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Abstract

Cyber analysts are the keystone of modern cybersecurity, analyzing
events and alerts, securing networks, computers, and servers, and
responding to incidents. Nevertheless, analysts are not an infinite
source, and as with most others, their time is limited. In addition,
the number of alerts likely increases over time. Automating one of
the most critical parts of their job, the alert analysis, would free up
time for work on additional security. This thesis presents a method
for sorting out most of the alerts, leaving the outliers for manual
evaluation, using Principal Component Analysis (PCA), Autoencoding
Neural Network, K-means clustering, and time series. This might
reduce the strain of alert analysis on the analysts, counteracting
fatigue from loads of alerts, and freeing time for additional and better
security. Our method reduced the alert dataset to one-fifth of its
original size. Comparison with a small set of manually classified alerts,
evaluated by analysts at Sikt, shows promising results in keeping the
interesting alerts in the reduced dataset.






Sammendrag

Sikkerhetsanalytikere er hjgrnesteinen i moderne informasjonssik-
kerhet hvor de analyserer logger og alarmer, sikrer nettverk, data-
maskiner og tjenere, og handterer informasjonssikkerhetshendelser
som oppstar. Analytikere er ikke en utgmmelig kilde, og som andre
ressurser sa har de begrenset med tid. I tillegg gker sannsynligvis
antall alarmer over tid. A automatisere en av de mest, om ikke den
mest kritiske, delen av jobben deres, a analysere alarmer, kan fri-
gjere tid for & lage enda sikrere systemer. Denne masteroppgaven
presenterer en fremgangsmate for & sortere ut de fleste alarmene,
slik at bare de avvikende alarmene blir igjen til analytikerne. Frem-
gangsmaten baserer seg pa PCA, selvkodende neurale nett, klustering
med K-means, og tidsserier. Dette vil kanskje redusere lasten som
analyse av alarmer kan veere for analytikerne, og at dette frigjer tid sa
analytikerne kan jobbe mot enda mer og bedre informasjonssikkerhet.
Fremgangsmaten var reduserte datasettet med alarmer til en femte-
del av opprinnelig stgrrelse. Da vi sammenlignet dette datasettet med
et lite datasett som analytikere hos Sikt hadde analysert for oss, viste
dette lovende resultater. De fleste alarmene som de hadde markert
som interresante forble i det reduserte datasettet.
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Introduction

Cyber security analysts struggle to catch up with an increasing amount of alerts
and security events. When sampling a random day during Spring 2021 from the
dataset studied by this thesis, more than 71 000 alerts were observed. Even with
an optimistic estimate of one alert processed per minute, an analyst will only
cover roughly 450 alerts. An additional challenge is that the triage process is not
recorded in a structured way, leaving us without any labels to work with.

Sikt is not the only one who noticed how the alert load received could affect
the receivers. Lin et al.[LCC*18] describe it as "alert fatigue" when referencing
a 2014 report from the Cybersecurity firm FireEye[Fir14] that claims more than
50% of all organizations received more than 17 000 alerts a week, in 2014, with
more than 51% of those alerts being false positives.

This thesis is done in collaboration with the Cybersecurity Centre at Sikt. Sikt
is an agency of the Norwegian government under the Ministry of Education and
Research.

1.1 Problem description

In this thesis, our goal is to produce a curated feed of alerts, primarily containing
the outliers. We choose to look at the outliers because the cybersecurity analysts
at Sikt have claimed that most alerts are irrelevant. An alert can be irrelevant
because it is unactionable, so the analysts cannot do anything with it regardless
of whether the alert is a true or false positive. While for the remaining alerts,
most are false positives. We, therefore, assume that outlier alerts are more
attractive than non-outliers.

The problem description also includes some sub-goals that should help with
the progress of the primary goal. Finding the auxiliary data sources that the
analysts typically use in their analysis could make the context available to the
automation. This also applies to some normalizations and feature derivations
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created based on their domain knowledge.

We look at three different families of data science methods for this thesis
because they are exciting topics discussed by the media and many cybersecurity
professionals. The analysts at Sikt already treat the alerts as time series because
their usual analysis tool, Humio, by default, has a plot of the alerts over time.
Machine learning and deep learning were technologies that potential vendors
have often presented as the be-all and end-all of cybersecurity, often without
details about how it is implemented to be helpful. Piqued by their often vague
claims, we settled for trying those technologies.

1.2 Contributions

This thesis contributes a novel method for detecting abnormal Network Intrusion
Detection System (NIDS) alerts through outlier detection across multiple algo-
rithms. We use statistical methods on time series to detect the outliers, and PCA
and Deep Learning compress the alerts before clustering them and looking for
outliers in the clustered data. This method is not limited to the algorithms used
in this thesis and can be expanded with other outlier detections if so desired.
The compressed alerts from PCA and the autoencoder can serve as a basis for
other outlier detections or classifications. The identified auxiliary datatypes can
be used for more comprehensive analyses or extended context.

1.3 Outline

This thesis is divided into eight chapters, with chapter 1 being this introduction.
The theory is covered in chapter 2, Related works in chapter 3, and the data and
preprocessing in chapter 4. These chapters cover the preparations necessary
for this thesis. Then we will cover the methods used in chapter 5. The results
are presented and analyzed in chapter 6. The discussion and future works are
covered in chapter 7. Finally, there is chapter 8, which contains this thesis’s
conclusion.



Background Theories

The following sections cover the necessary theory for this thesis. First, we look
into the general idea of Network Intrusion Detection Systems in section 2.1, then
the specifics of Suricata NIDS in section 2.2. Some general theory on machine
learning is covered in section 2.3, while the theory of autoencoders, within
neural networks, and Principal Component Analysis is covered in section 2.4
and section 2.5, respectively. The clustering theory is in section 2.6, and the
time series is in section 2.7. Finally, we look at some outlier detection for the
evaluation in section 2.8.

2.1 Network Intrusion Detection System

An Intrusion Detection System (IDS) is used to identify and warn about suspicious
activity in the monitored domain. For cybersecurity, two monitoring types are the
most common, host-based and network-based. Host-based intrusion detection
systems (HIDS), which are not a part of this thesis, are also known as endpoint
detection systems and, as such, need to be installed on the device to monitor it.
Network-based intrusion detection systems, or just Network Intrusion Detection
System (NIDS), can be deployed at central locations in a network and thus
monitor all traffic to and through that network location. For instance, the central
locations can be the gateway, between network segments, or at the core router.

As covered by the taxonomy from Hindy et al. [HBBT 18], there are multiple
designs for an IDS, especially around the detections. Branch 4 of the taxonomy
covers these divisions as signature-based and anomaly-based detection, including
a possible hybrid. Anomaly-based IDSes are further divided into how the anomaly
is detected through statistics, machine learning, or finite state machines.

IDSes can be designed with varying degrees of distribution, and different
parts of the detection can be distributed. Hindy et al. [HBB' 18] cover these in
branch 2, which divides an IDS into different groups based on its Decision-Making
(2.1), Infrastructure (2.2), and the Computation Location (2.3).
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2.2 Swuricata

Suricata is an open-source Network Intrusion Detection System (NIDS) that is
developed by the Open Information Security Foundation (OISF)!. Suricata is a
signature-based IDS, which primarily creates events when a signature is detected.
All these events have the type of "Alert". Suricata servers work independently,
but the resulting events can be sent to a centralized data store. The resulting
alerts are deterministic when detecting the same traffic using the same rule set
on different but similarly configured servers.

Suricata has the concept of rules which can detect 0 or more signatures.
The rules can be one of two types, flow-based or packet-based. For flow-based
rules, such as those looking at HTTP traffic, the rules can be written to detect
signatures across multiple packets. The Suricata engine handles gathering,
deduplicating, and normalizing the individual packets into a flow. Packet-based
rules only look at a single packet at a time, such as a single UDP packet. In
addition to detection based on signatures, Suricata can mark a host, a pair of
hosts, or a flow, with a "bit". Hosts are marked using hostbits or Xbits, while
flows are marked using flowbits. These "bits" can then be checked in place of a
signature. These methods can also be combined so that a bit is sat or checked
together with the signature. For instance, having one rule to detect Windows
Updates, and marking those flows as Windows Update, can allow other rules that
detect the download of Windows executables to ignore that traffic.

Suricata can also create other event types, such as logging all DNS traffic.
The different protocols can be enabled in the configuration and work similarly
to creating a rule that matches all the traffic of the enabled protocols. Enabling
logging of different protocols can make Suricata act as part of a collaborative
IDS, where it can send the events to a centralized location for further detection
or processing, such as through Anomaly-based detection. Another configuration
of Suricata can make it a Network Intrusion Protection System, where it works
as a deep-packet inspecting firewall based on the rules it has.

2.2.1 Rule format

Suricata rules consist of three main parts, the action, the header, and the options.
The action is what Suricata should do when the rule is matched. Only "pass"
and "alert" are usable actions when running detection mode. Five other actions
are available when running Suricata in inline mode as an intrusion protection
system, which drops, rejects silently, and rejects with a warning to either source,
destination, or both.

Lhttps://oisf.net/
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The header of the rule contains the protocol, source, destination IP and port,
and the direction of the traffic. Suricata checks that the traffic is of the selected
protocol, including when used by higher-level protocols. For instance, if Suricata
looks at HTTP traffic, it can trigger an alert on a TCP rule but not a UDP rule.
The source and destination’s IPs and ports can, in addition to a single IP or Port,
be a set of IPs or ports, or "any" to accept all legal values. The direction is either
"->" or "<>", used to indicate whether the Suricata should accept both orders of
the source-destination pair.

