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Abstract

When non-linear finite element analyses are used in design of new or assessment

of existing concrete structures, one should account for the modelling uncertainty

before conclusions are drawn based on the results. The present article describes

the basis for how this topic is treated in the draft of fibModel Code 2020. There are

two components of the modelling uncertainty: (i) within-model, and (ii) between-

model. The within-model uncertainty was estimated from a range of series of

benchmark analyses gathered from the literature. Each series was assumed ana-

lyzed in a consistent manner, termed as the solution strategy. The main result for

the within-model component, is a set of prior parameters for Bayesian updating.

In an application setting, the prior parameters should be updated after validating

the selected solution strategy with a suite of relevant benchmark analyses, before

using the mean and coefficient of variation in the Global Factor Method or calcu-

lating the modelling uncertainty factor γRd to be used in the Partial Factors

Method. Finally, results from blind-prediction competitions were studied. With

the present data, it cannot be concluded that a-priori knowledge of the experi-

mental outcome reduces the uncertainty in the prediction. Hence, there is no

need for compensating for this effect by a separate partial factor.
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1 | INTRODUCTION

In the final draft of the fib Model Code 2020, the chapter
on non-linear finite element analyses (NLFEA) has been

reworked compared to the fib Model Code 2010.1 A moti-
vation for this revision was to build a strong link between
the physical behavior that is being simulated, and the
safety format that is applied. A key ingredient herein is
the selected solution strategy for NLFEA. In the following,
the term solution strategy is used to denote the method
for performing the NLFEA. The solution strategy com-
prises all the choices related to (i) kinematic compatibil-
ity, for example, finite element types and sizes,
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(ii) equilibrium, for example, iterative solution method,
and (iii) material models, for example, constitutive rela-
tions for concrete and reinforcement steel. The solution
strategy also covers more problem-specific topics like dis-
cretization of the problem in time and space, idealization
of the geometry and applied actions, and representation
of boundary conditions, for example, constrained in sin-
gle nodes with or without load-plates or contact relations
between concrete and surrounding structures or
foundations.

When a solution strategy is selected, the analyst
should do a proper job in verifying and validating this.
This means that the analyst should make sure that she
solves the equations right and solves the right equa-
tions.2 Checking the former involves verification of the
solution strategy, where the analyst ensures that, for
example, the sensitivity to finite element size and load
step size is reasonably low, or that the incremental
iterative method is adequate for capturing basic fea-
tures of the intended material and structural behavior.
Proper verification thus ensures that the uncertainty
in the results from the simulations are related to ideal-
ization of the material, geometry, loads and boundary
conditions. Checking of the latter involves validation
of the solution strategy, where the analyst compares
simulation outcomes with results from physical exper-
iments, for example, reported in the literature, com-
monly denoted as benchmark analyses. Validation
thus involves quantification of the modelling uncer-
tainty. In the procedures outlined in this article, it is
assumed that the analyst has performed proper verifi-
cation of the solution strategy, such that the modelling
uncertainty can be quantified by performing bench-
mark analyses.2–4

The selected solution strategy should be applied con-
sistently during all the benchmark analyses, and further-
more during solution of the problem it is intended for. If
not, the estimated modelling uncertainty cannot be
guaranteed to cover the use. Ultimately, it is the responsi-
bility of the analyst to ensure that the modelling uncer-
tainty is properly accounted for before making decisions
based on NLFEA results. One should never rely on soft-
ware producers to take this responsibility, nor is it antici-
pated that any would do so.

This article presents the theoretical background for
the modelling uncertainty for NLFEA of concrete struc-
tures the way this is treated in the present draft for fib
Model Code 2020. Based on a systematic literature
review, a set of statistical parameters for the modelling
uncertainty are estimated, resulting in a set of prior
parameters that could be the basis for Bayesian
updating.

2 | QUANTIFICATION OF THE
MODELLING UNCERTAINTY

2.1 | Components of the estimated
modelling uncertainty

According to Engen5 the following three limiting cases
can be encountered in the literature where NLFEA pre-
dictions are compared to experimental outcomes:

1. One experimental outcome is compared to NLFEA
predictions using different solution strategies, denoted
as The blind prediction competition.

