
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Nils Mork Stene

An Introduction to Discrete Morse
Theory

Bachelor’s thesis in Mathematical Sciences
Supervisor: Marius Thaule
May 2022

Ba
ch

el
or

’s 
th

es
is





Nils Mork Stene

An Introduction to Discrete Morse
Theory

Bachelor’s thesis in Mathematical Sciences
Supervisor: Marius Thaule
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





Contents
1 Introduction 1

2 Simplicial complexes 2

3 Discrete Morse functions 4

4 Elementary collapses and expansions 11

5 Main theorems 14

6 Summary 20

References 20

1 Introduction
Imagine a regular topographic map of some real world landscape. The contour lines
on the map mark the points that are on the same height for some discrete heights, for
example at 100, 150 and 200 meters, but we can imagine that the map has contour lines
for any height. If we look at the region that lies below any given height, we can see
that it has to be separated from the region that is above the same height by a contour
line. Now, intuitively, if we disregard any notion of distance or size, as we generally
do in topology, these contour lines only appear, disappear or merge at points where the
gradient is zero, i.e., a point where the ground is flat. That includes peaks, basins and
passes, also called maxima, minima and saddle points, respectively. The topology of
the region that is below some height only changes when its boundary changes, which we
know only happens at the peaks, basins and passes. Morse theory, named after Marston
Morse and developed in his paper [7] from 1928, describes a rigid topological analogue
of this intuition. By assigning a height function to some topological space, we can use
its critical points, i.e., its maxima, minima and saddle points, to analyze its topology.

Discrete Morse theory is a discrete analogue of Morse theory, with discrete ana-
logues to many of its theorems. It was first introduced by Robin Forman in his article
[4] from 1995. Due to its discrete nature, discrete Morse theory lends itself well to
computations. If we can find a discrete representation, for example a triangulation, of
a topological space, discrete Morse theory can simplify the representation and tell us
about its homology. Or, if we have a question about the real world and can find a way to
translate the information into relations between discrete points, discrete Morse theory
might answer the question. One example of this is detecting potential areas without
cell phone signal coverage and is detailed in [10, pp. 2–6]. It also finds applications in
reconstructing road networks from GPS traces and satellite images and reconstructing
neural networks from image data as described in [3, pp. 255–258]. Another applica-
tion is persistent homology, which is one of the main tools in topological data analysis.
More information on the subject can be found in [10, pp. 117–148].

We start by defining simplicial complexes, the structures we will be working with,
and discrete Morse functions, functions from a simplicial complex to ℝ. These are a
bit unwieldy in practice, but are great tools for proving statements. We then introduce
induced gradient vector fields. They are easier to understand and deal with, but harder
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to prove things with. Luckily, they have a strong connection to discrete Morse func-
tions, meaning that we can prove statements about induced gradient vector fields using
discrete Morse functions. Finally, we look at some important results in discrete Morse
theory.

2 Simplicial complexes
Simplicial complexes are combinatorial data structures that says what relations exist
between several elements. In the following definitions, simplices represent the relations
between its elements, called vertices, in that they are all related to each other. We also
define some terminology related to simplicial complexes.

Definition 2.1 (Simplex). A simplex 𝛼 is a collection of elements called vertices. Its
dimension 𝑝 is one less than the number of vertices. A simplex 𝛼 of dimension 𝑝 is
denoted 𝛼(𝑝).

Example 2.2. Let 𝛼 = {𝑣0, 𝑣1, 𝑣2}. Then 𝛼 has dimension dim(𝛼) = 3 − 1 = 2.
We take “𝑘-simplex” to mean “a simplex of dimension 𝑘.” We can draw represen-

tations of simplices up to dimension two as shown in Figure 1.

Figure 1: A 0-, 1- and 2-simplex, respectively.

We often denote the vertices by 𝑣0, 𝑣1, 𝑣2,… and, assuming there is no confusion,
the simplex {𝑣𝑎, 𝑣𝑏, 𝑣𝑐} by 𝑣𝑎𝑏𝑐 . For this reason, 𝑣0 could refer to either the vertex 𝑣0
or the simplex {𝑣0}.

Now, we introduce terminology that makes it easier to talk about simplices that are
part of another simplex.

Definition 2.3 (Face, coface, codimension). Let 𝑝, 𝑞 ∈ ℝ with 𝑝 < 𝑞. A simplex 𝛼(𝑝)
is a face of another simplex 𝛽(𝑞) if 𝛼 ⊂ 𝛽. A simplex 𝛽(𝑞) is a coface of another simplex
𝛼(𝑝) if 𝛽 ⊃ 𝛼. The codimension of a face or coface is the difference in dimension, i.e.,
|𝑞 − 𝑝|.

𝑣0 𝑣1𝑣01

Figure 2: A collection of three simplices.

Example 2.4. In the collection of simplices represented by Figure 2, 𝑣0 and 𝑣1 are faces
of 𝑣01, as {𝑣0} ⊂ {𝑣0, 𝑣1} = 𝑣01 and {𝑣1} ⊂ {𝑣0, 𝑣1} = 𝑣01. This also means that 𝑣01
is a coface of both 𝑣0 and 𝑣1.