The Rule options contain keywords and keyword-value pairs, ending with
a semicolon. There are multiple sets of keywords for each of the supported
protocols, from IP, TCP, UDP, and ICMP, to higher tier protocols like HTTP,
DNS, SIP, and MQTT. The flow- and hostbits that were covered earlier are also
considered keywords. The meta keywords describe the rule, such as the name,
rule id, revision, references, and "metadata", a nested key-value list, separated by
commas, used to include free form metadata about the rules. There are attempts
to standardize the schema of the metadata keyword, such as "BETTER schema"?.

An example rule is shown in Listing 2.1. This rule was made to generate an
illustrative alert on a pcap created with scapy-pcap®. The words in light pink in
the listing are keywords. The first one is the action, "alert", for this rule. This
indicates how Suricata should handle traffic matching the rule. This is useful as
Suricata can be used as an Intrusion Protection System (IPS), where this is the
option that can block traffic.

Next is the header of the rule. Here the protocol is placed, "tcp" for this rule,
which is used to tell Suricata what protocol to check with this rule, so this rule
will not, for instance, be used to check a UDP packet. The other content of the
headeris "1.1.1.11 any ->1.1.1.14 any", which tells Suricata that this rule should
only apply to traffic from 1.1.1.11 to 1.1.1.14 at any source and destination port.

The final part of the rule, the rule options, is also the largest, that is, ev-
erything within the parenthesis in the listing. The options can vary depending
on the protocol used in the header, so a sample of typical options is used here.
First, we have "msg", the name of the rule, used to give a quick way for humans
to read what the alert is attempting to detect. Then there is "content", which
looks for the value given in the payload. In this case, "Alqghv", a random string
from the PCAP  is looked for in the payloads. "flow" is an option to limit noise in
that "established" and "to client" are requirements for the flows that this rule
should alert on. "established" asks for a flow after the three-way handshake,
and "to_client" asks for traffic only from the server. Then there are some meta
keywords, "reference" is a way to show sources of the rule, "metadata" is a key-

2https://better-schema.readthedocs.io/en/latest/
Shttps://github.com/vnetman/scapy-pcap
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value list for extra info. "classtype" is referencing a class from a classification
file that Suricata uses to prioritize alerts, which is configurable by the users of
Suricata. "sid" is the rule id, a unique numerical identifier. Furthermore, "rev" is
the revision number used to optimize a lot of rule processing, as most tooling
ignores already seen rules if the revision is the same.

alert tcp 1.1.1.11 any -> 1.1.1.14 any (msg: "alert"; \
content: "Alqghv"; flow:established,to_client; \
reference:url,example.com; metadata:author dfkoren; \
classtype:string-detect; sid:2; rev:1;)

Listing 2.1: Example of a Suricata rule, created to help illustrate how the rules
work and to generate an alert from a generated PCAP.

2.2.2 Alert format

Suricata output, including alerts, are available in a couple of different formats,
but we will only cover the Extensible Event Format (EVE) JSON output here, as
that is the one used in the source data of this thesis. As with the Suricata rules,
which allow for protocol-specific keywords, the EVE JSON alerts contain different
data based on the rules’ protocol. The common schema of the output contains a
timestamp, event type, and any information about the related PCAPs if Suricata
is generating them. Then there is the alert section which contains information
about which rule triggered, including the metadata of said rule. The IP-port-pair
of the communicating parties that triggered the alert is stored. The information
about the flow is stored in a flow section, which covers sizes, packet counts, and
start time of the flow. The output greatly depends on how the Suricata instance
is configured, but a sample is shown in Listing 2.2.

—~

"timestamp": "2022-02-10T11:00:20.013333+0100",
"flow_id": 1122135368007680,
"event_type": "alert",
"src_ip": "1.1.1.11",
"src_port": 80,
"dest_ip": "1.1.1.14",
"dest_port": 1050,
"proto": "TCP",
"alert": {
"action": "allowed",
"gid": 1,
"signature_id": 2,
"rev": 1,
"signature": "alert",
"category": "A suspicious string was detected",
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"severity": 3,

"metadata": {
"author": [
"dfkoren"
]
}
i
"flow": {
"pkts_toserver": 54,
"pkts_toclient": 54,
"bytes_toserver": 2916,
"bytes_toclient": 74254,
"start": "2022-02-10T11:00:00.000000+0100"
}

}

Listing 2.2: An example alert from the rule in Listing 2.1. This alert was
generated to illustrate how the Suricata alert usually looks.

2.3 Machine learning

Machine learning is the concept of algorithms that summarize, or learn from, the
input data without having a developer specify how. This is also known as training
the algorithm using experience [GBC16, Chapter 5.1.3]. The trained algorithm
can then be used to make predictions on unseen data. This new input is often
expected to have not been part of the training. For instance, the algorithm is
trained on an existing data set to create the clusters, then used to cluster new
data. These clusters may also uncover some previously unknown structures in
the data. New but similar data (i.e., in the same format) can then be mapped into
one of the clusters [LRU20].

2.3.1 Supervised learning

The class of supervised machine learning algorithms depends on a set of data that
contains the desired output, such as the classification of the data. An example
is the MNIST dataset [LBBH98] which contains handwritten digits with labels
of the correct digit. Here the algorithm can try to classify the image it sees and
then check and correct with the answer provided by the dataset.

An advantage of supervised learning is that the labels can be used to calculate
performance metrics, such as precision and recall[GBC16, Chapter 11], without
gathering new data or labeling new data (as it should already be labeled). Labels
are also the main disadvantage, unless the data gathering includes the label
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natively in some way, getting the data labeled is usually an expensive, time-
consuming, and possibly biased process[BC19].

2.3.2 Unsupervised learning

It is unsupervised learning when a machine learning algorithm can be trained
without labels. Unsupervised machine learning often assumes that the dataset
has some random distribution from which each data point is sampled. Enough
samples will then give the data’s probability distribution, predicting the output
based on the input.

An advantage of using an unsupervised machine learning algorithm is that the
data can be used without regard for labels, allowing more datasets to be used.
There are still advantages to using labeled data, as the labels can help validate
the results. On the other hand, unlabeled data is more of a blind approach without
the possibility to validate the results through labels|GBC16, Chapter 5.1.3].

2.4 Neural Network

When training a neural network, the data is passed from the input neurons,
through the network, to the output neurons. The output is then compared to the
target, and the error is passed backward through the network. This is called
backpropagation. The training process is divided into epochs, where each epoch
goes through the whole dataset once. The epochs can be subdivided into smaller
batches, a subset of the data that gets bundled together, and then the cumulative
error is passed back through the network.

The data is usually split into multiple sets, training and test sets. If, after
training, the error is still high for both the training set and the test set, then the
model is underfitting. This means that the network cannot represent the whole
dataset, and the network would need to be redesigned, such as increasing the
number of neurons in the thinnest layer to fit all the data. On the other hand,
if the training set error is low, while the test set error is still high, the model
is overfitting. Fixing overfitting is either done by reducing the training time or
through regularization.

Depending on how the neural network is initialized, adding a regularization
layer, such as a dropout layer, which randomly sets values from the previous
layer to zero, reduces the overfitting of the model. This can also help remove
symmetries from networks if all initial values are the same.
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2.4.1 Autoencoder

Autoencoder is a method for getting a neural network to train on recreating
its inputs. The algorithm can, for instance, reduce the number of dimensions
used to represent the data. Autoencoders are often based on neural networks,
a part of the machine learning subarea of deep learning. The autoencoder can
be considered as two different parts. The first part compresses the input data
down to the desired size and is trained to do this better and better. The second
part trains to reconstruct the original data from the compressed representation.
This has two advantages which this thesis will use, it does not require any labels
for the data, and the accuracy of the size reduction can be shown through the
end-to-end error.[GBC16, Chapter 14]

Figure 2.1 illustrates how an autoencoder looks when created with a neural
network. The main components that should be noted are the boxes, the neurons,
which are organized as layers, being fully interconnected between each layer.
The input layer directly maps to the input data and only includes a score that
represents the corresponding input. In the remaining layers, the values are
generated from the inputs, the outputs from the previous layer, scaled by weights.
The weights are changed through training the neural network.

Input Layer 1 Layer 2 Layer 3 Output

Encoder Decoder

BIAAS
0L

N-2

1 N

RIS

Figure 2.1: This is an illustration of how an autoencoder neural network can be
structured.
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To evaluate the autoencoder performance, one can use standard error algo-
rithms to measure how far the autoencoder’s prediction is from the original data,
such as Mean Squared Error, Mean Absolute Error, Binary Crossentropy, or R
squared.

2.5 PCA - Principal Component Analysis

Principal Component Analysis (PCA) is a technique for reducing the dimensional-
ity of data vectors by finding their orthonormal axes that keep most of the data’s
variance when having the data projected upon [Hot33]. Tipping and Bishop
[TB99] have a fuller introduction to PCA, which the reader is referred to for
additional information.

The number of principal components is an essential aspect of the PCA. This
thesis uses the scikit-learn[PVG'12] implementation of PCA, which has three
modes of selecting the number of components to use. The default is to use either
the sample count or the feature count of the dataset; the smaller is selected. The
second way is to specify the desired number of components, and the third is to
select the amount of variance that should be explained. The explained variance
is the sum of the variance explained by each component.

2.6 Clustering

The data is often not distributed equally throughout the domain in a large dataset.
There might be areas of the domain with higher concentrations of data points.
Grouping these data points might identify some shared features across them.
This process is called clustering.

