
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Nicholas Bodvin Sellevåg
Yan Senko
Fabian Kongelf
Oddbjørn S. Borge-Jensen

Exploring possibilities for GitLab as a
Learning Management System

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Guoqiang Li
June 2022

Ba
ch

el
or

’s
th

es
is

Nicholas Bodvin Sellevåg
Yan Senko
Fabian Kongelf
Oddbjørn S. Borge-Jensen

Exploring possibilities for GitLab as a
Learning Management System

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Guoqiang Li
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

ABSTRACT

Title : Exploring possibilities for GitLab as a Date : 20/05/2022
 Learning Management System

Participants : Nicholas Bodvin Sellevåg
 Yan Senko
 Fabian Kongelf
 Oddbjørn S. Borge-Jensen
Supervisor(s) : Guoqiang Li

Employer : Erik Hjelmås

Keywords : Learning Management System, Automation, Web, Git, Programming
(3-5)
Number of pages: 82 Number of appendix : 30 Availability : Open
Short description of the bachelor thesis :

The thesis is conducted as an experiment for exploring the possibilities of using Gitlab as a Learning
Management System (LMS). There are several challenges an LMS should strive to solve. Erik
Hjelmås, Associate Professor at Norwegian University of Science and Technology, has defined the
challenges as follows:

1. Provide easy access to public information
2. Support User Access Control
3. Publish announcements
4. Handle assignments
5. Perform digital testing
6. Host discussion forums

Consequently, the group members of the thesis researched to which degree the challenges can be
solved within the Git based system Gitlab. As a result, the group members have developed a system
which demonstrates methods to solve the first four challenges defined by Erik Hjelmås. The
developed system consists of several components to transform markdown documents into websites.
Teachers can provide the system with their course material as markdown and automatically generate
corresponding websites accessible for students. The GitLab solution allows users to circumvent the
Graphical User Interface of generalized systems like BlackBoard Learn by using the Git command
line interface (CLI) to change and upload files. Several of the professors the group interviewed for
this thesis expressed significant enthusiasm for CLI-oriented methods in contrast to web interfaces.

The group concludes that GitLab Pages is capable of offering a partially suitable replacement to the
traditional LMS, but only for users with sufficient IT experience. There are however some things the
existing systems do that GitLab cannot replicate. This includes the out of scope challenges of digital
testing and discussion forums, but also some elegant solutions that requires a proper dedicated
database, and not just a Git repository.

SAMMENDRAG

Tittel : Exploring possibilities for GitLab as a Dato : 20/05/2022
 Learning Management System

Deltaker(e) : Nicholas Bodvin Sellevåg
 Yan Senko
 Fabian Kongelf
 Oddbjørn S. Borge-Jensen
Veileder(e) : Guoqiang Li

Evt.
oppdragsgiver :

Erik Hjelmås

Stikkord/nøkkel
ord (3-5 stk) :

Learning Management System, Automation, Web, Git, Programming

Antall sider/ord : 82 Antall vedlegg : 30 Publiseringsavtale inngått : Åpen
Kort beskrivelse av bacheloroppgaven :
Bachelor oppgaven er utført som et eksperiment for å utforske muligheter ved å bruke Gitlab som
en Læringsstyrringssplattform (LMS). Det er en rekke utfordringer tilknyttet hva LMS tilstreber å
tilby. Erik Hjelmås, Førsteamanuensis på Norges teknisk-naturvitenskapelige universitet, har
definert utfordringene som følgende:

1. Gi enkel tilgang til offentlig informasjon
2. Støtte brukertilgangskontroll
3. Publiser kunngjøringer
4. Håndtere innleveringer
5. Utføre digital tester
6. Tilgjengeliggjøre diskusjonsforum

Gruppen har utforsket til hvilken grad disse utfordringene kan løses gjennom bruk av GitLab Pages.
Som et resultat av denne utforskningen har det blitt utviklet et system som demonstrerer metoder
for å løse de første fire utfordringene som har blitt definert av Erik Hjelmås. Det utviklede systeme
består av en rekke komponeneter som lager en nettside basert på markdown filer. Forelesere kan
laste opp sitt kursmateriale i systemet som markdown filer og disse vil automatisk brukes til å
generere tilsvarende nettsider og gjort tilgjengelig for studentene. GitLab løsningen lar brukere
unngå det grafiske brukergrensesnittet til generaliserte systemer som BlackBoard Learn ved å bruke
Git terminalen for å endre og laste opp filer. Flere forelesere som gruppen har intervjuet for
prosjektet har uttrykket entusiasme for en slik løsning ovenfor mer abstrakterte nett-grensesnitt.

Gruppen har kommet frem til at Gitlab Pages kan tilby en delvis tilfredsstillende erstatting av en
tradisjonell LMS, men kun spesifikt for IT-erfarne brukere. Det er derimot en rekke aspekter ved de
eksisterende systemene som ikke kan gjennskapes i Gitlab. Dette inkluderer funksjonalitetene
utenfor oppgavens omfang som for eksempel digital testing og tilgjengeliggjørelse av
diskusjonsforum. Det er også flere elegante løsninger som påkrever dedikerte databaser og ikke
bare et Git repository

Preface

This bachelor thesis concludes the bachelor degree programDigital Infrastructure and Cyber Se-

curity spanning three years at the Faculty of Information Technology and Electrical Engineering

(Norwegian University of Science and Technology, NTNU). The thesis has been a collaborat-

ive project between four students; Nicholas Bodvin Sellevåg, Yan Senko, Fabian Kongelf and

Oddbjørn S. Borge-Jensen. Group members have worked together on several projects through-

out their studies at NTNU. The task description was given by Erik Hjelmås, Associate professor

at the Department of Information Security and Communication Technology. Group members

would like to address their gratitude towards Erik for expressing interest in the project, but fore-

most his role as our teacher and course coordinator.

Conducting the thesis would not be possible without the assistance of our supervisor Guoqi-

ang Li. Weekly meetings discussing the purely academical aspects of our research process and

thesis structure were a tremendous help throughout the project. We would also like to thank all

professors and students who participated in our survey and took part in interviews.

Repositories

All code produced for the project is available at the following repositories. Only the working

repository supports the GitLab Pages pipelines; the code repository was only made to have a

redundant back-up repository on the git.gvk.idi GitLab instance.

Working repositories: https://gitlab.stud.idi.ntnu.no/bachelor1

Code repository: https://git.gvk.idi.ntnu.no/Fabian/dcsg2900-gitlab-pages

iii

https://gitlab.stud.idi.ntnu.no/bachelor1
https://gitlab.stud.idi.ntnu.no/bachelor1
https://git.gvk.idi.ntnu.no/Fabian/dcsg2900-gitlab-pages
https://git.gvk.idi.ntnu.no/Fabian/dcsg2900-gitlab-pages

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Task . 1

1.2 Problem area . 2

1.3 Project scope . 3

1.4 Demographic . 4

1.5 Report Structure . 5

2 Background 6

2.1 Field of study . 6

2.2 Purpose . 6

2.3 Motivation . 7

2.4 Project Members . 7

2.4.1 Organizing . 8

2.4.2 Distribution of Workload . 8

2.5 Experience . 9

2.6 State of the art . 9

2.6.1 Blackboard Learn . 9

2.7 Related technologies . 10

3 Methodology 15

3.1 System requirement analysis . 16

3.1.1 Functionality to create website from markdown 16

3.1.2 Functionality to support access control 17

3.1.3 Functionality to publish announcements 17

3.1.4 Functionality to handle assignments 17

4 The developed system 17

4.1 System architecture . 17

4.1.1 Architectural requirements . 18

4.2 System Design . 23

iv

4.2.1 Information Publication via GitLab Pages 23

4.2.2 Exclusivity of private information with roles 25

4.2.3 Engaging announcements through automation 26

4.2.4 Deliverables . 28

4.2.5 Confidence and integrity of software through testing 29

4.3 Page design . 30

4.3.1 Visual Design . 31

4.4 Implementation . 40

4.4.1 Functionality to create website from markdown 40

4.4.2 Functionality to support access control 41

4.4.3 Functionality to publish announcements 44

4.4.4 Functionality to handle assignments 46

4.4.5 Docker-container . 47

4.4.6 Timing-issues . 48

4.4.7 Deploy stage in Gitlab CI . 49

4.5 LMS installation and deployment . 53

4.5.1 Prerequisites . 55

4.6 File Structure Overview . 55

4.7 Security . 57

4.7.1 Endpoint Protection . 57

4.7.2 GitLab’s Security Measures . 58

4.7.3 GitLab Access Control . 62

4.7.4 Ruby . 63

4.7.5 Jekyll . 64

4.7.6 Container Security . 65

4.7.7 Vulnerability scanning . 66

4.7.8 Trusted Docker images . 68

4.7.9 CI/CD best practices . 70

4.8 Quality Assurance . 70

4.8.1 Definition of Requirements . 70

4.8.2 Automated Reports . 71

v

5 Conclusion 73

5.1 Conclusion of possibilities for Gitlab as a Learning Management System 73

5.2 Evaluation . 77

5.2.1 Organizing . 77

5.2.2 Distribution of Workload . 78

5.2.3 Project as a form of work . 79

5.3 Reflection . 79

5.3.1 Results . 79

5.3.2 Discoveries . 80

5.4 Critique of task . 81

5.5 Future Considerations . 82

A Definition of Done 89

A.1 Functionality to create website from markdown 89

A.2 Functionality to support access control . 92

A.3 Functionality to publish announcements . 95

A.4 Functionality to handle assignments . 97

B Survey 99

C Interviews 106

C.1 Mariusz Nowostawski . 106

C.2 Ivar Farup . 112

C.3 Frank Alexander Kramer . 116

C.4 Rune Hjelsvold . 119

C.5 Henrik Johnsen . 122

D Project Management 125

D.1 Time log . 125

D.1.1 Nicholas Bodvin Sellevåg . 125

D.1.2 Yan Senko . 128

D.1.3 Fabian Kongelf . 131

D.1.4 Oddbjørn S. Borge-Jensen . 134

D.2 Project Planning . 137

vi

D.3 Gantt Chart . 146

D.4 Project contract . 148

D.5 Minutes of Meetings . 155

D.5.1 Client meeting summaries . 155

D.5.2 Guidance meeting summaries . 160

D.6 Task . 167

vii

List of Figures

1 GitLab Pages flowchart . 12

2 Container VS virtualization . 15

3 Values of the architecture . 19

4 Sequence diagrams for deliverables . 23

5 Sequence Diagram of website generation . 24

6 GitLab project hierarchy access levels . 25

7 GitLab project hierarchy creation . 26

8 Flowchart of five independent Docker Containers 27

9 Sequence Diagram of the ”Notification” pipeline 27

10 Code snippet from sendAnnouncement script depicting the curl request 28

11 How the announcement looks on teams . 29

12 The LMS’s semantic element design . 32

13 Erik Hjelmås’ compendia in HTML format on GitLab Pages 33

14 Hamburger navigation content . 34

15 footer design . 36

16 UX of the index page . 36

17 Mobile version of a web page . 38

18 Problem with older announcements . 40

19 Snippet from Mariusz Nowostawski’s Gitlab Administration appendix 42

20 Thesis’s script for course creation in Gitlab to support private information . . . 43

21 config.sh script snippet . 43

22 deploy.sh script snippet . 44

23 Source file structure . 50

24 Generated nav directory . 50

25 Generated nav page markdown file . 50

26 Source content folder (left) and resulting website folder (right). 52

27 Command retrieving list of directories . 52

28 Multi-project pipeline configuration . 55

29 File structure of the GitLab repository. 56

30 File structure of the /webpage directory within the GitLab repository. 56

viii

31 Gitlab CI/CD Snyk configuration . 67

32 Snyk vulnerability history . 68

33 Snyk issue description . 68

34 Snyk report . 69

35 Docker official images . 69

36 Pa11y web accessibility report . 72

37 CodeQuality service report for GitLab . 72

ix

1 Introduction

1.1 Task

According to Erik Hjelmås, Associate Professor at NTNU, both the faculty and the student body

at NTNU have expressed discontent towards the existing LMS solution in use at the school,

BlackBoard Learn. This opinion seems to be shared by the student body and other members of

the faculty, according to a survey the group conducted available in Appendix B and interviews

with several educators at NTNU, including Deputy Head of Education Department, Frank Alex-

ander Kramer viewable in Appendix C.3. Hjelmås wishes to explore alternative ways of meeting

the needs currently handled by the LMS through other technologies already in use at NTNU. He

has defined these needs in the form of the following six challenges:

1. Provide easy access to public information.

2. Provide some form of access control to specific files.

3. Publish announcements.

4. Create assignments and receive deliverables.

5. Perform digital tests.

6. Host a discussion forum.

Albeit the existing LMS fulfills all these requirements to a certain extent, Hjelmås wishes to

explore whether other systems currently in use at NTNU can solve the same challenges and

partially replace BlackBoard. Hjelmås would like the first four of these challenges to be solved

through a solution made in GitLab Pages, while the remaining two can be delegated to other

technologies and are as such out of scope for this thesis.

The task is to explore the possibilities for recreating certain LMS elements through an alternate

service, with a primary focus on usingGit andGitLab Pages. The end goal is to discover possible

ways to develop the key functionalities outlined byHjelmås, andwhether or not it is even feasible

to meet those requirements by using Git technologies at all.

The research questions of the thesis are therefore as follows:

1

• How should a web page with all the necessary open information for an IT course look

like?

• How can information be posted publicly using GitLab Pages?

• How can a GitLab Pages handle the following forms of access control?

– Information available to all

– Information available only to participants of a given course

– Information available only to the course coordinator

• How can GitLab Pages be used to deliver announcements to students?

• How can receiving deliverables and providing teacher feedback be implemented in Git-

Lab?

1.2 Problem area

An LMS is absolutely vital to the modern education system. They represent a platform that al-

lows educators to effectively share information with their students by gathering all the required

curriculum, assignments, and grading in a single place. This digitalization of information makes

it easier for students to follow their courses and keep up to date with relevant information and

deadlines. There are several excellent options for educational institutions to choose from, but

most of these options are designed to appeal to as many users as possible. This is not neces-

sarily a bad quality, however there are times where a specific demographic might want a more

specialized tool, tailored to their own needs.

BlackBoard Learn - NTNU’s current LMS - is subject to complaints from both student body

and faculty alike. Some teachers find it to be restrictive, with some settings and functionalities

hidden and hard to use. Students experience that it can be difficult to find the content they’re

looking for in the current LMS structure. For teachers and students in the IT field that are

familiar with file-sharing and version control, some of the abstraction and design of the site can

be more of a hindrance than a help. This in turn raises a very interesting question: Could any

of the existing tools already taught and used at NTNU be used to fulfill the needs traditionally

fulfilled by commercial learning management systems?

2

1.3 Project scope

In order to ensure the group can fulfill the assignment in a good and efficient way, an actionable

scopewas defined through communicationwithHjelmås. The purpose of this section is to clarify

what the group must accomplish to answer the assignment to a satisfactory degree.

Scope

• The thesis should explore whether the proposed tasks can be solved using GitLab Pages.

• The developed system should demonstrate the discovered solutions.

• The front-end of the system should have an academical appearance matching that of ex-

isting websites affiliated with NTNU.

Limitations

The system is uniquely designed for educators with a base level of IT know-how, and as such

there will be a reduced focus on abstracting the teacher’s end of the system. As an extension of

this, repository developers are expected to have a Linux environment available in which to run

certain scripts essential to the system’s performance.

Effect goals

These goals outline the desired outcomes of using the finished system, based on the group’s

conversations with Hjelmås. They serve to guide the direction of the project and will be used to

determine both result goals and system requirements.

• Simplify IT educators’ teaching experience by offering a tailor-made solution using Git

technology as opposed to a generalized system.

• Make non-copyrighted or otherwise confidential teachingmaterials from a teacher’s courses

open to the general public.

3

• Reduce costs and increase flexibility by utilizing an open-source solution as opposed to a

contract-based product.

• Minimize risk associated with the website front-end of the developed system.

Result goals

Criteria that should be met for the project to be considered finished are listed as result goals.

The result goals serve to help measure the progress of the system throughout development and

outlines key points that should be met in order to satisfy the intended effect goals of the project.

It is noteworthy that performance is not the focus of the project, moreover there aren’t many

relevant numerical values to be measured or set as goals. The nature of the thesis is to explore

possibilities and develop prototypes, and as such the result goals are more akin to milestones.

• Decide whether or not the defined challenges can be solved using GitLab Pages.

• Develop a prototype that demonstrates a possible implementation of the discovered Git-

based solutions.

• Ensure the system is entirely open-source and free to use.

• The project should be finalized by May 20, 2022; i.e. 4 months from project start.

1.4 Demographic

When creating a product, it is important to plan out who the potential customer will be. The

target of our task was already defined by our client as members of higher education who have

a certain level of IT competency, and who are unhappy with the existing solutions. Hjelmås

elaborated that this system would most likely only be used by second year students and higher,

ensuring that all users should have a base level of experience with Git technologies.

The demographic is further divided into two main types of users. One is the course coordinator

whowill be running theGitLab repository. Seeing as their role is to run the repository, these users

will be given full Git developer status and are as such expected to have a significant amount of

experience with Git and other basic aspects of IT like running scripts locally. The other group of

4

users is the students. Students will mainly be interacting with the product through the website(s)

generated by GitLab Pages, and any interaction with the actual repository will only be required

when absolutely necessary. That being said, students are also expected to be familiar with Git.

1.5 Report Structure

This section shortly describes the premise of the different sections of the report.

Introduction

The introduction sets the tone for what our task is about. We describe the task provided, by

stating the requirements set by our client, as well as defining limitations of our own in Project

Scope.

Background

Background serves as the basis for the project, stating information that is already known. This

section describes the goals set by the group for the project, as well as providing the reader with

some insight on the existing LMS solution, before moving on with presenting our own findings.

Methodology

Methodology describes the process from task acquisition until drawing a conclusion. An ana-

lysis of the system requirements is also mentioned, where a descriptive version of the provided

challenges is defined.

Implementation

Implementation delves into the technicality of the product made for the client. The section

covers the system architecture, as well as the internal design and an overview of the implemented

features. It presents our researched and developed solutions for the aforementioned challenges,

before discussing the security of the new installments.

5

Conclusion

Lastly, reflection and evaluation of the project is discussed. An assessment of whether or not

this is deemed considerable to work with in the future is also brought up.

2 Background

2.1 Field of study

The group is taskedwith researching and exploring the ability to use GitLab as a LMS or learning

assisting tool. In order to complete this task the group has explored several fields of study. Below

is a short presentation of the academical fields that has been the most relevant to the project.

Information Technology encompasses all computer related ventures, and the the combination

of technologies and methods used make the project fall squarely under the field of IT.

Educational Technology is learning through technology by a combination of computer hard-

ware, software and educational theory[2]. The project aims to replicate LMS functional-

ities and is as such considered to heavily entail Educational Technology.

Information Security is part of information risk management and is the practise of protecting

information by mitigating risk. The field of information security is always relevant to

some degree when developing software, and this project is no exception.

Web Development The end goal of the project is to create a system that generates websites,

which necessarily includes the development and design of the resulting site.

2.2 Purpose

The purpose of this thesis is to explore the possibilities of solving certain LMS-related challenges

using NTNU-supported tools, mainly in the form of GitLab Pages. The task description only

demands the exploration of these possibilities, with no mention of product development being

necessary. However, as the project developed further and through further talks with Hjelmås,

6

it was decided that the group should also develop a functioning prototype demonstrating the

solutions discovered.

The main task became to develop an alternative to general LMS solutions, taking into account

the requirements posed by the task description as well as facilitating the needs of other IT stu-

dents who are also dissatisfied with the current platform. This was done in close collaboration

with other teachers within the faculty, who have either showed interest in the project or have

knowledge and experience relevant to the themes of the task. The group made contact with

several educators who had developed their own GitLab Pages solutions, hoping that they would

have insights that could help with the thesis.

2.3 Motivation

As an underlying assumption in bachelor thesis, the populace is dissatisfied with current im-

plementations of Learning Management Systems. Interest in researching alternatives for LMS

has risen gradually for the duration of being students ourselves. Fundamentally, education has

a manifold impact on society. At the individual level it serves as a playing ground to acquire

social skills, knowledge and opportunities. On a larger scale education is closely linked to soci-

ety as a whole considering most if not all of men and women undergo extensive periods of their

lives living as students. With this in mind, everyday life of students and teachers are centralized

around Learning Management Systems. Because the populace is dissatisfied with the current

solutions for LMS, this bachelor thesis serves an important role of presenting opportunities in

alternative systems, as well exhibit an exposition of an LMS based on openness of information.

2.4 Project Members

Group members conducting the bachelor thesis are as of writing finalizing their bachelor degree

program “Digital Infrastructure and Cybersecurity”. Albeit studying in the same program, each

member have a different field of interest and background than their peers.

It is notable that prior academical studies, working experiences and expertise have affected the

management and methodology framework of thesis.

7

2.4.1 Organizing

Group members are organized into the roles of:

• Scrum Master

• Analyst

• Developer

Scrum Master ensures common understanding of values and goals during development, facilit-

ates communication and collaboration between group members which results in steady progress

towards reaching project goals. Role of Scrum master was given to Nicholas Bodvin Sellevåg

based on experience with managing teams from the Norwegian Armed Forces. In addition,

being a developer working under an agile framework.

Analyst accumulates data-driven opportunities to explore during software development. With

regards to thesis conducting research is an all encompassing role. Despite this, the primary

occupant of analyst was Yan Senko with working experience as a security analyst.

Developer realizes opportunities into a tangible product through coding. Developers are re-

sponsible for conducting testing, evaluation of produced material and corresponding document-

ation. Throughout the project, developingwas handled “full-time” by FabianKongelf andOddb-

jørn S. Borge-Jensen. Nicholas has also provided sufficient support with the solution, namely

with the development process of the CI Pipelines of GitLab.

2.4.2 Distribution of Workload

Scrum master conveys the distribution of work by means of tasks in Jira, the work management

and issue tracking tool. Tasks are defined at the start of time-boxed periods lasting two weeks

named sprints. All group members partake in the exercise and construe a backlog of tasks.

Scrum Master presents the main goal of each sprint, Analyst presents opportunities to explore

and Developers give insight into the feasibility of such opportunities.

8

2.5 Experience

The bachelor thesis has been conducted as an experiment to document opportunities for using

Git-based systems to solve challenges related to LMS. Exposure of applying scientific research

methods to software development became an essential part of the thesis. Furthermore, working

experience with methods for mapping requirements, target demographic, dependencies and us-

age of features to be developed enhanced the thesis as multiple members have or were working

as developers or security analysts.

First and foremost, having completed two and a half years of the bachelor degree program “Di-

gital Infrastructure and Cybersecurity”manifested the values, norms and attitude practiced while

conducting research into solving the thesis’s research questions. Learning outcomes of afore-

mentioned program is listed as the following: “This course of study will provide you with a

much sought-after competence in the field of cyber security, robust data networks and modern

IT operations with virtualization and sky solutions; skills that are in high demand in the current

job market. The program will provide you with the practical skills within infrastructure and

security demanded by the job market. You will learn how to plan and realize virtual assemblies

of machinery, interpret the threat situation and become good at monitoring and security” [3].

To conclude, the group members are experienced with developing and operating applications

with a scaleable digital infrastructure. In addition, professionally knowledgeable in document-

ing software development in adherence to scientific method.

2.6 State of the art

2.6.1 Blackboard Learn

Blackboard Learn is the currently used LMS at NTNU as of spring 2022. Developed by Black-

board Inc., it is a primarily web-based solution that can be run either locally or on the cloud in

the form of Software as a Service. While not a directly lacking product, it is designed to be used

by educators from all kinds of different fields of study and as such does not necessarily align

with the needs of an educator from within the field of IT that has significant experience with

other file sharing technologies. Most of the heavy lifting is done behind the curtain and allows

9

very little customization. Likewise, uploading and updating files, as well as the file structure are

designed to be easy to understand, as well as practical to use. For IT educators who are used to

tools like Git, these can be frustrating roadblocks that serve them no real purpose. Following is

a list of strong and weak points of the learning platform from the perspective of an IT educator,

and to a lesser extent an IT student.

Strong points

• Overall well-functioning, fulfills all requirements.

• Good hand-in and feedback possibilities.

• Ability to create online tests.

Weak points

• Expensive.

• Enforcement of standard file structure limits teacher’s ability to shape their own courses.

• Streamlined - not ideal for teachers with IT know-how.

• UI has too many elements, can be difficult to navigate.

• Content is private by default.

2.7 Related technologies

During the thesis the group used many different technologies of which might not be common

to everyone. In this section we will explain these technologies so the reader may gain a greater

understanding of the more technical aspect of this report.

GitLab

GitLab is absolutely essential to the project as the task is based on exploring GitLab’s features in

order to create an LMS. GitLab coordinates repositories (file structures), allowing the user the

10

ability to create and invite other members to collaborate on projects. Every member can clone

the repository and edit its content locally on their own computers. Any local changes a team

member makes can be uploaded to the original repository by going through a process called a

merge, an automated way of combining the changes made in two separate instances of the same

repository.

GitLab CI/CD

GitLab CI/CD is a tool for software development. CI/CD stands for continuous integration

and continuous delivery or deployment. Through a configuration file (.gitlab-ci.yml) GitLab’s

CI/CD will trigger a pipeline and create jobs of which may create containers and run scripts. the

CI/CD can build, test and deploy code in your git-repository [4]. The group use GitLab’s CI/CD

to create a web-service by create a Ruby container and run the deployment commands for our

Jekyll website generator, the resulting web-service is hosted by GitLab Pages.

GitLab Pages

GitLab Pages is one of GitLab’s features. Through GitLab’s CI/CD pipeline, GitLab pages hosts

a webpage under a default Git domain (*.gitlab.io), but can be configured to a custom domain

[5]. A GitLab page is created by a static site generator or from plain HTML code present in

your GitLab repository. GitLab Pages does not support dynamic server-side support such as

.php. On each iteration (git add / commit / push) the CI/CD is triggered and the website will try

to deploy again based on the new code added, on success the new website replaces the current

site, if the CI/CD fails the current website remains. Figure 1 is a flow chart of the process to

create a GitLab Page.

Jekyll

Jekyll is a static site generator, which renders markdown or Textile and Liquid expressions to

static web-pages. As Jekyll is a static site generator it does not use databases to dynamically load

content, but generate variables containing links, categories, tags and more accessible through

Liquid expressions [6].

11

Figure 1: GitLab Pages flowchart

Source: [5]

Markdown

Markdown is a lightweight markup language used to format text using a normal text editor.

Markdown formatting uses symbols ahead of the text to define the text snippets format, for

instance ”#” denotes that the following text is a header. When viewing a markdown document

an interpreter compiles the document to a formatted easy to read version, similar to how a code

is compiled to an executable program.

Code languages

HTML/CSS/JavaScript are languages forwebsite development that allows developers to define

the layout of a website, assign each element a visual style, and add functionality and user

interactions.

12

Bash script is a set of instructions to be executed within the Bash shell. There is no difference

between running a Bash script or writing the commands directly into the shell itself, the

scripts serve only to make the process of repeatedly running the same set of commands

more efficient. Less readable than programming languages like C# or Python, but very

widely supported.

Ruby is the programming language that Jekyll is written in. No newRuby code has beenwritten

for the project, but it is still essential to the developed system. The Docker instance that

builds the website uses a Ruby image in order to run Jekyll, and several Ruby plugins

have been used to alter Jekyll’s performance to suit the project’s needs.

Liquid is an open-source templating language written in Ruby. Jekyll has built-in Liquid com-

patibility that enables performing certain logic operations within Markdown files before

they are converted to HTML. This has mostly been used to include other internal HTML

files as elements within the Jekyll-constructed HTML page, preventing redundant code

(e.g. including the header and footer in multiple Jekyll layouts) [7].

Abstraction of isolation and containerization

The developed system embodies all research conducted and serves as the answer to thesis’s

research questions. Moreover, the research questions can be reformulated as “Is it possible

to solve the main challenges of an LMS with alternate systems available at NTNU?”. The

developed system is designed as a functioning LMS on the Git-based system GitLab hosted

at NTNU. With this in mind, understanding the rudimentary abstractions that partake in the

developed system is a necessity for reading this thesis. For example, the developed system is

composed of Docker containers running on a given operating system (OS). To fully comprehend

the thesis a background into Processes, Namespaces and Containerization is in order.

