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H I G H L I G H T S  

• An economic model predictive control was tested for residential space heating. 
• Good predictive performance of the applied black-box state-space model. 
• A single thermal zone model provided acceptable temperature control. 
• The E-MPC successfully shifted consumption from high to low cost periods.  
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A B S T R A C T   

Previous studies have identified significant demand response (DR) potentials in using economic model predictive 
control (E-MPC) of space heating to exploit the inherent thermal mass in residential buildings for short-term 
energy storage. However, the economically viable realisation of E-MPC in residential buildings requires an 
effort to minimise the need for additional equipment and labour-intensive modelling processes. This paper re
ports on an experiment where a novel E-MPC setup was used for thermostatically control of a hydronic radiator 
in a highly-insulated residential building located on the NTNU Campus in Trondheim, Norway. The E-MPC 
utilized data from a heating meter, two temperature sensors and an existing weather forecast web service to train 
a linear black-box model. The results showed that the precision of model trained on excitation data that was 
generated using setpoints of either 21 or 24 ◦C was sufficient to obtain good control of the indoor air temperature 
while shifting consumption from high to low price periods. The findings of the experiment indicate that a 
minimal E-MPC setup is able to realize the significant DR potential that lies in utilizing the inherent thermal mass 
in residential buildings.   

1. Introduction 

The penetration of weather-dependent renewable electricity pro
duction such as wind and solar power technologies complicates the task 
of continuously balancing supply and demand in the grid, for example, 
due to the inherent uncertainties of weather forecasting. Demand 
response (DR) is often mentioned as a solution for grid balancing in 
systems with a high penetration of volatile electricity production [1–3]. 
There are various terminologies and definitions of DR strategies in 
current literature but common for DR programs is that they seek to make 

temporary adjustments in consumption at times when this has value for 
the energy system as a whole. IEA EBC Annex 67 defines building energy 
flexibility as the ability of a building to manage its demand and gener
ation according to local climate conditions, user needs and grid re
quirements [4]. 

The building fabric can be used as thermal short-term heat storage to 
adjust the space-heating load in time and has proved to have large en
ergy flexibility potential [5,6]. In this respect, previous studies have 
identified significant DR potential in using economic model predictive 
control (E-MPC) of space heating to exploit the thermal mass of 
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residential buildings. The vast majority of these studies were simulation- 
based, e.g. [7–10]. Some simulation-based studies have also combined 
MPC of space heating with control of other building energy systems 
[11,12], minimisation of CO2 emissions [13], and investigations of en
ergy tax structures [14]. Some studies report on field investigations of E- 
MPC in residential buildings [15–17], but physical implementation and 
tests of E-MPC have mainly been reported for applications in laboratory 
test cells [18,19], office buildings [20–22], or educational buildings 
[23–25]. This limited set of field investigations is also confirmed in the 
review paper by Kathirgamanathan et al. [26] on predictive control for 
building energy flexibility. 

In 2018, residential buildings represented 26.1% of the total energy 
consumption in the EU and most of this was used for space heating 
(63.6%) [27]. The aggregated DR potential in residential buildings is 
thus very large and simulation-based studies have demonstrated that 
realising the potential can be a valuable asset to operational challenges 
in e.g. urban district heating systems [28–31]. However, the DR 

potential of individual residential buildings is small in absolute terms 
and it is therefore crucial that the cost of implementing E-MPC is low to 
be economically justified. The current challenges in this relation are:  

• According to Killian and Kozek [32], existing home automation 
systems and advances in wireless technology have provided practical 
and flexible means for collecting data needed for MPC but they are a 
significant extra investment cost if not already present for other 
purposes. Realising E-MPC in residential buildings, therefore, re
quires an effort to minimise the additional equipment needed, e.g. as 
seen in [33] where the need for investing in equipment for local 
weather data measurements was eliminated.  