The dataset is partitioned into smaller segments through some partitioning
scheme. This can be decided by the proximity to its neighbors, the proximity to a
cluster center (centroids), or another metric. If the clustering is iterative, the
clusters are updated after having the data points assigned to them. For instance,
the cluster centroid depends on which data points are members of the cluster,
and if the centroid is moved, the members might have changed.

A clustered dataset has a couple of metrics that can evaluate the clustering,
including whether the number of clusters is correct. Each cluster can also
be represented by its centroid. Each point is assigned to one cluster, and it is
possible to find the distance from the point to its and the other clusters’ centroids.
This gives a measure of the centrality of the point in its cluster. If the variation
of the distances to the centroid in a single or a few clusters is high, that might
indicate that there should have been at least one more cluster.



2.7. TIME SERIES 11

There are many different families of clustering algorithms, such as Hierar-
chical, Graph Theory-based, and Neural Networks-based, which use different
methodologies for splitting the data set into clusters. The hierarchical algorithms
use a tree, while the other two examples use Graph Theory and Neural Networks-
based algorithms, respectively[XW05]. Rokach and Maimon[RMO05] present a
more comprehensive overview of data clustering.

2.6.1 K-Means

K-Means is a Squared Error-based clustering algorithm for partitioning the data
into K clusters[XWO05]. It consists of three steps, where the last two are repeated
until the clustering is stable, i.e., the clustering has converged. K points are
generated as the initial cluster centroids in the first step. This can be random
points in the domain or existing points from the data. Then the other points
are assigned to the closest cluster centroid, which is the second step. The third
step is to move each cluster centroid to the mean of the cluster members. If the
cluster centroids have changed, go back to step two.

When finding the correct number of clusters for a clustering, such as K-Means,
one can use the Elbow method and the Silhouette score. The Elbow method looks
at how much of the variance is explained for each number of clusters to identify
at which point the return of adding another cluster has diminished so much that
it is not worth it anymore[Tho53]. The elbow method can also be used with the
inertia of the clustering, which in Scikit-Learn is "[the s]Jum of squared distances
of samples to their closest cluster centerl[...]"[PVGT12]. Silhouette score is the
mean of the silhouette coefficients of each sample. Silhouette coefficients are
calculated for each sample by taking the mean distance of the closest cluster it
is not a member of, subtracting the mean distance to the sample’s fellow cluster
members, then dividing it all on the larger of the two[Rou87].

2.7 Time series

When data points have a timestamp, they can be oriented as a time series [BD16,
Chapter 1]. A time series has one variable that varies over time in its simplest
form. Multiple time series can be put together to see multiple variables in context.
If the multiple variables describe different aspects of the same observation, it is
a multivariate time series. An example of this is weather observations, where a
time series can include one variable for temperature, one for wind speed, and
one for rain.

Based on the observations, it is possible to find the seasonality of the data.
To use a possibly familiar example, the temperature for the first day of the
year, January 1st, is likely more similar to the mean temperature for January
1st, or the mean temperature for days in January, than the average day in a
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year. This is at least true in places far from the equator. This property makes it
possible to have better estimates for the temperature based on the time it should
happen. If the observations see an increase in their observed values, which is
not seasonal or still exists after correcting for seasonality, one likely has a trend
in the observations[Gut20, Chapter 6.4.4.3].

Another property that a time series can have is stationarity, in which the
variance and auto-correlation are constant, and there is no trend or seasonality
[Gut20, Chapter 6.4.4.2].

The weather observation time series described above is simple in that its
values are numbers, and it is something many people have experienced. Another
aspect of time series is metadata, data about the measurements. Going back to
the example, this time series is observed at a given observation station, usually
in a city or near an airport. The location of the measurement can be used to look
for trends that are independent of local variations. For two observations from
neighboring towns, their temperature is likely similar for the most part.

2.7.1 Windowing

One way to look at time series from a historical perspective is to use window-
ing. Here the last N periods are used as the baseline on which aggregation is
applied—for instance, looking at a time window, the mean and standard deviation
can be calculated for that window. This can be used to forecast the next period by
assuming the mean value and standard deviation will estimate the next period.

Windowing functions are also known by other names, including moving and
rolling, plus the applied function—for example, the moving or rolling average
[Gut20, Chapter 6.4.2]. A moving average can get a smoother estimation based
on the assertion that temporally similar values are more similar than values
from distant points in time. To keep on the meteorological theme, tomorrow’s
temperature is likely closer to the mean of the last three days than some months
ago.

2.8 Outlier detection

Outlier detection is a method for classifying objects as outside the normal scope
and expected dataset distribution. Outliers can be detected in both univariate
and multivariate data[HdV08].

2.8.1 Standard Deviation

One detection method introduced in most basic statistic courses is the standard
deviation, in which the number of standard deviations a data point is away from
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the mean is used to consider whether it is an outlier or not. The equation of
the outlier detection is shown in Equation 2.1, where X is the sample mean, s
is the sample standard deviation, and « is a parameter used to set the outlier
limit. This method is usually used on normally distributed data, in which the
limit, o, commonly is selected to be £3, 2.5, or +2, which respectively gives
0.13%, 0.62%, and 2.28% outliers[YRF19].

Tihreshold =T £ a*s 2.1)

One major disadvantage of using Standard Deviations to detect outliers is
that neither function used, the sample mean and sample standard deviation, is
resilient against any vast outlier. As covered by [RH11], the sample mean can
only resist outliers of % which for a sufficiently vast outlier leads to the sample
mean being skewed by a single outlier. The same applies to sample standard
deviation; one sufficiently vast outlier can skew the measure.

2.8.2 Z-score

Z-score is another measure that is used to detect outliers. Z-scores are relative
as opposed to Standard Deviation outlier detection, so two datasets with different
sample means and sample standard deviations can use the same Z-score as their
threshold, with 2.5 being typical thresholds [RH11]. The Z-score equation is
presented in Equation 2.2, where X is the sample mean of x and s is the sample
standard deviation.

,’Ei—i‘

(2.2)

Z; =

S

As with the Standard Deviation based outlier detection presented in subsec-
tion 2.8.1, the sample mean and sample standard deviation are prone to vast
outliers skewing the values.

2.8.3 Robust Z-score

To counteract the low resistance to vast outliers in Equation 2.2 Robust Z-
score is presented by [RH11] as a replacement that uses the more resistant
function median and median of all absolute deviations from the median (MAD).
Equation 2.3 shows the robust version of the Z-score, with #,, being the median.
MAD is often corrected by multiplying it with 1.483 to remove the bias on the
normal distribution. This is ignored here as the dataset it is used on is not a
normal distribution, and nor are we comparing the Z-scores between different
distributions.
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T — T,
s mad(x,,) @3

The use of median and MAD in place of the sample mean and sample standard
deviation makes this version of Z-score robust against up to 50% outliers.

2.8.4 IQR

Interquartile Range (IQR) is another method for detecting outliers in a distribu-
tion. The IQR is first calculated in Equation 2.4 by taking the 75th percentile and
subtracting the 25th percentile. The thresholds for detecting outliers are shown
in Equation 2.5, where c is used to set the outlier limit[YRF19].

iqr = XT[3n/4] — T|n/4 (2.4)
Tnin = T|pja) — C*1qr (2.5a)
Tras = L[3n/4] +cx* qu (2.5b)

[RH11] also covers the IQR regarding its resistance against impact from
outliers. Due to using the 25th and 75th percentile as its basis, if there are 25%
outliers, those percentiles can be an outlier.



Related works

There is nothing new in automatically processing results from an intrusion
detection system. Multiple groups have attempted this, though some differences
between the previous work identified and this thesis are covered in the following
sections. The structure of this chapter is partly inspired by the work done by
[FRCT18], which has covered data types and algorithms in their survey of work
in the field. First, we examine how different works use supervision in section 3.1.
Then the different data types they have used in section 3.2 before finally covering
some of the other algorithmic paradigms used in section 3.3.

3.1 Supervision

The dataset that makes up the basis for this thesis has no labels, which only
allows for unsupervised algorithms to be used. Vaarandi[Vaa21] suggested
a lightweight, unsupervised algorithm for grouping and clustering Suricata
alerts. Alerts with the same external IP are first grouped then clustered based
on the signatures present in said groups. Pietraszek and Tanner[PT05] used
unsupervised clustering with CLARAty to find the root cause of the most common
IDS alerts to resolve the. They also used supervised classification with ALAC for
the remaining alerts.

Much work has been done around the supervised classification of IDS alerts,
such as Farahnakian and Heikkonen[FH18], and Kannari, Shariff, and Biradar
[KSB21], who trained autoencoders on labeled NetFlow. Farahnakian and
Heikkonen[FH18] used deep autoencoders to identify critical features repre-
senting normal and abnormal behaviors in an imbalanced dataset. They pre-
trained the first layer as an autoencoder before using supervised training on
the compressed output. Kannari, Shariff, and Biradar[KSB21] proposed a sparse
autoencoder using swish-PReLU activation to classify attack types, comparing
the results with other classifiers. Liu et al.[LGZ"19] used supervision on a deep
neural network with ReLU activation to detect network anomalies in NetFlow
data.

15
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The area of supervision is not clear cut, as works are also using semi-
supervised algorithms. Gharib, Mohammadi, Dastgerdi, and Sabokrou[GMDS19]
used a semi-supervised approach that only trained the autoencoder on normal
data while ignoring all abnormal data. They used a two-stage autoencoder
process where the first, an overcomplete autoencoder, classifies the flows it
is confident about using sparsity. In contrast, the second stage, an undercom-
plete autoencoder, classifies the remaining flows using reconstruction error.
Min et al.[MLL*18] proposed the SU-IDS method. This method is pre-training
the autoencoder on unlabeled samples, then optimizing for a combination of
reconstruction and classification or clustering loss.

