
Chapter 1
TRP: A Foundational Platform for
High-Performance Low-Power Embedded Image
Processing

Magnus Jahre and Philippe Millet

Abstract Embedded image processing systems face stringent and conflicting con-
straints which commonly result in developers overly specialising systems to the
problem-at-hand. In other words, they give priority to efficiency, which is an imme-
diate concern, over the longer term development cost reduction benefits of building
reusable components. In this paper, we present the foundational Tulipp Reference
Platform (TRP) which enables making domain-specific generality versus specificity
trade-offs through the definition of TRP instances. Each TRP instance includes the
key software and hardware components for a given domain as well as productivity-
enhancing components if these can be accommodated within the typical constraints
of the domain. While TRP instances primarily enable intra-domain reuse, they also
enable inter-domain reuse as collections of components used in one instance may be
straightforwardly reused in other instances. At present, TRP instances are defined
for the space, medical, automotive, robotics, and Unmanned Aerial Vehicle (UAV)
domains.

1.1 Introduction

Image processing embedded systems are ubiquitous and a critical component in
future technologies such as self-driving cars and autonomous robots. Essentially,
image processing enables these systems to see and thereby assess their surroundings.
To fulfil this function, the systems commonly need to be fast so that the car or
robot has sufficient time to react to events. Unfortunately, performance is only one
requirement. Depending on the system, itmay be constrained by energy (e.g., because
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battery capacity is limited) or power consumption (e.g., because it is unacceptable
to increase the temperature of other components), and nearly all embedded image
processing systems are cost-sensitive. These constraints are commonly conflicting.
One example is that power consumption is fundamentally related to the hardware
clock frequency and hence performance [4].

This causes a challenging situation in which image processing applications need
to be carefully tuned to satisfy all constraints. This is typically achieved by specialis-
ing the system to the problem-at-hand by selecting or developing a set of well-suited
software and hardware components and removing all superfluous functionality. Al-
though such systems are typically very efficient, they incur a fair amount of system-
specific implementationwork. This work is typically not reusable and leads to similar
features being repeatedly implemented across engineering teams and companies —
resulting in unnecessarily high development costs. The alternative approach is gener-
alisation in which substantial resources are devoted to preserving a one-size-fits-all
solution. This hurts efficiency and typically results in image processing systems that
cannot satisfy all constraints. Thus, the key challenge is to appropriately balance
specificity – to satisfy all constraints – with generality – to reduce development costs
by enabling substantial reuse.

We took on this challenge in the recently completed EU-fundedTulipp project [8],
and our proposed solution is the Tulipp Reference Platform (TRP). The TRP is a
foundational platform for high-performance low-power embedded image processing
systems. A foundational platform is a collection of components with clearly defined
interfaces aswell as a record of the components’ compatibility. Thus, the TRP enables
developers to trade-off generality against specificity to minimise development costs
while satisfying the system’s specific set of constraints.

To use the TRP, developers define TRP instances that contain only the components
that are required within a particular domain. Two components are compatible if
they are used together in a TRP instance. In this way, the TRP instances combine
intra-domain reuse with specialisation by tailoring the platform to meet the typical
constraints of the domain.We defined TRP instances for themedical, automotive, and
Unmanned Aerial Vehicle (UAV) domains within the Tulipp project. Afterwards,
Thales and Sundance have defined TRP instances for the space and robotics domains,
respectively. The TRP is dynamic and new components (and their compatibility) are
added as they become supported in TRP instances. The TRP also enables inter-
domain reuse as new instances can build upon components that are already known
to be compatible (i.e., they are used in combination in other instances).

Figure 1.1 illustrates that the current TRP instances are placed at very different
design points regarding the specificity versus generality trade-off. For completeness,
Figure 1.1 further compares the Tulipp instances to Application Specific Integrated
Circuits (ASICs), Graphics Processing Units (GPUs), and general-purpose Central
ProcessingUnits (CPUs). The Space instance and theMedical instance have stringent
constraints which leads to specialised instances with relatively few components.
Conversely, the Robotics instance has much less stringent constraints as current
robots are relatively large and slow which relaxes performance, power, and energy
constraints. However, even the Robotics instance includes a Field-Programmable
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Fig. 1.1: The Tulipp Reference Platform (TRP) enables specificity versus gener-
ality trade-offs. Depending on severity of constraints, TRP instances tend towards
specificity (for efficiency) or generality (to save development costs through reuse).

