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A B S T R A C T

The importance of the transverse viscous loads, in a modular maneuvering model, is investigated. A method
to estimate steady sectional drag coefficients is first presented. A 2D+t approach, which accounts for forward-
speed effects, is also presented. The time-varying drag coefficients, in the 2D+t method, are estimated with
three methods: two simplified methods using results from the literature directly, and one more sophisticated
method which uses time-derivatives, from time-dependent drag coefficients for hull forms in the literature, and
integrates the drag coefficients along the hull. Turning circles with 25◦ and 35◦ rudder angle are simulated
in calm water and regular waves for a range of wavelengths between 𝜆∕𝐿𝑝𝑝 = 0.281 and 1.120, with wave
steepness 𝐻∕𝜆 = 1∕40, and initial head sea. The Duisburg Test Case (DTC) is used as a test ship. The numerical
simulations are compared with free-running model tests. Overall, the 2D+t method, with integrated drag
coefficients, shows a better match with the experiments compared to the cross-flow approach. However, both
methods capture the main trends considering tactical diameter and advance for the tested wave conditions.
Furthermore, using scaled time-varying drag coefficients for a circular cylinder can be a good starting point
in a 2D+t approach.
1. Introduction

Maneuvering behavior of ships has been investigated for decades.
Regression models, also referred to as Abkowitz models, and modular
models are the two dominating mathematical models for ship maneu-
vering. Traditionally regression models have been the most popular
mathematical model for maneuvering simulations (Sutulo and Soares,
2011).

In a regression model, the mathematical model is constructed from
hull coefficients obtained from experimental tests or numerical sim-
ulations. Planar motion mechanism (PMM) tests have typically been
applied to obtain the coefficients. These tests are usually done in calm
water, but they can also be done in waves. As computational speed has
been rapidly increasing, such tests can now be done virtually with CFD.
During a maneuvering simulation, these coefficients are considered to
be tabulated values, which means that regression models are suitable
for real-time simulations.

The lack of physical meaning can be a drawback of regression
models (Hooft, 1994). This makes it difficult to compare different ships
concerning maneuvering behavior and to get a thorough understanding
of the physical phenomena involved. Another drawback is that the
computation of the maneuvering coefficients can be complicated and
time-intensive.
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A modular approach, solver-in-the-loop, is an alternative model
which can give accurate results (Sutulo and Soares, 2011). In a modular
model, the different physical phenomena are calculated separately.
Maneuvering Modeling Group (MMG) models, as presented by Ogawa
et al. (1977) and Yasukawa and Yoshimura (2015), are examples of
modular maneuvering models.

Sutulo and Soares (2019) emphasize the importance of having
accurate maneuvering models, which can be used in the design stage. It
is especially important with maneuvering models with minimal tuning.
Empirical methods are often used in this context. However, results
in Sutulo and Soares (2019) demonstrated that few empirical maneu-
vering models were capable to predict, fairly accurate compared to
experiments, the main measures of a turning circle in calm water. For
some of the empirical methods, the tactical diameter was more than
50% higher than the experimental results.

Simulations with modular models can clarify which physical phe-
nomena that dominate in different type of maneuvers. Sensitivity stud-
ies show that the transverse viscous loads are of significant importance
in a turning circle with 35◦ rudder angle. These loads are often calcu-
lated according to the cross-flow principle, which neglects the effect of
forward speed. The resulting sway force and yaw moment are strongly
dependent on the sectional drag coefficients. The method is often
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Nomenclature
𝐴𝑅 [m2] Rudder area
𝐵 [m] Beam of the ship
𝐶𝐵 [–] Block coefficient
𝐶𝐷 [–] Drag coefficient
𝐶𝐷0

[–] Rudder surface friction coefficient
𝐶𝐷,∞ [–] Steady drag coefficient
𝐶𝐷(𝑡′) [–] Time-varying drag coefficient
𝐶∗
𝐷(𝑡

′) [–] Time-integrated drag coefficient
𝐶𝐹 [–] Frictional resistance coefficient
𝐶𝐿 [–] Lift coefficient
𝐶𝑇 [–] Total resistance coefficient
𝐶𝑡ℎ [–] Propeller thrust loading coefficient
𝐶𝑇𝑁 [–] Reduction coefficient
𝑑 [m] Ship draft
𝐷𝑝 [m] Propeller diameter
𝐹𝑛 [–] Froude number
𝐺𝑀 [m] Metacentric height
𝐻 [m] Wave height
𝐼44 [kgm2] Roll moment of inertia
𝐼66 [kgm2] Yaw moment of inertia
𝐼46, 𝐼64 [kgm2] Coupled roll–yaw and yaw–roll moment

of inertia
𝑘 [m−1] Wave number
𝐾𝐶 [–] Keulegan–Carpenter number
𝐾𝐺 [m] Height of ship’s center of gravity above keel
𝑘𝑚 [–] Rudder velocity coefficient
𝐾𝑇 [–] Propeller thrust coefficient
𝐾𝑅, 𝐾𝑃𝑅𝑂𝑃 [Nm] Roll moments in body-fixed coordinate

system due to rudder, and propulsion
𝐿𝑏𝑘 [m] Length of bilge keel segments
𝐿𝑝𝑝 [m] Length between perpendiculars
𝑛 [𝑠−1] Number of propeller revolutions per

second
𝑁𝑅, 𝑁𝑃𝑅𝑂𝑃 , 𝑁𝐶𝐹 [Nm] Yaw moments in body-fixed coordi-

nate system due to rudder, propulsion, and
transverse viscous loads

𝑂𝑥𝑦𝑧 Cartesian right-handed body-fixed coordinate
system

𝑂𝑋0𝑌0𝑍0 Earth-fixed Cartesian right-handed coordinate
system

𝑝, 𝑟 [rad∕s] Roll- and yaw-rate in body-fixed coordi-
nate system

𝑟𝑏 [m] Bilge radius
𝑅𝐹 [N] Frictional resistance
𝑅𝑒 [–] Reynolds number
𝑅𝑊 [N] Wave-making resistance

𝑅𝑇 [N] Calm water ship resistance
𝑅𝑋 , 𝑅𝑌 , 𝑅𝑁 Second order mean loads due to regular waves
𝑅𝑋,1 Added resistance due to linear wave-induced

motions
𝑅𝑋,2 Added resistance due to wave reflection
𝑠 [m] Distance a section has moved transversely
𝑆 [m2] Wetted surface of hull
𝑡 [–] Thrust deduction factor
𝑇 [s] Wave period
𝑇 (𝐽 ) [N] Propeller thrust as a function of propeller

advance number
𝑡′ Non-dimensional time (or displacement)
𝑈𝐴 [m∕s] Propeller inflow velocity
𝑢, 𝑣 [m∕s] Surge and sway velocity in body-fixed

coordinate system
𝑢𝑟, 𝑣𝑟 [m∕s] Longitudinal and transverse component

of inflow velocity to the rudder
𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺 [m] Center of gravity in body-fixed coordinate

system
𝑥𝑅 [m] x-position of rudder in body-fixed coordi-

nate system
𝑋𝑅, 𝑋𝑃𝑅𝑂𝑃 [N] Forces in 𝑥-direction in body-fixed coordi-

nate system due to rudder, and propulsion
𝑌𝑅, 𝑌𝑃𝑅𝑂𝑃 , 𝑌𝐶𝐹 [N] Forces in 𝑦-direction in body-fixed coor-

dinate system due to rudder, propulsion, and
transverse viscous loads

𝑌𝑃𝑇 , 𝑁𝑃𝑇 Factors to estimate propeller lateral loads
2𝐷 + 𝑡0 2D+t approach where time-varying drag coeffi-

cients are scaled directly from the literature
2𝐷 + 𝑡𝑐𝑦𝑙 2D+t approach where scaled time-varying drag

coefficients for a circular cylinder are applied
𝛼 [deg] Drift angle
𝛽0 [deg] Wave heading
𝛽𝑅 [deg] Angle of mean inflow to rudder
𝛿 [deg] Rudder angle
𝛥 [4kg] Displacement mass
𝜁𝐴 [m] Wave amplitude
𝛬 [–] Rudder aspect ratio
𝜆 [m] Wavelength
𝜈 [m2∕s] Kinematic viscosity of water
𝜌 [kg∕m3] Density of water
𝜙, 𝜓 [deg] Roll- and yaw-rotation in body-fixed

coordinate system
𝛷,𝛹 [deg] Roll- and yaw-rotation in Earth-fixed

coordinate system
𝜔 [rad∕s] Angular wave frequency
further simplified, by setting the drag coefficient to be constant along
the hull. The argument behind such simplification is that cross-flow is
a very approximate model and more realistic drag coefficients will not
necessarily improve the results (Sutulo and Soares, 2011). Shen (2018)
presented a pragmatic method to estimate sectional drag coefficients.
Ship sections were simplified to similar geometries, and corrections for
important parameters were applied, such as free-surface effects, bilge
radius, and 3D-effects. The calculated transverse viscous force agrees
well with model tests (Shen, 2018).

There are several, more sophisticated methods to calculate the
transverse viscous loads. Landrini and Campana (1996) investigated a
2

simplified geometry, a flat plate with steady drift and during a steady
turn. The separation at the ship keel was modeled with a vortex-
sheet method. For a simplified geometry, as a flat plate, where the
separation point is known, this approach may be appropriate. However,
for realistic hull shapes where the separation point is unknown, the sep-
aration point must be determined. Aarsnes (1984) calculated also the
transverse viscous loads with a vortex-sheet method. He investigated
realistic ship sections, where the separation points were determined
by boundary layer calculations. Yeung et al. (2008) proposed a new
method to calculate the transverse viscous loads with forward speed ef-
fects included. They combined the Free Surface Random Vortex Method
(FSRVM) with slender body theory. The estimated transverse loads

showed good agreement with experimental results.
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Solving the Navier–Stokes equations, with CFD, in principle pro-
vides you the hydrodynamic loads, including the transverse viscous
loads. Traditionally, the computational time has been a disadvantage
with CFD. However, lately CFD has become more and more manage-
able, especially for 2D problems. Arslan et al. (2016) investigated the
flow around ship sections. The calculated steady drag coefficients were
in good compliance with experimental results. Cura-Hochbaum and
Uharek (2016) and Chillcce and el Moctar (2018) used a regression
model to perform turning circles in calm water and regular waves.
The maneuvering coefficients were obtained from PMM tests performed
with CFD. The results were in good agreement with experimental
results, hence it is natural to believe that the transverse loads were
estimated satisfactorily.

CFD calculations should be handled with care, especially mesh gen-
eration and turbulence models need special attention. Great knowledge
about the physics of these topics are needed to obtain accurate results.
This can be recognized in a benchmark study by Shigunov et al. (2018),
where CFD methods showed great potential but could also deliver
erratic results. If CFD is used to calculate the transverse viscous loads in
a modular model, you will also obtain non-viscous loads. Meaning that
you need to subtract the loads which are estimated by other modules,
e.g. potential lifting loads.

Common for the methods mentioned above, is that quite some effort
is needed to implement these methods. Furthermore, time-domain sim-
ulations are needed to obtain the transverse viscous loads. In a modular
maneuvering model, where the transverse viscous loads is only one of
many modules, the effort of implementing these methods can often
be considered to be too much. This is probably the reason that the
approximate cross-flow approach is the dominant method in modular
maneuvering models.

