
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Anders Kampesæter Slaaen
Jørgen Mo Opsahl
Marius Raes
Martin Kristensen Eide

Platform for Secure Data
Management

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Jia Chun Lin
May 2022

Ba
ch

el
or

’s
th

es
is

Anders Kampesæter Slaaen
Jørgen Mo Opsahl
Marius Raes
Martin Kristensen Eide

Platform for Secure Data Management

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Jia Chun Lin
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Platform for secure data management

Anders Kampesæter Slaaen
Jørgen Mo Opsahl

Marius Raes
Martin Kristensen Eide

CC-BY 2022/05/20

Preface

We were given this bachelor project from the IT Division at NTNU, and we are
grateful for being given the opportunity to to get the chance to contribute to such
an important project at NTNU. Throughout the project we have learned a lot both
when it comes to new technologies, academic writing, and teamwork. We got in-
troduced to many new technologies and fields in IT management and we would
not have succeeded if it was not for the help we received from all the people that
supported us this period. We would like to give a big thank you to our contact
person at the IT-Division, Eigil Obrestad, who were very eager to help us with the
project throughout the whole period.

There were also two individuals that were absolutely extraordinary with help-
ing and guiding us throughout the project and there is no doubt that we would
not have made it if it were not for them. We would therefore like to give a big
thank you to our supervisor Jia-Chun Lin who spent an enormous amount of time
guiding us through this project and we are extremely grateful to have been given
her as our supervisor.

The second person we want to thank is Lars Erik Pedersen, who took the time
to help us numerous times throughout the project giving us exactly the tips and
help we needed when we were stuck.

Lastly we want to thank friends, family and lecturers who spent their time giv-
ing us feedback, tips and participate in user tests.

i

ii

Summary iii

Summary

Date: 20.05.2022

Title: Platform for Secure Data Management

Authors: Anders Kampesæter Slaaen
Jørgen Mo Opsahl
Marius Raes
Martin Kristensen Eide

Supervisor: Jia-Chun Lin

Employer: NTNU IT Division

Contact Person: Eigil Obrestad, eigil.obrestad@ntnu.no, 61135143

Keywords: Cloud, API, Load Balancing, Virtual Workstations, File Server, Active
Directory, Windows, OpenStack, Infrastructure as Code, Docker, Web
Server.

Pages: 75

Attachments: 4

Availability: Open

Abstract: The NTNU IT Division is responsible for IT services provided to nearly
50.000 students at NTNU. NTNU currently has no good solution for
sharing and managing highly confidential data, so the IT division has
decided to implement a new platform for secure data management.
The task for this bachelor project was to make certain modules for
such a platform, including orchestration of virtual machines and the
network architecture and a back-end API to order secure digital infra-
structure for research projects. This thesis first begins with defining
the requirements, followed by the technical design of the platform
and the implementation process. Through a questionnaire, the plat-
form was evaluated by both students and lecturers at NTNU, and the
feedback we received were mostly positive.

iv

Sammendrag v

Sammendrag

Dato: 20.05.2022

Tittel: Plattform for Sikker Databehandling

Deltakere: Anders Kampesæter Slaaen
Jørgen Mo Opsahl
Marius Raes
Martin Kristensen Eide

Veileder: Jia-Chun Lin

Oppdragsgiver: NTNU IT-avdelingen

Kontaktperson: Eigil Obrestad, eigil.obrestad@ntnu.no, 61135143

Nøkkelord: Sky teknologier, API, Lastbalansering, Virtuelle Arbeidsstasjoner, Fil
Server, Active Directory, Windows, OpenStack, Infrastruktur som
kode, Docker, Web Server.

Antall sider: 75

Antall vedlegg: 4

Publiseringsavtale: Åpen

Sammendrag: IT avdelingen på NTNU er ansvarlige for IT tjenestene NTNU tilbyr
til sine rundt 50.000 studenter. I dag har NTNU ingen god løs-
ning for å sikkert dele og arbeide fortrolig og strengt fortrolig
data. IT avdelingen på NTNU har derfor bestemt seg for å lage
en ny plattform for sikker databehandling. Oppdraget for denne
bacheloroppgaven var å utvikle enkelte moduler for en slik løs-
ning. Dette inkluderer orkestrering av virtuelle arbeidsstasjoner,
nettverksarkitektur og back-end API for å bestille sikker infrastruktur
til forskningsprosjekter. I denne rapporten vil kravspesifikasjonene,
tekninsk design og implementasjon av produktet være en sentral del.
Gjennom en spørreundersøkelse ble plattformen evaluert av både stu-
denter og ansatte på NTNU, og tilbakemeldingene viste seg hoved-
sakelig å være positive.

Table of Contents

Preface . i
Summary . iii
Sammendrag . v
Table of Contents . vi
Figures . ix
Tables . x
Code Listings . xi
Acronyms . xii
Glossary . xiv
1 Introduction . 1

1.1 Background . 1
1.1.1 Our client NTNU . 1
1.1.2 Current solutions . 2
1.1.3 Requirements . 3

1.2 Project Goals . 4
1.3 Project Scope . 4
1.4 Project Group . 5
1.5 Thesis Structure . 5

2 Background . 7
2.1 Infrastructure as a Service (IaaS) . 7

2.1.1 OpenStack . 8
2.1.2 SkyHiGh . 9
2.1.3 Load Balancing RDP sessions 9
2.1.4 Cloud-Init . 10
2.1.5 Storage . 11
2.1.6 Infrastructure as Code (IaC) . 12

2.2 Application Programming Interface . 13
2.2.1 Web API . 13
2.2.2 Flask . 13
2.2.3 Web Server Gateway Interface 13

2.3 Docker . 14
2.3.1 Dockerfile . 14
2.3.2 Docker Compose . 15

2.4 Active Directory . 15

vi

Table of Contents vii

3 Related Work . 18
4 Requirement Specification . 21

4.1 Description of our Service . 21
4.2 Requirements . 22

4.2.1 Functional Requirements . 22
4.2.2 Non-functional Requirements 23

5 Technical Design . 26
5.1 System Architecture . 26

5.1.1 Network Design . 27
5.1.2 API . 27

5.2 Components . 28
5.2.1 Virtual Workstations . 28
5.2.2 Storage and File Server . 28
5.2.3 File Imports and Exports . 29
5.2.4 Load balancing . 30
5.2.5 Logging Service . 31
5.2.6 Active Directory . 32

6 Development Process . 33
6.1 Development Model . 33
6.2 Documentation . 34
6.3 Routines . 35

6.3.1 Tools . 35
7 Implementation . 36

7.1 API . 36
7.1.1 Flask . 36
7.1.2 Handling Requests . 36

7.2 Orchestration Logic . 39
7.2.1 Orchestrator . 39
7.2.2 Background Tasks . 41
7.2.3 Logging . 43

7.3 Heat Templates . 44
7.3.1 Base . 46
7.3.2 Load balancing RDP sessions 47
7.3.3 File server . 50
7.3.4 Windows Clients . 55

7.4 Domain Controller . 56
7.5 Deployment . 58

7.5.1 Logging . 62
7.5.2 Deployment Step by Step . 62

8 Evaluation . 63
8.1 User Testing Results . 63

8.1.1 Evaluation Conclusion . 68
9 Discussion . 69

9.1 Risks and Security Aspects . 69

Table of Contents viii

9.2 Challenges During the Project . 71
10 Closing Remarks . 73

10.1 Learning Outcome . 73
10.1.1 API . 74
10.1.2 Infrastructure as Code . 74
10.1.3 Windows . 74

10.2 Conclusion . 74
10.3 Future Improvements . 74

Bibliography . 76
A Project Plan . 82
B Project Agreement . 100
C Project Description . 107
D Time tracking . 110

Figures

2.1 The fundamentals of IaaS [16]. 7
2.2 Illustration of how a load balancer works [25] 10
2.3 Illustration of an API [33] . 13
2.4 DNS-client communication illustration [46]. 16
2.5 Illustration of a domain hierarchy [48]. 17

4.1 Graphical description of different use scenarios provided by our
service . 21

5.1 Overview of technical design . 26
5.2 Load balancer logic . 31

6.1 Kanban board [59]. 33

7.1 Graphic describing the orchestration logic 42
7.2 Screenshot from Grafana Loki . 44
7.3 Graphic of our heat file layout . 45
7.4 Example showing use of SFTP as configured on the file server 55

ix

Tables

1.1 NTNUs data classification system [5] 2
1.2 NTNUs list of current solution for storing classified data 3

x

Code Listings

2.1 Example of a simple Samba configuration 11
2.2 Example of a simple Windows instance 12
2.3 Simple Dockerfile example . 15

7.1 Basic endpoint for Flask [1] . 36
7.2 The code handling the HTTP POST request for the /api/new-project

enpoint . 36
7.3 The logic initializing a new project . 37
7.4 The code handling the HTTP GET request for the /api/project/<name>

enpoint . 38
7.5 The code handling the HTTP DELETE request for the /api/pro-

ject/<name> enpoint . 38
7.6 Function making sure all emails are validly formated 39
7.7 Orchestrator constructor method . 39
7.8 Method for getting the IP address of a project load balancer 40
7.9 Create and delete project methods of orchestrator 40
7.10 Defining Celery task . 42
7.11 Part of resource definition of project.yaml 45
7.12 Code snippet from base.yaml . 46
7.13 The contents of the file lb.yaml . 48
7.14 Parts of the resources in the file rdp_lb_member.yaml 49
7.15 Cloud config snippet from fileserver.yaml 50
7.16 Bash script snippet from fileserver.sh . 52
7.17 Bash script snippet from fileserver.sh . 54
7.18 Bootup script for the virtual clients . 55
7.19 The yaml file creating the domain controller instance used as a

Proof of concept (POC) . 57
7.20 Script setting up the domain controller 57
7.21 Dockerfile for the orchestration API . 59
7.22 Part of the main Docker Compose . 60
7.23 __init__.py file showing configuration of Celery and Flask 61

xi

Acronyms

AD Active Directory. vi, vii, 15, 32, 53, 56, 66, 71, 74, 75

AD DS Active Directory Domain Services. 15, 16, 56, 57, 71

API Application Programming Interface. iii, vi, 4, 5, 13, 27, 36, 39, 40, 43, 55,
58, 59, 61, 62, 65, 71

CPU Central Processing Unit. 72

DC Domain Controller. vii, 16, 56, 57

DHCP Dynamic Host Configuration Protocol. 15

DIGSEC Digital Infrastructure and Cyber Security. 5

DNS Domain Name System. 15, 16, 56, 71, 72

FEIDE Felles Elektronisk Identitet. 5

GPO Group Policy Object. 56

GUI Graphical User Interface. 29, 43

HPC High performance computing. 18

HTTP Hypertext Transfer Protocol. xv, 41

HTTPS Hypertext Transfer Protocol Secure. xv, 71, 75

IaaS Infrastructure as a Service. vi, 7, 8

IaC Infrastructure as Code. vi, viii, 12, 71, 74

IDI Department of Computer Science. 34

IDS Intrusion Detection System. 8

IIK Department of Information Security and Communication Technology. 9

xii

Tables xiii

IP Internet Protocol. 27, 30–32

IT Information Technology. 5, 19, 34, 63

LDAP Lightweight Directory Access Protocol. 16, 66, 70

NTNU Norwegian University of Science and Technology. vi, 1–5, 16, 18, 19, 23–
32, 34, 43, 56, 57, 59, 70, 75

POC Proof of concept. xi, 32, 56, 57, 71, 72

RDP Remote Desktop Protocol. vi, 4, 9, 10, 19, 23, 28, 30, 40, 47, 49, 56, 57, 65,
66, 69, 70

SAFE Secure Access to Research Data and E-infrastructure. 19

SFTP SSH File Transfer Protocol. ix, 29, 30, 47, 53–55

SSH Secure Shell. 29, 53, 54

TCP Transmission Control Protocol. 47

TSD Services for Sensitive Data. 18, 19

UDP User Datagram Protocol. 47

UIB University of Bergen. 19

UIO University of Oslo. 3, 18

USIT University Centre for IT. 18, 19

VPN Virtual Private Network. 8, 19, 59, 69

WSGI Web Server Gateway Interface. vi, 13, 14

YAML Yet Another Markup Language. 12, 15, 44

Glossary

200 HTTP OK The 200 HTTP code indicates that the request sent by the user was
processed successfully. 37

400 HTTP Bad Request The 400 HTTP code indicates that the request sent by
the user was not processed, because it appear to be malformed or invalid .
37

500 HTTP Internal Error The 500 HTTP code indicates that by processing the
request, something went wrong on the server side. 37

HTTP DELETE request A HTTP DELETE request is a request sent by a user to
delete a resource from a server . 38

HTTP GET request A HTTP GET request is a request sent by a user to retrieve a
resource from a server . 38

HTTP POST request A HTTP POST request is used to send data to a server . 37

abstraction is a generalization of what is common in a category. For instance
both cats and dogs are animals. Animal is an abstraction of cat. 8

agile An iterative development approach that delivers products faster to custom-
ers, by delivering work in smaller increments. 33

authentication Authentication means providing information to make sure you
are who you say you are. 75

authorization Authorization means defined access rights . 75

automated Something automated doesn’t require human interaction. 3

bloatware Unnecessary preloaded software. 29

client - server model A structure where tasks are separated into those who provide
a service (servers), and those that requests a service (clients) . xv

daemon A data program that runs as a background process rather than being
under the control of a user. 8

xiv

Tables xv

decorator A decorator is a function that both takes a function as parameter, and
returns a function back as return value [2]. 36

framework A framework, in a software context, is a collection of pre-written code
that you can utilize in a software solution, without having to worry about
the underlying logic.. 13

HTTP HTTP is a communication protocol mainly associated with web-traffic in a
client - server model relationship . xv

HTTPS Hypertext Transfer Protocol Secure (HTTPS) is the secure version of HTTP.
75

modular When something is modular it only relies on itself, but is (normally)
part of a bigger item. 3, 13

open-sourced Published under a licence, allowing users to examine, use, change,
and distribute the software. 10

production A production environment is an environment where code is con-
sidered "finished" and providing value. For instance being accessible to your
customers. 14

regular expression (regex) Regular expression is a string of characters used as
search pattern for a text. These search patterns can be rather complex and
quite hard to understand. 39

scalability Scalability refer to the ability to adjust the provided resources based
on required workload. xv, 14

scalable Something scalable implements scalability. 3, 13

SMB Service Message Block is a communication protocol that Microsoft created
for providing shared access to files and printers across nodes on a network.
11

virtual machine A machine resource that uses software to run programs and
apps "on top" of an physical computer. 8, 9

Chapter 1

Introduction

This chapter will be an introduction to this bachelor thesis and it will cover the
background for the project, the goals for the project, project scope, description of
the project group as well as a description of the thesis. Our project is available at
https://git.gvk.idi.ntnu.no/mariurae/orchestrationapi.

1.1 Background

1.1.1 Our client NTNU

Norwegian University of Science and Technology (NTNU) is the largest university
in Norway [3] with a history dating back to 1760. The university is divided into
nine faculties and spread over three different campuses: Gjøvik, Trondheim and
Ålesund. There were 44 747 students registered in 2021. Eight percent of which
were international students, originating from 121 different countries. About 50
percent of the students study technical and natural sciences, while the rest is
spread over other sciences such as health, education, economics, social sciences
etc. The budget of the university was 10 billion NOK in 2021 [4].

1

https://git.gvk.idi.ntnu.no/mariurae/orchestrationapi

Chapter 1: Introduction 2

Table 1.1: NTNUs data classification system [5]

Open This information is available for everyone even
without authentication.

Internal This information is available for certain internal
and external users. Most information goes under
this category.

Confidential This information require strict authentication and
authorization. This is sensitive information that
may hurt whoever the information is about, if it
were to be released to the public.

Strictly confidential This information require strict authentication and
authorization to an even higher degree. This is ex-
tra sensitive information that could severely hurt
whoever the information is about, if it were to be
released to the public.

1.1.2 Current solutions

NTNU has their own system for classifying data based on how confidential and
sensitive it is. As seen in Table 1.1 this system is divided into four classes. NTNU
has access to a range of both external and internal services for storing and access-
ing sensitive data. However, these solutions have some issues, and have proved
inadequate to meet the needs of NTNU. For instance providing insufficient func-
tionalities, giving users too much responsibility and freedom, or being outside of
NTNUs control. When interacting with data trough personal devices, most of the
solutions allows for copying the data locally. This puts the confidentiality of the
data at risk in the case of theft or the personal device being compromised. Table
1.2 lists the current solutions that are allowed for storing data classified as internal
or stricter.

Chapter 1: Introduction 3

Table 1.2: NTNUs list of current solution for storing classified data

NTNUs home directory This is allowed for all classifications, even Strictly
confidential as long as the data is encrypted. This
however gives the user full control over the data.

NTNUs shared network directory This is allowed for data that is classified as Open
or Internal. This gives the user full control over the
data.

NTNU administered Dropbox This is allowed for data that is classified as Open
or Internal. This gives the user full control over the
data.

NTNU-Box This is allowed for data that is classified as Open
or Internal. This gives the user full control over the
data .

Office 365 This is allowed for data that is classified as Open
and Internal, even Confidential as long as the data
is encrypted. This gives the user full control over
the data.

NTNUs NICE-1 A similar solution as NTNUs shared network dir-
ectory, but with stricter authentication. This is al-
lowed for all classifications, even Strictly confid-
ential as long as the data is encrypted. This gives
the user full control over the data [6].

HUNT Cloud This is allowed for all classifications, even Strictly
confidential on a individual basis.

UiO TSD This is allowed for all classifications. This service
is provided by a third-party (University of Oslo
(UIO)) [7].

NIRD This is allowed for data that is classified as Open or
Internal. This service is provided by a third-party
(Sigma2) [8].

1.1.3 Requirements

NTNU handles a large quantities of sensitive data for research and education.
The confidentiality, integrity and availability of this data is paramount. Any data
leak could have catastrophic consequences for the affected individuals, as well
as legal and reputational repercussions for NTNU. Therefore a good solution for
interacting as well as storing this data is needed, while maintaining a high level
of confidentiality and integrity. NTNU has therefore decided that these services
should be provided in-house. The solution to this should be scalable, automated
and modular, allowing for future improvements. The service also needs to provide
a safe way to import the data to the file storage, possibly exporting data (or certain
parts of the data), and a secure virtual workstation for interacting with the data.

Chapter 1: Introduction 4

1.2 Project Goals

The purpose of this bachelor project is to meet the aforementioned requirements.
This would entail creating a system that allows sensitive data to be stored and
accessed in a more secure manner than the existing NTNU solutions.

The desired solution must serve as an infrastructure for project members to se-
curely work on highly confidential data. Hence, various capabilities are crucial
goals for such a solution. The goals include:

• Automation: The solution should be completely automated, making it simple
to enter and exit production.
• Scalability: The solution should be scalable in a way that it can be expanded

easily if needed.
• Modularity: The solution should be modular, allowing NTNU to employ

relevant components and simply incorporate them into their work.

Other goals that do not serve as specific capabilities in the solution include en-
suring that the solution adheres to suggestions and requirements from relevant
standards and guidelines. Because this is a solution for handling sensitive data at
NTNU, the Norwegian health norm for information security and privacy [9] is a
critical guideline to follow, as health data might be extremely private.

Other guidelines the solution aims to satisfy is NTNUs guidelines for informa-
tion security, including NTNUs guideline for information classification [10] and
NTNUs guideline for access control [11].

1.3 Project Scope

The final version of this project would be a secure and user-friendly web platform
where authenticated and authorised NTNU members can order a virtual environ-
ment for their research project. The platform should provide a method for a project
owner to upload and download files to and from the platform. Project members
should be able to read and edit the files using virtual desktop clients available
through Remote Desktop Protocol (RDP), which provides users with a graphical
interface to connect to another computer over a network connection [12].

However due to resource and time constraints, it is not feasible for us to fully
implement all of the features in our final product. Our focus would be implement-
ing the logic that orchestrates the virtual environments based on API calls from
the web platform. In addition our group have a strong focus on securing the pro-
ject environment, as well as our runtime environments. Our product will include
our own logging server to monitor and debug the system, although in the final
product logs should be integrated into NTNUs central logging service. Similarly
we were not given access to NTNUs Active Directory. This led to our group having

Chapter 1: Introduction 5

to create our own Active Directory domain with users to test the domain control-
ler that is used for authentication on the Windows clients.

We decided to not fully design and implement the front-end website where pro-
ject owners can order and manage their projects. We did however implement a
very simplified version of the website, mostly for demonstration purposes. This
decision was made mostly due to time constraints and because no one on the
group has a lot of skill or passion when it comes to front-end web development.
We will implement the back-end API; however, we will not implement authen-
tication to use this API which should probably be done with Felles Elektronisk
Identitet (FEIDE) and ideally using two-factor Authentication. We chose not to
implement this because you need to be FEIDE-administrator to configure login
with FEIDE [13], we are not authorized for this. NTNU has experience and know
about how to set up FEIDE authentication so it should be relatively easy for them
to implement.

1.4 Project Group

Our group consists of four bachelor students enrolled in the Digital Infrastructure
and Cyber Security (DIGSEC)) [14] program at NTNU Gjøvik. This program has
provided us with a wide range of skills within development, operations of digital
infrastructure. A common theme throughout most of our courses was security,
abuse potential and prevention. The courses Infrastructure: secure core services,
and Robust and scalable services provided us with knowledge about OpenStack or-
chestration, that proved valuable for our project work. The courses PROG2053 -
WWW-teknologier and IDATG2204 - Datamodellering og databasesystemer provided
us with the knowledge needed to create APIs and and web-development.

The project owner is Eigil Obrestad on behalf of NTNU IT Department. Jia-Chun
Lin, assistant professor at NTNU is our supervisor.

1.5 Thesis Structure

• Chapter 1 - Introduction: Description of the background of the thesis, pro-
ject goals, project scope and the structure of the thesis.
• Chapter 2 - Background: Introduction to OpenStack and privacy require-

ments for health and research data.
• Chapter 3 - Related Work: Similar solutions found elsewhere.
• Chapter 4 - Requirement Specification: Requirements for the developed

architecture
• Chapter 5 - Technical Design: Design of our infrastructure and technical

description.