Gate Array (FPGA) to enable application-specific acceleration. Thus, we argue that
it is more specialised than a GPU. A key advantage of the TRP is that the resource-
constrained instances (e.g., Space and Medical) can leverage the rich component
compatibility achieved within the reuse-oriented instances (e.g., Robotics).

Defining new TRP instances is an non-trivial task since it is not straight-forward
to establish which components should be supported. The core issue is that support-
ing more components adds features or simplifies application development which
is advantageous as long as the typical domain-specific constraints are satisfied. In
Tulipp, we proposed the guidelines concept to aid designers in making this choice.
A guideline encapsulates an expert insight in a precise, context-based formulation
which orients the follower towards a goal by recommending an implementation
method. In this way, the guidelines help designers select components based on prior
TRP-relevant experience rather than a pure trial-and-error approach.

1.2 The Constraints of Embedded Image Processing

Embedded image processing systems attempt seek the sweet-spot which provides
sufficient performance and low-enough-power (typically somewhere in the range
between 1 W and 25 W). This is in contrast to server or desktop systems – where a
power consumption of over 100 W can be acceptable – or the Internet of Things (IoT)
– where power consumption is typically much less than 1 W. We expect the area of
moderate power consumption systems will develop with the ever growing needs of
for instance Advanced Driver Assistance Systems (ADAS), but a challenge is that
not all technologies are accessible to limited-volume applications. One example is
mobile System on Chips (SoCs) which are typically only sold in large quantities.

For smaller series of products, developers need to select platforms that meet
processing, cost, power, and energy consumption requirements. Ideally, embedded
image processing systems should have high performance, dissipate minimal power,
and cost as little as possible – a classic case of conflicting objectives. Thus, im-
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plementing an efficient image processing application requires carefully trading off
different alternatives.
More specifically, the following constraints commonly need to be considered:

• Power and energy requirements:Embedded systems are often limited by battery
life, but even when the product has access to the electrical grid it can be limited
by the thermal dissipation within the heat sink, the cabinet, or the packaging.
Therefore, energy consumption, power dissipation, and thermal issues commonly
place restrictions on the implementation of image processing systems.

• Performance: Image processing applications tend to require more and more
performance to deal with the large data sets provided by newer sensors, and many
systems require real-time frame rates (typically at least 30 Hz). This creates a
push for more powerful compute platforms as they make it easier for software
developers to meet performance requirements.

• Non-Recurrent Costs (NRCs):NRCs are costs incurred during the development
of the product. Higher NRCs might not be a problem when developing a high-
volume product, but for low-volume products care must be taken to reduce NRCs
since they may significantly increase the price of the product.

• Recurrent Costs (RC): RCs are costs incurred during the production phase of
the product and strongly depends on the choices made at design time (e.g., more
expensive components result in higher costs). Higher RCs will always impact the
final product price, but unlike NRCs they require more attention in high-volume
products as each cent saved can lead to millions gained in revenue.

A trade-off does not always mean that the system developer has to find a solution
that matches all constraints. Commonly, the developer can analyse the constraints
and possibly move the thresholds. If all functionalities cannot be implemented, the
designer can see if it is possible to remove some of them or reduce the effectiveness
or the accuracy of key functions within certain margins. Reducing the accuracy by
1% to 2% might in some case reduce the compute load by several tens of percentage
points and allow for using smaller and cheaper components.

1.3 Foundational Platforms

We have now established that high-performance low-power embedded image pro-
cessing platforms needs to combine specialisation – to meet stringent performance
and power constraints – with generality – to save development costs by enabling
reuse. In this paper, we advocate foundational platforms as a mechanism for balanc-
ing these conflicting requirements.