2. The outcomes of a number of nominally equal experi-
ments are compared to one NLFEA prediction of the
experiment using one solution strategy, denoted as
The scaled physical variability.

3. One experimental outcome from each of a range of
different experiments are compared to corresponding
NLFEA predictions using one solution strategy, den-
oted as Benchmarking of a solution strategy.

Assuming that the modelling uncertainty generally takes
the form of the ratio between the experimental outcome
and the NLFEA prediction, that is, θ¼Rexp=RNLFEA, the
three limiting cases will have the following estimators

θ1,k ¼ Rexp

RNLFEA,k
, θ2,j ¼ Rexp,j

RNLFEA
and θ3,i ¼ Rexp

RNLFEA

� �
i
:

ð1Þ

By inspection of Equation (1) it is evident that θ1 repre-
sents the uncertainty of the prediction if the solution strat-
egy was selected randomly, that is, the between-model
uncertainty, θ2 represents the variability of the experimen-
tal outcome scaled with the model outcome, and θ3 repre-
sents the uncertainty of the model outcome with one
selected solution strategy, that is, the within-model uncer-
tainty. The estimators in Equation (1) can be further gen-
eralized as

θijk ¼ Rexp,j

RNLFEA,k

� �
i

, ð2Þ

where the subscripts refer to experimental setup i,
outcome j from experimental setup i and the NLFEA
prediction of the experimental setup i using solution
strategy k. Note that the term experimental setup refers
to a specimen with given nominal geometry, reinforce-
ment, material properties etc. and given support and load-
ing conditions. The generalized estimator is shown
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graphically in Figure 1 and systematically decomposed in
Table 1.

Note that in the literature, usually only one experi-
mental outcome is reported for each experimental setup,
such that in Table 1, mi ¼m¼ 1, and the generalized esti-
mator in Equation (2) takes the form in Equation (3).
There are, however, examples of experimental campaigns
being repeated by independent researchers.

θik ¼ Rexp

RNLFEA,k

� �
i

ð3Þ

When Equation (3) is used, the contributions to the esti-
mate from within- and between-model uncertainty can
be quantified by following a hierarchical approach as
suggested by.6

Since the physical uncertainty of the experimental
outcomes is usually not explicitly accounted for in the
analyses, the estimate using Equation (3) implicitly
includes this contribution. This contribution can only be
eliminated if complete knowledge about the physical
uncertainty of the experiments is obtained. In practice,
this is hardly possible, however the user should be aware
of it. If the physical uncertainty of the experiments can
be represented by a single coefficient of variation, V exp,
and it can be assumed that the modelling uncertainty
and the physical uncertainty are independent random
variables, a simplified pure modelling uncertainty could

be estimated by subtraction, that is, following
Equation (4).7,8

V θ,pure ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

θ�V2
exp

q
ð4Þ

Assuming that the coefficient of variation obtained from
Equation (3) is in the order of V θ ≈ 0:1�0:15 and that the
physical uncertainties are in the order of V exp ≈ 0:05,8,9

the contribution from V exp can be neglected. In the
following, Equation (3) will be used as the basis for quan-
tifying the modelling uncertainty.

2.2 | Method for quantifying the
modelling uncertainty

It is assumed that the modelling uncertainty can be rep-
resented by a log-normally distributed random variable,
that is, that y¼ ln θ is normally distributed. From a sam-
ple of nk observations of the modelling uncertainty, the
sample mean and variance can be calculated from

yk ¼
1
nk

Xnk
i¼1

yi ð5Þ

and

s2k ¼
1

nk�1

Xnk
i¼1

yi� ykð Þ2: ð6Þ

Note that the subscript k indicates that the sample mean
and variance belongs to solution strategy k out of the p
available solution strategies. It can be shown that y can
be represented by a t-distributed random variable with
expected value and variance given in Equations (7) and
(8), where νk ¼ nk�1 are the degrees of freedom. See for
example6 for derivations. The mean and coefficient of
variation of θ can be estimated from Equations (9) and
(10), where the errors of approximation in Equations (7)
and (8) are <2% for V θk <0:2:6

Experimental setup i

NLFEA prediction with 
solution strategy k:

RNLFEA,i,k

Experimental 
outcome j:
Rexp,i,j

FIGURE 1 Graphical interpretation of the general estimator

for the modelling uncertainty θ in Equation (2)

TABLE 1 Systematic

decomposition of the general estimator

for the modelling uncertainty in

Equation (2).