Chapman (1975) introduced a strip-theory to calculate the trans-
verse viscous loads, which accounts for forward speed effects, the 2D+t
theory. Faltinsen (2005) exemplified this theory in a maneuvering con-
text, to calculate the non-linear transverse viscous loads on a circular
cylinder with constant diameter. Ommani et al. (2012) implemented
the theory for a vessel on a straight course with a drift angle. They
simplified the cross-sections into half circles with radius equal to the
ship sections draft. For circular cylinders there exist experimental and
numerical results for start-up flows in the literature. The estimated
sway force agreed well with experiments, while there was more discrep-
ancies for the yaw moment. Ommani and Faltinsen (2014) investigated
the same problem with transient drag coefficients calculated with a 2D
Navier–Stokes solver, which captures the flow separation of the actual
ship shape. The results showed a good agreement with experimental
results. The transverse viscous loads were significantly higher than the
loads calculated with the simplified method in Ommani et al. (2012).
Moreover, the 2D Navier–Stokes solver captured the transverse force
distribution at the bow better than when the geometry was simplified
to a circular cylinder. This is of high importance in calculating the yaw
moment.

Alsos and Faltinsen (2018) generalized the 2D+t method in Faltin-
sen (2005), to account for all six rigid-body degrees of freedom. They
investigated a dropped circular cylinder, with a blunt front, which can
be compared to a generalized maneuvering problem. However, there
is no one, in the authors’ knowledge, that has implemented the 2D+t
theory in a classical maneuvering problem.

In the present work, a modular maneuvering model for maneuvering
in waves is presented based on slender-body theory for the still water
part, and strip theory to account for the waves. The mathematical
model is based on Skejic (2008), i.e. a two-time scale model, with
some modifications. The model is within the framework of real-time
simulation, and all loads can be computed in the loop. Special atten-
tion is given to the transverse viscous loads, which are of significant
importance in a tight turn. Following the approach in Shen (2018), the
steady sectional drag coefficients are calculated pragmatically based on
drag coefficients in the literature. Furthermore, a 2D+t theory, based
3

Fig. 1. Body-fixed coordinate system 𝑥𝑦𝑧 and Earth-fixed coordinate system 𝑋0𝑌0𝑍0.
Positive direction of yaw 𝛹 , yaw-rate 𝑟, rudder angle 𝛿, and wave heading 𝛽0 are
indicated.

on Faltinsen (2005) and Alsos and Faltinsen (2018), is implemented
in the maneuvering model. Three methods are presented to calculate
the time-varying drag coefficient; one by scaling time-varying drag
coefficients for a range of relevant geometries from Aarsnes (1984),
one by scaling the time-varying drag coefficient for a circular cylinder,
while the last method time-integrates 𝑑𝐶𝐷(𝑡′)

𝑑𝑡′ with time-derivatives esti-
mated from Aarsnes (1984). The first two methods are very simplified
methods using results from the literature directly, while the latter is a
more sophisticated method. The features of these three methods will be
discussed. The Duisburg Test Case (DTC) is used as a test ship. Turning
circles with 35◦ and 25◦ rudder angel, in calm water and regular waves,
are compared with experimental results from Rabliås and Kristiansen
(2019).

2. Numerical formulation

2.1. Mathematical model

A right-handed body-fixed coordinate system, 𝑥𝑦𝑧, with the 𝑧-axis
pointing upwards through the center of gravity, with 𝑧 = 0 at calm
water level is applied. The Earth-fixed coordinate system 𝑋0𝑌0𝑍0 is a
right-handed coordinate system with 𝑍0-axis pointing upwards. Both
coordinate systems with definitions and positive rotations are given in
Fig. 1.

The mathematical model is based on the maneuvering model by Ske-
jic (2008), which is a modified version of the 3-DOF slender body
theory by Söding (1982). The 4-DOF maneuvering equations imple-
mented in the current model are given in Eq. (1). An explanation of
the different modules and the terms in Eq. (1) follows.

The left-hand side of Eq. (1) represents inertia terms in the surge–
sway–roll–yaw equations of motions for a rigid body in the body-fixed
coordinate system given in Fig. 1. The right-hand side represents the
hydrodynamic loads acting on the hull.

𝑋𝑢̇, 𝑌𝑣̇, 𝑌𝑝̇, 𝑌𝑟̇, 𝐾𝑣̇, 𝐾𝑝̇, 𝐾𝑟̇, 𝑁𝑣̇, 𝑁𝑝̇, 𝑁𝑟̇, 𝑌𝑣, 𝑌𝑝, 𝑌𝑟, 𝐾𝑣, 𝐾𝑝, 𝐾𝑟, 𝑁𝑣, 𝑁𝑝,
and 𝑁𝑟 are the so-called maneuvering coefficients. The zero-frequency
added mass terms 𝑋 , 𝑌 , 𝑌 , 𝑌 , 𝐾 , 𝐾 , 𝐾 , 𝑁 , 𝑁 , and 𝑁 are
𝑢̇ 𝑣̇ 𝑝̇ 𝑟̇ 𝑣̇ 𝑝̇ 𝑟̇ 𝑣̇ 𝑝̇ 𝑟̇
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(1)
w

calculated with the 3D panel code WAMIT. The rest of the maneuver-
ing coefficients, the lifting terms, are calculated according to Söding
(1982). In Söding (1982), the lifting coefficients are constructed from
zero frequency 2D added mass coefficients. In the present work, these
2D added mass coefficients are calculated with a 2D boundary element
code.

The term −𝐶𝑇𝑁𝑌𝑣̇𝑟𝑣 represents the longitudinal component of the
entrifugal force, which gives an important contribution to speed loss
n a turn, where 𝐶𝑇𝑁 is an empirical constant between 0.2 and 0.8 (Ske-
ic, 2008; Artyszuk, 2003). In the present work, 𝐶𝑇𝑁 is set to 0.5.
Subscript R, PROP, and CF represent Rudder forces, propulsion forces,
and viscous loads due to flow separation. 𝑅 represents the mean drift
loads from regular waves. The modular approach allows us to calcu-
late the calm water hydrodynamic loads separately in a quasi-steady
manner (Yasukawa and Yoshimura, 2015). According to the two time-
scale assumption the second order mean wave loads follows a more
slowly varying time scale, and they are updated in a separate module
with input parameters (velocity and heading) obtained from the ma-
neuvering module. Propulsion, rudder, and drift loads are estimated by
conventional methods, while we present new models for the transverse
viscous loads.

Following the Euler transformation derived in Faltinsen (2005),
the relation between the ship position in the body-fixed coordinate-
system (𝑥, 𝑦, 𝑥) and the Earth-fixed coordinate-system (𝑋0, 𝑌0, 𝑍0) can
be written as:
𝑑𝑋0
𝑑𝑡

= 𝑢 cos𝜓 − 𝑣 cos𝛷 sin𝜓

𝑑𝑌0
𝑑𝑡

= 𝑢 sin𝜓 + 𝑣 cos𝛷 cos𝜓

𝑑𝛷
𝑑𝑡

= 𝑝

𝑑𝜓
𝑑𝑡

= 𝑟 cos𝛷

(2)

here 𝑢, 𝑣, 𝑝, 𝑟, 𝜙, and 𝜓 are the surge velocity, sway velocity, roll-rate,
aw-rate, roll angle, and yaw angle in the body-fixed coordinate-system
𝑥, 𝑦, 𝑥). 𝑋0, 𝑌0, 𝛷, and 𝛹 are the x-position, y-position, roll angle, and
aw angle in the global coordinate-system.

Time integration of the equation system (1)–(2) is performed with
fourth-order Runge–Kutta scheme. All time-varying loads and co-

fficients, except the second order mean wave loads, are updated at
ach sub-step of the time integration. The second order mean wave
oads are assumed to have a different time scale and they are updated
t a different time scale. The second order mean loads are updated
t a predetermined threshold for heading and velocity. Based on a
onvergence study, where the threshold was systematically varied, the
hreshold is set to 𝛥𝛹 =2◦ and 𝛥𝑢 = 0.2 m/s (full scale).

2.2. Resistance and propulsion module

The resulting longitudinal force of the propeller thrust and the calm
water resistance is

𝑋 = −𝑅 (𝑢) + (1 − 𝑡)𝑇 (𝐽 ) (3)
4

𝑃𝑅𝑂𝑃 𝑇
where 𝑅𝑇 (𝑢) is the calm water resistance for a given velocity, 𝑡 is
the thrust deduction factor, and 𝑇 (𝐽 ) is the propeller thrust for a
given propeller advance number, 𝐽 . The propeller thrust can also be
expressed with a non-dimensional parameter 𝐾𝑇 ,

𝐾𝑇 (𝐽 ) =
𝑇 (𝐽 )
𝜌𝑛2𝐷4

𝑝
(4)

where 𝑛 is the number of propeller revolutions per second, 𝜌 is the
density of water, and 𝐷𝑝 is the propeller diameter. Experimental 𝐾𝑇
values for the DTC hull, obtained from el Moctar et al. (2012), are
used in the present work. Vessels equipped with single-screw propellers
will experience a lateral force and yaw moment from the propeller,
𝑌𝑃𝑅𝑂𝑃 , and 𝑁𝑃𝑅𝑂𝑃 . These lateral loads are in general small, and they
are often neglected (Tello Ruiz, 2018). However, some authors account
for the lateral propeller loads. Oltmann and Sharma (1984) propose to
represent the lateral propeller force with the constants 𝑌𝑃𝑇 and 𝑁𝑃𝑇 ,
such that
𝑌𝑃𝑅𝑂𝑃 = 𝑌𝑃𝑇 𝑇 (𝐽 )

𝑁𝑃𝑅𝑂𝑃 = 𝑁𝑃𝑇 𝑇 (𝐽 )
(5)

Wave-making resistance 𝑅𝑊 and frictional resistance 𝑅𝐹 are the
two dominating contributions to the calm water resistance. The calm
water resistance can be approximated as

𝑅𝑇 ≅ 𝑅𝑊 + 𝑅𝐹 (1 + 𝑘) (6)

where 𝑘 is the so-called form factor. The calm water resistance can also
be written on non-dimensional form:

𝐶𝑇 =
𝑅𝑇

0.5𝜌𝑆𝑈2
(7)

where 𝑆 is the wetted surface of the hull, and 𝑈 is the forward speed.
Experimental values of the wave-making resistance coefficient 𝐶𝑊 =
𝑅𝑊

0.5𝜌𝑆𝑈2 , for the DTC hull, are obtained from Shigunov et al. (2018),
while the frictional resistance coefficient 𝐶𝐹 is calculated according to
the ITTC friction line

𝐶𝐹 = 0.075
(log𝑅𝑒 − 2)2

=
𝑅𝐹

0.5𝜌𝑆𝑈2
(8)

where 𝑅𝑒 is the Reynolds number, 𝑅𝑒 = 𝑈𝐿𝑝𝑝
𝜈 .

2.3. Rudder module

A conventional rudder model is applied, where the rudder induced
forces and moments, in the body-fixed coordinate-system, are

𝑋𝑅 = 𝐿 sin 𝛽𝑅 −𝐷 cos 𝛽𝑅
𝑌𝑅 = 𝐿 cos 𝛽𝑅 +𝐷 sin 𝛽𝑅
𝑁𝑅 = 𝑥𝑅𝑌𝑅

(9)

here 𝛽𝑅 = tan−1(−𝑣𝑟∕𝑢𝑟), and 𝑢𝑟 and 𝑣𝑟 are the longitudinal and
transverse component of the ambient inflow velocity to the rudder.

