time log

Sum 450

Page 1 of 9

Logs of all the meetings

Meeting with supervisor, 21.01.2022:

• Agile stand-up / weekly meeting: 5–10-minute meeting where we discuss what we have done,

what needs to be done and organize future work. Stand-up because meeting where people

stand are often quicker or more efficient.

• Use Kanban boards to organize.

• With advisor after twelve on Mondays, or before twelve on Thursdays.

• Do not spend a lot of time finding the perfect framework, see what works for your team and

follow it.

• A part of the bachelor is writing why we used a framework / method, how we used it and such.

• The project is one of the most useful projects in real life.

• It is important for the interface to be accessible, easy to view and understand.

FRAMEWORK:

Find a form that fits us best as a group

Check out agile methods

Find a method/framework that works best for us as a group.

Check out agile methods.

SCOPE:

Agree with client the scope from the hours we have available.

Can adjust what will be done and what will not be done, and the quality of this. What is the quality

requirements?

Important to state what will not be done, define scope accordingly.

WEEKLY STATUS MEETINGS:

Espen – Mondays after 12 and Tuesdays before 12

Page 2 of 9

meeting log 21.01

start writing the main report AT ONCE.

Writer down points and all we have done!

Scope – what we SHOULD do, what we SHOULDN’T do

Let client know have many hours that has been used

Iterative model

What are the quality requirements?

Time, quality, resources, pick two

Most important thing about task is to show that it works

Basic agile → regular short meetings (a common understanding of the situation)

• What was done since last time?

• What do we plan to do next time?

• What can stop us from doing this?

5 – 10 minutes

A part of the bachelor thesis is to describe how the method is used in the task, therefore a simple and

intuitive model should be implemented for better task execution

Meeting with supervisor, 24.01.2022:

Organize meetings where we declare / decide upon expectations. Decide on what can be done within

the allotted time and what the client wants done. This is an important bullet point for the scope and

time plan. We should document that we have had dialog with the client and resulting adjustments. It is

not necessarily important to document everything said in the meeting, but changes that come as a

result from meetings are important to note. This is a give and take process. Think about the meeting

beforehand, prepare. What do we know and what can we easily learn?

Meeting 28.01.2022 with clients, mostly focused on defining the scope of the project and contracts for

the project plan:

Include staff as the main target audience of the project.

Add a point under scope: “The application should be able to show disposition for indicators (Domain, IP,

etc.)”

Providing a screenshot of the URL / webpage provided will be optional.

Page 3 of 9

Blacklist functionality, don’t return data on certain indicators.

Meeting with SOC v/Christoffer and Frank, 28.01.2022:

• Further defined Scope as we were missing some information here

• Clarified when we're getting the agreement signatures

o Christoffer will go through this in the weekend

o We'll further finish this on Monday

• Figured that it's hard to define what we're NOT doing in the scope, this early in the project.

o Would have to define this later when we've figured out what implementations we're

doing.

Meeting with supervisor, 31.01.22:

• Informed supervisor about our progress with the project plan as well as communication with

NTNU SOC

• Agreed with supervisor about sending the finished project plan on email by the end of the day.

Meeting with SOC / Frank 04.02.2022

Information if several people have searched this URL and other statistics

Admin interface/ advanced mode

Historical data, we have seen the link before and screenshot

Page 4 of 9

All steps in redirects if possible

Show the user all the different parts via redirects from start to finish

There is a page on “innsida” about graphics and stuff

File hashes and information about malicious files are stored on an internal system at the SOC

04.02.2022

notes frontend meeting

1.Do we run Anti-Virus agent? How many?

 - We will handle reputation firstly

 - It does exist sand boxes which will handle analysis if needed

2.Special demands about NTNU branding?

 - Is enough with what we got

3.Special colour demands?

 - Should be within NTNU’s colour profile

 - Information about this on NTNU’s web pages

4.Should we include a help page which explains the use of different web page functionalities?

 - Don’t do anything big out of it, keep it simple stupid

5.Do we get access to FEIDE-login?

 - We will get this eventually

6.What information about file hashes are stored?

 -NISP, AlienVault, can also fetch externally

07.02.2022, meeting with supervisor

Add risk mitigating steps for our risk evaluation

Hold notes and thoughts in one place

Frode will go further into report writing

Important to start with the main report early!

Page 5 of 9

Important to store all used sources! NTNU has a very strict policy regarding this

11.02.2022, decisions about frontend modules

Lit elements pros:

+use of bootstrap

+ simpler to transfer data from frontend to backend

+ should not be problematic to send JSON data around

Currently using lit elements, can use tailwind inside lit elements

➔ Using node stack

21.02.2022, meeting with supervisor

• A lot of work with cloud assignment has prevented Peder and Johannes from Bachelor work

• Changed front-end library from lit elements to ReactJS

• Still wating for API access

• Should start thinking about backend organization

o Two backends

Something things to start with:

• How to organize project and code regarding API access

• Look at how to transfer JSON data between web server and Golang

07.03.2022

• Our plan ahead:

o Waiting for API access

o Started to integrate third party API’s

o Start with testing

▪ User testing?