Docker is a process contained in its own namespace associated with a set of parameters and lim-

its imposed by Control groups[8]. Processes are a combination of instructions often paired with

static data that runs on a processing unit until its termination [9]. Namespaces provide processes

with their own system view, effectively what a process can see resides in the namespace type and

specification. There are different namespaces in the Linux kernel, which Docker’s capabilities

are dependent on [10]. The namespaces allow processes to view computer resources related to

13

networking, file storage, users and more [11]. If namespaces limits what processes are able to

see, cgroups limits how much the process can utilize computer resources. Moreover, cgroups

allows administrators to specify how much data a process can store in memory, priority to ac-

cessing resources for computing and storage, measurements of total resource usage and ability

to suspend processes part of control groups. Conjunction of namespaces, control groups and

processes are what we call containerization, an abstraction of isolated processes.

There are several benefits of containerization. Containers make use of the host machine’s under-

lying Operating system and bundles applications into lightweight accessible containers. Only

the necessary packages and dependencies are part of a container [12]. As a result, containers

operate independently of OS and can be deployed to effectively any environment.

Vladimir Baranek is a certified lead author and as of Spring 2022, the current Global Enterprise

Transformation Leader at Amazon Web Services (AWS)[13]. With this in mind Baranek is

considered as an expert in the field of cloud computing and has written an article that summarizes

the benefits of containerization.

“Here is the list of the top nine benefits that help in driving containerization adoption:

• Reduced cost of infrastructure operations – There are usually many containers running

on a single VM.

• Solution scalability on themicroservice/function level –No need to scale instances/VMs.

• Better security – Full application isolation makes it possible to set each application’s

major process in separate containers.

• Instant replication of microservices via replicas and deployment sets.

• Flexible routing between services that are natively supported by containerization plat-

forms.

• Deploy anywhere – Including hybrid environments.

• Full portability between clouds and on-premises locations.

• OS independent – They don’t need an OS to run; only the container engine is deployed

on a host OS.

• Fast deploymentwith hydration of new containers and termination of old containers with

the same environments.

14

• Faster “ready to compute” – Containers are ready to start and stop within seconds in

comparison to VMs.

” [14]

The benefits of containers as described by Vladimir Baranek are from the perspective of using

virtual machines in the cloud and applicable to thesis as the developed system is exclusively

targeted to be hosted in a cloud environment. To summarize, containerization is beneficial in

its lightweight medium and security through isolation of processes. Containers contains the

dependencies needed for an application and runs on top of host OS, in contrast to fully fledged

virtual machines that includes OS configured to run applications. The difference in size between

a container and virtual machines is visually presented in Figure 2.

Figure 2: Container VS virtualization

Source: [15]

Comparing linux based containers to virtual machines is visually striking on the additional ab-

stractions layers in place. In fact, removal of abstractions does increase utilization of the un-

derlying computer resources and a considerable benefit of containerization as well as memory

usage [16].

3 Methodology

In order to complete the task in a satisfactory way, the group has designed a workflow. The

workflow takes inspiration from the scientific method [17], and is divided into several segments,

15

each with one specific task:

Step one is to find a question in the form of a problem that should be solved. The client has

defined the primary challenges of an LMS, each of which is depicted as a problem to be solved

throughout the bachelor thesis. Furthermore, defining the challenges and its scope are essential

to conducting our experiment and can be found in the related ”definition of done” document.

The document specifies the problem area, which actors are involved, assumptions and lastly

the system features. It is note-while that all functional requirements listed within the system

features are to be tested at a later stage.

Step two is to design and perform the experiment. In regard to the bachelor thesis, the develop-

ment process used to address the defined problems are considered as experiments. For example,

initially a development plan is created after the definition of done has been accepted by the client.

The plan contains individual tasks that work towards milestones detailed inside the definition

of done. Status of development was continuously visible in the issue tracking tool Jira that en-

abled linking issues to code. After the developed solution reached the minimum viable product

threshold the product draft would conclude and a demonstration to the client is given.

The last step is to perform tests in order to answer the question. After development, a demon-

stration of the implementation is held, and the ”Acceptance testing” phase begins. The client

becomes responsible for acknowledging if the product draft has solved the challenge. As the

name suggest, client acceptance of the implemented solution is the end goal.

3.1 System requirement analysis

As described by Erik Hjelmås in the task description the project should fulfill four critical func-

tionalities. These core functionalities are what shaped our system requirements through the

entire planning and development stages.

3.1.1 Functionality to create website from markdown

The system should allow a teacher to upload content to their webpage which will be visible

to anyone. This means a teacher should have a way to update the content of the repository,

16

while the public needs a way to view and browse it. As defined in the task description the

teacher should be administrating and uploading content to the site by interacting with a GitLab

repository, while the public should be viewing the content on an associated website generated

through GitLab Pages.

3.1.2 Functionality to support access control

The system should allow a teacher to adjust what content is visible to users. The levels of

visibility that should be supported are ”teacher only”, ”all students” and ”single student”. The

teacher should still have access to content marked as ”single student” or ”all students”.

3.1.3 Functionality to publish announcements

The system should allow a teacher to create a special form of content in the form of announce-

ments. These will be the teacher’s way of imparting important information and a such they must

feature front and center on the site, as well as support some way of alerting students that an

announcement has been made.

3.1.4 Functionality to handle assignments

The system should allow a teacher to create tasks for students, and in the same vein allow stu-

dents to upload files as answers to these tasks. The teacher should be able to close the tasks at

a certain time, preventing further uploads or updates from the students. The teacher should also

be able to provide some form of feedback for the student’s answers.

4 The developed system

4.1 System architecture

A software’s architecture is the fundamental structure or platform of which the rest of a software

system is built upon. A software architecture is a structure including software elements, their

17

properties as well as their relations to one another [18]. The architecture represents the design

decisions related to the overall systems structure and behavior [19].

The following sections describes the developed system’s architecture and entails a high level

overview of the information flows and functionalities required in official solutions. Architec-

ture design further outlines the actions and type of actors involved in environment of the system.

Actors of a given type are interchangeable, meaning the architecture describes specifically what

roles an actor needs to fulfil for the system. As a consequence, the architecture design consti-

tutes how the system should work without regard to how it was implemented. For example,

GitLab has been used as a platform for thesis’s developed system, but a later revision could try

GitHub as the platform instead while adhering to the requirements defined in the architectural

documentation.

4.1.1 Architectural requirements

The goal of thesis is to research opportunities in utilizing alternate systems at NTNU for solving

challenges typically handled by an LMS service. The architectural requirements are based on

the five core functionalities as defined by the client:

Create website from markdown The system should allow for uploading and storing of files

that should be viewable by all users on a generated website.

Support access control The system should allow for uploading and storing of files that should

only be viewable by certain users.

Publish announcements The system should have a way of informing users of changes or other

important information.

Handle assignments The system should allow teachers to create assignments, and allow stu-

dents to upload files for these assignments. These files should have a traceable relation to

both the student who uploaded it and the assignment it is an answer to.

Testing and monitoring Confidence and integrity of software is provided by systemwith feed-

back from testing. In addition, system status can be monitored from statistics of test res-

ults.

18

Figure 3: Values of the architecture

The developed system architecture reflects the core values defined by the client and group mem-

bers. Namely, emphasis on feedback and open information. Software architecture values can

be see in Figure 3. Different iterations of developed system should preserve the stated values

in its design to be considered a valid solution. For example, an iteration lacking functionalities

to produce feedback on a system level for teachers and user level on students deliverables is

considered as inadequate for a commercial or marketable product.

Feedback is part of the system design and processes. For example, teachers can expect the

system to provide reports on how to improve the confidentiality and integrity of the system

itself. In addition, receiving feedback on how students performed on tasks and assignments

is central for determining the overall learning outcome and potential improvement [20]. As a

result, feedback is an essential process of developed systems and core value of its architecture.

Further talks with the client brought forward a desire for teaching material to be made publicly

available as much as possible, even to those not affiliated with the university offering the course.

19

Before the rise of LMS learning materials and curriculum used to be self published on servers,

readily accessible to anyone. Learning materials was not limited by a students association or

partaking communities and the architectural prominence on open information’s origin. With

this in mind, the architecture for thesis’s developed system arose from an IT-teacher’s nostalgia

towards early internet values, but also the need for a modern, configurable and dynamic system.

The group is of the opinion that modern systems should be designed with scaleability and auto-

mation in mind. The developed system’s architecture is therefore based in the cloud and sup-

ports continuous integration and development through GitLab pipelines. One could argue that

the architecture is unique in its targeted demographic towards IT competent users and focus on

CI/CD. Furthermore, the architecture allows incorporation of the best suited systems to address

different challenges. For example, instead of developing a new platform for announcements

the architecture enables alternative systems like Microsoft Teams to be used as a communica-

tion channel. In essence, cloud based systems with CI/CD can create complex pipelines with

interactions between a multitude of systems and solutions.

With reference to existing solutions, BlackBoard Learn has been used as a baseline for core

functionalities. Despite this, interviews with students and teachers revealed several key aspects

of BlackBoard Learn to be improved upon and incorporated into the designed architecture for

thesis’s developed system. An assumption written in thesis’s task description was that NTNU’s

installation of Blackboard does not satisfy the professors and students expectations (See sec-

tion: 1.1). Similar results were found in the sample survey conducted by group members in

which several entries from students at NTNU showed dissatisfaction to the graphical design and

user experience with Blackboard Learning as well as other LMS systems (see appendix: B).

To enable teachers to improve web based course material, the architecture signifies personal-

ized user experiences with automation. In practice, teachers can expect developed systems to

be customizable and provide automation for processes that are repetitive with rule based be-

havior. Moreover, group members believe addressing user experience discontent is achievable

through allowing teachers with a background in information technology to make the necessary

changes themselves in the editable system. Despite this, an arising problem was enforcing more

tasks onto each teacher to update their own installations of the developed system. To address

this concern teachers can expect automation of applying styling and handling of documents.

Leaving a small subset of tasks for teachers to manually update and configure, specifically the

20

creation of new or editing existing webpage styling as they see fit themselves. To summarize,

the architecture strives to enhance the user experience of teachers administrating LMS systems,

in addition improving students web based user experiences as recipients of course material.

Teachers provides their own course content as input to the system and it is transformed through

automation into personalized websites as output.

The overarching process the architecture enables is input of teachingmaterial and a resulting out-

put of web interfaces. The teachingmaterial in itself is therefore a vital and needed component of

the system. The content provided by teachers will vary in outline, purpose and information. For

example, the content can be categorized as tasks, solutions, announcements and subject matter.

Furthermore the information might contain copyrighted material which is not appropriate for

being publicized publicly. As a consequence, a segregation of information is needed whereas

most information is publicly available while private information is still made available to stu-

dent or authorised personnel. To create the segregation of information the system requires a list

of students and teachers to enforce appropriate access control. Similarly, all challenge areas has

its own set of dependencies and assumptions for working properly. The following subsections

elaborates on the architectural design in each challenge area.

Functionality to create website from markdown

Public information should be provided through openly accessible Web interfaces on the inter-

net through a server-client relationship. Moreover, students must as a minimum be enabled to

requests a server’s web interfaces to view course content on any device with network browsing

capabilities. All public information in relation to a course is accessible on a centralized web

interface. Preferably design and styling of web interfaces shall reflect the areas of interest from

an IT students perspective. Navigational elements on web interfaces ought to guide students

intuitively through a given course.

Functionality to support access control

Private information builds further upon the base built to support the public information. In

order for the system to successfully support private information there must exist a way to for the

teacher to make certain data available to only certain users. All files should always be visible to

21

the teacher.

Functionality to publish announcements

Announcements consist of three major functionalities that have to be supported by the architec-

ture. The starting point is to have somewhere to store the actual announcements in a way that

differentiates them from other content. There must also be a way for teachers to create and up-

load the announcements themselves. Third, the system must have some sort of channel through

which it can reach its users, either through something direct like e-mail or third-party software

like Microsoft Teams. An addendum to this third point is that the system must also be able to

detect when a new announcement has been made in order to communicate it to the user base.

Functionality to handle assignments

The main necessary components required to support deliverables as they pertain to this pro-

ject is a server and a client through which users can interact with said server. The server is

responsible for keeping track of the assignments and each individual students’ answer to each

assignment. Ideally the server should contain some kind of solution close in function to that

of a relational database, allowing each answer to be related to both the student who delivered

it and the assignment it is an answer to. As Figure 4, the client serves as the front-end the user

interacts with and should allow the user to both log in to the system and upload files as answers

to specific assignments.

Confidence and integrity

Teachers should gain confidence in the developed system through automation. Course adminis-

trators utilizing the developed system shall receive automated reports depicting the overall status

of system’s health, security and accessibility. In addition, automation in general is required to

be scalable as if each automation is a component of a larger system. As a result, continuous

integration and development is achieved on a architectural level.

22

Figure 4: Sequence diagrams for deliverables

4.2 System Design

This section is set to describe the different processes within the GitLab solution, delving into

the steps taken from start to finish, with a technical standpoint.

• Availability of public information

• Exclusivity of private information

• Engaging announcements

• Deliverables

• confidence and integrity in software

4.2.1 Information Publication via GitLab Pages

The GitLab Pages workflow is designed to automate as much of the work as possible, requiring

minimal effort from the publisher. As to commemorate the task given by the client, the publisher

in this case will be a teacher. In the case of a teacher wanting to publish information to the public,

the workflow will only require them to upload the desired documents from their local repository

23

Figure 5: Sequence Diagram of website generation

to the cloud, using the GitLab CLI commands git add, git commit and git push, respectively.

This is the last manual action the teacher does, before the automated course of actions takes

place.

After the repository update goes through, the automatized part of the process begins. It is initi-

ated by a process runner, which reads a YML-file specifying the CI process, and performs the

listed instructions with included scripts accordingly. Figure 5 portrays a sequence diagram of

the publication workflow.

When it comes to the deployment of GitLab Pages, the “Deploy” pipeline is designated for just

that. Upon startup, the designated Docker Container firstly installs all required dependencies,

before running a shellscript which takes care of the build process. One of the dependencies is

Jekyll, the service responsible for the webpage design. The script starts off by replicates the

newly created content into the webpage content directory, for conversion and later publication;

However, before Jekyll can publish any content, it needs to detect it. The configuration file

_config.yml determines the content folder in which Jekyll is required to search through. It is

obligated by the lecturer to publish their material there, or else the service will not detect it.

As the pipeline starts, the Jekyll-initiated scanner will look through the published files, and

convert every Markdown file into an HTML page. Files of other extensions are unchanged.

Finally, when all Markdown documents have received their HTML counterparts respectively,

the HTML pages are then displayed on the Docker-ran GitLab Pages. Articles follow the same

file hierarchy as the one specified in the /content folder of the repository. From this point on,

24

the students can access the material. The container does not host the webpage, however; This

is a task done by the GitLab instance, which takes care of the hosting. By infusing the pipeline

job metadata with the tag “pages”, GitLab automatically interprets the process to be regarding

GitLab Pages.

4.2.2 Exclusivity of private information with roles

Exclusivity is achieved with role based access control. With respect to Mariusz Nowostawski,

Associate Professor at NTNU, group members have created an automated hierarchical project

structure that mimics information exclusivity obtainedwithMariuszNowostawski’s ownGitLab

course implementation as a reference (available in Appendix C.1). Moreover, the developed

system utilizes different configuration of projects in GitLab where users have different roles

based on which level the information is portrayed in within the project hierarchy. For example,

Figure 6 represents the automated project groupings created with the developed system:

Figure 6: GitLab project hierarchy access levels

Students are added into specific projects they need access to. As a baseline, all GitLab users

can view information in public projects marked as a globe. In contrast, only users part of a

private project can view the private project’s content. The actions available for users in any

given project is in accordance with their GitLab role. To view the full extent of access levels

configurable in GitLab users are advised to use GitLab’s own documentation [21]. In practice,

creation of the access controlled project hierarchy is done as follows in Figure 7.

25

Figure 7: GitLab project hierarchy creation

4.2.3 Engaging announcements through automation

After the teacher has published their content on to GitLab, an alternative process will start, de-

signed to notify about the changes on a Microsoft Teams channel. The ”Notification” pipeline

of Figure 8 is responsible for publishing the message from teacher’s aforementioned git commit

to a designated Teams channel, with the use of a connected webhook.

The pipeline firstly reads from the Git CI/CD generated variables, in search for metadata regard-

ing the commit. The pipeline script collects the written commit message, timestamp of published

message, the web URL for the webhook service and if the commited file is an announcement,

the files content is added to the collection. With the collected data, the script is able to send a

webhook request to Teams, which if the connection is established, will successfully publish an

announcement on a designated Teams channel made for said webhooks, and accessible for stu-

dents to inspect. The sequence diagram displayed on Figure 9 portrays the steps taken between

26

the actors when a publication has occurred.

Figure 8: Flowchart of five independent Docker Containers

Figure 9: Sequence Diagram of the ”Notification” pipeline

When the announcement script sends a webhook request to Microsoft Teams, the request is in

form of a curl message to the webhook url. Figure 10 is from the announcement script, it shows

the curl message sent to a webhook. The script sends a message based on variables defined

earlier in the script, the variables are dynamically allocated based on the commit a teacher makes

27

when uploading a file. Words starting with $ are variables, the variable namedwebhook acquires

it’s value from the _config.yml file, the other variable is collected form GitLab’s CI/CD and

consists of metadata associated with the commit.

Figure 10: Code snippet from sendAnnouncement script depicting the curl request

The curl request (Figure 10) gives the message card seen in Figure 11 as a result on Microsoft

Teams. The message’s header is the commit message, below the header is a date stamp of the

commits publication. Below the initial header section is a list of all the files created, edited or

deleted and the amount of changes made to the file. The number at the right of the file name

and path states the amount of change. To the right of the number is a series of plus (+) and/or

minuses (-), the plus indicate a added line while the minus is a removed line, when the number

is large the pluses and minuses are at a ratio rather then an indicator per line.

4.2.4 Deliverables

The current solution does not feature deliverables, but a system where students can deliver work

and receive grading from the teacher is possible and a version of it would work for the users in

28

Figure 11: How the announcement looks on teams

the following way:

A student have access to a structure of Git groups, of which a group consists of projects given

to students. The student can navigate to this group and find their project, within which they can

do whatever they want: produce whatever desirable content and hopefully complete tasks given

by the teacher. Students should be able to see task on the website and be able to read the task

description.

The course teacher will be able to define the amount of deliverables by changing the GitLab

structure. For each task, a group of multiple repositories is created, with each student having

their own repository. When the delivery deadline arrives, a teacher can activate a script to create

a folder of all the GitLab projects the students have created on their own computer, representing

the deliverables.

4.2.5 Confidence and integrity of software through testing

The solution is not only designed to host an educative infrastructure, but also to look within

and determine whether some aspects of the design can be improved. The last three pipelines of

Figure 8 take this exact responsibility: to test out different aspects of the GitLab repository and

generate feedback on what can be done better. They are run simultaneously with “Notification”

and “Deploy” pipelines, each within their own Docker container.

The first testing pipeline, labeled “Web-testing”, uses CyPress, a web testing framework, to

evaluate the website’s code quality. Our self-made test ensures that no links on our GitLab

pages are broken, and that they remain fully-functional upon every commit. The end result, as

the figure portrays, is a report generated at a designated folder within the repository, concluding

whether the test was successful or if any errors occurred in the meantime.

29

The second to last pipeline is responsible for ensuring that the website is compliant with the

WCAG standard. Pa11y’s CI WCAG test involves an accessibility test runner which reviews

a provided URL, and generates a report, stating segments which do not correspond with the

standard [22]. As for the pipeline in this project, the provided URL is to the GitLab pages. The

accessibility tool references the official guidelines for when commenting on errors, with links to

the official website for further reading. Another benefit is its configuration options, presenting

it as a flexible tool for website accessibility testing.

Finally, the repository will run a SNYK vulnerability scan, focusing on the used dependencies

within the project. This open-source installation inspects the dependencies used by the project

and investigates whether the installed versions have documented vulnerabilities, as documented

on their own frequently-updated database of vulnerabilities and weaknesses [23]. The end report

displays the findings of the test, as well as criticality and mitigation recommendations on found

vulnerabilities on the system.

4.3 Page design

One of the initial research questions of this thesis poses the question of what a website with all

the necessary information to hold an IT course should look like, from a student perspective.

For this purpose, the solution presented is a framework that automatically generates websites

with rule-sets based on feedback received from student surveys. Moreover, the developed sys-

tem enables teachers to freely publish Markdown documents which are processed into an ac-

cording HTML version made available as websites for students. During the process of creating

websites from Markdown documents three significant stages are performed:

• Interpretation of Liquid template language expressions in files.

• Converting Markdown to corresponding HTML and Sass into CSS.

• Populating Layouts with converted and interpreted content.

In relation to the research question, presentation of page design is realized through CSS in the

second stage when documents become rendered. Specifically, CSS depicts which colors to ap-

ply, fonts, sizing and to some extent placement of Web elements. CSS further enhances the

30

developed system with adaptive presentation based on the type of device used to browse pub-

lished websites. For example, smaller screens often needs a different presentation in contrast

to larger devices. All in all, CSS remains the means of visually presenting pages and its con-

tent. Despite this, the developed system is created with scalability and automation in mind.

Manufacturing and mainting an all encompassing CSS solution for websites can be difficult and

troublesome with sizable amount of pages. Instead, CSS is used to generally define formatting

of HTML while Layouts create different views of any given website in a manageable fashion.

The home page is created from a Layout and displays several pieces of information, including

announcements, the about section, a complete table of contents, and the course coordinator’s

contact information.

The research question also emphasizes designing websites from an IT-student’s perspective; that

is to say a student who’s familiar with web based technologies like Git and their capabilities. To

disclose and acknowledge aforesaid students opinions the rules that determine layout and design

of websites was reached from the conducted student survey (needs sourcing for attached survey)

and group members expertise. The resulting configurations related to styling of websites can be

found within “_sass” and “css” folder.

To conclude, the system is configured with a minimal set of assumptions to prevent limiting

the content published by teachers. For example, dynamically producing uniformly designed

websites was solved with layouts and Syntactically Awesome Style Sheets. Ensuing sections

elaborates the implementation and usage of page design elements.

4.3.1 Visual Design

With the student perspective in mind for the User Interface (UI), the design is derived from

the notion of minimalism, as well as taking inspiration from NTNU’s official website layout.

The key getaway has been to limit the amount of elements a student can interact with, to hence

improve readability and reduce unnecessary components.

The goal is to create a UI as user-friendly as possible. As the site consists ofmarkdown converted

HTML files of which a teacher/professor have created, we have minimal control of the UI,

though it compensates with giving us complete freedom on the layout. Aswe have no control of a

31

page content, our design accentuates interaction design and visual design. to enforce interaction

design we made a rule of thumb, where we focus on achieving tasks in as few clicks as possible,

as for example to navigate between any two pages. However, visual design is also important

and the page should not be cluttered with links and semi-relevant bits of information.

The website utilizes a static site generator called Jekyll to convert Markdown files to HTML.

When imported to the project, Jekyll came with a standard layout, which we used as a base for

our own design.

Figure 12: The LMS’s semantic element design

On Figure 12, the layout of the website is presented. It consists of a header, sidebar, footer and

a content section. The solution has implemented a side navigation bar, header and footer while

the content section consists of the markdown converted HTML pages, with the sole exception

of the index page.

Our project is an LMS for a university, an important aspect is then the university’s visual lan-

guage. To keep in line with NTNU’s visual language, color of links and background colors are

similar to NTNU’s website colors, Figure 13 displays the current visual language of the website.

Header

The header located at the top of the webpage. It is often considered “sticky”, meaning it is locked

at the top of the screen and not moving when a user scrolls. The project uses a sticky header-

element containing a hamburger-navbar button, name of the course, and a picture of NTNU’s

logo. The name of the course doubles as a link to the index page.

32

Figure 13: Erik Hjelmås’ compendia in HTML format on GitLab Pages

Hamburger Navbar

As a way to minimize the amount of clicks between two pages while maintain a minimalistic

visual design, we developed a hamburger navigation bar/menu. The navigation bar consists of a

button with three bars stacked on top of each other like a hamburger, hence the name. When the

hamburger button is pushed, a menu covers the entire page, and contains the same link structure

as seen on the index page. It allows you to navigate to every page on the site. This type of

navigation bar also scales well with smaller devices such as phones and tablets, as the entry

point is just a button and the menu covers the entire screen. Figure 14 displays the websites

open hamburger navigation.

Navigation sidebar

One aspect of the existing BlackBoard design that was deemed good as-is and with no need of

changing, is the prominent navigation menu on the left side of the screen. Taking inspiration

from this, we made our own, very similar sidebar. It is made to be highly visible and always

present on screen no matter where in the site hierarchy the user is. The links present in the menu

represent the directories directly contained within the _content folder. This means it supports

use of both the default folder structure we provide with the product as well as any self-defined

structure a teacher should want to use to best fit their courses.

33

Figure 14: Hamburger navigation content

The default structure was designed based on the group’s own experiences, a survey of other

students, and existing solutions like BlackBoard Learn and Frode Haug’s course sites [24]. This

resulted in the following default links:

Assignments contains all obligatory tasks given throughout the course, as well as any other

work that the course coordinator deems necessary.

Curriculum contains the curriculum for the course.

Lectures contains recordings of held lectures should they be recorded, as well as viewable

versions of any presentations used.

Resources contains additional resources relevant to the course that are not directly part of the

curriculum. This can be anything from additional reading materials to external websites

or videos.

Schedule contains the course schedule, detailing upcoming lectures, deliverables, and other

relevant information.

The same script that creates the sidebar also generates a series of navigation pages that are used

to navigate the website. These pages are generated for every sub-directory of the content folder,

making up a complete navigation web for the site without using any dynamic components. The

navigation pages are very simplistic in design, containing only the title of the folder and links

34

to each of its contents - both files and further sub-directories. Directory links have a preceding

folder icon to help the user differentiate between files and folders.

Footer

A footer is the last element you see when you scroll to the bottom of a web page. Web sites

footers typically contain [25]:

• Authorship information

• Copyright information

• Contact information

• Sitemap

• Back to top links

• Related documents

Variable connections

The footer consists of variables defined in the website’s _config.yml file. Through Liquid the

configurations variables are displayed in the footer.

Emneansvarlig {{ site.email }}

Above is a code snippet from webpage/_includes/footer.html. It shows how a “Emneansvarlig”,

subject responsible, usually the main professor in a subject, email is included in the footer. Code

encapsulated in double curly braces, {{, are liquid code. Liquid command site.email finds the

site wide variable email, which in this projects case is located in _config.yml. In Figure 15 you

can see the footer design.

Index Page

An index page, or often referred to as a home page, is usually the first page you see if you enter

a website (some sites use a launch page). In this project the index page is similar to an LMS’s

35

Figure 15: footer design

index page and contain announcements, an about section and links to the sites content. In Figure

16 is the current design and layout of this projects index page.

Figure 16: UX of the index page

Announcements

If a professor pushes a markdown file in the announcements folder (content/announcements, the

folder name can be changed if also changed in _config.yml) the file is viewed as an announce-

ment. On the index page the announcements are listed out as a link to the file and the first three

lines of the announcement. A user can then click the link to be moved to the announcement file

and view the whole announcement.

About

The about section is paragraph imported from the about.md, the purpose is for a professor to

write a short exposition on the subjects, the subjects learning material and how the subject will

progress. This section should give insight to a user on the websites content.

Index-links

36

From the index page a user is able to reach every other page on the website, every page should

therefor have a link on the index page. Every file is given a link with a name equal to its filename,

the links are created in a structure of links which replicate the folder structure where the files are

located. A professor can decide how the linking system looks by changing the names of folders

and files. This linking structure is then imported to the index page and hamburger navigation

bar.

Mobile

One participant from the survey stated:

“[BlackBoard Learn] appen funker ganske dårlig. Systemet generelt er ganske rotete. Er ikke

så viktig med uendelige funksjonaliteter, men mer hvor ryddig det er på nettsiden og hvor lett

det er å finne fram til informasjon.”