Figure 1.2 illustrates the foundational platform concept. A foundational platform
enables reuse by listing key reusable components (see Figure 1.2a) and a compat-
ibility matrix illustrating the component combinations that are currently supported
(see Figure 1.2b). In this context, components can be hardware (e.g., a Xilinx Zynq
MPSoC), system software (e.g., Linux), or application software (e.g., the OpenCV
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Fig. 1.2: The foundational platform concept. The foundational platform captures the
key components and their compatibility to enable cross-domain reuse and serves as
foundation for creating a number of domain-specific platform instances.

image processing library). Specialisation is achieved by selecting a minimal subset
of compatible components for a particular application domain. Thereby, the foun-
dational platform provides a generic substrate for which domain-specialised – and
therefore efficient – platform instances can be created.

A specialised platform instance is more efficient than a generic platform pri-
marily because it supports fewer components. In the hardware domain, including
fewer components results in lower component costs. In addition, verification and
integration costs are reduced. In the software domain, including fewer components
simplifies the system; thereby lowering development time through less integration
work and making testing and bug-fixing easier. For these reasons, it is rarely a good
idea to create a physical implementation of the foundational platform. The exception
is when you only have the resources to implement a single platform, but are required
to support diverse applications, which was the case in the Tulipp project.

The main utility of the compatibility matrix is to aid designers when specifying
new platform instances. The effort necessary to implement a new platform depends
on the degree to which the platform instance can be created from components that
are known to be compatible. Thus, the compatibility matrix encourages reuse by
(i) incentivising developers to choose compatible components wherever possible,
and (ii) motivating companies to invest effort into becoming more compatible to
make their components more attractive to include in platform instances.

We illustrate the relationship between the foundational platform and the com-
patibility matrix with a simple example where Figure 1.2b shows the compatibility
matrix of the foundational platform in Figure 1.2a. For simplicity, we assume that the
platform instances completely define which components are compatible with each
other (i.e., two components i and j are only compatible if i and j are part of a single
platform instance). For example, component A is compatible with component D be-
cause they are both used in the platform instance for the medical domain. Similarly,
component A is not compatible with component B because they are not both used
in any platform instance. More specifically, A is used in the medical and automotive
instances while B is used in the Unmanned Aerial Vehicle (UAV) instance. All boxes
on the diagonal are ticked because a component must be compatible with itself.
Further, only the upper triangle is shown because the compatibility matrix must be
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symmetric (i.e., if component i is compatible with component j, component j is also
compatible with component i).

A key objective of the Tulipp project was to create a path towards enabling more
standardisation within high-performance low-power embedded image processing,
and we believe the foundational platform concept can serve as an enabler of stan-
dardisation along multiple fronts. The most obvious opportunity is perhaps to stan-
dardise platform instances. In this way, standard compute platforms can be defined
for key domains (e.g., automotive). Another option is to standardise key interfaces
and thereby simplify the process of making components compatible. Finally, aspects
of the foundational platform itself can be standardised. In this case, likely options
are (i) standard procedures for approving compatibility between components, and
(ii) procedures for defining platform instances that match the requirements of key
players in the target domain.

1.4 The Tulipp Reference Platform and Its Instances

In this section, we describe the Tulipp Reference Platform (TRP) and its instances.
The TRP is a foundational platform for high-performance low-power embedded
image processing that was developed in the Tulipp project. During the project, TRP
instances were defined for key applications in the UAV, automotive, and medical
domains. After the project, Thales has defined a TRP for use in space applications
while Sundance has proposed a TRP instance for robotics applications. Thus, there
are currently five domain-specific TRP instances.

1.4.1 The Tulipp Reference Platform (TRP)

Table 1.1 lists the components of the TRP and the instances in which each compo-
nent is supported. The criteria for including a component in the TRP is that it is
required in at least one instance. A key take-away is that no instance implements
all TRP components. In particular, the instances only support hardware components
that are critical for the targeted domain as adding more hardware components in-
creases costs and may increase power consumption. This effect is not as visible for
the software components where the difference between the instances is mainly if
they target running bare-metal applications or the application on top of an OS (i.e.,
Linux). Interestingly, only the least resource constrained instances (i.e., the UAV and
Robotics instances) support OpenCV. For software components, overheads man-
ifest themselves as larger memory and storage requirements as well as increased
implementation and validation effort.