Experimental setup Experimental outcome NLFEA prediction

θ1,k i¼ I j¼ J k¼ 1,pi½ �
θ2,j i¼ I j¼ 1,mi½ � k¼K

θ3,i i¼ 1,n½ � j¼ J k¼K

Note: pi is the number of NLFEA predictions of experimental setup i, mi is the number of outcomes from
experimental setup i and n is the number of experimental setups.
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μyk ¼E yk½ � ¼ yk ð7Þ

σ2yk ¼VAR yk½ � ¼ νk νkþ2ð Þ
νk�2ð Þ νkþ1ð Þs

2
k ð8Þ

μθk ¼E θk½ �≈ exp yk ð9Þ

V θk ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR yk½ �

p
¼ sk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νk νkþ2ð Þ

νk�2ð Þ νkþ1ð Þ

s
ð10Þ

The effect of the degrees of freedom, that is, the number
of observations or the decreasing statistical uncertainty,
on the ratio between the calculated standard deviation σy
and the sample standard deviation sy is shown in
Figure 2. Since the statistical uncertainty is significant if
the estimate is based on a low number of observations,
the resulting coefficient of variation should always be
estimated using Equation (10).

If results from benchmark analyses of p different solu-
tion strategies are collected, and the mean and coefficient
of variation of the complete sample is calculated
according to Equations (7) and (8), it is evident that the
estimate includes a component of the between-model
uncertainty. An alternative method which can be used to
estimate a pure within-model uncertainty is the method
of maximum likelihood estimators (MLE) as derived, for
example, [6].

The MLE for the sample variance, the degree of
knowledge about the sample variance, the sample mean,
and the degree of knowledge about the sample mean, are
shown in Equations (11–14), with parameters in Equa-
tion (15). According to Engen6, the error term in Equa-
tion (12) is due to truncation after second order terms in
the derivation. Herein, this error term is compensated for
by solving iteratively for νMLE as suggested in [6]. As

demonstrated by Engen6 the MLE can be used as prior
parameters that can be updated using a Bayesian
updating technique.

s2MLE ¼
1
A

ð11Þ

νMLE ¼ 1
ln A�B� ϵ ν�2

MLEð Þ ≈
1

ln A�B
ð12Þ

yMLE ¼
C
A

ð13Þ

nMLE ¼ 1

D�C2=A
ð14Þ

A¼ 1
p

Xp
k¼1

1
s2k
, B¼ 1

p

Xp
k¼1

ln
1
s2k
, C¼ 1

p

Xp
k¼1

yk
s2k
, D¼ 1

p

Xp
k¼1

y2k
s2k

ð15Þ

If a solution strategy is validated by performing a
series of benchmark analyses, the values for μθ and V θ of
this specific solution strategy should be calculated by
considering Bayesian updating of prior parameters with
the sample mean and variance from the series of bench-
mark analyses. The basic equations for Bayesian updating
are given in Equations (16–19), and derivations can be
found in.6,10 In Equations (16–19) s0, ν0, y0 and n0 are the
prior parameters for the statistical parameters, s, ν, y and
n are the results from the series of benchmark analyses
and s00, ν00, y00 and n00 are the updated statistical parameter
that should be input to Equations (9) and (10).

s002 ¼ 1
ν00

νs2þν0s02þny2þn0y02�n00y002� � ð16Þ

ν00 ¼ ν0 þνþ1 ð17Þ

y00 ¼ 1
n00

nyþn0y0ð Þ ð18Þ

n00 ¼ n0 þn ð19Þ

When proper values for μθ and V θ are obtained, a model-
ling uncertainty factor γRd can be calculated according to
Equation (20). In Equation (20), αR is the sensitivity fac-
tor for the resistance modelling uncertainty, and β is the
target reliability index.