Chapter 1: Introduction 6

• Chapter 6 - Development Process: The development process throughout
the project.
• Chapter 7 - Implementation: Covers how the group implemented the re-

quired features in our solution.
• Chapter 8 - Evaluation: Covers our risk analysis of the infrastructure, and

the testing performed on it.
• Chapter 9 - Discussion: Discussion on the work done for the project.
• Chapter 10 - Closing Remarks: Future improvements and conclusion.

Chapter 2

Background

This chapter will cover technologies and techniques used for developing an auto-
mated infrastructure, how they are used as well as their advantages and disad-
vantages.

2.1 Infrastructure as a Service (IaaS)

For developing the product of this bachelor project, Infrastructure as a Service
(IaaS) is used. IaaS is a service used for cloud computing where the consumer
gets resources in form of storage, network, instances (servers, clients etc) on a
cloud. The consumer then has full control over these resources while the provider
is responsible for physical maintenance of the cloud [15], as illustrated in Figure
2.1.

Figure 2.1: The fundamentals of IaaS [16].

In this project it is necessary to use instances, networks and storage to host the
platform. This makes it logical to take use of a cloud environment, and IaaS is a
service that gives the project group a lot of control over the product. The disad-

7

Chapter 2: Background 8

vantages of using such a service is the fact that control over the physical hardware
is lost. The provider has the responsibility to maintain, secure and virtualize (see
the paragraph below) the physical hardware. Fortunately for this project group,
the cloud we use is SkyHiGh [17] which makes it possible to have more control
over the physical resources, since it is located at the same university that the pro-
ject are being developed on. There will be a more detailed description of SkyHiGh
in Section 2.1.2.

Virtualization is a concept and technology that optimize the use of physical re-
sources. Virtualization makes it possible for hardware to divide its resources to
multiple virtual machines that runs its own operating system and acts as inde-
pendent computers [18]. It makes it possible to easily upscale and downscale re-
sources depending on how much is needed. This is one of the core functionalities
of IaaS where cloud development is made easy by providing necessary resources
on demand to the consumer.

2.1.1 OpenStack

OpenStack is a free cloud computing platform originating from NASA and Rack-
space Hosting [19]. OpenStack controls large pools of compute, storage, and net-
working resources which can be managed by either an API or a graphical interface.
OpenStack works by creating a layer of abstraction over the hardware resources
available for the entire infrastructure. This ensures that when a user requests re-
sources for their project, the system administrator for the OpenStack infrastruc-
ture can assign resources from the different resource pools available for them.
Of the six main services that OpenStack offers, four will be applicable for our
platform. These handle computing (Nova), networking (Neutron), orchestration
(Heat), and storage (Cinder). These service are introduced as below.

Nova

Nova [20] is the OpenStack service that provides users the ability to start and
manage virtual machine servers. The nova service runs as a set of daemon on
a linux server. Nova is designed to scale horizontally, which means that rather
than switching to larger servers when needing more resource, it creates additional
servers to tackle the increased traffic.

Neutron

Neutron [21] is the OpenStack service providing network connectivity to devices
running in a OpenStack environment. Neutron manages all parts of the network
management and allows users to create complex virtual network topology. Open-
Stack can deploy additional network services such as firewalls, Virtual Private
Network (VPN), and Intrusion Detection System (IDS).

Chapter 2: Background 9

Cinder

Cinder [22] is the OpenStack service providing storage and volume management
to Nova virtual machines and containers. The Cinder volume devices provides
persistent storage options for virtual machines managed by OpenStack.

Heat

Heat [23] is the OpenStack service to orchestrate multiple cloud applications using
templates. Heat can be used to set up multiple different scenarios and environ-
ment by using templates to design the system. A typical template will contain the
network, subnets and router, as well as the virtual machines

2.1.2 SkyHiGh

SkyHiGh is NTNU Gjøvik’s OpenStack installation, hosted by the Department of
Information Security and Communication Technology (IIK). The platform is used
for both education and research purpose. Both Gjøvik and Trondheim have their
own dedicated OpenStack installations on-site. Students, lecturers and research-
ers can apply to be assigned resources in SkyHiGh for their projects or courses.

2.1.3 Load Balancing RDP sessions

Load balancing is a technique used to distribute network traffic between a set of
servers [24], referred to as a server pool. A back-end server have a limited amount
of resources and it is therefore a limit to how much network traffic one server can
handle. To solve this problem, multiple identical servers can be used where users
are distributed between the servers, making the service provided by the servers
much more robust.

To distribute users between the servers, a load balancer can to be used. A load
balancer is a server that are placed in front of the server pool which tries to solve
this problem by sending users to different servers in the server pool. This means
that two users trying to connect to for example a website, could be sent to two
different servers while the content of the websites are totally identical. Notice how
several users are connected to the same load balancer and then are distributed to
different servers is illustrated in Figure 2.2.

Chapter 2: Background 10

Figure 2.2: Illustration of how a load balancer works [25]

Load balancing is in this project used to distribute Remote Desktop Protocol (RDP)
sessions to a server pool of windows machines, users are distributed to different
desktop clients with identical functionality. By doing this, the infrastructure solu-
tion is made quite robust with a server pool that dynamically change in size ac-
cording to the number of users.

Remote Desktop Protocol (RDP) is a protocol developed by Microsoft, which
allows users to remotely connect to the graphic user interface of a computer (usu-
ally windows) through a network [12]. This makes it possible to use a client that
are situated in a cloud infrastructure by establishing a RDP session from a per-
sonal machine. Said briefly, a user gets the IP address of the load balancer that
they connect to, that then establishes a connection with one of the servers in the
server pool, trying to maintain a balance of users distributed between the different
clients.

Octavia

Octavia is an open-sourced load balancer developed to work with OpenStack [26].
For this bachelor project, this is the load balancer to be used. The reason Octavia
is a great load balancer for this bachelor project is because it is optimized to run
on an OpenStack cloud environment and SkyHiGh has implemented this load
balancer.

2.1.4 Cloud-Init

Cloud-init is a method to initialize cloud intances, and is considered the industry
standard [27]. Cloud-init identifies the cloud an instance is booted on and gather
the clouds metadata to initialize the instance with potentially storage, network
and SSH access. It also allows for more data to be specified with the instance

Chapter 2: Background 11

before boot [27]. All instances booted on the SkyHiGh cloud uses cloud-init to
ensure proper configuration of SSH access, network configuration and storage
mounting. Cloud-init also allows for the creation of boot scripts that are run on
first boot, giving detailed control of the servers configuration.

2.1.5 Storage

Samba [28] is an implementation of Microsoft’s SMB networking protocol for
UNIX machines. Samba provides file and print service for Windows clients, and it
can also integrate into Windows Server domain and act as an domain controller.
This enables file sharing between multiple devices, both Linux and Windows with
ease. All of the Samba configuration is located in the /etc/samba/smb.conf file
on the Linux instance. The code listing below shows a simple layout of a file shar-
ing server using Samba. It includes a global configuration for the Samba service,
and then the configuration for the file share in the section called [share].

1 [global]
2 interfaces = lo ens3
3 bind interface only = true
4 security = share
5 guest account = nobody
6
7 [share]
8 comment = Samba share
9 path = /path/of/share

10 read only = no
11 browsable = yes
12 guest ok = yes

Code listing 2.1: Example of a simple Samba configuration

An alternative to the Samba service that we considered was NitroShare [29]. Ni-
troShare is also a cross-platform file transfer that promises gigabit transfer speeds
with easy to use software. NitroShare differs from Samba as they only provide
users to share files to one computer at a time. This makes it much more trouble-
some for a project administrator to share files with multiple virtual workstations.
NitroShare does not provide the ability to share specific directories and changes
done to files are not synchronized to other workstations automatically. Another
adverse side of NitroShare is that the source code has not been maintained or
developed since June 2019 [30].

We chose Samba as our software for file sharing and storage because it provides
consistent and fast file sharing between both the Windows virtual workstations
and our Linux file server. Samba also provides consistent synchronization between
all workstations.

Chapter 2: Background 12

2.1.6 Infrastructure as Code (IaC)

What is crucial when the cloud infrastructure is created, is automating the pro-
cess, meaning an infrastructure easily could be taken down and booted back up
again. Another key feature of cloud infrastructure is the ability to modify the the
infrastructure based on a set of parameters. In our project for example, one pro-
ject’s infrastructure would need to be modified compared to another based on the
number of virtual machines. Both automation and modification of the infrastruc-
ture can be solved by Infrastructure as Code (IaC).

Infrastructure as Code refers to the management of digital infrastructure. Digital
infrastructure is written in code and infrastructure components are placed in a
descriptive model [31]. In this project, infrastructure components are placed in
what is called a Heat template, using YAML syntax. In the sections below, it is
described how API calls are used to pass parameters to the Heat templates. By
doing this it is possible to automatically apply and take down an infrastructure
with specified requirements.

Code Listing 2.2 shows how a simple Windows server could be represented in
code in an OpenStack Heat template.

1 #This is a comment
2
3 #'resources' defines all instances in the file
4 resources:
5 #This is the name om the resource
6 server:
7 #This is the type of the resource
8 type: OS::Nova::Server
9 #'properties defines the properties of the resource'

10 properties:
11 name: Windows_Server
12 flavor: m1.small
13 image: "Windows␣10␣21H2␣Enterprise␣[Evaluation]"
14 key_name: Important_Key
15 networks:
16 - network: Main_Network
17 user_data_format: RAW
18 #This is data that are sent with Cloud-Init
19 #when the instance is booted. Here a script
20 #is used, where some parameter is used.
21 user_data:
22 str_replace:
23 template:
24 get_file: bootup.ps1
25 params:
26 float: {get_param: filserver_float}

Code listing 2.2: Example of a simple Windows instance

Chapter 2: Background 13

2.2 Application Programming Interface

For users to create a new project, they will need to have an interface to interact
with the system. This is where an Application Programming Interface (API) comes
into play. An API is an essential part of how modules, services and systems interact
with each other. APIs enable different sub-parts of something to be modular, al-
lowing abstraction of the underlying logic of other modules, services and systems
that its interacting with [32].

2.2.1 Web API

A Web API is an API that is accessible via a network, for instance the Internet.
This allows for communication between computers and servers, whether they are
in the same building, or on different continents [32], it does not matter. This com-
munication and the roll of the API is illustrated in the Figure 2.3. The illustration
shows a web application ran in a browser communication with an API. Whats be-
hind the API is important and hidden away from the user, who may not be aware
that there is a database in the background.

Figure 2.3: Illustration of an API [33]

2.2.2 Flask

Flask is a web framework for the python programming language. Flask is con-
sidered to be very lightweight and easy to use, while being scalable and powerful.
It is considered lightweight because it is up to the developer to choose what extra
functionality should be added, instead of adding a lot of functionality by default
that’s rarely going to be used [34]. This freedom allows the developer to be creat-
ive with what dependencies to be reliant on for functionalities, and the complexity
and size of the project can vary quite a lot.

2.2.3 Web Server Gateway Interface

To run the python flask server, making it available to your network, you utilize
something called Web Server Gateway Interface (WSGI). A WSGI is what actually

Chapter 2: Background 14

runs your python code and making it available to your network [35]. Flask comes
with its own WSGI server, however it is not created, and therefore not recommen-
ded, for a production environment. The Flask WSGI server should only be used
for development and testing. A good WSGI is important mainly for scalability. As
it is supposed to be able to handle hundreds or possibly thousands of requests at
the same time. Waitress is a production-quality WSGI server written in Python.
It is a good choice of WSGI server because of its performance and its ease of use
[36].

2.3 Docker

Docker [37] is a set of software packages that provide an API for creating, running
and managing Docker containers. According to the Docker, inc. "A container is a
standard unit of software that packages up code and all its dependencies" [38].
Unlike Virtual Machines containers do not need to run on top of an hypervisor,
nor do they need to contain an entire operating system to be able to run [39]. In-
stead, largely thanks to isolation features on modern Linux kernels, like cgroups
and namespaces, containers are able to share resources made available by the host
machine. This allows makes them much more lightweight and nimble while still
being largely isolated from each other [40].

Since Docker containers contain the application and everything it depends on,
applications can easily be moved from one host to another while guaranteeing it
will still work [39]. This is particularly useful when developing an application,
because you can develop and test it in a container on your own machine and then
ship the entire container to your production environment.

Another advantage containers provide compared to running applications directly
on a machine is security. Since containers are isolated from the host that they are
running on, an attacker who compromises a Docker container will only have ac-
cess to the content inside said container. For example if an attacker manages to
get a shell inside a Docker container they will have no way of accessing the files
or settings of the host system. Containers therefore provide a great way to reduce
the damage potential attacker can cause.

2.3.1 Dockerfile

Docker containers start as Docker images. To create a custom Docker image a
Dockerfile is used. A Dockerfile is a text file containing step by step instructions for
Docker to build an image. Dockerfiles starts with the FROM keyword, specifying
the base image the new image is based on. Instructions after the FROM keyword
will be run on top of the base image and each other, as Docker creates intermedi-
ary images for each instruction being run. These intermediary images are cached,
meaning that if changes are made to the end of a Dockerfile, the image does not

Chapter 2: Background 15

need to be built from scratch again.

The simple Dockerfile example illustrates some of the most important keywords in
Dockerfiles. The COPY keyword copies a file or folder from the host into the docker
image. The RUN keyword specifies shell commands that are run when building the
image. This keyword is usually used for installing packages or creating files or dir-
ectories. Finally the CMD keyword, while it may seem similar to the RUN keyword
it differs in that instead of being executed when the image is built it is instead ex-
ecuted once the container is ran. Every Dockerfile should contain exactly one CMD
keyword, because if none are listed nothing will happen once the container is ran,
and the container will exit immediately.

1 # This is a comment in a simple Dockerfile
2 FROM ubuntu:latest
3
4 COPY ./src /src
5 RUN apt-get update -y
6 RUN apt-get install -y cmatrix
7
8 CMD echo "Hello␣World!"

Code listing 2.3: Simple Dockerfile example

2.3.2 Docker Compose

While it is possible to start Docker containers manually through the Docker com-
mand line client, Docker Compose is preferred when starting multiple containers
that depend on or interact with each other. Docker compose works by creating a
docker-compose.yml file that by using YAML syntax defines services. Each service
runs in a container based on the specified docker image.

Docker Compose provides a lot of functionality for Docker volumes, virtual Docker
networks, container port mapping, environment variables and many other power-
ful Docker features. Once the docker-compose.yml file is created this makes it pos-
sible to create complex Docker environments using just one command "docker-
compose up". A typical Docker workflow would therefore be defining Docker im-
ages with Dockerfiles, defining the services that are part of application with docker-
compose.yml, running the services by calling "docker-compose up" [41].

2.4 Active Directory

Active Directory (AD) [42] is a Microsoft product providing a collection of tools
and services needed in a big enterprise network. The most essential services provided
are Active Directory Domain Services (AD DS), Domain Name System (DNS), and
Dynamic Host Configuration Protocol (DHCP).

Chapter 2: Background 16

AD DS is a product for storing information about users, workstations and serv-
ers in an hierarchical structure, also called a data store. AD DS is often at the core
of most big enterprise networks, for instance NTNU [43].

Domain Name System (DNS) [44] is a suite of protocols used for name resolu-
tion in a network. This functionality is an essential part of how humans interact
with the internet. It is a lot easier for humans to remember a domain name (e.g.
ntnu.no) than its actual IP address (129.241.160.102 as of 23.03.2022 1:27 PM).
Translating domain names to IP addresses is the main task of the DNS, as seen
in Figure 2.4. DNS also provides the translation of an IP address to a domain
name, also called a "reverse lookup". When a DNS is required to translate a do-
main name to an IP address, the server looks in what is referred to as a "Forward
Lookup Zone". When an IP address is unknown, and a translation to a domain
name is required, the server looks in what is referred to as a "Reverse Lookup
Zone" [45].

Figure 2.4: DNS-client communication illustration [46].

The servers actually running these services are called Domain Controller (DC).
The DC is the core of a computer domain, and at the top of the hierarchy as seen
in Figure 2.5. Its main task is authentication and authorization for users within
the domain using Lightweight Directory Access Protocol (LDAP) [47].

Chapter 2: Background 17

Figure 2.5: Illustration of a domain hierarchy [48].

Chapter 3

Related Work

This chapter will cover related work to our thesis. NTNUs need for a secure en-
vironment to store and edit files is not unique. Other national and international
universities have implemented and published white papers for services similar to
what is proposed in this thesis. While these white papers allow insight into some
of their design, a lot details remain obscure, as these services are largely closed
source. This is most likely due to the security risks associated with publishing
source code in such a way that it is available to bad actors.

Services for Sensitive Data (TSD)

TSD is an expansive digital infrastructure developed and maintained by University
Centre for IT (USIT) at the University of Oslo (UIO) [49]. Preliminary develop-
ment and research started in 2008 and the service launched in 2014 [49], and
has since hosted over 2000 research projects [50]. UIO allows other research in-
stitutions including NTNU to use TSD [51].

TSD is a feature rich service that supports multiple authentication methods, High
performance computing (HPC), direct data collection with "nettskjema" and dif-
ferent client operating systems [49]. While these features make it a more powerful
tool to the end users, it can create additional security risks, according to a security
principle called economy of mechanism. As described by Saltzer and Schroeder in
their foundational 1975 paper "The Protection of Information in Computer Sys-
tems" economy of mechanism means "Keep the design as simple and small as pos-
sible. This well-known principle applies to any aspect of a system, but it deserves
emphasis for protection mechanisms..." [52]. Simply put, a larger set of features
mean a larger surface for malicious actors to exploit. For example as TSD has two
methods of authentication a malicious actor would only need to compromise one
of them to gain unwanted acces to the system.

As mentioned previously NTNU has access to TSD, however this access is lim-
ited to only 60 projects that NTNU has purchased from UIO [51]. This limited

18

Chapter 3: Related Work 19

number of projects is most likely not enough to support NTNUs needs in the long
run, as NTNU is the largest university in Norway, with many students studying
in fields like medicine or psychology that regularly deal with sensitive personal
information. In addition, we have heard anecdotally from staff at NTNU that TSD
projects can be difficult to start and manage. This is supposedly due to projects
having to be manually reviewed before being created, and a lot of project manag-
ment having to be done through administrators at USIT. The solution proposed
in this paper and future efforts by NTNU should seek to learn from and remedy
these issues.

Secure Access to Research Data and E-infrastructure (SAFE)

SAFE is a service for research groups to store and edit sensitive research data. It
was developed by the IT department at University of Bergen (UIB) and it is avail-
able to faculty, researchers and students at UIB. Details about the implementation
of SAFE are limited, and most of our information is gathered from a open docu-
ment describing SAFE and its use [53].

SAFE functions by having projects, and each project has its own infrastructure.
SAFE projects has two kinds of members: project managers and project users [53].
Managers can request a project using UIB’s ticket system. A SAFE administrator
will then set up a project for them. This seemingly requires a decent amount of
manual work for the administrator, and may be very tedious if SAFE projects are
created frequently. Project managers are also responsible for creating an access
document that contains the name, user ID, cell phone number, and access level of
all project members. This document is submitted along with the ticket to create
the project, and it is resubmitted if they want to change the access level of a project
user. It is clear that this requires a lot of work from both the SAFE administrators
and project managers [54].

SAFE utilises a fairly simple architecture and can be considered a less feature rich
solution compared to TSD. The architecture primarily consists of a single terminal
server and two file servers, one outside the project network and one inside it that
is connected to the terminal server [53]. The terminal server can host multiple
RDP sessions concurrently. To gain access to the terminal server, users connect
through a VPN and log in using their user name and password as well as a one
time code from their phone. To upload files to the project, any project member
can place files on the external file server these files will then periodically auto-
matically be transferred from the external file server to the internal one.

It is unclear from the publicly available documentation how users authenticate
to upload files to the file server and how files are encrypted while stored and
transferred. To export files you have to be granted access by the project manager,
files are then placed in a special folder and similarly to importing files they are

Chapter 3: Related Work 20

periodically transferred to the external folder. When files are exported they are
encrypted using AES-256 with a password that is generated and placed in the
internal export folder [53]. The project owner then has to collect the files from
the external file server and manually decrypt them with the generated password,
probably using a program like 7-Zip. This does indicate that users are required to
manually encrypt files when importing them, which could be a problem as user
errors or laziness could lead to files being weakly or not encrypted at all on import.
Enforcing encryption and doing it automatically is therefore probably preferable.

Chapter 4

Requirement Specification

This chapter will define and describe all requirements for the service developed in
this bachelor project. Every requirement will be categorised as either functional or
non-functional. A functional requirement is a specific requirement to the service
and refers to pure functionality of the service [55]. A non-functional requirement
does not refer to specific service functionality, but rather to the performance of
the service [55].

4.1 Description of our Service

Before identifying all requirements, it is necessary to know how our service can
be used by whom.

Figure 4.1: Graphical description of different use scenarios provided by our ser-
vice

21

Chapter 4: Requirement Specification 22

When a student/professor wants to share data with others, he/she requires a se-
cure environment for managing and sharing his/her data. This could also apply if
the student/professor is a project member to a project and wants to access project
data outside of NTNU. In these cases, our service can be used.

To create a project environment on our solution, a project owner can use the web
interface of the service to do it and add users (i.e, project members) to the project.
An infrastructure for the project will then be booted on a cloud, with a number
of virtual workstations that is equal to the number of the project members. All
members will be allowed to access the project environment and an IP address will
be provided for them to connect to the virtual workstations on the cloud.

When a project is set up, users will be able to use the virtual workstations situ-
ated on the cloud platform. They will then be able to manage data stored on the
platform based on their rights. Some users will be able to read, write and extract
data while others may only be able to read the data. The project owner should be
able to import data to the system. When the resources allocated to the project is
no longer needed, the project owner can delete the whole project from the cloud.

4.2 Requirements

In this section, requirements for functionality, performance and requirements spe-
cified by NTNU will be listed and described.