Table 1.2 shows the compatibility matrix of the TRP components. Basically,
components either have rich or limited compatibility with other components. Rich
connectivity occurs in two main cases. First, the component can be the de facto
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Table 1.1: The components of the Tulipp Reference Platform (TRP).

Category ID Component Medical Space Automotive UAV Robotics

Hardware
Components

A GigE Vision X
B CameraLink X X
C HDMI X X X X
D USB X X X
E GigE X
F JTAG X X X
G MAVLink X
H RS422 X
I DDR memory X X X
J SD Card X X

System
Software

Components

K Linux X X X
L Fat32 X X
M TCP/IP X
N U-Boot X X X

Application
Software

Components

O C/C++ X X X X X
P OpenCV X X
Q GCC X X X X X
R Xilinx VivadoHLS X X X X X
S ROS X

Table 1.2: The TRP compatiblity matrix.

A B C D E F G H I J K L M N O P Q R S
A X X X X X X X
B X X X X X X X X X X
C X X X X X X X X X X X X X
D X X X X X X X X X X X X X X X
E X X X X X X X X X X X X X
F X X X X X X X X X X X X X
G X X X X X X X
H X X X X X
I X X X X X X X X X X X
J X X X X X X X X X X
K X X X X X X X X X
L X X X X X X X X
M X X X X X X X
N X X X X X X
O X X X X X
P X X X X
Q X X X
R X X
S X
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standard for the domain (e.g., component O which is C/C++) or necessary to access
a critical feature of the platform (e.g., component R which is the Xilinx Vivado
HLS tool [22]). Second, the component can be infrequently used but included in
a TRP instance that supports a variety of components. A good example is GigE
(component E) which is only supported in the Robotics instance but still has rich
compatibility. A counterexample is RS422 (component H) which is only needed in
the Space instance and therefore has limited compatibility. The reason is that the
Space instance is severely resource constrained and therefore only supports a limited
number of TRP components.

The rich compatibility of Xilinx Vivado HLS is a consequence of the hardware
platform developed in the Tulipp project. More specifically, we built the hardware
platform around a Zynq UltraScale+MPSoCwhich integrates a multi-core processor
and an FPGA fabric on a single chip. Although adopting a multi-core platform is
not without challenges (see e.g., [5, 6, 7]), these are outweighed by its performance
and energy-efficiency advantages. Further, we only had the resources to develop a
single hardware platform within the project which forced us to chose a platform that
was acceptable for all target domains. Unfortunately, this also means that it was not
necessarily optimal for any of them.

The Tulipp hardware platform contains an FPGA for application-specific accel-
eration since FPGAs have been shown to provide high performance at low power
consumption for image classification tasks [20] and other compute-intensive kernels
(see e.g., [9, 21]). However, it is also well known that developing highly efficient
FPGA-solutions is challenging [1]. In response to this situation, there has been a sig-
nificant research effort towards developing High-Level Synthesis (HLS) tools. HLS
tools are able to transform an implementation in a high-level language (i.e., C or
C++) into an accelerator circuit. Thus, they offer significantly improved productivity
compared to traditional RTL design approaches which typically require developers
to describe a plethora of low-level implementation details. Although we used Xilinx
Vivado HLS [22], a number of other HLS tools are available (e.g., [3, 18]).

1.4.2 The Tulipp Reference Platform (TRP) Instances

We now delve into the details of the component selection for the TRP instances in
Table 1.1. The objective is to provide insight on how the specific constrains of a
particular domain influences component selection. This adds further depth to the
more general discussion of constraints which we provided in Section 1.2.

For each TRP instance, we focus on the particular application(s) that we have im-
plemented within the target domain.We foresee that more components may be added
to the TRP instance as more applications are implemented. That said, we will only
add components that are commonly used in the domain to retain efficiency. Even-
tually, clusters of applications which prefer different component sets may emerge
within domains. In this case, it could be beneficial to define different TRP instances
that specifically cater to the needs of each component cluster.
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All currently defined TRP instances rely on FPGAs for acceleration due to the low-
power focus of the Tulipp project and that FPGAs are typically more energy-efficient
thanCPUs andGPUs formore complicated image processing pipelines [15]. To offset
the programmability challenges of FPGA-based acceleration, all TRP instances rely
on Vivado HLS. This may change if future TRP instances for other domains put
a greater emphasis on ease of development than efficiency. That said, higher-level
programming constructs can cause performance issues if it generates access patterns
that map unfavourably to the memory system [12].