Catania, Bromberg, and Garino[CBG12] used Snort IDS to label a dataset.
The normal data, which did not trigger any Snort rule, was used to train a Support
vector machine (SVM). The trained SVM is then used to detect attacks based
on what traffic is dissimilar to the normal data used to train it. As the source
data is unlabeled, this is an unsupervised process, while their actual training is
semi-supervised, as one class is used to train the model. The algorithm, SVM, is
further discussed under section 3.3.

3.2 Data type

While this thesis focuses on alerts from the Suricata IDS, much work focuses
on anomaly detection with the network traffic in different data types, such as
tcpdump, IP Flows, or SNMP. [CBK09], [HBB*20], and [FRC* 18] cover multiple
papers that use different formats for their network traffic.

3.2.1 Tcpdump

When one needs a raw copy of network traffic, it is common to use tcpdump.
Catania, Bromberg, and Garino[CBG12] used tcpdump to train a Support vector
machine (SVM) to identify regular traffic. Cheng, Tay, and Huang[CTH12]
compare extreme learning machines’ performance to support vector machines
for binary and multi-class classifications. The dataset is a tcpdump converted
into machine-readable format and trains support vector machines and extreme
learning machines for classifications.

3.2.2 IP Flows

If the only part of the network traffic needed is a record of who talked to
who at what time, IP Flow is a good choice. Also known as Netflow, IP Flows
are metadata records of network traffic, which notes the source/destination
IP, TCP or UDP ports for both source and destination, possibly TCP flags such
as SYN and ACK, and timestamp of when it happened, unless the flows are
time-bucketed[FRC*18]. One standard for IP Flows is IP Flow Information
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Export (IPFIX), standardized in RFC 7011 from 2013 by Claise, Trammel, and
Aitken[Ait13]. Yeung, Jin, and Wang[YJWO07] use NetFlow through a covariance
matrix of sequential samples to identify flooding attacks. The covariance matrix
could also identify which features were vital in detecting different attacks. Shone,
Ngoc, Phai, and Shi[SNPS18] used two datasets, KDD Cup ‘99 and NSL-KDD,
of network flows to train Non-symmetric Deep Auto-Encoders(NDAE) to classify
network traffic. A classifier is then created using a stack of NDAEs with a random
forest classification algorithm.

3.2.3 Simple Network Management Protocol (SNMP)

SNMP is a standard for retrieving information from and managing network
devices. The protocol is a client-server protocol standardized in RFC 1157
by J. Case, M. Fedor, M. Schoffstall, and J. Davin[CFSD90]. SNMP is limited
to summarizing packets and bits per interface. This aggregate can be used
to detect abnormal traffic flows. Proenca, Coppelmans, Bottoli, Alberti, and
Mendes[PCB'04] generated digital signatures of the usual traffic situation for
different network segments, using linear regression and Hurst parameter to
analyze data gathered using SNMP.

3.3 Algorithms

Many different algorithms have been used to look through network traffic, such as
statistical, clustering, classification-based, and information-theoretical methods.
[FRCT18] covers some different works within these areas.

3.3.1 Statistics

This thesis uses Principal Component Analysis, one of the statistical techniques
for anomaly detections. Lakhina, Crovella, and Diot[LCD04] were the first to
use PCA for network anomaly detection. They used it to subdivide network
traffic volumes into normal and anomalous components. This was done us-
ing Origin-Destination flows, extracted from IP flows gathered in two differ-
ent backbone networks. Camacho, Pérez-Villegas, Garcia-Teodoro and Macia-
Fernandez[ CPVGTMF16] used PCA on firewall and IDS logs, and on NetFlow, to
identify anomalous traffic. The IDS logs were of a different format than what this
thesis uses. In addition, they used PCA-based Multivariate Statistical Process
Control from the chemical engineering field to create a novel approach to Net-
work Monitoring through Multivariate Statistical Network Monitoring, arguing
that this approach is better than the approach used by Lakhina et al. [LCD04].

Fernandes, Rodrigues, and Proencal[FRP15] created digital signatures of
network segments based on the different flows through the respective network
segments. These signatures represent the regular traffic in the network segments
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and are generated from the dimensionality reduced output from PCA. Kanda,
Fontugne, Fukuda, and Sugawara[KFFS13] used PCA as the basis for their
anomaly detection algorithm, ADMIRE, which uses the entropy of different
network features to detect anomalies. The anomalies are then categorized into
five categories, attack, special, unknown, warning, or benign. Kanda et al. used
tcpdump from a backbone network to evaluate ADMIREs performance. All these
are using either IP flows or TCPdumps which are significantly different data
types than the Suricata IDS alerts used in this thesis.

Others have also used different statistical techniques for anomaly detection.
Hamdi and Boudriga[HBO7] used wavelet analysis to identify denial-of-service
attacks in NetFlow, where the wavelet analysis gives local maxima at points
of interest. Callegari, Giordano, Pagano, and Pepe[CGPP11] also used wavelet
decomposition on NetFlow traces to look for discontinuities in the time series for
the different flows.

3.3.2 Clustering

The PCA and Deep Learning results in this thesis are clustered with K-means.
Karami and Guerrero-Zapata[KGZ15] used K-means in hybrid with particle swarm
optimization(PSO) to identify abnormal traffic in a Content-centric network by
looking at traffic flow in the network. This hybrid algorithm was tested against
both K-means and PSO and some methods from other works in the field. It
is worth noting that a Content-centric network is significantly different from
the traditional host-centric network. Giacinto, Perdisci, Rio, and RolilGPRR08]
tested K-means and other one-class classification algorithms to look for abnormal
traffic in different sets of traffic features. They calculated a probability density
distribution from each one-class classifier, which they used to calculate a decision
criteria for the final classification. Effendy, Kusrini, and Sudarmawan[EKS17]
used K-means on a NetFlow dataset to cluster similar traffic and classify them
using a naive Bayes classifier. They compared their method to the use of mean
and standard deviation.

Other clustering algorithms are also used, like Mazel, Casas, Labit, and
Owezarski[MCLO11], who used sub-space clustering, evidence accumulation,
and inter-clustering on NetFlow data to identify DoS, DDoS, scans, and spreading
worms in and across subnets.

3.3.3 Classification

The autoencoder used in this thesis is an artificial neural network, which can
also be used for classification in supervised training, such as done by Subba,
Biswas, and Karmakar[SBK16] on NetFlow from the KDD99 labeled dataset.
They preprocessed their source data by converting categorical data to numeric
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and normalized the numeric attributes. This is similar to how this thesis has
normalized the data, as this is required for the neural network, and the usage
difference is mainly in the trained output.

Others have used Support vector machine (SVM), such as Catania, Bromberg,
and Garino[CBG12], as mentioned in section 3.2, who used SVM on tcpdump,
and Wang, Gu, and Wang[WGW17] used SVM on a NetFlow-based dataset to
identify intrusions.

3.3.4 Information theory

Multiple papers have used entropy on NetFlow to identify anomalous traffic.
David and Thomas[DT15] used fast entropy to look for DDoS in the flows. They
aggregated over the unidirectional flows and used an adaptive threshold to allow
for expected increases in traffic. Behal and Kumar[BK17] used ¢-entropy and ¢-
divergence of different network features to look for DDoS in the flows. Berezinski,
Jasiul, and Szpyrka[B]JS15] looked more generally for all kinds of anomalies in the
flows by looking at different time-windowed entropy calculations on the source
and destination address and port, the duration of the flows, packet size, and
number, and the degree of the host. Bhuyan, Bhattacharyya, and Kalita[BBK16]
used entropy to select the network features to pass to the clustering stage,
which they then used to identify anomalies. Amaral, de Souza Mendes, Zarpeldo
and Proenca JuniorfAdSMZ]J17] used Tsallis entropy on network flows to detect
anomalies. These anomalies were, in turn, classified using signatures for the
different anomalies.






Data and Preprocessing

The primary data source is events from a rule-based Network Intrusion Detection
System (NIDS), Suricata. Events are generated from the ruleset that is given to
Suricata. The data ingress process at Sikt enriches the events with GeoIP and
IP address registry, which adds extra context for both source and destination
IP. Further details are presented in the different sections of this chapter. In
section 4.1, we cover the identified data sources for possible enrichment and
correlation with the alerts. Then section 4.2 focuses on importing alerts from
the data store. Structuring the data into a column-based data frame is presented
in section 4.3, while section 4.4 covers the data’s enrichments and feature
derivations. Finally, section 4.5 briefly describes the normalization process, and
section 4.6 covers the feature selection for later use.

4.1 Auxiliary Data Sources

A thorough list of possible data sources was identified that could be used to give
better context to the alerts. These sources were identified through discussion
with analysts at Sikt. The identified Auxiliary Data Sources are shown in the
following list:

Netflow

- GeolP

Honeypots

Server logs
— Passive DNS

Passive TLS

Application logs

21
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Threat intelligence
— Suricata Rules

Port scans

— Incident management systems

DHCP-logs

— IP-registry

As mentioned in the introduction of chapter 4, GeolP and the IP address
registry were already used to enrich the source alerts. Threat intelligence
was also enriched on some alerts, and some of the rules were generated from
the same threat intelligence. Netflow is partly included in Suricata as it logs
information about the flows that it sees. The rest of the possible datasets were
not available in a usable format, so that additional processing would have been
necessary. The already enriched datasets were chosen as the datasets to use.