4.2.1 Functional Requirements

FR1: A project owner should be able to add project members while requesting
to create a project
A project owner should be able to add members to a project on a graphical user
interface before the project is created. Members are added by writing the univer-
sity email of each member.

FR2: The project owner should specify themselves to the owner of the project
Before creating a project, the project owner should also write in their email or
another email if they is not the owner. This is done so an owner of the project is
specified when creating the project.

FR3: A project should be created by a click on a button
A project owner should be able to press a button on the graphical user interface
to create a project when all preferred members are added, making them project
members.

FR4: A project owner should be able to retrieve the IP address for virtual
workstations

Chapter 4: Requirement Specification 23

A few seconds after a project owner creates a project, the project owner should
be able to retrieve an IP address on the graphical user interface by clicking a but-
ton to connect to the virtual workstations. This is the address all project members
should use to connect to the virtual workstations.

FR5: Project members should be able to connect to virtual workstations
When a member are added to a project and the project is created, the member
should be able to use the retrieved IP address to access the project clients and log
in with their personal username and password, gaining privileges which were set
by the project owner in the graphical user interface.

FR6: Project members should be able to access data
When a project member has connected to a project clients, they should be able to
manage data from a file server represented as a network drive on the client. The
project member should then be able to execute actions on the shared data based
on their privileges granted by the project owner.

FR7: The system administrator should be able to review logs from the project
All actions performed in the project should be logged and presented to the system
administrator on a graphical interface, presenting the data in a statistic manner.
This logging solution could also be used by the it department of the university/-
company that use this service.

FR8: The project owner should be able to delete a project
When there is no longer need for the project, the project and all of its files will be
deleted. This is done by using the graphical user interface, specifying the name of
the project, and press a delete button.

FR9: The project owner should be able to add files to and download files
from the file server
To create a file share that project members can access through the window clients,
the project owner should be able to upload files to the file server. To this the need
to be authenticated as the owner of the project.

FR10: The system should support RDP session session persistence
If a project members disconnects from a session how they should be connected to
the same virtual workstation the next time they log on. That way they are able to
pick up their work from where they left off without losing any progress.

4.2.2 Non-functional Requirements

A number of the requirements below is gathered from NTNUs guidelines for access
control [11], because this bachelor project mainly is meant to be used by NTNU,

Chapter 4: Requirement Specification 24

and therefore needs to follow NTNUs requirements. The Norm for Information
security and Privacy in the Health and Care Sector [9] will also been referred to
since this system has to satisfy requirements for management of health data.

NFR1: Requirements for access to information and information systems
NTNUs guidelines for access control [11] specifies that resource domains should
be used for access control where access is granted based on the groups users be-
longs to. Microsoft Active Directory and LDAP are used for access control in re-
source domains. The system owner should define roles with specified access con-
trol and permissions to storage. There is also a requirements to logging activity
related to access and storage.

NFR2: The Health Norms requirements for user insight
The Norm for Information Security and Privacy in the Health and Care Sector
[9] specifies in Section 4.2.3 that any individual which has his health data stored
should have the possibility to get insight in his/hers own data.

NFR3: Access control for source code
The source code for the system should be available for personnel with correct per-
missions. Access and changes to source code must be logged. This is in accordance
to NTNUs guidelines for access control [11].

NFR4: The system should satisfy NTNUs requirements for the highest level
of confidentiality
If leaked information could result in remarkable damage for interests, NTNU, per-
sons or collaboration partners, the information should be classified as strictly con-
fidential [10]. Since information stored in this system could contain details about
peoples health, business secrets, etc, it is important that information in this system
should be treated as strictly confidential. Information should only be available for
users with strictly controlled permissions and that are required to have access to
the information.

NFR5: The system should satisfy NTNUs requirements for the highest level
of integrity
It is highly crucial that the data in the system always is authentic and correct.
Compromised data could result in wrong decisions, errors in treatments if the
data is related to health, or constructing errors if the data is related to building
plans. This are just a few of many examples. It is therefore crucial that the system
satisfy NTNUs classification of integrity for level 4 [10].

NFR6: The system should satisfy NTNUs requirements for the highest level
of availability
Since information stored on the system could be highly important, it is crucial
that it delivers extremely good availability. Very short down times could be cata-

Chapter 4: Requirement Specification 25

strophic since the system may contain time sensitive data. Therefore, the system
must satisfy NTNUs classification of availability for level 4 [10]. It is also crucial
that the system delivers good availability in form of quick responses in retrieval
of the clients IP address and creation of the project infrastructure. Because of this
high prioritisation, the infrastructure should be fixed immediately if a problem
occurs.

Chapter 5

Technical Design

In this chapter, the design and functionality of our platform will be explained. It
will also explain the system architecture and its sub-components.

5.1 System Architecture

Figure 5.1 illustrates the current system architecture of the platform for secure
data management. As shown the platform is hosted on SkyHiGh in its entirety,
and it is only available to users on NTNUs internal network.

Figure 5.1: Overview of technical design

26

Chapter 5: Technical Design 27

5.1.1 Network Design

SkyHiGh is hosted on NTNUs internal servers, as such any virtual networks cre-
ated in OpenStack are only available through NTNUs internal network. Our design
consists of two types of networks: administrator network and the project network.
There is only one administrator network, and it is responsible for hosting the or-
chestration API that creates and manages projects. Each project has its own project
network, that contains the domain controller, Windows clients and file server, for
project owners and project members to connect to.

Both the administrator network and the project networks are private 192.168.0.
0/24 networks that are completely separate from each other. In other words they
are only connected to the NTNU internal network through a virtual router and
not each other in any way. An alternate solution would be to have each project
network as a subnetwork of a larger network, or to have each project network be
connected to the admin network through via a router. However our solution of
completely separate identical networks offer several benefits as listed below.

Benefit 1: Security
Having networks that are completely separate from each other means that if an
attacker somehow gains access to one network, it offers them no advantages in
trying to compromise another network. As all network traffic between project or
admin networks would have to be routed through the NTNU internal network
anyway.

Benefit 2: Scalability
With each network using the same 192.168.0.0/24 address space, we could have
an infinite number of project networks each containing up to 250 clients without
running out of IP addresses. This theoretical infinite scalability would of course
in practice be limited by SkyHiGh’s resource constraints.

Benefit 3: Simplicity
When the project networks are totally logically and physically separate, it makes
creating managing and deleting projects considerably more simple. For example,
if each project network was just a subnetted part of a larger network, we would
need to keep track of the subnetworks that had already been allocated to a pro-
ject. When creating projects, the subnetwork that was being used would need to
be marked as "USED", and conversely when deleted it would need to be marked as
"FREE". This data would then need to somehow be persistently stored and checked
whenever a new project was created.

5.1.2 API

An important part of any interconnected system are APIs. An API is the medium
between the user and the system itself and handles all of the requests of the user

Chapter 5: Technical Design 28

and initiate the process of creating a project that the user can use. The API is
separated into two logical units: The API itself, which handles the requests, and
the orchestrator, which interact directly with OpenStack and the infrastructure.
These services are hosted in a docker-container running Ubuntu to simplify the
deployment process, accessible only with a floating IP.

5.2 Components

5.2.1 Virtual Workstations

When a project is created on the system, virtual workstations are created based on
the number of project members. A project member then use the Remote Desktop
Protocol to connect and log in to these virtual workstations with one IP address. All
workstations run the Windows 10 21H2 Enterprise (Evaluation) operating system.
All project members should have their private username and password, which
they use as login credentials for the virtual workstations. The virtual workstations
are then used to access data that are imported to the project storage through the
file server.

Access Control

Access to the workstations and permissions related to project data are all decided
by access control mechanisms. When creating a project, project members are spe-
cified through their NTNU mail address. The virtual workstations are then added
to NTNUs Active Directory tree, adding NTNU users with corresponding mail ad-
dresses to the virtual workstations. This means that only the specified NTNU users
are able to log in to the virtual workstations. In a filnal version of the platform, the
project owner would also has the opportunity to decide permissions for different
users on the virtual workstations by adding them to different groups with differ-
ent group policies. The permissions decide what the users are allowed to do with
the data uploaded to the project. There are groups for the following permissions:

• Read
• Read and write
• Read and extract
• Read, write and extract

5.2.2 Storage and File Server

The data and information each project wants to work on need to be stored on a
secure location and needs to be quickly accessible. When a project is created, a
Linux server and a storage volume is created inside the project network. The file
server is a Ubuntu Server 18.04 LTS (Bionic Beaver) i386 image from SkyHiGhs
selection of instances, and the storage volume is a block storage device that is
directly attached to the file server, giving it additional volumes of storage. The

Chapter 5: Technical Design 29

reason for choosing a Linux instance for our file server, is that we want the server
to be quickly accessible for the project administrator to upload their data. The
image chosen is of small size with a minimal amount of bloatware preinstalled,
which makes it faster to start up.

Samba

To allow the Windows clients to access the data stored on the file server, a Samba
share is created on the file server after it is generated. This Samba share will allow
computers located inside the network to connect to the file server to access the
data uploaded.

Other options for file sharing

When we explored what technologies to use for file sharing, the conclusion quickly
landed on using the Samba service. Since platform-users are planned to be stu-
dents from different faculties with varied knowledge and abilities to use the com-
mand line, we decided that software with a Graphical User Interface (GUI) was a
strong requirement. We found no other service that could provide the same level
of availability and speed with an easy to use graphical interface.

5.2.3 File Imports and Exports

Without a method to import and exports files to and from the file server, it is
useless. Any method used for this purpose needs to support two key features;
encryption while files are in transit, and authentication. It is for this reason we
chose to use SSH File Transfer Protocol (SFTP).

SFTP

SFTP is as the name suggests a file transfer protocol that leverages SSH. Like SSH
it supports public key authentication, where the public key of the person who
wishes to upload files to a server is placed on said server. Now if and only if a per-
son has the corresponding private key they are allowed to upload files the server.
In our design the public key is supplied by the project owner when creating the
project, and placed on the file server. Public key authentication works because it is
impossible to generate the private key from the public key. Therefore if someone
is able to decrypt data that has been encrypted using the public key, they prove
that they are the owner of the private key [56].

After the public key authentication has succeeded an encrypted channel is opened,
and data can be sent securely. SFTP is originally a command line program, but the
protocol has been integrated with some graphical programs like FileZilla. A bene-
fit of using FileZilla is that NTNU already has a guide on how to use SFTP with
FileZilla [57].

Chapter 5: Technical Design 30

While SFTP does support password authentication, it can be configured to only
work with public key authentication, as we will. This offers two major security
benefits; no insecure user passwords and no possibilities password leaks.

Users are notoriously bad at generation passwords. Short or simple passwords
as well as password reuse are common issues. By using public key authentication
weak passwords are entirely avoided. Instead a unique 2048 bit key that is im-
possible to brute force or guess is used.

When using password authentication they have to be transported and stored se-
curely to avoid password leaks. This can be very difficult to implement successfully
and it is generally a bad idea to make your own implementation of password man-
agement. Creating a solution where user generated passwords are used for sftp
authentication on the file server, while guaranteeing the confidentiality of said
password would be infeasible for us. Conversely when using public key authentic-
ation there is no need to protect the public key, as it can be shared freely without
concern of exposing the private key.

There are some disadvantages to using sftp, the main one being difficulty of use.
The public key has to be generated using a terminal. Although it only takes a
single command that can be copied and pasted, it might be an issue for many
users, especially because the primary user base for the platform is non IT studies.

5.2.4 Load balancing

The system offers virtual workstations for project members, the amount of work-
stations is based on the number of project members. This pool of workstations
can then be placed behind a load balancer, which is given a floating IP. In order
to connect to the virtual workstations, the floating IP address of an load balancer
is used. The file server is also placed behind the load balancer. The load balancer
will then redirect connections based on the protocol, if it is SFTP it will be redir-
ected to the file server, and if it is RDP it will be redirected to one of the virtual
workstations.

This solution results in one universal IP address for a project, that is used for both
RDP sessions to the workstations and for the SSH File Transfer Protocol (SFTP) for
the file server. This means that the load balancer IP address is the only information
the project owner and project members has to know, making use of the platform
simpler for the end users. It would also make a future integration with dns simpler.

Another benefit this solution provides is conservation of floating IP addresses.
Floating IPs are needed to connect to a SkyHiGh resource from the NTNU internal
network. The floating IPs in SkyHiGh are analogous to public IP addresses on the

Chapter 5: Technical Design 31

internet, however instead of being actual public IP addresses they are private IPs
on the NTNU internal network. As such they need to be used somewhat sparingly
in order to conserve the limited amount of IP addresses on NTNUs internal net-
work. The administrators of SkyHiGh therefore limit the amount of floating IPs
each OpenStack project is allotted, for our project we were limited to 50 floating
IPs. By using a load balancer that functions as a proxy for the file server and the
windows clients we do not need to give each client or file server their own float-
ing IP, this greatly reduces the amount of floating IPs we use. The logic of the load
balancing infrastructure is illustrated in Figure 5.2.

The technology used for the load balancing service is the OpenStack Heat Octavia
[26] load balancer. OpenStacks Octavia load balancer makes it possible to define
listeners that filter and redirect incoming traffic based on the packet’s metadata,
it also has features to support session persistence and client health checks. Using
OpenStacks own load balancer instead of integrating a generic load balancer like
HAProxy offers the benefit of not having to create a separate instance to host the
load balancer. This VM would be a single point of failure and it would be more
difficult to configure as we would have to inject configuration files at boot, com-
pared to the Octavia load balancer which can be configured entirely through HEAT
templates.

Figure 5.2: Load balancer logic

5.2.5 Logging Service

For a system like ours that is supposed to handle highly sensitive personal data
logging is extremely important to ensure accountability, and as a way to detect
security events. In a final version of this system logs produced should be pushed
to NTNUs centralized logging service. We were not given access to this logging
service and instead we implemented a rudimentary logging server using Grafana

Chapter 5: Technical Design 32

Loki. Due to time constraints, we were only able to implement logging of creation,
deletion, and collecting of IPs of the projects. In a final design, Windows event logs
and file access logs should definitely be included.

5.2.6 Active Directory

The entire system is supposed to be integrated with NTNUs Active Directory for
authentication and authorization, to give NTNU control over who gets to access to
the different projects and their data. Due to our limited access to NTNUs AD, we
had to create our own solution used for testing and as a POC. This is implemented
on each individual network for simplicity.

Chapter 6

Development Process

This chapter covers the teams developments process and approach for the sugges-
ted solution. First comes the description of the development model used. After that
comes the documentation of the project and the routines used when developing
the solution.

6.1 Development Model

At the start of the project, in January, when creating the GANTT chart seen in the
project plan in appendix A, the group tried to plan out the whole timespan of the
project. None of the groups members had taken on a project of this size before,
but the group was confident that the suggested time schedule would suffice for
the project scope. The proposed GANTT chart gave enough leeway if unexpected
issues arose throughout the semester that would use up our time. The group chose
to use the development model Kanban [58] when developing the different com-
partments of the solution. Kanban is a Agile development model but differ from
other agile models by the absence of clear iterations in the development process.
In kanban, work is distrubuted in a kanban board shown in Figure 6.1.

Figure 6.1: Kanban board [59].

33

Chapter 6: Development Process 34

The kanban board helps visualize the work that needs to be done, and maximizes
efficiency. The team uses Gitlabs [60] built in issue board to manage our tasks,
this gives us a clear overview over what we are working on, and what’s remaining.
It was decided to have a kanban board with four sections when developing the
solution:

• Open (tasks available for group members to take on)
• In progress (tasks being worked on)
• Peer review (tasks ready to be peer review by the other team members)
• Closed (tasks successfully peer review and finished)

6.2 Documentation

Report writing

The report is written using the open source document preparation tool LaTeX [61].
LaTeX is the recommended academic writing tool since it gives the user a great
deal of customization and control when writing a document.

Source code

The group uses NTNU Gjøvik’s Department of Computer Science (IDI) internal Git-
Lab server to upload and keep track of the source code for the solution. This made
it easy to keep track of version control when multiple group members worked on
the same file at the same time.

Status meetings

From early January, the group agreed with supervisor Kelly to have weekly meet-
ing with her to keep information flow and progress updates regular. This is bene-
ficial for the group and Kelly as she can give constructive feedback more regularly
and she stays up to date with the progress the group does. The group also wanted
to keep NTNU IT up to date and wanted the ability to discuss ideas and solutions.

Meeting references

As the weekly meetings with Kelly were our main meetings throughout the project
period, this is where most of our meeting references stem from. Ahead of our
meetings with Kelly, she requested that we prepared a short note with what we
had done since last meeting, what problems arose, and if we were still on track
with our Gantt chart from the project plan. As for meetings with Eigil, the topic
of these were more related to the functionality of the platform. All the feedback
from these meetings were well documented, and acted as great guidance when
working on out platform.

Chapter 6: Development Process 35

Time management

As for time management and logging, the group decided on Clockify [62] for
keeping track of what task each group member was working on, and how much
time was spent each day /week. Early on, in the project plan, the group concluded
that each group member should work approximately 30 hours each week, and
using Clockify made it easy to keep track of that.

6.3 Routines

From early on in the project, we agreed to follow certain routines both internally
within the group and also with Eigil and Kelly.

6.3.1 Tools

Communication

When communicating with other group members a Facebook Messenger [63] chat
was created. Digital meetings within the group was held using the free VOIP plat-
form Discord [64]. When having meetings with Kelly, the meetings were held on
the online collaborative platform [65], Teams was also used to communicate and
share files with both Eigil and Kelly.

Work management

As stated earlier in the report we used GitLab’s integrated Kanban board to keep
track of the tasks needed to be done.

Report

The report was written using the website Overleaf [66]. This website was chosen
because it allow for simultaneous collaboration for all group members, and NTNU
has an agreement with Overleaf that provides all students with premium features.

Chapter 7

Implementation

This chapter will cover the groups process of implementing and developing the
platform.

7.1 API

The API is handling all of the requests sent by the user. The API is the first point
of interaction between the user and the infrastructure, and initiating the process
of creating a project by retrieving and validating request parameters and sending
valid data to the orchestator.

7.1.1 Flask

The API is implemented in python and the Flask web framework. Flask makes it
easy to create endpoints which can be used by a user. To create a route, all we
need is to add the Flask.route method as a decorator, as seen in Code listing 7.1.

1 from flask import Flask
2
3 app = Flask(__name__)
4
5 @app.route("/") # Create route
6 def hello_world(): #Handle route
7 return "<p>Hello,␣World!</p>"

Code listing 7.1: Basic endpoint for Flask [1]

7.1.2 Handling Requests

By using the method as seen in Subsection 7.1.1 we could create the needed en-
dpoints seen in Code Listing 7.2.

1 @app.route('/api/new-project', methods = ['POST'])
2 def newProjectEndpoint():
3 requestData = request.get_json() # JSON data
4

36

Chapter 7: Implementation 37

5 if(requestData): ## Theres json in req. body
6 emailsOfUsers = requestData.get('users') ## Email of clients
7 ownerMail = requestData.get('owner')
8 #print(str(emailsOfUsers))
9 if(emailsOfUsers and ownerMail): # Make sure 'users' exists.

10 try:
11 return project.newProject(emailsOfUsers, ownerMail), Const.HTTPOK
12 except Error.OutOfRangeError as err:
13 return err.message, Const.HTTPBADREQUEST
14 except Error.InvalidEmailError as err:
15 return err.message, Const.HTTPBADREQUEST
16 except (TypeError, ValueError) as err:
17 print(err.args)
18 return "Malformed␣request", Const.HTTPBADREQUEST
19 except Error.ProjectCreateFailedError as err:
20 return err.message, Const.HTTPINTERNALERROR
21 except Exception as err:
22 return "Something␣went␣wrong␣:(", Const.HTTPINTERNALERROR
23
24 else:
25 return "Missing␣parameters", Const.HTTPBADREQUEST
26 else:
27 return "Missing␣body", Const.HTTPBADREQUEST

Code listing 7.2: The code handling the HTTP POST request for the /api/new-
project enpoint

This function handles all HTTP POST requests requests to the /api/new-project
path. The main purpose of this method is to make sure that the ’owner’ and ’users’
parameters are present, and handle any possible exceptions thrown because of
a request with wrong parameter types. The parameters are sent to the the new-
Project function. The name of the project along with a 200 HTTP OK is returned
to the user, indicating that everything went well. If there was an issue, the user
would be given an error message with a relating status code, like the 500 HTTP
Internal Error or the 400 HTTP Bad Request.

1 def newProject(userMails, ownerMail, publicKey):
2
3 for mail in userMails: # Validate all user emails
4 if not Util.validateEmail(mail):
5 raise Error.InvalidEmailError(mail)
6
7 if not Util.validateEmail(ownerMail): # Make sure that the owner email is

,→ valid
8 raise Error.InvalidEmailError(ownerMail)
9

10 owner = Util.getUserNameFromEmail(ownerMail) # Get username out of email
11 if not Util.validateUsername(owner):
12 raise Error.InvalidUsernameError(owner)
13
14 if not Util.validatePublicKey(publicKey): # Validate the public SSH key
15 raise Error.InvalidPublicKeylError()
16
17 orchestrator = Orchestrator()
18 name = orchestrator.createProject(userMails, owner, publicKey) # Create
19

Chapter 7: Implementation 38

20 if name: # Ok
21 comfirmProject.delay(name)
22 return name
23 else:
24 raise Error.ProjectCreateFailedError

Code listing 7.3: The logic initializing a new project

Code Listing 7.3 makes sure that the emails are validly formatted using regular
expression, including the owner of the project, and interacts with the orchestrator.
Resulting in the creation of the project network and the client workstations. The
function returns the name of the project, which again is returned to the user by
the API. This name is used at different endpoints, like retrieving the IP address
that users can connect to workstations, and to delete the project later.