(The [BlackBoard Learn] app doesn’t work very well. The system is generally messy. Hav-

ing as many functionalities as possible isn’t what’s important, but rather how clean and easily

accessible the information is.)

Brian Rashid, marketing expert, wrote for Forbes and reported on an increase in mobile usage

and the benefits of responsive web design. The survey confirms his statement where a lot of the

feedback was directed to poor mobile integration. The website is design to be responsive, this

means the site will adapt to all screen dimensions, which allows users of different media to use

the LMS. In the future if phone and tablet screen size become larger, the website is design to be

responsive and functional to changes in screen dimensions. The importance of responsive web

design can be seen in the quote from the paragraph above, A responsive site will not add clutter,

and help create a cleaner visual design, and a seamless user experience [26].

// This class defines the content elements width

.page-content {

padding: $spacing-unit 0;

margin-left: auto;

margin-right: auto;

}

37

@media screen and (max-width: 1000px) { .page-content { width: 95vw; } }

@media screen and (min-width: 1000px) { .page-content { width: 1000px;} }

Above is a code snippet from website/_sass/_layout.scss, it shows the general scss rules given

to the content element. Contents width is responsive by adapting to various screen sizes thourgh

media queries, if the screen width is larger then 1000 pixels (px), content has a width of 1000px,

if the screen is smaller then a 1000px, content has a width of 95 viewport width (vw) or 95% of

the users screen width including potential scroll-bars (if a width value of 95% is given, the width

will change depending on whether the page has a scrollbar or not). Viewport width is the width

of a web browser, while a % value based on parent elements, thous can be larger or smaller then

the a browsers viewport, when given to the body or the root/parent element the value is base on

the browser space. A width of 95vw will span almost all of the screen, given that the content

element usually contains information the users is after, spanning the entire screen dimension

makes it easier for the user to retrieve the information. On Figure 17 you can see how the site

looks on a phone.

Figure 17: Mobile version of a web page

Variables

The scss code is variable based, meaning the main.scss only declare variables like different

colors, font and some spacing. The variables are interchangeable, giving an administrator the

ability to easy change the color schema of the website.

38

Below is a snippet from css/main.scss where the variables are declared and a snippet from web-

site/_sass/_base.scss where the variable is used. In main the brand color is set to blue. This

color is then given as a default color to all links on the site.

// Some of the variables from css/main.scss

$text-color: #111;

$background-color: #fdfdfd;

$brand-color: #2373db;

$black: #30313f;

// Link style, on _sass/_base.scss

a {

color: $brand-color;

text-decoration: none;

transition: .3s;

&:hover {

color: darken($brand-color, 40%);

}

}

How the design suffers from data persistence

The project is designed to be forked, deleted, generated and regenerated easily. Data persistence

becomes an issue, how does the developed system keep data from the different instances of the

project? for instance, if a file is added to the repository an the website is regenerated, a script

can add a date variable to the newly added file, however this edit is within a docker environment

thous not editing the original file. If then another file is added and the website regenerated the

date variable is replace with the original document and the data lost.

On Figure 18 is the announcement section on the index page. Announcements are important to

date and sort correctly, otherwise an student/end user will have a difficult time finding the newest

and most pressing announcement. If a student cannot find an important announcement, they

39

Figure 18: Problem with older announcements

may miss out on changes to deliveries, exams, lectures and so on, which can have catastrophic

consequences for the student.

4.4 Implementation

4.4.1 Functionality to create website from markdown

In order to determine what files should and should not be used for building the website, Jekyll

demands a strict file structure that requires directories with very specific names. While it’s not

too complicated, it can nonetheless be a user unfriendly element that affects the overall user

experience. For this reason a few additions have been made to the basic structure in order to

abstract this element of the system.

At the top level of the repository there is a directory simply named content. The system has been

designed entirely around the idea that an end user should never have to interact with any other

directories than this one, though they are of course still free to do so should they wish. The

content directory is where the source markdown files and related assets should be uploaded.

Any sub-directories created within the directory will automatically be converted to categories

within Jekyll as the site is being built. These categories are what make up the table of contents

on the index page of the final website.

In order for Jekyll to find the source markdown files for the site they have to be located within

a folder with the name _posts. The developed system have abstracted this requirement entirely

by automatically altering the file structure to abide by the standards Jekyll expects upon site

generation. The actual generation happens on a Docker instance and as such the changes made

are not reflected in the original repository. The intent behind this abstraction is to make the user

40

experience more straight-forward and allow for full use of the service without requiring any

prior knowledge of how Jekyll works.

The developed system also support users who want to designate their own _posts directories and

take full control of the Jekyll structure. The automatic system always checks for whether the

content directory is already Jekyll compatible, in which case it will leave the file structure as it

is, making no changes. This way users can choose to either go with the easy, abstracted method

or rather choose to deal with the technicalities themselves, without having to change any manual

settings or preferences.

For several of the additional functionalities that weren’t part of the standard Jekyll process it

was necessary to develop new solutions through new code. There were multiple options to

choose from when it came to programming languages to use. Shellscript was chosen due to it’s

wide compatibility and the fact that the group had prior experience with programming in shell.

Furthermore most of the tasks revolved around performing operations on and searching through

text, something shell is quite apt at doing through commands like grep and awk.

There were two other language options that we ended up moving away from. The first of these

was Ruby, which is the language Jekyll is written in. The main reason group members chose to

avoid using the language was lack of experience using it, and posed a potential risk in utilization

of time as we could already solve all our problems in shell instead. The other alternative was

another language used by Jekyll, namely Liquid. Liquid stands out from the other alternatives

as it is not a complete programming language, but rather a template language. Its utility was

exemplified through enabling group members to access the internal structure of Jekyll - such as

categories and tags - as well as perform programming logic inside markdown files. While this

sounded promising initially group members found that the syntax quickly became convoluted

when handling retrieving information from complex data structures, and it also rendered group

members unable to refer directly to the file structure in the Git repository, which was important

for automation in general.

4.4.2 Functionality to support access control

Exclusivity of information on a user based level was achieved with reference to Mariusz No-

wostawski’s, Associate Professor at NTNU, take on role based Gitlab administration. The group

41

conducted interviews with Nowostawski based on his experiences with several courses at NTNU

that applies his user access control paradigm (see Appendix C.1). The group’s own implement-

ation of the proposed project structure with approval of Mariusz Nowostawski can be seen on

Figure 6.

Figure 19: Snippet from Mariusz Nowostawski’s Gitlab Administration appendix

Most importantly, the project grouping is hierarchical. This allows for different levels that users

can inherit their access privileges from. For example, at the bottom level individual users within

a project are able to edit or view documents based on their role. A full listing of all actions

a user has permissions to can be viewed in Gitlab’s own documentation [21]. Furthermore,

student deliveries are considered as private information and each student in a given course would

consequently have their own private project. In this example, the student would have full access

to edit and view their own documents. Some courses include peer-reviewing between students

and could be achieved with having two students become part of each others projects but only

with the role to view their opposing student’s documents. In essence, Gitlab administration

could be achieved from following the guidelines set by Nowostawski’s proposal seen in 19.

Despite this, the process of administrating a course through Nowostawski’s setup is as of today

a highly repetitive and rule based task which also depends on having administrator rights on the

GitLab instance to run the necessary scripts. With this in mind, the group decided to create an

automated alternative that uses the a teacher’s account to achieve the same result. The resulting

solution is a set of scripts that retrieves the list of students enrolled in a course from NTNU’s

42

LDAP database and uses the Gitlab API to create the role based hierarchy. Figure 20 highlights

the scripts that performs the course creation. This script is available as part of the developed

system’s template.

Figure 20: Thesis’s script for course creation in Gitlab to support private information

The scripts can be downloaded and edited locally by teachers. For example, the necessary vari-

ables to create and deploy a subject in Gitlab is defined in ”config.sh” on Figure 21.

Figure 21: config.sh script snippet

Afterwards of updating configuration script ”deploy.sh” will retrieve the information as envir-

onment variables used throughout the deploy script itself, as displayed on Figure 22.

It is noteworthy that the scripts for creating the course in Gitlab is minimal in its security and

43

Figure 22: deploy.sh script snippet

effectiveness. For example, a multitude of additional scripts or similar solutions would be re-

quired for fully implementing all functionalities detailed in the system’s architecture (Section

4.1), which was considered out of scope in this project, considering the thesis is conducted to

explore the opportunities instead of developing commercially viable products with adequate

testing.

4.4.3 Functionality to publish announcements

A key point going into the project was to make a solid announcement system that would present

students with all important events and information in an orderly fashion, but also make an effort

to ensure that vital or otherwise urgent messages actually reaches the student body. While the

existing announcement system in BlackBoard Learn is well implemented for what it is and does

a good job of presenting the information, the only way to directly inform students of newly

published announcements is through email. In this project the group has attempted to explore

other methods of notifying students whenever an announcement is made, while also learning

from what the current system does well.

First off an implementation similar to the existing solution in BlackBoard was made. While

ways to deliver announcements to the student body is important, actually presenting these an-

nouncements on the website will have to be step one. To allow teachers to create announcements

we added a new folder to the structure named _announcements. Markdown files in this folder

are still found and turned into HTML files by Jekyll, but are completely ignored by the script

that creates the index listings. They are instead picked up by a dedicated announcement script

that adds them to the top of the index page under a heading that reads ”Announcements”. They

44

are implemented similarly to BlackBoard Learn’s solution, being presented as links that take the

user to the full announcement when clicked.

The second method that works side-by-side with the first is an automated system that informs

students of changes to the repository through Microsoft Teams. Whenever a new commit is

pushed to the repository a web hook is triggered and a post is made to a dedicated Teams channel.

This post takes the form of a Teams Card, effectively a small message with fields denoting where

changes were made, how many lines were added or changed, and when the change was made.

The Card also includes the commit message.

The group believe the best way to notice and perceive an announcement is through channels the

target audience already uses. Some professors at NTNU are already using Microsoft Teams for

digital lectures and general course coordination. The group thinks building on this Teams usage

can make for a great to ensure the announcements actually reach the target audience. Teams

offers users the freedom to choose how they are notified by an announcement, including email,

push-notifications, or nothing at all.

The group created this feature by a function which sends a curl message to web hook connected

to teams. When you update the repository the CI/CD is triggered and a curl message is sent. The

curl message contains the changes made to the repository, on teams the changes made to the git-

repository is displayed, the layout is similar to the message when using the git pull command.

To configure the functionality Teams needs an incoming web hook. You can create a web hook

by navigating to the channel (in a team in Microsoft teams), on the channel you can configure

connections. Search ”incoming web hook”, here you can create a web hook by giving it a name,

and when created you receive an open accessible URL. Save the URL in the _config.yml (in the

Gitlab pages repository) file at the correct variable.

In this functionality the CI/CD pipeline works as follows. first, it finds relevant Gitlab-variables

(commit message, date of commit, and so on) and copy them for later use, then a script reads the

web hook-URL, a test is ran to ensure a working URL was found (keep in mind that the teams

web hook is not a two-way exchange of information, thous if the web hook works there are no

way for the CI/CD to know if the message is was transmitted to the correct channel), last the

curl message is sent with the variables form the first stage.

45

4.4.4 Functionality to handle assignments

As of now the developed system does not have the functionalities to support deliveries from

students. However, it is possible through extending the user access control already present in

construction of course in Gitlab as demonstrated in 4.4.2. Furthermore commands needed have

been explored, tested and added to a pseudo code script. The process of which a delivery can be

delivered is through Gitlab projects. When a teacher creates the subject Gitlab structure with the

auto git structure script, the teacher is given a option on the amount of deliveries processed by

the Gitlab structure. The amount of deliveries decides how many folder of Gitlab projects in the

project folder, one folder per delivery. Within the a delivery folder (for instance .../project/task1)

there is a Gitlab project per student enrolled in the subject. The project is only visible to the

student and teacher, other student can’t see each others projects. When a deadline arrives a

teacher could execute a completed version of the pseudo script. The script should then demote

all the students roles on the projects to, for instance guest, the important aspect is that a student

is not able to continue editing their project. To demote students should not take long, therefor

some what accurately represent a delivery deadline. What may take some time is the process

of clone each project, thous this action is made after the students are demote. This is to ensure

a student whose project is cloned last gains an advantage by the script using time to clone the

projects. When all the projects are cloned the cloned version serves as the students delivery, the

projects name is by default the students NTNU username, this will serve as an authentication

for the delivery unless the teacher promotes a change where, for instance students write their

name(s) in the readme file. After the delivery is made student are promoted back to their original

Gitlab role and can continue their project if they desire.

Microsoft Teams Cards

The objective of an announcement is for the announcer to enlighten their target audience. The

group believe the best way to notice and perceive an announcement is through the target audi-

ences preferred channels. In this case, students are the audience while a professor is the an-

nouncer. During the Covid pandemic some professors use Microsoft Teams for digital lectures.

The group think Teams is a great way to transmit an announcement, as teams gives students

the freedom to choose how they are notified by an announcement, per e-mail, push-notification

46

(app), or not.

The group created this feature by a function which sends a curl message to webhook connected

to teams. As the repository is issuing an update, the CI/CD is triggered and a curl message

is sent. The message contains the changes made to the repository, which are being later on

displayed on a designated Teams channel made for tracking the git-repository. The layout of the

Teams message is similar to the message when using the git pull command.

To configure the functionality Teams needs an incoming webhook. It is possible to create a

webhook by navigating to the channel (in a team in Microsoft teams), where connections can

be configured. Furthermore, In channel settings, a webhook can be created by giving it a name,

which later on provides the creator with an open accessible URL. Next step of the process is to

save the URL in the _config.yml (in the Gitlab pages repository) file at the correct variable.

In this functionality the CI/CD pipeline works as follows. Firstly, it finds relevant Gitlab-

variables (commit message, date of commit, and so on) and copy them for later use, then a

script reads the webhook-url, a test is ran to ensure a working url was found (keep in mind that

the teams webhook is not a two-way exchange of information, thus if the webhook works there

are no way for the CI/CD to know if the message is was transmitted to the correct channel).

Lastly, the curl message is sent with the variables form the first stage.

4.4.5 Docker-container

Containers used in the developed system’s Gitlab CI/CD pipelines are retrieved from Docker

hub [27]. The selection of containers applicable for the developed system or any application

relates to the technologies made available and configured on the container image. For example,

the developed system utilizes Jekyll application created from the Ruby programming language

and therefore needs container images with Ruby installed for running the software. All applic-

ations using Ruby commands and interpreters can reuse the same container images and ensure

the same environment is used for all deployments of applications. Despite this, during devel-

opment group members discussed methods for implementing JavaScript vulnerability scanning

of docker containers and required additional configuration of Ruby containers. In such occa-

sions one could find unofficial container images on docker hub which are configured for both

Ruby and JavaScript but lacking the official stamp of approval from the Docker team. Security

47

of containers is later discussed in section 4.7.6, but the problem area of having scalable and

maintainable container images is to be discussed further at present.

Users of the developed system can create their own container images including all dependencies

from setup or make use of base images to be configured during Runtime to install dependencies

instead [28]. In practice, but solutions result in the container images with appropriate config-

urations for the developed system, but the difference lays within the approach of maintaining

of images. Furthermore, using a base image and installing required dependencies enables de-

velopers to work from the same foundation to work from. On the other hand, administrators

would inherently increase the risks of having different environments throughout their pipelines

as each job requires their own designated installations steps. In contrast, developing a container

image with all dependencies part of the base image alleviates developers from configuring the

images themselves during pipeline development. In spite of this, base container images would

frequently require updates as dependencies introduce vulnerabilities or general changes.

All in all, the developed system utilizes container images from the publicly available Docker

hub. The approach for retrieving container images in use has its up and downsides. With regard

to thesis, group members have concluded that teachers should take use of base images included

in the developed system’s template or incorporate other official base images when needed.

4.4.6 Timing-issues

Pipelines in the developed system has timing-issues during web testing. Whenever a pipeline is

triggered, for example by uploading newmarkdown documents, Gitlab CI/CD starts the pipeline

stages as defined in “.gitlab-ci.yaml” file. With regard to the developed system, several steps

included in the established pipeline executes web based tests to report on the functionality of

transformed websites. Ideally, transformed web pages should not be deployed if web testing

stages reports errors. Despite this, pipeline stages for rendering pages are inconsistent in time

before updating the publically available pages. As a consequence, web based tests in the current

iteration of developed system has a risk of reporting on preceding transformed web pages if

new changes to pages are not rendered and uploaded before the tests are ran. It is noteworthy

that stages in template pipeline is configured to be ran after each others completion sequentially,

unfortunately the “pages” job part of “deployment” stage is a Gitlab service that group members

48

cannot configure themselves and reports itself as completed before new pages are uploaded.

Considering the scope of thesis, group members concluded with the timing-issue being an issue

for future improvement.

To solve the timing the separate containers for web testing and rendering pages could be con-

figured to share the same network environment and report on locally rendered pages before

continuing the pipeline. To further explain the differences, current configuration of web test-

ing are ran on a Cypress container requesting the publically available web pages hosted on the

Gitlab instance, for example https://gitlab.stud.idi.ntnu.no/. In contrast, the proposed solution

have a container host the rendered pages locally with shared network resources to web testing

containers that run tests on http://localhost:8080/.

4.4.7 Deploy stage in Gitlab CI

The ultimate stage of the GitLab CI pipeline runs a series of scripts to prepare the file structure in

the GitLab repository for being rendered as a website through Jekyll. This is necessary because

while the final website is completely static, it still has to reflect the original repository. There are

therefore several elements that need to be generated based on the file structure of the repository

that would be impractical for the teacher to do manually.

Generate sidenav and nav pages

The first of these scripts is responsible for generating the side navigation bar as well as static

HTML sites for every possible navigation page, the latter of which will be explained shortly.

The side navigation bar is generated based on the directories directly below the _content direct-

ory visible in 23, excluding the predefined directories “announcements” and “nav”. The entries

in the side navigation bar link directly to the navigation pages representing their respective dir-

ectories.

Every sub-directory of the “content” directory generates a respective navigation page exem-

plified in 24. Each navigation page contains links to both the directory’s own files and sub-

directories. Each directory is turned into a markdown file and stored in the “content/nav” dir-

ectory with contents as seen in 25. The markdown files are named based on the entire path to

49

the relevant directory as well as an added “-page” at the end, in order to ensure that each and

every directory is created with a unique filename. E.g. a hypothetical folder “content/reading-

material/extra” would be given the name “reading-material-extra-page.md”.

The markdown files for the navigation pages are generated before Jekyll runs and are therefore

automatically turned into HTML pages just like any other markdown file in the “content” folder.

Jekyll also assigns the name of the source markdown file as the title of the page by default,

which means the nav pages would have ugly names not fit for the front-end of the system. To

circumvent this the script sets the front matter of the markdown file to include the “title” field,

assigning to this the name of the current directory. This allows for several nav pages to have the

same title while avoiding them having the same filename.

Figure 23: Source file structure

Figure 24: Generated nav directory

Figure 25: Generated nav page markdown file

50

Move content

The next step in the deploying process is to move the structure of the content folder into the

webpage content folder. As a brief reminder, the base content folder is the one teachers are

meant to interact with, while the webpage content folder is where Jekyll builds the site from.

Distancing these two from each other allows end users to use the system without knowing the

ins and outs of how exactly Jekyll works as the system will translate an ordinary file structure

into a Jekyll appropriate one.

To support users who know Jekyll and want to define their own structure without any help from

the system the first step of the content moving script is to check whether the file structure of the

content folder already fulfills Jekyll’s requirements. The key requirement that is being looked

for is the obligatory presence of a _posts directory. Should one or more such directories be

found the system will simply move the contents into the webpage folder as is, making no further

changes.

In the event that the content structure is not Jekyll compatible the system will make a few minor

changes. Each sub-directory in the original content folder will be recreated as an empty directory

in the webpage content directory. If the original directory contains one or more non-directory

files a _posts folder will be created and the files copied over into this new _posts folder. The

end result is a webpage content folder that is structurally identical to the original content folder

with the exception of putting all non-directory files into _posts directories, allowing Jekyll to

find and work with them. An example source directory and resulting website directory can be

seen in Figure 26.

51

Figure 26: Source content folder (left) and resulting website folder (right).

Make index table of contents

The content listings on the index page of the site has the purpose of giving a complete overview

of all the course’s contents for student users. In short this is accomplished by recursing through

each directory in the content folder and creating an HTML file with a list links to each directory’s

navigation page and every markdown file’s generated HTML page. The logic for retrieving lists

of files and directories within a given directory are reused several times throughout the scripts

and can be quite confusing to read unless the reader is sufficiently used to UNIX commands like

grep. The complete command used for this operation is as follows:

Figure 27: Command retrieving list of directories

The command seen in Figure 27 performs a series of operations in order to return a list of the

names of every directory contained within the current directory and storing this list as an array

in the variable “directories”. The “|” sign denotes the piping of the result of the previous oper-

ation into the next operation, essentially running the initial input through an “assembly line” of

operations to achieve the desired result.

• ls -l $1

52

ls Lists content of the directory specified in the variable $1.

-l Option for ls that prints more information about every item in the list. Used here to

determine the type of file.

$1 The first argument passed into the function containing this line of code. In this case

the path to the current directory of the recursion.

• grep '^d'

grep Returns any lines matching the given pattern.

pattern The '^d' patternmatches any line that starts with the character ’d’. ls -l output

includes among other information a character denoting the type of file at the start of

the line. The character for directories is ’d’.

• grep -o '[^]*$'

-o Option for grep that returns only the exact part of the line that matches the given pat-

tern.

pattern The '[^]*$' pattern matches a continuous string of non-space characters next

to the end of the line, i.e. the last word of any given line. This is used to remove

unnecessary data from the ls -l operation, leaving only the name of the directory.

• tr -d '/'

tr Command used to replace one character for another in a text.

-d Option for tr that removes a given character instead of replacing it with something

else. Used here to remove the trailing ’/’ after the directories’ names.

4.5 LMS installation and deployment

The developed system is logically seperated into three different projects interconnected through

Gitlab CI pipeline.

Before reading, the developed system utilizes Snyk[23] a vulnerability scanning tool later dis-

cussed in 4.7.7 for its security. To use the developed system as intended, users are required to

53

create a Snyk user profile and create a token for applications such as the developed system to

utilize.

Firstly, a project to create and publish websites as Gitlab Pages. To install and configure Gitlab

Pages fork the working repository, in case it is inaccessible refer to the latter repository:

Working repositories: https://gitlab.stud.idi.ntnu.no/bachelor1

Code repository: https://git.gvk.idi.ntnu.no/Fabian/dcsg2900-gitlab-pages

The working repository has been configured with a CI variable in its project setting, and addi-

tionally uses downstream projects[29] as part of its pipeline. Furthermore, unit testing of the

pages are done with a separate CyPress project, and system testing of WCAG compliance is

reported using an GitLab automated reporting project.

Configuring the CI variable can be done through the GitLab web interface. First open the “Set-

tings” menu, thereafter “CI” menu and the “Variables” section can be configured. Create a

variable named “SNYK_TOKEN” and give it the appropriate value retrieved from user’s Snyk

profile.

Downstream projects are defined as part of stages in the Gitlab Pages project’s “.gitlab-ci.yml”

file. For example, there are currently five active stages:

• vuln-scan

• deploy

• web-testing

• web-accessibility-report

• notification

web-testing and web-accessibility-report are intended to be separate projects that can be inter-

changed with similar functionalities depending on the user’s wishes. In practice, users need

to withdraw the correspondingly named folders from the code repository and create them as

separate projects. Thereafter update the Gitlab Pages project to trigger the aforementioned web-

testing and web-accessibility-report projects. Figure 28 display a snippet of the .gitlab-ci.yml

where the connection between the file and separate projects is made.

54

https://gitlab.stud.idi.ntnu.no/bachelor1
https://gitlab.stud.idi.ntnu.no/bachelor1
https://git.gvk.idi.ntnu.no/Fabian/dcsg2900-gitlab-pages
https://git.gvk.idi.ntnu.no/Fabian/dcsg2900-gitlab-pages

Figure 28: Multi-project pipeline configuration

Course specific configuration is only necessary for the Gitlab Pages project. As a baseline, the

group members recommend following the installation guide provided in the code repository’s

“Readme.md” file.

4.5.1 Prerequisites

The group assume the client already has a Gitlab infrastructure available. Otherwise, the client

should follow GitLab’s online documentation for how to set up the platform [30], before con-

tinuing to create the course. Besides the platform, it is required that the client has the following:

• Jekyll Service to convert markdown to HTML.

• Docker Service installed, as the Jekyll client requires it.

• Ruby

4.6 File Structure Overview

55

Figure 29: File structure of the GitLab repository.

Figure 30: File structure of the /webpage directory within the GitLab repository.

56

4.7 Security

The intention of secure design is a resulting systemwhich enforces imperative securitymeasures.

For instance, systems that enact authentication, accountability, authorization, data integrity and

availability is in thesis considered to be secure. As a baseline, all aspects of the developed system

is created to be easily configurable and changeable depending on the end-user’s requirements.

For example, themajority of securitymeasures included in the template project are part of CI/CD

pipeline in which users can remove existing or add additional steps. With this in mind, the

developed system’s security measures exists as an example for the minimum viable product as

defined by the group and client. Additionally, the group considers any system to be prone to

implementation defects and believes further research and development of security measures is

required for a commercially viable product. The existing procedures have been designed to

reduce available endpoints for exploitation by threat actors and is considered adequately secure

for the scope set for the project.

The following sections aim to describe what procedures are part of the developed systems.

Firstly, procedures for endpoint protection on a platform level will be presented. Secondly,

security measures part of the platform itself. Lastly, security of the underlying technologies is

described as well.

4.7.1 Endpoint Protection

After discussion with Henrik Johnsen, administrator of the Faculty of Informatics GitLab In-

stance, the group was informed that the relevant GitLab instance is protected by Cisco Advanced

Malware Protection (AMP). This is a Endpoint Detection and Response (EDR) tool that is suited

to scan the internal system and respond to any potential threats [31]. It differs from a standard

antivirus software by having a broader scope of action: An EDR system provides not only an-

tivirus functionality, but also functions as a firewall, as well as offering tools for monitoring

and providing access control [32]. Furthermore, an EDR system can delve more deeply into the

threat and provide additional insight as opposing to an antivirus which simply removes it. The

additional info an EDR system can provide, can be useful for further investigations resolving

around an incident.

57

4.7.2 GitLab’s Security Measures

GitLab provides a couple security measures on its own, further minimizing the attack surface.

The following paragraphs will describe a handful of the implementations, which are especially

relevant for our product, besides being benefitial for the platform altogether.

Password Policies

In terms of password storage and requirements enforcement, GitLab Has numerous implement-

ations at hand, to ensure the confidentiality of user’s credentials within the database. All stored

passwords have these three actions performed on them: GitLab uses bcrypt() for Hashing user

passwords. As the function description states, it accepts three inputs: the password itself, the

input cost, and a salt value. As the documentation states, all salt values are randomly generated

and unique to every password. The uniqueness of the salt values is to minimize the compromise

in case of a threat actor that has successfully discovered a salt value. The output from bcrypt

is a hash value, representing the password. As a final step of password obscuring before stor-

ing in the databse, the password is “stretched” by running the hashing process anew for several

hundred times [33]. The output of the stretching process is the hash which is being stored in

the GitLab database. Upon user login, the input hash value is compared with the stored hash.

Should the values be alike, the user access is granted.

This measure protects the database against brute-force attacks and techniques alike, where the

attacker tests self-made password hashes against the database-stored. However, it does not pro-

tect against the human error of “handing the password over”, as is often the case with Phishing

attacks. As a counter-measure on successful login attempts by threat actors, GitLab has en-

forced Two-factor authentication for users. This design principle is also called “Separation of

Privilege”, where the user requires several methods of authentication in order to bypass the

system [34].

58

User file Uploads

To create a separation between public and private information, we created a structure of groups,

subgroups and projects with different access control, similar to mariusz’s structure. A part of

the structure is a group, hand-ins, students are given a project in this group for each assignment

through our service. The projects are private to the student, as the teacher has root access to

the structure and are the git owner of the projects they also have access. When a submission

deadline arrives a script can automatically demote a students project membership type so the

student can push new code, this goes fast. After all students are demoted the script will start

cloning the projects, the cloning process can take some time, therefore it is important to demote

all student so as no student can push new code while other projects are being cloned, it should

not favor a student for processing their project last.