𝑢𝑟 = 𝑈𝐴[1 + 𝑘𝑚(
√

1 + 𝐶𝑡ℎ − 1)]
(10)
𝑣𝑟 = 𝑣 + 𝑥𝑅𝑟
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𝑈𝐴 = 𝑈 (1 − 𝑤) is the propeller inflow velocity, where 𝑤 is the wake
fraction and 𝑈 the forward speed, 𝐶𝑡ℎ = 𝑇 (𝐽 )

0.5𝜌𝑈2
𝐴𝜋𝐷

2
𝑝∕4

is the propeller
thrust loading coefficient. 𝑘𝑚 accounts for the distance-to-propeller
diameter ratio, 𝑥𝑑∕𝐷𝑝, where 𝑥𝑑 is the distance between the propeller
and rudder. This coefficient is between 0.5 and 1, where 𝑘𝑚 = 0.5 and
𝑚 = 1 corresponds to distance-to-propeller diameter ratio 0 and ∞

respectively. In the present work 𝑘𝑚 = 0.55. 𝐿 and 𝐷 are the rudder
lift and drag, their definitions are given by

𝐿 = 0.5𝐶𝐿𝜌𝐴𝑅(𝑢2𝑟 + 𝑣
2
𝑟 )

𝐷 = 0.5𝐶𝐷𝜌𝐴𝑅(𝑢2𝑟 + 𝑣
2
𝑟 )

(11)

𝐴𝑅 is the rudder area. The lift and drag coefficients, 𝐶𝐿 and 𝐶𝐷, are
calculated according to Bertram (2000).

𝐶𝐿 = 2𝜋
𝛬(𝛬 + 0.7)
(𝛬 + 1.7)2

sin 𝛼 + 𝐶𝑄 sin 𝛼|sin 𝛼| cos 𝛼

𝐶𝐷 =
𝐶2
𝐿

𝜋𝛬
+ 𝐶𝑄|sin 𝛼|3 + 𝐶𝐷0

(12)

where 𝛬 is the rudder aspect ratio, 𝐶𝑄 is the resistance coefficient (≈ 1),
𝛼 = 𝛿 + 𝛽𝑅 is the angle of attack where 𝛿 is the rudder angle, and
𝐶𝐷0

= 2.5 0.075
(log𝑅𝑒−2)2 represents the rudder surface friction.

2.4. Mean 2nd order drift loads

The mean second order wave loads are calculated according to
Faltinsen et al. (1980). Mean second order drift forces in 𝑥− and
-direction, 𝑅𝑋 and 𝑅𝑌 , and the mean second order yaw moment
𝑅𝑁 are accounted for. For relative wavelengths approximately above
𝜆∕𝐿 ≥ 0.5, the drift loads are dominated by the ship motions. In this
ange of wavelengths, the second order drift loads are calculated by
he pressure integration method by Faltinsen et al. (1980). For shorter
avelengths, the drift loads are dominated by wave reflections from

he ship hull. In this range of wavelengths the drift loads are calculated
ith the asymptotic theory for asymptotic short wavelengths (Faltinsen
t al., 1980). Both the pressure integration method and the asymptotic
ethod for short waves are derived with forward speed. The classical

TF-strip theory (Salvesen et al., 1970) is applied to calculate the linear
ave-induced ship motions. The 2D radiation problems, for every ship

ection, are solved with a 2D boundary element method. Roll damping
s accounted for with the procedure by Ikeda et al. (1978), Ikeda
2004).

There is no sharp transition between these two regimes, for some
avelengths both ship motions and wave reflection will contribute to

he second order drift loads. Fujii (1975) proposed a function which
ombines added resistance calculated from ship motions methods and
ave reflection methods:

=
𝜋𝐼1(𝑘𝑑)

√

𝜋2[𝐼1(𝑘𝑑)]2 + [𝐾1(𝑘𝑑)]2
(13)

1 is the modified Bessel function of the first kind, 𝐾1 is the modified
essel function of the second kind, 𝑘 is the wave number, and 𝑑 is the
hip draft. According to Fujii (1975) the added resistance can now be
ritten as

𝑅𝑋 = 𝑅𝑋,1 + 𝑅2𝑅𝑋,2 (14)

where 𝑅𝑋,1 is the added resistance calculated with pressure integration
and 𝑅𝑋,2 is the added resistance calculated with asymptotic theory for
short waves.

To ensure that the added resistance is calculated purely by the
asymptotic method for short waves and purely with pressure integra-
tion for the longest wave, the expression by Fujii (1975) is slightly ad-
justed. In the present work, the added resistance is calculated according
to Eq. (15).

𝑅 = (1 − 𝑅2)𝑅 + 𝑅2𝑅 (15)
5

𝑋 𝑋,1 𝑋,2 c
The interpretation in Eq. (15) is used by other authors, e.g. Guo and
Steen (2010). Eq. (15) is also applied for the mean second order sway
force and yaw moment.

Applying equation (15) for the DTC hull, we find that the second
order drift loads are mainly calculated according to the pressure inte-
gration method for relative wavelengths, 𝜆∕𝐿𝑝𝑝, above approximately
0.6.

In Fig. 2 added resistance in head and following waves, with for-
ward speed corresponding to Froude number Fn = 0.052 and Fn = 0.14,
where Fn = 𝑈

√

𝑔𝐿𝑝𝑝
, are compared with experimental results in Sprenger

and Fathi (2015). In head waves there is acceptable agreement with
the experiments. The largest deviation can be found in the short wave
range. This is a range where the added resistance is calculated by a
combination of the pressure integration method and the asymptotic
method for short waves, and the asymptotic method dominates more
and more when the wavelength decreases. Moreover, there is an outlier
in the experimental result, in head sea with Froude number 0.052,
which not are captured by the numerical results. In following waves,
the results deviates more from the experiments. For Froude number
0.14, the added resistance is significantly overestimated for long waves,
while there is better match for the shorter waves. For Froude number
0.052, the experiments shows an added thrust, which is not captured
by the present method.

Mean drift loads with Froude number 0.052 in oblique head and
oblique following sea, wave headings 120◦ and 60◦, are presented in
Fig. 3. For 𝑅𝑋 , we can observe the same trend as for Froude number
0.14, that the added resistance has an acceptable match with experi-
ments for oblique head waves, while there are larger discrepancies for
oblique following waves. For the y-drift and yaw-drift, the main trends
are captured, but there is a significant deviation from the experiments
for some wavelengths.

It is expected that the discrepancies in mean drift loads will affect
the maneuvering behavior for those conditions. The added resistance
is in general not predicted well in following and oblique following
waves, which will influence the forward speed during a turning ma-
neuver. Furthermore, for some wavelengths the discrepancies in 𝑅𝑌
and 𝑅𝑁 are relatively large. It is expected that, in particular the yaw-
drift, has a significant importance in a turning maneuver (Wicaksono
and Kashiwagi, 2018). Moreover, we acknowledge the challenges in
measuring the mean loads experimentally, which also contribute to the
discrepancies.

2.5. Transverse viscous loads

Until now, we have referred to methods based on other authors’
work, that we apply in our modular maneuvering model. In the present
section, we describe different models that we have developed in order
to improve the physical representation of the transverse, viscous loads.
One method based on the cross-flow assumption, and three methods
based on the 2D+t theory are proposed. Results from sensitivity studies
will be presented later.

2.5.1. Cross-flow formulation
For large drift angles, the nonlinear viscous loads due to flow

separation from the ship hull, typically the ship keel, can be calculated
according to the cross-flow principle, where interaction between strips
along the hull is neglected. The surge force due to flow separation, 𝑋𝐶𝐹 ,
is neglected, while that in sway, 𝑌𝐶𝐹 , and yaw, 𝑁𝐶𝐹 , are calculated
according to

𝑌𝐶𝐹 = −0.5𝜌∫𝐿
{𝐶𝐷(𝑥)(𝑣 + 𝑥𝑟)|𝑣 + 𝑥𝑟|𝑑(𝑥)}𝑑𝑥 (16)

𝑁𝐶𝐹 = −0.5𝜌∫𝐿
{𝐶𝐷(𝑥)𝑥(𝑣 + 𝑥𝑟)|𝑣 + 𝑥𝑟|𝑑(𝑥)}𝑑𝑥 (17)

𝐷(𝑥) is the sectional drag coefficient, 𝑑(𝑥) is the sectional still water
raft, 𝑣 and 𝑟 are the sway velocity and yaw-rate in the body-fixed

oordinate-system, and 𝑥 is the 𝑥−coordinate of the section.
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Fig. 2. Added resistance for the DTC hull with Froude numbers 0.14 (upper row) and 0.052 (lower row). Numerical results are compared with experimental results from Sprenger
nd Fathi (2015). Left: Following sea. Right: Head sea.
It is common practice to further simplify Eqs. (16) and (17), by as-
uming that the drag coefficient is constant along the hull, 𝐶𝐷(𝑥) = 𝐶𝐷.

The argument behind such simplification is that the cross-flow principle
is a relatively crude method. Hence a constant drag coefficient can give
a rough estimate (Sutulo and Soares, 2011). However, in such model,
it is difficult to choose a drag coefficient that is representative for the
whole hull based on theoretical calculations or physical reasoning, and
it can be tempting to let the drag coefficient be a parameter which can
be ‘‘tuned’’ to improve the results.

The transverse forces and moments from flow separation can be
dominant in a maneuver, which alludes the importance of accurate
calculations of these loads. The relative importance of the transverse
viscous loads in a 35◦ turning circle in calm water is exemplified in
Fig. 4. The DTC hull is used in the example, and the cross-flow princi-
ple, with 𝐶𝐷(𝑥) as explained in the following, is applied to calculate the
transverse viscous loads. We notice that the transverse viscous force and
moment have opposite sign compared with the other significant loads,
which entails that the resulting loads are very sensitive to the accuracy
of these terms.

2.5.2. Estimation of steady drag coefficients for ship sections
Faltinsen (1990) lists several parameters that influence the drag

coefficient: Free-surface effects, beam–draft ratio, bilge radius, effects of
laminar or turbulent boundary layer flow, bilge keel effects, and three-
dimensional effects.

Based on these considerations Shen (2018) presented a practical
6

method to calculate drag coefficients for ship sections. The principle is
to divide the hull into parts with similar geometry, use drag coefficients
for a similar shape, then correct for relevant effects. We follow the same
approach, and the main steps are explained.

It is well known that the Reynolds number has a strong influence
on the drag coefficient. Roughly, we can divide the Reynolds number
range into two regimes, the sub-critical range and the super-critical
range. In the sub-critical regime, flow separation takes place before
transition to turbulence in the boundary layer flow occurs, while in the
super-critical regime the boundary layer flow turns turbulent up-stream
of the separation point. The drag coefficient can differ significantly
for blunt bodies in the sub- and super-critical regimes, due to the fact
that flow separation, in general, occurs further down-stream once the
boundary layer flow has become turbulent. Experiments by Aarsnes
(1984) confirm this for typical ship sections. Often, the flow regime
in model scale is laminar while it is turbulent in full scale, this needs
to be accounted for. In the present work, the numerical simulations
are performed in model scale. However, due to the size of the model
and that turbulence stimulation was present during the experiments,
coefficients for turbulent flow are applied.

The free surface tends to reduce the drag coefficient. According
to Faltinsen (1990) the free surface acts as an infinitely long splitter
plate as a first approximation. Investigations by Shen (2018) shows
that, for different geometric shapes, splitter plates reduce the drag
coefficient with an average of 27.3% compared with the same geometry
without splitter plate in infinite fluid. Consequently, the drag coeffi-

cients calculated with the procedure below are reduced with 27.3%.
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Fig. 3. Mean drift loads for the DTC hull in oblique waves, wave headings 60◦ (left) and 120◦ (right). Froude number 0.052. Numerical results are compared with experimental
results from Sprenger and Fathi (2015). Upper: X-drift. Middle: Y-drift. Lower: Yaw-drift.
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For maneuvers in waves, an error source is introduced by the fact that
we do not have data for this factor in waves.