• Any other big barriers?

o No, just API access

o Some trouble with use of react

• Should start with the report

Page 6 of 9

• Deliver first draft of main report before easter break

o Espen will look through this and come with his taught

Meeting with supervisor, 14/03/2022

• How to get out of a black hole

o Take a walk outside

• What we have done this week:

o Main report work

o File handling in front-end

o About page

• What our plan is forward:

o Continue working with previous week’s tasks

• Espen will talk to the SOC regarding API access

Meeting with supervisor, 21/03/2022

• What have do done since the last meeting?

o Implementation of public API’s functionality.

o Backend development, frontend development.

• Our plan ahead

o Main report work

o Integration with NTNU SOC’s tailormade API (when we get access to it)

• Do we see anything that can stop us from continuing the work?

o No, not really. It really comes down to us team members and how we work

• NTNU SOC said that we will get API access by the end of this week.

Meeting with supervisor, 28/03/2022

• How is the progress since last meeting?

o Tried to divide tasks between team members

o Still waiting for API access

o Starting to get finished with frontend development

o The plan is to get a meeting with the SOC by the end of this week

• Greatest obstacles until now:

o Poor communication with SOC

o We were not given access to the API within the timeframe we were promised originally

• Plan ahead:

o Continue working on current tasks

o Get access to APIs

o Continue working on main report

• What should be included in the first draft of main report?

Page 7 of 9

o Structure of the entire report

o One finished chapter, if possible

• Main report work should not be in the way of getting API access

Meeting with NTNU SOC, 01/04/2022

• Colour scheme on result page:

o Remove red colour when result come back as safe (placeholder for now)

• Feide login:

o We can make a template ourselves via dataporten

o Kent will fix feide connection, or documentation

• Branding assets:

o Use what we’re using now, despite that this is png and not svg

• Caching:

o Memcache will work just fine

o 1 hour cache time as default, but this should be a configurable parameter

• Languages:

o Cookie solution and URL will work fine, this decision is up to us

o Try to use URL first

• Blackboxes:

o Threatgrid, their malware sandbox

▪ Will use about 5 minutes to analyse the input file

▪ If this doesn’t return any result, this sample should be sent to manual analysis

▪ Check if this file has been analysed previously to prevent duplicates

o Misp, open-source threat database

▪ Php website with database as backend

▪ We can setup our own misp server in docker for testing

▪ Huge variety in reported values

▪ Lack of security when testing

o Threatresponse:

▪ Commercial service

• Test instance:

o Pushes out data we can use for reputation

o JSON

• Filtering:

o It is quite easy to filter data based on access level

• Secure file handling:

o Best practice regarding GDPR

o File will be analysed at NTNU SOC. No other 3. Parties

• Case tracking:

o Button to send email and create a case with a case number

o Details about user will be fetched via the login with FEIDE

• Screenshots of URL’s webpage (OPTIONAL):

Page 8 of 9

o Christoffer posted a GitHub repo which offers this functionality

• We can work at the SOC if we want to

o We have access to meeting rooms and free coffee!

Meeting with supervisor, 04/04/2022

• Access to SOC API yet?

o Have not gotten access to SOC API’s yet, but information about them

o Have gotten information and clarification around question in the meeting with the SOC

• What to do:

o Implement caching

o Work with the feedback from SOC

o Peder and Johannes are nearly finished with cloud assignment, more focus on bachelor

work

o Should deliver a first draft of main report to Espen before easter break (absolute

deadline: 12th april)

Meeting with supervisor, 22/04/2022

• API access:

o Originally finished, but vulnerable (which is why we haven’t got access yet)

o We have a docker instance already running with MISP on it

o Use this as the SOC use I similar instance to store internal data.

• We have already implemented checks against public antivirus agents.

• Explaining reasoning of why communication with internal APIs is not implemented.

• Include in report what is necessary to go from local running version to version in production.

• Demo on the presentation can affect final grade.

• 1 slide = 3 – 5 minutes

Meeting with supervisor, 02/05/2022

• Plan:

o Get finished with things we have started to implement

▪ File upload

▪ FEIDE integration

▪ Caching

o Then starting to write the report full time

• Either live demo or recorded for the presentation

• We must expect questions off topic in the presentation

Page 9 of 9

Meeting with supervisor, 09/05/2022

• What have we done:

o Tieing up the code

o Main report work

• Deliver final draft to Espen, May 14th

• What will we be doing:

o Main report work

o Finish last code functions and commenting

• Demonstrate live language change without new API call

Wireframes

Page 1 of 6

Wireframes

Page 2 of 6

Wireframes

Page 3 of 6

Wireframes

Page 4 of 6

Wireframes

Page 5 of 6

Wireframes

Page 6 of 6

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Johannes Madsen Barstad
Odin Korsfur Henriksen
Jonas Kjærandsen
Peder Andreas Stuen

NTNU Threat Total

A Self-Service Threat Intelligence Solution

Bachelor’s thesis in Bachelor in Digital Infrastructure and Cyber
Security
Supervisor: Espen Torseth
May 2022

Ba
ch

el
or

’s
th

es
is