γRd ¼
1
μθ

expαRβV θ ¼ 1
μθ

expαRβs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν

ν�2
νþ2
νþ1

r
ð20ÞFIGURE 2 The ratio of the standard deviation σy to the sample

standard deviation sy as function of the degrees of freedom νy
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The modelling uncertainty factor can alternatively be cal-
culated from the t-distribution according to Equation (21)
where Φ�1 αRβð Þ is the probability corresponding to the
fractile z¼ αRβ of the standard normal distribution.

γRd ¼
1

exp y� tΦ�1 αRβð Þ,ν s
ffiffiffiffiffiffi
νþ2
νþ1

q� �
¼ 1
μθ

exp tΦ�1 αRβð Þ,ν s

ffiffiffiffiffiffiffiffiffiffi
νþ2
νþ1

r !
ð21Þ

The modelling uncertainty factor expressed as in Equa-
tion (20) converges to Equation (21) as shown in
Figure 3a, and is conservative for lower values of ν. The
conservatism lies in the assumption of an unknown vari-
ance when deriving Equation (8), resulting in the equiva-
lent fractile shown in Figure 3b. In the following, the
modelling uncertainty factor will be calculated using
Equation (20). Figure 4 demonstrates the effect of the
degrees of freedom on the calculated modelling uncer-
tainty factor for different sample standard deviations.

3 | RESULTS

3.1 | General

In this section, the modelling uncertainty will be quanti-
fied based on a systematic literature review and the meth-
odology outlined above. Based on these results, prior
parameters for Bayesian updating and a given value for
γRd will be estimated. Note that the prior parameters
should represent only the within-model component of
the uncertainty, since these are used together with results
using one specific solution strategy, and the resulting sta-
tistical parameters should be relevant for that specific
solution strategy. On the other hand, the given value of

γRd should in addition include the between-model com-
ponent, since this should be used in exceptional cases
where the solution strategy is only selected from a range
of available solution strategies, verified, and furthermore
applied without thorough validation.

3.2 | Review of results from
benchmarking of solution strategies

Figure 5 shows schematically how the results from bench-
mark analyses using a set of solution strategies can be com-
piled in a two-dimensional array. Each solution strategy is
benchmarked with all or a subset of the experiments. Note
that the array is usually sparse, since not all solution strate-
gies are benchmarked with the same experiments. The
within-model component of the modelling uncertainty can
be estimated by calculating the sample means and standard
deviations vertically in the array, that is, per solution

(a) (b)

FIGURE 3 (a) Comparison

of Equation (20) (LN) and

(21) (LT) assuming s¼ 0:10 and

y¼ 0:0, (b) the equivalent

fractiles in the former

FIGURE 4 The modelling uncertainty factor γRd as function of

the degrees of freedom νy for different values of the sample

standard deviation s assuming a bias y¼ 0, and αR ¼ 0:4 �0:8 and

β¼ 3:8 for 50 years
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strategy. The between-model component, on the other
hand, is estimated horizontally, that is, per experiment.

Table 2 shows an overview of results from
benchmarking of 27 different solution strategies found in
the literature. All results are from trusted sources, where
it is reasonable to assume that the solution strategy was
applied consistently in all analyses. The results in Table 2
represent θ3, as defined in Equation (1), calculating verti-
cally as demonstrated in Figure 5. The bias in Table 2 is
on average close to 1:0, and the modelling uncertainty
can be safely assumed to be unbiased. The coefficient of
variation of the complete sample is relatively low and
almost converged towards the sample standard deviation
due to the large number of observations, ref. Figure 2.

Table 3 shows the results from the MLE based on the
results in Table 2. Since the degrees of belief in the mean
and the standard deviation, that is, nMLE and νMLE, in

FIGURE 5 Schematic representation of calculating within-

model and between-model uncertainty from benchmark analysis

results using a series of p solution strategies, each solving all or a

subset of the n experiments. The arrows indicate the direction for

calculating sample statistics

TABLE 2 Results from

benchmarking of different solution

strategies.