For the midship sections, which extends over most of the DTC
hull, a rectangle with rounded corners can be a suitable simplification.
Hoerner (1965) presents drag coefficients for both rectangular sections
with sharp corners and rectangular sections with rounded corners. The
former is a function of beam to draft ratio, while the latter is a function
of bilge radius to draft ratio. The drag coefficients for rectangular
sections with rounded corners are given for two cases: a square, and
7

a rectangle with breadth to height ratio, 𝑏
2𝑑 = 2.1. Hence, to capture

the effects of both beam to draft ration and bilge radius, we need to
find a way to combine the drag coefficients for different beam to draft
ratio and bilge radius.

Experiments by Tanaka (1983) indicate that the bilge radius has a
trong effect on the drag coefficient. Faltinsen (1990) propose that the
ffect of bilge radius can be written as 𝐶𝐷 = 𝐶1𝑒−𝑘𝑟𝑏∕𝑑 + 𝐶2. Here 𝑑
s the draft, 𝑟𝑏 is the bilge radius, Faltinsen (1990) suggests 𝑘 may

be 6. By using the drag coefficients from Hoerner (1965), both for
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Fig. 4. External sway forces and yaw moments, for the DTC hull, during a Turning circle with 35◦ rudder angle in calm water, with initial Froude number 0.14. The transverse
viscous loads are calculated according to the cross-flow principle and are represented by black color. Left: Sway forces, Right: Yaw moments. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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rectangles with sharp corners and rectangles with rounded corners, the
constants 𝐶1 and 𝐶2 can be determined for each cross-section. Thus, we
can obtain a drag coefficient that take into account both the beam to
draft ratio and bilge radius.

The bilge keels will affect the midships drag coefficients. For oscil-
lating roll motions, there are done extensive research on the effect of
bilge keels, considering roll damping. For steady current the literature
is less comprehensive. Experiments by Mercier and Huijs (2005) indi-
cate that the drag coefficient, in steady flow, increases with at least
50% due to bilge keels. On the other hand, experiments by Faltinsen
and Sortland (1987) show that the effect of bilge keel decrease with
increasing Keulegan–Carpenter number 𝐾𝐶 = 𝑈𝑚𝑇

𝑑 , where 𝑈𝑚 is the
mplitude of the oscillatory flow, 𝑇 is the period of oscillation, and 𝑑
s the characteristic size of the body, e.g the draft of a ship section. They
ested a ship section without bilge keels and with bilge keels, for two
ifferent bilge keel dimensions. For small KC numbers the increase in
rag coefficient due to bilge keels was up to 146%, while for KC = 13
he increase due to bilge keels was below 47%. Admittedly, their results
re only for KC numbers up to 13, hence it is difficult to conclude
or steady flow. Another important effect of the bilge keels is that the
eparation point will be fixed, which will reduce the scale effects due
o turbulent or laminar boundary layer flow. In the present work, the
ffect of bilge keels is modeled by setting the bilge radius to zero, i.e. we
se drag coefficients for rectangular sections with sharp corners, which
ill fix the separation point at the sharp corner. This can increase the
rag coefficient significantly compared to a rectangle with rounded
orners. To exemplify this, the drag coefficient for a rectangle with
eam to draft ratio 𝑏

2𝑑 = 2.1 with sharp corners is 1.4, while with
ounded corners the drag coefficient varies from 0.46 to 1.4 depending
n the bilge radius (Hoerner, 1965).

The local inflow velocity at the ship ends is reduced due to three-
imensional effects, i.e. that flow separation from the ship ends create
back-flow opposing the incident flow, which will reduce the total

rag force (Aarsnes, 1984; Faltinsen, 1990). In the present work, the
eduction of drag coefficients due to three-dimensional effects are
aken care of by using the reduction curve from Aarsnes (1984). This
eduction curve, transferred to the DTC hull, is presented in Fig. 5.

The method is now exemplified for a section at x = 53.13 m. A
selection of DTC hull sections is illustrated in Fig. 6, where this section
is indicated with blue color. The breadth, draft, and bilge radius of this
section are 51 m, 14.5 m, and 10.18 respectively. This section has not
bilge keels, and the section is simplified as a rectangle with rounded
corners. The breadth to height ratio, 𝑏

2𝑑 , is 1.76. The first step is to
stimate the drag coefficient for a rectangle with sharp corners and
8

Fig. 5. 3D reduction factor along the DTC hull. The reduction is most significant at
the ship end (A and D) where the reduction factor is 0.48. It increases rapidly, and
between x = −131.5 and x = 134.8 (B and C) the reduction factor is 0.99.

breadth to height ratio 𝑏
2𝑑 = 1.76, from Hoerner (1965) we get 𝐶𝐷𝑠ℎ𝑎𝑟𝑝 =

1.62. Next, the effect of rounded corners must be accounted for. In the
expression 𝐶𝐷 = 𝐶1𝑒−𝑘𝑟𝑏∕𝑑 + 𝐶2, 𝑘 = 6 is used, while the constants
𝐶1 and 𝐶2 are estimated for the given cross-section. When the bilge
radius goes towards infinity, 𝑟𝑏 → ∞, 𝐶𝐷 = 𝐶2. An estimate of 𝐶2 is
found by using the limiting value of 𝐶𝐷, when 𝑟𝑏 has its maximum
value. Hoerner (1965) presents drag coefficients as a function of bilge
radius for a square cylinder and a rectangular cylinder with breadth to
height ratio, 𝑏

2𝑑 = 2.1. The limiting value of 𝐶𝐷 is interpolated between
these two curves to get the value for breadth to height ratio 𝑏

2𝑑 = 1.76,
we obtain 𝐶2 = 0.61. When the bilge radius is zero, 𝑟𝑏 = 0, 𝐶𝐷 = 𝐶1+𝐶2,
this corresponds to a rectangle with sharp corners. We can then write
𝐶1 = 𝐶𝐷𝑠ℎ𝑎𝑟𝑝−𝐶2 = 1.62-0.61 = 1.01. The drag coefficient for a rectangle
with breadth to height ratio 𝑏

2𝑑 = 1.76, corrected for rounded corners,
can now be written as 𝐶𝐷𝑟𝑜𝑢𝑛𝑑 = 1.01𝑒−6∗10.18∕14.5 + 0.61 = 0.63. We
bserve that this value is close to 𝐶2, which is the limiting value for
arge bilge radius. We consider free-surface effects by reducing the drag
oefficient by 27.3%, 𝐶𝐷𝑠𝑢𝑟𝑓 = 0.727𝐶𝐷𝑟𝑜𝑢𝑛𝑑 = 0.46. Finally, the drag

coefficient is corrected for 3D effects by applying the correction factor
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Fig. 6. A selection of DTC hull sections. The section at x = 53.13 m is indicated with
lue. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Fig. 7. Steady drag coefficients along the DTC hull. Between B and E, 𝐶𝐷 is calculated
according to the procedure in Section 2.5.2 with a rectangle as a base geometry. For
the rest of the ship, drag coefficients are obtained from similar ship sections in Aarsnes
(1984). At the ship ends, behind A and in front of F, 𝐶𝐷 is reduced due to 3D-effects.
Bilge keels are present between C and D which explains the sudden jump in 𝐶𝐷 .

n Fig. 5. For this section the reduction factor is 0.99, and we obtain
he final estimate 𝐶𝐷 = 0.99𝐶𝐷𝑠𝑢𝑟𝑓 = 0.45.

The resulting steady drag coefficients for the DTC hull are presented
in Fig. 7. Between B and E, the drag coefficients are calculated ac-
cording to the procedure described above, with a rectangle as a base
geometry. For the rest of the ship, drag coefficients are obtained from
ship sections in Aarsnes (1984) that resemble the DTC hull section best.
Since the calculations in Aarsnes (1984) were executed for 2D sections
with a double body approximation, these sections are also corrected for
free-surface effects and 3D-effects, as described above. Bilge keels are
present between C and D, which explains the sudden jump in the drag
coefficient. At the ship ends, A and F, drag coefficients for bow and
stern sections from Aarsnes (1984) are applied. The reduction at the
ship ends, behind A and in front of F, is due to 3D-effects.

The presented procedure is a pragmatic method to estimate drag
oefficients. Of course, there are uncertainties in the simplifications,
.g the bilge keels are modeled in a very simplified way. Furthermore,
t the ship ends, drag coefficients are chosen from similar geometries
n Aarsnes (1984). It is possible to improve the method. However, the
ocus was to develop a pragmatic, easy to implement, method that
s based on physical considerations. Moreover, in Shen (2018), the
stimated drag coefficients for a tanker and well boat showed good
greement with experiments.
9

c

2.5.3. 2D+t theory
The cross-flow principle, as described in Section 2.5.1, assumes no

interaction between the strips. Hence, it may, in reality, be justified
only for large drift angles. This assumption can be valid for the steady
time window of a tight turning circle. In the initial stage of a turning
circle or for other maneuvers, e.g a zig-zag maneuver, this assumption
is violated.

Faltinsen (2005) presented a 2D+t method for the transverse viscous
loads, where the flow around each strip is developing in time. Eqs. (16)
and (17) can still be used to calculate the sway force and yaw moment,
but the drag coefficients 𝐶𝐷(𝑥) are updated every time step, i.e. the drag
coefficient curve along the hull will look different for different drift an-
gles. Faltinsen (2005) exemplified the method with a circular cylinder
with forward speed and constant drift angle. A 2D+t coordinate-system
is illustrated in Fig. 8. If we consider a vessel traveling through an
Earth-fixed plane (𝛱), from this plane the problem transforms into a
transient flow passing a 2D ship section, where the geometry changes
with time. The sway force and yaw moment are then obtained from
a series of 2D time-dependent flows around each cross-section. The
physical reasoning behind this approach is that a vortex needs time to
develop. Before a steady vortex pattern is obtained, the drag coefficient
will vary in time. Analogous to a two-dimensional cross-section in a
start-up flow, a vortex will initiate in the ship bow region and develop
along the ship.

Alsos and Faltinsen (2018) generalized the method for a dropped
circular cylinder, which was free to move in all six rigid-body degrees
of motion with arbitrarily large angles. This is in principle a generalized
maneuvering problem. Following Alsos and Faltinsen (2018) we want
to express how the drag coefficient 𝐶𝐷(𝑥) varies along the ship within

certain time interval. This will depend on the previous ship motions.
ssuming horizontal velocities and angular velocities to be constant,
e can exemplify the procedure. We denote by 𝑡0 the time instant that

he bow is located at the 𝛱−plane. We can then write

𝑏 − 𝑥𝑝 = ∫

𝑡

𝑡0
𝑢𝑑𝑡 = 𝑢(𝑡 − 𝑡0) (18)

here 𝑥𝑏 is the 𝑥−coordinate of the bow, and 𝑥𝑝 is the 𝑥−coordinate,
n the body-fixed coordinate system, of the Earth-fixed 𝛱−plane at any
ime instant. The distance the ship has moved transversely in the 𝑦-
irection since the ship bow penetrated the Earth-fixed plane, can be
xpressed as:

𝑠𝑦 = ∫

𝑡

𝑡0
[𝑣(𝜏) + 𝑥𝑝(𝜏)𝑟(𝜏)]𝑑𝜏 =𝑣

𝑥𝑏 − 𝑥𝑝
𝑢

+ 𝑟
𝑢

[𝑥𝑏(𝑥𝑏 − 𝑥𝑝)

− 1
2
(𝑥𝑏 − 𝑥𝑝)2]

(19)

We denote by 𝑠 = |𝑠𝑦|, and we can now express the non-dimensional
isplacement as
′ = 𝑠

𝑑
(20)

where 𝑑 is the sectional draft. This non-dimensional displacement is
equivalent to the non-dimensional time, 𝑡′ = 𝑣𝑡

𝑑 , for a stationary
flow (Faltinsen, 2005). Eq. (19) and (20) are used to express the
non-dimensional time for a given cross-section at the time instant 𝑡.
𝑥𝑝 is then the 𝑥−coordinate of the given cross-section, while 𝑢, 𝑣,
and 𝑟 are the surge velocity, sway velocity, and yaw-rate at the time
nstant 𝑡. This non-dimensional time 𝑡′ is used to select the correct
rag coefficient 𝐶𝐷(𝑡′). To calculate the transverse viscous loads, 𝐶𝐷(𝑥)
n Eqs. (16) and (17) is replaced with 𝐶𝐷(𝑡′) = 𝐶𝐷(𝑡′(𝑥, 𝑢, 𝑣, 𝑟)). In
ontrast to the cross-flow approach, where the sectional drag coefficient
𝐷(𝑥) is a function of 𝑥 only, the sectional drag coefficient in a 2D+t
pproach is also dependent on the surge velocity, sway velocity, and
aw rate.