The group believe our submission service to be safe, as each project is isolated and not accessibly

to other students and no one other then students in the subject are given a project(s).

However as of now it does require a lot of manual labour as there are no system for recording

who passed and how failed. A professor can give feedback through for instance, the readme file

or a projects wiki page, the feedback can say if the student(s) passed or not but the professor do

not posses, if not created by him/her self, a centralized system for his/her students results. As

of now the submission script is only in pseudo code, but all the lines of code needed exists and

are tested.

The current project based submissions are best suited for Git based projects (usually program-

ming projects), but can be used to deliver a single file. An upload button on the website is the

simplest solution for a student. However a file upload function may create some problems, for

instance, is or can the file be executed, how do we know which file is owned by who and can

students read each other delivered submission?

On a static website there are no way to know who a submission belong to, unless the submitter

has written their name on their submission. To automate a perfect submission function the

website need to be to some degree dynamic, contain a database and have a detection system

where only students are allowed to deliver a task. The last one is currently a problem, the

current configuration of IDI’s Gitlab instance has no way to “close” or make private a Gitlab

59

page. Thous all Gitlab pages are always public, meaning if an upload button is on a Gitlab page

nothing is hindering whoever from submitting their files. A script can compare NTNU LDAP’s

list of student in a subject to the submitted file’s content, to see if the submitter has written their

name in the file and is taking the subject. The problem is at such a script will make a couple of

request to NTNU’s servers and need computer power to potentially compare a whole document

per submission which stacks up fast.

Announcements Teams Webhooks

Part of the Gitlab CI/CD pipeline is the notification stage with the purpose of sending announce-

ments to the institution’s preferred communication channel. For example, in our thesis we have

utilized the Teams integration “incoming webhook” that establishes a unique URL accessible

online that forwards web-requests into a dedicated Teams channel [35]. It is noteworthy that the

application does not authenticate requests to its URL and a malicious user could send misleading

messages. Lack of authentication proves a vital flaw with the existing solution with Teams, and

it is recommended to develop a similar application that validates users before publishing mes-

sages. The content of messages themselves is not considered a security threat as “incomming

webhooks” uses declarative message structure which prevents insertion of malicious code.

Runner Security

As previously discussed in “4.1.1. Overview Flowchart”, as the user issues a “Git Push”, a

process also known as “Gitlab runner” executes a series of jobs within a pipeline, with the

aforementioned containing lines of code to run. As it stands, the stud.idi.ntnu GitLab instance

has 4 shared runners[36], all of which are accessible for job handling for any GitLab repository.

Alternatively, users can create their own runners, which consequentially have to be manually

updated by their creator, but are also open for tailoring to the creator’s desire. Security com-

plexities arise when we take a look at the usage of said runners: As it goes for the latter runner

alternative, the dangers of a compromised runner host can be used for executing malicious com-

mands/programs, exposing the machine’s working environment for further attacks or the repos-

itory altogether, should the information be considered confidential. Considering that self-made

runners can also be used in different repositories, keeping them secured is vital for the security

60

of the projects.

Specified in the Security section of GitLab, a best practice to reduce the extent of damage applic-

able upon compromise is to make the runners more “ephemeral”, resulting in a shorter lifespan

of a single instance [37]. Instead of keeping a single iteration running for several jobs, it is ad-

visable to create a new instance for every running job. This isolates the runner from additional

tasks, and reduces the attack surface of the instance upon compromise.

An additional detail to keep in mind when configuring runners is their privilege in the system.

For example, in development there are stages with dind binding (docker-in-docker) that eval-

uates and analyzes the quality of code in a given repository. Running containers in privileged

mode exposes the system to a multitude of vulnerability issues as the container is no longer

residing within an isolated environment and exposes the kernel and external hardware resources

of hosting computer.

Running a CI/CD Job in privilegedmode could be beneficial should a desired application require

connection with the host, as privilegedmode allows actions outside of the enclosed environment.

However, this also amplifies the risk of being compromised, as the attacker. Documentation

advises runners operating with elevated privileges to reside within isolated environments, as

well as being in ephemeral state, meaning the machine should be terminated as soon as its initial

task is completed.

CI/CD Variables

Variables empower developers to create dynamic processes. Simply put, variables are an abstract

storage location paired with an associated symbolic name which contains a value [38]. Logic

can also be applied to variables, creating branches of possible outcomes depending on the value

stored within a variable. With regards to the developed system, Gitlab CI/CD variables are used

in pipelines for configuration and dynamic scripting. There are four different use cases of Gitlab

CI/CD variables in the developed system:

• Variables in the “.gitlab-ci.yml” file

• Project variables

61

• Multi-project variables

• Predefined variables

Variables in the “.gitlab-ci.yml” file are defined with the “variable” keyword accessible globally

throughout all jobs or isolated within a single job instance.

Project variables are defined in a project’s CI/CD settings under the “Variables” section. A

unique attribute of such variables is they can only be accessed within the project and can be

configured to be masked in scripted jobs. For example, project variables can be used to store

critical data for authentication such as password and is used to store login information for Snyk

monitoring elaborated on in section4.7.7.

Multi project variables are part of multi project pipelines [39] that span over different projects.

For example, the developed system consists of multiple projects in which “Gitlab pages” triggers

other projects for testing purposes. Moreover, Upstream job define variables and passes their

values into Downstream job [29].

Predefined variables are available in any jobs and contains information concerning the git based

system. To be specific, the developed system incorporates committed messages and name of

projects in different pipelines for dynamic purposes.

4.7.3 GitLab Access Control

An important security aspect of protecting a GitLab repository is to restrict access to unauthor-

ized persons. This is possible with the use of two methods: Role permission limitation, or by

using access tokens. The former method is available in the “Members” tab when viewing the

repository settings. When inviting newmembers, it is possible to regulate their access as defined

by five tiers: Guest, Reporter, Developer, Maintainer and Owner, each providing the user with

more permissions than the previous [40].

The latter option, access token control, is an alternative solution for the same challenge, al-

beit with another use case: Whereas account-based project access is regulating human access,

token-based access control can be useful for automated, non-human processes such as scripts

and applications. Furthermore, tokens work in the same way as passwords, by being provided

62

alongside the request to the respective repository for authentication [41].These tools, however,

will protect the repository only if the people or processes are authenticated with the least priv-

ilege required. It will correctly protect the resource if it is correctly implemented.

Open/closed Gitlab pages

By default all Gitlab pages are public regardless of the projects accessibility. Access control for

Gitlab pages can be activated, if activated only members (at least Guest-members) can access

the web site. It is important to note that the access control is active in the project setting and

project wide, meaning access is either public or closed for all web pages in a website generated

by Gitlab pages. There is not possible to have certain pages be closed while others are public,

it is however possible to have two web site where one i open while the other is closed. If an

unauthenticated user try to access the website they are redirected to Gitlab, if authentication is

successful the user are redirected back to the website. See the source of this paragraph for how

to configure Gitlab pages access control [42].

In this project we used NTNU’s instance of Gitlab, gitlab.stud.idi.ntnu.no, this instance does

not support closed Gitlab pages. To give Gitlab pages access control, pages has to be re-

gistered as an Open Authorization (OAuth) application with Gitlab. To enable gitlab pages

access control add the line ”gitlab_pages[’access_control’] = true” to the Gitlab configuration

file (/etc/gitlab/gitlab.rb) [43].

4.7.4 Ruby

Ruby, being an open-source project, allows its users and and other persons of interest to inspect

the code. This goes well in hand with Ruby’s Bug Bounty program on HackerOne. The program

offers a monetary reward to anyone who finds a vulnerability in their software.

On the topic of response time after submitted vulnerability, the HackerOne website provides

statistics on “Average time to first response” and “Average time to resolution”. These times are

listed at 4 days and 3 months, respectively [44].

Many interpreted languages (such as Python, Ruby, and JavaScript) have an eval function that

consumes a string consisting of syntax in that language and invokes the language’s interpreter

on the string. Use of a language’s eval facility can permit the implementation of very powerful

63

features with little code, and is therefore tempting. It is also very dangerous. If attackers can

influence even part of a string that is evaluated and that substring is not appropriately validated

or encoded, they can often execute arbitrary code as a result [45].

4.7.5 Jekyll

The CVE database for Jekyll-related vulnerabilities reveals that only a single vulnerability has

ever been documented, back in 2018. Named CVE-2018-17567, the vulnerability allowed a

threat actor to access confidential files by specifying a symlink in the configuration file [46].

Systems consuming complex data formats (such as XML documents, image file formats, or

word processing file formats) might perform parsing, syntactic validation, and semantic valid-

ation of input files in a dedicated validation module whose output is a validated internal object

representation of the input document. Parsers and validators must themselves be designed to

robustly cope with potentially malicious or malformed inputs.

Static versus dynamic websites

The information-related challenges were solved with the use of static websites, as our client

desired. However, one may wonder how the layout would look like if there were no limitations

on website format.

Static websites, as the name implies, are unchangeable: No matter the user, no matter the condi-

tions met, the website will look the same. Consequentially, a static website is more lightweight

in complexity: These websites are made with no more than HTML and CSS. Its counterpart,

the dynamic website, is far more developed, both in its look and in its possibilities. As opposed

to the former, a dynamic website is open for interactivity with the visitor, and can change its

look or functionality depending on the user and their respective privileges on the system [47].

Additionally, the websites are also suited to interact with additional infrastructural components,

such as a database.

However, with a broadened list of supported technologies, comes a broadened attack surface. As

GitLab pages are considered static websites, there are no entry points for an attacker to utilize.

The surface increases as the website implements additional components: Respectively, if the

64

connected database does not have input validation, it is theoretically possible for an attacker to

manipulate the overlooked detail to their own malicious favor [48].

4.7.6 Container Security

Isolation of processes, separation of services and control groups contributes to making contain-

ers secure. As described in Section 2.7, containers are isolated and can only view resources

in the given namespace. Availability of detectable resources are limited by control groups. In

fact, containers image specification and runtime specifications are fully configurable in which

resources such as memory can be completely prohibited if needed. Deep diving into differ-

ent configurations of containers and researching the resulting effects is out of scope for thesis.

Moreover, thesis’s developed system is hosted on a Gitlab platform hosted at NTNU with its

own administration. Group members have been in contact with, as of writing, the current ad-

ministrator Henrik Johnsen [49] to discuss possible methods to test different rulesets to apply to

the platform. Henrik Johnsen was receptive to any suggestion on configuring the platform with

proper justification and documentation (see Appendix C.5). Influencing platform configuration

is marked as a future potential for the developed system and considering the scope of project

ended there. It is note worthy that docker ensures container isolation with creating namespaces

as a default. In addition, enabling USER namespace maps privileged users in containers to non

privileged users on host machine. Privileged operations, such as terminating other processes or

reading and writing to root file system cannot influence the host.

Exploitations arising from inadequate or insufficient usage of namespaces and control groups

is exemplified in the research article Houdini’s Escape: Breaking the Resource Rein of Linux

Control Groups presented on ACM SIGSAC Conference on Computer and Communications

Security. The article elaborates om multiple attack vectors that potentially breaches the limita-

tions enforced by control groups. The central theme is when child tasks are created from parent

processes they inherit recursively all rule sets as its parent task. However, when the newly

spawned process generates workloads on processes not affected by initiating control groups a

de-association occurs in which attackers gain leverage of the system [50]. Similar cases can res-

ult in denial of service through generating excessive tasks for the underlying system preventing

applications to gain access to essential computer resources.

65

To summarize, containers are inherently secure from limitations put on namespaces and con-

trol groups. Despite this, any security measures are rendered useless without proper configur-

ation and administration. End-users should therefore thoroughly analyse that correct handling

of namespaces and control groups are in adherence to their standards and wishes. After all, the

developed system is created as a template for end-users to customize depending on their needs

and hosted on interchangeable cloud platforms. As a rule of thumb, group members recommend

allocating specific or trusted shared resources on each individual namespaces containers become

part of or inherits from. For example, end-users with control of the hosting platform should cre-

ate overarching namespaces and a set of user groups with rules applied from control groups for

containers. Furthermore, containers should automatically inherit configured namespaces and

enroll as an user of the user group when launching.

4.7.7 Vulnerability scanning

Any systems is prone to errors. To prevent problems arising from dependencies the vulnerabil-

ity scanning tool Snyk (pronounced “sneak” [51]) is used to report common security issues part

of the developed system. Snyk services are acknowledged for their insights by several lead-

ing service providers such as Amazon, Docker and Google. In fact, all mentioned parties and

more have partnered with Snyk and integrated their services as part of their platforms [52]. To

further exemplify Snyk’s vulnerability scanning tool to be considered as an expert opinions the

following citation is given:

“Cloud native development has become a critical advantage to organizations look-

ing to deliver modern products to market more efficiently. By bringing Snyk’s vul-

nerability insights into the new Amazon Inspector, we’re enabling security teams

to leverage truly comprehensive, contextual vulnerability information that helps

prioritize the most severe vulnerabilities first and further empowers agile software

development on AWS.”

- Michael Fuller, Director of Product Management for AWS Security Services [53]

Snyk offers scanning of open-source dependencies, one’s own code, containers and infrastruc-

ture as code. In relation to the thesis, Snyk is used to scan container deploying web pages and

66

defined in the CI/CD pipeline, as seen in Figure 31.

Figure 31: Gitlab CI/CD Snyk configuration

The scanning tool searches through all dependencies listed in the developed system’s gemfile, a

format for describing gem dependencies for Ruby programs [54]. Vulnerability entries for each

dependency is searched for in Snyk’s own databses and a resulting HTML report is generated.

A thorough description of the current configuration of Snyk in Gitlab CI/CD is described as

follows:

• Retrieves Gitlab CI/CD variable “SNYK_TOKEN” to authenticate against Snyk user pro-

file

• Installs Node.js and Node Packet Manager

• Installs dependencies

• Installs Snyk

• Locates file containing dependencies.

• Searches Snyk’s databases for vulnerabilities related to dependencies.

• Creates report viewable on Snyk user profile

• Creates HTMl report listing all vulnerabilities with remedying actions.

• Upload HTML report as artifact

67

In Snyk’s own web interface, end-users are enabled to view all reports generated to that user

profile, as displayed on Figure 32. Multiple projects can be connected to the same profile.

Image below depicts the history of the developed system in which two dependencies generated

two security issues that were addresses as a result of Snyk’s reporting.

Figure 32: Snyk vulnerability history

Vulnerabilities are presented individually in the report and lists the relevant information, namely

source of origin and remedying actions. For example, one of the aforementioned security issues

showcased was solved through updating the dependency, as displayed on Figure 33:

Figure 33: Snyk issue description

Figure 34 displays an excerpt from HTML reports, which listed a total of zero vulnerabilities

found from the developed system’s dependencies.

4.7.8 Trusted Docker images

Docker images used in the developed system are retrieved from the public repository service

Docker hub [27]. Users are enabled to freely upload and store images onto the service. As a

68

Figure 34: Snyk report

consequence, requesting said containers to be used for applications without caution can lead to

vulnerabilities issues. Official distributions are therefore marked with a label to counteract such

problems. The label depicts that the container image is curated and approved by Docker [55].

With this in mind, the developed system uses the official and trusted container image ”Ruby

3:0” [56]. Figure 35 is the official ruby Docker image.

Figure 35: Docker official images

It is of importance that the developed system’s project template does include an unofficial im-

age to perform web testing, namely “cypress/included”. Cypress is used to exemplify means of

conducting web testing in CI/CD pipeline and is interchangeable of similar web testing frame-

works. Despite this, the images supplied from Cypress has a combined total of over one hundred

million downloads which group members believed would have gained traction if security issues

where found. In addition, Snyk reports on container image has resulted in zero dependency

vulnerabilities.

Lastly, the container image used for testing WCAG [57] compliance of the developed system’s

pages is part of Gitlab report type “accessibility” and is therefore considered as trusted [58].

69

4.7.9 CI/CD best practices

CI and CD depicts two practices for frequently and quickly deliver applications to customers.

Alongside the growth of the tech industry a set of standards forms and is called best practices.

With regard to security, best practices often includes several actions for the purpose of improv-

ing confidence in quality and integrity of software. Furthermore, CI/CD achieving confidence

and credibility in the developed system is done with automated testing, a best practice of the

Development & Operations industry.

As a result of automated testing, users are enabled rapid development and can monitoring each

part of the cycle. To exemplify, history of pipelines are made available from GitLab and can

be used to draw statistics for tracking speed of deployments over time, identifying recurring

problem areas when pipelines fail and comparing different iterations of the developed system.

To summarize, automated testing is a best practice of CI/CD and can be used for system feedback

and users gain confidence in the software.

4.8 Quality Assurance

In order to ensure the best possible quality of our end result, we have tried to adhere to good prac-

tices of quality assurance. This section is set to describe what measures have been implemented

to ensure a clear visibility on improvement of the solution.

4.8.1 Definition of Requirements

To make sure the entire team was on the same page about what exactly the functionalities we

were working on at a given time were, we started every sprint by creating a Definition of Done

document. The document stated the goals of the group, which were due to completion at the

end of their dedicated sprint. This also functioned as a checklist at the end of the sprint, that

helped with making sprint reviews, allowing us to go through the list and make sure everything

was implemented the way we envisioned. As is natural in an agile work environment, these

requirements would sometimes change underway, usually to include a dependency or some other

unforeseen challenge.

70

The key parts of these Definitions of Done are Assumptions and Dependencies and Functional

Requirements. Assumptions and Dependencies serve as documentation for the assumptions we

made before we defined the requirements for the functionality, as well as any other technologies

that are required for it to work. Assumptions usually serve to limit the scope of the functionality

by excluding fringe or otherwise unnecessary use cases in order tomake the development process

more efficient. Functional Requirements stated concise and measured perquisites, which are

deemed necessary in order to complete the sprint tasks.

4.8.2 Automated Reports

Gitlab offers a wide range of “AutoDevOps[59]” features which is a collection of pre-configured

docker containers that work together to support the software delivery process [59]. For instance,

the Auto DevOps features used in our system creates reports on accessibility of Gitlab Pages and

quality of code in repository.

Automated reports are part of the Gitlab CI/CD that triggers whenever a change is made to

the system. The reports are made available as “GitLab Job artifact” , an archive of folders or

documents in relation to a job in a given Gitlab CI/CD. For example, “Pa11y” is a free and open

source tool part of Auto DevOps for measuring the accessibility of web sites based on WCAG

2.1 rules [57] configured to analyse web sites made available through our Gitlab Pages with a

resuling report named “accessibility”. Pa11y report example can be seen in Figure 36.

Report entails specific description of the WCAG rule the implementation is violating and rem-

edying instructions. Modern websites should adhere to standards set by WCAG as their spe-

cifications lead to a unifying design which benefits users with disabilities. Especially in an

academical setting institutions are imposed to make their studies available to all students. End

users of our system are enabled to improve their courses digital front by reading this report, or

taking advantage of the template course part of thesis which has a resulting report of zero errors.

Users interested in further developing the system should make the most of all reports. Moreover,

CodeQuality ensures the code in a repository is readable, uncomplicated and vacant of common

vulnerability issues. Figure 37 displays the structure of the provided reports after a singular

scan.

71

Figure 36: Pa11y web accessibility report

Figure 37: CodeQuality service report for GitLab

72

5 Conclusion

5.1 Conclusion of possibilities for Gitlab as a Learning Management Sys-

tem

Website design

The goal of the visual design of the site was to make it clean, easy to navigate, and make it look

in line with other NTNU affiliated websites. A simple white and blue color scheme was used to

match the NTNU aesthetic.

The index page of the site contains a couple key elements that is presented front and center. The

first thing a user sees is the announcements box. This is a conscious decision that serves to ensure

that students will immediately know if there has been made a new announcement since the last

time they visited the course’s site. The other important part of the design is the navigation bar

on the left side of the page layout. The role of the sidebar is to make the site easier to navigate

and give the user a cursory overview of what information the site contains.

The links on the bar reflect the folder structure of the repository, allowing course coordinators to

shape it to match whatever needs their course may have. The default folder structure that comes

with the repository was decided upon based on a survey of students, existing sites referenced by

Hjelmås, and the group’s personal experience as students.

The page design is quite minimalist with a focus on functionality. In some places this serves the

product, in others it is the result of limited time spent on the visual design. One known issue is

that the navigation pages have no visual distinction between folders and files, which is a pretty

significant user friendliness issue.

Through working with GitLab Pages for the duration of this project, the group finds that the

visual website design is no more limited than when hosting a website in a more traditional man-

ner. There’s no reason why this solution couldn’t be designed to fit any look a course coordinator

would want. The Jekyll layouts and Sass files that make up the site’s design are readily available

for editing, and the default design of the developed system is already completely serviceable.

For this aspect of developing a partial LMS alternative the group believes GitLab Pages is just

73

as suited as any other option.

Public info

How can information be made publicly available through using GitLab Pages?

Firstly, information is publicized on theWorldWideWebwhich is available to all. The challenge

ofmaking course contents obtainable for students and teachers was solvedwith creatingwebsites

reachable on the World Wide Web. As a default, websites published as GitLab Pages are openly

accessible for the public without restriction. Subsequently, the issue was minor in contrast to

challenges introduced with transforming markdown files provided by teachers into websites.

Secondly, information regarded as public is given as input to the developed system and trans-

formed with GitLab CI/CD into websites hosted as GitLab pages. Moreover, teachers trigger

the GitLab CI/CD workflow whenever a committed change to the designated repository is sent.

The workflow runs automated scripts, builds websites and reports on tests performed against

the website and containers running the application. The primary challenge of dynamically cre-

ating static websites comes with document handling. For example, the pages are dynamically

generated from teachers markdown files provided to the system. In addition, the web interface

consists of pre-built HTML and CSS appearing as static websites on user’s browser in contrast

to dynamic pages which are built at the time of receiving the web request. With this in mind,

several scripts including “deploy” in its naming was implemented in the GitLab CI/CD pipeline

to overcome the obstacle of handling documents to become websites.

To summarize, GitLab enables developers to solve the challenges of publicizing public inform-

ation as GitLab Pages and implement the automation necessary through GitLab CI/CD work-

flows. Group members have therefore concluded that GitLab Pages is a good alternative system

for publicizing course content publicly.

Private info

How can a course coordinator handle access control to the three categories:

• a) Information available to the public

74

• b) information only for the participants in the course

• c) information only for the course coordinator

The developed system applies access control to users within GitLab groups and projects. Which

actions are permissible for a user is given by their role for a group or project. Furthermore, if

multiple groups and projects are structured hierarchically roles are inherit from the top to bot-

tom. For example, users part of the top level group inherits the same rights and permissions on

the equivalent bottom level group. As a consequence, users needs to be given access to appro-

priate levels of group/project hierarchy for proper access control. It is noteworthy that defining

user’s roles in different part of the group/project hierarchy overrides or is added to the inherited

permissions from a top-down perspective. For example, giving a user reading access on a top

level group will affect all subsequent groups as well, and giving the same user writing access

on a bottom level group makes reading and writing available for the user in that part of the

hierarchy. Implementation of user access control in GitLab was made in reference to Mariusz

Nowostawski setup available in appendix C.1. The proposed solution creates groups and pro-

jects for a course to support public, internal and private information. Moreover, information

available to the public. Internal, information only for the participants in a given course. Private,

information only for the course coordinator. In practice, course creation is done with scripted

web requests sent to a specified GitLab instance and utilizes the user’s own permissions.

All in all, user access control can be implemented with GitLab groups and projects where users

inherits roles and permissions. Group members consider GitLab to be a suitable alternative

system for solving challenges related to access control.

Announcements

The goal behind the announcement system is to provide teachers with away of delivering import-

ant information to their students throughout the course. This is a very open prompt with many

possible solutions. The developed system implements two different solutions side-by-side, with

slightly different use cases.

The first implementation is closely inspired by the existing solution in BlackBoard Learn. The

teacher creates a new markdown file in a specific announcement folder, the file is converted into

75

a static HTML site, and a link to the created site is added to the announcement box on the index

page of the website. The second implementation is an automated variant that sends a message

to a Teams channel whenever changes are made to the repository.

A big downside with the first implementation is that Git does not support sorting files by date.

The scripts used for other markdown files all go by Git’s default alphabetical sorting, which is

not ideal for announcements, where the newest file should be on the top. Experimentation was

done with using the files’ creation times, but since the website is built inside a Docker instance

the creation times reflect the creation of the instance, not the original source file. One possible

solution to this problem is to demand users put the date in the file name of the announcement,

or simply number the announcements. This is not implemented in the system developed for this

thesis.

All in all the group believes announcements work well in GitLab. The date issue is the one

part of the functionality that doesn’t inherently do well in Git, but should there be a big demand

for announcements along the line of traditional LMS, there are definitely ways to implement

it. The group also believes the Teams integration is a good addition that could have real value.

Multiple courses at NTNU already use Teams extensively, and this integration seems like a

natural evolution of that.

Deliverables

Deliverables is the most complex functionality explored in this thesis. Implementing them prop-

erly necessitates significant architectural support that GitLab is not designed to offer. While

there are ways to replicate the access control and actual file delivery aspects, there are also

several other elements that are more problematic to implement.

The first of several issues comes with creating and enforcing deadlines for assignments. In our

proposed solution to create a project per student for each assignment, enforcing a deadline would

effectively take the form of updating the student’s role within the project to no longer allow

them to upload or delete files. Scheduling this kind of role change is not a functionality GitLab

inherently supports. This means the teacher would either have to be online at that moment

to make the change manually or there would have to be some kind of dedicated server that

ran a scheduled script using the GitLab API. The group find neither of these solutions to be

76

satisfactory.

Another problematic element is the implementation of teacher feedback to student deliveries.

This includes both a grade or score, and a way for teachers’ to attach a written response to

the deliverable. There is an obvious low-tech solution of having teachers create separate files

in the assignment projects containing this information, but this makes it difficult for students

to get an overview of their results. Traditional learning management systems like BlackBoard

Learn will typically have an overview where a student can see all their completed and upcoming

assignments on a single page, complete with grades and comments. The group found this very

hard to replicate in GitLab, both on an architectural database level and on a presentation level,

given the requirement of the website being entirely static.

This is where the strengths of systems built from the ground up to accommodate a certain use

case shines. Without a dedicated self-defined database and certain key base functionalities some

systems become very convoluted to implement. While deliverables are technically possible to

support in GitLab, the group does not think it will be an optimal solution for every kind of

assignment.

5.2 Evaluation

The group has work together several times before and have great knowledge on each others

capabilities. As the group had worked on several projects before hand, working on this thesis

did not pose a problem. At the start of the bachelor thesis the group made a contract dictation

the amount of work the group have to use per week as a minimum.

For example, if the resulting product for the bachelor thesis did not meet the clients expectations.

Could the group have put in more hours of work and development to create a better product.

5.2.1 Organizing

The group was able to fulfill their own project goals and reflects proper organizing through-

out the project. For example, a vital part of utilizing the agile methodology is continuous im-

provement and development. The developed system and bachelor thesis was worked upon over

77

several months in time boxed periods. Each period had all group members partake in exercises

to include all aspects into defining goals for thesis and developed system. Furthermore, the

team was organized into three major roles and continuous improvement through reflective team

exercises positively affected the group project as a whole. Scrum master was responsible for

team coordination and ensured reaching the goals set. Developers realized through code the

opportunities discovered by analysts. All in all, a symbioses between the organized roles group

members attended was considered a success in retrospective of thesis.

5.2.2 Distribution of Workload

The group was in an extraordinary situation, as during the starting phase of the thesis work, one

of the members were still abroad for their internship. It was not until March that all members

were present in Norway and fully focusing on the thesis. In the meantime, the remaining three

members were left with working short-staffed in the development process. Fortunately, consid-

ering the grand amount of research required to do in the starting phase, the member abroad was

able to support the group through help with documentation and opportunity investigation, with

the latter being assessment work to determine whether a product or service was worth including

in the research.