1.4.2.1 The Medical Instance

The Medical instance was developed in the context of a mobile C-arm which is an
X-ray system used during surgery. This enables the surgeon to use real-time X-ray
images as a guide while operating and thereby making the incisions as small as
possible. Chapter ?? provides more information about the medical TRP instance and
its application.

Obviously, achieving real time operation is critical for this application as delay (or
delay variation) may result in harm to the patient. This challenge is exacerbated by
regulatory requirements which dictate that all information captured though radiation
is presented to the surgeon. This significantly limits the degree to which compression
can be used. Further, power consumption is a critical requirement as the TRP instance
is placed close to the X-ray sensor. If the sensor is heated too much, image quality
deteriorates.

These requirements result in the medical platform being very light in terms of
added components. The data acquisition subsystem provides the input images using
GigEVision and the same interface is used to pass the enhanced images to the display
subsystem. The HDMI and SD-card components were added to simplify testing and
development.

1.4.2.2 The Space Instance

The Space instance is developed in the context of an image acquisition satellite, and
the utility of the application is to filter out uninteresting images and thereby better
utilise the bandwidth-limited link to Earth (see Chapter ?? for more details). For
instance, transmitting pictures of clouds is inefficient if the objective of the satellite
is to look for objects on the ground. For this platform, the peak power consumption
of the complete system cannot exceed 30 W. Further, the volume and weight of the
platform is restricted as the platform must fit inside the satellite and launch weight
is a significant cost driver.

The Space instance uses the DDR memory to isolate system components. The
sensor system retrieves the acquired image from a high-resolution camera over the
RS422 interface and writes it to memory. Then, the FPGA-based accelerator reads
the image from memory, analyses if the image should be transmitted, and writes the
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result to memory. If the analysis concludes that the image should be transmitted, the
transmission system transfers the image to Earth over an optical link (which comes
with a USB interface). The system does not contain any additional components due
to strict power, weight, and volume constraints.

1.4.2.3 The Automotive Instance

The Automotive instance focused on pedestrian detection using the Viola-Jones
algorithm. Detection latency is a critical constraint as it determines how quickly the
car’s driver assistance system can react. Further, power consumption is constrained
since the image processing system is commonly placed alongside the cameras behind
the car’s rear-viewmirror. The confined space and high degree of sun exposuremakes
it very difficult to keep the system sufficiently cool.

The pedestrian detection system is a single system within the driver assistance
pipeline. Thus, we assumed that input images are available in memory and that
bounding boxes of the detected pedestrians is also written to memory. HDMI, USB,
and JTAG are supported to simplify development. These are commonly disabled
when the system is not in test-mode to reduce power consumption.

1.4.2.4 The UAV Instance

The key application of the UAV instance computes a depthmap using a stereo camera
setup (see Chapter ??). Low latency is a critical requirement since the depth map is
used to avoid colliding with objects. Thus, the latency of the depth map computation
limits the speed at which the drone can fly. Larger drones are not severely limited
by energy or power consumption since the energy consumption of the computing
systems is low compared to the engines and the abundant airflow can be used for
cooling. For smaller drones, the smaller volume available may change this picture.
That said, the limited performance of on-board compute platforms can significantly
increase the overall energy consumed to complete the mission due to selecting
suboptimal trajectories [10].