We now introduce the main structure we will be working with.
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Definition 2.5 (Simplicial complex). An abstract simplicial complex, which we will
refer to as a simplicial complex, 𝐾 on a collection 𝑣 of elements called vertices is a
collection of simplices such that

(i) every vertex is in some simplex in 𝐾 , and

(ii) if a simplex 𝛼 ∈ 𝐾 and 𝛽 ⊂ 𝛼 then 𝛽 ∈ 𝐾 .

The first condition ensures that every vertex is part of some simplex. The second
condition ensures that every face of every simplex in a simplicial complex is also in
the simplicial complex. This is an important property because it means there is some
connection between simplices of higher and lower dimension. In the combinatorial data
structure, this means that if any amount of vertices are related, then all subsets are also
related. It follows from this definition that every simplex is a subset of the vertex set 𝑣
and that the collection of vertices is equivalent to the collection of 0-simplices in that
for every vertex 𝑣𝑎 there is a simplex {𝑣𝑎} and vice versa. We will therefore rarely
mention the vertex set, taking it to be the collection of 0-simplices.

𝑣012

(a) Not a simplicial
complex.

𝑣012
𝑣0 𝑣1

𝑣2

𝑣01

𝑣02 𝑣12

(b) A simplicial complex.

Figure 3: Collections of simplices.

Example 2.6. The collection of simplices represented by Figure 3(a) consists of only
the 2-simplex, without its faces and thus is not a simplicial complex. The collection
of simplices represented by Figure 3(b) contains the 1-simplices, or lines, that are the
faces of the 2-simplex, as well as the 0-simplices, or points, that are the faces of the
lines. Therefore, it is a simplicial complex.

It is useful to have an upper bound on the dimension of each simplex in any given
simplicial complex. Therefore, we introduce the dimension of a simplicial complex.

Definition 2.7 (Dimension). The dimension of a simplicial complex 𝐾 , dim(𝐾), is the
dimension of its largest simplex i.e., max

𝛼∈𝐾
(dim(𝛼)).

Example 2.8. The collection represented by Figure 2 is a simplicial complex with di-
mension 1, as it contains a 1-simplex and its two 0-simplex faces.

We also need to know how many simplices we have of each dimension.

Definition 2.9 (C-vector). The c-vector of a simplicial complex states how many sim-
plices of each dimension is in the simplicial complex, i.e., 𝑐 = (𝑐0, 𝑐1,⋯ , 𝑐dim(𝐾)),
where 𝑐𝑖 = |{𝛼(𝑖) ∈ 𝐾}|.

At this point, it might be a good idea to tie multiple concepts together in a single
example.
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𝑣234

𝑣0 𝑣1

𝑣2

𝑣3 𝑣4

𝑣01

𝑣02

𝑣14

𝑣23 𝑣24

𝑣34

Figure 4: A simplicial complex 𝐾5 of dimension 2.

Example 2.10. The vertices 𝑣 of the simplicial complex 𝐾5 represented by Figure 4
are {𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4}. Let

𝐾5 = {𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣01, 𝑣02, 𝑣14, 𝑣23, 𝑣24, 𝑣34, 𝑣234}.

We check that 𝐾5 is a simplicial complex. First, every vertex is also a simplex, so
the first condition is satisfied. Then, we check that 𝐾5 also contains 𝑣23, 𝑣24 and 𝑣34,
the faces of the 2-simplex 𝑣234. We also check for each of the 1-simplices, 𝑣01, 𝑣02,
𝑣14, 𝑣23, 𝑣24 and 𝑣34, that their 0-dimensional faces are also in 𝐾5. But these are the
vertices that we already know are there, so the second condition is also satisfied. Thus,
𝐾5 is a simplicial complex.

The simplex of 𝐾5 with largest dimension is 𝑣234, which has dimension 2, so the
dimension of 𝐾5 is 2. Finally, 𝐾5 contains five 0-simplices, six 1-simplices and one
2-simplex and so, 𝐾5 has c-vector 𝑐 = (5, 6, 1).

3 Discrete Morse functions
Recall the topographic map in the introduction. Rivers, as we know, flow downhill and
are often drawn as blue lines, while their direction are inferred from the contour lines.
If the ground is flat, i.e., the gradient is 0, a drop of water on the ground would stay still.
There are exceptions, particularly at passes, but generally, if we have a river, it must
flow downhill, meaning that there are no peaks, basins or passes along the river. Now, in
order to more easily calculate the simplicial homology, we want to have something like
the rivers on the simplicial complexes too, but there is no intuitive height function. So,
we simply give simplices a real number, obeying a couple of rules. This kind of function
is called a discrete Morse function. These functions give us something called an induced
gradient vector field, which has arrows that resemble flow lines, which is the direction a
drop of water would go if dropped on the ground. These flow lines can be accumulated
into V-paths, the discrete Morse theory equivalent of rivers, simultaneously giving us
the direction of flow. These flow lines let us find critical simplices, which are the discrete
Morse theory equivalent of peaks, basins and passes. While we here start by talking
about the height function and work our way to the vector field, we could also have
started with a vector field and found a function from it.
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Definition 3.1 (Discrete Morse function). Let 𝐾 be a simplicial complex. A function
𝑓 ∶ 𝐾 → ℝ is a discrete Morse function if for every simplex 𝛼(𝑝) ∈ 𝐾 , both

|{𝛽(𝑝+1) ⊃ 𝛼(𝑝) ∣ 𝑓 (𝛽) ≤ 𝑓 (𝛼)}| ≤ 1 and |{𝛾 (𝑝−1) ⊂ 𝛼(𝑝) ∣ 𝑓 (𝛾) ≥ 𝑓 (𝛼)}| ≤ 1.