4.2 Data loading

The Suricata data, covered in section 2.2, was exported from Humio?, the log
store at Sikt. To get the data in a more suitable format and location, a small
program was created that searched for alerts from April 1st to August 31st of
2021. To not hit any constraints in Humio, the alerts were loaded one day at a
time. Each day was then loaded into a Pandas DataFrame [RJM*21] and stored
in Apache Parquet format [Fou21], as shown in Listing 4.1.

It was attempted to load from March 1st, but an issue occurred attempting to
load data from March. There are some notable dates from within the selected
timeframe. April 1st through April 5th was part of the Easter holiday, May 1st,
13th, 17th, and 24th were holidays. In addition, the months can be roughly
divided into tutoring in April, exams in May, post-semester in June, vacations in
July, and the start of the new school year in August. All these months were also
under the effects of the Coronavirus, with varying restrictions in the different
parts of the country and at different institutions.

Lhttps://www.humio.com/
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# client is the client to connect to Humio
query = ""alert.signature_id"=x"

start_time = datetime(year=2021, month=8, day=5)
temp_start = start_time
end_time = datetime(year=2021, month=8, day=31)
resolution = timedelta(days=1)
while temp_start <= end_time:
print(f"Downloading {temp_start} to {temp_start+resolution}")
stream = client.streaming_query(
query,
is_live=False,
start=round(temp_start.timestamp() * 1000),
end=round( (temp_start + resolution).timestamp() * 1000),
)
date = temp_start.strftime("%Y-%m-%d")
df_alerts = pd.DataFrame.from_dict(list(stream)).to_parquet(
f"/data/didrik_master/alerts-{date}.parquet"
)

temp_start = temp_start + resolution

Listing 4.1: Source code for importing events from the log store into dated
parquet files.

4.3 Structuring data

After loading the data, as described in section 4.2, the next step is to structure
it. A Python library called Dask[Das21], which includes a DataFrame based on
Pandas DataFrames, is used to process the data. There are two common issues
when working with large data sets in Pandas DataFrames: they need to fit in
memory and are not natively parallelizable[Roc15]. Dask is solving these issues
allowing for a similar programming experience to Pandas.

The first stage of structuring the data loads all the parquet files into a Dask
DataFrame, setting time as the index and then repartitioning the data into
multiple smaller partitions. Each partition is a Pandas DataFrame containing a
subset of the data. This stage also drops the "@rawstring"-column, which copies
the whole event. The Dask DataFrame can then be saved as a multi-partition
Parquet file, allowing more optimized access in later processing.

In the second stage, columns that have been flattened, such that they have an
index number like "[0]", get the index resolved, either by dropping the index for
columns where there is just one item in the column or by merging the different
values into a string where there are multiple indices, but they are the last part
of a column name. There are also columns with flattened "objects" from the
JSON conversion, but these were not necessary for later processing and, as such,
dropped.
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The final structuring stage was adding datatype to each column, allowing
for datatype-specific processing such as on dates or numbers. This stage also
marked columns as categoricals, which allow gathering every possible value of a
specific category column.

4.4 Enrichment

Extra columns were extracted from the original columns to help the algorithms
with some non-obvious connections between the columns. For example, the
"http.http port" is purely numerical, but it is hard for an algorithm to know that
only port 80 is the standard HTTP port, while 443 and 8080 are commonly used
with HTTP protocols as well, for HTTPS-redirection and non-standard endpoints,
respectively.

Another extracted value is whether the rule that triggered was recent. This
was gathered by checking the time difference between the last time the alert
was updated and the timestamp of the alert. It is noted as recent if it was less
than 90 days since the alert was updated when the alert triggered.

If the alert is a TLS alert, the values of "notbefore" and "notafter" from the
certificate are recorded. Having the timestamp of the alert, we can derive
whether the certificate was valid at the time of the alert.

Four values based on the flow data in the alerts were also calculated, the
average size of packets to and from the server, the ratio of packets towards the
server to the packets from the server, and the ratio of bytes towards the server
to the bytes from the server.

Finally, the alert signature was split into rule source, rule category, and rule
name, as the typical naming scheme for the rule is "Source Category Namel...]".

4.5 Normalization

Some of the categorical data columns, such as "#source host", are not usable
in their original form. These columns can increase value by transforming and
encoding them with one-hot encoding, dummy encoders, and the like. This
transforms one column of n different categorical values into n binary columns.

Another issue with the numerical columns is that the range of possible values
can be too broad. The autoencoder requires values of a similar scale, so we
normalized them to be between 0 and 1.
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4.6 Selection

The exact selection of columns for each algorithm depends on its requirements.
As covered in section 4.5, we chose to normalize the numerical values into a
range of 0 to 1. The numerical values are also the only ones directly compatible
with the autoencoder, so all the columns used for the autoencoder are either of
type Float, Integer, or Boolean (though Boolean needs to be converted to a literal
numerical such as Float). This selection can be performed when using the data.

In addition, the data was split into three groups, training, validation, and
testing. Training data is about 60% of the data, while validation and testing
have 20% each. The split should be deterministic through the "train test split"
function of scikit-learn[PVG*12] when the "random _state" parameter is 0.






Methods

This section covers the data analysis pipeline, from the preprocessed data to the
outlier detection. This pipeline is illustrated in Figure 5.1.
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Figure 5.1: Illustration of the data pipeline.

In section 5.1, we cover the use of PCA to reduce the dimensionality of the
alerts, while section 5.2 is about the use of a deep learning autoencoder to
represent the alerts. These methods are clustered with K-Means, as covered in
section 5.3. The alerts are analyzed as a time-series in section 5.4. Before finally,
the evaluation method is presented in section 5.5.

5.1 Machine Learning

The machine learning method selected for this thesis is Principal Component
Analysis (PCA). The reasoning behind choosing this algorithm is that it reduces
the dimensionality of the data. Due to the amount of data in the dataset, di-
mensionality reduction can significantly improve processing speed. PCA is also
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implemented in the libraries used, Pandas[RJM*21] and Dask[Das21], and it
works unsupervised, which is a requirement since the dataset is unlabeled. As
noted in section 4.6, the features can be selected based on the datatypes of the
columns, and the PCA has a similar requirement as the autoencoder in that it
requires numerical features. This leaves 92 columns when float, integer, and
boolean columns are selected, except the geographic coordinates.

The configuration value in PCA is the number of principal components. For
finding the best number of components, we chose a threshold of 95% explained
variance. The PCA implementation in Scikit-learn[PVGT12] was used, which
allows two ways to compute the number of principal components for a given
variance. The first way is to calculate as many principal components as samples
or features, use the smaller number, then count up the components until the
explained variance passes the threshold. The other way is to give the PCA
implementation the threshold directly. Both approaches were tested and returned
the same number of principal components, with the same explained variance.
There is also an incremental way to implement PCA, which was how the first set
of principal components was calculated, while the latter was using standard PCA.

Explained variance for single component Cumulative sum of explained variance

Cumulative sum of explained variance
Explained variance per principal component

0 20 40 60 80

Number of principal components

Figure 5.2: This plot shows how the explained variance of the principal compo-
nents changes with the number of components. Single component variance is on
the right axis; the cumulative sum is on the left axis. The dotted line indicates
the 95% threshold.
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The explained variance and the cumulative sum of explained variances, in
percent, are plotted in Figure 5.2. The black dotted line indicates the 95%-
threshold for how much variance should be explained in the plot. The intersection
between the threshold and the cumulative sum of explained variance is at 31
principal components, which explains 95.2% variance. This was done using
the training part of the dataset(N=4 627 171). We then transformed the whole
dataset into those 31 principal components.

5.2 Deep Learning

There are multiple approaches within deep learning to find anomalies in the data.
Inspired by Wang et al. [WWZZ22], autoencoders were chosen mainly for their
ability to work with unlabeled data. The autoencoder is one training method of
a neural network, as covered in subsection 2.4.1. As with PCA, 92 features are
usable for autoencoding.

Using Keras [C115], through Scikit-Learn Wrapper for Keras (SciKeras)[B*20],
it was possible to create models for autoencoding. The developers of SciKeras
have an example for using SciKeras as an autoencoder, including as a Deep
Autoencoder!. This implementation was used as the basis for the autoencoder
in this thesis. The autoencoders have some configuration options. For the loss
function, binary cross-entropy was selected, and for the optimizer function, adam
was selected. These were chosen as they seemed to work and were used in the
example from SciKeras.

A suitable architecture of the neural network was found by searching for the
encoding dimension (the smallest layer of the autoencoder) and the hidden layer
sizes in a GridSearch. The learning rate for the optimizer was also searched
after. 16, 24, and 32 nodes were tested for the encoding dimensions. Zero layers,
one of size 32, one of size 64, and two of sizes 64 and 32, were tested for hidden
layers. For optimizer learning rate 0.0001, 0.001, and 0.01 were tested. This
gave 36 possible combinations to be checked by the Grid Search. The results of
this grid search are shown in Table B.1. An encoding dimension of 16 was chosen
from the grid search, with a hidden layer of 64 and a learning rate of 0.001. This
reduces the number of features from the original 92 to 16.

5.3 Clustering

Both the PCA and the autoencoder reduced the number of features, but the
resulting values only represent the original data, not having any meaning on
their own. Therefore they were clustered using Kmeans. First, the number of
clusters to use had to be determined. This was done using the elbow method

Lhttps://www.adriangb.com/scikeras/stable/notebooks/AutoEncoders.html
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and silhouette score, see subsection 2.6.1, on ten percent of the combination
of training and previous validation part of the data, as there is no need for the
validation set distinction further. Ten percent was selected as a sampling rate as
any higher sampling rate used too much memory and time.