• The development of a control model is known to be the most time- 
consuming and thus expensive part of implementing an MPC 
[20,34,35]. Efforts to make automated modelling procedures should 
therefore be a priority to keep the investment costs at a minimum. 
Modelling for MPC can be divided into three main categories [36]: 

Fig. 1. (Top) ZEB Living Lab on the Gløshaugen campus, NTNU. (Bottom) Floor plan of Living Lab (1: Entrance; 2: Living room south; 3: Kitchen; 4: Living room 
north; 5: Bedroom east; 6: Bedroom west; 7: Bathroom; 8: Technical room) [39]. 
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white-, grey- and black-box models. White box models are physics- 
based models (i.e. first principle models) and require a large 
amount of input and expert knowledge to setup the model. Also, the 
building can change in time which may require frequent recalibra
tion. Black-box models are pure data-driven methods based on 
measured input–output data. The quality of black-box models relies 
strongly on the quantity and quality of the data. The extrapolation 
properties of black-box models are lower than for white and grey-box 
models. Finally, grey-box models are intermediate between white- 
and black-box models: the model structure is defined by physical 
laws while model parameters are identified using measurement data. 
The model structure of grey-box models is often expressed as a 
network of thermal resistances and capacitances (i.e., RC models). A 
review of grey-box models applied to MPC of buildings can be found 
in e.g. Viot et al [37]. Both white- and grey-box models require 

physical knowledge of the building and may therefore be a challenge 
for realisation of low-cost models for MPC of residential buildings. 

This paper reports on an experiment where a hydronic radiator in a 
residential building was controlled by a novel low-cost E-MPC setup. 
The controller was designed to rely on already existing equipment in 
modern residential buildings; the exhaust and outdoor air temperature 
sensors of the ventilation system, a smart heat meter, and a weather web 
service to minimize equipment investment costs. The control model was 
a linear time-invariant black-box model suited for low-cost automated 
system identification where the original contribution is that an appro
priate model for E-MPC was trained on data from a period of approx. two 
weeks with an excitation signal where the indoor air temperature was 
kept within typical thermal comfort limits. The model can therefore be 
trained while occupants are present and comfortable. The experimental 
approach of the study addresses the current knowledge gap that is 
holding back the practical realization of the potential identified in the 
many simulation-based studies and adds to the very limited number of 
studies on the performance of black-box MPC for residential space 
heating [26]. 

2. Method 

2.1. Case building 

The case building was the Living Lab (Fig. 1) which is an 

Fig. 2. The daily internal heat gain (in Watts) repeatedly distributed over the 24 h of the day. The heat gain consisted of gains from electrical equipment and 
cylindrical dummies. The dummies mimicked two adults that were either in the bedroom, the living-room/kitchen or away. 

Table 1 
User choices for the n4sid and pem algorithms.  

Algorithm Parameter Choice 

n4sid: Focus 
N4Weight 
N4Horizon 

Prediction 
CVA 
[20 20 20] 

pem: Focus 
SearchMethod 
Tolerance 
MaxIterations 

Prediction 
Auto 
0.01 
1000  

Fig. 3. Daily schedule of time-varying heating prices. The price is unitless and normalized to get a mean of one.  
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experimental test facility located at the Norwegian University of Science 
and Technology (NTNU) in Trondheim (temperate oceanic climate) 
built as a part of the Research Centre on Zero Emission Buildings (ZEB) 
[38]. The laboratory is constructed as a light-weight single-family de
tached house with a floor area of roughly 102 m2. The envelope consists 
of highly insulated wooden-frame structures (U-values ≈ 0.11 W/m2K) 
with a glass-to-envelope ratio of 23%, and low-energy windows (U- 
values between 0.65–1.00 W/m2K). A total of 90 m2 phase-changing 
materials boards are mounted on the sloped ceilings just behind the 
wooden cladding. For this experiment, all internal door openings 
(dotted lines in Fig. 1) were kept open, all windows were kept closed, 
and external shadings were retracted at all times. 