1 @app.route('/api/project/<name>', methods = ['GET'])
2 def getIPEndpoint(name):
3 if (name): # Is present
4 try:
5 return project.getIP(name) , Const.HTTPOK # OK
6 except Error.ProjectNotFoundError as err:
7 return err.message, Const.HTTPNOTFOUND
8 except Exception as err:
9 return Const.HTTPINTERNALERROR

10
11 return Const.HTTPBADREQUEST

Code listing 7.4: The code handling the HTTP GET request for the
/api/project/<name> enpoint

Code Listing 7.4 handles all HTTP GET requests to the /api/project/<name> path.
This endpoint returns the floating IP for a given project to the user. This IP is then
later used to access the workstations.

1 @app.route('/api/project/<name>', methods = ['DELETE'])
2 def deleteProjectEndpoint(name):
3 if (name): # Present
4 try:
5 return project.deleteProject(name), Const.HTTPOK # Delete Ok
6 except Error.ProjectDeleteFailedError as err:
7 return err.message, Const.HTTPINTERNALERROR
8 except Exception as err:
9 return Const.HTTPINTERNALERROR

10
11 return Const.HTTPBADREQUEST

Code listing 7.5: The code handling the HTTP DELETE request for the
/api/project/<name> enpoint

Code Listing 7.5 handles all HTTP DELETE requests to the /api/project/<name>
path. This endpoint deletes a a project based on project name, when it is no longer
needed. The name is validated to see if the name actually exists. Authenticating
the DELETE-request is considered out of our scope.

Chapter 7: Implementation 39

1 def validateEmail(email):
2 #https://www.geeksforgeeks.org/check-if-email-address-valid-or-not-in-python/
3 regex = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
4 if(re.fullmatch(regex, email)): # Is valid email
5 return True
6 return False

Code listing 7.6: Function making sure all emails are validly formated

All input provided by a user has to be validated, with no exception. The reason
for this is that the user might misspell something, or the input could be malicious
in an attempt at attacking the service and its users. As seen in Code Listing 7.6
the email is validated using regular expression (regex) borrowed from the website
GeeksForGeeks, a popular website in the computer science field.

7.2 Orchestration Logic

The orchestration logic is written in python and communicates with the Open-
Stack API to create, delete and manage project stacks that are defined using HEAT
templates.

7.2.1 Orchestrator

The core of the orchestration logic is the Orchestrator class defined in orches-
trator.py file. At the creation of a orchestrator object the Orchestrator constructor
is automatically called. This constructor initializes the connection object from the
OpenStack python module. The connection object is an authenticated connection
to the OpenStack API. It is initialized in the constructor because it takes some
time and this way the same connection can be used multiple times, saving time
and computing resources. Code listing 7.7 shows the constructor of the orches-
trator class.

1 def __init__(self):
2 # Initialize and turn on debug logging if wanted
3 openstack.enable_logging(debug=False)
4 # Initialize connection
5 self.conn = openstack.connect()

Code listing 7.7: Orchestrator constructor method

Once the connection object has been initialized it is possible to make OpenStack
API calls by calling its methods. This is illustrate in Code Listing 7.8, here the
method gets the IP address of the load balancer for a given project, which can
then be used to connect to all the virtual workstations. It takes the project name
or id and as a parameter and returns the IP address if the project exists. Notice
that the resolve output parameter is True because the load balancer IP address is
defined as an output in the HEAT template.

Chapter 7: Implementation 40

1 # returns None if something goes wrong in the query or if the stack does not exist
2 # Else the IP is returned
3 def getLBIP(self, nameOrID):
4 try:
5 stack = self.conn.get_stack(nameOrID, resolve_outputs=True)
6 except:
7 logger.exception("Api␣call␣on␣get_LBIP␣for␣raised␣an␣exeption", extra={"

,→ tags": {"project": nameOrID}})
8 return None
9

10 if stack:
11 logger.info("Loadbalancer␣IP␣{}␣was␣collected".format(stack.outputs[0]["

,→ output_value"]), extra={"tags": {"project": nameOrID}})
12 return (stack.outputs[0]["output_value"])
13 else:
14 logger.error("Attempted␣to␣get␣ip␣of␣loadbalancer␣that␣does␣not␣exist",

,→ extra={"tags": {"project": nameOrID}})
15 return None

Code listing 7.8: Method for getting the IP address of a project load balancer

The two methods responsible for creating and deleting projects are createProject()
and deleteProject(). As shown in Code Listing 7.9 below, createProject() creates a
random name for the project and calls the create_stack() method on the connection
object. It passes the name of the HEAT file the stack is based on (project.yaml),
the project name, the number of windows clients, the project owner, the project
owner’s public key, and a Powershell script RDPMembers that allows supplied pro-
ject members to RDP into the clients. All these variables are defined as these are
defined as parameters in the HEAT file, and their values are what makes one pro-
ject different from another.

If the stack create OpenStack API call succeeds it returns the name of the newly
created project. Similarly the projectDelete() method takes the name of the project
that is to be deleted and passes it on to the delete_stack() method of the connection
object. If the OpenStack API call succeeds True is returned if not False is returned.

1 def createProject(self, members, owner, publicKey):
2 name = self.createRandomName()
3
4 # ensures client count is positive
5 # stops user from making more than 15 clients
6 clientCount = len(members)
7 if clientCount > 15:
8 clientCount = 15
9

10 RDPMembers = self.allowRDP(members)
11
12 try:
13 self.conn.create_stack(name, template_file='orchestrationLogic/HEAT/project

,→ .yaml', rollback = False, project_name = name, key_name = 'mankey',
,→ windows_count = clientCount, project_owner = owner, public_key =
,→ publicKey, RDP_members = RDPMembers, tags = owner)

14 except:

Chapter 7: Implementation 41

15 logger.exception("Stack␣create␣API␣call␣failed", extra={"tags": {"owner":
,→ owner}})

16 return None
17
18 logger.info("Project␣create␣api␣call␣succeeded" , extra={"tags": {"owner":

,→ owner, "project": name}})
19 return name
20
21 def deleteProject(self, nameOrID):
22 try:
23 result = self.conn.delete_stack(nameOrID)
24 except:
25 logger.exception("Stack␣delete␣API␣call␣failed.", extra={"tags": {"project"

,→ : nameOrID}})
26 return False
27 if result:
28 logger.info("Project␣delete␣api␣call␣succeeded", extra={"tags": {"project":

,→ nameOrID}})
29 return True
30 else:
31 logger.error("Attempted␣to␣delete␣project␣that␣does␣not␣exist", extra={"

,→ tags": {"project": nameOrID}})
32 return False

Code listing 7.9: Create and delete project methods of orchestrator

7.2.2 Background Tasks

Even if create_stack() succeeds it does not necessarily mean that the project in-
frastructure will be created, equally if delete_stack() succeeds the project infra-
structure is not guaranteed to actually be deleted. It simply means that the stack
has entered a status of CREATE_IN_PROGRESS or DELETE_IN_PROGRESS, in other
words it has been scheduled for creation or deletion but the task has not actually
completed. However it may take several minutes before the create or delete actu-
ally completes and they may never complete, due to several possible reasons like
running out of resources in OpenStack or internal errors.

This is an issue because the project owner who ordered the project needs to be
given a response within 30 seconds, as that is the HTTP timeout limit, and the
project owner should obviously be given a response way before that for a good
user experience. However we can not simply trust that a project create or delete
completes. Because if a create fails the parts of the project infrastructure that were
successfully created need to be deleted, and if a delete fails the incident needs to
be logged so that an admin can step in. Hence the need for background tasks, we
implemented background tasks using celery which allows us to ensure the cre-
ation and deletion of projects and log any errors. An overview of what tasks are
run in the foreground and background can be seen in Figure 7.1.

Chapter 7: Implementation 42

Figure 7.1: Graphic describing the orchestration logic

Celery needs to be imported and configured at the root of the Python project. Cel-
ery background tasks can then be defined using the @celery.task Python decorator,
as demonstrated in Code Listing 7.10, they can then be called using the .delay
method. The minimal requirements for Celery to work is to have a task queue
database and a Celery worker. The Python application will add Celery tasks to the
task queue and the worker will fetch the tasks and run them. More information
on how we configured Celery, the task queue database, and the Celery worker will
be given in Section 7.5.

1 @celery.task
2 def comfirmProject(nameOrID):
3 orchestrator = Orchestrator()
4 orchestrator.ensureProjectCreation(nameOrID)
5 @celery.task
6
7 def comfirmDeletion(nameOrID):
8 orchestrator = Orchestrator()
9 return orchestrator.ensureProjectDeletion(nameOrID)

Chapter 7: Implementation 43

Code listing 7.10: Defining Celery task

7.2.3 Logging

Every action done by the Orchestrator is logged. As mentioned previously, a final
version of our platform would be connected to NTNUs centralized logging server.
We were not given access to this server and we therefore implemented our own
simple logging server using Grafana Loki. Grafana Loki are actually two separ-
ate servers; Loki that collects data from log sources and Grafana that filters and
displays that data. In practice they function as a single server and they will be
referred to as if they were from now on, for simplicity’s sake. We did not bother to
secure our logging server by using communication over SSL and proper authen-
tication, as the server would not be used in a final product, its primary purpose
for us is debugging and as a proof of concept. The Grafana Loki logging server has
two exposed ports 3100 and 3000. The former is used to push logs to the server,
the latter is used to filter and view logs through a web GUI. More details about
the logging server will be given in Section 7.5.

Python does not support Grafana Loki out of the box, so the module logging_loki
has to be imported. A custom log handler and a logger object can then be created.
We decided implement our custom logging as a python module, meaning that
we created a file customLogger/__init__.py. The customLogger module can then be
imported anywhere and the logger object can be used to push logs to our logging
server. Grafana loki supports a lot of useful features like tags and log levels, mak-
ing it easy to filter and analyze logs. We always sent the project name as a tag so
we could easily see exactly what happened to a project and when it happened.

Figure 7.2 show the Grafana Loki web interface. As shown it is simple to filter
for a specific project, in this case united_rook. Following the log messages we can
read that the initial project create API call succeeded, and the loadbalancer’s IP
address was collected soon after. However the create eventually failed due to our
OpenStack enviroment running out of memory. The project was then automatic-
ally scheduled for deletion and the log ends with the project being confirmed as
successfully deleted.

Chapter 7: Implementation 44

Figure 7.2: Screenshot from Grafana Loki

7.3 Heat Templates

The heat templates are descriptive YAML [67] files that orchestrates and builds
different components that together makes up a stack. For us, one stack and its
components make up one projects infrastructure. We have implemented our heat
templates in such a way that they entirely are responsible for the configuration of
the project infrastructure, requiring no manual intervention by administrators, or
post boot configuration.

A heat template file is separated into three main sections:
Parameters: Variables passed to the heat file which can be to customize the stack
created.
Resources: The objects created by heat as a part of the stack.
Outputs: Values that are passed by heat after creating the stack.

Chapter 7: Implementation 45

project.yaml
(Main)

base.yaml
(Network)

lb.yaml
(Load

Balancer)

filevolume.yaml
(File Volume)

fileserver.yaml
(File Server)

rdp_lb_member.yaml
(Windows Client)

Figure 7.3: Graphic of our heat file layout

We chose to build a nested layout for our heat templates. A nested layout will
allow for a more modular composition and the different components can more
easily be modified and possibly replaced if needed in future versions. In Figure
7.3 we have illustrated the hierarchical heat file-structure that we chose to use.
As we can see in the figure above, the project.yaml file is the main component of
the structure, which then calls on other yaml files to create different components
of the stack. Code Listing 7.11 contains parts of the resource definition in the pro-
ject.yaml file. Here we can see an example of the hierarchical structure, as seen on
line 7, when creating the resource load_balancer. In the field type: we specified
that the file lb.yaml should be used to create the new resource. The values under
properties: are parsed as the new parameters for the newly created resource group.

1 resources:
2 base:
3 type: base.yaml
4 properties:
5 project_name: { get_param: project_name }
6
7 load_balancer:
8 type: lb.yaml
9 properties:

10 project_name: { get_param: project_name }
11 heat_network_subnet: { get_attr: [base, resource.heat_network_subnet] }
12
13 clients:
14 type: OS::Heat::ResourceGroup
15 properties:

Chapter 7: Implementation 46

16 count: { get_param: windows_count }
17 resource_def:
18 type: rdp_lb_member.yaml
19 properties:
20 server_name:
21 list_join: ['-', [{ get_param: project_name }, 'win%index%']]
22 lb_pool_name: { get_attr: [load_balancer, resource.rdp_pool] }
23 network_name: { get_attr: [base, resource.heat_network] }
24 subnet_name: { get_attr: [base, resource.heat_network_subnet] }
25 key_name: { get_param: key_name }
26 volume_id: { get_attr: [filevolume, resource.volume]}
27 ...

Code listing 7.11: Part of resource definition of project.yaml

7.3.1 Base

Every project network has the same base network topology. This network consist
of a private network with a subnet resource assosiated with it. As seen in Code List-
ing 7.12 the resources heat_network, heat_network_subnet, heat_router and
router_interface gets created. All project networks have a network address of
192.168.0.0/24 giving place for over 250 possible devices to connect to. As seen
on line 17 the allocation pool for assigning of IP addresses go from 192.168.0.4
to 192.168.0.254. This is because we have reserved the three first IP addresses for
specific devices. The first address is for the default gateway of each network, as
seen on line 14 of Code Listing 7.12 on page 46. The second address reserved is
for the projects file server, as seen in Code Listing 7.15 on page 50, and the third
address reserved is for the domain controller, as seen in Code Listing 7.19 on page
57.
Furthermore the resources heat_router and router_interface is created. The router
is the default gateway for the network and the router interface links each isolated
network to NTNUs internal network.

1 ...
2 resources:
3 heat_network:
4 type: OS::Neutron::Net
5 properties:
6 admin_state_up: true
7 name:
8 list_join: ['_', [{ get_param: project_name }, 'NET']]
9

10 heat_network_subnet:
11 type: "OS::Neutron::Subnet"
12 properties:
13 cidr: 192.168.0.0/24
14 gateway_ip: "192.168.0.1"
15 ip_version: 4
16 network: { get_resource: heat_network }
17 allocation_pools: [{"start": "192.168.0.4", "end": "192.168.0.254"}]
18
19 heat_router:

Chapter 7: Implementation 47

20 type: OS::Neutron::Router
21 properties:
22 admin_state_up: True
23 name:
24 list_join: ['_', [{ get_param: project_name }, 'Router']]
25 external_gateway_info: { network: ntnu-internal}
26
27 router_interface:
28 type: OS::Neutron::RouterInterface
29 properties:
30 router_id: { get_resource: heat_router }
31 subnet: { get_resource: heat_network_subnet }

Code listing 7.12: Code snippet from base.yaml

7.3.2 Load balancing RDP sessions

We automated the load balancing infrastructure in a Heat Orchestration Template.
The OpenStack resource Octavia [26] was used to create the load balancing in-
frastructure, as well as OpenStack Neutron [21] for creating and associate the
floating IP-Address for the load balancer. In order to make the load balancing in-
frastructure, the following resources had to be added in the Heat Template.

• Octavia::LoadBalancer: This is the load balancer itself where it is associ-
ated with the project subnet.
• Octavia::Listener: Two different listeners were created for RDP and SFTP

where both are associated to the load balancer created above. The job of
the listener is to listen to traffic of a specific protocol and a specific port.
The listener for RDP was set to listen to the Transmission Control Protocol
(TCP) and port 3389 which is a TCP and User Datagram Protocol (UDP)
port used for the RDP service.
The listener for SFTP was set to listen to TCP and port 22 which is a TCP
and UDP port which in this circumstance is used for safe file transfer.
• Octavia::Pool: A load balancer pool is a collection of instances (server re-

sources) which are gathered in one common group [68]. One pool are cre-
ated for RDP and one pool are created for SFTP. The pools are then associ-
ated with the listener for their respective use. The algorithm the load balan-
cer should use to distribute resources to users are set to be round robin [69]
and the protocol the resources should operate on is set to be TCP. The prop-
erty called session persistence is set to be of the type SOURCE IP. This means
that when a user previously has connected to a resource, he/she should be
assigned the same machine the next time he/she connects to the resource
based on the IP-address of the device he/she used to connect to the resource.
• Octavia::PoolMember: Each pool has a set of pool members. For each re-

source to be load balanced, the PoolMember resource is used to assign a
resource to a pool. It is then required to use the IP-address of the resource
to be balanced, and specify which port a connection should be established
on.

Chapter 7: Implementation 48

• Octavia::HealthMonitor: A health monitor is used to determine the health
of the load balancer pool members [70]. It is configured to determine how
much delay an instace is allowed, how many retries it is allowed and when
to time out.
• Neutron::FloatingIP: This is the public IP-address that should be used to

connect to the load balancer. This IP-address can be reached by the network
specified.
• Neutron::FloatingIPAssociation: The IP association is used to associate the

floating IP-address to the load balancer.

Below is the code that creates the load balancer for a project. Note that the win-
dows clients are not associated in this file. The logic for the pool of windows clients
will be described below Code Listing 7.13.

1 heat_template_version: 2018-08-31
2
3 parameters:
4 project_name:
5 type: string
6 description: Navn på prosjektet
7 default: Prosjekt_X
8
9 heat_network_subnet:

10 type: string
11
12 resources:
13 rdp_balancer:
14 type: OS::Octavia::LoadBalancer
15 properties:
16 name:
17 list_join: ['-', [{ get_param: project_name }, 'RDP_LB']]
18 vip_subnet: { get_param: heat_network_subnet }
19
20 rdp_listener:
21 type: OS::Octavia::Listener
22 properties:
23 loadbalancer: { get_resource: rdp_balancer }
24 protocol: TCP
25 protocol_port: 3389
26
27 sftp_listener:
28 type: OS::Octavia::Listener
29 properties:
30 loadbalancer: { get_resource: rdp_balancer }
31 protocol: TCP
32 protocol_port: 22
33
34 rdp_pool:
35 type: OS::Octavia::Pool
36 properties:
37 lb_algorithm: ROUND_ROBIN
38 protocol: TCP
39 listener: { get_resource: rdp_listener }
40 session_persistence: { "type": SOURCE_IP }
41

Chapter 7: Implementation 49

42 sftp_poolmember:
43 type: OS::Octavia::PoolMember
44 properties:
45 address: "192.168.0.2"
46 protocol_port: 22
47 subnet: {get_param: heat_network_subnet}
48 pool: {get_resource: sftp_pool}
49
50 sftp_pool:
51 type: OS::Octavia::Pool
52 properties:
53 lb_algorithm: ROUND_ROBIN
54 protocol: TCP
55 listener: { get_resource: sftp_listener }
56 session_persistence: { "type": SOURCE_IP }
57
58 health_monitor:
59 type: OS::Octavia::HealthMonitor
60 properties:
61 delay: 5
62 max_retries: 4
63 timeout: 10
64 type: TCP
65 pool: { get_resource: rdp_pool }
66
67 lb_floating:
68 type: OS::Neutron::FloatingIP
69 properties:
70 floating_network: ntnu-internal
71
72 lb_floating_association:
73 type: OS::Neutron::FloatingIPAssociation
74 properties:
75 floatingip_id: { get_resource: lb_floating }
76 port_id: { get_attr: [rdp_balancer, vip_port_id] }

Code listing 7.13: The contents of the file lb.yaml

The number of windows clients for a project is decided based on the amount of
project members. In order to make the load balancing pools dynamic, the windows
clients and the pool members resource for the clients are declared in a separate
file, rdp_lb_member.yaml. In this file, the windows clients are declared with all
required configuration, and also associated as a pool member for the RDP pool.

1 resources:
2 server:
3 type: OS::Nova::Server
4 properties:
5 name: { get_param: server_name }
6 flavor: m1.small
7 image: "Windows␣10␣21H2␣Enterprise␣[Evaluation]"
8 key_name: { get_param: key_name }
9 networks:

10 - network: {get_param: network_name}
11 user_data_format: RAW
12 user_data:
13 str_replace:

Chapter 7: Implementation 50

14 template:
15 get_file: bootup.ps1
16 params:
17 <RDPMembers>: {get_param: RDP_members}
18
19 poolmember:
20 type: OS::Octavia::PoolMember
21 properties:
22 address: { get_attr: [server, first_address] }
23 pool: { get_param: lb_pool_name }
24 protocol_port: 3389
25 subnet: {get_param: subnet_name}

Code listing 7.14: Parts of the resources in the file rdp_lb_member.yaml

Creating the windows clients pool members from the file above is done in the file
project.yaml. This is done by using the OpenStack Heat resource, ResourceGroup
where the clients with pool member are created a number of times based on the
parameter count. This can be seen in Code Listing 7.11.

7.3.3 File server

The file server is hosting all the data that the project administrator uploads for
students to work on. In order to allow file sharing, certain packages need to be
installed, and the Samba configuration needs to be set up correctly.

Base configuration for the file server

As stated in Section 5.2.2, the file server image is that of a Ubuntu server with
minimal components preloaded to it. On boot up of the Linux instance, the re-
source type OS::Heat::CloudConfig and OS::Heat::SoftwareConfig gets created. The
CloudConfig resource represents cloud-init cloud configuration. Cloud-init is a ser-
vice for customizing Linux-based operating systems [71]. With cloud-init we get
complete freedom to customize our file server to our needs. The SoftwareConfig
resource is a more general resource for storing software configuration for a wider
range of operating systems.

As seen in Code Listing 7.15 on line 7 we specified that the package for samba
should be installed on creation. From line 24 to 28 we create a new disk partition
in path /dev/vdb. The reason for creating this disk partition is that we now can
manage the separated partition as we please. Further we specify on line 29 that
we want to create a file system in the newly created disk partition. With this sec-
tion we specify the type of file system we want to exist on the partition.