The two conditions are respectively saying that every simplex has no cofaces with
codimension 1 of lower or equal value with at most one exception and no faces with
codimension 1 of greater or equal value with at most one exception.

9

0 2

4

6 8

1

3

11
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(a) 𝑓 ∶ 𝐾5 → ℝ.
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0 2

4

5 7

1

3

11

10
8

6

(b) 𝑔∶ 𝐾5 → ℝ.

Figure 5: Two discrete Morse functions on 𝐾5.

Example 3.2. Let the numbers in Figure 5(a) represent the numbers a function 𝑓 assigns
to the simplices of 𝐾5, meaning that 𝑓 (𝑣0) = 0, 𝑓 (𝑣4) = 8 𝑓 (𝑣23) = 5, 𝑓 (𝑣234) = 9 and
so on. We can check for each simplex that its faces have lower values and its cofaces
have higher values with at most one exception. The 2-simplex 𝑣234 has three 1-simplex
faces: 𝑣23, 𝑣34 and 𝑣24. These have the values 𝑓 (𝑣23) = 5, 𝑓 (𝑣34) = 7 and 𝑓 (𝑣24) = 10,
only one of which has higher value than 𝑓 (𝑣234) = 9. The 1-simplex 𝑣34 has value
𝑓 (𝑣34) = 7. It has two 1-simplex faces, 𝑣3 and 𝑣4. Only 𝑣4, with value 𝑓 (𝑣4) = 8, has
a greater value than 𝑣34. Its coface 𝑣234 also has greater value. We can check this for
every simplex and conclude that 𝑓 is a discrete Morse function. We can check in the
same way that 𝑔, represented by the numbers in Figure 5(b), is also a discrete Morse
function on 𝐾5.

Remark 3.3. Though most examples of discrete Morse functions in this paper are in-
jective, they do not have to be. As long as it satisfies the definition, a discrete Morse
function may take the same value for any number of simplices.

0 2
1

(a) A discrete Morse
function.

1 2
0

(b) Not a discrete Morse
function.

Figure 6: Two functions on 𝐾2.
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Example 3.4. Look at Figure 6. The two subfigures represent the same simplicial
complex 𝐾2 = {𝑣0, 𝑣1, 𝑣01}, but with two different functions. One of them is a discrete
Morse function, and the other is not. The difference is that the values of the leftmost
0-simplex and the 1-simplex has been exchanged. In Figure 6(a), only the rightmost 0-
simplex has a higher value than the 1-simplex, meaning that we have a discrete Morse
function. In Figure 6(b), both 0-simplices have higher values than the 1-simplex, and
thus the function is not a discrete Morse function.

Definition 3.5 (Critical, regular). A simplex 𝛼 of a simplicial complex𝐾 with a discrete
Morse function 𝑓 is critical if it has no exceptions to the rules stated in Definition 3.1
i.e., both

|{𝛽(𝑝+1) ⊃ 𝛼(𝑝) ∣ 𝑓 (𝛽) ≤ 𝑓 (𝛼)}| = 0 and |{𝛾 (𝑝−1) ⊂ 𝛼(𝑝) ∣ 𝑓 (𝛾) ≥ 𝑓 (𝛼)}| = 0.

Otherwise, if it has an exception to at least one of the rules, it is regular. The value of a
critical simplex is called a critical value. If a value is not critical, it is called a regular
value.

This is the same as saying that a simplex is critical if it obeys both of the following
rules:

(i) It has no faces with a higher value than itself, and

(ii) it has no cofaces with a lower value than itself.

0 2
1

(a) One critical value.

0 1
2

(b) Only critical values.

Figure 7: Critical values of two discrete Morse functions on 𝐾2.

Example 3.6. Consider the simplicial complex 𝐾2, introduced in Example 3.4. We
assign two different discrete Morse functions as shown in Figure 7. We look first at
the function 𝑓 , represented by Figure 7(a). The 0-simplex on the left has only the
1-simplex as a coface, which has higher value than the 0-simplex. Therefore, the 0-
simplex is critical and 0 is a critical value. The 0-simplex on the right also has only
the 1-simplex as a coface, but it has lower value than the 0-simplex. Therefore, the
0-simplex is regular and 2 is a regular value. The 1-simplex has two faces, one with
higher value and one with lower value than the 1-simplex, and thus it is also regular and
1 is a regular value.

Similarly, we can check that 𝐾2 with discrete Morse function 𝑔, as represented by
Figure 7(b), has only critical simplices and its critical values are 0, 1 and 2.