The inertia of the data from both the PCA and the autoencoder was plotted in
line with the elbow method. These plots are shown in Figure 5.3 and Figure 5.4.
As can be seen from the plot, there is no clear elbow, so a silhouette analysis was
performed.

5M

Figure 5.3: This plot shows how the inertia in the clusters of the autoencoder
data changes with the number of clusters.

50k

30k
20k

10k

Figure 5.4: This plot shows how the inertia in the clusters from the PCA
dimensionality reduction changes with the number of clusters.

Silhouette analysis was also performed on both datasets; the scores are shown
in Figure 5.5 and Figure 5.6. As we look for a higher score and lower cluster
count, the first local maxima were chosen as the number of clusters to use. For
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the data from the autoencoder, this meant k=25, while the data from the PCA
gave k=8. For the exact scores, see Table C.1.

Silhouette score
o
i

Cluster size

Figure 5.5: This plot shows how the silhouette score in the clusters of the
autoencoder data changes with the number of clusters.

Silhouette score
o
o
&

Cluster size

Figure 5.6: This plot shows how the silhouette score of the clusters from the
PCA dimensionality reduction changes with the number of clusters.

Using the selected cluster sizes, a K-Means clustering was fitted on the train-
ing and validation sets, then cluster membership and distances were calculated
for the whole dataset. Based on this, three scores were generated, with close
to zero being the preferred value. First, an intersection score was calculated
by taking 1 divided by the difference between the second closest cluster to the
closest cluster for each alert, see Equation 5.1. The reason for this score is
that an alert that is very close to being a member of another cluster could be
abnormal. The two other scores are statistical from the distance to the cluster.
One is clustered; see Equation 5.2, and the other is across the whole dataset; see
Equation 5.3. The sample mean, z; and z, and the sample standard deviation, s
and s, are calculated. K sets for the first score and one for the second. Each alert
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is then scored by taking its distance, subtracting the mean difference, dividing
the whole by the standard deviation. D;; is the distance from the i-th point to the
j-th closest cluster centroid in the formulas for the scores.

1
SCOT €intersection,i — T~ 1~ (51)
’ Dy — Dy
T — Tg,
SCOT €clystered distance — 87 (52)
k
€Ty — T

(5.3)

SCOT€djistance —

5.4 Time Series

All the alerts have a timestamp which allows them to be seen as a time series.
What the alerts lack is a single value that represents it over time. Weather
observations usually have a value for temperature or humidity that evolves over
time. By binning the alerts based on different metadata, the count of alerts with
each value is such a value that represents it over time. Therefore the alerts
were split into one time series for each dimension value, and the alerts were
put into one-hour bins. The metadata that was used to split the alerts were
"#source host", "rule id", "rule category", "rule source", and "alert.category".

A window of 28 days was selected for the time series, from which the mean
and standard deviation were calculated. The values were stored in a new time
series at the end of each time window. Due to this, the first 28 days cannot be
evaluated. For the rest of the one-hour time bins, their score was calculated
by taking the count of alerts in each time bin, subtracting the mean count of
alerts, then dividing by the standard deviation, keeping the mean and standard
deviation separate per group. This created five different scores, and each alert
looked up their respective scores from their time bin.

5.5 Evaluation Methodology

In the evaluation, the first step is to identify where to set the threshold per
column for what should be considered an outlier. This is done using the outlier
detection methods Interquartile Range (IQR) and robust Z-score. These were
used on the upper side of the median, where the most prominent outliers were,
and on both sides. The resulting thresholds were then used to create a binary
representation of whether an alert is an outlier for each column.
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Further analysis is primarily done on those alerts considered outlying in at
least one column.

5.5.1 Manuel labeling

Since the original dataset has no labels, we decided that parts of the test dataset
should be labeled to evaluate the alert scoring. This set contains 1 541 574
alerts. A web page was set up, and two analysts in the CERT at Sikt were asked
to classify as many alerts as possible. Some valid criticism of the classification
options was raised, which was selected from the ones available in an older system
for classifying alerts, Snorby?, rather than the newer and more accepted ENISA
Reference Incident Classification Taxonomy 3.

Each of the analysts used around twenty minutes to classify alerts, and as the
process of classifying alerts was time-consuming, only 34 alerts were classified.
The classifications’ distribution was seven attempted unauthorized access, 9
False positives, three unauthorized user access, and 15 virus infections. The
alerts to be classified were given in inverse chronological order, starting with the
newest alert. The manually classified alerts were from August 27th to August 31st
of 2021. As we wanted to make the classification as easy as possible, there were
multiple alerts to select from, and there were no restrictions regarding which
alerts the evaluators could classify. The classified ones are a minuscule subset of
the total alerts in the period. It is also safe to assume that the classified alerts
were the most apparent classifications. The distribution of classifications in the
classified alerts is likely not in line with the distribution of actual classifications
in the period.

Zhttps://github.com/Snorby/snorby
Shttps://www.enisa.europa.eu/publications/reference-incident-classification-taxonomy
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Results and analysis

In the following sections, the results of this thesis are presented. The results are
divided into three main parts. In "Identifying Outliers", section 6.1, the aim is to
determine where to draw the line for what is an outlier, which is then considered
as the true positive, or actionable, alerts. In "Evaluating Outliers", section 6.2,
the identified outliers are assessed regarding how outlying they are and how
their values correlate. Finally, in "Comparing with Manually Evaluated Alerts",
section 6.3, the outliers are compared to the manual classification to indicate
how good the outlier detection is.

6.1 Identifying Outliers

The first evaluation stage gathers all the scores from the clustering of PCA and
autoencoding and the time series so that each alert and all the scores are mapped
together. Indexed by timestamp and the alert ID, the table contains 11 columns,
five from time series and three from each clustering.

For each column, we see some infinite values in the time series scores from
the data. 10 in "alert.category", 9544 in "rule source", 9576 in "rule category",
and 11467 in "rule id". This was a known challenge with the time series analysis.
When the standard deviation is 0, the score becomes infinite. This occurs when
the alert is seen for the first time. They are capped at the maximum numerical
value to process these alerts further. The maximum scores in the different
columns are shown in Table 6.1.

Looking at the histograms of the distributions in Figure 6.1 and Figure 6.2,
there are many bins without any members. The histograms were set up to use 100
bins to differentiate within the distributions better. The time-series distributions
were particularly skewed towards the extremities, with some of them only having
members in two bins, one around 0 and one around a significantly higher power
of ten. The intersect scores were also skewed towards the extremities, with
multiple empty bins, but not to such an extent as in the time series distribution.

35



36 6. RESULTS AND ANALYSIS
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Figure 6.1: Shows the distribution of values in time series columns. There are
100 bins across the X-axis. The Y-axis is logarithmic due to the difference in the

number of alerts in each bin.
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Figure 6.2: Shows the distribution of values in PCA and Autoencoder columns.
There are 100 bins across the X-axis. The Y-axis is logarithmic due to the
difference in the number of alerts in each bin.



38 6. RESULTS AND ANALYSIS

max
ts alert category score 1.494357e+19
ts_alert rule category score | 1.494357e+19
ts_alert rule source score 3.285202e+08
ts alert sid score 1.135711e+21
ts_alert source host score 2.172957e+09
dl intersect _score 1.987019e+06
dl clustered distance score | 1.559742e+01
dl distance score 1.267345e+01
ml intersect score 8.330280e+06
ml clustered distance score | 1.046444e+01
ml distance score 3.564804e+00

Table 6.1: These are the maximum values seen in the scores and in which
column they belong.

Two different techniques were tested to find where to set the outlier limit for
the different columns, a robust implementation of Z-score [RH11] and Interquar-
tile Range (IQR) [YRF19]. The main difference between the robust implementa-
tion of Z-score and the typical implementation is that instead of using mean and
standard deviation, which can get skewed by a single, vast outlier value, it uses
median and median of all absolute deviations from the median (MAD), which can
sustain up to 50% outliers. IQR has robustness for up to 25% outliers. There is
one parameter for each of the methods. Robust Z-score has the parameter to
select the outlier limit; 2.5 was used in [RH11]. IQR has a parameter for how
many times IQR should add to the 75th-percentile for the limit. Some different
suggestions were 1.5 from [YRF19] and 1.5 as an inner limit, and 3 as an outer
limit from [Gut20]. To limit the removal of non-outlier values, the conservative
option of 3 was used.

From Figure 6.1 and Figure 6.2, it seems to be a majority of upper outliers,
so first, the outlier detection just attempted to remove upper outliers as shown in
Figure 6.3, Figure 6.4, Figure 6.5, and Figure 6.6. These outliers were identified
through a single iteration of IQR and Z-score.

Looking at the "ts alert sid score" in both IQR (Figure 6.3) and Z-score
(Figure 6.5), it seems to be at least one outlier on the lower end of the distribution.
A new round of outlier detection was run on both sides of the median, shown in
Figure 6.7, Figure 6.8, Figure 6.9, and Figure 6.10.

To compare the results of outlier detection on only the upper side and both
sides, the number of outliers detected by each technique can be used. The results
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Figure 6.3: Shows the distribution without upper IQR outliers in time series
columns. There are 100 bins across the X-axis.
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Figure 6.4: Shows the distribution without upper IQR outliers in PCA and
Autoencoder columns. There are 100 bins across the X-axis.
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Figure 6.5: Shows the distribution without upper Z-score outliers in time series
columns. There are 100 bins across the X-axis.
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Figure 6.6: Shows the distribution without upper Z-score outliers in PCA and
Autoencoder columns. There are 100 bins across the X-axis.
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Figure 6.7: Shows the distribution without IQR outliers in time series columns.