1 resources:
2 cloudconf_samba:
3 type: OS::Heat::CloudConfig
4 properties:
5 cloud_config:
6 packages:

Chapter 7: Implementation 51

7 - 'samba'
8 write_files:
9 - path: /etc/samba/smb.conf

10 content: |
11 [global]
12 workgroup = WORKGROUP
13 server string = Samba Filserver
14 security = user
15 map to guest = bad user
16
17 [share]
18 comment = Samba share
19 path = /opt/data/shared
20 read only = no
21 guest ok = yes
22 guest only = yes
23 create mask = 777
24 disk_setup:
25 /dev/vdb:
26 table_type: gpt
27 layout: true
28 overwrite: false
29 fs_setup:
30 - filesystem: "ext4"
31 label: "datapartition"
32 device: "/dev/vdb"
33 partition: "auto"
34
35 script_filserver:
36 type: OS::Heat::SoftwareConfig
37 properties:
38 group: ungrouped
39 config:
40 str_replace:
41 template:
42 get_file: fileserver.sh
43 params:
44 <owner>: {get_param: project_owner}
45 <publicKey>: {get_param: public_key}
46
47 cloudconf_fileserver:
48 type: OS::Heat::MultipartMime
49 properties:
50 parts:
51 - config: { get_resource: cloudconf_samba }
52 - config: { get_resource: script_filserver }
53
54 heat_filserver:
55 type: OS::Nova::Server
56 properties:
57 key_name: { get_param: key_name }
58 name:
59 list_join: ["-", [{ get_param: project_name }, "heat_filserver"]]
60 flavor: { get_param: flavor }
61 image: { get_param: image }
62 networks:
63 - port: { get_resource: heat_port }
64 user_data_format: RAW
65 user_data: { get_resource: cloudconf_fileserver}
66 heat_port:

Chapter 7: Implementation 52

67 type: OS::Neutron::Port
68 properties:
69 network: {get_param: heat_network}
70 fixed_ips:
71 - ip_address: "192.168.0.2"
72 ...

Code listing 7.15: Cloud config snippet from fileserver.yaml

The resource script_filserver on line 35 is a bash script which contains more con-
figuration of the file server. A snippet of the contents of the bash file can be found
in Code Listing 7.16. The first command of the code listing appends the string
"/dev/vdb1 /opt/data ext4 defaults,comment=cloudconfig 0 0" to the /etc/fstab file
on the file server. The function of the /etc/fstab file is to keep track of all disk
partitions that are not based on physical disks. With the newly added line in the
fstab file, the server has now mounted the new disk partition created earlier to the
local path of /opt/data. In the lines following, the directory /opt/data and /op-
t/data/shared is created and the "mount /dev/vdb1 /opt/data command connects
the new mount to file tree-structure of the server.

1 #!/bin/bash
2 ...
3 echo "/dev/vdb1␣/opt/data␣␣␣␣␣␣␣ext4␣␣␣␣defaults,comment=cloudconfig␣␣␣␣0␣␣␣␣␣␣␣0"

,→ >> /etc/fstab
4 mkdir /opt/data
5 mount /dev/vdb1 /opt/data
6 mkdir /opt/data/shared
7 ...

Code listing 7.16: Bash script snippet from fileserver.sh

The complete content of both fileserver.yaml and fileserver.sh can be found in the
appendix.

Samba configuration

As stated in Section 2.1.5, the configuration file of the Samba service is located in
the /etc/samba/smb.conf file. The standard configuration file for Samba is quite
long, spanning over 260 lines. For our area of use we can create our own config-
uration file without all of the unnecessary data. As seen in Code Listing 7.15 from
line 11 to 23 this is the new content of the configuration file. In the indented part
after the [global] section we declare global settings to Samba. Line 12 specifies
the windows workgroup that the file server will join. The server string variable on
the next line specifies the Samba service name that will show up on file explorer
on the Windows clients. The line security= user is one of the most important lines
in the configuration file. With user as the value the clients are expected to log-in
with a username and password. This, in combination with the line map to guest
= bad user will make user who log in with the wrong password log in as a guest
user.

Chapter 7: Implementation 53

On line 17 the new share is defined, this is where project related data will be
uploaded by the project administrator. The next line gives a short description of
what the share is being used for. The line path = /opt/data/shared is the path on
the file server the share will point to when clients try to connect to the Samba
share. The read only = no line determines that users are allowed to not only read,
but also write to the files inside the share. This is essential for allowing students
to manage the data as they wish. On the next line, the guest ok = yes allows guest
users to log on to the share without a password. This option is enabled since we
were not allowed to integrate our platform with the NTNU AD, and as this is
only a proof of concept, user authentication inside the Samba share is outside the
scope. The next command; guest only = yes allows only guest connections to be
established and this, in combination line 14 in the global section will force the
use of guest users. All configuration of the Samba configuration file are inspired
by Ubuntu’s website on Samba configuration [72] and Sambas own manual page
[73]. The line create mask = 777 gives any user the ability to read, write and
execute file that are located in the directory /opt/data/shared.

SFTP

SFTP is our chosen method for importing and exporting files to and from the file
server. Public key authentication is used, meaning that for SFTP to work a user on
the file server needs to be created, and the project owners public key needs to be
associated with that user. As the name suggest SFTP is closely related to SSH. A
user who can SFTP to a server can normally also SSH into it as well. For security
reasons only want give project owners SFTP access while disallowing them from
actually getting a shell. We also want to limit them to only accessing files inside
/opt/data.

Code Listing 7.17 is an excerpt from the file server boot script that securely con-
figures SFTP. The main actions taken by part of the scrip is:

• Create a user for the project owner with the name they provided.
• Inject the project owner’s public key into .ssh/authorized_keys, thereby al-

lowing them to authenticate using their private key.
• Create a two groups allowssh and sftponly.
• Using the sshd_config file:

◦ Only allow public key authentcation for member of allowssh.
◦ Change the root directory to /opt/data for members of sftponly. Mean-

ing they cant access any file outside that directory.
◦ Disable all forwarding for members sftponly.
◦ Allow only internal SFTP for members sftponly.

• Add the admin user ubuntu to allowssh.
• Add the project owner user to allowssh and sftponly, thereby limiting access.

Chapter 7: Implementation 54

1 # Everything below is based on the great top answer for this stack exchange
,→ question

2 # https://unix.stackexchange.com/questions/503312/is-it-possible-to-grant-users-
,→ sftp-access-without-shell-access-if-yes-how-is-i

3 # adds two groups one fro users who are allowed to ssh (ubuntu) and one
4 # for user who are only allowed to sftp
5 addgroup --system allowssh
6 addgroup --system sftponly
7
8 # creates a user with no no password
9 adduser --disabled-password --gecos "" --home /home/project_owner <owner>

10
11 mkdir /home/project_owner/.ssh/
12 touch /home/project_owner/.ssh/authorized_keys
13 echo '<publicKey>' > /home/project_owner/.ssh/authorized_keys
14
15 chown <owner>:allowssh /opt/data/shared
16 chmod 775 /opt/data/shared
17
18 adduser <owner> allowssh
19 adduser <owner> sftponly
20 adduser ubuntu allowssh
21
22 echo 'PermitRootLogin␣no
23 PubkeyAuthentication␣no
24 PasswordAuthentication␣no
25 ChallengeResponseAuthentication␣no
26 UsePAM␣yes
27 X11Forwarding␣yes
28 PrintMotd␣no
29 AcceptEnv␣LANG␣LC_*
30 Subsystem␣␣␣sftp␣␣␣␣/usr/lib/openssh/sftp-server
31
32 #␣all␣users␣need␣to␣be␣in␣this␣group␣to␣ssh␣or␣sftp
33 #␣only␣pubic␣key␣authentication␣is␣allowed
34 Match␣Group␣allowssh
35 ␣␣␣␣PubkeyAuthentication␣yes
36
37 #␣users␣who␣are␣only␣allowed␣to␣ssh␣is␣added␣to␣this␣group␣aswel
38 #␣Croot␣keeps␣them␣form␣accessing␣anything␣outside␣/opt/data
39 #␣disables␣forwarding␣and␣only␣allows␣sftp
40 Match␣Group␣sftponly
41 ␣␣␣␣ChrootDirectory␣/opt/data
42 ␣␣␣␣DisableForwarding␣yes
43 ␣␣␣␣ForceCommand␣internal-sftp' > /etc/ssh/sshd_config
44
45
46 # restart ssh to apply changes
47 sudo systemctl restart ssh.service

Code listing 7.17: Bash script snippet from fileserver.sh

Figure 7.4 shows how SFTP is used to upload files to the file server. As shown
you authenticate using the project owner’s username (mariurae) and private key
(id_rsa). Also notice how SSH is not allowed for the project owner.

Chapter 7: Implementation 55

Figure 7.4: Example showing use of SFTP as configured on the file server

7.3.4 Windows Clients

The creation of the windows clients are done in the file rdp_lb_member.yaml file,
where the operating system, specifications, name, security key, network and bootup
script are specified. This can be seen in Code Listing 7.14. The script that runs on
the windows clients can be seen below in Code Listing 7.18. This Powershell script
does the following;

• Allows the virtual workstation to connect to the file server by editing Re-
gistry keys
• Sets the virtual workstation to use the domain controller as the DNS server
• Creates a credential object for joining the domain
• Tries to join the domain (It tries up to 25 times for robustness)
• The items above only happens the first time the instance is booted.
• The second time the machine is booted, it tries to add members to the do-

main (It tries up to 10 times)

<RDPMembers> is a script that adds members to the domain which is generated
in orchestrator.py based on the list of project members sent through the API.

1 #ps1_sysnative
2 echo custom-script
3 if(!(Test-Path -Path "C:\flag.txt")) {
4 New-Item -Path "C:\flag.txt"
5 echo "if"
6
7 New-ItemProperty -Path "REGISTRY::HKLM\SYSTEM\CurrentControlSet\Services\

,→ LanmanWorkstation\Parameters" -Name AllowInsecureGuestAuth -
,→ PropertyType "DWORD"

8 Set-ItemProperty -path "REGISTRY::HKLM\SYSTEM\CurrentControlSet\Services\
,→ LanmanWorkstation\Parameters" -Name "AllowInsecureGuestAuth" -value "1"

9
10 Set-DNSClientServerAddress -InterfaceIndex (Get-NetAdapter).InterfaceIndex -

,→ ServerAddresses 192.168.0.3
11
12 $dc = "rose.local"
13 $pw = ConvertTo-SecureString "Rosetest1" -AsPlainText -Force
14 $usr = "$dc\Administrator"

Chapter 7: Implementation 56

15 $creds = New-Object System.Management.Automation.PSCredential($usr,$pw)
16
17 $joined = $true
18 $i = 0;
19 do {
20 try {
21 Add-Computer -DomainName $dc -Credential $creds -ErrorAction Stop
22 echo "`n`n␣DOMAIN␣JOIN␣SUCCEEDED`n`n"
23 exit 1003
24
25 } catch {
26 $joined = $false
27 $i = $i + 1
28 echo "`n`n␣DOMAIN␣JOIN␣FAILED␣RETRYING␣IN␣1␣MINUTE␣`n`n"
29 Start-Sleep -s 60
30 }
31 } while ((-Not $joined) -And ($i -lt 25))
32
33 }else {
34 $added = $true
35 $i = 0
36 do {
37 try{
38 <RDPMembers> # Adds users to the rdp member group
39 } catch{
40 $added = $false
41 $i = $i+1
42 }
43
44 } while($i -lt 10)
45 }

Code listing 7.18: Bootup script for the virtual clients

Mounting Samba Drive on Virtual Workstations

After joining the AD domain, virtual workstation need to connect the Samba share
created in Section 7.3.3 to a file path on their system. This proved to be quite the
challenge since we had to create a new domain controller for each project net-
work. If we had access to NTNUs AD we could easily create only one group policy
where every time a user connects with RDP, the network drive gets connected
[74]. With a domain controller in every network this gets more complicated as it
is not possible to create the GPO automatically with PowerShell, and if the process
can not be automated upon creation it can not be used for our platform.

7.4 Domain Controller

Because of our limited access to NTNUs Domain Controller, we had to implement
our own version. We did this mainly for a working Proof of concept (POC) as a
demonstration, as interacting with the Domain Controller (DC) is an important
part. To do this we had to implement a Domain Controller running AD DS, as well
as a DNS server, which is needed. One set of these servers are running in each

Chapter 7: Implementation 57

network as a stand-in for the NTNU Domain Controller created from the HEAT
template seen in Figure 7.19.

The Domain Controller is an essential element in the system, mainly for its role
in authentication. Our POC contain a couple of domain users, which are used as
test users. After the workstation has been added to the domain, the domain user
is added to a local Remote Desktop Protocol group. This allows for RDP to the
workstation while authenticated as a domain user, hardening the confidentiality
of the sensitive data.

The time between the creation of the domain controller and when the domain
controller is ready was an issue. Creating an instance of the workstation is relat-
ively quick, however the workstation is dependant on the domain controller. This
is solved with a while-loop in the workstation startup script.

1 ...
2 resources:
3 dc:
4 type: OS::Nova::Server
5 properties:
6 name:
7 list_join: ["-", [{ get_param: project_name }, "domain_controller"]]
8 image: Windows Server 2022 Standard [Licensed]
9 flavor: m1.medium

10 key_name: mankey
11 networks:
12 - port: { get_resource: dc_private_port }
13 user_data: {get_file: dc-init.ps1}
14 dc_private_port:
15 type: OS::Neutron::Port
16 properties:
17 network: {get_param: network_name}
18 fixed_ips:
19 - ip_address: "192.168.0.3"

Code listing 7.19: The yaml file creating the domain controller instance used as
a POC

The initialization script itself is separated to its own file as seen in 7.20. This script
is ran on boot. The first time running it creates a file used as a logical flag and
installs AD DS and DNS. It is then rebooted as is recommended [75]. The domain
is created next. After yet another reboot, the test users are created. For each of
these steps a file is created and checked. These files are used as flags for progress
tracking purposes, as these steps has to be done in a certain order.

1 #ps1_sysnative
2 New-Item -Path "C:\test.txt"
3
4 echo "kjort" >> C:\test.txt
5
6 if(!(Test-Path -Path "C:\flag1.txt")) {
7 echo "if"
8 New-Item -Path "C:\flag1.txt"

Chapter 7: Implementation 58

9 # Use self as DNS
10 Set-DNSClientServerAddress -InterfaceIndex (Get-NetAdapter).InterfaceIndex -

,→ ServerAddresses 127.0.0.1
11 #Install ADDS
12 Install-WindowsFeature -Name AD-Domain-Services -IncludeManagementTools
13 # Set Administrator password
14 net user Administrator Rosetest1
15 Import-Module ADDSDeployment
16 exit 1003
17
18 }elseif(!(Test-Path -Path "C:\flag2.txt")){
19 echo "elseif"
20 New-Item -Path "C:\flag2.txt"
21 $secureSafeModePwd = ConvertTo-SecureString "Rosetest1" -AsPlainText -Force
22 # Setup domain
23 Install-ADDSForest -DomainName "rose.local" `
24 -DomainNetbiosName ROSE `
25 -SafeModeAdministratorPassword $secureSafeModePwd `
26 -InstallDns -NoRebootOnCompletion -force
27 exit 1003
28
29 }else {
30 echo "else"
31 New-Item -Path "C:\log.txt"
32
33 $dc = "rose.local"
34 $pw = ConvertTo-SecureString "Rosetest1" -AsPlainText -Force
35 $usr = "$dc\Administrator"
36 $creds = New-Object System.Management.Automation.PSCredential($usr,$pw)
37
38 New-ADUser -Name "bojack" -Accountpassword (ConvertTo-SecureString "

,→ HorsemanPass1" -AsPlainText -Force) -Enabled $true -Credential $creds
39 New-ADUser -Name "diane" -Accountpassword (ConvertTo-SecureString "NguyenPass1"

,→ -AsPlainText -Force) -Enabled $true -Credential $creds
40 New-ADUser -Name "todd" -Accountpassword (ConvertTo-SecureString "ChavezPass1"

,→ -AsPlainText -Force) -Enabled $true -Credential $creds
41 New-ADUser -Name "sarah" -Accountpassword (ConvertTo-SecureString "LynnPass1" -

,→ AsPlainText -Force) -Enabled $true -Credential $credst
42 New-ADUser -Name "hollyhock" -Accountpassword (ConvertTo-SecureString "

,→ ManheimPass1" -AsPlainText -Force) -Enabled $true -Credential $creds
43 New-ADUser -Name "wanda" -Accountpassword (ConvertTo-SecureString "PiercePass1"

,→ -AsPlainText -Force) -Enabled $true -Credential $creds
44 New-ADUser -Name "pinky" -Accountpassword (ConvertTo-SecureString "PenguinPass1

,→ " -AsPlainText -Force) -Enabled $true -Credential $creds
45 }

Code listing 7.20: Script setting up the domain controller

7.5 Deployment

Our entire infrastructure is deployed using Docker. Each service is hosted in it own
Docker container, giving us a total of 6 containers; one for the demo website, one
for the orchestration API, one for the Celery task queue, one for the celery worker,
one for Grafana and one for Loki. We used two Docker compose files one for the
logging service and one for everything else, because we view the logger service as

Chapter 7: Implementation 59

a standalone service that should be easy to replace. The infrastructure could be
deployed anywhere that has access to NTNUs internal network either physically
or through a VPN. However for us it made the most sense to host it within Sky-
HiGh on a Virtual Machine, so we made a administrator network and a Ubuntu
server for this purpose.

The website is deployed using a standard ubuntu/apache2 Docker container with
barely any configuration needed to be done by us. It will therefore not be covered
in any detail in this section, we will however describe all the other containers.

Orchestration API

This Docker container is responsible for hosting the API that receives user input,
and the orchestration logic that creates a project infrastructure based on the user
input. The Docker container is defined using a Dockerfile, shown in Code Listing
7.21.

1 FROM ubuntu:21.04
2
3 ENV DEBIAN_FRONTEND noninteractive
4
5 COPY creds/servicebruker.sh /creds/
6 COPY creds/worker.key /ssl/private/
7 COPY creds/worker.crt /ssl/cert/worker.crt
8
9 RUN apt update

10 RUN apt upgrade
11 RUN apt-get -y install python3-pip
12 RUN pip3 install waitress
13 RUN pip3 install redis
14 RUN pip3 install celery
15 RUN pip3 install Flask
16 RUN pip3 install python-openstackclient
17 RUN pip3 install python-logging-loki
18 RUN pip3 install flask-cors
19 RUN pip install hupper
20
21 CMD . /creds/servicebruker.sh && rm /creds/servicebruker.sh && cd /source && hupper

,→ -m waitress --port=8080 app:app

Code listing 7.21: Dockerfile for the orchestration API

The Dockerfile starts by copying 3 files from the creds folder of the host to the
Docker container. The first file is a serviceuser.sh. This file generated by SkyHiGh
and can be downloaded from the web interface, it is used to authenticate to the
OpenStack API. It therefore needs to be sourced before starting the app for it to
work, as is done in the last line of the Dockerfile, using the CMD keyword. Im-
mediately after being sourced it is deleted as it is no longer needed, this provides
some extra security in the case of a hacker getting a shell inside the Docker con-
tainer. This way he would not be able to read the content of the serviceuser.sh file,
which contains sensitive data.

Chapter 7: Implementation 60

The two next files that are copied are the SSL private key worker.key and pub-
lic key worker.crt. These are used to sign and verify Celery tasks that are to be
run by the worker. By default the worker trusts any task that is in the task queue,
which can be exploited by attackers to run malicious tasks. By signing and veri-
fying tasks using the SSL key pair, the worker can trust that the task is from the
orchestration_api Docker container. There is a shell script in the creds folder that
generates the key pair with the correct names, making it easier to deploy.

After copying the files all the packages we use in our python project is installed us-
ing apt and pip. Lastly Waitress is used to serve the API on the port 8080. We used
Waitress in conjunction with Hupper. Hupper automatically detects file changes to
the source directory and restarts Waitress whenever it does so. This makes devel-
opment a lot easier as you don’t need to restart the entire container to see changes
take effect.

Celery

Celery is deployed using two Docker containers one standard Redis container that
is the task queue, and one container running the Celery worker. Since we use the
standard redis container as the task queue it is defined entirely by the docker-
compose.yaml file as seen in the excerpt below.

1 web:
2 build:
3 context: ../
4 dockerfile: ./docker/web/Dockerfile
5 ports:
6 - "8080:8080"
7 depends_on:
8 - redis
9 volumes:

10 - ../source:/source
11 networks:
12 - proxy_net
13 worker:
14 build:
15 context: ../
16 dockerfile: ./docker/worker/Dockerfile
17 volumes:
18 - ../source:/source
19 networks:
20 - proxy_net
21 redis:
22 image: redis:alpine
23 ports:
24 - "6379:6379"
25 networks:
26 - proxy_net

Code listing 7.22: Part of the main Docker Compose

Chapter 7: Implementation 61

The redis container has port 6379 exposed, this port will be used by the orchestra-
tion API (just called web in the Dockerfile), to push Celery tasks to the task queue.
Subsequently the port will be used by the worker to fetch those tasks. Notice also
how the container for the orchestration API, the Celery worker and the Redis task
queue are all on the Docker network (proxy_net), as they need to communicate
with each other.

The Dockerfile for the celery worker is almost identical to the Docker file for the
orchestration API. As it also needs the SSL keypair, the python packages, and the
file. The only difference is that instead of using Waitress to serve the API on the
last line a worker is created using the command "celery -A app.celery worker". As
shown in the Dockerfile we can see that it also needs to have the source directory
mounted as a volume just like the orchestration API.

The Code Listing 7.23 shows how Flask and Celery with SSL message signing
where configured in the __init__.py file at the root of our python project. Notice
how the shorthand redis: can be used to give the IP address of the Redis container,
this is because it is on the proxy_net along with the worker and the orchestration
API

1 from flask import Flask, request
2 from celery import Celery
3 from secrets import token_hex
4
5 app = Flask(__name__)
6 app.secret_key = token_hex() # Secret key for sessions
7
8 # Informs celery of the broker
9 app.config['CELERY_BROKER_URL'] = 'redis://redis:6379/0'

10 celery = Celery(app.name, broker=app.config['CELERY_BROKER_URL'])
11
12
13 # enables message signing for celery
14 celery.conf.update(
15 security_key='/ssl/private/worker.key',
16 security_certificate='/ssl/cert/worker.crt',
17 security_cert_store='/ssl/cert/*.crt',
18 security_digest='sha256',
19 task_serializer='auth',
20 event_serializer='auth',
21 accept_content=['auth']
22)
23 celery.setup_security()
24
25 from app.Controller import ProjectController
26 from app import Const, Routes

Code listing 7.23: __init__.py file showing configuration of Celery and Flask

Chapter 7: Implementation 62

7.5.1 Logging

As mentioned previously we use Grafana Loki for our logging server. Grafana Loki
is designed to be used in Docker, and they provide a docker-compose template that
we only made minor modifications to. The template file originally defines three
Docker containers; Grafana, Loki and Promtail. We had no use for Promtail so
we simply commented that section out. The other modification we made was to
define a Docker network that connects the containers define in the logging docker-
compose and the containers defined in the main docker-compose.