Example 3.7. We check that 𝐾5 with 𝑓 as represented by Figure 5(a) has two critical
simplices: 𝑣0 and 𝑣14. The simplex 𝑣0 has two cofaces, 𝑣01 and 𝑣02, where their values,
𝑓 (𝑣01) = 1 and 𝑓 (𝑣02) = 3, are both greater than 𝑓 (𝑣0) = 0. Thus 𝑣0 is critical, which
also makes 0 a critical value. Similarly, 𝑣14 has two faces, 𝑣1 and 𝑣4, but as their values,
𝑓 (𝑣1) = 2 and 𝑓 (𝑣4) = 8, both are less than 𝑓 (𝑣14) = 11, 𝑣14 is critical and 11 is a
critical value. We verified that some of the simplices had an exception to the rules stated
in Definition 3.1 in Example 3.2 and we can do this for the rest, concluding that in fact,
all simplices except 𝑣0 and 𝑣14 are regular. Thus all values except 0 and 11 are regular.
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In the same way, we can see that 𝐾5 with 𝑔 as represented by Figure 5(b) has critical
simplices 𝑣0, 𝑣3, 𝑣24 and 𝑣14 as well as critical values 0, 5, 8 and 11. All the other
simplices and values are regular.

We often need to know if a simplex is critical or regular and what exceptions it has
to the rules stated in Definition 3.1. We now present and prove a result that lets us
know that any simplex can only break one of the rules. This result will prove useful
when talking about induced gradient vector fields.

Lemma 3.8 (Exclusion lemma). Let 𝑓 ∶ 𝐾 → ℝ be a discrete Morse function. Then
no simplex can have an exception to both of the rules stated in Definition 3.1 i.e., no
simplex 𝛼(𝑝) ∈ 𝐾 can satisfy both

|{𝛽(𝑝+1) ⊃ 𝛼(𝑝) ∣ 𝑓 (𝛽) ≤ 𝑓 (𝛼)}| = 1 and |{𝛾 (𝑝−1) ⊂ 𝛼(𝑝) ∣ 𝑓 (𝛾) ≥ 𝑓 (𝛼)}| = 1.

Proof. We assume that 𝛼(𝑝) has a coface 𝛽(𝑝+1) such that 𝑓 (𝛽) ≤ 𝑓 (𝛼) and a face 𝛾 (𝑝−1)
such that 𝑓 (𝛾) ≥ 𝑓 (𝛼). Then 𝛽 = 𝛼 ∪ {𝑣𝑎} = 𝛾 ∪ {𝑣𝑎, 𝑣𝑏} for some vertices 𝑣𝑎, 𝑣𝑏. But
then there must exist some simplex 𝛿(𝑝) = 𝛾 ∪ {𝑣𝑎} = 𝛽 ⧵ {𝑣𝑏} i.e., 𝛿 is a face of 𝛽 and
a coface of 𝛾 . As 𝑓 is a discrete Morse function, 𝛾 ⊂ 𝛿, 𝛼 and 𝑓 (𝛾) ≥ 𝑓 (𝛼), we cannot
have 𝑓 (𝛾) ≥ 𝑓 (𝛿), as that would imply that 𝛾 has two exceptions to the rule that cofaces
must have higher value. Therefore, we must have

𝑓 (𝛿) > 𝑓 (𝛾).

Similarly, since 𝛿, 𝛼 ⊂ 𝛽 and 𝑓 (𝛽) ≤ 𝑓 (𝛾), meaning that for 𝛽, 𝑓 (𝛿) ≥ 𝑓 (𝛽) would
be the second exception to the rule that faces must have lower value. Therefore, we
must have

𝑓 (𝛿) < 𝑓 (𝛽).

It follows that 𝑓 (𝛿) > 𝑓 (𝛾) ≥ 𝑓 (𝛼) ≥ 𝑓 (𝛽) > 𝑓 (𝛿), which is a contradiction. Thus,
no simplex can satisfy both equations.

The following definition introduces the flow lines, as described at the start of this
section.

Definition 3.9 (Induced gradient vector field). Let 𝑓 ∶ 𝐾 → ℝ be a discrete Morse
function. The induced gradient vector field 𝑉𝑓 is the collection of pairs of simplices
{(𝛼(𝑝), 𝛽(𝑝+1)) ∣ 𝛼 ⊂ 𝛽, 𝑓 (𝛼) ≥ 𝑓 (𝛽)}.

We can draw these pairs as arrows from the 𝑝-simplex, the tail, to the (𝑝+1)-simplex,
the head, as visualised in the following example.

Figure 8: The induced gradient vector field on 𝐾1 as shown in Figure 6(a).

Example 3.10. In the simplicial complex represented by Figure 6(a), the rightmost 0-
simplex has higher value than the 1-simplex. Therefore, the arrow in Figure 8 goes
from the rightmost 0-simplex to the 1-simplex.
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A simplex being the head of an arrow means that the tail of the arrow is an exception
to the first rule stated in Definition 3.1. Similarly, a simplex being the tail of an arrow
means that the head of the arrow is an exception to the second rule stated in Defini-
tion 3.1. The exclusion lemma, Lemma 3.8, tells us that no simplex can be both a head
and a tail, meaning that simplices are either

(i) the head of exactly one arrow, i.e., regular,

(ii) the tail of exactly one arrow, i.e., regular, or

(iii) neither a head nor a tail of any arrow, i.e., critical.

Example 3.11. Let 𝐾5 be the simplicial complex introduced in Example 2.10 and
𝑓 ∶ 𝐾5 → ℝ be the discrete Morse function introduced in Example 3.2. The induced
gradient vector field on 𝑓 , 𝑉𝑓 is displayed in Figure 9.