An internal heat gain (Φi) consisting of heat gains from electric 
equipment and four human body sized metal cylinders (dummies) 
equipped with incandescent lightbulbs to mimic occupants was estab
lished. The four dummies were placed as shown in Fig. 1 and were 
operated to imitate the daily heat gain profile from two adults (Fig. 2). 

An air-handling unit (AHU) located in the technical room provided 
balanced ventilation of approx. 144 m3/h and the location of inlets and 
outlets and airflow rates are shown in Fig. 1. A heat recovery effec
tiveness of approximately 87% was the only pre-heating of the supply 
air. Space heating was handled by the central hydronic radiator in the 
living room (see location in Fig. 1). It has previously been shown that a 
simple heating system with only one radiator can provide acceptable 

Fig. 4. Training and validation data used for system identification. The top plot shows the ambient temperature and global solar irradiation. The middle plot shows 
the lumped heat input (space heating and internal heat gain). The bottom plot shows the ventilation extract air temperature as well as the random binary sequence of 
temperature setpoints. 

Fig. 5. Comparison of one step ahead predictions on validation data for the refined models of order one to five.  
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thermal comfort in super-insulated buildings [39]. The water supply 
temperature was fixed to approx. 55 ◦C during the experiment and the 
water flow was adjusted by a thermostatic radiator valve to track the 
setpoint determined by the E-MPC. The ventilation extract air temper
ature (Textract) was used to represent the zone air temperature of the 
entire building and the radiator thermostat was therefore configured to 
control this. Textract was measured in the return duct near the AHU and 
was thus a flow-weighted average of the extract air from the kitchen and 
the bathroom, respectively. The extract air temperature was a reliable 

Fig. 6. Comparison of 24 step ahead predictions for the refined models on validation data.  

Fig. 7. Comparison between E-MPC and baseline controller with heat price (top), heat consumption for the E-MPC and baseline (middle) and zone air temperature 
(bottom) for the E-MPC and baseline, respectively. 

Table 2 
Cost and energy for space heating during the experiment.   

Cost [-]  Energy [kWh]  

Baseline 387  412  
E-MPC 300 (–22.5%) 417 (+1.3%)  
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representation of the overall temperature throughout the building, as is 
shown in the results section. One benefit of this implementation was that 
only a single air temperature sensor was required. 

A Kamstrup heat meter (Multical 602) determined the radiator heat 
power (Φh) based on measured flow and temperature difference across 
the radiator. The outdoor air temperature was measured by a weather 
station on the roof of the building and forecasts were retrieved from the 
Norwegian Meteorological Institute weather API [40]. The outdoor 
temperature forecasts were adjusted to reduce the deviation between the 
forecast and the measurement (see Fig. 10). Solar irradiation data were 
retrieved from the Solcast web service [41] that provided both real-time 
data and forecasts based on satellite images. All data were averaged over 
one time-step (30 min) before it was used by the E-MPC. The data 
acquisition was handled by cRIO real-time controllers from National 
Instrument (model cRIO-9068 and NI-9148) and the LabVIEW software 
[42]. 

2.2. Economic model predictive control 

The E-MPC was programmed in MATLAB [43] while LabVIEW log
ged sensor data and updated the thermostat setpoint. LabVIEW was 
scheduled to call MATLAB every half hour to execute the E-MPC func
tion with updated sensor data and weather forecasts. The following 
sections describe the model structure, system identification process, and 
the optimisation problem solved by the E-MPC. 

2.2.1. Model structure 
The task of generating an appropriate model is often highlighted as 

the biggest challenge and the main reason that MPC has not been used 

for building control in practice [20,21,26,44]. Previous research pro
jects have successfully implemented MPC in buildings, but the ap
proaches often relied on expert modelers to build and tune complex 
models [44]. This makes the implementation unprofitable in practice, 
especially in single-family houses. In this context, the use of black-box 
models could have an advantage as they do not require manual collec
tion of prior knowledge of the building to establish a model but instead 
are calibrated solely from operational data in a process that can be 
executed using automated procedures. A downside of black-box models 
is that they are generally known to require exciting training data for 
longer periods to be reliable and have lower extrapolation properties 
than e.g. grey-box models. On the other hand, the identification of linear 
black-box state-space models can be based on subspace methods that are 
non-iterative and hence there are no convergence problems [45]. For a 
further description of the advantages and disadvantages of different 
modeling techniques, see e.g. the review by Kathirgamanathan [26]. 
Finally, a stochastic subspace method is used so that the identified 
Kalman gains are directly used in the Kalman filler of the MPC. In other 
words, no additional work is required to tune the Kalman filter as the 
Kalman gains are a result of the model identification process. 