The key components of the UAV instance are the CameraLink interface to the
camera setup and MAVLink for integrating with the flight control system. Since
the instance controls the complete drone, the system complexity is larger than for
instance the Medical and Automotive instances that purely process an incoming
image stream. Thus, the UAV instance supports the Linux operating system which
then also brings with it a number of other components. It also supports the OpenCV
image processing library as the productivity benefits of including it outweighs its
overheads (e.g., increased memory requirements).
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1.4.2.5 The Robotics Instance

TheRobotics instance has been used inmultiple robots including theVineScout robot
for monitoring of vineyards (see Chapter ?? for more details). The main constraint
for a robot is that it is able to fulfil its intended purpose. This typically requires
advanced software subsystems that for instance perform mapping, motion planning,
and control physical movement, and it is impractical to re-implement these systems
for every robot. Thus, enabling software reuse is critical. The de facto standard for
robotics computing is the Robot Operating System (ROS) [14] which is a set of
software libraries and tools that help build robot applications. Performance, power,
and energy requirements are robot specific, but in general they are less stringent than
for many other domains. Most contemporary robots have the option to move slower
to match the performance of the computing system or add more batteries (cooling)
to overcome energy (power) constraints.

ROS requires Linuxwhich leads to the robotics instance supporting a wide variety
of software components. Further, the ability to work around performance, power, and
energy constraints means that there are limited downsides to supporting a rich set of
hardware components. Thus, the Robotics instance supports the most components
of all the current TRP instances. As the robotics domain matures, we foresee that
robots will become smaller and faster. This will likely create a need for a new TRP
instance that scale down the number of supported components to improve efficiency.

1.5 The Guidelines Concept

Assembling domain-specific TRP instances can be a daunting task since over-
provisioning results in suboptimal efficiency while not supporting the required
interfaces makes the instance difficult or impossible to use in the target domain.
Fortunately, there are similarities between image processing domains that can be
leveraged. In Tulipp, we propose guidelines as a mechanism to codify domain-
knowledge and make it accessible to stakeholders with different expertise – thereby
enabling creators of new TRP instances to build upon lessons learned other domains.

1.5.1 Guideline Definition

Aguideline is an encapsulation of an advice, the insights the advice is based upon, and
a recommended implementation method. The advice captures an expert’s insights
in a precise, context-based formulation and orients the follower (the person reading
the advice) towards a goal. The recommended implementation method indicates a
practical approach for following the advice in the context of a TRP instance. Both the
advice and the recommended implementation methods are supported by theoretical
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Table 1.3: Guideline information table for Tulipp Guideline #26 [17].

Item Value

Guideline Number 26
Guideline Responsible (Name, Affiliation) Boitumelo Ruf, Fraunhofer
Guideline Reviewer (Name, Affiliation) Magnus Jahre, NTNU
Guideline Audience (Category) Application developers
Guideline Expertise (Category) Hardware designers, System architects
Guideline Keywords (Category) Code optimization, GPU, FPGA

or experimental evidence that is either produced specifically for the evaluation of the
guideline or is pre-existing in the community.

Designing embedded image processing systems requires expertise within a num-
ber of different fields. For this reason, we specify (i) the field of expertise from
which the guideline was generated, and (ii) the field of expertise of the persons that
are expected to find the guideline most useful (i.e., its intended audience). This is
specified for all guidelines (see Table 1.3 for an example).

More specifically, we select the expertise and the audience from the following groups:

• Hardware designers: This group deals with the design of the hardware platform,
component selection, and component interfacing according to system require-
ments.

• Operating System (OS) designers: This groups deals with OS design and devel-
opment. Examples are defining Application Programming Interfaces (APIs) for
applications, ensuring that the OS works with a particular hardware configura-
tion, and providing the application with the means to efficiently control hardware
behaviour.

• Tool-chain designers: This group deals with supporting application developers
by providing tools that automate recurring tasks. They must supply a comprehen-
sive tool-chain that helps application developers efficiently map their applications
onto the hardware platform.

• Applicationdevelopers:This group consists of experts in image processing. They
know the algorithms used in an application and have the ability to implement this
algorithmon a suitable hardware platform. They understand the complete software
stack, and can leverage tool support to faster develop the application.

• System architects: This group deals with the complete system definition. They
are involved in a broad set of issues from the identification of the constraints that
come from the final product, making sure that the system adheres to its price
constraints, and are able to understand integration issues that arise due to choices
made by the four other groups.

Table 1.4 exemplifies the guideline concept with Guideline #26 [17] from the
Tulipp guideline repository [19]. Here, the advice orients the follower towards the
goal of efficiently implementing kernels that contain a significant number of branches
on a Graphics Processing Unit (GPU). The recommended implementation method
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Table 1.4: Guideline example: Tulipp Guideline #26 [17].