Post-march, the workload was more even, but still within the same fields: The members who

were central in the solution development were still focusing on solving the remaining challenges,

with the remaining members focusing on documenting the development, as well as starting out

with the thesis document. Both teams were working closely, to ensure that nothing is left un-

documented. One major task of the documentation team was to also make models that could

describe not only the solution workflow, but also its foundation, from an infrastructural per-

spective.

During the final weeks, all members were solely focused on writing on the thesis document.

The workload was distributed based on what sections each member were supposed to write. As

planned, there was minimal difference in howmuch workload each member received. However,

it was noticeable that some members were quicker to write than others, and therefore decided to

work on more sections throughout their working time.

78

5.2.3 Project as a form of work

With an entire semester designated for working with one project, and with high ambitions to

score high, the group set out to work on a daily basis with expectations of weekends, from 11

AM until 4 PM, not mentioning overtime. In strong contrast to other standard projects provided

in different courses, we were given a lot more writing support, at the expense of academical or

product-related help as with other cases. Granted, we conducted a lot of interviews with profess-

ors with knowledge within our research field, but most of the insight provided was additional to

already discovered findings.

Some obstacles were met with the cloud storage service GitLab, where during the month of

April, the HTTPS license for the infrastructure at NTNU expired. This resulted in several CI

jobs, namely the testing pipelines, in rendering as unavailable as they require an HTTPS con-

nection. This slowed down our process on the testing, and the provisional development deadline

had to be postponed by several weeks, as we had to wait for the infrastructure administrator to

acquire a new license.

5.3 Reflection

5.3.1 Results

GitLab is surprisingly able to complete all the tasks given by the client, but it probably shouldn’t.

Announcements and deliveries where technically possible but complicated and lacked feature

which is critical for a perfect product.

What worked well

GitLab pages in conjunction with Jekyll is well suited to display markdown documents as web

pages and create a coordinated website. The setup is easy for use a teacher only adds their

document to GitLab repository and the site is generated. For the student the website works like

any other.

Private information is not ideal in the current solution because it is depended on a role base

segregation where a student reads from markdown documents in a repository closed off to only

course affiliated. Being able to move away from reading markdown documents directly from

79

GitLab is part of the reason the client wanted to explore the possibilities with GitLab pages.

However, GitLab pages is by default configured (for the GitLab instance, configuring what a

GitLab user can configure in their project) to public only, but this is able to change and thus give

the private information the ability to created as a website.

What did not work well

Deliveries without the use of a database and authentication, is entirely trust based. The current

solution would clones students projects to the course coordinator’s computer, to know who a

delivery belong to a student have to include some form of authentication in the delivery. In

addition, a teacher do not possess a centralized sheet of which students passed which tasks, and

have no automatic way of knowing if a student qualify for the courses exam.

Announcements are also possible but without persistent data it becomes impossible to create

a system showcasing priority among the announcements. Because the solution cannot save

data, like a date variable, between instances announcements will have an issue if a course’s

exam date changes twice. Then two announcements are sent and students will not know which

announcement is applicable as they cannot be dated and sorted.

5.3.2 Discoveries

Though the projects duration the group made a series of discoveries, both from a developing

point of view and also as the customer, when choosing the right product.

Importance of data persistence

Announcements had an issue with data persistence, where displaying the creation date of the

announcement where not possible with the current setup. Additionally Jekyll sort files by name

and when the is no other value, a system for announcements to be sorted by date (where the

newest announcement is at the top) is impossible.

Mattermost v MS Teams

Mattermost is an online chatting service alternative to MS Teams. NTNU has a license for and

uses Mattermost under the same domain as the Gitlab instance the group used for the project

(stud.idi.ntnu). However, Mattermost is not widely used and request (similar to MS Teams

webhook requests) to the same domain (local requests) is not allowed on this domain. Therefore

80

the group went for MS Teams as its third party announcement service. Besides, Teams is more

widely used by teachers, and given the extended possibilities with webhook implementation the

solution opened up for customisation of how much and how the information is displayed to the

students.

Pandoc v Jekyll

In the beginning the group experimented with plain HTML and scripts using pandoc to convert

markdown to HTML pages. Pandoc is a service which converts files from one markup format

into another [60], however thismethod quickly created a need for a lot of script to aid thewebsite.

As a way to alleviated the need for script the group switch to Jekyll.

5.4 Critique of task

The group members consider the thesis task to be of an appropriate difficulty and scope for

four students of Digital Infrastructure and Cybersecurity. For example, the research conducted

with regard to the thesis was positively affected by group members competence acquired from

their bachelor degree. Furthermore, the developed system is hosted on digital infrastructure and

involves several cybersecurity principles such as user access control and vulnerability scanning.

The task itself is rather open-ended. The group members were allowed to research freely how

to solve the challenges posed in the task description. One could therefore argue that the lack

of descriptive guidelines and requirements positively affected the thesis, but there were also a

couple downsides. For example, the less specific the task, the harder it is to validate the success

of the finished product. Moreover, the requirements was solely an idea of group members to

include in thesis and was developed with the client thereafter. After all, it is imperative in a

research setting for subsequent projects to be able to produce similar or contradicting results to

affirm the research questions posed in the thesis. All in all, the group believes a good job was

done to explore the research questions, and enjoyed the freedom that resulted from the open-

ended nature of the task.

81

5.5 Future Considerations

Future iterations of the developed system should incorporate a study to identify the students

response to current website layout and design. Depending on the results, websites could require

an aesthetic rework.

An obstacle that could become a future consideration is related to routine based automation.

For example, to fully support the functionality of delivering tasks in GitLab one would need

to change the roles of users on designated times. Furthermore, students could have the role of

developer and be able to upload and change their deliveries until the deadline. Afterwards, their

roles would only include reading access. An improvement of the current iteration could therefore

incorporate automated and routine based scripting and lay the foundation for supporting the

functionality of delivering tasks.

Announcements on the index page are at the moment listed in alphabetical order. The group

could not find a simple way of sorting the announcements based on their creation dates as this

data is not readily available. At the same time there is almost definitely some way of working

around this by either adding the date to the file name or the file’s contents on creation, or any

other such way of forcefully adding the data to the file. Should the developed system see actual

use, this is probably high on the list of revisions that could considerably improve the site’s

usability.

During the span of the project, a frequent question occurred about whether it is feasible to con-

tinue developing the solution after the thesis, and potentially make it a full-fledged product.

Despite the support from the academical community of NTNU, and a head start with a working

solution, the group has decided to not continue working on the solution. Reason behind this de-

cision is primarily the lack of interest in developing such a solution, as the group members have

passion for other fields within information technology, and would additionally lack the time to

continue working on the project as other opportunities arise. Everyone in the group have re-

ceived a job offer for the following months, and would rather pursue that than continue working

on improved solutions to BlackBoard. Nevertheless, we encourage others to follow our steps

and improve the existing solution into a better product.

82

References

[1] Department of Marine Technology NTNU. IMT Software Wiki - LaTeX. URL: https://
www.ntnu.no/wiki/display/imtsoftware/LaTeX (visited on 15th Sept. 2020).

[2] Wikipedia contributors. Educational technology. URL: https ://en.wikipedia .org/w/
index .php? title=Educational_ technology&oldid=1088592261 (visited on 19th May

2022).

[3] NTNU. Bachelor of Science in Digital Infrastructure and Cyber Security. URL: https:
//www.ntnu.edu/studies/bdigsec (visited on 8th May 2022).

[4] GitLab.GitLab CI/CD. URL: https://docs.gitlab.com/ee/ci/ (visited on 3rd May 2022).

[5] Gitlab. Gitlab Pages. URL: https://docs.gitlab.com/ee/user/project/pages/ (visited on
9th May 2022).

[6] Wikipedia contributors. Jekyll (software). URL: https://en.wikipedia.org/w/index.php?
title=Jekyll_(software)&oldid=1073370718 (visited on 19th May 2022).

[7] Shopify. Liquid reference. URL: https ://shopify .dev/api/ liquid (visited on 5th May

2022).

[8] Wikipedia contributors. cgroups. URL: https://en.wikipedia.org/w/index.php?title=
Cgroups&oldid=1076635510 (visited on 8th May 2022).

[9] Wikipedia contributors. Central processing unit. URL: https ://en .wikipedia .org/w/
index . php? title=Central_processing_unit&oldid=1088489284 (visited on 8th May

2022).

[10] Docker. The underlying technology. URL: https : / / docs . docker . com / get - started /
overview/#the-underlying-technology (visited on 8th May 2022).

[11] Wikipedia contributors. Linux kernel. URL: https://en.wikipedia.org/w/index.php?
title=Linux_kernel&oldid=1088409007 (visited on 8th May 2022).

[12] Docker.What does Docker technology add to just plain LXC?URL: https://docs.docker.
com/engine/faq/#what- does- docker- technology- add- to- just- plain- lxc (visited on
8th May 2022).

[13] Vladimir Baranek. URL: https://www.linkedin.com/in/vladimir- baranek-15a6a54/
(visited on 8th May 2022).

83

https://www.ntnu.no/wiki/display/imtsoftware/LaTeX
https://www.ntnu.no/wiki/display/imtsoftware/LaTeX
https://en.wikipedia.org/w/index.php?title=Educational_technology&oldid=1088592261
https://en.wikipedia.org/w/index.php?title=Educational_technology&oldid=1088592261
https://www.ntnu.edu/studies/bdigsec
https://www.ntnu.edu/studies/bdigsec
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/user/project/pages/
https://en.wikipedia.org/w/index.php?title=Jekyll_(software)&oldid=1073370718
https://en.wikipedia.org/w/index.php?title=Jekyll_(software)&oldid=1073370718
https://shopify.dev/api/liquid
https://en.wikipedia.org/w/index.php?title=Cgroups&oldid=1076635510
https://en.wikipedia.org/w/index.php?title=Cgroups&oldid=1076635510
https://en.wikipedia.org/w/index.php?title=Central_processing_unit&oldid=1088489284
https://en.wikipedia.org/w/index.php?title=Central_processing_unit&oldid=1088489284
https://docs.docker.com/get-started/overview/#the-underlying-technology
https://docs.docker.com/get-started/overview/#the-underlying-technology
https://en.wikipedia.org/w/index.php?title=Linux_kernel&oldid=1088409007
https://en.wikipedia.org/w/index.php?title=Linux_kernel&oldid=1088409007
https://docs.docker.com/engine/faq/#what-does-docker-technology-add-to-just-plain-lxc
https://docs.docker.com/engine/faq/#what-does-docker-technology-add-to-just-plain-lxc
https://www.linkedin.com/in/vladimir-baranek-15a6a54/

[14] Vladimir Baranek. In: (). URL: https : / / www . linkedin . com / pulse / top - benefits -
containerization-vladimir-baranek/ (visited on 8th May 2022).

[15] Nicole Hemmer. URL: https://linfordco.com/blog/containerization-security/ (visited

on 8th May 2022).

[16] Wes Felter et al. An Updated Performance Comparison of Virtual Machines and Linux

Containers. IEEE, 2015.

[17] Khan Academy. The Scientific Method. URL: https://www.khanacademy.org/science/
biology/ intro - to - biology/ science - of - biology/a/ the - science - of - biology (visited on

19th May 2022).

[18] Paul Clements et al. Documenting Software Architectures: Views and Beyond, Second

Edition. Addison-Wesley, 2010.

[19] Carnegie Mellon University. Software Architecture. URL: https://www.sei.cmu.edu/
our-work/software-architecture/ (visited on 10th May 2022).

[20] Bob Dignen. Five reasons why feedback may be the most important skill. URL: https:
//www.cambridge.org/elt/blog/2014/03/17/five-reasons-feedback-may-important-
skill/ (visited on 11th May 2022).

[21] Gitlab. Permissions and roles. URL: https://docs.gitlab.com/ee/user/permissions.html
(visited on 13th May 2022).

[22] Pa11y. Pa11y CI. URL: https://github.com/pa11y/pa11y-ci (visited on 13thMay 2022).

[23] Snyk. SNYK Security Intelligence. URL: https://snyk. io/snyk- intelligence- security/
(visited on 13th May 2022).

[24] Frode Haug. IDATG2102 - Algoritmiske metoder. URL: https : / / folk . ntnu . no/ frh /
algmet/ (visited on 19th May 2022).

[25] w3schools. HTML <footer> Tag. URL: https://www.w3schools.com/tags/tag_footer.
asp (visited on 6th May 2022).

[26] Brian Rashid. 5 Essential Reasons You Should Be Using A Responsive Website Design

Now. URL: https ://www. forbes .com/sites/brianrashid/2017/06/13/5- essential -
reasons-and-benefits-why-you-should-be-using-a-responsive-website-design-now/?sh=
b4e8c417c91e (visited on 4th May 2022).

84

https://www.linkedin.com/pulse/top-benefits-containerization-vladimir-baranek/
https://www.linkedin.com/pulse/top-benefits-containerization-vladimir-baranek/
https://linfordco.com/blog/containerization-security/
https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/the-science-of-biology
https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/the-science-of-biology
https://www.sei.cmu.edu/our-work/software-architecture/
https://www.sei.cmu.edu/our-work/software-architecture/
https://www.cambridge.org/elt/blog/2014/03/17/five-reasons-feedback-may-important-skill/
https://www.cambridge.org/elt/blog/2014/03/17/five-reasons-feedback-may-important-skill/
https://www.cambridge.org/elt/blog/2014/03/17/five-reasons-feedback-may-important-skill/
https://docs.gitlab.com/ee/user/permissions.html
https://github.com/pa11y/pa11y-ci
https://snyk.io/snyk-intelligence-security/
https://folk.ntnu.no/frh/algmet/
https://folk.ntnu.no/frh/algmet/
https://www.w3schools.com/tags/tag_footer.asp
https://www.w3schools.com/tags/tag_footer.asp
https://www.forbes.com/sites/brianrashid/2017/06/13/5-essential-reasons-and-benefits-why-you-should-be-using-a-responsive-website-design-now/?sh=b4e8c417c91e
https://www.forbes.com/sites/brianrashid/2017/06/13/5-essential-reasons-and-benefits-why-you-should-be-using-a-responsive-website-design-now/?sh=b4e8c417c91e
https://www.forbes.com/sites/brianrashid/2017/06/13/5-essential-reasons-and-benefits-why-you-should-be-using-a-responsive-website-design-now/?sh=b4e8c417c91e

[27] Docker. Docker Hub Quickstart. URL: https://docs.docker.com/docker-hub/ (visited
on 9th May 2022).

[28] Robert Gibb. What is Runtime? URL: https://en.wikipedia.org/w/index.php?title=
Runtime_system&oldid=1082900964 (visited on 13th May 2022).

[29] O’Reilly. Understanding upstream and downstream jobs. URL: https ://www.oreilly .
com/library/view/jenkins-2x-continuous/9781788297943/af3de8e1-f3e9-4089-8e03-
609cef1c0444.xhtml (visited on 10th May 2022).

[30] GitLab. Set up your development environment. URL: https://docs.gitlab.com/omnibus/
development/setup.html (visited on 14th May 2022).

[31] Fortinet. Endpoint Detection and Response (EDR) Defined. [Online; Accessed 02-May-

2022]. URL: https://www.fortinet.com/resources/cyberglossary/what-is-edr.

[32] Cisco. Cisco Secure Endpoint (formerly AMP for Endpoints) At-a-Glance. [Online; Ac-

cessed 02-May-2022]. URL: https://www.cisco.com/c/en/us/solutions/collateral/
enterprise-networks/advanced-malware-protection/at-a-glance-c45-731874.html.

[33] Gitlab. Password Storage. URL: https : / /docs . gitlab . com/ee/ security /password_
storage.html (visited on 22nd Apr. 2022).

[34] Michael Gegick and Sean Barnum. Separation of Privilege. URL: https://www.cisa.gov/
uscert/bsi/articles/knowledge/principles/separation-of-privilege (visited on 2nd May

2022).

[35] Microsoft. Create an Incoming Webhook. URL: https://docs.microsoft.com/en-us/
microsoftteams/platform/webhooks-and-connectors/how-to/add- incoming-webhook
(visited on 18th May 2022).

[36] Gitlab Docs. Shared runners. URL: https://docs.gitlab.com/ee/ci/runners/runners_
scope.html (visited on 19th May 2022).

[37] GitLab. Securit for self-managed Runners. URL: https : / / docs . gitlab . com / runner /
security/ (visited on 8th May 2022).

[38] Wikipedia contributors. Variable (computer science). URL: https://en.wikipedia.org/
w / index . php ? title = Variable _ (computer _ science) &oldid = 1086223546 (visited on

10th May 2022).

85

https://docs.docker.com/docker-hub/
https://en.wikipedia.org/w/index.php?title=Runtime_system&oldid=1082900964
https://en.wikipedia.org/w/index.php?title=Runtime_system&oldid=1082900964
https://www.oreilly.com/library/view/jenkins-2x-continuous/9781788297943/af3de8e1-f3e9-4089-8e03-609cef1c0444.xhtml
https://www.oreilly.com/library/view/jenkins-2x-continuous/9781788297943/af3de8e1-f3e9-4089-8e03-609cef1c0444.xhtml
https://www.oreilly.com/library/view/jenkins-2x-continuous/9781788297943/af3de8e1-f3e9-4089-8e03-609cef1c0444.xhtml
https://docs.gitlab.com/omnibus/development/setup.html
https://docs.gitlab.com/omnibus/development/setup.html
https://www.fortinet.com/resources/cyberglossary/what-is-edr
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/advanced-malware-protection/at-a-glance-c45-731874.html
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/advanced-malware-protection/at-a-glance-c45-731874.html
https://docs.gitlab.com/ee/security/password_storage.html
https://docs.gitlab.com/ee/security/password_storage.html
https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/separation-of-privilege
https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/separation-of-privilege
https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/how-to/add-incoming-webhook
https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/how-to/add-incoming-webhook
https://docs.gitlab.com/ee/ci/runners/runners_scope.html
https://docs.gitlab.com/ee/ci/runners/runners_scope.html
https://docs.gitlab.com/runner/security/
https://docs.gitlab.com/runner/security/
https://en.wikipedia.org/w/index.php?title=Variable_(computer_science)&oldid=1086223546
https://en.wikipedia.org/w/index.php?title=Variable_(computer_science)&oldid=1086223546

[39] Gitlab. Multi-project pipelines. URL: https://docs.gitlab.com/ee/ci/pipelines/multi_
project_pipelines.html (visited on 10th May 2022).

[40] GitLab. Permissions and Roles. URL: https : //gitlab . stud . idi . ntnu . no/help/user /
permissions (visited on 10th May 2022).

[41] auth0. Use Access Tokens. URL: https : / /auth0 . com/docs / secure / tokens /access -
tokens/use-access-tokens (visited on 10th May 2022).

[42] Gitlab. Gitlab Pages access control. URL: https://docs.gitlab.com/ee/user/project/
pages/pages_access_control.html (visited on 9th May 2022).

[43] Gitlab. Gitlab Pages administration. URL: https://docs.gitlab.com/ee/administration/
pages/index.html#access-control (visited on 9th May 2022).

[44] HackerOne. Ruby Bug Bounty program. URL: https://hackerone.com/ruby?type=team
(visited on 18th Apr. 2022).

[45] et al. Iván Arce. Avoiding the Top 10 Software Security Design Flaws. URL: https://
ieeecs-media.computer.org/media/technical-activities/CYBSI/docs/Top-10-Flaws.pdf
(visited on 10th May 2022).

[46] NVD. CVE-2018-17567 Detail. URL: https://nvd.nist.gov/vuln/detail/CVE-2018-
17567 (visited on 18th Apr. 2022).

[47] GitLab. Static Vs Dynamic Websites. URL: https://about.gitlab.com/blog/2016/06/
03/ssg-overview-gitlab-pages-part-1-dynamic-x-static/ (visited on 16th May 2022).

[48] CAPEC. CAPEC-66: SQL Injection. URL: https://capec.mitre.org/data/definitions/
66.html (visited on 18th May 2022).

[49] NTNU. Employees. URL: https://www.ntnu.edu/employees/henrik.johnsen (visited on
9th May 2022).

[50] XingGao et al. ‘Houdini’s Escape: Breaking the Resource Rein of LinuxControl Groups’.

In: (). URL: https://www.cs.memphis.edu/~xgao1/paper/ccs19.pdf#page=13&zoom=
100,428,380 (visited on 9th May 2022).

[51] Snyk. How do you pronounce Snyk? URL: https://support.snyk.io/hc/en-us/articles/
360000890358-How-do-you-pronounce-Snyk- (visited on 9th May 2022).

[52] Snyk. Partnerships for best�in�class security. URL: https://snyk.io/partners/ (visited
on 9th May 2022).

86

https://docs.gitlab.com/ee/ci/pipelines/multi_project_pipelines.html
https://docs.gitlab.com/ee/ci/pipelines/multi_project_pipelines.html
https://gitlab.stud.idi.ntnu.no/help/user/permissions
https://gitlab.stud.idi.ntnu.no/help/user/permissions
https://auth0.com/docs/secure/tokens/access-tokens/use-access-tokens
https://auth0.com/docs/secure/tokens/access-tokens/use-access-tokens
https://docs.gitlab.com/ee/user/project/pages/pages_access_control.html
https://docs.gitlab.com/ee/user/project/pages/pages_access_control.html
https://docs.gitlab.com/ee/administration/pages/index.html#access-control
https://docs.gitlab.com/ee/administration/pages/index.html#access-control
https://hackerone.com/ruby?type=team
https://ieeecs-media.computer.org/media/technical-activities/CYBSI/docs/Top-10-Flaws.pdf
https://ieeecs-media.computer.org/media/technical-activities/CYBSI/docs/Top-10-Flaws.pdf
https://nvd.nist.gov/vuln/detail/CVE-2018-17567
https://nvd.nist.gov/vuln/detail/CVE-2018-17567
https://about.gitlab.com/blog/2016/06/03/ssg-overview-gitlab-pages-part-1-dynamic-x-static/
https://about.gitlab.com/blog/2016/06/03/ssg-overview-gitlab-pages-part-1-dynamic-x-static/
https://capec.mitre.org/data/definitions/66.html
https://capec.mitre.org/data/definitions/66.html
https://www.ntnu.edu/employees/henrik.johnsen
https://www.cs.memphis.edu/~xgao1/paper/ccs19.pdf#page=13&zoom=100,428,380
https://www.cs.memphis.edu/~xgao1/paper/ccs19.pdf#page=13&zoom=100,428,380
https://support.snyk.io/hc/en-us/articles/360000890358-How-do-you-pronounce-Snyk-
https://support.snyk.io/hc/en-us/articles/360000890358-How-do-you-pronounce-Snyk-
https://snyk.io/partners/

[53] Snyk. Snyk Security Intelligence Integrates into the new, enhanced Amazon Inspector.

URL: https : / / snyk . io / news / snyk - security - intelligence - integrates - into - the - new -
enhanced-amazon-inspector/ (visited on 9th May 2022).

[54] Bundler.Docs. URL: https://bundler.io/man/gemfile.5.html (visited on 9th May 2022).

[55] Docker. Docker Official Images. URL: https://docs.docker.com/docker-hub/official_
images/ (visited on 9th May 2022).

[56] the Docker Community. ruby. URL: https : / / hub . docker . com / _ / ruby (visited on

9th May 2022).

[57] w3. WCAG 2 Overview. URL: https://www.w3.org/WAI/standards-guidelines/wcag/
#intro (visited on 10th May 2022).

[58] Gitlab. Accessibility testing. URL: https://docs.gitlab.com/ee/user/project/merge_
requests/accessibility_testing.html (visited on 10th May 2022).

[59] GitLab. GitLab AutoDevOps. URL: https://docs.gitlab.com/ee/topics/autodevops/
index.html (visited on 23rd Apr. 2022).

[60] Pandoc. About pandoc. URL: https://pandoc.org/ (visited on 18th May 2022).

[61] Citrix Systems Inc. What is containerization? URL: https://www.citrix.com/no-no/
solutions/app-delivery-and-security/what-is-containerization.html (visited on 6th May

2022).

[62] Wikipedia contributors. DevOps. URL: https://en.wikipedia.org/w/index.php?title=
DevOps&oldid=1087274706 (visited on 10th May 2022).

[63] Wikipedia contributors. Docker (Software). URL: https://en.wikipedia.org/w/index.
php?title=Docker_(software)&oldid=1086277493 (visited on 6th May 2022).

[64] Gitlab Docs. GitLab Runner. URL: https : / / docs . gitlab . com / runner/ (visited on

19th May 2022).

[65] Defuse Security. Salted Password Hashing - Doing it Right. URL: https://crackstation.
net/hashing-security.htm (visited on 2nd May 2022).

[66] Programming Think. Cryptography series: detailed explanation of bcrypt encryption al-

gorithm. URL: https://programmer.ink/think/cryptography-series-detailed-explanation-
of-bcrypt-encryption-algorithm.html (visited on 2nd May 2022).

87

https://snyk.io/news/snyk-security-intelligence-integrates-into-the-new-enhanced-amazon-inspector/
https://snyk.io/news/snyk-security-intelligence-integrates-into-the-new-enhanced-amazon-inspector/
https://bundler.io/man/gemfile.5.html
https://docs.docker.com/docker-hub/official_images/
https://docs.docker.com/docker-hub/official_images/
https://hub.docker.com/_/ruby
https://www.w3.org/WAI/standards-guidelines/wcag/#intro
https://www.w3.org/WAI/standards-guidelines/wcag/#intro
https://docs.gitlab.com/ee/user/project/merge_requests/accessibility_testing.html
https://docs.gitlab.com/ee/user/project/merge_requests/accessibility_testing.html
https://docs.gitlab.com/ee/topics/autodevops/index.html
https://docs.gitlab.com/ee/topics/autodevops/index.html
https://pandoc.org/
https://www.citrix.com/no-no/solutions/app-delivery-and-security/what-is-containerization.html
https://www.citrix.com/no-no/solutions/app-delivery-and-security/what-is-containerization.html
https://en.wikipedia.org/w/index.php?title=DevOps&oldid=1087274706
https://en.wikipedia.org/w/index.php?title=DevOps&oldid=1087274706
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=1086277493
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=1086277493
https://docs.gitlab.com/runner/
https://crackstation.net/hashing-security.htm
https://crackstation.net/hashing-security.htm
https://programmer.ink/think/cryptography-series-detailed-explanation-of-bcrypt-encryption-algorithm.html
https://programmer.ink/think/cryptography-series-detailed-explanation-of-bcrypt-encryption-algorithm.html

[67] Wikipedia contributors. Jira (software). URL: https://en.wikipedia.org/w/index.php?
title=Jira_(software)&oldid=1086177680 (visited on 19th May 2022).

[68] Jekyll. Jekyll Layouts. URL: https :// jekyllrb .com/docs/step- by- step/04- layouts/
(visited on 5th May 2022).

[69] markdownguide.org. Getting Started. URL: https://www.markdownguide.org/getting-
started/ (visited on 8th May 2022).

[70] Microsoft Support. What is Microsoft Teams? URL: https://support.microsoft.com/en-
us/topic/what- is-microsoft-teams-3de4d369-0167-8def-b93b-0eb5286d7a29 (visited

on 19th May 2022).

[71] Microsoft Docs. Cards. URL: https ://docs .microsoft . com/en- us/microsoftteams/
platform/task-modules-and-cards/what-are-cards (visited on 19th May 2022).

[72] Steve Ovens. The 7 most used Linux namespaces. URL: https : //www. redhat . com/
sysadmin/7-linux-namespaces (visited on 6th May 2022).

[73] NPM. About NPM. URL: https ://docs .npmjs .com/about- npm (visited on 9th May

2022).

[74] Node.js®. Home. URL: https://nodejs.org/en/ (visited on 9th May 2022).

[75] Wikipedia contributer. OAuth. URL: https ://en.wikipedia .org/w/index .php?title=
OAuth&oldid=1088647506 (visited on 9th May 2022).

[76] Wikipedia contributors. Operating system. URL: https://en.wikipedia.org/w/index.
php?title=Operating_system&oldid=1088674736 (visited on 6th May 2022).

[77] MITRE. Phishing, Technique T1566 - Enterprise | MITRE ATTCK®. URL: https : / /
attack.mitre.org/techniques/T1566/ (visited on 18th May 2022).

[78] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. What is containerization?

URL: https://pages.cs.wisc.edu/~remzi/OSTEP/cpu- intro.pdf (visited on 6th May

2022).