The challenge now is to express the time-varying drag coefficient
𝐷(𝑡′) for every cross-section. When the non-dimensional time, 𝑡′, is

′
alculated for a cross-section, time varying drag coefficients 𝐶𝐷(𝑡 ) for a
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Fig. 8. 2D+t illustration. Left: Vessel reaches the Earth-fixed plane. Right: Vessel is passing through the Earth-fixed plane.
Fig. 9. Ship sections from Aarsnes (1984). The beam is 32.25 m and the draft is 12.40
m for this hull. Time-varying drag coefficients for these sections were calculated with
a vortex sheet method by Aarsnes (1984), these coefficients are presented in Fig. 10.

Fig. 10. Time-varying drag coefficients for ship sections in Aarsnes (1984) in a start-
up flow. The geometry of these sections are presented in Fig. 9. Time-varying drag
coefficients for a circular cylinder from Sarpkaya (1966) are indicated with a black
line. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

2D cross-section in a startup flow, can be applied as the drag coefficient.
For circular cylinders there exist numerical and experimental results
for startup flows. However, for typical ship sections there are limited
results for time-varying drag coefficients. Aarsnes (1984) published
numerical results, calculated with a vortex sheet method, for some
10
Table 1
Polynomial 𝑝𝑖-coefficients for Eq. (21).
𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6
2.481 ⋅ 10−7 −3.647 ⋅ 10−5 1.906 ⋅ 10−3 −4.417 ⋅ 10−2 4.315 ⋅ 10−1 7.339 ⋅ 10−2

typical ship sections. The geometry of these sections are presented in
Fig. 9, while the time-varying drag coefficients are presented in Fig. 10.
Time-varying drag coefficients for a circular cylinder from Sarpkaya
(1966) are included as a reference. For the circular cylinder, the radius
𝑅 is taken as 𝑑. The drag coefficients for a circular cylinder and ship
sections share similar qualitative behavior, increasing from a low value
and having a peak before it reaches its steady value. However, the
development for the ship sections has a quite distinctly shorter time
scale than for the circular cylinder. The maximum value for the circular
cylinder is for 𝑡′ = 9.09, while the maximum value for the ship sections
occurs for 𝑡′ below 3 for all ship sections tested by Aarsnes (1984). This
time scale is confirmed by Arslan et al. (2016), who performed CFD
calculations of the same ship sections as in Aarsnes (1984). The time-
varying drag coefficients are not presented in Arslan et al. (2016), they
discussed development of flow patterns and vortices, these quantities
were also discussed in Aarsnes (1984).

It is believed that the different time scale is due to the shape of
typical ship sections, where the separation point will vary less, and
reach a steady position earlier than for a circular cylinder. However,
more research is needed for the time-dependent drag on ship sections.

Alsos and Faltinsen (2018) used results from Sarpkaya (1966) as
a basis for flows around a circular cylinder with different Reynolds
numbers. Faltinsen (2005) constructed a polynomial based on the
results from Sarpkaya (1966), Alsos and Faltinsen (2018) scaled this
polynomial in the following way:

𝐶𝑑 (𝑡′) = (𝑝1𝑡′5 + 𝑝2𝑡′4 + 𝑝3𝑡′3 + 𝑝4𝑡′2 + 𝑝5𝑡′ + 𝑝6)
𝐶𝐷,∞
1.2

(21)

where 𝐶𝐷,∞ is the steady drag coefficient for a circular cylinder for a
given Reynolds number and 1.2 is the steady drag coefficient for the
Reynolds number in Sarpkaya (1966). Meaning that the profile is the
same as in Sarpkaya (1966), but the steady value tends towards 𝐶𝐷,∞.
The coefficients 𝑝1-𝑝6 are given in Table 1.

As a first naive approach, we implement a similar 2D+t method for
ship sections. Time-varying drag coefficients are constructed by using
steady drag coefficients for ship sections, 𝐶𝐷,∞, calculated with the pro-
cedure in Section 2.5.2, combined with time-varying drag coefficients
from similar ship sections in Aarsnes (1984).

For each ship section of the DTC hull a section that resembles this
most closely is chosen from Fig. 9. The time-varying drag coefficient for



Ocean Engineering 228 (2021) 108853Ø. Rabliås and T. Kristiansen

i
c

w
t

i
c
n
t

d
c
a
I

a
a
F

b
a
𝑡
d
9
c
m
p
w
g
t
a
f
t
i
t

𝐶

Fig. 11. 𝐶𝐷(t’) along the DTC hull for different drift angles 𝛼. Using a naive
interpretation of time-varying drag coefficients from Aarsnes (1984), referred to as
2𝐷 + 𝑡0. Constant yaw-rate, 𝑟 = 0.50 deg/s. Steady 𝐶𝐷 in pure cross-flow is illustrated
with the black line. A: 𝐶𝐷 starts at a low value and increases according to time-series
n Fig. 10. B: A different time-series (hull shape from Aarsnes, 1984) is applied, which
auses a sudden drop in 𝐶𝐷 . C: From this point and backward, for 𝛼 = 25◦, 𝐶𝐷 is

almost identical as the steady value. 𝐶𝐷 for lower drift angles differ significantly from
the steady value also in this region. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

this section is then scaled with the steady drag coefficient 𝐶𝐷,∞. This
means that different time-histories are applied along the ship.

The cross-section at x = 53.13 m (Fig. 6) is used to exemplify
the method. In Section 2.5.2 the steady drag coefficient, 𝐶𝐷,∞, was
estimated to 0.45. For this cross-section, section 10 in Fig. 9 is consid-
ered to be the most similar cross-section. The green curve in Fig. 10
is therefore considered. The simulations in Aarsnes (1984) ended at
𝑡′ ≈9.5, before reaching a steady value, judging from Fig. 10. We use
the value at the end of the time-series as the steady value, which is
0.47 for the green curve. Meaning that the entire curve is multiplied by
𝐶𝐷,∞=0.45

0.47 = 0.96. The 𝐶𝐷(𝑡′) value from this curve, which corresponds
to 𝑡′ calculated by Eqs. (19) and (20), is then used in the calculation of
the transverse viscous loads.

An example of how the transient drag coefficient can vary along the
DTC hull, using this method, for different drift angles is presented in
Fig. 11. At the bow (A), the drag coefficients begin at a low value before
they increase according to the given time-series in Fig. 10. At some
sections along the hull, the drag coefficient is significantly higher than
the steady value. This is due to the overshoot which can be observed
in Fig. 10. At sections where the time-series applied is changed, i.e
time-varying drag coefficient for a different ship section in Aarsnes
(1984) is used, sudden jumps occur in the drag coefficient. This can be
observed at B. There are also sudden jumps in 𝐶𝐷 at positions where
the steady coefficient varies considerably between different sectional
forms. In a 2D+t approach, where we imagine a vortex developing
along the hull, these sudden jumps are not physical and inconsistent
with the assumption behind the method. In the rest of the paper, this
naive implementation is referred to as 2𝐷 + 𝑡0.

A vortex develops continuously and cannot suddenly appear or
disappear. To be consistent with the 2D+t assumption, we therefore
in reality need to construct a 𝐶𝐷(𝑡′)-curve that develops continuously
along the hull. A first attempt can be to use the time-variation for a
circular cylinder, but use for 𝐶𝐷,∞ the mean of the steady 𝐶𝐷 along
the hull. The steady 𝐶𝐷 for the DTC hull is presented in Fig. 7 and
the mean value is 0.73. Meaning that 𝐶𝐷(𝑡′) is calculated by Eq. (21)
with 𝐶𝐷,∞ = 0.73. The drag coefficient along the hull for different drift
angles, following this approach, is presented in Fig. 12. In the rest of the
paper this method is referred to as 2𝐷+ 𝑡𝑐𝑦𝑙. The benefit of this method
11
Fig. 12. 𝐶𝐷(t’) along the DTC hull for different drift angles 𝛼. 𝐶𝐷(t’) for a circular
cylinder is scaled with the mean steady 𝐶𝐷 along the hull. This method is referred to
as 2𝐷+𝑡𝑐𝑦𝑙 . Constant yaw-rate, 𝑟 = 0.50 deg/s. Steady 𝐶𝐷 in pure cross-flow is illustrated

ith the black line. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

s that 𝐶𝐷 varies continuously along the hull, which is more physical
ompared to the 2𝐷+ 𝑡0 method. However, the actual ship geometry is
ot represented. One consequence is that the time-variation is slower
han one may expect.

In the following a third 2D+t method is presented. The time-
erivative, 𝑑𝐶𝐷(𝑡′)

𝑑𝑡′ , can be estimated from the time-varying drag coeffi-
ients in Fig. 10. The curves that best resembles the DTC hull sections
re chosen and scaled in the same manner as with the 2D+t0 approach.
nstead of using the drag coefficients directly, the time-derivative,
𝑑𝐶𝐷(𝑡′)
𝑑𝑡′ , is estimated based on the scaled time-varying drag coefficients

nd integrated along the hull. Again, the section at x = 53.13 m is used
s an example. Similar as for the 2𝐷 + 𝑡0 method, the green curve in
ig. 10 is multiplied by 𝐶𝐷,∞=0.45

0.47 = 0.96. This curve is now used to
estimate the time-derivative, 𝑑𝐶𝐷(𝑡′)

𝑑𝑡′ , at this cross-section for the given
𝑡′.