References yk s2y,k nk μθk V θk

Engen et al.2 0:092 0:011 38 1:103 0:110

Engen et al.16 0:117 0:036 10 1:154 0:229

Kotsovos & Pavlovic, 2D17 0:000 0:028 24 1:016 0:179

Kotsovos & Pavlovic, 3D17 0:091 0:009 23 1:100 0:099

Belletti et al.18 0:120 0:033 13 1:152 0:210

Bertagnoli et al., A111 0:017 0:009 16 1:023 0:105

Bertagnoli et al., A211 0:026 0:007 16 1:030 0:094

Bertagnoli et al., B111 0:120 0:006 16 1:132 0:089

Bertagnoli et al., B211 0:182 0:006 16 1:204 0:083

Bertagnoli et al., C111 �0:058 0:011 16 0:950 0:116

Bertagnoli et al., C211 0:057 0:010 16 1:065 0:113

Belletti et al.19 0:055 0:004 11 1:060 0:076

Kadlec & Cervenka20 �0:041 0:007 10 0:965 0:100

Muttoni et al.21 0:031 0:009 315 1:036 0:094

Selby & Vecchio22 0:018 0:021 22 1:030 0:156

Castaldo et al., M112 �0:005 0:011 16 1:002 0:118

Castaldo et al., M212 �0:008 0:013 16 1:000 0:127

Castaldo et al., M312 �0:014 0:010 16 0:992 0:111

Castaldo et al., M412 �0:107 0:008 16 0:903 0:100

Castaldo et al., M512 �0:098 0:009 16 0:912 0:107

Castaldo et al., M612 �0:170 0:007 16 0:848 0:096

Castaldo et al., M712 0:069 0:013 16 1:080 0:127

Castaldo et al., M812 0:043 0:011 16 1:051 0:115

Castaldo et al., M912 �0:044 0:015 16 0:966 0:136

Cervenka et al.23 0:005 0:006 33 1:009 0:084

Pimentel, F24 0:032 0:002 15 1:034 0:053

Pimentel, R24 0:054 0:009 15 1:061 0:105

All 0:026 0:013 769 1:034 0.117
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Table 3 are only moderate, this indicates that the model-
ling uncertainty of the different solution strategies in
Table 2 do not all come from the same population. The
results at the lower row of Table 2 should therefore not
be used as basis for a general modelling uncertainty fac-
tor. The parameters in Table 3, however should be inter-
preted as the typical statistical parameters of the
modelling uncertainty, neglecting the contribution from
between-model uncertainty. The results in Table 3 corre-
spond to μθ,w ¼ 1:020, V θ,w ¼ 0:13 and γRd,w ¼ 1:15 assum-
ing αR ¼ 0:4 �0:8 and β¼ 3:8 for 50 years, where the
subscript w indicates that only the within-component is
included.

There are two subsets of Table 2 that are particularly
interesting11,12 since these contain 16 experiments, simu-
lated with 15 different solution strategies. This subset can
thus be represented as a full array as in Figure 5, and
can give more insight in the between-model uncertainty.
By applying the method of MLE on each series of numer-
ical simulations of each experiment, the results in
Table 4 are obtained. These results thus represent θ1 as
defined in Equation (1). The results in Table 4 correspond
to μθ,b ¼ 1:0, V θ,b ¼ 0:14 and γRd,b ¼ 1:18 assuming α¼
0:4 �0:8 and β¼ 3:8 for 50 years, where the subscript b
indicates that only the between-component is included.

A given value for the modelling uncertainty factor can
be obtained by multiplying the factors for the within- and
between-components, that is, γRd ¼ γRd,wγRd,b ≈ 1:35,
assuming that these are independent. Note that this value is
estimated based on results from static NLFEA predictions
of failure loads. Other contributions are also reporting pre-
dictions of the deformations and capacity of cyclically
loaded structural elements, for example [13,14], and the
given value for γRd is also representative for these results.
The components of γRd are summarized in Table 5.

3.3 | Review of results from blind-
prediction competitions

Table 6 shows an overview of results from blind-prediction
competitions found in the literature and Table 7 shows

results from MLE based on Table 6. Note that the results
in Table 7 are not intended to be used as prior parameters.
The results in Table 6 can be interpreted in a similar man-
ner as those in Table 4, representing the between-model
component and θ1 as defined in Equation (1). The essen-
tial difference between the results in Tables 4 and 6 is
that the latter is based on analyses performed without
knowing the experimental result on beforehand, a situa-
tion closely related to engineering practice.