Previous simulation-based studies have shown that linear and time- 
invariant (LTI) models approximate the thermal dynamics of many 
buildings with sufficient accuracy for E-MPC purposes 
[13,11,8,14,34,46,47]. We therefore implemented a black-box LTI state- 
space model in innovations form: 

x[k+ 1] = Ax[k] +Bu[k] +Ke[k] (1)  

Textract[k] = Cx[k] + e[k] (2) 

Table 3 
Shows how much energy for space heating is used in the peak, medium and low price periods, respectively.   

Peak [kWh]  Medium [kWh]  Low [kWh]  

Baseline 93  112  207  
E-MPC 17 (− 82.0%) 100 (− 11.4%) 301 (+45.4%)  

Fig. 8. Air temperatures (top) at different locations in the building and solar irradiation (bottom) from a web service (Solcast) and the local weather station on top of 
the roof (bottom). All temperature sensors were placed 1.6 m above the floor except the zone air sensor, which was placed in the extraction duct just before the AHU. 
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where k is the time index, x[k] ∈ Rn are the system states, Textract [k] is the 
measured ventilation extract air temperature [◦C], u[k] ∈ Rm are inputs 
and e[k] ∈ Rp is the output prediction error (or innovation) [◦C]. A ∈

Rn×n is the state matrix, B ∈ Rn×m is the input matrix,K ∈ Rn×p is the 
Kalman gain matrix and C ∈ Rp×n is the output matrix. The input vector 
contained the following values: 

u[k] =

⎡

⎣
Φh[k] + Φi[k]

Ta[k]
Φs[k]

⎤

⎦ (3) 

The first input was the total internal heat gains and was a sum of 
space heating Φh [W] and heat gains from people and equipment Φi [W], 
Ta was ambient temperature [◦C] and Φswas global solar irradiation on a 
horizontal plane [W/m2]. The input matrix B was thus comprised of 
three columns corresponding to each input: 

B = [Bhi Ba Bs ] (4) 

The state-space model in (1) can thus be rewritten as follows: 

x[k+ 1] = Ax[k] +BhiΦh[k] +BhiΦi[k] +BaTa[k] +BsΦs[k] +Ke[k] (5)  

Textract[k] = Cx[k] + e[k] (6) 

Notice that space heating and internal gains were assumed to enter 
the system through the same input matrix Bhi which reduced the number 
of unknown model parameters and hence avoid overfitting [48]. 

2.2.2. System identification 
Several simulation studies have followed similar procedures to 

identify building models for E-MPC as this experimental study albeit 
with some differences, see e.g. [13,11,8,14]. The applied system iden
tification procedure consisted of the following five steps: 

Step 1: Generate data. 
It is of practical interest to investigate whether a reliable black-box 

model can be identified using excitation of the building thermal dy
namics within the comfortable indoor temperature limits. If possible, 
training data can be generated while the residential building is occu
pied. Therefore, a random sequence of half-hourly binary temperature 
setpoints of either 21 or 24 ◦C was sent to the radiator thermostat. This 
induced an exciting sequence of radiator heat inputs. This data set was 
then split into a training and a validation dataset so that cross-validation 
could be used to choose an appropriate model order. 