Figure 9: An induced gradient vector field on 𝐾5.

Definition 3.12 (Discrete vector field). A discrete vector field 𝑉 on a simplicial com-
plex 𝐾 is {(𝛼(𝑝), 𝛽(𝑝+1)) ∣ 𝛼 ⊂ 𝛽, each simplex in 𝐾 is in at most one pair.}

The discrete vector field is similar to the induced gradient vector field, as they both
pair simplices together. In fact, every induced gradient vector field is a discrete vec-
tor field. This follows from the exclusion lemma, Lemma 3.8, and the definition of
a discrete Morse function, Definition 3.1. The converse is not true, not every discrete
vector field is an induced gradient vector field. See the counterexample in the simplicial
complex represented by Figure 10.

𝑣0 𝑣1

𝑣2

𝑣01

𝑣12𝑣02

Figure 10: A discrete vector field that is not an induced gradient vector field.

No simplex is in more than one pair, so this is a discrete vector field. But if we
imagine a discrete Morse function 𝑓 inducing this induced gradient vector field, we find

8



a contradiction. From the pair (𝑣0, 𝑣02) we can deduce that 𝑓 (𝑣0) ≥ 𝑓 (𝑣02). Since we
assumed that the function is a discrete Morse function, we must have 𝑓 (𝑣02) > 𝑓 (𝑣2).
Thus we have

𝑓 (𝑣0) ≥ 𝑓 (𝑣02) > 𝑓 (𝑣2).

In the same manner, we get

𝑓 (𝑣2) ≥ 𝑓 (𝑣12) > 𝑓 (𝑣1) and 𝑓 (𝑣1) ≥ 𝑓 (𝑣01) > 𝑓 (𝑣0).

Combining these, we get 𝑓 (𝑣0) > 𝑓 (𝑣0). This is a contradiction, meaning that the
assumption that 𝑓 is a discrete Morse function must be wrong. Thus Figure 10 cannot
represent an induced gradient vector field. Observe that the contradiction arises from
the circular chain of arrows, {𝑣0, 𝑣02}, {𝑣2, 𝑣12}, {𝑣1, 𝑣01}. We formalize the idea of a
chain of arrows in the following definition.

Definition 3.13 (V-path). Let 𝐾 be a simplicial complex and 𝑉 a discrete vector field
on 𝐾 . A V-path is a sequence of simplices where each pair of simplices are one of the
arrows of 𝑉 , no simplex appears twice except possibly the last, and they are connected
in the sense that every 𝑝-simplex is a face of the following (𝑝 + 1)-simplex, i.e.,

𝛼(𝑝)0 , 𝛽(𝑝+1)0 , 𝛼(𝑝)1 , 𝛽(𝑝+1)1 , … , 𝛼(𝑝)𝑟 , 𝛽(𝑝+1)𝑟 , 𝛼(𝑝)𝑟+1,

where for every 0 ≤ 𝑖, 𝑠 ≤ 𝑟, 𝑠 ≠ 𝑖,

{𝛼𝑖, 𝛽𝑖} ∈ 𝑉 , 𝛼𝑖 ≠ 𝛼𝑟 and 𝛼𝑖+1 ⊂ 𝛽𝑖.

If the sequence contains more than one simplex and starts and ends with the same
simplex i.e., 𝑟 ≠ −1, 𝛼0 = 𝛼𝑟+1, we call the sequence a non-trivial closed V-path.

We have already stated that every induced gradient vector field is a discrete vector
field and noted a discrete vector field containing a non-trivial closed V-path that cannot
be an induced gradient vector field, as shown in Figure 10. Any non-trivial closed V-
path in any discrete vector field will lead to a contradiction in the same way as in the
counterexample, i.e., for the 𝑖-th arrow, we have the inequality

𝑓 (𝛼𝑖) ≥ 𝑓 (𝛽𝑖) > 𝑓 (𝛼𝑖+1)

and when collecting these inequalities for all arrows, we get

𝑓 (𝛼0) ≥ 𝑓 (𝛽0) > 𝑓 (𝛼1) ≥ 𝑓 (𝛽1) > ⋯ ≥ 𝑓 (𝛽𝑟) > 𝑓 (𝛼𝑟+1) = 𝑓 (𝛼0).

Therefore, an induced gradient vector field on 𝐾 must also be a discrete vector field on
𝐾 containing no non-trivial closed V-paths.

A V-path is in fact analogous to a longer river in the map analogy, and as we know, a
river cannot loop back on itself. Therefore, it makes sense that an induced gradient vec-
tor field cannot contain a non-trivial closed V-path. The following theorem formalizes
this.

Theorem 3.14. Let 𝐾 be a simplicial complex. An induced gradient vector field on 𝐾
is equivalent to a discrete vector field on 𝐾 that contains no non-trivial closed V-paths.

It is possible to prove that a discrete vector field on 𝐾 that contains no non-trivial
closed V-paths is also an induced gradient vector field on 𝐾 using the following result
about directed graphs:

9



Theorem 3.15. Given a directed graph, there exists a strictly decreasing real-valued
function along each directed path if and only if there are no directed loops.