Based on simple hypothesis testing, that is, t-test for
the mean and F-test for the variance, the null-hypotheses
that the variances and means are equal cannot be
rejected, see the results in Table 8. Note that the P-value
is the probability of observing the results in Tables 4 and
6, given that the null-hypothesis is true. The null-
hypotheses can alternatively be formulated as knowing
the experimental outcome a priori does not improve the
estimate. Since this cannot be rejected, the present results
indicate that there is not sufficient evidence for introduc-
ing additional factors to account for any bias due to
knowing the experimental outcome before running the
benchmark analysis.

4 | APPLICATION EXAMPLE

4.1 | General

This section gives an example on how to utilize the
results from the proceeding sections. The statistical
parameters of the modelling uncertainty, and further-
more the modelling uncertainty factor γRd, should be cal-
culated by the following standard procedure:

1. Collect a set of experiments reported in the literature
that are relevant for the problem which is to be solved.

TABLE 3 Results from MLE based on the results in Table 2,

where sMLE, νMLE, yMLE, and nMLE are the prior parameters for the

modelling uncertainty.

A B C D

118:532 4:606 2:698 0:756

sMLE νMLE yMLE nMLE

0:092 0:10ð Þ 6:224 6:20ð Þ 0:023 0:02ð Þ 1:44 1:40ð Þ
Note: The values in parentheses are rounded values suitable for codification.

TABLE 4 Results from MLE based on the sample statistics per

experiment in.11,12

A B C D

72:460 4:178 �0:032 0:044

sMLE νMLE yMLE nMLE

0:117 9:830 0:000 22:519

TABLE 5 Components of the given value of γRd as described

above.

Within-model γRd,w ¼ 1:15

Between-model γRd,b ¼ 1:18

Total γRd ¼ γRd,wγRd,b ≈ 1:35
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2. Select the solution strategy and apply this consistently
in numerical simulations of each of the collected
experiments.

3. Based on the results from each i benchmark analysis,
calculate the ratio θi ¼ Rexp

RNLFEA

� �
i
and yi ¼ ln θi, and cal-

culate the sample mean and standard deviation using
Equations (5) and (6). Note that nk in the latter equa-
tions refer to the number of collected experiments that
are used in the validation.

4. Using the sample statistics calculated in pt. 3, the
prior parameters in Table 3 should be updated
according to Equations (16–19).

5. The mean, coefficient of variation and modelling uncer-
tainty factor should be calculated using Equations (9),
(10), and (20) and the posterior parameters from pt. 4.

4.2 | Update prior parameters with
results from benchmark analyses

In Reference [15], a series of experiments on structural
walls are analyzed with NLFEA. Table 9 shows how the

results from the study in Reference [15] can be used to
update the prior parameters for the modelling uncer-
tainty. The numbers under Prior are taken from Table 3.
The results under Additional results are derived from the
results in Reference [15] using Equations (5) and (6).
The bias indicates that the results are on average conser-
vative. In Reference [15], this is explained to be due to a
conservative representation of the compressive behavior
in experiments where a significant degree of confinement

TABLE 6 Results from blind-

prediction competitions found in the

literature.

References y s2y,k n μθk V θk

Collins et al., Panel A25 �0:124 0:032 27 0:899 0:192

Collins et al., Panel B25 0:113 0:156 27 1:223 0:437

Collins et al., Panel C25 �0:011 0:050 27 1:017 0:240

Collins et al., Panel D25 �0:237 0:170 27 0:869 0:459

van Mier & Ulfkjær, Small26 0:078 0:012 8 1:092 0:140

van Mier & Ulfkjær, Large26 0:065 0:014 8 1:079 0:147

Jaeger & Marti, A127 �0:165 0:079 8 0:902 0:363

Jaeger & Marti, A227 �0:093 0:011 8 0:920 0:134

Jaeger & Marti, B127 0:076 0:073 8 1:143 0:348

Jaeger & Marti, B227 0:054 0:004 8 1:059 0:083

Jaeger & Marti, C127 �0:241 0:103 8 0:852 0:420

Jaeger & Marti, C227 �0:101 0:011 8 0:912 0:132

Jaeger & Marti, D127 0:029 0:073 8 1:090 0:348

Jaeger & Marti, D227 0:121 0:001 8 1:130 0:046

Collins et al., first failure28 �0:363 0:297 66 0:813 0:604

Collins et al., second failure28 0:108 0:109 43 1:181 0:352

Strauss et al.29 �0:126 0:004 8 0:884 0:075

TABLE 7 Results from MLE based on the results in Table 6.