Step 2: Identify models using subspace system identification (n4sid). 
The training data was used to identify five models with model order 

ranging from 1 to 5 states using subspace system identification. This 
method can be applied to identify unstructured LTI state-space models 
as (1–2), i.e. where no internal structure or constraints are imposed on 
the parameters in the system matrices. The theory behind this approach 
is described in detail in [45] and implemented in the n4sid function that 
is a part of the MATLAB System Identification Toolbox [49]. This 
function is associated with many manual user settings that can have a 
substantial influence on the model quality [50]. Table 1 lists the settings 
used in this study. 

Fig. 9. Optimal heat sequence for prediction horizons determined at different points in time (12 h interval).  
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Step 3: Refine models using the prediction error method (pem). 
The training data was then used to refine the five subspace models 

using the prediction error method [51]. This method is implemented in 
the pem MATLAB function that is also part of the MATLAB System 
Identification Toolbox [49]. The prediction error method can often 
identify models with better predictive performance than subspace 
methods. However, one of the disadvantages is that they rely on iterative 
search schemes, which means that if initiated with a poor initial model it 
can take a long time to converge and risk being stuck in local minima. 
This can be avoided by generating initial models using subspace iden
tification (step 2), which is based on linear projections and thus very fast 
execute and is not stuck in local minima. 

Step 4: Choose a model. 
The order of the state-space model was identified by comparing the 

one-step-ahead prediction errors of the five refined models to the vali
dation data. 

Step 5: Final refinement using all data. 
All data (i.e. training and validation) was used to refine the model 

picked in step 4 using pem. This step ensured that all information in the 
data was incorporated into the final model. The results of these five steps 
are presented in the results section. 

2.2.3. Optimization problem 
A linear program Eq. (7a)-(7f) was solved to determine the sequence 

of heat inputs Φh[k] minimizing total heating costs over all time steps 
k∊0,1,⋯,N − 1 in the prediction horizon. The linprog function in MAT
LAB was used to solve this problem and it took less than a second using 
the dual-simplex algorithm [43]. In this experiment, the time step was 
30 min and the prediction horizon was two days, i.e. N = 95, based on 
the experience from previous simulation studies [13]. 

min
Φh

∑N− 1

k=0
ch[k]Φh[k] (7a)  

Subject to 

x[k+ 1] = Ax[k] +BhΦh[k] +BhΦi[k] +BaTa[k] +BsΦs[k], k∊NN− 1
0 (7b)  

Textract[k] = Cx[k], k∊NN− 1
0 (7c)  

21◦

C ≤ Textract[k] ≤ 24◦

C, k∊NN− 1
0 (7d)  

0 ≤ Φh[k] ≤ Φh,max[k] , k∊NN− 1
0 (7e)  

x[0] = x̂[0] (7f) 

A receding horizon procedure was implemented, which means the 
linear program was solved every half hour for a receded prediction 
horizon and with updated initial state estimates (x̂[0]) and updated 
weather forecasts. The resulting output temperature in the first time step 

Fig. 10. Comparison of measured outdoor air temperature and two days forecasts forecasted at four different four time points.  
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(Textract [1]) was then used as a setpoint for the radiator thermostat. Slack 
variables were used to obtain soft constraints in the implemented linear 
program [7,11], but omitted in Eq. (7a)-(7f) for simplicity. 

Fig. 3 shows the time-varying heat prices (ch) used in the experiment. 
The prices were repeated daily and consisted of three price levels cor
responding to typical levels of demand in district heating systems. Note 
that the optimal solution is independent of the particular unit (or cur
rency) of cost and is thus normalized in Fig. 3 to get a mean heat price of 
one. 

3. Results 

The experiment lasted 32 days of which 18 days were used to 
generate data for system identification and 14 days with the E-MPC in 
control. Fig. 4 shows the 18 days used for system identification and 
includes: ambient temperature Ta and solar irradiation Φs (top), space 
heating Φh and internal heat gains Φi lumped together (middle), 
ventilation extract air temperature Textract and the random sequence of 
setpoints Tset

extract (bottom). The NTNU Campus experienced a power 
failure in the electricity network, which stopped the controller and 
hence the data collection for approximately three days. 