[79] Microsoft. What is SaaS? URL: https://azure.microsoft.com/en-us/overview/what-is-
saas/ (visited on 16th May 2022).

[80] Sass ©. Documentation. URL: https : / / sass - lang . com / documentation (visited on

4th May 2022).

88

https://en.wikipedia.org/w/index.php?title=Jira_(software)&oldid=1086177680
https://en.wikipedia.org/w/index.php?title=Jira_(software)&oldid=1086177680
https://jekyllrb.com/docs/step-by-step/04-layouts/
https://www.markdownguide.org/getting-started/
https://www.markdownguide.org/getting-started/
https://support.microsoft.com/en-us/topic/what-is-microsoft-teams-3de4d369-0167-8def-b93b-0eb5286d7a29
https://support.microsoft.com/en-us/topic/what-is-microsoft-teams-3de4d369-0167-8def-b93b-0eb5286d7a29
https://docs.microsoft.com/en-us/microsoftteams/platform/task-modules-and-cards/what-are-cards
https://docs.microsoft.com/en-us/microsoftteams/platform/task-modules-and-cards/what-are-cards
https://www.redhat.com/sysadmin/7-linux-namespaces
https://www.redhat.com/sysadmin/7-linux-namespaces
https://docs.npmjs.com/about-npm
https://nodejs.org/en/
https://en.wikipedia.org/w/index.php?title=OAuth&oldid=1088647506
https://en.wikipedia.org/w/index.php?title=OAuth&oldid=1088647506
https://en.wikipedia.org/w/index.php?title=Operating_system&oldid=1088674736
https://en.wikipedia.org/w/index.php?title=Operating_system&oldid=1088674736
https://attack.mitre.org/techniques/T1566/
https://attack.mitre.org/techniques/T1566/
https://pages.cs.wisc.edu/~remzi/OSTEP/cpu-intro.pdf
https://azure.microsoft.com/en-us/overview/what-is-saas/
https://azure.microsoft.com/en-us/overview/what-is-saas/
https://sass-lang.com/documentation

[81] Mozilla Web Docs. Element. URL: https : / / developer . mozilla . org / en - US / docs /
Glossary/Element (visited on 4th May 2022).

[82] Vijayakumar Nanjappan et al. Big Data Analytics for Sensor-Network Collected Intelli-

gence. Academic Press, 2017, pp. 3–20.

A Definition of Done

A.1 Functionality to create website from markdown

89

https://developer.mozilla.org/en-US/docs/Glossary/Element
https://developer.mozilla.org/en-US/docs/Glossary/Element

Functionality to create website from markdown

1. Define functionality

1.1 Purpose – why do we need this functionality
A core functionality of learning management systems is access to information. Public information

should contain all necessary contents for stakeholders in each subject.

Information to be regarded as public is defined as the following:

• Announcements

• Curriculum

• Course coordinator’s contact information

1.2 Intended Audience
Students and employees enrolled in a specified subject.

1.3 Intended Use
Members of a subject are given access to all information defined to be publicly available.

Furthermore, all learning material, schedule and subject description that is marked or structurally

designed to be public is intended to be used freely by the students/employees.

1.4 Assumptions and Dependencies

Schedules are individual for a given subject. Furthermore, a schedule can be textually represented

with static information. As opposed to having an overall dynamic schedule interlinking multiple

subjects on a student/employee.

Access to the public folder depends on a basic user access control for students/employees in the

given subject. For example, NTNU’s Gitlab is foremost available with connection to the internal

network which is only available for enrolled students and employees.

2. System Features and Requirements
2.1 Functional Requirements

1. Convert markdown files to html pages and host these as a website.

2. Information regarded as “Public” should be available for all users, without any restrictions.

3. Course coordinator can freely remove or add public information as needed.

4. Gitlab pages portraying public information should be designed according to WCAG 2.0 and

Universal design of ICT at NTNU guidelines on web content availability at AA level or above,

international standard 40500.2012 (ISO/IEC).

5. Webpages should have a structure typical for an academical site, in line with other NTNU

affiliated websites.

2.2 Non-functional Requirements
Performance

- Instantaneous or loading screen.

Safety

- Should not allow sharing of private information.

Security

- Implementation of security as followed by NTNU standards

Quality

- Solution is to follow design principles of Don Norman to ensure satisfaction from both parties

of the product.

IxD

- Don Norman’s list of principles (for websites)

- Point 4 of functional requirements

An important notice is that some of these requirements are dependent on the infrastructure

provider (Performance).

A.2 Functionality to support access control

92

Functionality to support access control

1. Define functionality

1.1 Purpose
Provide easy access to closed information (solution proposals, non-public curriculum, copyrighted

material, etc.).

For example, a teacher can separate private information from public and to only disclose that data to

selective groups.

1.2 Intended Audience
Repository owner/teachers

1.3 Intended Use
Teachers can upload documents to only be available to designated persons/groups.

Students can only access private information that is disclosed to them or published as public.

1.4 Assumptions and Dependencies
!IMPORTANT! We assume Gitlab does not support role-based systems. In such scenarios an external

access-control system might be necessary or developing new software to control access for Gitlab

repositories. For example:

• A ruby plugin that retrieves data from an NTNU API/FEIDE...

o Gitlab .stud.idi.no... bruker feide

• Javascript with access to own database or external – in essence coockies on browsers after

authentication

• A private repository that contains all information, only repository owner (usually teacher)

can access the information. Specify in Jekyll to only make websites and related documents

from a specific folder in directory structure inside repository.

• Multiple repo solution. One private repo on NTNU’s network, that requires being on location

or VPN to access. The GitLab page built from this repo will only be available to students or

other persons affiliated with NTNU. Deploying to this repo will trigger a pipeline that also

builds relevant files to a completely public repo on another network, which builds a page

available to the public.

• Gitlab pages can limit the accessibility of the website to members of the git repository which

the website is created form. However, to enable this feature a git administrator needs to

enable a user to limit access of website to members only.

2. System Features and Requirements
2.1 Functional Requirements
The goal is to have three degrees of access:

1. Public – available to everyone

2. Private – available to enrolled students

3. Super private – available to Course responsible

2.2 Non-functional Requirements
If Gitlab does not provide any methods of access control, development of new software would

require substantial research and frequent updates for the following subjects:

• Performance

• Safety

o Private information is required to keep its integrity within the repository, without

being available any other place than the one it was designed for.

• Security

o The security aspect of Private information is aimed at keeping the objects secure

from issues with confidentiality, integrity and availability. Respectively, the

customer’s files should be inaccessible from outside of the environment, should be

untamperable beyond repair and not subject to being lost due to technical issues.

• Quality

Preferably, we can use an external API and relate non-functional requirements to their solution.

3. Existing Solution in blackboard
Feide is provided by Sikt - the knowledge sector's service provider. The service enables secure login

and data sharing in education and research They collaborate with the Directorate of Education on the

administration of the service. Using Feide’s existing solution would be highly prefferable for

implementing private information if possible.

A.3 Functionality to publish announcements

95

Functionality to publish announcements
1. Define functionality

1.1 Purpose
The purpose of the announcement functionality is to give educators a way of publishing information

concerning changes or other important information that appears underway in the course. They

should encompass important information that should be hard to miss.

1.2 Intended Audience
Published announcements are directed towards students enrolled in a course.

1.3 Intended Use
The intention is for teachers to push out a small text file containing important or time sensitive

information that should be seen by every student enrolled in the course as fast as possible.

1.4 Assumptions and Dependencies
We assume a teacher sends, hence know of the announcements.

Announcements should only relate to a subject and only be transmitted the enrolled students of that

subject.

2. System Features and Requirements

2.1 Functional Requirements
For example:

1. Students should be able to track/view changelog of changes in course

2. Newly created announcements should be easily visible to students, preferably on the index

page

3. Announcements should be pushed to a dedicated announcement folder in the Git repo

a. Pushes to this folder should be detected automatically

4. Functionality should be included to send mail to all students enrolled in course

3. Existing Solution in blackboard
The existing solution in Blackboard is very similar to the one we plan to implement ourselves as we

find it to be a pretty good solution.

A.4 Functionality to handle assignments

97

Functionality to handle assignments
1. Define functionality

1.1 Purpose
Assignments are tasks given by a course responsible, for example teachers. Students are expected to

deliver their answer to a given assignments and receiving feedback afterwards.

1.2 Intended Audience
Students, student assistants and teachers. Student will be able to submit their work and student

assistants and teachers can view the submitted work.

1.3 Intended Use
Students will be able to submit their work and student assistants and teachers can view the

submitted work. A teacher should be able to give feedback to the student. Teacher should control

that alle groups are correct, for instance no group exists with more members then permitted.

1.4 Assumptions and Dependencies
Students should only be able to view their separate delivered documents related to an assignment.

Despite this, during peer review the student pair should be able to read each others entries.

2. System Features and Requirements
2.1 Functional Requirements
For example:

1. All students enrolled in a subject must have access to a project/task folder with a gitlab

project assigned to them.

2. A teacher can automatically lock students project for further development as a deadline.

3. A teacher can give feedback to student project.

4. A teacher should be able to control the amount of members in task-projects to ensure no

group is illegal.

5. Automated solutions should be given to teachers for conducting peer-reviews.

6. Teachers can withdraw information of which students have delivered and fulfilled the

requirements for an assignment.

2.2 Non-functional Requirements
Performance: A student must be able to submit their work. A script for deadlines must be precis to

the deadline.

Safety

Security: A student should have access to their work after it is submitted but not be able to submit

further changes. A teacher should control members of projects and ensure there are no illegal

groups.

Quality

B Survey

99

5/13/22, 10:49 PM Learning Management System (LMS) (Edit) Microsoft Forms

https://forms.office.com/Pages/DesignPage.aspx#Analysis=true&FormId=cgahCS-CZ0SluluzdZZ8BfKO7-KM7_NOmRTBEEjFR9tUMTNFRDNY… 1/4

Learning Management System (LMS)

1. What gender are you?

2. What is your age?

3. What LMS do you mostly use?

 Forms  NS

23
Responses

04:46
Average time to complete

Active
Status

Woman 6

Man 17

Prefer not to say 0

Under 18 0

18-24 23

25-34 0

35-44 0

45-55 0

56+ 0

Blackboard 8

Itslearning 2

Fronter 0

Canvas 10

Other 3

5/13/22, 10:49 PM Learning Management System (LMS) (Edit) Microsoft Forms

https://forms.office.com/Pages/DesignPage.aspx#Analysis=true&FormId=cgahCS-CZ0SluluzdZZ8BfKO7-KM7_NOmRTBEEjFR9tUMTNFRDNY… 2/4

4. How has your overall experience been with your LMS?

★ = Terrible ★★★★★★★★★★ = Excellent

5. Rank the functionalities in order of what you use your LMS for

Highest

 | |

 \ /

 \/

Lowest

6.17 Average Rating

23
Responses

               

Rank Options

1 Finding tasks for a course

2 Handing in tasks

3 Looking at calendar for lectures

4 Online lectures

5 Reading course material (curri…

6 Collaborate with students, wor…

First choice Last choice

5/13/22, 10:49 PM Learning Management System (LMS) (Edit) Microsoft Forms

https://forms.office.com/Pages/DesignPage.aspx#Analysis=true&FormId=cgahCS-CZ0SluluzdZZ8BfKO7-KM7_NOmRTBEEjFR9tUMTNFRDNY… 3/4

6. Are there any functionalities you would like to be implemented in your LMS? Or improvements
of existing functionalities?

7. Which links would you want a

course home page to contain?

Latest Responses
""

"Gjøre alt så enkelt så mulig å orientere seg i. Typ sånn som onenote e…

4 respondents (25%) answered app for this question.

16
Responses

app medåpå
det

men

som ikkemer oversiktlig

vært fint Enklere

Hadde
var

og
men ikke

ikke såikke fjernet

som fungerer

phone app

mer hvor ganske rotete

Lectures/Arrangements 19

Assignments 20

Curriculum 20

Course Information 17

Resources 20

Learning assistans 10

Student evaluation of course 11

Suggested solutions for tasks 13

ID Start time Completion time
What LMS do
you mostly use?

How has your overall
experience been with
your LMS?
★ = Terrible
★★★★★★★★★★ =

Rank the functionalities
in order of what you use
your LMS for

Highest

Are there any functionalities
you would like to be
implemented in your LMS?
Or improvements of existing
functionalities?

Which links would you
want a
course home page to
contain?

Are there any other
relevant links not
mentioned above a
course home page
should contain?2

What gender
are you?

What is your
age?

8 4/5/22 11:34:29 4/5/22 11:34:39 Fronter 4

course;Looking at
calendar
for lectures;Handin
g in tasks;Reading saAS

Student evaluation
of course;Course
Information;Curric
ulum; ASDASD Woman 45+

9 4/5/22 15:39:24 4/5/22 15:40:01 Blackboard 9

for lectures;Finding
tasks for a
course;Reading
course material as

Course
Information;Lectur
es/Arrangements;A
ssignments; asdsa Man 18-24

10 4/16/22 16:30:20 4/16/22 16:32:35 Canvas 5

for lectures;Finding
tasks for a
course;Reading
course material

Information;Curric
ulum;Assignments;
Lectures/Arrangem
ents;Resources;Stu Man 18-24

11 4/16/22 17:02:01 4/16/22 17:04:21 Canvas 7

course;Handing in
tasks;Collaborate
with students,
working on

ents;Assignments;
Curriculum;Course
Information;Resour
ces;Suggested Man 18-24

12 4/16/22 17:01:44 4/16/22 17:06:47 Blackboard 3

course;Handing in
tasks;Looking at
calendar
for lectures;Online

Mer stabil app.
Slitsomt med en app
som ikke funker
annenhver dag.

ents;Assignments;
Curriculum;Course
Information;Resour
ces;Learning

Karakterskala,
diskusjonsforu
m Man 18-24

13 4/17/22 15:26:57 4/17/22 15:29:04 Blackboard 6

course;Reading
course material
(curriculum);Onlin
e lectures;Handing

Mindre utlogging. Blir
kastet ut ganske ofte

ents;Assignments;
Curriculum;Course
Information;Resour
ces;Learning Man 18-24

14 4/18/22 11:29:40 4/18/22 11:31:47 Blackboard 4

tasks;Finding tasks
for a course;Online
lectures;Collaborat
e with students,

Ha BB kurs med
foreleserne plis, alle
bruker det forskjellig
og gjør alt feil.

ents;Assignments;
Curriculum;Course
Information;Resour
ces;Learning Man 18-24

15 4/18/22 11:29:40 4/18/22 11:34:10 Blackboard 5

tasks;Finding tasks
for a course;Online
lectures;Reading
course material

Enklere og mer
oversiktlig design.
Enklere å laste ned
filer.

ng assistans;Course
Information;Resour
ces;Assignments;S
uggested solutions

Karakterstatistik
k. Man 18-24

16 4/18/22 11:36:11 4/18/22 11:47:15 Blackboard 8

lectures;Handing in
tasks;Reading
course material
(curriculum);Findin

Mer oversiktlig/bedre
design på chat forum

ents;Suggested
solutions for
tasks;Course
Information;Curric Woman 18-24

17 4/18/22 11:47:33 4/18/22 11:51:55 Canvas 4

for lectures;Handin
g in tasks;Finding
tasks for a
course;Online

dårlig. Systemet
generelt er ganske
rotete. Er ikke så
viktig med uendelige

culum;Lectures/Arr
angements;Suggest
ed solutions for
tasks;Resources; Kalender Man 18-24

18 4/18/22 11:29:13 4/18/22 11:53:03 Blackboard 8

course;Handing in
tasks;Reading
course material
(curriculum);Onlin

LMS, but i think the
phone app has a bad
interface as it is hard
to navigate in

res/Arrangements;
Curriculum;Course
Information;Resour
ces;Learning

announcment
link which has a
overview of
recent activety Man 18-24

19 4/18/22 11:53:15 4/18/22 12:02:50 Canvas 4

course;Looking at
calendar
for lectures;Handin
g in tasks;Online

enklere å få
kalenderen sin opp
med alle typer
arrangementer

Lectures/Arrangem
ents;Assignments;
Curriculum;

students. Ta
inspo fra sosiale
medier, men at
det er dedikert Man 18-24

20 4/18/22 12:35:08 4/18/22 12:36:48 Itslearning 8

course;Online
lectures;Looking at
calendar
for lectures;Handin

Lettere oversikt i
ressurser

Curriculum;Resour
ces;Suggested
solutions for tasks; Man 18-24

21 4/18/22 13:54:19 4/18/22 13:57:07 Teams 7

tasks;Reading
course material
(curriculum);Findin
g tasks for a

Information;Curric
ulum;Lectures/Arra
ngements;Resource
s; Woman 18-24

22 4/18/22 13:56:09 4/18/22 14:04:40 Canvas 8

tasks;Online
lectures;Finding
tasks for a
course;Reading

courses one have
taken in canvas even
after completing the
course

ents;Assignments;
Curriculum;Course
Information;Resour
ces;Learning Man 18-24

23 4/18/22 14:57:39 4/18/22 15:05:11 Canvas 6

for lectures;Online
lectures;Handing in
tasks;Finding tasks
for a

en app som fungerer
(vi hadde app før som
var omtrent ubrukelig,
men den ble fjernet

ents;Assignments;
Curriculum;Course
Information;Resour
ces;Learning Woman 18-24

24 4/18/22 15:33:46 4/18/22 15:35:11 Canvas 6

course;Handing in
tasks;Reading
course material
(curriculum);Looki

Assignments;Lectu
res/Arrangements;
Resources; Man 18-24

25 4/18/22 17:45:51 4/18/22 17:46:52 Canvas 8

course;Handing in
tasks;Reading
course material
(curriculum);Looki

Bedre
mappestifunksjonalitet

ents;Assignments;
Curriculum;Course
Information;Resour
ces;Suggested Man 18-24

26 4/18/22 20:17:02 4/18/22 20:18:12 team 5

lectures;Finding
tasks for a
course;Reading
course material

Student evaluation
of course; Woman 18-24

27 4/18/22 22:48:40 4/18/22 22:50:49 Itslearning 6

course;Online
lectures;Handing in
tasks;Reading
course material Brukervennlighet

of
course;Suggested
solutions for
tasks;Curriculum;A Man 18-24

28 4/19/22 10:13:16 4/19/22 10:21:47 Blackboard 7

course;Looking at
calendar
for lectures;Readin
g course material

Blackboard appen var
flinkere til å gi
notifications på
announcements i

ents;Assignments;
Curriculum;Course
Information;Resour
ces;Learning

med hvilke
lenker som er på
blackboard nå
og hvordan de Man 18-24

29 4/19/22 11:20:54 4/19/22 11:23:03 Canvas 5

for lectures;Readin
g course material
(curriculum);Findin
g tasks for a

ents;Assignments;
Curriculum;Resour
ces;Course
Information; Woman 18-24

30 4/20/22 13:29:13 4/20/22 13:30:39 Feide 5

tasks;Finding tasks
for a
course;Reading
course material

Gjøre alt så enkelt så
mulig å orientere seg i.
Typ sånn som onenote
er for skriving

Curriculum;Assign
ments;Resources; Man 18-24

31 4/22/22 22:36:16 4/22/22 22:39:46 Canvas 8

lectures;Finding
tasks for a
course;Looking at
calendar

ents;Resources;Cou
rse
Information;Curric
ulum;Assignments; Woman 18-24

C Interviews

C.1 Mariusz Nowostawski

106

Asked for priviligede to quote in bachelor thesis, we will use to support our report – ALLOWED

Asked to use name - ALLOWED

Interview Mariusz Nowostawski

1. purpose of interview – high level about project

Group members presented thesis

2. Discussion of Mariusz Nowostawski’s access control design in Gitlab:

First itteration of Mariusz ACL setup worked directly with gitlab api:

• Ultimately had major issues

• Gitlab updates their api often which would require frequent updates of the scripts involved

second itteration:

• Directly on gitlab instance and uses gitlab console

• Ruby based, which is considered stable

Gitlab functionalities can be extended with ruby. Sideeffects: always work, as it is directly with gitlab

and does not update. Can argue that a downside is scripts are ran as sudo users.

Recommendations for development of system for thesis?

Mariusz recommends graphql or gitlab api, but unsure if it actions to modify documents in gitlab

works. Gitlab actions for reading will definetly work.

Group members received access to Mariusz repository containing the Ruby scripts in their ACL

solution.

The current ACL solution does not automate the process of retrieving students, why not?

Deliberate decision to not automate. As it indirectly "checks" which students are active in a course.

They have instead a process on how to do it. For example a wiki that explains the workflow, and

usually after the first semester students understands how it works.

In a prior itteration administrators on Gitlab at NTNU had automation for retrieving students in a

course. two side effects, created groups had students that was not active. for example automatic

peer review becomes problematic when some students are inactive.

Discussion on the primary differences between system for thesis and Mariusz ACL setup

Mariusz use wiki instead of gitlab pages. right hand side of menu, wiki for content itself like videos.

GIt repo for code examples, and issue tracker.

Mariusz does use in some subjects, for example cloud computing, use CI/CD pipeline with some

automation in the code.

Home
Gitlab Administration

Warnings
Groups and sub-groups

administration
course
student projects for a specific course
student projects setup

Automation
Creating subgroups

Steps
Forgetful students

Standard Gitlab groups
bachelor
msc
management

Naming conventions
General rules
Users
Course project naming
About student projects:

Scripts

Gitlab Administration

This project is for Gitlab Administration and Management.

WORK in PROGRESS

Warnings

gitlab server works fine for the workload that we have BUT, towards the end of each semester where most
students actually use it at the same time, it works noticeably slower. I have identified the problem being in
insufficient amount of RAM. Even though the VM only has 4 CPUs the CPU load seems not to top when the
server is slow, it is rather related to the server running out of RAM and swapping heavily to disk. The server has
only 8GB RAM.
I’ve notified Lars Erik but he said that we cannot get more RAM :sadface:
Perhaps YOU can notify your boss and help to lobby the level 4 management in providing some additional

resources towards Lars Erik, such that the server gets more RAM.

Groups and sub-groups

Groups and subgroups allow hierarchical projects organisation such that logical groupings for maintenance and
long-term archiving can be achieved. Below is a proposed scheme:

administration

Group for system administrators. Projects visible ONLY to system administrators.

course

course - top-level group for all course-related projects

imt3673 - top-level group for all imt3673 related projects
2018 - subgroup for archiving purposes for projects from that particular year. This forms a namespace
for the concrete course projects

course/imt3673/ The structure under the namespace, is up to a given course responsible. The structure might
look as follows:

2018/imt3673-lectures - Wiki, issue tracker for the lectures
2018/imt3673-assignment1 - repo and sub-project for the course IMT3673 for assignment 1
2018/imt3673-admin - for teachers only, administration tasks, etc.

Last edited by Mariusz Nowostawski
1 month ago

student projects for a specific course

Note - generally, it is encouraged to follow that:

student's private repo quota should not be used for course work
course admins should setup internally space for student's submitted work, and grant access to that to
groups/students

This way, it is much easier for course admins/lecturers to archive/cleanup the projects after the course, and, ensure
limited visibility of student's work. Otherwise, student projects are shared publicly across years (e.g. Github) and
there is no control over the projects after the course finishes.

student projects setup

Note - Gitlab's permissions flow from higher hierarchy levels downwards. It is important NOT TO GRANT permissions
to students too high in the hierarchy. This has two important implications

Student projects must sit outside of the general course materials to which all students in the course have
access
Student projects placeholder (top level) should NOT have "Request access" button enabled, and no student
should be given access to that level. Student access should be granted to subgroups of the project placeholder.

Example

course/imt3673/2018 - main top-level group to imt3673 in 2018. Students should not be given access at that
level.
course/imt3673/2018/imt3673-lectures - top level for lectures and lecture materials, students can request
access and be granted access if you expect issue tracker/wiki/repo usage.
course/imt3673/2018/projects - top-level student projects placeholder (ie. subgroup)

Students should not be given access at that level
That level is Internal
Deactivate "Request Access"

course/imt3673/2018/projects/group_1 - a concrete group/or individual student project, with concrete
assignment of roles to students.

Automation

Mariusz can run a script that generates the structure with the studentusernames being used as the group names in
this model automatically, and subsequently students can self-organise their projects in the hierarchy. The
prerequisite is that all students are members of a well-defined Gitlab group or project.

Creating subgroups

For the automated setup to work, one needs to create two things – a subgroup for all the students subgroups, AND, a
project, that ALL students become members of. This is necessary to generate the list of all Gitlab usernames that
will source the automated process of generating the students subgroups.

Steps

If you have something like idatg2001-2022-ws subgroup, then, make sure that this is made “Internal” and that

NONE (but the teaching staff) is member to that subgroup, and, you disable “Request Access” to this subgroup
(this subgroup must NOT have any members). The reason for this is that the Gitlab permissions flow
“downwards” and it is impossible to prevent students to “see” each other work if they are given permission too
high in the gitlab structure.
The students should be granted Developer access to the course project.

At the same level as your idatg2001-2022-ws group, you need to create a project, e.g. idatg2001-2022, and, you
have to tell ALL students to REQUEST ACCESS to this project. We actually use that with Christopher for issue
tracker about the course, and, for the Wiki, and for the repo to distribute example code to students.
You can see how it looks in practice e.g.

https://git.gvk.idi.ntnu.no/course/prog2006
https://git.gvk.idi.ntnu.no/course/prog2005

Once all your students are in your Course project (idatg2001-2022), then you can tell me “READY”, and I will run a
script, that will use the student usernames from your course project, to generate private subgroups to all your
students in the designated group (idatg2001-2022-ws) automatically. The students will be made OWNERS of
their respective subgroups, and they will be able to access that through the path to idatg2001-2022-

ws/<gitlabusername>

There are no restrictions on subgroups/projects, and students can manage their own space as they feel like. The
subgroups are private, therefore, for peer-review or for collaborative group projects, the students (owners) must
explicitly grant the permissions to their respective projects to open up their visibility.

Forgetful students

Students often “forget” to request access to your course project, and they are left out from the “workspace” – but,
the script can be safely re-run multiple times, and, for already existing subgroups for existing students it skips doing
anything, and it only adds the NEW students into the scheme.

Standard Gitlab groups

bachelor

For long-term storage of bachelor groups

2018
2019

Neodroid - for a particular bachelor group project team. The project's are all under the grouping, and can
consist of multiple repositories (multiple projects in the Gitlab lingo).

msc

For long-term storage of master theses/projects. This is structurally equivalent to bachelor projects (see above).
Note, this groups is called "MSc" in the UI, but the URL is with "msc". No CAPS in the URLs.

management

management - top level management repo for various management projects. We could have sub-groups for student-
related management activities with student access (e.g. access to the game-lab issue tracker should probably not be
under "teaching", but under management.

Naming conventions

General rules

No CAPS in the URLS.
Project name MATCHES exactly the GIT repo name (both, git repo and URL all lower case).
Project name and Group names in the UI can use CamelCase or whatever seems appropriate.
do not use underscore in names, use hyphen

Users

usernames -
name - RealName RealSurname
bio - Student-Start-Year - ProgrammeName - StudentID

Course project naming

name - use proper course code as the basis for the name. This way the projects are easily identifiable and have
unique names. Always place projects in proper namespace, grouped accordingly as per "group/sub-groups"
section above.

Conventions for specific iterations of a course as subgroups "CourseCode-YEAR"

About student projects:

Students (anyone) can create only 2 personal projects under their own namespace. This is to allow students to play
with projects, have their own "fun" project, or to instantiate something that is subsequently moved under an
appropriate namespace. It is a scrap-space for anyone.

All students should request access to a generic group:
https://git.gvk.idi.ntnu.no/students

and then, subsequently, create and manage their own course-work related projects there, under that namespace. All
temporary projects that relate to Host 2019 semester should go under student/2019. Anything that should live
"longer" than a single semester, will need to be moved into one of the "permanent" project spaces

research
bachelor
msc

They can request access to those groups, eg. "bachelor/2020" and "msc/2020" for next semester work. But, before
that, we need to tidy up all the user bio's.

So, within the hierarchy, students can create "unlimited" projects. But, for "personal projects" they only have 2 slots.
For any group work, or assignments, or student projects, they are, therefore, "forced" to use one of the predefined
places for their projects in the "hierarchy".