We content ourselves with noticing the striking similarity between the two theo-
rems: A discrete Morse function will decrease along a V-path, and a directed loop is
similar to a non-trivial closed V-path. For a proof of Theorem 3.14 see, e.g., [5, pp.
21–23] or [10, pp. 68–69]. For a proof of Theorem 3.15, see [2, p. 13–14].

We can use Theorem 3.14 to find an induced gradient vector field and a discrete
Morse function on any given simplicial complex by simply finding a discrete vector field
without any non-trivial closed V-paths and then defining the discrete Morse function
by starting at a critical 0-simplex and giving increasing values along every V-path in
reverse order, making sure that before assigning a value to any simplex, all of its faces
that are not part of the V-path already has a value. We allow both simplices that are part
of an arrow to have the same value, but require strictly increasing values elsewhere.

𝑣0 𝑣1

𝑣2𝑣3

(a) A simplicial complex
𝐾4.

(b) A discrete vector
field on 𝐾4.

7

9

3

2 0

46

1

5

8 10

(c) A discrete Morse func-
tion 𝑓 .

4

5

2

1 0

23

1

3

4 5

(d) A discrete Morse func-
tion 𝑔.

Figure 11: An application of Theorem 3.14.

Example 3.16. If we take the simplicial complex 𝐾4 as represented by Figure 11(a),
we can choose a discrete vector field as represented by Figure 11(b). It is easy too see
that this has no non-trivial closed V-paths and is therefore the induced gradient vector
field of some discrete Morse function 𝑓 . We will demonstrate two slightly different
methods giving two slightly different discrete Morse functions 𝑓 and 𝑔. We notice that
𝑣1 is neither the head nor tail of any arrow and thus critical. We start with the V-path

𝑣1, 𝑣01, 𝑣0, 𝑣02, 𝑣2, 𝑣23, 𝑣3.

We assign values in increasing order like so:

𝑓 (𝑣1) = 0, 𝑓 (𝑣01) = 1, 𝑓 (𝑣0) = 2, 𝑓 (𝑣02) = 3,
𝑓 (𝑣2) = 4, 𝑓 (𝑣23) = 5, 𝑓 (𝑣3) = 6.
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We could also have given the same values to each of the two simplices in each arrow
like so:

𝑔(𝑣1) = 0, 𝑔(𝑣01) = 1, 𝑔(𝑣0) = 1, 𝑔(𝑣02) = 2,
𝑔(𝑣2) = 2, 𝑔(𝑣23) = 3, 𝑔(𝑣3) = 3.

We notice that two pairs of simplices, {𝑣023, 𝑣03} and {𝑣012, 𝑣12}, still need to be
assigned values, so we let

𝑓 (𝑣023) = 7, 𝑓 (𝑣03) = 8, 𝑓 (𝑣012) = 9, 𝑓 (𝑣12) = 10,
𝑔(𝑣023) = 4, 𝑔(𝑣03) = 4, 𝑔(𝑣012) = 5, 𝑔(𝑣12) = 5.

We have now defined the discrete Morse functions 𝑓 and 𝑔, represented by Fig-
ure 11(c) and Figure 11(d) respectively.

4 Elementary collapses and expansions
Elementary collapses and expansions are a way to modify the simplicial complex with-
out modifying its topology and analogous to a deformation retract in topology. They
let us say that two different simplicial complexes are equivalent or to simplify the com-
plex we are working on. In our map analogy, the closest equivalent might be different
amounts of detail. It might be hard to immediately see that two different maps are of the
same area, but if one can be constructed from the other, they have to be. The rougher
version of the map also contains less noise and superfluous information, making it easier
to find your way. Similarly, simplifying simplicial complexes reduces the complexity
of calculations and may therefore be useful in computations.

Definition 4.1 (Elementary collapse and expansion, free pair). Given a simplicial com-
plex 𝐾 that contains a pair of simplices {𝛼(𝑛), 𝛽(𝑛+1)} such that 𝛼 ⊂ 𝛽 and 𝛼 has no
other cofaces, the collection 𝐾 ⧵ {𝛼, 𝛽} is called an elementary collapse of 𝐾 , denoted
by 𝐾 ↘ 𝐾 ⧵ {𝛼, 𝛽}.

Similarly, given a simplicial complex 𝐾 that does not contain a pair of simplices
{𝛼(𝑛), 𝛽(𝑛+1)} such that 𝛼 ⊂ 𝛽 and all other faces of 𝛽 are in 𝐾 , the collection 𝐾 ∪{𝛼, 𝛽}
is called an elementary expansion of 𝐾 , denoted by 𝐾 ↗ 𝐾 ∪ {𝛼, 𝛽}.

In both the case of the elementary collapse and the elementary expansion, the pair
{𝛼𝑝, 𝛽(𝑝+1)} is called a free pair.

𝛽
𝛼

Figure 12: A simplicial complex 𝐾 with a free pair {𝛼, 𝛽}.

Example 4.2. If the red simplices in the simplicial complex 𝐾 represented by Figure 12
are part of 𝐾 , then we can check that 𝛼 has no other cofaces in 𝐾 than 𝛽. Thus, it is a
free pair and we can collapse 𝐾 as shown in Figure 13.