A B C D

100:362 3:467 3:035 1:226

sMLE νMLE yMLE nMLE

0:100 1:375 0:030 0:88

TABLE 8 Results from hypothesis testing based on the results

in Tables 4 and 7.

Mean

H0: μ1�μ2 ¼ 0

H1: μ1�μ2 ≠ 0

t¼ 0:372 Do not reject

tmax ¼ 2:196

P¼ 0:359> 0:05

Variance

H0: σ1 ¼ σ2

H1: σ1 ≠ σ2

Fmin ¼ 0:160 Do not reject

Fmax ¼ 6:231

F¼ 1:385

P¼ 0:460> 0:05

Note: Note that the bounds for the tests are found by assuming a 5% level of
significance.
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can be present. The mean, coefficient of variation and
modelling uncertainty factor are calculated using Equa-
tions (9), (10), and (20). Due to the high bias, the
resulting γRd is less than unity if only the results from
Reference [15] are taken into account. The numbers
under Posterior are results from updating the prior
parameters with the additional results using Equa-
tions (16–19). This gives a larger coefficient of variation
and a slightly lower mean, and a modelling uncertainty
factor closer to unity.

These results illustrate two important aspects:

1. By providing prior parameters for updating, the ana-
lyst is encouraged to run benchmark analyses and cal-
culate the statistical parameters and a resulting γRd
which is representative for the selected solution strat-
egy and lower than the given value.

2. The prior parameters ensure that the analyst can
obtain a relevant γRd, but at the same time take into
account possible uncertainties that are not uncovered
in the benchmark analyses.

5 | DISCUSSION AND
CONCLUSION

The main challenge of applying NLFEA in design of new
or assessment of existing concrete structures, is that the
result is not known on beforehand. The present results
indicate, however, that the effort that is put into investi-
gating the failure mode in the analysis results, as illus-
trated in the study of the blind-prediction competitions,
balances this. The results in the present study do not sup-
port including a separate factor to account for this
challenge.

The validation of the solution strategy should be
based on several benchmark analyses relevant for the
problem at hand. No lower limit is put on the number of
benchmark analyses, but at least 2-3 should be included

for the results of Equation (6) to be meaningful. If the
prior parameters derived herein are used, the value of
the degrees of freedom is sufficiently high to guarantee
stability of the t-distribution. Note, however, that the
analyst has a strong incentive to increase the number of
benchmark analyses, since this has direct influence on
the coefficient of variation expressed as Equation (10).
This is considered elegant, compared to, for example,
introducing a separate partial factor to cover the statisti-
cal uncertainty.

The prior parameters represent the within-model uncer-
tainty. Judging based on the degrees of belief, the mean is
rather vague, which is useful if the selected solution strategy
is strongly biased. On the other hand, the standard deviation
is relatively strong ensuring that the posterior coefficient of
variation is steered towards the typical value if a small sam-
ple of benchmark experiments is selected.

The analyst can never put the responsibility on
other parties to validate the selected solution strategy.
At the same time, it is not always possible to perform
a thorough validation of the selected solution strategy,
for example, due to time constraints or lack of rele-
vant experiment results. In such cases, the solution
strategy could be interpreted as being selected ran-
domly from the population of solution strategies,
without knowledge of its actual behavior. This is
respected by including the between-model component
in the given value for γRd. The solution strategy should
however always be properly verified. Eventually, the
value γRd ¼ 1:35 is a strong incentive for investing in
benchmarking, building a stronger link between the
physical behavior that is being simulated, and the safety
format that is applied.
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