7.5.2 Deployment Step by Step

This step by step assumes that you have access to an OpenStack environment.

• Clone the OrchestrationAPI Git repo
• Install Docker on your host
• Download the serviceuser.sh script from SkyHiGh and place it in the creds

folder.
• Create the SSL key pair by runnning creds/creds.sh
• Start the logging service by running "docker compose up -d" inside the dock-

er/logger folder.
• Start the website, the orchestration API and Celery by running "docker com-

pose up -d" from inside the docker folder.

Chapter 8

Evaluation

This chapter will include the evaluation of the platform developed during this
bachelor project period.

8.1 User Testing Results

A broad selection of individuals was chosen to evaluate this bachelor project
product. Individuals with different sets of skills was chosen so a more general
overview of the project was made possible. This collection consists of individuals
with and without cloud technology skills, and individuals studying IT, nursing and
design.

There are mainly two different users testing this product - project owners and
project members. The project owners was presented with the graphical web inter-
face, and asked to make an project. It is important to note that the web interface
is not a part of the project, but it is used to demonstrate the API functionality of
the project. The project owners were also given an description of how the system
works and presented results from project creations so that they can evaluate the
whole system.

The project members were given the IP address to connect to the virtual work-
stations and instructions to do so. An existing project was used with existing data
on for the users to test.

The requirements specified in Chapter 4 was evaluated:

FR1: Members should be added to project before creation
A project owner should be able to add members to a project on a graphical user inter-
face before the project is created. Members are added by writing the university email
of each member.
Evaluation results:
When using the graphical user interface, members are added before creating the

63

Chapter 8: Evaluation 64

project. This part is quite strait forward. The testing results showed that it was
quite easy for the participants to understand this part, since it is the first action
to be done before hitting the create button. The design of the graphical user in-
terface is out of this projects scope, but an improvement would be giving even
clearer instructions on the interface.

FR2: It should be possible to add a project owner
Before creating a project, the project owner should also write in his/her email or
another email if he/she is not the owner. This is done so an owner of the project is
specified when creating the project.
Evaluation results:
Every participant in the testing were able to add a project owner’s email and pub-
lic SSH key. Some users found it difficult to find the SSH key. The concept of a
public and private key is something not everyone knows, as well as the creation
of a key pair and where it is stored. It was therefore necessary to give some addi-
tional instructions.

FR3: A project should be created by a click of a button
A project owner should be able to press a button on the graphical user interface to
create a project when all preferred members are added, making them project mem-
bers.
Evaluation results:
After inputting the list of project members, project owner, and the project own-
ers public SSH key, the project can be created by clicking the button for project
creation. It was quite clear to the participants that it was necessary to click the
button to create a project.

FR4: A project owner should retrieve IP address for project clients
A few seconds after a project owner creates a project, the project owner should be
able to retrieve an IP address on the graphical user interface by clicking a button to
connect to the virtual workstations. This is the address all project members should
use to connect to the virtual workstations.
Evaluation results:
In all the user tests, the IP address was received after approximately 10 seconds.
This indicates that this function works as it is intended to.

FR5: Project members should be able to connect to project clients
When a member are added to a project and the project is created, the member should
be able to use the retrieved IP-address to access the project clients and log in with
their personal username and password, gaining privileges which were set by the pro-
ject owner in the graphical user interface.
Evaluation results:
In all the tests, project members were able to connect to the project clients when
they were ready. It takes about 15 minutes for the windows clients to be ready for

Chapter 8: Evaluation 65

access, so this is one of the drawbacks from the tests. However, there is nothing
to be done to improve this since this is a problem of the OpenStack cloud the
solution runs on.

FR6: Project members should be able to access data
When a project member has connected to a project clients, he/she should be able to
manage data from a file server represented as a network drive on the client. The pro-
ject member should then be able to execute actions on the shared data based on their
privileges granted by the project owner.
Evaluation results:
After a RDP session was established, all participants were able to access the data
from the file server through the windows clients.

FR7: The system administrator should be able to review logs from the project
All actions performed in the project should be logged and presented to the system ad-
ministrator on a graphical interface, presenting the data in a statistic manner. This
logging solution could also be used by the it department of the university/company
that use this service.
Evaluation results:
This is implemented and works fine. The user testing proved that the output from
the logs presented in a graphical user interface were easy to understand. However,
only API actions are logged, meaning activity within a project is not logged. This
is something that should be improved on in the future. We will still consider this
requirement as satisfied since logging is implemented. In the future the logging
functionality should also be integrated with NTNUs centralized logging service.

FR8: The project owner should be able to delete a project
When there is no longer need for the project, the project and all of its files will be
deleted. This is done by using the graphical user interface, specifying the name of the
project, and press a delete button.
Evaluation results:
Deleting projects works well, and every tester where able to delete a project. How-
ever, the website made for a proof on concept that the orchestration API works is
out of scope for this project, meaning that it does not include any authorization
for access, which means anyone that has access to the website could delete a pro-
ject.

FR9: The project owner should be able to add files to and download files
from the file server
To create a file share that project members can access through the window clients,
the project owner should be able to upload files to the file server. To this the need to
be authenticated as the owner of the project.
Evaluation results:
Project owners are able to add and download files, either via CLI or FileZilla. This

Chapter 8: Evaluation 66

proved to be a little challenging since not everyone had that much experience with
the command line, and FileZilla is also a little complicated to use.

FR10: The system should support RDP session session persistence
If a project members disconnects from a session how they should be connected to the
same virtual workstation the next time they log on. That way they are able to pick
up their work from where they left off without losing any progress.
Evaluation results:
The system did support session persistence where the address of the device used
is remembered, and connection from the same device will be established to the
same virtual workstations each time. However, this did not work if a different
device were used to connect to the virtual workstations. Therefore, this require-
ment is not quite satisfied yet.

NFR1: Requirements for access to information and information systems
NTNUs guidelines for access control [11] specifies that resource domains should be
used for access control where access is granted based on the groups users belongs to.
Microsoft Active Directory and LDAP are used for access control in resource domains.
The system owner should define roles with specified access control and permissions to
storage. There is also a requirements to logging activity related to access and storage.
Evaluation results:
The project group were not allowed to integrate to system with NTNUs LDAP and
AD services. This means that the product does not satisfy NTNUs requirements
for access to information and information systems. The project group did how-
ever implement a local AD domain and this secures access control and permission
control for the different projects. Therefore this requirement can be considered
satisfied, but optimally the project workstations should be joined to the AD do-
main of NTNU.

NFR2: The Health Norms requirements for user insight
The Norm for Information security and Privacy in the Health and Care Sector [9]
specifies in section 4.2.3 that any individual which has his health data stored should
have the possibility to get insight in their own data.
Evaluation results:
This is a requirement regarding privacy regulations, and the product does not
have an direct solution to this requirement. This requirement could however be
satisfied if a project owner shares information to the concerned party regarding
only that person. A person not included in a project should not have access since
a project may contain sensitive information regarding several individuals.

NFR3: Access control for source code
The source code for the system should be available for personnel with correct per-
missions. Access and changes to source code must be logged. This is in accordance to
NTNUs guidelines for access control [11].

Chapter 8: Evaluation 67

Evaluation results:
The source code for this service is stored on NTNUs in-house GitLab as a private
project. This means that access permissions are strictly controlled. access can be
granted to required parts satisfying this requirement.

NFR4: The system should satisfy NTNUs requirements for the highest level
of confidentiality
If leaked information could result in remarkable damage for interests, NTNU, persons
or collaboration partners, the information should be classified as strictly confiden-
tial [10]. Since information stored in this system could contain details about peoples
health, business secrets, etc, it is important that information in this system should be
treated as strictly confidential. Information should only be available for users with
strictly controlled permissions and that are required to have access to the informa-
tion.
Evaluation results:
This requirement is not quite satisfied in this version of the project. The fact that
each project is segregated in its own private network and infrastructure combined
with access and permission control should make the system quite secure. There
is however quite a bit of security mechanisms that should be implemented to sat-
isfy this requirement. This includes mechanisms such as two factor authorization,
firewalls, more levels of restricted networks, stricter policies, and integration with
NTNUs active directory services.

NFR5: The system should satisfy NTNUs requirements for the highest level
of integrity
It is highly crucial that the data in the system always is authentic and correct. Com-
promised data could result in wrong decisions, errors in treatments if the data is
related to health, or constructing errors if the data is related to building plans. This
are just a few of many examples. It is therefore crucial that the system satisfy NTNUs
classification of integrity for level 4 [10].
Evaluation results:
In regards to integrity, the system does not provide any mechanisms to ensure that
data holds its integrity. This could be improved with a good backup solution. Log-
ging would also play a central role into this requirement, where changes done to
data would be logged. Other than these mechanisms, one would assume that the
original data is stored offline and can be reviewed to make sure the data holds its
integrity. Permissions is another spectre that can affect integrity relying on which
individuals has permission to edit data. This would be the responsibility of the
project owner to manage.

NFR6: The system should satisfy NTNUs requirements for the highest level
of availability
Since information stored on the system could be highly important, it is crucial that
it delivers extremely good availability. Very short down times could be catastrophic

Chapter 8: Evaluation 68

since the system may contain time sensitive data. Therefore, the system must satisfy
NTNUs classification of availability for level 4 [10]. It is also crucial that the system
delivers good availability in form of quick responses in retrieval of the clients IP-
address and creation of the project infrastructure. Because of this high prioritisation,
the infrastructure should be fixed immediately if a problem occurs.
Evaluation results:
The product delivers good availability in some areas, but lacks availability in oth-
ers. As soon as a project owners orders a project, the creation process starts, and
the IP address is ready in about 5 seconds (The website waits 10 seconds to re-
trieve to ensure the retrieval of the IP address). Unfortunately, the Windows work-
stations takes quite a long time to get ready. This means it takes about 15 minutes
before the virtual workstations are ready. The domain controller also uses about
15 minutes to be ready. For the virtual workstations to join the domain, they have
to be restarted. This means that it takes about 20/25 minutes before the whole
infrastructure is ready. This is unforunately out of our control, as this is an issue
related to the products the OpenStack cloud runs on. There are also no implemen-
ted mechanisms to check if parts of a project are down, and then fix it as fast as
possible. Because of this, the system does not satisfy this requirement, and only
some of the issues can be fixed in the future.

8.1.1 Evaluation Conclusion

The evaluation proved to be useful, since some issues where discovered in the
process of evaluation and some of the requirements were not quite satisfied. This
means there is a lot of room for improvement. The evaluation also proved that
there was a lot of the requirements that were satisfied, and therefore there was a
lot of successful work in the project.

Chapter 9

Discussion

In this chapter several security issues and challenges from the project period are
addressed.

9.1 Risks and Security Aspects

More Levels of Restricted Networks

Right now, the infrastructure is designed in such a way that a user has to be inside
the NTNU internal network either physically or through a VPN connection. From
here, the user then connects to a project directly with RDP and the load balancer
floating IP address. This means that the IP address for the projects can be seen
from within the NTNU internal network. The NTNU internal network is not to be
considered safe because of the great amount of student, employees and scient-
ists that has access to it. It would therefore be much more secure if there was a
private segregated network between the NTNU internal network and the project
networks.

This can be thought of as zones, where the NTNU internal network is repres-
ented as a green zone, meaning no sensitive data should be stored directly on this
network. A private network within this network could be considered as a yellow
zone, meaning some sensitive data could be stored here, but not the most confid-
ential data because this network can be seen from the NTNU internal network. If
another private network could be reached from this previous private network, it
would be considered much more secure, since it can not be seen from the NTNU
internal network. This network would then act as a black zone, meaning strictly
confidential data could be stored here.

In order to make the project network suitable for strictly confidential data it would
therefore be optimal to add one more layer of network on the infrastructure. This
would mean that users would have to access an additional private network from
the NTNU internal network that is restricted to the project members, and from

69

Chapter 9: Discussion 70

there establish a RDP session to the private project networks. It will then be ne-
cessary to remove any users not in a project when projects are deleted to make
sure as few users has access to this yellow zone network as possible.

Two Factor Authentication

We have not integrated two factor authentication with any of the authorization
mechanisms in our project. This means the interface for creating a project and
the RDP connections to the virtual workstations. It is important to note that the
graphic user interface is out of scope for this project so no security mechanisms
are implemented to the web solution and therefor no two factor authentication.
Implementing a system for two factor authentication on the connection to the
virtual workstations is a little more tricky, and not implemented.

Stricter policies

For the system to work, policies for project networks were quite open, meaning
it would allow most traffic. For security reasons it would be best to stricktly limit
what kind of traffic is allown on the project network. This can easily be fixed
by closing down what traffic is allowed using an Access Control List on router
interfaces.

Windows Client Hardening

At the moment the Windows clients are and the users on them are fairly unres-
tricted. More strictly limiting what users can and can not do on the clients would
improve security. This is something the IT department at NTNU has already done
on physical machines on campus. If our system is integrated with NTNUs Active
Directory, a lot of the same Group Policy Objects could be leveraged and reused.

Active Directory

This project was originally meant to be integrated with NTNU, and therefore it
was logically to integrate the product with NTNUs active directory and LDAP.
This project group was not allowed to work with these technologies since these
are crucial services for NTNU. Because of this, the product does not have func-
tional access control and permission control. We did however implement our own
domain controller in each project to prove our concept of access control. This is
not a safe solution, but its purpose is to be a proof of concept. Integrating this
product with NTNUs Active Directory and LDAP would make the access and per-
mission control way more secure and effective since it already has NTNU users,
making it so we can specify which users to be allowed on a project and then those
users will be authorized on NTNUs access and permission control mechanisms.

Chapter 9: Discussion 71

Hypertext Transfer Protocol Secure (HTTPS)

HTTPS is not implemented. The security measurement should be implemented
between the user and the API to protect the confidentiality of the sensitive data
during transit from anyone listening in on the traffic. Without HTTPS it is possible
to listen in on the traffic between one project owner and the API. The attacker
could for instance steal session cookies and delete a project.

9.2 Challenges During the Project

Restricted Knowledge Before Project

This Bachelor project required a lot of skills within Infrastructure as Code. The
bachelor group consists of bachelor students in digital infrastructure and cyberse-
curity. This bachelor study includes a lot of it management courses, which are very
relevant for this project. However, non of the group members had taken the course
in Infrastructure as Code, which meant there was a somewhat restricted level of
knowledge before the project. This proved not to be a major problem, since it was
quite easy to find good resources for development with IaC. Since the group de-
veloped the product on an OpenStack cloud, the OpenStack Heat documentation
was rapidly used for creating the OpenStack Heat orchestration Templates. There
was also a small lack in knowledge of API development, where the group only
had some experience from the databases course. This did also show to not be any
problem because of good self study.

Manilla

Manila is a OpenStack service that provides a file server service. It is for creating
a file sharing environment for virtual machines on a cloud infrastructure and also
has integrated API. With OpenStack Manila it is easy to make and manage file
shares [76]. Unfortunately, this service was not included in SkyHiGh which made
the group unable to use this service, which could have made the project mush
easier.

NTNU Active Directory

Due to our lack of access to NTNUs active directory we had to create our own
step-in as a POC. This gave us a couple of challenges. Our first idea was to have a
Windows server running AD DS within our administrator network with an inter-
face exposed to the rest of NTNUs network accessible by a floating IP. The admin-
istrator network is in parallel with the different project-networks.

However this provided unexpectedly difficult, mainly due to DNS issues. It goes
against AD "nature" to be exposed to outside networks directly due to its import-
ance and normal tasks. In this case the rest of NTNUs local network.

Chapter 9: Discussion 72

Whenever you set up a domain controller, you also need to create a DNS server.
This DNS server resolves the domain controller name its own private IP. This
private address is inaccessible because its in a completely separate network. We
were not able to make this resolve to the floating IP, because it would be reverted
back to the private IP, possibly as a security mechanism from Microsoft to make
sure people aren’t doing what we are trying to do to make this POC work.

A possible workaround to this would be to create another DNS server, independ-
ent of the domain controller, which the workstations could use, resolving to the
domain controller’s floating IP. Due to this not being an important part of the task,
we did not prioritize this solution. In the end we added a domain controller in
each individual network, avoiding the aforementioned issues completely.

Small Amount of Resources

At the start of the project we were provided with some resources on the Sky-
HiGh cloud. These resources however was not sufficient. There is one larger server
placed in its own network, which is tasked with hosting the website, the API it-
self, the Celery worker and the Redis store in docker containers. This server has
eight virtual CPUs, 16 GB RAM, and 40 GB storage. Creating one project stack also
require quite a lot of resources: six virtual CPUs, 16 GB of RAM, and 120 GB of
storage. This became an issue when we had multiple stacks running at the same
time during testing and development. We did get access to more resources upon
request.

Chapter 10

Closing Remarks

In this chapter we will talk about the results of working on this project. We will dis-
cuss our learning outcome this semester and talk about future improvements for
the platform. We will also come with a conclusion based on all previous chapters.

10.1 Learning Outcome

General

This project has thought us a lot. We have used new technologies, gone more
in depth in technologies we have learned about earlier, but most importantly we
have learned to work as a team. We have also learned that communication is
paramount to make teamwork actually work.

Communication and Teamwork

Throughout the project period we learned how to work as a group and delegate
tasks between the group members. Working as a group can be both challenging
and rewarding. We have also learned the value of communication and planning
ahead. We have learned that investing time and energy into communication and
planning early saves a lot of time and pain later on. When multiple people work
on different tasks that are dependant on each other you need communication to
reduce idle time.

We have also learned that even with good communication and planning there
will be hiccups and issues during the development progress; issues your group
didn’t think of will emerge, bugs that require a lot of time and attention, and even
miscommunication.

Thesis Writing

Four people writing on the same thesis has also been challenging; however we
have learned a lot. We have learned that communication is just as important when

73

Chapter 10: Closing Remarks 74

it comes to thesis writing as it is during the development of a product or service.
Both the finished thesis and language will become inconsistent if there is no com-
munication during the thesis writing. We have learned the value of structuring
acronyms and glossaries, and that thesis writing require quite a lot more time
than you might initially think it does.

10.1.1 API

Although we have created simple APIs before, nobody in our group had any prior
experience with the Python’s Flask framework. Python is regarded as a program-
ming language that is easy to use, and this includes the Flask framework as well.
Therefore getting started was rather easy thanks to good documentation. Learning
Python and Flask is useful, as these technologies open up a lot of opportunities.
Python is used for all kinds of tasks; everything from the development of large
software products to smaller scripts.

10.1.2 Infrastructure as Code

Nobody in our group had any significant experience when it came to IaC before
starting this project. This proved to be a great learning experience for all of us, as
we learned best practice for creating and managing cloud architecture.

10.1.3 Windows

During this project we have interacted a lot with Windows, both client operative
systems as well as Windows server. At the start of the project we assumed that
the work needed to be done on these Windows nodes would be rather easy. How-
ever, they gave us a lot of problems, resulting in us learning a lot about them.
We learned a lot about Active Directory, Microsoft domains, and the Windows
Registry.

10.2 Conclusion

The main goal of the project was to develop certain components for a secure plat-
form for data sharing and editing. We started off researching what technologies to
use and how the infrastructure would be structured. By the end of the project, we
had created a platform where all of the requirements were met to some degree,
however some aspects still needs improvement and some finishing touches.

10.3 Future Improvements

We have achieved a lot this semester, however there are still a lot to be improved.
Due to limited access and time we had to prioritize the different aspects of this

Chapter 10: Closing Remarks 75

system that we were able to implement. We were not given access to NTNUs Act-
ive Directory (AD) and their centralized logging service. A future improvement
would therefore be to more tightly integrate the platform with NTNUs IT system
as a whole.

In Chapter 9, a lot of important aspects of improvement are discussed. These
items are all important candidates for future improvements. Since the goal of this
bachelor project was to implement certain components of the platform, there is a
lot of additional work that has to be done to complete such a solution. In relation
to the components developed by us during the project, the future improvements
mainly relies on security aspects. As discussed in Chapter 9, the main items that
should be improved on or implemented in the future are; More levels of restricted
networks, two factor authentication, stricter policies, NTNU Active Directory and
LDAP, and HTTPS.

All communication between the user the API should be transferred securely over
HTTPS. This is important to hide sensitive information during transit. In this case
the most sensitive information are cookies, like the session cookie. These session
cookies should be used for authentication and authorization on the more sensitive
endpoints. For instance only the project owner should be able to delete a project.

Centralized logging is an important part of bigger networks. When there are so
many nodes connected that manually checking each one is close to impossible, it
is paramount to keep them in one place where you can utilize tools to search for
important information. This has to be done in the future due to our limited access
to NTNUs internal systems.

Backup is also an important implementation that did not get included in this
project. With a good backup solution, both the integrity and availability of the
platform would be improved.

There are also several points for improvement when it comes to SkyHiGh and
its resources. OpenStack Manila is a technology that absolutely should be integ-
rated in SkyHiGh, making it much easier to manage shared environments. All of
these items are discussed in depth in Chapter 9.

Bibliography

[1] ‘A minimal application.’ (), [Online]. Available: https://flask.palletsprojects.
com/en/latest/quickstart/#a-minimal-application.

[2] ‘How to use decorators in python, by example.’ (), [Online]. Available:
https://towardsdatascience.com/how-to-use-decorators-in-python-
by-example-b398328163b.