If the red simplices are not part of 𝐾 , then we can check that all the faces of 𝛽 except
𝛼 are in 𝐾 . Thus, it is a free pair and we can expand 𝐾 as shown in Figure 14.

11



↘

Figure 13: An elementary collapse.

↗

Figure 14: An elementary expansion.

In both the case of the elementary collapse and the elementary expansion, the new
collection is a simplicial complex, as the following theorem states.

Theorem 4.3. Let 𝐾 be a simplicial complex. If {𝛼, 𝛽} ⊂ 𝐾 is a free pair, then 𝐾 ⧵
{𝛼, 𝛽} is also a simplicial complex. If {𝛼, 𝛽} is a free pair where 𝛼, 𝛽 ∉ 𝐾 , then
𝐾 ∪ {𝛼, 𝛽} is also a simplicial complex.

Proof. Let 𝐾 be a simplicial complex containing a free pair {𝛼(𝑛), 𝛽(𝑛+1)}. We modify
the set of vertices if needed. We show that 𝐾 ⧵{𝛼, 𝛽} is a simplicial complex by arguing
that neither 𝛼 nor 𝛽 is a face of any simplex 𝛾 ∈ 𝐾 ⧵ {𝛼, 𝛽}. As 𝛽 is a coface of 𝛼, any
coface of 𝛽 would also be a coface of 𝛼 i.e.,

𝛼 ⊂ 𝛽, 𝛽 ⊂ 𝛾 ⟹ 𝛼 ⊂ 𝛾,

meaning that if 𝛽 has some coface 𝛾 , a contradiction with our assumption that 𝛼 has no
other cofaces than 𝛽 arises. Thus, 𝐾 ⧵ {𝛼, 𝛽} is a simplicial complex.

Let 𝐾 be a simplicial complex not containing a free pair {𝛼(𝑛), 𝛽(𝑛+1)}. We show
that 𝐾 ∪ {𝛼, 𝛽} is a simplicial complex by arguing that all faces of both 𝛼 and 𝛽 are
contained in 𝐾 ∪ {𝛼, 𝛽}. By assumption, all faces of 𝛽 except 𝛼 are in 𝐾 . But as 𝛼 is
a face of 𝛽, all faces of 𝛼 are also faces of 𝛽, meaning that they are also in 𝐾 . Thus,
𝐾 ∪ {𝛼, 𝛽} is a simplicial complex.

Definition 4.4 (Collapsible). If a simplicial complex 𝐾 is collapsible if there exists a
sequence of elementary collapses from 𝐾 to a single vertex:

𝐾 = 𝐾0 ↘ 𝐾1 ↘ ⋯ ↘ 𝐾𝑛 = {𝑣}. (1)

We will write 𝐾 ↘ 𝑆 when there exists a sequence of elementary collapses from
𝐾 to 𝑆. This means that (1) could be rewritten as 𝐾 ↘ {𝑣}.

Example 4.5. The simplicial complex represented by Figure 12 is in fact collapsible,
due to the sequence of elementary collapses shown in Figure 15.
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↘

↘ ↘

Figure 15: A collapsible simplicial complex.

We now introduce a way to look at subsets of a simplicial complex, arranged pri-
marily by height, letting us construct the simplicial complex by adding simplices in
sequence.

Definition 4.6 (Level subcomplex). Given a discrete Morse function 𝑓 on a simpli-
cial complex 𝐾 and any 𝑐 ∈ ℝ, the level subcomplex 𝐾(𝑐) is the subcomplex of 𝐾
containing simplices 𝛼 with 𝑓 (𝛼) ≤ 𝑐 as well as their faces. That is,

𝐾(𝑐) =
⋃

𝑓 (𝛼)≤𝑐

⋃

𝛽⊂𝛼
𝛽.

In other words, take all simplices with value up to 𝑐 and include faces until you have
a simplicial complex.

Example 4.7. We look at 𝐾5 with 𝑓 as represented by Figure 5(a). The level subcom-
plex 𝐾5(1) must contain the simplices marked 0 and 1, because they have values less
than or equal to 1, but it must also include the simplex marked 2, as it is a face of the
simplex marked 1. Observe that 𝐾5(1) = 𝐾5(2). Similarly, 𝐾5(9) must contain all sim-
plices that are assigned values less than or equal to 9, but even though 𝑣24 has value 10,
it is a face of 𝑣234, which has value 9, and must therefore be part of 𝐾5(9).

Remark 4.8 (Geometric realization). While a simplicial complex is simply combina-
torial data, the geometric realization of a simplicial complex is a topological analogue
of the combinatorial data. For the purposes of this paper and at most 2-dimensional
simplicial complexes, the intuitive approach of looking at the figure that represents the
simplicial complex as a topological space is good enough. A discussion of geometric
realizations can be found in [6, pp. 154, 167].

The 𝑖-th Betti number of a simplicial complex 𝐾 is a topological invariant of the
geometric realization of 𝐾 , defined to be the rank of the 𝑖-th simplicial homology group
of 𝐾 . We will always compute simplicial homology groups with coefficients in 𝔽2, the
integers modulo 2. Therefore, the rank of the simplicial homology group is equal to the
dimension of the simplicial homology group seen as a vector space over 𝔽2, giving us
the following definition.