Scripts

gitlab-rails runner "User.where(projects_limit: 10).each { |u| u.projects_limit = 0; u.save

C.2 Ivar Farup

112

Asked for priviligede to quote in bachelor thesis, we will use to support our

report - ALLOWED

Asked to use name - ALLOWED

Interview Ivar Farup
1. purpose of interview – high level about project

Group members presented thesis

2. ask opinion about existing LMS:

Do you have all files for a subject ready before start of subject?

Tasks are usually created and published whenever needed. Course compendia

on the other hand is ready beforehand.

How do you inform students of new course material being published?

Usually I use the announcement feature of Blackboard. If something is vital I

send mail aswell which can be crossed off when creating announcements in

Blackboard.

Does your LMS support for publishing course content at designated dates?

Not that I know of.

How often do you publish announcements?

Usually once a week

When sending an announcement, what do you want to accomplish?

For example:

1. Students should do something, read compendia...

2. Just to be read by students, contains important information

3. Inform of new/changed compendia

In most cases my announcements are to inform students of a deliverable date or

changes in task descriptions. Furthermore, when sendind an announcement I

want all students to deliver their tasks and accomplish as many students passing

my subject.

What effect do your announcement have. Do you feel the announcements

reach their target?

There are a multitude of students that does misses the announcements. For

example, I can always expect I few follow up emails from individual students to

explain the information further.

Are there any features you dislike in the LMS used by your organization?

There are not ways to seperate or categorize announcements. For example,

important announcements are often hard to find when there are a lot of

announcements.

Not possible to draw out statistics or lists containing information about which

students have delivered/passed and so forth.

What do you usually expect students to deliver in hand-ins?

Code on a repository

Writtenly

Multiple choice test integrated into Blackboard

How do you give feedback?

Usually we annotate on the original document and send back to students.

Furthermore, feedback on code can be given on git based systems.

Hand-ins in Blackboard Learn have a seperate comment section that are usefull

for short comments on the delivered material.

Do you conduct peer-reviews?

Depends on the course. If possible yes, but usually peer-reviews are conducted

with the student assistants.

3. present our solution

Website – git pages

Good impression of website design in developed system

Subject creation

Good impression of access control for courses in developed system

Content creation

Methods for teachers to publish contents in developed system was received in a

good manner.

Announcement

Ivar Farup was positive to the release of announcements in developed system

Hand-ins

Not yet implemented, discussed posibilities

CI/CD - Automation

Good impression of possibilities with automations in course subjects

Overall Impression – Excellent tool for teachers, but needs to include hand-ins

and other vital features to be used in courses.

C.3 Frank Alexander Kramer

116

Asked for priviligede to quote in bachelor thesis, we will use to support our report -ALLOWED , on

basis Frank Alexander Kraemer can review before publishing

Asked to use name – ALLOWED, on basis Frank Alexander Kraemer can review before publishing

Interview Frank Alexander Kraemer

Frank Alexander Kraemer is an Associate Professor and Deputy Head of Department, Education.

1. purpose of interview – high level about project

Group members presented thesis

2. ask opinion about existing LMS:

Frank Kramer elaborated on the discontent with Blackboard on a faculty level. The best case

scenario for a LMS suited to IT knowledgeable teachers would be a system based on many

technologies. A LMS that does some assumptions and enables teachers to create or remove

packages as seen fit.

Why are people dissatisfied with modern LMS?

 LMS are designed with features for all institutions. Instead, it should be based on open technology

with a small layer on topp to integrate them all. LMS should not make too many assumptions, but

act as a framework to work from. Institutions could hire people to build around the service based on

their needs instead of using an all-encompassing product which so far has not been a success.

How do you publish announcements?

One of the few functionalities Frank Alexander considers to be working well in Blackboard. Teachers

have a rich text client where one can write and paste inn anything to be announced. Can also choose

to send announcement as mail.

As of now all announcements needs to be published on Blackboard, a policy at NTNU. Furthermore,

all course related information needs to be available at the same location of course subjects.

What are the effects of publishing announcements?

Unsure, never know if the announcements have been read or not. Should be able to have a

commenting functionality for students as an arena to discuss the published information.

What to you expect students to deliver in a course?

Most commonly PDF documents, sometimes Word documents for peer review. Also create Panotpo

catalog for delivering videos.

Negative experiences with Blackboard

Frustrating to draw out who has delivered and not on any given task. For example, a text document

could have been provided by the system as the information is often needed when documenting the

progress and status of students in a course. Furthermore, Frank Alexander Kramer elaborated on the

need for working offline with zipped files and metadata instead of needing to be online and using

user interfaces that are limiting.

4. Discussing markdown as input

Frank and other mathematicians like markdown. Frequently used I n “R” and used in python

scripting and documentation.

5. Jekyll and transforming written documents into websites

Jekyll works well for creating websites at first. Despite this, Frank did not want to write in hascall but

python instead. He therefore used his own version of “Pandoc” a commandline tool for document

converting and saved a lot of time. The key idea of his own tool was to have different markup in the

same file. Furthermore, there are not support for multicells in markdown and Frank found a markup

language with the best support for cells and combined them into the document convertions tool.

C.4 Rune Hjelsvold

119

Asked for priviligede to quote in bachelor thesis, we will use to support our report -

ALLOWED

Asked to use name? If not only their quotes - ALLOWED

Interview Rune Hjelsvold 08.04.2022

1. purpose of interview – high level about project

Group members presented thesis.

2. ask opinion about existing LMS – user experience

Do you have all files for a subject ready before start of subject? Eller

Subject description and first few deliverables description are ready beforehand. The rest of

course materials are published one week prior but for the most part created before the start of

each semester. In addition the material is supplemented throughout the year

How do you inform students of new course material being published?

It depends. On a weekly basis, lectures and mentimenter happens regurlarly and is not given

announcements when published. But if something out of the regular happens, for example an

error was found in a task description or other critical information I send dedicated

announcements in Blackboard and a mail.

Rune Hjelsvold often receives mail from student not knowing where the new material is

published. It should be possible to link documents to announcements.

Rune Hjelsvold elaborated on the difficulties of informing students as there are a multitude of

systems and nothing is centralized. It is important to involve and remind people throughout

the first half of a semester how they work and get used to the workflow. As a consequence,

the problems related to misinformed students falls of when they get used to the new methods

of working.

Does your LMS support for publishing course content at designated dates?

Blackboard does allow for documents to be removed at a specified date, for example when a

deadline has passed. But usually documents containing information should not be removed as

they can be usefull even afterwards of the deadline.

When sending an announcement, what do you want to accomplish?

For example:

1. Students should do something, read compendia...

2. Just to be read by students, contains important information

3. Inform of new/changed compendia

Almost always announcements are meant to inform students of information. Assuring the

message is received is therefore vital.

What effect do your announcement have. Do you feel the announcements reach their

target?

Considering that a decent amount of time is often spent correcting students or elaborating on

announcements the effects can be argued to have a lackluster effect. Despite this, my courses

involved new methods for students to work than found in other subject. With this in mind, the

students usually become used to the workflow after the initial semester and problems

correcting or elaborating falls off.

Are there any features you dislike in the LMS used by your organization? Rune

Hjelsvold described frustration thowards LMS should help users archice, present and

structure course materials. Despite this, there are no functionalities to directly link documents

and elements within Blackboard. In practice, users end up reading one docuement and must

navigate several layers to find corresponding documents refferenced.

 What do you usually expect students to deliver in hand-ins?

Code

Written documents

Multiple choice tests

3. present our solution

Website – git pages

Good impression of website design and layout

Subject creation

Rune Hjelsvold has prior experience with Mariusz Nowostawski user access control subject

setup. The subject creation as described by students

Content creation

Rune Hjelsvold positively affirmed the workflow of teachers submitting their course

materials through Git based commands.

Announcement

Positive to the announcements functionality in developed system

Hand-ins

Not yet implemented, discussed posibilities. Mentioned several courses that uses Gitlab or

external plattforms for delivering tasks by students.

CI/CD - Automations

Good impression of possibilities with automations in course subjects

Overall Impression

Excellent tool for teachers, but needs to include hand-ins and other vital features to be used in

courses. In addition it is difficult utilizing a new system if not all of NTNU staff does aswell.

There should be concurrency in the systems used throughout subjects.

C.5 Henrik Johnsen

122

Interview with Henrik Johnsen

What is your role, and how many on NTNU have the same role?

- Administrator of the IDI GitLab instance. “One and only”.

o Works as department Engineer/maintenance.

o The Institute are responsible for the instance; Henrik is informally the

owner.

What can be told about the GitLab instance itself?

- “no strings attached”, everything is possible post-installment.

- No significant downtime, only vulnerable if the instance has not been

updated in a long time.

o Updates are performed manually.

- Open for suggestions on improvements/implementations, as long as they

are proven to be effective.

What runs the GitLab instance?

- GitLab is run on VMware, everything is virtualized. Simple as-you-go scaling

possibilities. Approx. 10 minutes to scale up.

- wcprod.ntnu.no hosts about 150-200 production servers.

- As of 04.03.2022, 7767 users on the instance.

- 14TB of storage.

- Three instances: main, intern (used for testing) and dev (development)

- 6 Runners taking care of the CI/CD jobs

- Possible for the bachelor group to receive their own instance upon request.

What limitations are set for a GitLab user?

- The limit is at 10 repos per user as standard, however special users such as

lecturers have another quota. No limitation on size per repo, though Henrik

monitors the repo sizes. Maximum import size at 50MB.

o Three kinds of users: Student, Teacher and Bots. Bots can be used to

automate processes or solve some issues.

- No policies on what pictures to publish, though a manual check is done

should it exceed 1GB. Henrik has an Admin Dashboard to monitor the

GitLab activity.

- Git Integrations also open for implementation on the instance.

o Mattermost, identical to Slack, has been implemented on the

instance.

What security measures have been implemented?

- Cisco AMP is installed on the instance, additional tool to secure the

instance against malicious files.

- 2FA has been activated as per NTNU SOC’s request.

o The SOC also asks for additional support in form of logs, should an

investigation take place.

- All accounts are valuable: Anyone can be used as an attack surface/proxy

for further infiltration of the system.

- No SLAs to be concerned about.

D Project Management

D.1 Time log

D.1.1 Nicholas Bodvin Sellevåg

125

Employee Name: Nicholas B.S E-mail:

Manager: Phone: Regular hrs: 329.5 Overtime hrs: 0 Total: 329.5

January Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday

Tuesday 1

Wednesday 2.5

Thursday 4 1

Friday 3 3

Saturday

Sunday

Total weekly hours 0 0 0 0 0 0 7 0 7.5 0

Jan. total: Regular hours 14.5 0

February Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 4 4.5 3 4

Tuesday 3 3 2 2

Wednesday 5 4 1

Thursday 4 10.5 3 5

Friday 5 4

Saturday

Sunday

Total weekly hours 16 0 27 0 9 0 15 0 0 0

Feb. total: Regular hours 67 0

March Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 1 5 6 2

Tuesday 5 12 5

Wednesday 4 4 6

Thursday 3 4

Friday 6 3 2 4

Saturday

Sunday 6

Total weekly hours 12 0 12 0 33 0 21 0 0 0

Mar. total: Regular hours 78 0

Employee Timecard

January, February, March Employee Timecard: Daily, Weekly, Monthly, Yearly

Jan. total: Overtime

Feb. total: Overtime

Mar. total: Overtime

Year to date totals:

Employee Name: Nicholas B.S E-mail:

Manager: Phone: Regular hrs: 329.5 Overtime hrs: 0 Total: 329.5

Employee Timecard
Year to date totals:

April Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 5 5 5 5

Tuesday 5 6 4 4

Wednesday 3 4 4 4

Thursday 4 3 5 5

Friday 5 7 6 6

Saturday

Sunday

Total weekly hours 22 0 25 0 24 0 24 0 0 0

Apr. total: Regular hours 95 0

May Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 5 5 4

Tuesday 6 5

Wednesday 5 5 9

Thursday 5 5 9

Friday 7 5

Saturday

Sunday

Total weekly hours 28 0 25 0 22 0 0 0 0 0

May total: Regular hours 75 0May total: Overtime

April, May, June Employee Timecard: Daily, Weekly, Monthly, Yearly

Apr. total: Overtime

D.1.2 Yan Senko

128

Employee Name: Yan Senko E-mail:

Manager: Nicholas Phone: Regular hrs: 248.5 Overtime hrs: 0 Total: 248.5

January Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday

Tuesday 1

Wednesday 2.5

Thursday 1

Friday 1 3

Saturday

Sunday

Total weekly hours 0 0 0 0 0 0 1 0 7.5 0

Jan. total: Regular hours 8.5 0

February Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 3 4.5 7

Tuesday 2 1 2

Wednesday 7 1 2

Thursday 3

Friday 2.5

Saturday

Sunday

Total weekly hours 9 0 4 0 13 0 9 0 0 0

Feb. total: Regular hours 35 0

March Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 1 1 6 4 5

Tuesday 5 5 5 1

Wednesday 4 6 6

Thursday 2

Friday 6 3 2

Saturday 2

Sunday

Total weekly hours 16 0 4 0 17 0 21 0 6 0

Mar. total: Regular hours 64 0

Employee Timecard
Year to date totals:

January, February, March Employee Timecard: Daily, Weekly, Monthly, Yearly

Jan. total: Overtime

Feb. total: Overtime

Mar. total: Overtime

Employee Name: Yan Senko E-mail:

Manager: Nicholas Phone: Regular hrs: 248.5 Overtime hrs: 0 Total: 248.5

Employee Timecard
Year to date totals:

April Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 2 5 1,5 1

Tuesday 3 2 1,5 5

Wednesday 3 3 1 4

Thursday 4 2 3 7

Friday 5 7 3 4

Saturday

Sunday 2

Total weekly hours 17 0 19 0 9 0 21 0 0 0

Apr. total: Regular hours 66 0

May Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 5 5 4

Tuesday 6 5

Wednesday 5 5 9

Thursday 5 5 9

Friday 7 5

Saturday

Sunday

Total weekly hours 28 0 25 0 22 0 0 0 0 0

May total: Regular hours 75 0

April, May, June Employee Timecard: Daily, Weekly, Monthly, Yearly

Apr. total: Overtime

May total: Overtime

D.1.3 Fabian Kongelf

131

Employee Name: Fabian Kongelf E-mail:

Manager: Nicholas Phone: Regular hrs: 344 Overtime hrs: 0 Total: 344

January Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday

Tuesday 1

Wednesday 3

Thursday 4 1

Friday 3 3

Saturday

Sunday

Total weekly hours 0 0 0 0 0 0 7 0 8 0

Jan. total: Regular hours 15 0

February Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 4 4 3 1 3

Tuesday 4 3 2 2

Wednesday 7 4 1 2

Thursday 4 3 3 3

Friday 5 3 5

Saturday

Sunday

Total weekly hours 19 0 19 0 12 0 13 0 3 0

Feb. total: Regular hours 66 0

March Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 5 6 2 5

Tuesday 5 5 5 7

Wednesday 4 3 6 6 1

Thursday 5 3 1 4

Friday 6 3 4 1

Saturday 2 2

Sunday

Total weekly hours 20 0 11 0 24 0 17 0 19 0

Mar. total: Regular hours 91 0

Employee Timecard
Year to date totals:

January, February, March Employee Timecard: Daily, Weekly, Monthly, Yearly

Jan. total: Overtime

Feb. total: Overtime

Mar. total: Overtime

Employee Name: Fabian Kongelf E-mail:

Manager: Nicholas Phone: Regular hrs: 344 Overtime hrs: 0 Total: 344

Employee Timecard
Year to date totals:

April Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 5 5 4

Tuesday 2 6 1 7 4

Wednesday 3 7 5 6 4

Thursday 4 2 5 4

Friday 5 5 1 4 4

Saturday 4

Sunday

Total weekly hours 14 0 27 0 9 0 27 0 20 0

Apr. total: Regular hours 97 0

May Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 5 5 4

Tuesday 6 5

Wednesday 5 5 9

Thursday 5 5 9

Friday 7 5

Saturday

Sunday

Total weekly hours 28 0 25 0 22 0 0 0 0 0

May total: Regular hours 75 0

April, May, June Employee Timecard: Daily, Weekly, Monthly, Yearly

Apr. total: Overtime

May total: Overtime

D.1.4 Oddbjørn S. Borge-Jensen

134

Employee Name: Oddbjørn S.BJ E-mail:

Manager: Nicholas Phone: Regular hrs: 309 Overtime hrs: 0 Total: 309

January Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday

Tuesday 1

Wednesday 2.5

Thursday 4 1

Friday 3 3

Saturday

Sunday

Total weekly hours 0 0 0 0 0 0 7 0 7.5 0

Jan. total: Regular hours 14.5 0

February Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 4 3 4

Tuesday 3 3 2 2

Wednesday 5 4 1 5

Thursday 4 6 3 4

Friday 5 2.5 2

Saturday 3

Sunday 1

Total weekly hours 16 0 21 0 12.5 0 17 0 0 0

Feb. total: Regular hours 66.5 0

March Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 1 6

Tuesday 5 2 5 5

Wednesday 3 4 3 4

Thursday 3 1 2 5

Friday 6 3 5 6

Saturday

Sunday

Total weekly hours 18 0 10 0 21 0 20 0 0 0

Mar. total: Regular hours 69 0

Employee Timecard
Year to date totals:

January, February, March Employee Timecard: Daily, Weekly, Monthly, Yearly

Jan. total: Overtime

Feb. total: Overtime

Mar. total: Overtime

Employee Name: Oddbjørn S.BJ E-mail:

Manager: Nicholas Phone: Regular hrs: 309 Overtime hrs: 0 Total: 309

Employee Timecard
Year to date totals:

April Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 5 5 3 2

Tuesday 2 5 5 4

Wednesday 3 7 4 4

Thursday 4 2 6 6

Friday 5 5 1 6

Saturday

Sunday

Total weekly hours 19 0 24 0 19 0 22 0 0 0

Apr. total: Regular hours 84 0

May Week 1 Overtime Week 2 Overtime Week 3 Overtime Week 4 Overtime Week 5 Overtime

Monday 5 5 4

Tuesday 6 5

Wednesday 5 5 9

Thursday 5 5 9

Friday 7 5

Saturday

Sunday

Total weekly hours 28 0 25 0 22 0 0 0 0 0

May total: Regular hours 75 0

April, May, June Employee Timecard: Daily, Weekly, Monthly, Yearly

Apr. total: Overtime

May total: Overtime

D.2 Project Planning

137

Project plan – Git da gitt!

Nicholas Bodvin Sellevåg

Nicholbs@stud.ntnu.no

Oddbjørn Siver Borge-Jensen

oddbjosb@stud.ntnu.no

Fabian Kongelf

Fabiako@stud.ntnu.no

Yan Senko

Yans@stud.ntnu.no

Goals ... 3

Assignment .. 3

Background .. 3

Project goals ... 3

Scope... 4

Background information.. 4

Limitations ... 4

Project organization.. 5

Roles and responsibilities .. 5

Routines and rules .. 5

Planning ... 5

Group working method and process .. 5

Scientific methodology .. 6

Quality Assurance ... 6

Resources... 6

Produced documents .. 7

Tools .. 7

Progress plan.. 7

Sources .. 7

Goals

Assignment
Neither students nor teachers are satisfied with existing LMS (Learning Management Systems1).

LMS’s should solve the main challenges of information sharing, information classification

(public/private), process submissions, feedback deliverance, conduct digital tests, and provide a

discussion forum.

The client wishes to determine whether it is possible to fulfill the needs traditionally met by LMS

software through other systems already in use at NTNU such as Git and Inspera. For Git, the goal will

be to fulfill the requirements using GitLab Pages specifically, as earlier attempts at utilizing pure Git

has caused confusion among students due to the overwhelming UI.

Our assignment is to look at the parts of the system that could be replaced by Git. As provided by

the client, the key functionalities to be explored are:

1. Easy access to public information

2. Easy access to private information

3. Make announcements

4. Receive submissions and provide feedback

Background
NTNU’s contract with their current LMS, Blackboard, will soon reach its end. Given dissatisfaction

with this platform from both students and teachers, NTNU wants to investigate alternative solutions

for the services usually provided through an LMS. Git has already been used as a limited

replacement, but the complex nature of the site resulted in some students struggling with how to

use it and access all the information they needed.

To amend this while still preserving the strengths of having the subject hosted on a git repository,

our client Erik Hjelmås wants to explore the possibility of setting up a website presenting the

information in an orderly manner that’s easy to navigate. The suggested solution is to achieve this

through GitLab Pages.

We are a group of four students from Digital Infrastructure and Cybersecurity at NTNU. Through our

time studying here we have become familiar with the use and purposes of Blackboard, as well as

attained a considerable amount of experience with designing user friendly websites. While this

project will not entail creating and hosting a site entirely from scratch, we believe that much of the

knowledge we have acquired will be beneficial for the completion of the assignment.

Project goals
What we want to achieve with this bachelor project.

Result goals

- Produce a git repository that can easily deploy to a website using GitLab Pages

- Determine an efficient method of displaying public information on a git Page

- Determine an efficient method of displaying private information on a git Page

- Explore methods of broadcasting announcements through git

- Explore methods of receiving submission and providing feedback through git

1 Example of this are Blackboard and Itslearning.

Learning goals

- Strengthen our ability to plan and execute a project using agile methodologies

- Utilize and build upon the knowledge and experience acquired through our years of studying

at NTNU

- Attain in-depth knowledge of git and GitLab Pages

Scope

Background information
A learning management system (LMS) is a software application for the administration,

documentation, tracking, reporting, automation, and delivery of educational courses, training

programs, or learning and development programs.

An LMS is a platform for online content, primarily learning materials and a support tool for teachers

and students to best teach and follow their courses. Teachers can publish a subject's curriculum,

syllabus, answer sheets, results, post feedback and create online tests. However, a lot of these

systems are similar and do not allow for customization and personalization. If a school or a subject

requires a specific way of teaching, they would have to compromise on their vision to fit their ideal

structure within a system that is not made to support it.

Git is a cloud-based service offering cloud storage of repositories. A lot of teachers, especially within

the IT sector, use git repositories to store and share their learning materials. One Git implementation

offers a service called GitLab Pages which allows a Git user to create a webpage of their git-repo's

content. What if a teacher can simply convert their Git-repo content into a webpage structure

instead of a file structure? A Git web structure might be able to offer the same features as a

conventional LMS but with the customization Git-repos possess.

Limitations
The assignment provided by the client defines specific functionalities that should be explored, and as

such any other functionalities provided by Blackboard that could theoretically necessitate

reproducing will not be explored in our thesis.

In order not to make the thesis about how to create the prefect website we are limiting the design

interface to a standard computer screen with the dimension of 16:9 and an average smartphone

screen dimension.

A request of the client was to use as simple and self-produced code as possible to avoid security

issues with imported code and use of well-known frameworks, as well as updates to imported code

may cause issues for the rest of the application.

The client explicitly does not wish for a technically advanced solution and prefers a simple and

efficient site that does not introduce unnecessary security issues or other potential symptoms of

over-engineering.

As the main motivation behind moving to GitLab Pages is its ease of use compared to the Git

repository itself, solutions should not require more than a base level of git knowledge to use.

Project organization

Roles and responsibilities
Nicholas has work experience with SCRUM, therefore he is the Scrum master and will be responsible

for managing the Scrum board, setup and arranging stand-up meetings and sprint-reviews, and lastly

make sure the group members assigned tasks are completed.

All group members are regarded as developers. As a baseline, each member works on delegated

tasks and is responsible for updating their status in the task management tools decided upon.

Moreover, developers are all encompassing in contrast to delegating specific tasks to specific

members - e.g. two people are responsible for research and two are developers - members will

move between tasks as deemed necessary. This both prevents a member from being stuck with a

task they do not enjoy and losing motivation and allows us to prioritize research over deve lopment

or vice versa at any given time.

Should the need for other responsibilities arise will they be delegated to a group member based on

the members’ individual capabilities and their current workload.

Routines and rules
All group members are expected to work at least 16 hours a week. The group can agree to amend

this requirement for a specific group member should there be extraneous circumstances like work or

sickness that prevent them from dedicating the amount of work expected.

If it becomes clear that the group needs to increase the mandatory workload to finish the project in

time with a satisfactory level of quality, the minimum requirement can be increased to a maximum

30 hours a week.

These are just minimum limits to prevent the project from stagnating. Members are expected to put

in an average amount of work per week considerably higher than the minimum requirement.

Meetings outside of the usual stand-ups and sprint reviews should be planned at least 24 hours in

advance and have a clear agenda. Repeated failure to show up to these and any other kind of

meeting and a refusal to communicate with the rest of the group will be communicated to NTNU.

Meetings will be held with the client every other week to give their opinion on the current state of

the product and ask clarifying questions that we might have about the upcoming functionalities. In

addition, Guoqiang Li will be helping us ensure the quality of the bachelor thesis through weekly

meetings. Relevant subjects include working methodology, current progress, and ensuring a

scientific basis for decision and conclusion made.

Planning
Group working method and process

SCRUM is used as the framework for our working methodology. The choice of SCRUM was based on

its focus on iterative development and continual improvement.

Firstly, group members work iteratively throughout Sprints. Bachelor project lasts for five months

and have been divided into eight two-week periods named as Sprints. The Scum-team work together

to finish designated tasks within each Sprint. Moreover, all processes within the bachelor project

takes place within the Sprint. To illustrate, Sprint Planning, Sprint Review, Sprint Retrospective and

Daily Scrum are all part of each Sprint. A new Sprint is started immediately following the termination

of another. Each Sprint starts with determining the goals and tasks to be completed during the

Sprint Planning phase.

Secondly, Daily Scrum enhances communication and collaboration within the team. Group members

attend two days a week for 15 minutes to review the progress of their delegated tasks. The Daily

Scrum is also an arena for members to obtain feedback and help from others.

Thirdly, results from Sprints are presented during Sprint Reviews alongside future adaptions. The

process includes all actors within the project and participants present their accomplishments. Future

Sprints are based on the results of tasks and remaining items in “Product Backlog”, a prioritized

catalog of work not yet started.

Lastly, Sprint Retrospectives ensures continual improvement of teamwork. The group reflects on the

terminated Sprint’s positive and negative aspects. In practice, topics include from interactions

between team members, tools used during development, implementation of Scrum processes and

definition of done for elements within the “Product Backlog” that took part during the Sprint.

Scientific methodology
The client wants to explore possibilities of using other existing systems already in use to solve the

core challenges of LMS. Initially, Gitlab is the primary target to survey. Gitlab is not as a standard

configured to address the needs of an LMS.

For this project we plan to consciously adhere to the working methods of the scientific method.

Throughout our time at NTNU we have worked on several projects using agile methodologies, which

are similar in nature to the ideas behind the scientific method and will be used for this project as

well. For each functionality proposed by the client we will have a research phase to determine what

criteria must be met to be able to consider the functionality complete, and what tools we have at

our disposal to fulfill these criteria using GitLab Pages. These criteria will be gathered to make up a

working Definition of Done for the functionality, which is prone to change should further

observations reveal missing or flawed criteria.

Each potential solution will serve as a hypothesis, and we will conduct an experiment in the form of

user acceptance testing and if necessary, a comparative analysis based on the criteria we have

defined and the functionality of the existing solutions in Blackboard. Should the solution not meet

our criteria, we will use the observations made to produce a new solution. If we are unable to find

any satisfactory solutions to one of the assignment functionalities, we will perform an analysis of the

criteria of this functionality and the git tools we have attempted to use. The purpose of this analysis

would be to detail why we found that git might not be a suitable tool for that specific job.

When the alternative system has been implemented, the thesis will include a comparative analysis

between our solution and its existing Blackboard counterpart. The analysis is based on the

functionalities contrived to address the core challenges of LMS in existing and alternative systems.

Quality Assurance

Resources
All documents – including but not limited to time logs, the project plan, and the report – will be

hosted on Microsoft Teams.

Resources used within the group that are not part of the finished project (e.g. links and references)

will be stored on the group’s Discord channel.

Produced documents
Bachelor project includes software development and configuration of Gitlab. To ensure we fulfill the

requirements of the task in the way the client expects, we will work together with the client to

create a definition of done for each key functionality. Following an iteration of a task, the result will

be tested and its performance in accord with the definition of done will be reported in respective

“functionality test” documents. If the results are satisfactory that task will be deemed complete, and

we will move on to the next.