The first 14 days of this data were used as training data and the last 
four days were reserved as validation data to determine the model order. 
Fig. 5 shows the one step ahead predictions for the five refined models 
(step 3) and the corresponding fit percentages (Normalized root mean 

square error) on the validation data. The third-order model was selected 
for the E-MPC since it had the highest fit (step 4). Fig. 6 compares the 24 
step ahead predictions (half a day) to show how the models perform for a 
longer prediction horizon, although this was not used in the system 
identification procedure. Finally, the third-order model was refined 
using both training and validation data to utilize all available informa
tion to estimate the parameters (step 5). 

Fig. 7 compares the performance of the E-MPC with a constant set
point baseline controller. The baseline was never applied to the actual 
building but was a simulation in which an ideal (no offset) setpoint 
tracking controller maintained a constant setpoint of 21 ◦C. The baseline 
was simulated using a state-space model trained using all available data 
- including data from the MPC phase. The comparative results between 
the E-MPC and the baseline should therefore be taken with some res
ervations as it assumes that the baseline state-space model is the true 
building. The baseline can thus only be used to indicate how an actual 
setpoint tracking PID would perform. The figure shows the time-varying 
heat price (top), heat consumption (middle) and extract air temperature 
(bottom) for the E-MPC and the baseline controller, respectively. While 
the baseline simply took the necessary control actions to meet the set
point without regard to the heat prices, the E-MPC shifted heating from 
peak to low price periods. As a result, the air temperature increased in 
periods with low prices but it never exceeded the upper constraints of 
24 ◦C. 

Table 2 summarizes the total heating costs and heat energy 

Fig. 11. Comparison of measured solar irradiation and two days forecasts forecasted at four different four time points.  
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consumed during the experiment. The E-MPC consumed 1.3% more 
energy than the baseline, but in turn, it reduced costs by 22.5%. This 
tendency of consuming more energy to reduce costs is also shown in 
previous simulation studies [13,11,8,14]. It should be noted that the 
cost savings depends largely on the building characteristics (insulation 
level and thermal mass) as well as the characteristic of the price signal as 
pointed out in [14]. 

Table 3 summarizes how much heat was consumed in peak, medium 
and low price periods, respectively. The E-MPC reduced the amount of 
heat consumed in peak price periods by 82% and increased the con
sumption in low price periods by 45% thus flattening out the system load 
profile. 

Fig. 8 compares the extract air temperature (black solid) with the air 
temperature in different sections of the living lab. The room air tem
perature sensors were mounted in white casings on walls at a height of 
1.6 m above the floor. It is seen, that the extract air temperature was a 
reasonable representation of the overall air temperature. There were, 
however, some significant temperature deviations, especially between 
the north and south parts of the living room. The differences were 
mainly in periods with large solar irradiation. The living room south 
sensor was mounted on an internal wall close to the radiator and it may 
have been exposed to direct solar radiation at periods. Contrary, the 
living room north sensor was mounted on an external wall close to a 
window and these circumstances could explain the relatively large dif
ference. Fig. 8 also compares solar irradiation obtained from the web 
service and the solar irradiation measured by the weather station on top 
of the case building. Overall, there was a good agreement in terms of 
daily level of solar irradiation, but there was some short-term deviations 
due to local cloud movements especially on partially cloudy days. 

Fig. 9 presents another way to gain confidence in the E-MPC and the 
applied model. It shows four optimal heat sequences determined by the 
E-MPC four different times with 12 h intervals. The sequences change, 
which was to be expected, but the overall pattern for the first 24–36 h of 
the sequences were stable, which is an important condition for a well- 
functioning MPC. Minor adjustments were expected due to the Kalman 
filter correcting the initial states every half hour and the regularly 
updating of weather forecasts. Finally, the prediction horizon was 
continuously receded in time, which causes the relatively large changes 
in the last part of the sequences. The stability of the first part of the 
sequence indicates that the model produced consistent predictions 
which in turn indicates that the initial states were only moderately 
corrected in each time step and the weather forecasts updates were not 
dramatic. The red dashed curve is the ideal heat sequence, i.e. the 
sequence obtained when optimized using the actual weather data 
instead of the forecasts. The two solutions are very similar which in
dicates that the weather prediction errors only had a relatively small 
effect on the optimal sequence at least for this time period. 