[3] M.-L. Lervåg. ‘Dette er de største studiestedene i norge.’ (2021), [Online].
Available: https://www.ssb.no/utdanning/hoyere-utdanning/statistikk/
studenter-i-universitets-og-hogskoleutdanning/artikler/dette-
er-de-storste-studiestedene-i-norge.

[4] NTNU. ‘Ntnu i tall og fakta.’ (2021), [Online]. Available: https://www.
ntnu.no/tall-og-fakta.

[5] ‘Informasjonsklassifisering - informasjonssikkerhet.’ (2022), [Online]. Avail-
able: https://i.ntnu.no/wiki/-/wiki/Norsk/Informasjonsklassifisering+-
+informasjonssikkerhet.

[6] NTNU. ‘Nice-1.’ (), [Online]. Available: https : / / i . ntnu . no / wiki/ -
/wiki/Norsk/NICE-1.

[7] ‘Tsd - tjenester for sensitive data.’ (2022), [Online]. Available: https://i.
ntnu.no/wiki/-/wiki/Norsk/tsd+-+tjenester+for+sensitive+data.

[8] ‘Nird data storage.’ (2022), [Online]. Available: https://www.sigma2.no/
data-storage.

[9] D. for e-helse. ‘Norm for informasjonssikkerhet og personvern i helse- og
omsorgssektoren.’ (2020), [Online]. Available: https : / / www . ehelse .
no/normen/normen-for-informasjonssikkerhet-og-personvern-i-
helse- og- omsorgssektoren/_/attachment/inline/ab1b230b- eb1f-
47f8-b716-aae86ed34a8f:085dc760fecbf9141ee59f446495c41b1a73346f/
Normen%20versjon%206.0.pdf.

[10] NTNU. ‘Informasjonsklassifisering - informasjonssikkerhet.’ (2018), [On-
line]. Available: https://i.ntnu.no/wiki/-/wiki/Norsk/Informasjonsklassifisering+-
+informasjonssikkerhet#section-Informasjonsklassifisering+-+informasjonssikkerhet-
Arkivn%C3%B8kkel.

76

https://flask.palletsprojects.com/en/latest/quickstart/#a-minimal-application
https://flask.palletsprojects.com/en/latest/quickstart/#a-minimal-application
https://towardsdatascience.com/how-to-use-decorators-in-python-by-example-b398328163b
https://towardsdatascience.com/how-to-use-decorators-in-python-by-example-b398328163b
https://www.ssb.no/utdanning/hoyere-utdanning/statistikk/studenter-i-universitets-og-hogskoleutdanning/artikler/dette-er-de-storste-studiestedene-i-norge
https://www.ssb.no/utdanning/hoyere-utdanning/statistikk/studenter-i-universitets-og-hogskoleutdanning/artikler/dette-er-de-storste-studiestedene-i-norge
https://www.ssb.no/utdanning/hoyere-utdanning/statistikk/studenter-i-universitets-og-hogskoleutdanning/artikler/dette-er-de-storste-studiestedene-i-norge
https://www.ntnu.no/tall-og-fakta
https://www.ntnu.no/tall-og-fakta
https://i.ntnu.no/wiki/-/wiki/Norsk/Informasjonsklassifisering+-+informasjonssikkerhet
https://i.ntnu.no/wiki/-/wiki/Norsk/Informasjonsklassifisering+-+informasjonssikkerhet
https://i.ntnu.no/wiki/-/wiki/Norsk/NICE-1
https://i.ntnu.no/wiki/-/wiki/Norsk/NICE-1
https://i.ntnu.no/wiki/-/wiki/Norsk/tsd+-+tjenester+for+sensitive+data
https://i.ntnu.no/wiki/-/wiki/Norsk/tsd+-+tjenester+for+sensitive+data
https://www.sigma2.no/data-storage
https://www.sigma2.no/data-storage
https://www.ehelse.no/normen/normen-for-informasjonssikkerhet-og-personvern-i-helse-og-omsorgssektoren/_/attachment/inline/ab1b230b-eb1f-47f8-b716-aae86ed34a8f:085dc760fecbf9141ee59f446495c41b1a73346f/Normen%20versjon%206.0.pdf
https://www.ehelse.no/normen/normen-for-informasjonssikkerhet-og-personvern-i-helse-og-omsorgssektoren/_/attachment/inline/ab1b230b-eb1f-47f8-b716-aae86ed34a8f:085dc760fecbf9141ee59f446495c41b1a73346f/Normen%20versjon%206.0.pdf
https://www.ehelse.no/normen/normen-for-informasjonssikkerhet-og-personvern-i-helse-og-omsorgssektoren/_/attachment/inline/ab1b230b-eb1f-47f8-b716-aae86ed34a8f:085dc760fecbf9141ee59f446495c41b1a73346f/Normen%20versjon%206.0.pdf
https://www.ehelse.no/normen/normen-for-informasjonssikkerhet-og-personvern-i-helse-og-omsorgssektoren/_/attachment/inline/ab1b230b-eb1f-47f8-b716-aae86ed34a8f:085dc760fecbf9141ee59f446495c41b1a73346f/Normen%20versjon%206.0.pdf
https://www.ehelse.no/normen/normen-for-informasjonssikkerhet-og-personvern-i-helse-og-omsorgssektoren/_/attachment/inline/ab1b230b-eb1f-47f8-b716-aae86ed34a8f:085dc760fecbf9141ee59f446495c41b1a73346f/Normen%20versjon%206.0.pdf
https://i.ntnu.no/wiki/-/wiki/Norsk/Informasjonsklassifisering+-+informasjonssikkerhet#section-Informasjonsklassifisering+-+informasjonssikkerhet-Arkivn%C3%B8kkel
https://i.ntnu.no/wiki/-/wiki/Norsk/Informasjonsklassifisering+-+informasjonssikkerhet#section-Informasjonsklassifisering+-+informasjonssikkerhet-Arkivn%C3%B8kkel
https://i.ntnu.no/wiki/-/wiki/Norsk/Informasjonsklassifisering+-+informasjonssikkerhet#section-Informasjonsklassifisering+-+informasjonssikkerhet-Arkivn%C3%B8kkel

Bibliography 77

[11] ‘Retningslinje for tilgangskontroll.’ (2018), [Online]. Available: https://
docplayer.me/107083611-Ntnu-retningslinje-for-tilgangskontroll.
html.

[12] Microsoft. ‘Understanding the remote desktop protocol (rdp).’ (2021), [On-
line]. Available: https://docs.microsoft.com/en-us/troubleshoot/
windows-server/remote/understanding-remote-desktop-protocol.

[13] FEIDE. ‘Feide-administrator.’ (2022), [Online]. Available: https://www.
feide.no/feide-administrator.

[14] NTNU. ‘Digsec course page.’ (2022), [Online]. Available: https://www.
ntnu.edu/studies/bdigsec.

[15] I. C. Education. ‘Iaas (infrastructure-as-a-service).’ (2019), [Online]. Avail-
able: https://www.ibm.com/cloud/learn/iaas.

[16] G. Batschinski. ‘Iaas vs paas – who wins this fight?’ (), [Online]. Available:
https://blog.back4app.com/iaas-vs-paas/.

[17] ‘Openstack at ntnu.’ (2022), [Online]. Available: https://www.ntnu.no/
wiki/display/skyhigh.

[18] I. C. Education. ‘What is virtualization?’ (2019), [Online]. Available: https:
//www.ibm.com/cloud/learn/virtualization-a-complete-guide.

[19] Wikipedia. ‘Openstack.’ (), [Online]. Available: https://en.wikipedia.
org/wiki/OpenStack.

[20] Wikipedia. ‘Compute (nova).’ (2022), [Online]. Available: https://en.
wikipedia.org/wiki/OpenStack#Compute_(Nova).

[21] Wikipedia. ‘Networking (neutron).’ (2022), [Online]. Available: https://
en.wikipedia.org/wiki/OpenStack#Networking_(Neutron).

[22] Wikipedia. ‘Block storage (cinder).’ (2022), [Online]. Available: https:
//en.wikipedia.org/wiki/OpenStack#Block_storage_(Cinder).

[23] Wikipedia. ‘Orchestration (heat).’ (2022), [Online]. Available: https://
en.wikipedia.org/wiki/OpenStack#Orchestration(Heat).

[24] NGINX. ‘What is load balancing?’ (), [Online]. Available: https://www.
nginx.com/resources/glossary/load-balancing/.

[25] M. Evans. ‘What is a load balancer and its types?’ (2021), [Online]. Avail-
able: https://www.cloud4u.com/blog/what-is-a-load-balancer-and-
its-types/.

[26] Openstack. ‘Introducing octavia.’ (2020), [Online]. Available: https://
docs.openstack.org/octavia/queens/reference/introduction.html.

[27] Cloud-Init. ‘Cloud-init documentation.’ (2020), [Online]. Available: https:
//cloudinit.readthedocs.io/en/latest/.

[28] Wikipedia. ‘Samba (software).’ (2022), [Online]. Available: https://en.
wikipedia.org/wiki/Samba_(software).

https://docplayer.me/107083611-Ntnu-retningslinje-for-tilgangskontroll.html
https://docplayer.me/107083611-Ntnu-retningslinje-for-tilgangskontroll.html
https://docplayer.me/107083611-Ntnu-retningslinje-for-tilgangskontroll.html
https://docs.microsoft.com/en-us/troubleshoot/windows-server/remote/understanding-remote-desktop-protocol
https://docs.microsoft.com/en-us/troubleshoot/windows-server/remote/understanding-remote-desktop-protocol
https://www.feide.no/feide-administrator
https://www.feide.no/feide-administrator
https://www.ntnu.edu/studies/bdigsec
https://www.ntnu.edu/studies/bdigsec
https://www.ibm.com/cloud/learn/iaas
https://blog.back4app.com/iaas-vs-paas/
https://www.ntnu.no/wiki/display/skyhigh
https://www.ntnu.no/wiki/display/skyhigh
https://www.ibm.com/cloud/learn/virtualization-a-complete-guide
https://www.ibm.com/cloud/learn/virtualization-a-complete-guide
https://en.wikipedia.org/wiki/OpenStack
https://en.wikipedia.org/wiki/OpenStack
https://en.wikipedia.org/wiki/OpenStack#Compute_(Nova)
https://en.wikipedia.org/wiki/OpenStack#Compute_(Nova)
https://en.wikipedia.org/wiki/OpenStack#Networking_(Neutron)
https://en.wikipedia.org/wiki/OpenStack#Networking_(Neutron)
https://en.wikipedia.org/wiki/OpenStack#Block_storage_(Cinder)
https://en.wikipedia.org/wiki/OpenStack#Block_storage_(Cinder)
https://en.wikipedia.org/wiki/OpenStack#Orchestration(Heat)
https://en.wikipedia.org/wiki/OpenStack#Orchestration(Heat)
https://www.nginx.com/resources/glossary/load-balancing/
https://www.nginx.com/resources/glossary/load-balancing/
https://www.cloud4u.com/blog/what-is-a-load-balancer-and-its-types/
https://www.cloud4u.com/blog/what-is-a-load-balancer-and-its-types/
https://docs.openstack.org/octavia/queens/reference/introduction.html
https://docs.openstack.org/octavia/queens/reference/introduction.html
https://cloudinit.readthedocs.io/en/latest/
https://cloudinit.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Samba_(software)
https://en.wikipedia.org/wiki/Samba_(software)

Bibliography 78

[29] ‘Nitroshare wiki.’ (2022), [Online]. Available: https://github.com/nitroshare/
nitroshare-desktop/wiki.

[30] ‘Nitroshare wiki.’ (2022), [Online]. Available: https://github.com/nitroshare/
nitroshare-desktop.

[31] Microsoft. ‘What is infrastructure as code?’ (2021), [Online]. Available:
https : / / docs . microsoft . com / en - us / devops / deliver / what - is -
infrastructure-as-code.

[32] Redhat. ‘What is an api?’ (2017), [Online]. Available: https://www.redhat.
com/en/topics/api/what-are-application-programming-interfaces.

[33] ‘What is an api? how apis work, simply explained.’ (), [Online]. Available:
https://www.contentful.com/blog/2021/08/12/what-is-an-api/.

[34] T. P. Project. ‘Flask.’ (), [Online]. Available: https://palletsprojects.
com/p/flask/.

[35] F. S. Python. ‘Wsgi servers.’ (), [Online]. Available: https://www.fullstackpython.
com/wsgi-servers.html.

[36] Zope. ‘Waitress wsgi server.’ (), [Online]. Available: https://pypi.org/
project/waitress/.

[37] ‘What is docker?’ (2022), [Online]. Available: https://opensource.com/
resources/what-docker.

[38] i. Docker. ‘What is a containeri?’ (), [Online]. Available: https://www.
docker.com/resources/what-container.

[39] P. Rubens. ‘What are containers and why do you need them?’ (2017), [On-
line]. Available: https://www.cio.com/article/247005/what- are-
containers-and-why-do-you-need-them.html.

[40] D. Merkel. ‘Docker: Lightweight linux containers for consistent develop-
ment and deployment.’ (2014), [Online]. Available: https://www.linuxjournal.
com/content/docker- lightweight- linux- containers- consistent-
development-and-deployment.

[41] i. Docker. ‘Overview of docker compose.’ (), [Online]. Available: https:
//docs.docker.com/compose/.

[42] ‘Active directory domain services overview.’ (2022), [Online]. Available:
https://docs.microsoft.com/en-us/windows-server/identity/ad-
ds/get-started/virtual-dc/active-directory-domain-services-
overview.

[43] Microsoft. ‘Active directory domain services overview.’ (), [Online]. Avail-
able: https://docs.microsoft.com/en-us/windows-server/identity/
ad-ds/get-started/virtual-dc/active-directory-domain-services-
overview.

https://github.com/nitroshare/nitroshare-desktop/wiki
https://github.com/nitroshare/nitroshare-desktop/wiki
https://github.com/nitroshare/nitroshare-desktop
https://github.com/nitroshare/nitroshare-desktop
https://docs.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://docs.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.redhat.com/en/topics/api/what-are-application-programming-interfaces
https://www.contentful.com/blog/2021/08/12/what-is-an-api/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://www.fullstackpython.com/wsgi-servers.html
https://www.fullstackpython.com/wsgi-servers.html
https://pypi.org/project/waitress/
https://pypi.org/project/waitress/
https://opensource.com/resources/what-docker
https://opensource.com/resources/what-docker
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.cio.com/article/247005/what-are-containers-and-why-do-you-need-them.html
https://www.cio.com/article/247005/what-are-containers-and-why-do-you-need-them.html
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-development-and-deployment
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview

Bibliography 79

[44] Microsoft. ‘Domain name system (dns).’ (), [Online]. Available: https:
//docs.microsoft.com/en-us/windows-server/networking/dns/dns-
top.

[45] A. Saputra. ‘Understanding forward and reverse lookup zones in dns.’ (2019),
[Online]. Available: https : / / www . mustbegeek . com / understanding -
forward-and-reverse-lookup-zones-in-dns/.

[46] GeeksForGeeks. ‘Working of domain name system (dns) server.’ (), [On-
line]. Available: https://www.geeksforgeeks.org/working-of-domain-
name-system-dns-server/.

[47] P. Loshin. ‘Domain controller.’ (), [Online]. Available: https://www.techtarget.
com/searchwindowsserver/definition/domain-controller.

[48] G. Singh. ‘What is the difference between a domain controller and a dns
server?’ (), [Online]. Available: https://www.quora.com/What-is-the-
difference-between-a-domain-controller-and-a-DNS-server.

[49] L. du Toit and G. Thomassen. ‘Services for sensitive data (tsd) whitepaper
v6.0.’ (2019), [Online]. Available: https://www-int.uio.no/english/
services/it/research/sensitive-data/about/whitepaper_tsd_v6.0_
2020.pdf.

[50] U. of Bergen IT Department. ‘Projects in tsd.’ (), [Online]. Available: https:
//www.uio.no/english/services/it/research/sensitive- data/
about/projects_in_tsd/projects_in_tsd.md.

[51] NTNU. ‘Tsd - tjenester for sensitive data.’ (2021), [Online]. Available: https:
//i.ntnu.no/wiki/-/wiki/Norsk/tsd+-+tjenester+for+sensitive+
data.

[52] J. H. Saltzer and M. Schroeder, ‘The protection of information in computer
systems,’ Communications of the ACM, vol. 17, no. 7, p. 8, 1975.

[53] ‘Safe for decision makers.’ (), [Online]. Available: https://www- int.
uio . no / english / services / it / research / sensitive - data / about /
whitepaper_tsd_v6.0_2020.pdf.

[54] ‘Safe (secure access to research data and e-infrastructure.’ (8.04.2022),
[Online]. Available: https://www.uib.no/en/it/131011/safe-secure-
access-research-data-and-e-infrastructure.

[55] Altexsoft. ‘Functional and nonfunctional requirements: Specification and
types.’ (2021), [Online]. Available: https://www.altexsoft.com/blog/
business/functional-and-non-functional-requirements-specification-
and-types/.

[56] ‘What is ssh public key authentication?’ (2021), [Online]. Available: https:
//www.ssh.com/academy/ssh/public-key-authentication.

[57] ‘Secure ftp - sftp.’ (2013), [Online]. Available: https://i.ntnu.no/wiki/-
/wiki/English/Secure+FTP+-+SFTP.

https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://docs.microsoft.com/en-us/windows-server/networking/dns/dns-top
https://www.mustbegeek.com/understanding-forward-and-reverse-lookup-zones-in-dns/
https://www.mustbegeek.com/understanding-forward-and-reverse-lookup-zones-in-dns/
https://www.geeksforgeeks.org/working-of-domain-name-system-dns-server/
https://www.geeksforgeeks.org/working-of-domain-name-system-dns-server/
https://www.techtarget.com/searchwindowsserver/definition/domain-controller
https://www.techtarget.com/searchwindowsserver/definition/domain-controller
https://www.quora.com/What-is-the-difference-between-a-domain-controller-and-a-DNS-server
https://www.quora.com/What-is-the-difference-between-a-domain-controller-and-a-DNS-server
https://www-int.uio.no/english/services/it/research/sensitive-data/about/whitepaper_tsd_v6.0_2020.pdf
https://www-int.uio.no/english/services/it/research/sensitive-data/about/whitepaper_tsd_v6.0_2020.pdf
https://www-int.uio.no/english/services/it/research/sensitive-data/about/whitepaper_tsd_v6.0_2020.pdf
https://www.uio.no/english/services/it/research/sensitive-data/about/projects_in_tsd/projects_in_tsd.md
https://www.uio.no/english/services/it/research/sensitive-data/about/projects_in_tsd/projects_in_tsd.md
https://www.uio.no/english/services/it/research/sensitive-data/about/projects_in_tsd/projects_in_tsd.md
https://i.ntnu.no/wiki/-/wiki/Norsk/tsd+-+tjenester+for+sensitive+data
https://i.ntnu.no/wiki/-/wiki/Norsk/tsd+-+tjenester+for+sensitive+data
https://i.ntnu.no/wiki/-/wiki/Norsk/tsd+-+tjenester+for+sensitive+data
https://www-int.uio.no/english/services/it/research/sensitive-data/about/whitepaper_tsd_v6.0_2020.pdf
https://www-int.uio.no/english/services/it/research/sensitive-data/about/whitepaper_tsd_v6.0_2020.pdf
https://www-int.uio.no/english/services/it/research/sensitive-data/about/whitepaper_tsd_v6.0_2020.pdf
https://www.uib.no/en/it/131011/safe-secure-access-research-data-and-e-infrastructure
https://www.uib.no/en/it/131011/safe-secure-access-research-data-and-e-infrastructure
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://www.ssh.com/academy/ssh/public-key-authentication
https://www.ssh.com/academy/ssh/public-key-authentication
https://i.ntnu.no/wiki/-/wiki/English/Secure+FTP+-+SFTP
https://i.ntnu.no/wiki/-/wiki/English/Secure+FTP+-+SFTP

Bibliography 80

[58] ‘Kanban, a brief introduction.’ (2016), [Online]. Available: https://www.
atlassian.com/agile/kanban.

[59] ‘What is kanban.’ (), [Online]. Available: https://d30s2hykpf82zu.cloudfront.
net/wp-content/uploads/2018/11/Kanban-for-Lean-Agile-Teams.
png.

[60] ‘Iterate faster, innovate together | gitlab.’ (2022), [Online]. Available: https:
//about.gitlab.com.

[61] ‘Latex, a document preparation system.’ (2022), [Online]. Available: https:
//www.latex-project.org.

[62] ‘Clockify.’ (2022), [Online]. Available: https://clockify.me.

[63] ‘Facebook messenger.’ (2022), [Online]. Available: https://www.messenger.
com.

[64] ‘Discord.’ (2022), [Online]. Available: https://discord.com.

[65] ‘Microsoft teams.’ (2022), [Online]. Available: https://en.wikipedia.
org/wiki/Microsoft_Teams.

[66] ‘Overleaf.’ (2022), [Online]. Available: https://en.wikipedia.org/wiki/
Overleaf.

[67] ‘Yaml.’ (2022), [Online]. Available: https://en.wikipedia.org/wiki/
YAML.

[68] ‘Pools.’ (2022), [Online]. Available: https://developers.cloudflare.
com/load-balancing/understand-basics/pools/.

[69] ‘Round-robin scheduling.’ (2022), [Online]. Available: https://en.wikipedia.
org/wiki/Round-robin_scheduling.

[70] ‘Configure health checks for your classic load balancer.’ (2022), [Online].
Available: https : / / docs . aws . amazon . com / elasticloadbalancing /
latest/classic/elb-healthchecks.html.

[71] ‘Cloud-init.’ (2022), [Online]. Available: https://cloudinit.readthedocs.
io/en/latest/index.html.

[72] ‘Install and configure samba.’ (), [Online]. Available: https://ubuntu.
com/tutorials/install-and-configure-samba#1-overview.

[73] ‘Smb.conf - samba.’ (), [Online]. Available: https://www.samba.org/
samba/docs/current/man-html/smb.conf.5.html.

[74] ‘How to map network drives with group policy (complete guide).’ (2022),
[Online]. Available: https://activedirectorypro.com/map-network-
drives-with-group-policy/.