When the time-derivative is calculated for all ship sections and
assuming that the drag coefficient is zero at the ship bow, a 𝐶∗

𝐷(𝑡
′)-curve

can be obtained by integrating along the hull:

𝐶∗
𝐷(𝑡

′) = 𝐶𝐷(𝑡0) + ∫

𝑡′

𝑡0

𝐶𝐷(𝑡)
𝑑𝑡

𝑑𝑡 (22)

From Eq. (22) a smooth curve is obtained, as in the 2𝐷 + 𝑡𝑐𝑦𝑙 method,
ut at the same time takes into account the variation of the geometry
long the hull. The next step is to scale the entire curve, such that when
′ goes towards infinity, the calculated drag goes towards the steady
rag, as in the cross-flow principle. If we imagine a drift angle close to
0◦, 𝑡′ will be very large along the entire hull, thus there is a steady
ross-flow for all ship sections. In such situation, we want the 2D+t
ethod to estimate similar transverse viscous loads as the cross-flow
rinciple. Since the numerical results in Aarsnes (1984) ends at t’ = 9.5,
e assume the flow is steady at t’ = 9.5. If t’ at the stern is equal or
reater than 9.5, we have a steady flow at the stern. We can then scale
he curve from (22) with the mean value of the steady drag coefficient
long the ship, 𝐶𝐷,∞. However, If t’ is lower than 9.5 at the stern, the
low has not reached a steady state along the hull. Then, we continue
o integrate behind the ship until t’ = 9.5. We assume that the flow
s steady for this fictitious section some distance behind the hull. The
ime-varying drag coefficients along the hull can now be estimated as:

𝐷(𝑡′) =
𝐶𝐷,∞

∗ ′ ′ 𝐶∗
𝐷(𝑡

′) (23)

𝐶𝐷(𝑡 = 𝑡∞)
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Fig. 13. 𝐶𝐷(t’) along the DTC hull for different drift angles 𝛼. The curves are integrated
ased on 𝐶𝐷 (𝑡′ )

𝑑𝑡′
estimated from time-varying drag coefficients in Aarsnes (1984). This

method is referred to as 2𝐷 + 𝑡. Constant yaw-rate, 𝑟 = 0.50 deg/s. Steady 𝐶𝐷 in pure
cross-flow is illustrated with the black line. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

where 𝐶𝐷,∞ is the mean steady drag coefficient along the hull, 𝐶∗
𝐷(𝑡

′) is
the curve obtained from Eq. (22), and 𝐶∗

𝐷(𝑡
′ = 𝑡′∞) is the value of 𝐶∗

𝐷(𝑡
′)

when t’ goes towards infinity, for practical purposes this is when 𝐶∗
𝐷(𝑡

′)
each a steady value. In Aarsnes (1984) the simulations ended at t’ =
.5, hence 𝑡′∞ = 9.5. However, if you use other results, e.g. for other
hip sections, the drag can go towards a steady value for a different t’,
′
∞ is then chosen accordingly. 𝐶𝐷,∞ in Eq. (23) is the same as the one
sed in the 2𝐷 + 𝑡𝑐𝑦𝑙 method, for the DTC hull that will be the mean
f the drag coefficients in Fig. 7, which is 0.73. This scaling ensures
hat the time-varying drag coefficients go towards the mean steady drag
oefficient when t’ goes towards infinity. However, for some drift angles
his can be some distance behind the hull. For high drift angles, this
D+t method will not predict the same transverse viscous loads as the
ross-flow method presented in Section 2.5.1, it will predict the same
ransverse viscous loads as the simplified cross-flow approach, where a
onstant drag coefficient is applied along the hull. The drag coefficient
long the hull for different drift angles, following this approach, is
resented in Fig. 13. In the rest of the paper, this approach is referred
o as 2𝐷+ 𝑡. We note that there are significant differences between this
ethod and the two other 2D+t methods (Figs. 11 and 12).

The sway force and yaw moment, on the DTC hull, for a range of
rift angles, calculated with the cross-flow approach, 2𝐷 + 𝑡0, 2𝐷 + 𝑡,
nd 2𝐷 + 𝑡𝑐𝑦𝑙, are presented in Figs. 14 and 15. The forward speed is
6 knots, which corresponds to a Froude number Fn = 0.14, and the
teady yaw-rate is 0.50 deg/s. The results are compared with Kinaci
t al. (2019), they performed virtual PMM tests of the DTC hull and
stimated the hydrodynamic coefficients. It is challenging to isolate
ifferent physical phenomena from PMM tests. Hence, the results from
MM tests includes non viscous contributions, while the presented
ross-flow methods and 2D+t methods includes the transverse viscous
oads from flow separation only. As a first approximation, the first
rder hydrodynamic coefficients are subtracted from the PMM tests for
omparison reasons. Kinaci et al. (2019) performed virtual PMM test for
rift angles up to 12◦ only. Hence, the results based on these PMM tests,
resented in Figs. 14–15, for drift angles above 12◦ are associated with
significant uncertainty. As a qualitative comparison, hydrodynamic

oefficients for a tanker and a container ship, presented in Brix (1993),
re included.

For the conditions in Fig. 14, the sway-force calculated with 2𝐷+𝑡𝑐𝑦𝑙

s close to the sway force from Kinaci et al. (2019), while the sway-
orce calculated with cross-flow, 2𝐷 + 𝑡0 and 2𝐷 + 𝑡 deviate slightly
12

(

Fig. 14. Sway-force for a range of drift angles, 𝛼. Forward speed 16 knots (Fn = 0.14),
aw-rate r = 0.50 deg/s. Calculations by the present cross-flow approach, 2𝐷+𝑡0, 2𝐷+𝑡,
nd 2𝐷 + 𝑡𝑐𝑦𝑙 approaches. The results are compared with virtual PMM test of the DTC
ull from Kinaci et al. (2019). PMM test from Brix (1993) for a tanker and a container
hip are included for qualitative comparison. The first order hydrodynamic coefficients
rom the PMM tests are neglected.

Fig. 15. Yaw moment for a range of drift angles, 𝛼. Forward speed 16 knots (Fn
= 0.14), yaw-rate r = 0.50 deg/s. Calculated with the cross-flow approach, 2𝐷 + 𝑡0,
2𝐷 + 𝑡, and 2𝐷 + 𝑡𝑐𝑦𝑙 . The results are compared with virtual PMM test of the DTC hull
rom Kinaci et al. (2019). PMM test from Brix (1993) for a tanker and a container
hip are included for qualitative comparison. The first order hydrodynamic coefficients
rom the PMM tests are neglected.

ore. Especially the 2𝐷 + 𝑡0 method deviates from the other methods
or drift angle 25◦. However, as mentioned before, the PMM tests of
he DTC hull were performed for drift angles up to 12◦, and the results
bove 12◦ should be considered with care. Even if the sway force for a
anker and container ship from Brix (1993) are calculated for different
ull shapes, the sway force is similar. For the yaw moment in Fig. 15,
he different methods deviate significantly for drift angles above 10◦.
specially the yaw moment calculated with 2𝐷+ 𝑡𝑐𝑦𝑙 and 2𝐷+ 𝑡0stands
ut for high drift angles. This will probably affect the maneuvering
ehavior of the ship. One explanation for 2𝐷 + 𝑡𝑐𝑦𝑙, can be that the
low separation, in particular at the vessel’s bow, is not represented
orrectly when the geometry is simplified to a circular cylinder with
arying radius. This observation was done in Ommani and Faltinsen
2014), where CFD calculations of a ship hull were compared with a
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Table 2
Overview of presented methods to calculate transverse viscous loads.
Method Cross-flow 2𝐷 + 𝑡0 2𝐷 + 𝑡𝑐𝑦𝑙 2𝐷 + 𝑡

Base Geometry DTC DTC Circular cylinder DTC
Forward speed No Yes Yes Yes
Time-varying drag – From literature From literature Integrated, derivatives from literature
Consistent with assumptions Questionable No Yes Yes
circular cylinder with varying radius equal to the cross-sectional draft.
For 2𝐷 + 𝑡0, we can see from Fig. 11 that the drag coefficient is very
igh around x = 120–150 m for high drift angles, which explains the

behavior of the yaw moment.
The three methods presented, based on the 2D+t approach, are

simplified methods based on time-varying drag coefficients from the
literature. The only time-varying drag coefficients that were found for
ship sections in the literature, were the results in Aarsnes (1984). This
is an uncertainty of the method. Extending the 2D+t method with a 2D
Navier–Stokes solver with an adaptive grid will increase the accuracy.
However, this will make the method considerably more elaborate.
To further develop the 2D+t method in a pragmatic manner, more
research is needed for the time-varying drag coefficients for typical ship
sections. However, like the cross-flow principle, the 2D+t approach is
a simplified method that models a very complicated phenomena. The
similarities and differences of the methods are summarized in Table 2.

2.5.4. Transverse viscous loads in waves
Drag forces in oscillatory flow have been given some attention in

the literature. In addition to the parameters discussed in Section 2.5.2,
the drag coefficient will also depend on the Keulegan–Carpenter (KC)
number and the relative current 𝑈𝑐

𝑈𝑚
. where 𝑈𝑚 cos(𝜔𝑡) is the oscillating

art and 𝑈𝑐 is the steady part of the relative flow. For combined
scillatory flow and current, the research is more limited. Experiments
y Sarpkaya and Storm (1985) and Hamel-Derouich (1993) show that
he drag coefficient in waves alone, in general, overestimates the drag
oefficient in combined waves and current. In fact, results in Hamel-
erouich (1993), for 𝑈𝑐∕𝑈𝑚 > 1, show that the drag coefficient in
ombined waves and current is close to the coefficient in current
nly. Shen et al. (2019) explains this with, for 𝑈𝑐∕𝑈𝑚 > 1, the

returning vorticity due to the oscillatory part has a small influence
on the inflow velocity to the body. In the present work, a preliminary
attempt to account for the combined wave and current was made, using
existing data for the KC-dependent 𝐶𝐷 of simplified geometries (but
with 𝑈𝑐 = 0). However, the transverse viscous loads were unreasonably
large. We follow Shen et al. (2019) and neglect the effect of waves
in the calculation of the transverse viscous loads. The interaction of
oscillatory and steady flow is a subject which needs further research.

3. Experimental setup

The numerical simulations are compared with free-running ma-
euvering tests performed in the Ocean basin at SINTEF Ocean in
rondheim. Details of the test program and experimental setup are de-
cribed in Rabliås and Kristiansen (2019). Course keeping tests, turning
ircles, and Zig-Zag tests were performed in calm water conditions and
n regular waves. Seven wavelengths, in the range 𝜆∕𝐿𝑝𝑝𝑠 = 0.280–
.120 were tested. A 63.65 scale of the Duisburg Test Case (DTC) was
sed in the experiments. The model was made at SINTEF Ocean in
onjunction with the SHOPERA project (Sprenger and Fathi, 2015).
etailed information about the hull, propeller, and rudder can be found

n el Moctar et al. (2012). The main particulars of the model are
resented in Table 3.
13
Table 3
Ship particulars.

Particulars Ship Model

𝐿𝑝𝑝 [m] 355 5,577
𝐵 [m] 51 0,801
𝑑 [m] 14,5 0,228
𝛥 [kg] 173468000 672,6a

𝐶𝐵 [−] 0,661 0,661
𝑥𝐺b [m] 174,059 2,721a

𝑦𝐺 [m] 0 0
𝐾𝐺 [m] 19,851 0,314a

𝐺𝑀 [m] 5,100 0,078a

𝐼44 [kgm2] 7,148E+10 45,43c

𝐼55 [kgm2] 1,322E+12 1266,330a

𝐼66 [kgm2] 1,325E+12 1268,4
𝐿𝑏𝑘 [m] 14,85 0,23a

aMeasured values.
bRelative to aft perpendicular.
cEstimated from measured natural roll period and numerical added mass.

Table 4
Simulation parameters.

Parameter Value

𝐶𝑇𝑁 0.5
𝑌𝑃𝑇 −0.2278
𝑘𝑚 0.55
thrust deduction, 𝑡 0.1070
wake fraction, 𝑤 0.24

4. Results

In the following sections, numerical simulations with the DTC hull
are compared with experimental results from Rabliås and Kristiansen
(2019). In the experiments it was observed an asymmetry in the rudder
commands towards starboard and port side. This asymmetry was also
observed during the SHOPERA project where the same model was
tested. They suspect that the difference was caused due to that the
rudder was mounted 3◦ off the true zero value (Shigunov et al., 2018).
In the experiments presented in Rabliås and Kristiansen (2019) the zero
rudder angle was controlled both before and after the tests. However,
the difference in the starboard/port behavior was still observed. In the
simulations in the current work, this is taken care of by introducing
a lateral propeller force 𝑌𝑃𝑅𝑂𝑃 and yaw moment 𝑁𝑃𝑅𝑂𝑃 . The lateral
propeller loads are calculated according to Eq. (5).