Guideline advice: Conditional branching such as if-then-else is vital to most image processing
applications, e.g. in finding maximum similarity between pixels or handling
image boarders when filters exceed the dimensions of the image.

In terms of processing speed and performance overhead the use of conditional
branching on CPUs and FPGAs is cheap. However, if the HLS tool cannot group
branches, i.e. if branches are likely to diverge, the use of conditional branching
can result in a resource overhead when optimizing code for FPGAs.

When leveraging the processing power of GPUs by GPGPU (general compu-
tation on a GPU), conditional branching is to be used with caution. If branches
diverge within a warp, i.e. if some evaluate to true and others to false, the
instructions are executed twice, resulting in a processing overhead [13, 16].

Insights that led
to the guideline:

CPUs are designed for general purpose processing and are equipped with op-
timization strategies such as branch prediction, which allow a fast response to
conditional input. In order to achieve parallel processing on CPUs, the program-
mer instantiates different threads and processes which can run concurrently on
the different processing cores. The scheduler of the CPU is free to pause the
processing of certain threads in order to react to important interrupts and inputs.
Hence, it is not guaranteed that all threads will run synchronously. Furthermore,
due to its flexibility, the CPU, unlike GPUs, is able to only process the branch
for which the conditional directive resolved to true.

FPGAs can also cope well with conditional branching in terms of processing
speed, as HLSwill create different paths for each conditional branch. However if
the branches cannot be grouped efficiently the use of many conditional branches
leads to a resource overhead on FPGAs

In order to achieve great parallelism and high data throughput, GPUs run
numerous (>100) kernels on a large number of processing units. The key aspect
of this processing is that each instantiation of the kernel is performing the same
processing but on different subsets of data. The GPGPU programming model
calls this paradigm Single InstructionMultiple Threads (SIMT) which is similar
to Single Instruction Multiple Data (SIMD). SIMT processing requires that all
threads within in one warp (a group of threads running on one processor, sharing
resources) run synchronously. This means that when kernels have conditional
branching, all branches are evaluated and processed in order to keep the threads
from diverging. At the end, the result of the particular branch is chosen for
which the conditional expression resulted in true. Hence, conditional branching
with large bodies to save processing time is to be avoided, as all branches will
be processed anyway. Furthermore, a divergence of the branches, which occurs
when the conditional branch evaluates to true for some threads of the warp and
for others to false, will result in processing overhead as the instructions are
executed twice. See [16, 13] for more information.

Recommended
implementation
method:

Avoid conditional branching with possibly divergent branches. Use multiple
loops to perform different operations in different areas of the image. When
accelerating code with GPGPUs instantiate different kernels instead of using
if-then-else statements for image areas which need specific processing.

Instantiation of
the recommended
implementation
method in the
reference
platform:

This method is actually true for almost all accelerators and particularly with
GPGPUs and FPGAs. Accelerators are often based on long pipeline chains
and can manage big chunks of data with less hardware involved than standard
CPUs. This must particularity be taken into account during the development
of the algorithm as branches will cut the execution pipeline and will also have
effects on the data to be served to the application and therefore their distribution
in the system.

Evaluation of the
guideline in
reference
applications:

There was no evaluation done as part of the Tulipp project as the guideline is
common practice when employing GPGPU. However, the authors of [2] did a
thorough evaluation on the effect of divergent threads. However, the Tulipp use
case followed this method for the development of their application on GPGPU
and FPGA.
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Reject Reject

Fig. 1.3: The Tulipp guideline generation methodology.

advocates grouping branches such that all branches within a warp branch in the
same direction. The guideline further discusses how the guideline is instantiated and
evaluated within the TRP.

There is no one-to-one mapping between a guideline and an insight. Multiple
insights can serve as the basis for a single guideline or a single insight can result in
multiple guidelines. For example, the same insight can have different implications
on different audiences (e.g., hardware designers and application developers). In this
case, it can be appropriate to capture each perspective in its own guideline.

1.5.2 Guideline Generation Methodology

Generating guidelines is not straightforward. The main difficulty is to define insight-
ful guidelines that will impact a wide number of developers. While the guideline-
creation process typically starts from a particular practice or specific issue, a more
general and global view of the problem as well as a higher level of information
content is required for a guideline to be broadly applicable.