Figs. 10 and 11 show the outdoor temperature and solar irradiation 
forecasts, respectively, at the same four times as Fig. 9. The blue curve in 
Fig. 10 shows the corrected forecast of the outdoor temperature. 

4. Discussion 

The findings of the experiment indicate that it is practically possible 
to realise the significant DR potential of utilising E-MPC to exploit the 
inherent thermal mass in residential buildings outlined in the intro
duction. Furthermore, the experiment suggests that it is practically 
possible to establish a black-box model from a random sequence of half- 
hourly binary temperature set points of either 21 or 24 ◦C, i.e. within a 
typical occupant comfort interval. The implemented E-MPC setup used a 
minimum of sensors; solar irradiation data was retrieved from a web 
service, the outdoor temperature was measured using the sensor already 
installed to control the AHU (could alternatively be retrieved from the 
web service together with the solar irradiation), and the temperature 
sensor in the extract air duct AHUs was used to represent indoor air 
temperature. This minimal setup can likely be replicated with a low 

investment cost in other residential buildings. However, several issues 
remain to be investigated and handled in future works:  

1. Longer test period - The E-MPC was only tested for approx. two weeks. 
It therefore remains to be validated whether the black-box model 
performs satisfactorily over longer periods with changing weather 
conditions. It can also be expected that the surrounding building and 
the building itself will change over time. For this reason, it is 
therefore expected that the model needs to be recalibrated; appro
priate strategies for this should be investigated.  

2. Side-by-Side experiment – This experiment applied a simulated 
baseline for comparison. However, such a baseline assumes that the 
simulated building is an exact representation of the true building. A 
better baseline, but more difficult to realize, would be a completely 
identical building subjected to the baseline control strategy.  

3. Occupancy - The robustness of the setup should be tested during 
occupancy.  

4. Multiple thermal zones - When a building has more than a single 
radiator, it might be necessary to separate the building into several 
thermal zones. The E-MPC should be able to handle these cases.  

5. Supply temperature – This experiment assumed a constant district 
heating supply temperature; however, it can be expected to vary to 
some extent during the year, which needs to be taken into account.  

6. Return temperature – The return temperature was not considered in 
this experiment, but future works should include it in the optimiza
tion problem to avoid high return temperatures. One approach 
would be to include constraints regarding the return temperature in 
the E-MPC cost function. Another approach could be to include the 
return temperature in the cost function making it a multi-objective 
optimization problem; however, this requires a more advanced 
control model as it besides zone air temperature also must output the 
return temperature. 

5. Conclusion 

This study aimed to conduct an experiment on the performance of a 
novel low-cost E-MPC that utilise the thermal mass of a building as 
short-term heat storage to perform DR. The experiment was conducted 
in a highly insulated detached single-family house in Norway heated by 
a single hydronic radiator. The E-MPC used standard sensors usually 
available in buildings equipped with balanced mechanical ventilation, a 
linear black-box state-space thermal model suited for low-cost auto
mated model identification and weather forecasts from an existing web- 
based application. 

Data from the experiment showed that the predictive performance of 
the linear black-box model was sufficient for its purpose even though the 
model was trained on excitation data that was generated using setpoints 
of either 21 or 24 ◦C during a relatively short period of two weeks. 
Consequently, the thermal comfort remains acceptable during the 
excitation period which allows the identification to be performed during 
normal occupancy. Although the building was treated as a single ther
mal zone the E-MPC still managed to obtain good control of the air 
temperature in the entire building while shifting consumption from high 
to low price periods. The findings of the experiment indicate that a 
minimal E-MPC setup is able to realize the significant DR potential that 
lies in utilizing the inherent thermal mass in residential buildings. 
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