No tuning is applied, meaning that the input parameters are the
same for all simulations. Only the environmental conditions, initial
velocity, and the calculation of the transverse viscous loads are changed
between the different simulations. Values for 𝐶𝑇𝑁 , 𝑌𝑃𝑇 , 𝑘𝑚, thrust
deduction, and wake fraction can be found in Table 4. It is expected
that the overall results could be improved if we chose to tune these
parameters. However, the main objective of this work is to compare
different methods of estimating the transverse viscous loads. The initial
velocity in the experiments (measured values) and the numerical sim-
ulations are identical. At the beginning of a simulation, the propeller
RPS is calculated to achieve this velocity, and this RPS is kept constant
during the simulation, as in the experiments. All simulations are done in
model scale. The presented results are scaled up to full scale by Froude

scaling.
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Fig. 16. Experimental and numerical results of a turning circle of the DTC hull with 35◦ rudder angle in calm water, with 16 kn approach speed (Fn = 0.14). The transverse
viscous loads are calculated according to the cross-flow principle. Sensitivity of the drag coefficients are also presented. Left: Sway velocity. Right: Yaw-rate.
Fig. 17. Experimental and numerical results of a turning circle of the DTC hull with 35◦ rudder angle in calm water, with 16 kn approach speed (Fn = 0.14). The transverse
viscous loads are calculated according to the cross-flow principle. Sensitivity of the drag coefficients are also presented. Time instants, from the simulation where 𝐶𝐷,0 is used, for
heading 𝛹 = −90◦, −180◦, −270◦, and −360◦ are indicated. Left: Surge velocity. Right: Trajectory.
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.1. Cross-flow approach

A turning circle with 35◦ rudder angle towards starboard in calm
ater with approach velocity 16 kn, full scale, is considered. This

orresponds to a Froude number Fn = 0.14. The cross-flow principle is
used for the transverse viscous loads. To investigate the sensitivity to
𝐶𝐷, simulations are also performed with the drag coefficients increased
and decreased by 20%. The results are shown in Figs. 16 and 17.

As we can see in Fig. 16, increasing the drag coefficients tends to
reduce the sway velocity and the absolute value of the yaw-rate, in
particular the peak values. By peak values we refer to the maximum
which occurs in this case at 120 s. The surge velocity, presented in
Fig. 17, is increased by increasing 𝐶𝐷 due to coupling effects. For ex-
ample gives the term −𝐶𝑇𝑁𝑌𝑣̇𝑟𝑣 a significant contribution in the surge
equation of motion (Eq. (1)). The inertia term −𝑀𝑟𝑣 is another coupling
term, which affects the forward speed. These effects increase the steady
diameter, which is demonstrated in Fig. 17. The opposite effects are
observed when the drag coefficients are decreased. The results show
that a 20% change of the drag coefficients has a significant effect on the
trajectory, which emphasizes the importance of the transverse viscous
loads. In fact, in simulations where the transverse viscous loads are
neglected (𝐶𝐷 = 0), the results for the turning circle with 35◦ rudder
14

ngle becomes unphysically. For the results in Figs. 16 and 17, a 20% s
ncrease of 𝐶𝐷, i.e. 1.2𝐶𝐷,0, provides the best results overall. However,
or the rest of the paper 𝐶𝐷,0, which are estimated according to the
rocedure in Section 2.5.2, are used as a reference for steady 𝐶𝐷.

.2. 2D+t

In Figs. 18–21, results of the DTC hull, from turning circles with
5◦ rudder angle towards starboard in calm water with approach ve-
ocity 16 kn are presented. The transverse viscous loads are calculated
ith the three methods, based on the 2D+t approach, presented in
ection 2.5.3, 2𝐷 + 𝑡0, 2𝐷 + 𝑡, and 2𝐷 + 𝑡𝑐𝑦𝑙. The results are compared
ith experimental results and with simulations where the cross-flow
rinciple is applied.

In the trajectory in Fig. 18, we can see that the 2𝐷 + 𝑡 method and
𝐷 + 𝑡𝑐𝑦𝑙 method has a good match with the experimental results. For
he simulations where the cross-flow principle is applied, the trajectory
ollows the experiments in the initial phase, while the steady diameter
s smaller than the experiments. The 2D+t0 method, using scaled 𝐶𝐷(𝑡′)-
urves from the literature directly, deviates from the experiments at an
arlier stage compared to the other two methods and the steady circle
s underestimated.

For the surge velocity in Fig. 19 we can see that the near steady

peed reached towards the end of the test/simulation is best predicted
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Fig. 18. Trajectory of a turning circle of the DTC hull with 35◦ rudder angle in calm
water, with 16 kn approach speed (Fn = 0.14). Simulations where transverse viscous
loads are calculated with pure cross-flow, 2𝐷 + 𝑡, 2𝐷 + 𝑡0, and 2𝐷 + 𝑡𝑐𝑦𝑙 are presented.
Time instants, from the simulation with 2𝐷 + 𝑡, for heading 𝛹 = −90◦, −180◦, −270◦,
and −360◦ are indicated.

Fig. 19. Surge velocity of a turning circle of the DTC hull with 35◦ rudder angle in
alm water, with 16 kn approach speed (Fn = 0.14). Simulations where transverse
iscous loads are calculated with pure cross-flow, 2𝐷 + 𝑡, 2𝐷 + 𝑡0, and 2𝐷 + 𝑡𝑐𝑦𝑙 are
resented. Time instants, from the simulation with 2𝐷 + 𝑡, for heading 𝛹 = −90◦,

−180◦, −270◦, and −360◦ are indicated.

y the 2𝐷+𝑡 method and the 2𝐷+𝑡0 method. The 2𝐷+𝑡 method and the
𝐷 + 𝑡𝑐𝑦𝑙 method predicts the initial deacceleration slightly better than
he 2D+t0 method This is consistent with the observations that were
ade in relation to the trajectory in Fig. 18.

The sway velocity, presented in Fig. 20, is significantly better rep-
esented with the 2𝐷 + 𝑡 method and the 2𝐷 + 𝑡0 method compared to
he other two methods.

The yaw-rate, presented in Fig. 21, shows that the 2𝐷 + 𝑡 method,
sing time-integrated 𝐶𝐷(𝑡′)-curves, has a very good match with the
xperiments. The 2D+t0 method and the cross-flow method predicts
lmost identical steady yaw-rate at the end of the maneuver. However,
he cross-flow method under-predicts the minimum value, while the
D+t0 method over-predicts this value.

The initial stage of a turning circle is important in order to obtain
ccurate results from simulations. The error in this stage will accumu-
ate during the maneuver. If we take a closer look at the yaw-rate in
ig. 21, the 2D+t0 method over-predicts the negative peak, close to
= 100 s, while the near steady yaw-rate at the end of the simulation is
15
Fig. 20. Sway velocity of a turning circle of the DTC hull with 35◦ rudder angle in calm
water, with 16 kn approach speed (Fn = 0.14). Simulations where transverse viscous
loads are calculated with pure cross-flow, 2𝐷 + 𝑡, 2𝐷 + 𝑡0, and 2𝐷 + 𝑡𝑐𝑦𝑙 are presented.

ime instants, from the simulation with 2𝐷 + 𝑡, for heading 𝛹 = −90◦, −180◦, −270◦,
nd −360◦ are indicated.

Fig. 21. Yaw-rate of a turning circle with 35◦ rudder angle in calm water, with 16 kn
approach speed (Fn = 0.14). Simulations where transverse viscous loads are calculated
with pure cross-flow, 2𝐷+𝑡, 2𝐷+𝑡0, and 2𝐷+𝑡𝑐𝑦𝑙 are presented. Time instants, from the
simulation with 2𝐷+ 𝑡, for heading 𝛹 = −90◦, −180◦, −270◦, and −360◦ are indicated.

better represented. This can be explained from Fig. 11, where we can
observe that, for low drift angles, a sudden jump in the drag coefficient
between 𝑥 = −100 m and 𝑥 = −150 m, which will increase the righting
yaw moment. Due to coupling terms, this error will also affect the
surge- and sway velocity. This emphasizes the importance of predicting
the transverse viscous loads well for all drift angles, even for a steady
maneuver as a turning circle.

4.3. Regular waves

A turning circle with 35◦ rudder angle towards starboard in regular
waves with wavelength 𝜆∕𝐿𝑝𝑝 = 0.86, wave steepness 𝐻∕𝜆 = 1∕40,
and head sea (𝛽0 = 180◦) approach angle is considered. The initial
velocity is 11.23 knots, which corresponds to Fn = 0.1. The results
are presented in Figs. 22–28. Simulations where the transverse viscous
loads are calculated with pure cross-flow, 2𝐷 + 𝑡, and 2𝐷 + 𝑡𝑐𝑦𝑙 are
presented. Since the results in Section 4.2 with the 2D+t methods, using
𝐶 (𝑡′) for a circular cylinder and time-integrated 𝐶 (𝑡′) curves, turned
𝐷 𝐷
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Fig. 22. Trajectory of a turning circle of the DTC hull with 35◦ rudder angle in regular
aves with wavelength 𝜆∕𝐿𝑝𝑝 = 0.86, wave steepness 𝐻∕𝜆 = 1∕40, head sea (𝛽0 =

180◦) approach angle, and 11.23 knots approach speed (Fn = 0.1). Simulations where
the transverse viscous loads are calculated with pure cross-flow, 2𝐷 + 𝑡, and 2𝐷 + 𝑡𝑐𝑦𝑙

are presented. Wave direction is indicated with an arrow. Time instants, from the
simulation with 2𝐷+ 𝑡, for heading 𝛹 = −90◦, −180◦, −270◦, and −360◦ are indicated.

out to be more promising compared to the 2D+t0 method, results with
the 2D+t0 method are omitted in the rest of the paper. Furthermore,
these 2D+t methods are more consistent with the 2D+t assumption.

As we can see in Fig. 22, the numerical simulations follow the
experimental trajectory closely in the initial phase of the turning.
Overall, the 2𝐷 + 𝑡 method has a better match with the experiments
than the cross-flow approach, while the 2𝐷 + 𝑡𝑐𝑦𝑙 method deviates
slightly more than the other two methods. This is probably due to the
deviating yaw moment at high drift angles for this method (cf. Fig. 15).
During a simulation in regular waves, the drift angle will oscillate
with a slowly-varying time-scale due to the change in wave heading,
and the drift angle can be significantly higher than during a calm
water simulation, which will amplify this effect. At heading 𝛹 = −90◦,
which corresponds to beam waves, the simulations start to deviate from
the experimental results, for all the simulation models. Moreover, the
second circle is tighter in the simulations compared to the experiments.
Both the experimental results and the numerical results have a drifting
path due to second order mean loads, but the numerical simulations
seems to over-estimate the drifting angle.

The deviation from the experimental results is believed to be partly
explained by the fact that the second order drift loads are not repre-
sented adequately for all wave headings, especially for following waves
(Figs. 2 and 3). The external surge forces during the maneuver are
presented in Fig. 23. For heading 𝛹 = −180◦, the calculated added
resistance, 𝑅𝑥, is relatively large. This can be recognized in Fig. 24,
where we can see that the experimental results show a slight increase
in the surge velocity for heading 𝛹 = −180◦, while the surge velocity
in the simulations continues to decrease for this heading. This indicates
that the added resistance is over-predicted in the simulations. This is
in accordance with the observations in Section 2.4, that the added
resistance is over-predicted in following waves (Fig. 2). Calculating
second order drift loads in following and oblique sea is a challenge.
For following sea, the added resistance is often relatively small, and
the sign can change with forward speed and wavelength.