To address this challenge, we derived the guideline generation methodology
shown in Figure 1.3. The process starts when a developer understands something
regarding the implementation of embedded image processing systems that he or she
believes can be of somewhat general interest. The developer then adds a new page
to the guideline repository (see [19]), and fills in an initial draft of the “Advice”,
“Insights that led to the guideline”, and “Recommended implementation method”
sections (see Table 1.4). This draft reflects the developer’s initial understanding and
insight, but may contain significant inaccuracies or flaws. Thus, further analysis and
refinement is typically required.

The purpose of the next steps of the guideline generation methodology is to
transform the initial formulation into a meaningful guideline. Commonly, some form
of technology development must be carried out in order to appropriately evaluate the
guideline insight and advice. With this in place, the developer qualitatively evaluates
the guideline on a relevant TRP instance. The evaluation has three outcomes. The
first possible outcome is that the evaluation matches perfectly with the developer’s
expectations and the guideline can pass to the review stagewithout reformulation. The
second case is that the evaluation results in deeper insight – enabling the developer to
rectify the flaws of the initial guideline formulation. This commonly leads to further
technology development, and a new evaluation. The third option is that the developer
understands that the insight of the guideline is fundamentally flawed. In this case,
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the developer rejects the guideline and removes it from the repository. Both the first
and the third cases are rare. For example, none of the guidelines generated during
the Tulipp project were rejected.

From a leadership perspective, it is challenging to motivate developers to create
guidelines. One obvious reason can be that creating guidelines is extra work that
easily gets low priority. Since Tulipp was a research project, we were able to correct
for this by explicitly pressuring developers prioritise generating guidelines. For us,
the key problem was that the developers felt that their guideline ideas were not
sufficiently insightful to serve as meaningful guidelines. The problem is that when
a developer has (finally) solved a problem, the solution is obvious to the developer
– which quickly gets generalised into obvious for anybody. This is an aspect of the
Dunning-Kruger effect [11]: Competent people tend to assume that tasks that are
easy for them are also easy for everybody else. In the end, we spent considerable
time convincing developers that their insights were worth writing up as guidelines.
When they first got started with proposing guidelines, they produced guidelines at a
somewhat regular rate.

1.5.3 Guideline Quality Assurance

The final step of the guideline generation methodology is to review the guideline
(see Figure 1.3). The review is necessary to ensure that the guideline is soundly
formulated – both from the audience and the expert perspectives. To ensure this, we
assign a reviewer that (i) has previously not been involved in the formulation of the
guideline, and (ii) that has sufficient expertise to assess the quality of the guideline
from both the audience and the expert perspectives. If we cannot find a single person
that fits these requirements, we assign additional reviewers.

The outcome of the evaluation is an evaluation report which is added to the
guideline repository [19]. Again, there are three possibilities. The most common
outcome is that the reviewer identifies aspects of the guideline that needs to be
reformulated. This may in turn lead to further technology development and more
in-depth evaluation. When the guideline has been refined, it is reviewed again. This
commonly leads to the second possible outcome: The guideline is accepted.Although
a guideline can be accepted after the first review, this is not the most likely case.
The reason is that developers tend to struggle with creating sufficient distance to
their own work to formulate the guideline such that it is generally applicable. The
final option is that the reviewer discover a fundamental and unrectifiable flaw in the
guideline which leads to its rejection. This did not happen in the Tulipp project.
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1.6 Conclusion

We have now presented the foundational Tulipp Reference Platform (TRP) and its
instances. The TRP enables appropriately balancing the specificity and generality
of embedded image processing systems while staying within the typical constraints
imposed on a particular domain. Currently, TRP instances have been defined for
the space, medical, automotive, UAV, and robotics domains. To aid designers when
defining new TRP instances, we proposed the guidelines concept. A guideline is a
specific, context-sensitive formulation of a TRP-relevant insight. Collectively, the
guidelines enable a designer to build on experience from previously defined TRP
instances and thereby define a TRP instance for the new domain with minimal
trial-and-error.
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