It is noteworthy that all documents will adhere to Harvard’s rule of citation.

Tools
- Microsoft Teams for communication with client and guidance counselor as well as writing

shared documents

- Git

- GitLab Pages

- Visual Studio Code for any programming – mainly HTML and CSS

- Discord for internal meetings

- Jira - team management and issue tracking

Progress plan
Milestones for the project are listed in Gantt Chart below. Some Sprints are named in accordance

with a milestone to reach for Gitlab development. For example, “Public info” entails the duration to

develop public accessible information for members of subjects through Gitlab. If the functionality

requires additional development time, the Sprint can be prolonged or have its tasks relocate to

another sprint.

The contents of the last few sprints have not yet been determined but will be allocated in the future

as we find out what needs to be done.

To summarize, the team's progress is tracked through the individual functionalities implemented

through Gitlab.

Sources
Wikipedia (2022) Git, available from URL: https://en.wikipedia.org/wiki/Git (read: 20th of January

2022)

Wikipedia (2022) Learning management system, available from URL:

https://en.wikipedia.org/wiki/Learning_management_system (read: 20th of January 2022)

D.3 Gantt Chart

146

Git da Git
 Period Highlight: 19

WEEKS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Project

Planning 3 2 2 3
100%

Public info 5 2 5 2
100%

Private info 7 2 7 2
100%

Announcement

s 9 2 9 2
50%

Submissions

and feedback 11 2 11 2
0%

Sprint 6 13 2 13 2
100%

Sprint 7 15 2 15 2
100%

Sprint 8 17 2 17 2
100%

% Complete (beyond plan)

SPRINT PLAN START
PLAN

DURATION

ACTUAL

START

ACTUAL

DURATION

PERCENT

COMPLETE

Plan Duration Actual Start % Complete Actual (beyond plan)

D.4 Project contract

148

1 NTNU 10.12.2020

Norges teknisk-naturvitenskapelige universitet

Fastsatt av prorektor for utdanning 10.12.2020

STANDARDAVTALE

om utføring av studentoppgave i samarbeid med ekstern virksomhet

Avtalen er ufravikelig for studentoppgaver (heretter oppgave) ved NTNU som utføres i
samarbeid med ekstern virksomhet.

Forklaring av begrep

Opphavsrett
Er den rett som den som skaper et åndsverk har til å fremstille eksemplar av åndsverket og
gjøre det tilgjengelig for allmennheten. Et åndsverk kan være et litterært, vitenskapelig eller
kunstnerisk verk. En studentoppgave vil være et åndsverk.

Eiendomsrett til resultater
Betyr at den som eier resultatene bestemmer over disse. Utgangspunktet er at studenten
eier resultatene fra sitt studentarbeid. Studenten kan også overføre eiendomsretten til den
eksterne virksomheten.

Bruksrett til resultater
Den som eier resultatene kan gi andre en rett til å bruke resultatene, f.eks. at studenten gir
NTNU og den eksterne virksomheten rett til å bruke resultatene fra studentoppgaven i deres
virksomhet.

Prosjektbakgrunn
Det partene i avtalen har med seg inn i prosjektet, dvs. som vedkommende eier eller har
rettigheter til fra før og som brukes i det videre arbeidet med studentoppgaven. Dette kan
også være materiale som tredjepersoner (som ikke er part i avtalen) har rettigheter til.

Utsatt offentliggjøring
Betyr at oppgaven ikke blir tilgjengelig for allmennheten før etter en viss tid, f.eks. før etter
tre år. Da vil det kun være veileder ved NTNU, sensorene og den eksterne virksomheten som
har tilgang til studentarbeidet de tre første årene etter at studentarbeidet er innlevert.

2 NTNU 10.12.2020

1. Avtaleparter

Norges teknisk-naturvitenskapelige universitet (NTNU)
Institutt: Institutt for informasjonssikkerhet og kommunikasjonsteknologi

Veileder ved NTNU:
Guoqiang Li

Virksomhet: NTNU
Virksomhet sin kontaktperson, e-post og tlf.:

Erik Hjelmås
erik.hjelmas@ntnu.no
93034446

Student:
Nicholas Bodvin Sellevåg
Fødselsdato:
150798

Ev. flere studenter1

Yan Senko
121001

Fabian Kongelf
190996

Oddbjørn S. Borge-Jensen
110400

Partene har ansvar for å klarere eventuelle immaterielle rettigheter som studenten, NTNU,
den eksterne eller tredjeperson (som ikke er part i avtalen) har til prosjektbakgrunn før bruk
i forbindelse med utførelse av oppgaven. Eierskap til prosjektbakgrunn skal fremgå av eget
vedlegg til avtalen der dette kan ha betydning for utførelse av oppgaven.

2. Utførelse av oppgave
Studenten skal utføre: (sett kryss)

Masteroppgave

1 Dersom flere studenter skriver oppgave i fellesskap, kan alle føres opp her. Rettigheter ligger da i fellesskap

mellom studentene. Dersom ekstern virksomhet i stedet ønsker at det skal inngås egen avtale med hver enkelt

student, gjøres dette.

3 NTNU 10.12.2020

Bacheloroppgave X

Prosjektoppgave

Annen oppgave

Startdato:

Sluttdato:

Oppgavens arbeidstittel er:
Git da gitt!

Ansvarlig veileder ved NTNU har det overordnede faglige ansvaret for utforming og
godkjenning av prosjektbeskrivelse og studentens læring.

3. Ekstern virksomhet sine plikter
Ekstern virksomhet skal stille med en kontaktperson som har nødvendig faglig kompetanse
til å gi studenten tilstrekkelig veiledning i samarbeid med veileder ved NTNU. Ekstern
kontaktperson fremgår i punkt 1.

Formålet med oppgaven er studentarbeid. Oppgaven utføres som ledd i studiet. Studenten
skal ikke motta lønn eller lignende godtgjørelse fra den eksterne for studentarbeidet.
Utgifter knyttet til gjennomføring av oppgaven skal dekkes av den eksterne. Aktuelle
utgifter kan for eksempel være reiser, materialer for bygging av prototyp, innkjøp av prøver,
tester på lab, kjemikalier. Studenten skal klarere dekning av utgifter med ekstern virksomhet
på forhånd.

Ekstern virksomhet skal dekke følgende utgifter til utførelse av oppgaven:

Dekning av utgifter til annet enn det som er oppført her avgjøres av den eksterne underveis
i arbeidet.

4. Studentens rettigheter
Studenten har opphavsrett til oppgaven2. Alle resultater av oppgaven, skapt av studenten
alene gjennom arbeidet med oppgaven, eies av studenten med de begrensninger som følger
av punkt 5, 6 og 7 nedenfor. Eiendomsretten til resultatene overføres til ekstern virksomhet
hvis punkt 5 b er avkrysset eller for tilfelle som i punkt 6 (overføring ved patenterbare
oppfinnelser).

2 Jf. Lov om opphavsrett til åndsverk mv. av 15.06.2018 § 1

4 NTNU 10.12.2020

I henhold til lov om opphavsrett til åndsverk beholder alltid studenten de ideelle rettigheter
til eget åndsverk, dvs. retten til navngivelse og vern mot krenkende bruk.

Studenten har rett til å inngå egen avtale med NTNU om publisering av sin oppgave i NTNUs
institusjonelle arkiv på Internett (NTNU Open). Studenten har også rett til å publisere
oppgaven eller deler av den i andre sammenhenger dersom det ikke i denne avtalen er
avtalt begrensninger i adgangen til å publisere, jf. punkt 8.

5. Den eksterne virksomheten sine rettigheter
Der oppgaven bygger på, eller videreutvikler materiale og/eller metoder (prosjektbakgrunn)
som eies av den eksterne, eies prosjektbakgrunnen fortsatt av den eksterne. Hvis studenten
skal utnytte resultater som inkluderer den eksterne sin prosjektbakgrunn, forutsetter dette
at det er inngått egen avtale om dette mellom studenten og den eksterne virksomheten.

Alternativ a) (sett kryss) Hovedregel

 Ekstern virksomhet skal ha bruksrett til resultatene av oppgaven

Dette innebærer at ekstern virksomhet skal ha rett til å benytte resultatene av oppgaven i
egen virksomhet. Retten er ikke-eksklusiv.

Alternativ b) (sett kryss) Unntak

 Ekstern virksomhet skal ha eiendomsretten til resultatene av oppgaven og
studentens bidrag i ekstern virksomhet sitt prosjekt

Begrunnelse for at ekstern virksomhet har behov for å få overført eiendomsrett til
resultatene:

6. Godtgjøring ved patenterbare oppfinnelser
Dersom studenten i forbindelse med utførelsen av oppgaven har nådd frem til en
patenterbar oppfinnelse, enten alene eller sammen med andre, kan den eksterne kreve
retten til oppfinnelsen overført til seg. Dette forutsetter at utnyttelsen av oppfinnelsen
faller inn under den eksterne sitt virksomhetsområde. I så fall har studenten krav på rimelig
godtgjøring. Godtgjøringen skal fastsettes i samsvar med arbeidstakeroppfinnelsesloven § 7.
Fristbestemmelsene i § 7 gis tilsvarende anvendelse.

7. NTNU sine rettigheter

5 NTNU 10.12.2020

De innleverte filer av oppgaven med vedlegg, som er nødvendig for sensur og arkivering ved
NTNU, tilhører NTNU. NTNU får en vederlagsfri bruksrett til resultatene av oppgaven,
inkludert vedlegg til denne, og kan benytte dette til undervisnings- og forskningsformål med
de eventuelle begrensninger som fremgår i punkt 8.

8. Utsatt offentliggjøring
Hovedregelen er at studentoppgaver skal være offentlige.

Sett kryss

X Oppgaven skal være offentlig

I særlige tilfeller kan partene bli enige om at hele eller deler av oppgaven skal være
undergitt utsatt offentliggjøring i maksimalt tre år. Hvis oppgaven unntas fra
offentliggjøring, vil den kun være tilgjengelig for student, ekstern virksomhet og veileder i
denne perioden. Sensurkomiteen vil ha tilgang til oppgaven i forbindelse med sensur.
Student, veileder og sensorer har taushetsplikt om innhold som er unntatt offentliggjøring.

Oppgaven skal være underlagt utsatt offentliggjøring i (sett kryss hvis dette er aktuelt):

Sett kryss Sett dato

 ett år

 to år

 tre år

Behovet for utsatt offentliggjøring er begrunnet ut fra følgende:

Dersom partene, etter at oppgaven er ferdig, blir enig om at det ikke er behov for utsatt
offentliggjøring, kan dette endres. I så fall skal dette avtales skriftlig.

Vedlegg til oppgaven kan unntas ut over tre år etter forespørsel fra ekstern virksomhet.
NTNU (ved instituttet) og student skal godta dette hvis den eksterne har saklig grunn for å
be om at et eller flere vedlegg unntas. Ekstern virksomhet må sende forespørsel før
oppgaven leveres.

De delene av oppgaven som ikke er undergitt utsatt offentliggjøring, kan publiseres i NTNUs
institusjonelle arkiv, jf. punkt 4, siste avsnitt. Selv om oppgaven er undergitt utsatt
offentliggjøring, skal ekstern virksomhet legge til rette for at studenten kan benytte hele
eller deler av oppgaven i forbindelse med jobbsøknader samt videreføring i et master- eller
doktorgradsarbeid.

6 NTNU 10.12.2020

9. Generelt

Denne avtalen skal ha gyldighet foran andre avtaler som er eller blir opprettet mellom to av
partene som er nevnt ovenfor. Dersom student og ekstern virksomhet skal inngå avtale om
konfidensialitet om det som studenten får kjennskap til i eller gjennom den eksterne
virksomheten, kan NTNUs standardmal for konfidensialitetsavtale benyttes.

Den eksterne sin egen konfidensialitetsavtale, eventuell konfidensialitetsavtale den
eksterne har inngått i samarbeidprosjekter, kan også brukes forutsatt at den ikke inneholder
punkter i motstrid med denne avtalen (om rettigheter, offentliggjøring mm). Dersom det
likevel viser seg at det er motstrid, skal NTNUs standardavtale om utføring av
studentoppgave gå foran. Eventuell avtale om konfidensialitet skal vedlegges denne avtalen.

Eventuell uenighet som følge av denne avtalen skal søkes løst ved forhandlinger. Hvis dette
ikke fører frem, er partene enige om at tvisten avgjøres ved voldgift i henhold til norsk lov.
Tvisten avgjøres av sorenskriveren ved Sør-Trøndelag tingrett eller den han/hun oppnevner.

Denne avtale er signert i fire eksemplarer hvor partene skal ha hvert sitt eksemplar. Avtalen
er gyldig når den er underskrevet av NTNU v/instituttleder.

Signaturer:

Instituttleder:
Dato:

Veileder ved NTNU:
Dato:

Ekstern virksomhet:
Dato:

Student:
Dato:

Ev. flere studenter

D.5 Minutes of Meetings

D.5.1 Client meeting summaries

155

Meeting Minutes – 14.01.2022

I. In attendance

Yan senko, Nicholas Sellevåg, Oddbjørn Jensen, Fabian kongelf, Erik Hjelmås

II. Discussion

Erik Hjelmås described how he has used Gitlab to publish websites for his subject DCSG1005. It is

aesthetically pleasing, especially rendering of code. Unfortunately, Erik received negative feedback

from students as they were confused by the buttons on the Gitlab interface. This amongst other

reason is why Erik wants to research a dedicated website solution through Gitlab Pages.

Erik Hjelmås is available for meetings every other week, in some periods every three weeks.

Group members were introduced by Erik Hjelmås to the standard setup he has explored of creating

automated Gitlab Pages in Gitlab. For example, it is done through CI/CD pipeline and defined in a

“Gitlab-ci.yml” file. The pipeline is triggered whenever a commit is pushed to the repository.

Erik Hjelmås elaborated on automation is a key aspect of development for thesis.

What Gitlab instances exists?

There are four usefull gitlab installations at NTNU according to Erik.

What files should be transformed into websites?

As a baseline for thesis, only markdown files are to be transformed into HTML.

Meeting Minutes – 27.01.2022

I. In attendance

Fabian Kongelf, Yan Senko, Oddbjørn Jensen, Nicholas Sellevåg, Erik Hjelmås

II. Discussion

Erik can participate in meetings whenever we want to, though try and keep the meetings on

wednesdays.

Survey on how different courses use gitlab/hub pages to create course pages (contact UIO website

we got provided?) (Roger Antonsen)

Interview list:

Roger Antonsen (Github Pages user, UIO)

Frank Aleksander Kremer (Design Science teacher, uses Github Pages)

Mariusz Nowostawski (created setup for Databaser)

ivar farup (Professor Institutt for datateknologi og informatikk)

Meeting Minutes – 02.02.2022

I. In attendance

Fabian Kongelf, Yan Senko, Oddbjørn Jensen, Nicholas Sellevåg, Erik Hjelmås

II. Discussion

The developed system should as a default include a home page for a course. Documents

given as input will be subsequently linked within the home page.

Documents as input is limited to markdown files. For example, “docx” file extension “does

not belong on websites” - Erik Hjelmås.

Meeting Minutes – 28.02.2022

I. In attendance

Yan senko, Nicholas Sellevåg, Oddbjørn Jensen, Fabian kongelf, Erik Hjelmås

II. Discussion

Erik Hjelmås recommended contacting Mariusz nowostawski and ask him for permission to

use his setup for access control in Gitlab as a refference.

Mariusz is depentend on script ran with administrator privileges. Script is dependent on all

students being enrolled priorly.

Erik Hjelmås elaborated on small errors in user access control could lead to major problems.

For example having students gaining access to exam documents.

Erik mentioned Ivar Farup and Rune Hjelsvold have courses using Mariusz access control

setup. Perhaps interview them to gain insight into the user experience.

D.5.2 Guidance meeting summaries

160

Meeting Minutes – 18.01.2022

I. In attendance

Fabian Kongelf, Yan Senko, Oddbjørn Jensen, Nicholas Sellevåg, Guoqiang Li

II. Discussion

Give advice regarding task and research question. Thesis could be a comparative analysis between

blackboard and the developed system.

Weekly 30 minutes meetings, as default on Tuesday 15:15-15:45

Gather information of main product features of blackboard and other LMS.

Students and teachers have used blackboard for a long while, we should have Questionnaire for

them. Find out what blackboard is lacking in, then make our solution be a good replacement. Design

a questionnaire that leans towards something we beforehand. Online website, ten minutes,

Prepare for a project plan within january, send to guidance few days before final delivery. Within

easter holiday we should have a draft. Demo in march, April.

Meeting Minutes – 01.02.2022

I. In attendance

Fabian Kongelf, Yan Senko, Oddbjørn Jensen, Nicholas Sellevåg, Guoqiang Li

II. Discussion

Ask the question why we are developing a feature. And document findings in Definition of

done, for example a sufficient answer should come from:

• Research paper (ask Erik for the subject name of such papers)

• Experience from blackboard

Future meeting callings should only include the obligatory people to be present as everyone

listed gets an email which can be confusing

Meeting Minutes – 22.02.2022

I. In attendance

Fabian Kongelf, Yan Senko, Oddbjørn Jensen, Nicholas Sellevåg, Guoqiang Li

II. Discussion

Group members presented the high level diagrams, in addition the file structure model.

1. Difficult to understand how the content becomes input for the rest of the processing

1. legend/discription for different items. for example markdown and jekyll

Yan Senko showcased the Bachelor thesis template:

1. Abstract chapter before table of content

2. methodology - before everything we do, entails the scientific plan, "we will do

survey, we will conduct questionares, we will design our system and implement our

prototype and look at the security, and have a demo to showcase the security".

3. Conclusion should entail the pros and cons to our system.

Meeting Minutes – 15.03.2022

I. In attendance

Fabian Kongelf, Yan Senko, Oddbjørn Jensen, Nicholas Sellevåg, Guoqiang Li

II. Discussion

have intervju with Erik specifically about what he dislikes. then we can create a list with

functionalities and improvements we think are possible and if he likes it we can create

goals of that list to be implemented in the purpose section.

Perhaps ask for Erik Hjelmås (client) to rewrite bachelor thesis to have focus on user-

friendliness and add functionalities missing in blackboard.

Meeting Minutes - 05.04.2022

I. In attendance

Fabian Kongelf, Yan Senko, Oddbjørn Jensen, Nicholas Sellevåg, Guoqiang Li

II. Discussion

Received feedback on models from Li:

HighlvlModel - model

* perhaps add students in the highlevel diagram after curriculum

FileStructure - model

* divide folder into sub models

Meeting Minutes – 19.04.2022

I. In attendance

Fabian Kongelf, Yan Senko, Oddbjørn Jensen, Nicholas Sellevåg, Guoqiang Li

II. Discussion

In report, bring forth negative user experiences from survey. Thereafter, thesis should

include the features implemented in developed system to overcome said negative

experiences in other LMS such as Blackboard Learn.

Summarize interviews and add to report. in practice, remove unnecessary notes from

interview documents.

Reformulate task description into research questions. The questions are vital to adhere to

scientific studies.

from a scientific approach we would read research questions. they are essentially the scope

of the project. in the end we try to end the questions, we should be able to answer the

questions. Do not leave the question open by the end of the report.

D.6 Task

167

Git da gitt!
Hverken studenter eller ansatte ser ut til å være spesielt glad i eksisterende LMSer (Learning
Management Systems som Blackboard og Itslearning). LMSer skal gjerne løse følgende seks
hovedutfordringer:

1. Gi lett tilgang til åpen informasjon (emnebeskrivelse, timeplan, undervisningsplan,
læringsmateriell, o.l.) om et emne.

2. Gi lett tilgang til lukket informasjon (løsningsforslag, ikke-offentlig pensum,
opphavsrettbegrenset materiale, o.l.).

3. Publisere kunngjøringer (viktig informasjon underveis i en emnegjennomføring)

4. Ta imot innleveringer og gi tilbakemeldinger.

5. Utføre digitale tester.

6. Diskusjonsforum.

Oppdragsgiver ønsker å utforske muligheten for å bruke andre eksisterende systemer vi allerede har
i bruk for å løse disse seks utfordringene. Eksempelvis:

1. git

2. git

3. git

4. git

5. Inspera

6. Piazza

Oppgaven

Git(t) at studentene (og lærerne) behersker git, hvor godt kan punkt en til fire løses av git? I første
omgang ønskes det at gruppen utforsker GitLab og GitLab Pages (evn også GitHub og GitHub
Pages) mtp å møte utfordring nummer en og to:

• Hvordan bør en webside med all nødvendig åpen informasjon for et emne se ut fra et
studentperspektiv i et IT-emne?

• Hvordan kan en slik webside realiseres med GitLab pages?

• Hvordan kan en emneansvarlig/faglærer ivareta aksesskontroll til de tre kategoriene:

a) åpen informasjon

b) informasjon kun for deltakerne i emnet

c) informasjon kun for emneansvarlig/faglærer (f.eks. fremtidige eksamensoppgaver)

• Er det også mulig å løse utfordring tre og fire med git?

Oppdragsgiver og kontaktperson: NTNU, IIK ved Erik Hjelmås (erik.hjelmas@ntnu.no)

Glossary

Containerization Containerization is a form of operating system virtualization where applica-

tions run in isolated user spaces called containers [61]. 13

Control group cgroups (abbreviated from control groups) is a Linux kernel feature that limits,

accounts for, and isolates the resource usage (CPU, memory, disk I/O, network, etc.) of a

collection of processes [8]. 13

Development & Operations DevOps is a set of practices that combines software development

(Dev) and IT operations (Ops). It aims to shorten the systems development life cycle and

provide continuous delivery with high software quality [62]. 70

Docker Docker is a set of platform as a service products that use OS-level virtualization to

deliver software in packages called containers [63]. 13

Downstream job A downstream job is a configured project that is triggered as part of a execu-

tion of pipeline [29]. 62

GitLab Job artifact Jobs can output an archive of files and directories. This output is known

as a job artifact [artifact]. 71

Gitlab runner GitLab Runner is an application that works with GitLab CI/CD to run jobs in a

pipeline. [64]. 60

Hashing Hashing implies the use of an algorithm for creating a ”fingerprint” of the provided

data. This ”fingerprint” is unique to the input: a minor change changes the hash value

completely[65]. 58

input cost In encryption, the input cost determines the amount of iterations an algorithm is set

to go through [66]. 58

Jira Jira is a proprietary issue tracking product developed by Atlassian that allows bug tracking

and agile project management [67]. 8

Layout Layouts are templates that can be used by any page in a site and wrap around page

content[68]. 30, 31

169

Linux kernel The Linux kernel is a mostly free and open-source, monolithic, modular, multi-

tasking, Unix-like operating system kernel [11]. 13

Liquid template language Liquid is a template language used to load dynamic content in the

pages of online stores. Website designers and developers can use a template language

to build webpages that combine static content, which is the same on multiple pages, and

dynamic content, which changes from one page to the next[7]. 30

Markdown Markdown is a lightweight markup language that you can use to add formatting

elements to plaintext text documents. Created by John Gruber in 2004, Markdown is now

one of the world’s most popular markup languages[69]. 30

Microsoft Teams Microsoft Teams is the ultimate messaging app for your organization—a

workspace for real-time collaboration and communication, meetings, file and app sharing,

and even the occasional emoji! All in one place, all in the open, all accessible to everyone

[70]. 27, 28

Microsoft Teams Cards A card is a UI container for short or related pieces of information.

Cards can havemultiple properties and attachments and can include buttons, which trigger

card actions. Using cards, you can organize information into groups and give users the

opportunity to interact with specific parts of the information [71]. 46

Namespace Namespaces are a feature of the Linux kernel that partitions kernel resources such

that one set of processes sees one set of resources and another set of processes sees a

different set of resources [72]. 13

Node Packet Manager npm is the world’s largest software registry. Open source developers

from every continent use npm to share and borrow packages, and many organizations use

npm to manage private development as well [73]. 67

Node.js Node.js® is a JavaScript runtime built on Chrome’s V8 JavaScript engine [74]. 67

Open Authorization OAuth is a standard for access delegation, a common way to authentic-

ated users based on their credinsals form other sources. For instance the ability to log on

to sites never before visited with a google or facebook account [75]. 63

170

Operating system An operating system is system software that manages computer hardware,

software resources, and provides common services for computer programs [76]. 14

Phishing An adversary attempts to pretend to be a legitimate actor, in order to make the target

abide their requests, such as downloading a malicious file or providing sensitive inform-

ation [77]. 58

Process A running program [78]. 13

Runtime Runtime is a system used primarily in software development to describe the period

of time during which a program is running [28]. 48

salt a random set of characters, appended to the user password before being hashed [65]. 58

Software as a Service Software as a Service (or SaaS) is the least flexible service provider al-

ternative from the customer side. The seller provides only the service, while also handling

its infrastructure and development platform [79]. 9

Syntactically Awesome Style Sheets Sass is a stylesheet language that’s compiled to CSS. It

allows you to use variables, nested rules, mixins, functions, and more, all with a fully

CSS-compatible syntax. Sass helps keep large stylesheets well-organized and makes it

easy to share design within and across projects[80]. 31

Upstream job An upstream job is a configured project that triggers a project as part of its exe-

cution [29]. 62

Web element An element is a part of a webpage. In XML and HTML, an element may contain

a data item or a chunk of text or an image, or perhaps nothing. A typical element includes

an opening tag with some attributes, enclosed text content, and a closing tag[81]. 30

Web interface A Web user interface or Web app allows the user to interact with content or

software running on a remote server through a Web browser. The content or Web page

is downloaded from the Web server and the user can interact with this content in a Web

browser, which acts as a client [82]. 21

171

Acronyms

CSS Cascading Style Sheets. 30, 31

HTML Hypertext Markup Language. 30, 31

OS operating system. 13–15

Sass Syntactically Awesome Style Sheets. 30

172

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Nicholas Bodvin Sellevåg
Yan Senko
Fabian Kongelf
Oddbjørn S. Borge-Jensen

Exploring possibilities for GitLab as a
Learning Management System

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Guoqiang Li
June 2022

Ba
ch

el
or

’s
th

es
is

	List of Figures
	Introduction
	Task
	Problem area
	Project scope
	Demographic
	Report Structure

	Background
	Field of study
	Purpose
	Motivation
	Project Members
	Organizing
	Distribution of Workload

	Experience
	State of the art
	Blackboard Learn

	Related technologies

	Methodology
	System requirement analysis
	Functionality to create website from markdown
	Functionality to support access control
	Functionality to publish announcements
	Functionality to handle assignments

	The developed system
	System architecture
	Architectural requirements

	System Design
	Information Publication via GitLab Pages
	Exclusivity of private information with roles
	Engaging announcements through automation
	Deliverables
	Confidence and integrity of software through testing

	Page design
	Visual Design

	Implementation
	Functionality to create website from markdown
	Functionality to support access control
	Functionality to publish announcements
	Functionality to handle assignments
	Docker-container
	Timing-issues
	Deploy stage in Gitlab CI

	LMS installation and deployment
	Prerequisites

	File Structure Overview
	Security
	Endpoint Protection
	GitLab's Security Measures
	GitLab Access Control
	Ruby
	Jekyll
	Container Security
	Vulnerability scanning
	Trusted Docker images
	CI/CD best practices

	Quality Assurance
	Definition of Requirements
	Automated Reports

	Conclusion
	Conclusion of possibilities for Gitlab as a Learning Management System
	Evaluation
	Organizing
	Distribution of Workload
	Project as a form of work

	Reflection
	Results
	Discoveries

	Critique of task
	Future Considerations

	Definition of Done
	Functionality to create website from markdown
	Functionality to support access control
	Functionality to publish announcements
	Functionality to handle assignments

	Survey
	Interviews
	Mariusz Nowostawski
	Ivar Farup
	Frank Alexander Kramer
	Rune Hjelsvold
	Henrik Johnsen

	Project Management
	Time log
	Nicholas Bodvin Sellevåg
	Yan Senko
	Fabian Kongelf
	Oddbjørn S. Borge-Jensen

	Project Planning
	Gantt Chart
	Project contract
	Minutes of Meetings
	Client meeting summaries
	Guidance meeting summaries

	Task