[75] ‘Creating a windows active directory domain controller in oracle cloud in-
frastructure.’ (), [Online]. Available: https://blogs.oracle.com/cloud-
infrastructure/post/creating-a-windows-active-directory-domain-
controller-in-oracle-cloud-infrastructure.

https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban
https://d30s2hykpf82zu.cloudfront.net/wp-content/uploads/2018/11/Kanban-for-Lean-Agile-Teams.png
https://d30s2hykpf82zu.cloudfront.net/wp-content/uploads/2018/11/Kanban-for-Lean-Agile-Teams.png
https://d30s2hykpf82zu.cloudfront.net/wp-content/uploads/2018/11/Kanban-for-Lean-Agile-Teams.png
https://about.gitlab.com
https://about.gitlab.com
https://www.latex-project.org
https://www.latex-project.org
https://clockify.me
https://www.messenger.com
https://www.messenger.com
https://discord.com
https://en.wikipedia.org/wiki/Microsoft_Teams
https://en.wikipedia.org/wiki/Microsoft_Teams
https://en.wikipedia.org/wiki/Overleaf
https://en.wikipedia.org/wiki/Overleaf
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML
https://developers.cloudflare.com/load-balancing/understand-basics/pools/
https://developers.cloudflare.com/load-balancing/understand-basics/pools/
https://en.wikipedia.org/wiki/Round-robin_scheduling
https://en.wikipedia.org/wiki/Round-robin_scheduling
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-healthchecks.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-healthchecks.html
https://cloudinit.readthedocs.io/en/latest/index.html
https://cloudinit.readthedocs.io/en/latest/index.html
https://ubuntu.com/tutorials/install-and-configure-samba#1-overview
https://ubuntu.com/tutorials/install-and-configure-samba#1-overview
https://www.samba.org/samba/docs/current/man-html/smb.conf.5.html
https://www.samba.org/samba/docs/current/man-html/smb.conf.5.html
https://activedirectorypro.com/map-network-drives-with-group-policy/
https://activedirectorypro.com/map-network-drives-with-group-policy/
https://blogs.oracle.com/cloud-infrastructure/post/creating-a-windows-active-directory-domain-controller-in-oracle-cloud-infrastructure
https://blogs.oracle.com/cloud-infrastructure/post/creating-a-windows-active-directory-domain-controller-in-oracle-cloud-infrastructure
https://blogs.oracle.com/cloud-infrastructure/post/creating-a-windows-active-directory-domain-controller-in-oracle-cloud-infrastructure

Bibliography 81

[76] ‘Manila - shared filesystems service.’ (2021), [Online]. Available: https:
//docs.openstack.org/kolla-ansible/latest/reference/storage/
manila-guide.html.

https://docs.openstack.org/kolla-ansible/latest/reference/storage/manila-guide.html
https://docs.openstack.org/kolla-ansible/latest/reference/storage/manila-guide.html
https://docs.openstack.org/kolla-ansible/latest/reference/storage/manila-guide.html

Appendix A

Project Plan

82

Department of Information Security and
Communication Technology

DCSG2900 - Bachelor in Digital
Infrastructure and Cyber Security

Project Plan - Platform for Secure

Data Processing
ROSE

Written by:

Martin Kristensen Eide

Jørgen Mo Opsahl

Marius Raes

Anders Kampesæter Slaaen

January, 2022

Table of Contents

List of Figures ii

List of Tables ii

1 Background and Goals 1

1.1 About Us . 1

1.2 Background . 1

1.3 Project Goal . 1

2 Scope 2

2.1 Subject Area . 2

2.2 Task Description . 2

2.3 Limitations . 4

3 Project Organizing 5

3.1 Responsibilities and Roles . 5

3.2 Workflow and Group Rules . 5

3.2.1 Workflow . 5

3.2.2 Group Rules . 5

4 Planning and Reporting 7

4.1 Main Project Sections . 7

4.1.1 Development Model . 7

4.1.2 Method and Approach . 7

4.2 Plan for Status Meetings and Decision Points for the period 8

5 Quality Control 9

5.1 Documentation . 9

5.2 Code review and proofreading . 9

i

5.3 Project Progress Risk Analysis . 9

5.3.1 Consequence and Probability Category Explanation 9

5.3.2 Risk Analysis of Project Completion 10

6 Plan for Project Execution 12

6.1 Work Structure . 12

6.2 Deadlines . 13

7 Confirmation 14

List of Figures

1 Draft for the cloud infrastructure . 3

2 Breakdown of Work Structure . 12

3 Gantt chart . 12

List of Tables

1 Meeting days and meeting times . 6

2 Consequence Category Explanation 9

3 Probability Category Explanation . 10

ii

1 Background and Goals

1.1 About Us

ROSE stands for Raes, Opsahl, Slaaen, Eide, which are the four group members

who’s currently in the final semester of the 2019 digital infrastructure and inform-

ation security bachelor degree. Our interests are wide spread. Where some of our

members are more interested in the operations aspect of Information Technology,

others are more interested in the development aspect. However all members are

interested in the cybersecurity aspect, which is paramount in this thesis.

1.2 Background

Norwegian University of Science and Technology (NTNU) handles a lot of sensitive

information of varying degrees in research and academia. NTNU is currently de-

pendent on external services for storing and interacting with this data. This can be

problematic because of the nature of the data and poor experiences with the other

proprietary alternatives. This is why NTNU has decided that they want to have

their own infrastructure providing these services.

1.3 Project Goal

The goal of this project is to create a virtual infrastructure that automatically

deploys a scalable network with virtual machines for a group of endx— users and

storage to share, access and process their project data on a secure platform. This

system allows authorized users to edit and analyze stored data, with different levels

of authorization by interacting with FS (Felles Studentssystem) for students and

PAGA (HR portal for employees). The project will reflect our thought process and

why we decided to solve the problems the way we did in a final report.

We will not solve all the issues tied to this project, and will focus our scope to a few

components. See section 2.3.

1

2 Scope

2.1 Subject Area

The nature of the project will cover a wide range of IT focus areas. This include

network management, cloud management, risk management and infrastructure as

code for managing and scaling our virtual infrastructure.

2.2 Task Description

Our task will be to design, risk-assess and designing components of a virtual in-

frastructure that will allow students and employees on NTNU to work together on

sensitive data for their projects. We will not design all of them, due to our limited

time and the share size of the project. Our solution must empathize the sensitivity

of data shares and include access control of who is allowed to read or write different

data sets. This is specially important for health data that is sensitive. Our employer

needs the infrastructure to be completely automated, so that project managers can

order resources without needing to contact support. Projects must be kept separate

from each other to ensure data integrity. Users should be able to work on datasets,

viewing and editing, without being able to export it. It should also be possible for

users to work on different data sets within the infrastructure without being allowed

to extract the data. The infrastructure will be hosted on NTNU’s SkyHiGh cloud.

Specific tasks for the bachelor project is as follows:

• Design the infrastructure for such an solution

• Carry out a risk assessment of the designed infrastructure

• Authenticate and authorize users of the system based on FS (Felles Stu-

dentssystem) for students and PAGA (HR portal for employees).

• Implement some crucial modules for the infrastructure:

– Automate the creation of a OpenStack Network for each project, and

their components: Virtual Machines (VM) used to interact with the data,

logging server for centralized logging, Storage Area Network (SAN) for

storage, file server for interacting with the SAN, and backup file server.

– Develop a system for allocating VMs to different users.

– Create the infrastructure for logging access history of the projects. This

should interact with NTNU’s centralized logging service.

2

– Create an administration component, where the administrator can add

isolated project networks, manage users, etc.

– Design secure solutions for importing shared data.

– Implement import of data (Low priority)

– Host a Jupyter hub in each project network for statistic analysis of the

data sets (Low priority)

The following figure shows the first draft of how we imagine our infrastructure will

look like. Note that some of the components will not be prioritized, as specified in

the ”Limitations” section.

Figure 1: Draft for the cloud infrastructure

3

2.3 Limitations

The long term goal for NTNU is for this platform to provide a complete cloud

platform where project owners can easily order virtual environments for their users to

upload, store, process and extract data if the user is authorized for it. Implementing

all these features is not possible in our bachelor project due to limited time and

resources. Our group will therefore focus on certain parts of the infrastructure. We

will try to make everything we do implement easily maintainable and extendable for

future efforts.

Although the infrastructure is built to handle sensitive data, it is important to note

that it is the responsibility of those that process the data to risk assess the processing

of said data for the given purpose. This risk assessment must be done before any

collection and storage of data begins. It is the responsibility of the data owners to

make sure use of the ROSE infrastructure is in accordance to NTNU guidelines and

external regulations.

The parts we are NOT going to focus on includes:

• Optimize the SAN implementation

• Backup of data stored.

• Authentication for the creator of a new project.

• Export of data

• Frontend-web-portal, however we will create the backend API to handle the

requests and a basic frontend.

4

3 Project Organizing

3.1 Responsibilities and Roles

Project Leader: Anders Kampesæter Slaaen

Vara Leader: Jørgen Mo Opsahl

Secretaries: Martin Kristensen Eide, Marius Raes

3.2 Workflow and Group Rules

3.2.1 Workflow

For filesharing, code and documents used in our thesis, we have created a GitLab

repository for keeping track of all our work. We use the GitLab issue board to keep

track of our tasks for the bachelor thesis. We have four boards, open tasks, tasks in

progress, one for peer review and one for closed tasks. Each member will move their

task, as the status of the tasks changes. After a team-member is done with their

tasks, they will move the issue from ”In progress” to ”Peer review”. Thereafter the

other group members will review the code, and deploy the final edition.

Each member will log their time spent working on the project by using the website

Clockify.me. We have created different categories in Clockify to keep track of how

much time is spent on each task throughout the project period.

We have created a Facebook groupchat that we use for text communication and

a Discord channel for voice communication when we have digital meetings. For

communication with our supervisor and client we have created Teams channel, where

we can share files and notes.

3.2.2 Group Rules

Group Meetings and Designated Work Sessions

Each week, the group will meet on given times to work on the bachelor task. These

meetings will be as following:

In addition to the planned meetings and sessions, we will distribute work each week

during the Monday meeting. Every member must work on their assigned tasks,

which can be done in groups or individually.

5

Monday 14.15 - 15.00 (Digital team meeting)
Tuesday 12.15 - 18.00 (Physical working session)

Wednesday 11.15 - 18.00 (Physical working session)
Friday 13.15 - 16.00 (Digital working session)

Table 1: Meeting days and meeting times

Absence

If a member is unable to join the scheduled meeting or work session, he is obligated

to notify the rest of the team as soon as absence is known in written form either

through mail or designated group Messenger chat.

If the member is absent for a prolonged period of time and is assigned a time

sensitive task, the rest of the group has to delegate this task to another member if

at all possible.

Logging

Members are required to log their own time from meetings, group work sessions,

and individual work sessions via the groups’ project on Clockify.

Workload

Each member is expected to be able to work for up to 30 hours each week until the

project deadline.

Violations

Group rule violations will result in a written warning. Three written warnings to

one individual group member will result in a meeting with the groups’ supervisor

(Kelly), with all members present.

6

4 Planning and Reporting

4.1 Main Project Sections

4.1.1 Development Model

We will use the Kanban approach from the Lean method for software development

as our main development model to structure our work. To realize the model we use

the Issue Board feature offered in the GitLab solution hosted by the Department

of Computer Science on NTNU Gjøvik. We consider this to be a good approach

since it will give a good overview of all the tasks to be done during the course of

the project. We will follow the concept of Divide and Conquer, where we will divide

the big tasks into several smaller tasks. In our Kanban board, we have sections for

tasks classified as open, in progress, and closed. We prefer this approach, since it

will make it easy for us to assign tasks between the different members, and make us

focus on the tasks that are weighted with higher priority.

4.1.2 Method and Approach

The final product should include working modules for a secure file sharing and edit-

ing system. Since such a system can be quite large and complex, containing a lot of

different modules, protocols and services. We will therefore design our solution and

illustrate the design before starting to develop. It will be a complex and thorough

illustration with reasoning and explanation of every functionality. We will then sub-

mit this model to our client and our supervisor and improve it on feedback. We will

also perform routinely risk assessments of our design and evaluate the confidential-

ity, integrity and availability of the design.

When it comes to development of the technical infrastructure, we will use a test

environment in SkyHiGh for testing our solution with mock-up data. We will have

to be careful with how we manage this data, since it should simulate real sensitive

data with a high score in confidentiality. This will be an iterative process, meaning

we most likely will have to roll out several versions on the test environment before

achieving the preferred result. In similarity to the development of the technical

infrastructure, the illustrative design of the infrastructure and the creation of the

risk assessment should be iterative processes where we expect a number of versions.

7

4.2 Plan for Status Meetings and Decision Points for the

period

On every Wednesday during the project period, we will have a short meeting with

our supervisor Jia-Chun Lin, referred to as Kelly, from 10.00 - 10.30. In these meet-

ings Kelly will give us feedback so we can improve our work, by providing Kelly a

status report of the work done in the last week as well as plans for further work. In

addition to these status meetings, we do have internal status meetings each Monday

from 14.15 to 15.00 where we review our work. In these meetings we will also review

and assign further work, assigning specific tasks to each team member. This will

act as guiding for work done by the group during the week.

We do also have an agreement with our client, where we are to contact him every

time we have a clear plan for specific modules and designs we plan to develop.

We do also have a direct contact line with him where he is part of our Microsoft

Team, making it is possible to ask questions without necessarily arrange a physical

or digital meeting.

8

5 Quality Control

5.1 Documentation

All source code and configuration files should be well documented both in the actual

document with comments and trough other documents describing the code, how to

use it and deploy it. Web APIs created should be documented and examples should

be given on how to interact with them.

The strucure of modules and the system as a whole should be documented using

UML and data flow diagrams, to describe how they work and how users interact

with them. All documentation files should be available in the Gitlab repository.

5.2 Code review and proofreading

Every document we deliver should be proofread at least once by all group members

to look for and correct mistakes. In addition the main report will be reviewed by

our supervisor Kelly. We will deliver a first draft the 31st of March and Kelly will

help us continuously improve the document before the final delivery.

Code written by a team members should be reviewed by at least once by another

member to make sure it works as expected and is free of bugs and security flaws.

This also encourages good documentation and helps other members gain a better

understanding of the project implementation.

5.3 Project Progress Risk Analysis

5.3.1 Consequence and Probability Category Explanation

Consequence
High A high consequence for this project is defined as something that’s

detrimental to the completion or success of our project.
Medium A Medium consequence for this project is defined as something that

would hinder our group in completing the project to a satisfying
level of completion.

Low A Low consequence for this project is defined as something that
would not hinder our group in completing the project to a satisfying
level of completion.

Table 2: Consequence Category Explanation

9

Probability
High A high probability for this project is defined as something that’s

very likely/guarantied to occur during the project period.
Medium AMedium probability for this project is defined as something that’s

likely to occur during the project period.
Low A Low probability for this project is defined as something that’s

unlikely to occur during the project period.

Table 3: Probability Category Explanation

5.3.2 Risk Analysis of Project Completion

Risk Scenario 1

Action: Our scope is to wide

Consequence: Medium

Probability: Medium

Preventive measures: Address Eigil about the size of our scope.

Risk Scenario 2

Action: Project member suffers prolonged issues

Consequence: Medium

Probability: Low

Preventive measures: Inform other members early so plans can be made too

work around the issues

Risk Scenario 3

Action: The group goes off track and loses its focus, resulting in a low quality

product

Consequence: Medium

Probability: Low

Preventive measures: Continuous communication and status update with Eigil

Obrestad

Risk Scenario 4

Action: Not meeting deadlines set in Gantt chart

Consequence: Low / Medium

Probability: High

Preventive measures: Weekly meetings with Kelly to keeps the project on track

Risk Scenario 5

10

Action: Disagreement within group

Consequence: Medium

Probability: High

Preventive measures: Open communication within the group to catch issues

early. A meeting with Kelly will be called if issues can’t be resolved within the

group.

11

6 Plan for Project Execution

6.1 Work Structure

Figure 2: Breakdown of Work Structure

Figure 3: Gantt chart

12

6.2 Deadlines

• Project Agreement: January 31st

• Project Plan: January 31st

• First draft thesis: March 31st

• Thesis: May 20th

13

7 Confirmation

I have read the project plan and agree with its content.

Martin Kristensen Eide

Jørgen Mo Opsahl

Marius Raes

Anders Kampesæter Slaaen

14

Appendix B

Project Agreement

100

Appendix C

Project Description

107

Platform for sikker databehandling

NTNU IT - Drift - Server

October 19, 2021

Oppdragsgiver

Oppdragsgiver er seksjon for IT Drift i IT-avdelingen p̊a NTNU. Kontaktperson
er Eigil Obrestad.

Bakgrunn

P̊a NTNU jobber studenter og forskere med å analysere ulike datasett. En del av
disse datasettene er mer sensitive enn andre. For eksempel er det i helsesammen-
heng analysert datasett som inneholder helseopplysninger, i informasjonsikker-
hetssammenheng analysert datasett som inneholder biometriske opplysninger
og s̊a videre. N̊ar slike datasett behandles og lagres er det spesielt viktig at
dette skjer p̊a en sikker m̊ate.

NTNU har i dag noen løsninger hvor slike sensitive data kan lagres, og man
har avtaler med ulike eksterne tjenester hvor slik informasjon kan lagres og be-
handles p̊a en trygg m̊ate. Disse tjenestene fungerer bra i noen sammenhenger,
samtidig som at de kommer litt til kort i andre sammenhenger. Det er derfor
startet et prosjekt med å lage en trygg infrastruktur hvor man b̊ade kan lagre
og behandle sensitive data.

En slik løsning har krav som at den skal automatiseres, ulike prosjekter skal
holdes separate, og man skal tilby brukerne gode muligheter til å jobbe p̊a data
uten at man nødvendigvis har muligheten til å hente data ut. Målet er å bygge
en løsning som er modulær, og kan utvides i fremtiden for å møte fremtidige
behov.

1

Oppgaven

Denne oppgaven vil g̊a ut p̊a å designe, risikovurdere og bygge enkelte kompo-
nenter av en slik løsning. Disse komponentene kan realiseres p̊a en rekke ulike
m̊ater, men felles stikkord er ”automatisering”, ”infrastruktur som kode” og
”openstack”. Eksempler p̊a komponenter man kan fokusere p̊a kan være:

• Sikker importering/eksportering av data

• Sikre virtuelle arbeidsstasjoner for å jobbe med data.

• Sentral administrasjonskomponent

• Selvhjepsløsning for å administrere løsningen.

Lista er kun for inspirasjon, og p̊a ingen m̊ate uttømmende eller begrensende.
NTNU IT legger opp til at studentene skal f̊a rom til å forme oppgaven mot de
deler studentene finner mest spennende.

2

Appendix D

Time tracking

110

Anderks's workspace 1

Summary report
01/01/2022 - 31/12/2022

Total: 1211:38:11 Billable: 1211:38:11 Amount: 0.00 USD

Project

bachelorjobbing 1211:38:11 100.00%

Task

Report - bachelorjobbing 448:46:59 37.04%

heat-template - bachelorjobbing 182:24:49 15.05%

project_plan - bachelorjobbing 113:07:28 9.34%

orchestration logic - bachelorjobbing 100:06:43 8.26%

research - bachelorjobbing 97:29:08 8.05%

Anderks's workspace 2

dc - bachelorjobbing 69:15:39 5.72%

møte - bachelorjobbing 54:07:24 4.47%

API - bachelorjobbing 52:46:50 4.36%

Access control - bachelorjobbing 39:12:26 3.24%

Infrastructure_design - bachelorjobbing 26:34:35 2.19%

web gui - bachelorjobbing 18:01:19 1.49%

logging - bachelorjobbing 09:44:51 0.80%

Project / Task Duration Amount

bachelorjobbing 1211:38:11 0.00 USD

Report 448:46:59 0.00 USD

heat-template 182:24:49 0.00 USD

project_plan 113:07:28 0.00 USD

orchestration logic 100:06:43 0.00 USD

research 97:29:08 0.00 USD

dc 69:15:39 0.00 USD

møte 54:07:24 0.00 USD

API 52:46:50 0.00 USD

Access control 39:12:26 0.00 USD

Infrastructure_design 26:34:35 0.00 USD

web gui 18:01:19 0.00 USD

logging 09:44:51 0.00 USD

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Anders Kampesæter Slaaen
Jørgen Mo Opsahl
Marius Raes
Martin Kristensen Eide

Platform for Secure Data
Management

Bachelor’s thesis in Digital Infrastructure and Cyber Security
Supervisor: Jia Chun Lin
May 2022

Ba
ch

el
or

’s
th

es
is

	Preface
	Summary
	Sammendrag
	Table of Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Background
	Our client ntnu
	Current solutions
	Requirements

	Project Goals
	Project Scope
	Project Group
	Thesis Structure

	Background
	iaas
	OpenStack
	SkyHiGh
	Load Balancing rdp sessions
	Cloud-Init
	Storage
	iac

	api
	Web API
	Flask
	wsgi

	Docker
	Dockerfile
	Docker Compose

	ad

	Related Work
	Requirement Specification
	Description of our Service
	Requirements
	Functional Requirements
	Non-functional Requirements

	Technical Design
	System Architecture
	Network Design
	API

	Components
	Virtual Workstations
	Storage and File Server
	File Imports and Exports
	Load balancing
	Logging Service
	ad

	Development Process
	Development Model
	Documentation
	Routines
	Tools

	Implementation
	API
	Flask
	Handling Requests

	Orchestration Logic
	Orchestrator
	Background Tasks
	Logging

	Heat Templates
	Base
	Load balancing RDP sessions
	File server
	Windows Clients

	dc
	Deployment
	Logging
	Deployment Step by Step

	Evaluation
	User Testing Results
	Evaluation Conclusion

	Discussion
	Risks and Security Aspects
	Challenges During the Project

	Closing Remarks
	Learning Outcome
	API
	iac
	Windows

	Conclusion
	Future Improvements

	Bibliography
	Project Plan
	Project Agreement
	Project Description
	Time tracking