There are 100 bins across the X-axis.
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Figure 6.8: Shows the distribution without IQR outliers in PCA and Autoencoder
columns. There are 100 bins across the X-axis.
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Figure 6.9: Shows the distribution without Z-score outliers in time series
columns. There are 100 bins across the X-axis.
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Figure 6.10: Shows the distribution without Z-score outliers in PCA and Autoen-
coder columns. There are 100 bins across the X-axis.
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can be seen in Table 6.2.

Looking at the number and the ratios of outliers and the distribution of non-
outliers, Two-sided IQR seems to give the smoothest distribution of non-outliers
without too many outliers. Looking at non-outliers for two-sided Z-score in
Figure 6.9 and Figure 6.10, there seem to be cliffs in the distribution due to the
threshold range being smaller than the range in two-sided IQR, which is seen in
Figure 6.7 and Figure 6.8. Based on these points, we chose Two-sided IQR, with
the limits shown in Table 6.3.
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Column Lower outlier limit | Upper outlier limit
ts alert category score -6.258553 7.560694
ts_alert rule category score | -6.164582 7.334157
ts_alert rule source score -5.735031 6.579124
ts alert sid score -6.453628 8.141691
ts_alert source host score -6.169317 7.813006
dl intersect _score -3.877442 6.702882
dl clustered distance score | -5.142823 5.124152
dl distance score -5.372881 5.578274
ml intersect score -4.299337 11.759377
ml clustered distance score | -3.790836 3.911523
ml distance score -2.508907 2.887623

Table 6.3: The table shows the selected lower and upper outlier limits from
Two-sided IQR.

6.2 Evaluating Outliers

After selecting the limits for outliers as shown in Table 6.3, the alerts where at
least one column is considered outlying were gathered. This led to a total of 1
828 738 alerts with outliers, divided into 1 150 662 from the training set, 410
687 from the validation set, and 324 541 from the test set. Each outlier alert
has between 1 and 7 columns where its value is outside the threshold. From
Figure 6.11, most alerts have only one outlying column, and none have outliers
in all 11 columns.

The correlation of all the scores is shown in Figure 6.12 as a reference. The
correlation between the outlier values, solely the values that pass the thresholds,
is shown in Figure 6.13. These are mostly sparsely filled alerts, as the alerts have
only one or a few outlying columns, as seen in Figure 6.11. Finally, Figure 6.14
shows the correlation of the alerts with an outlier. These are the same alerts
as the previous correlation plot, but all the non-outliers are restored from the
original scores.

From the correlation plot in Figure 6.12, there appears to be a strong
correlation between clustered and non-clustered distance score for both the
PCA ("ml clustered distance score", "ml distance score") and the autoencoder
("dl clustered distance score", "dl distance score"). There are also indications of
correlation between the distance scores of the autoencoder ("dl distance score")
and the PCA ("ml distance score"). The first observation might indicate that
using both features is redundant. This similarity might also be explained by

K-means trying to reduce all the alert’s distances to their closest cluster centroid.
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Figure 6.11: Shows the distribution of alerts by the number of outlying columns
each alert has. The Y-axis is logarithmic to fit everything on one page.

The second observation indicates that there might be a common feature that
both the PCA and the autoencoder identify. However, it could be explained by
both the autoencoder and PCA scores being derived from K-means clustering of
the original data.

6.3 Comparison with Manually Evaluated Alerts

As covered in subsection 5.5.1, we have a small set of manually classified alerts.
All these are from the test set, of size 1 541 574, and as mentioned in section 6.2,
there are 324 541 outliers in the test set. This leads to about 21% of the test set
being outliers, one-fifth of the original size.

Looking up the small set of 34 manually classified alerts in the outliers, 24
of them were in the outlier set, which corresponds to 70%. 18 out of 25 true
positive classifications and 6 out of 9 false-positive classifications were evaluated
as outliers. These results can be shown in a confusion matrix, Table 6.4.
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Figure 6.12: Shows the correlation between all columns for all alerts.
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Figure 6.13: Shows the correlation between all columns for the outlying alerts.

White boxes are empty.
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Figure 6.14: Shows the correlation between all columns for all values from the
outlying alerts.
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Outlier prediction

_ & Outlier | Non-Outlier | Sum
g % | True positive | 18 6 24
g TE False positive | 7 3 10

© | Sum 25 9 34

Table 6.4: Confusion matrix shows how the different manual evaluations divide
into the outliers.

Looking at the scores for each class of the evaluated alerts, False and True
positives, we get the correlation as shown in Figure 6.15 for false positives, Fig-
ure 6.16 for true positives, and the distributions of scores as shown in Figure 6.17
for false positives and Figure 6.18.

The correlation plots shows similar correlations between the clustered and
non-clustered distance scores both for PCA ("ml clustered distance score",
"ml distance score") and for the autoencoder ("dl clustered distance score",
"dl distance score"), similar to the correlations seen in section 6.2. Another inter-
esting observation, a lack of correlation this time, is that "ts_alert _category score"
and "ts_alert rule category score" had perfect correlation in all three correla-
tions from section 6.2, while now having barely any correlation. This could
indicate an issue in the processing or that the much smaller datasets of false and
true positives might be overridden by the much larger dataset of unclassified
alerts.

There seems to be a difference between the max value for some of the features
from the distribution plots, Figure 6.15, Figure 6.16, Figure 6.17, and Figure 6.18,
though this does not appear solely for the true-positives advantage. The feature
"ts_alert source host score" appears with a single value higher in the false-
positive set than those in the true positive set, while for most other features
where there is a difference, the true positives have a higher max value than
in the false-positive set. This does not confirm significant differences between
the sets’ max value, but it might indicate that "ts alert source host score" is
not a valuable feature for this process. There is also little confidence in these
observations as the sample size is small.
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Figure 6.15: Shows the correlation between columns for the alerts manually
classified as false positives.
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Figure 6.16: Shows the correlation between columns for the alerts manually
classified as true positive.
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Figure 6.17: Shows the distribution of columns for the alerts manually classified
as false positives.
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Figure 6.17: Shows the distribution of columns for the alerts manually classified
as false positives (cont.).
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Figure 6.18: Shows the distribution of columns for the alerts manually classified
as true positive.
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Figure 6.18: Shows the distribution of columns for the alerts manually classified
as true positive (cont.).



Discussion

The problem description contains a rough outline of the processes in this thesis.
The overall goal was to produce a feed of actionable data from unclassified alerts
out of Sikt’s NIDS based on data science methods. First, we cover the objectives
from the Problem Description in section 7.1, then Future Works in section 7.2.

7.1 Fulfillment of Research Objectives

The first step of the process, or sub-goal as we consider it, was to identify
auxiliary data sources. The hope is that this will provide additional features
for the alerts, improving the automatic evaluation of the alerts. The identified
data sources are presented in section 4.1. Even though this thesis was limited
to the already enriched data sources, it would certainly be interesting to look
at additional or different enrichments. If the scope changes to, for instance,
look at presumed attackers, one might sort out brute force attackers who have
contacted the honeypots. An IP that regularly signs in to a monitored application
with a single user or is known to be a NAT gateway at a campus could likewise
be filtered out as likely legitimate traffic.

The second sub-goal was to engineer and normalize the NIDS data. One
error in this process was that the normalization happened before we split the
train, validation, and test data sets. As such, the data sets have affected each
other[MMB*21]. Specifically, for each column, the highest value of the whole
dataset became one while the lowest became zero. So if the highest value is in
the training set, then the test data gets skewed down, as its max value would
be smaller than one. This limitation also affects the use of new datasets. A new
dataset with a higher max-value or a lower min-value for any of the columns
would be outside the range required by the autoencoder. So any new datasets
would require normalizing the whole dataset again and training the autoencoder
again.

Another issue was that the source data store of the alerts did many changes
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to the data structure, such as flattening lists, which made it harder to process
the alerts. We worked around this issue, but it wasted unnecessary time. The
final point that we will cover about data engineering is that many of the columns
were in another format than what the autoencoder and PCA could use. It would
increase the information available to the algorithms if the non-numerical features
were available too, but we had to skip this due to time constraints.

The final sub-goal was to create classifiers based on machine learning, deep
learning, and statistical inference. We did not complete this goal fully as we only
made a single classifier based on the scores. Other classifiers could be based on
subsets of the 11 different scores. The causes for this not being completed is a
lack of time and a lack of manually classified alerts. The latter point is connected
to the overall goal of this thesis, which was to have a classifier that could be
evaluated with regards to the recall of actionable data, preferably with high
precision. These observations are statistically insignificant due to the limited
number of manually classified alerts. The validity of these observations outside
of this thesis can not be claimed. Any attempt to split the classifier into smaller,
simpler classifiers, building upon fewer scores, would only be guesswork.

The previously covered sub-goals make the basis for the primary goal of
this thesis, creating classifiers that can sort out a feed of alerts that have a
higher concentration of actionable data, with limited false positives. This can
be considered as partly achieved. We created only one classifier, but it was not
feasible to evaluate the recall or precision as the small set of manually evaluated
alerts did not represent the whole dataset, and the actual distribution of the
alerts is unknown. The only conclusion one can draw is that the outlier set was
significantly smaller than the source set, about one-fifth. Most of the manually
classified alerts went into the smaller set regardless of their classification. It
would be preferable to do a root cause analysis to identify why these were all
grouped, but again time was limited.