In Figs. 24–26, linear wave-induced velocities are super-imposed
to the surge velocity, sway velocity and yaw-rate. These velocities
are added for illustration purposes and are not explicitly included in
the maneuvering simulations. However, accurate representation of the
linear wave motions are important when calculating the second order
16

drift loads. Hence, such representation can be useful to check that the
Fig. 23. External surge forces, from a simulation using the 2𝐷 + 𝑡 method, during
a turning circle with 35◦ rudder angle towards starboard, in regular waves with
wavelength 𝜆∕𝐿𝑝𝑝 = 0.86, wave steepness 𝐻∕𝜆 = 1∕40, and initial head sea. The
approach speed is 11.23 knots (Fn = 0.1). Time instants for heading 𝛹 = −90◦, −180◦,

270◦, and −360◦ are indicated.

Fig. 24. Surge velocity of a turning circle of the DTC hull with 35◦ rudder angle in
regular waves with wavelength 𝜆∕𝐿𝑝𝑝 = 0.86, wave steepness 𝐻∕𝜆 = 1∕40, head sea
(𝛽0 = 180◦) approach angle, and 11.23 knots approach speed (Fn = 0.1). Simulations
where the transverse viscous loads are calculated with pure cross-flow, 2𝐷 + 𝑡, and
𝐷 + 𝑡𝑐𝑦𝑙 are presented. Time instants, from the simulation with 2𝐷 + 𝑡, for heading
= −90◦, −180◦, −270◦, and −360◦ are indicated.

linear wave motions are satisfactorily represented. We can see that
the amplitude of the linear wave-induced velocities are reasonable in
comparison to the experimental values. Moreover, the low-frequency
variability of the linear wave-induced velocities, for sway velocity
(Fig. 25) and yaw-rate (Fig. 26), are similar to the experiments. This
slowly varying behavior is due to the change in wave heading. For near
beam sea conditions, the wave-induced sway velocity has a high ampli-
tude, while the amplitude is small in near head sea and following sea.
This is particularly true for the numerical simulations, where memory
effects are neglected in the seakeeping calculations. The linear wave-
induced yaw moment is relatively small for near beam sea conditions,
hence the maximum yaw moment occurs for oblique sea.

The external sway forces and yaw moments during the maneuver
are presented in Figs. 27 and 28. As we observed for calm water
in Fig. 4, the contribution from the transverse viscous loads are of
significant importance. Another dominant contribution comes from the
second order drift force and drift moment due to regular waves. The
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Fig. 25. Sway velocity of a turning circle of the DTC hull with 35◦ rudder angle in
regular waves with wavelength 𝜆∕𝐿𝑝𝑝 = 0.86, wave steepness 𝐻∕𝜆 = 1∕40, head sea
(𝛽0 = 180◦) approach angle, and 11.23 knots approach speed (Fn = 0.1). Simulations
where the transverse viscous loads are calculated with pure cross-flow, 2𝐷 + 𝑡, and
2𝐷 + 𝑡𝑐𝑦𝑙 are presented. Time instants, from the simulation with 2𝐷 + 𝑡, for heading
𝛹 = −90◦, −180◦, −270◦, and −360◦ are indicated.

Fig. 26. Yaw-rate of a turning circle of the DTC hull with 35◦ rudder angle in regular
waves with wavelength 𝜆∕𝐿𝑝𝑝 = 0.86, wave steepness 𝐻∕𝜆 = 1∕40, head sea (𝛽0 = 180◦)
approach angle, and 11.23 knots approach speed (Fn = 0.1). Simulations where the
transverse viscous loads are calculated with pure cross-flow, 2𝐷 + 𝑡, and 2𝐷 + 𝑡𝑐𝑦𝑙 are
presented. Time instants, from the simulation with 2𝐷+𝑡, for heading 𝛹 = −90◦, −180◦,
−270◦, and −360◦ are indicated.

step-wise behavior of the second order drift loads is due to the fact
that these loads are updated at a more slowly varying time-scale than
the rest of the loads (here at 𝛥𝛹 = 2◦ or 𝛥𝑢 = 0.2 m/s).

Tactical diameter and advance for turning circles with 35◦ and
5◦ rudder angle towards starboard are presented in Figs. 29–32, for
alm water conditions and for regular waves with relative wavelength
∕𝐿𝑝𝑝 = 0.281, 0.438, 0.630, 0.858, and 1.120, with wave steepness
∕𝜆 = 1∕40. For the 35◦ turning circle, one extra wavelength, 𝜆∕𝐿𝑝𝑝 =

0.528, is included. In the experiments, the propeller RPS was the same
for all conditions, corresponding to a Froude number 𝐹𝑛 = 0.14 in calm

ater. The approach velocity in the numerical simulations are identical
o the experimental velocity. 95% confidence intervals, based on rep-
tition tests, are indicated with error bars for the experimental results
ith relative wavelength 𝜆∕𝐿𝑝𝑝 = 0.438 and 0.86. Between three and

five repetitions were performed for the different conditions. The 95%
confidence intervals are calculated according to ITTC (2014), more
17
Fig. 27. External sway forces, from a simulation using the 2𝐷 + 𝑡 method, during
a turning circle with 35◦ rudder angle towards starboard, in regular waves with
wavelength 𝜆∕𝐿𝑝𝑝 = 0.86, wave steepness 𝐻∕𝜆 = 1∕40, and initial head sea. The
approach speed is 11.23 knots (Fn = 0.1). Time instants for heading 𝛹 = −90◦, −180◦,

270◦, and −360◦ are indicated.

Fig. 28. External yaw moments, from a simulation using the 2𝐷 + 𝑡 method, during
a turning circle with 35◦ rudder angle towards starboard, in regular waves with
wavelength 𝜆∕𝐿𝑝𝑝 = 0.86, wave steepness 𝐻∕𝜆 = 1∕40, and initial head sea. The
approach speed is 11.23 knots (Fn = 0.1). Time instants for heading 𝛹 = −90◦, −180◦,
−270◦, and −360◦ are indicated.

information about the repeatability analysis can be found in Rabliås
and Kristiansen (2019).

Considering the tactical diameter and advance for the turning circles
with 35◦ rudder angle, presented in Figs. 29 and 30, both 2D+t methods
and the cross-flow approach follows the same trend as the experimental
results, with decreasing values with increasing wavelength. Overall,
both the tactical diameter and the advance is better represented with
the 2𝐷+𝑡 method compared with the cross-flow method and the 2𝐷+𝑡𝑐𝑦𝑙

method. This is consistent with the observations in Figs. 18 and 22. The
tactical diameter simulated with the 2𝐷 + 𝑡 method is within 20.1%
f the experimental results for all wavelengths. The largest deviation
s observed for 𝜆∕𝐿𝑝𝑝 = 0.63. Considering this you can have in mind
hat the DTC hull has a pitch resonance around wavelength 𝜆∕𝐿𝑝𝑝 =
0.5 and a heave resonance around wavelength 𝜆∕𝐿𝑝𝑝 = 0.63. The
exact resonance wavelengths will of course vary with the heading and
forward speed, but for the investigated maneuvers they will be close
to these wavelengths. The advance is within 2.6% of the experimental
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Fig. 29. Tactical diameter of turning circles of the DTC hull with 35◦ rudder angle
owards starboard. Calm water and regular waves with wave steepness 𝐻∕𝜆 = 1∕40.
imulations where the transverse viscous loads are calculated with pure cross-flow,
𝐷+ 𝑡, and 2𝐷+ 𝑡𝑐𝑦𝑙 are presented. 95% confidence intervals, based on repetition tests,
re indicated with error bars for the experimental results with relative wavelength
∕𝐿𝑝𝑝 = 0.438 and 0.86.

esults for all wavelengths, except for wavelength 𝜆∕𝐿𝑝𝑝 = 1.120, which
s almost within the stochastic uncertainty of the experiments indicated
ith the error bars. Wavelength 𝜆∕𝐿𝑝𝑝 = 1.120 stands out, where the
dvance is 10.3% lower than the experimental value.

For the turning circles with 25◦ rudder angle, presented in Figs. 31
nd 32, the tactical diameter and advance in calm water are better
epresented with the cross-flow principle. In regular waves, the tactical
iameter is better represented with the 2𝐷 + 𝑡 method. We observe
he same as for the 35◦ turning circle, that the deviation from the
xperimental results is largest close to heave resonance at wavelength
∕𝐿𝑝𝑝 = 0.63, where the deviation is 10.04%. For the advance the
hree methods follow each other closely for the investigated range of
avelengths.

For turning circles in waves, one should be careful to conclude by
onsidering the tactical diameter and advance only. The circle can be
ignificantly deformed due to the wave environment, and you can get
rifting patterns which not are captured by these standard parameters,
.e you can get a very good match for the advance and tactical diameter
hile the trajectory can deviate significantly at a later stage in the
aneuver. However, since the main objective of this work is to compare
ifferent methods to estimate the transverse viscous loads, the tactical
iameter and advance can be appropriate indicators to consider the
erformance of the methods.

. Conclusion

Simulations in calm water and regular waves are performed with
hree different methods for the transverse viscous loads; one based
n the cross-flow assumption, and the two others based on the 2D+t
pproach. The 2𝐷+𝑡𝑐𝑦𝑙 method use scaled time-varying drag coefficients
or a circular cylinder, while the 2𝐷 + 𝑡 method time-integrates the
rag coefficients along the hull with time-derivatives from ship sections
n the literature. Since different methods perform best for different
aneuvers, it is difficult to definitely conclude which method that

stimates the transverse viscous loads most accurately. Overall, con-
idering turning circles with 25◦ and 35◦ rudder angles in calm water
nd regular waves, the 2𝐷+ 𝑡 method with integrated drag coefficients
s slightly better than the other methods. This is a more sophisticated
ethod compared to the cross-flow principle and the 2𝐷+ 𝑡𝑐𝑦𝑙 method.
he cross-flow method is more straight-forward to implement, and
erforms acceptably for the tested maneuvers. Considering 2D+t, using
caled drag coefficients for a circular cylinder can be a good starting

◦

18

oint, especially in calm water with drift angles below 25 .
Fig. 30. Advance of turning circles of the DTC hull with 35◦ rudder angle towards
starboard. Calm water and regular waves with wave steepness 𝐻∕𝜆 = 1∕40. Simulations
where the transverse viscous loads are calculated with pure cross-flow, 2𝐷 + 𝑡, and
𝐷+ 𝑡𝑐𝑦𝑙 are presented. For calm water, the 2𝐷+ 𝑡𝑐𝑦𝑙 method predicts exactly the same
dvance as the experimental results. 95% confidence intervals, based on repetition tests,
re indicated with error bars for the experimental results with relative wavelength
∕𝐿𝑝𝑝 = 0.438 and 0.86.

Fig. 31. Tactical diameter of turning circles of the DTC hull with 25◦ rudder angle
towards starboard. Calm water and regular waves with wave steepness 𝐻∕𝜆 = 1∕40.
Simulations where the transverse viscous loads are calculated with pure cross-flow,
2𝐷+ 𝑡, and 2𝐷+ 𝑡𝑐𝑦𝑙 are presented. 95% confidence intervals, based on repetition tests,
are indicated with error bars for the experimental results with relative wavelength
𝜆∕𝐿𝑝𝑝 = 0.438 and 0.86.
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Fig. 32. Advance of turning circles of the DTC hull with 25◦ rudder angle towards
starboard. Calm water and regular waves with wave steepness 𝐻∕𝜆 = 1∕40. Simulations
where the transverse viscous loads are calculated with pure cross-flow, 2𝐷 + 𝑡, and
2𝐷+𝑡𝑐𝑦𝑙 are presented. 95% confidence intervals, based on repetition tests, are indicated
with error bars for the experimental results with relative wavelength 𝜆∕𝐿𝑝𝑝 = 0.438 and
0.86.
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