After the evaluation, another set of outliers was suggested, based on the
outputs from the PCA and Autoencoder. We did not have time to use these,
although it would be interesting to see the results, especially when compared to
the results after K-Means.

7.1.1 Manual classification of alerts

Manually classifying alerts was necessary to evaluate the results. The methodol-
ogy around gathering classifications could probably be a master’s thesis by itself,
looking into how one should present the alerts and which classification options
to have for a consistent, unbiased classification if that is at all possible.

As mentioned in subsection 5.5.1, there was some criticism of the possible
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classifications by the evaluators. The main complaint was that the set of classes
was different from the ENISA Reference Incident Classification Taxonomy and
not compatible with that taxonomy either. The ENISA taxonomy is one that the
evaluators were more familiar and comfortable with, and they would likely have
managed to classify more alerts if the ENISA taxonomy was used.

Other issues with getting the manually evaluated alerts were that the evalua-
tors could freely select from the list of alerts. The list was sorted by newest first
which skewed the manually classified alerts to the end of the timeframe. The
evaluators also skipped some of the more demanding, possibly more valuable
alerts and thereby skewed the classifications. Forcing a random sampling of the
alerts would likely yield a better distribution of the classified alerts, possibly
at the cost of fewer classifications getting done. Another option, if time had
permitted, would have been to pick several alerts from the outliers and the
non-outliers, then randomly shuffle them, and ask for those specific alerts to be
classified. This could have distributed the classifications better.

7.2 Future works

Many ideas, suggestions, and challenges have been seen throughout this thesis.
The following section discusses some ideas that were too large or outside this
thesis’s scope.

Starting with the maybe most obvious future work, repeating this process once
again on an entirely new or larger dataset would likely give further indications
for the feasibility of this process, keeping in mind that this new dataset would
also need labels for the final evaluation. The end of the used dataset was August
31st, 2021, which means that six months of new data is already available at the
time of this thesis’s submission. It could be interesting to use the process on a
dataset from a different organization to see how, if at all, this process would hold
up in, for instance, a corporate network.

It has already been covered that an expanded set of labeled data would
help evaluate the outliers from this thesis. However, another advantage of a
more extensive collection of labeled data would be the possibility of supervised
training classifiers. This could be added at different stages in the current process.
Another way could be to take samples from both the outlier and non-outlier
populations and classify them, leading to insights into the actual distribution of
true and false positives.

How one should classify alerts is another topic that should be looked further
into, regarding everything from the classification taxonomy, the user interface
for the classification, and the classifications’ day-to-day use, to the classifica-
tions’ bias, distribution, and inaccuracy. Some of the related works, such as
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Vaarandi[Vaa21], used groupings of alerts before the classification, possibly lead-
ing to higher classification rates but at the cost of higher inaccuracies if the
grouping is invalid.

Finally, we would suggest that anyone with a large number of alerts, especially
those who get new alerts regularly, incorporate a process for labeling these alerts.
The labeled alerts would also allow other methods to be used, and they could be
validated more easily. Having the labeling process as part of the typical workflow
can also identify shared features of the classes that can be used to optimize the
automated classification.



Conclusion

This thesis has managed to represent the alerts in a significantly compressed
form, both through PCA and the autoencoder, in a reproducible way which would
allow for new data sets and likely for larger data sets. The use of statistical
outlier detections allows unlabeled data to be split and classifiers to be built
using sets of outlier detectors.

A data pipeline for the processing was also created as part of this thesis.
We can reuse it in whole or in parts for later processing. The pipeline did
produce a feed of outlier alerts which was the primary goal of this thesis. One
recommendation for Sikt to likely get better performance, and better knowledge
about the performance, is to create a process for labeling at least some of the
alerts.

The algorithmic classification of alerts would significantly improve the manual
classification in use today. While this thesis shows some promising results re-
garding this automation, there are still challenges surrounding the classification
taxonomy and the lack of manual classification, though these are surpassable
challenges.

The possible benefits of automation are pretty significant. Reducing the
number of alerts to evaluate manually frees up time to investigate the remaining
alerts better and improve security through previously not prioritized ways.
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Preprocessed column features

Column name Datatype
#source host {institution}-mp uint8

http.http port float64
alert.metadata.updated _at datetime64[ns]
tls.notbefore datetime64[ns]
tls.notafter datetime64[ns]
@ingesttimestamp datetime64[ns]
#repo object

#source object

@id object
@timezone object
alert.signature object
alert.metadata.policy object
community id object
destination.ipreg.comment object
destination.ip object
destination.ip misp object
dns.query object
dns.query.rrname object
email.attachment object

email.cc object
email.from object

email.to object
email.url object
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Column name Datatype
files[0].sha256 object
files[0].shal object
files[0].md5 object
files[0].filename object
files[1].filename object
flow id object
http.content range.raw object
http.hostname object
http.http response body printable object
http.xff object
http.url object
http.http response body object
http.redirect object
http.http request body object
http.http request body printable object
http.http refer object
labels.source object
payload object
payload printable object
rdp.server supports object
smb.client dialects object
smb.client guid object
smb.dialect object
smb.server guid object
smtp.helo object
smtp.mail from object
smtp.rcpt_to object
source.ip_misp object
source.ip _tor object
source.ip object
source.ipreg.comment object
tunnel.dest ip object
tunnel.src_ip object
tls.ja3s.hash object




Column name Datatype
tls.ja3s.string object

tls.ja3.string object

tls.ja3.hash object

tls.sni object

tls.version object

tls.subject object

tls.fingerprint object

tls.issuerdn object

tls.serial object

TLP category
alert.action category
alert.signature id category
alert.category category
alert.severity category
alert.metadata.affected product category
alert.metadata.attack target category
alert.metadata.cve category
alert.metadata.deployment category
alert.metadata.former category category
alert.metadata.impact flag category
alert.metadata.malware family category
alert.metadata.mitre tactic id category
alert.metadata.mitre tactic name category
alert.metadata.mitre technique id category
alert.metadata.mitre technique name | category
alert.metadata.service category
alert.metadata.signature severity category
alert.metadata.tag category
alert.metadata.performance impact category
app proto category
app_proto expected category
app_proto_orig category
app_proto ts category
app_proto tc category
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Column name Datatype
destination.ipreg.name category
destination.geo.country iso code category
destination.geo.country name category
destination.geo.city name category
destination.geo.region category
destination.ipreg.domain category
dns.query.type category
dns.query.rrtype category
email.status category
event type category
files[0].magic category
files[0].state category
files[1].state category
http.protocol category
http.http method category
http.http user agent category
http.http content type category
in_iface category
labels.log type category
labels.nifi node category
labels.source host category
metadata.flowbits category
proto category
smb.command category
smb.status_code category
smb.status category
source.ipreg.domain category
source.ipreg.name category
source.geo.country iso code category
source.geo.country name category
source.geo.city name category
source.geo.region category
tunnel.proto category
alert.metadata.created at datetime64[ns]




Column name Datatype
flow.start datetime64[ns]
#humioBackfill object
traffic.id object
traffic.label object
parent id object
command object
filename object
rdp.event_type object
rdp.tx id object
rdp.protocol object
rdp.cookie object
ssh.server.software version object
ssh.server.proto_version object
dns.answer.rrtype object
dns.answer.type object
dns.answer.version object
dns.answer.qr object
dns.answer.rrname object
dns.answer.rcode object
dns.answer.flags object
dns.answer.id object
flow.pkts toclient float64
flow.bytes toclient float64
flow.pkts toserver float64
flow.bytes toserver float64
packet size toclient float64
packet size toserver float64
packet count ratio float64
packet size ratio float64
stream float64
http.status float64
destination.port float64
source.port float64
vlan float64
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Column name Datatype
alert.rev float64
alert.gid float64
@timestamp.nanos float64
dns.query.id float64
dns.query.tx_id float64
tx id float64
files[0].size float64
files[0].start float64
files[0].end float64
files[0].tx_id float64
files[1].size float64
files[1].tx id float64
http.length float64
http.content range.size float64
http.content range.start float64
http.content range.end float64
icmp code float64
icmp type float64
smb.tree id float64
smb.session_id float64
smb.id float64
tunnel.dest port float64
tunnel.src_port float64
tunnel.depth float64
destination.geo.location.lat float64
destination.geo.location.lon float64
source.geo.location.lat float64
source.geo.location.lon float64
rule source category
rule category category
rule name object
standard http port float64
recent alert float64
valid tls float64




Column name Datatype
files[0].gaps float64
files[0].stored float64
files[1].gaps float64
files[1].stored float64
tls.session_resumed float64

Table A.1: Table of columns in the preprocessed dataset
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Silhouette scores for the number

of clusters

# of
clusters

Autoencoder
silhouette score

PCA
silhouette score

0.2138016912354948

0.9171638278900758
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0.27320828298051053
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# of

clusters

Autoencoder
silhouette score

PCA
silhouette score

24

0.5507689448410427

0.9814132642441666

25

0.5605811703328178

0.9792239371854449

26

0.549144456833908

0.9785755214760392

27

0.5579710153007769

0.9826725908685388

28

0.5745833645669183

0.9831701005914942

29

0.5783541195934765

0.9826219037722687

30

0.5811029712781661

0.9832499797381794

31

0.5921428423749202

0.9835485682004098

32

0.5764927596978244

0.9832071042179379

Table C.1: Silhouette score from the search for number of clusters.
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