Definition 4.9 (Betti number). The 𝑖-th Betti number 𝑏𝑖 of a simplicial complex 𝐾 is
given by

𝑏𝑖 = dim(𝐻𝑖(𝐾; 𝔽2)),

where 𝐻𝑖(𝐾; 𝔽2) is the 𝑖-th simplicial homology group of 𝐾 with coefficients in 𝔽2.

Let 𝐾 be a simplicial complex. Then 𝑏0 is the number of connected components,
and for 𝑖 ≥ 1, 𝑏𝑖 is the number of 𝑖-dimensional holes in the geometric realization of 𝐾 .
For example, 𝐾5 as represented by Figure 4 has one connected component and a single

13



1-dimensional hole, meaning that 𝑏0 = 1, 𝑏1 = 1, 𝑏𝑘 = 0 for 𝑘 ≥ 2. Note that the Betti
numbers are independent of the discrete Morse function.

The Euler characteristic is often defined as the alternating sum of the number of
simplices of each dimension. In fact, this is equivalent to the alternating sum of the
Betti-numbers as shown in [9, p. 146].

Definition 4.10 (Euler characteristic). The Euler characteristic 𝜒 of a simplicial com-
plex 𝐾 is given by

𝜒(𝐾) =
dim(𝐾)
∑

𝑖=0
(−1)𝑖𝑐𝑖 = 𝑐0 − 𝑐1 + 𝑐2 − 𝑐3 +⋯ + (−1)dim(𝐾)𝑐dim(𝐾)

or, equivalently,

𝜒(𝐾) =
dim(𝐾)
∑

𝑖=0
(−1)𝑖𝑏𝑖 = 𝑏0 − 𝑏1 + 𝑏2 − 𝑏3 +⋯ + (−1)dim(𝐾)𝑏dim(𝐾).

Example 4.11. As the c-vector of 𝐾5 as represented by Figure 4 is (5, 6, 1), the Euler
characteristic is

𝜒(𝐾5) = 𝑐0 − 𝑐1 + 𝑐2 = 5 − 6 + 1 = 0.

5 Main theorems
We finish with some of the important results from discrete Morse theory. The following
theorem gives us that we can simplify a simplicial complex without removing critical
values by collapses, or, in our map analogy, that we can remove details without losing
the information we care about as long as peaks, basins and passes are still visible.

Theorem 5.1 (Collapse theorem). Let 𝑓 be a discrete Morse function on a simplicial
complex 𝐾 . If the interval (𝑎, 𝑏] ⊂ ℝ contains no critical values, then 𝐾(𝑏) = 𝐾(𝑎) or
𝐾(𝑏) collapses to 𝐾(𝑎), i.e, 𝐾(𝑏) ↘ 𝐾(𝑎).

Proof. For simplicity, we assume that 𝑓 takes only integer values. If 𝐾(𝑏) = 𝐾(𝑎), we
are finished. We now assume 𝐾(𝑏) ≠ 𝐾(𝑎). We show that for any regular value 𝑏, we
have either 𝐾(𝑏) = 𝐾(𝑏 − 1) or 𝐾(𝑏) ↘ 𝐾(𝑏 − 1).

Let 𝛿 be a simplex with 𝑓 (𝛿) = 𝑏. Then, 𝛿 must be regular, and thus either the head
or tail of an arrow in the induced gradient vector field 𝑉𝑓 . Renaming 𝛿 as appropriate,
we call the arrow (𝛼, 𝛽). As (𝛼, 𝛽) ∈ 𝑉𝑓 , we know that 𝛼 ⊂ 𝛽 and 𝑓 (𝛼) ≥ 𝑓 (𝛽). If 𝛿 is
the tail, 𝑓 (𝛼) = 𝑏. If 𝛿 is the head, 𝑓 (𝛼) ≥ 𝑓 (𝛿) = 𝑏. In any case, 𝑓 (𝛼) ≥ 𝑏.

We now assume that (𝛼, 𝛽) is not a free pair. That means that 𝛼 must have some
coface 𝛾 in 𝐾(𝑏) with 𝑓 (𝛾) ≤ 𝑏. But then 𝑓 (𝛾) ≤ 𝑏 ≤ 𝑓 (𝛼), meaning that both 𝛽 and 𝛾
are cofaces of 𝛼 with lower value, which contradicts the assumption that 𝑓 is a discrete
Morse function.

Thus, every arrow in 𝐾(𝑏) where at least one of the simplices has value 𝑏 must
be a free pair. This means that every simplex with value 𝑏 can be removed through
elementary collapses on its own. But we must still argue that they can be removed in
sequence. We know that no simplex is in more than one pair and that no elementary
collapse, which removes simplices, can add a coface to the head of any arrow. Thus,
we know that we can remove the simplices independently and therefore in sequence,
meaning that 𝐾(𝑏) ↘ 𝐾(𝑏 − 1).

Repeating the process, we get that for every 𝑐 ∈ (𝑎, 𝑏], 𝐾(𝑐) is either equal to or
collapses to 𝐾(𝑐 − 1), meaning that 𝐾(𝑏) ↘ 𝐾(𝑎).
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Example 5.2. We verify that the collapse theorem applies to the simplicial complex
represented by Figure 5(a). As noted earlier, all values are regular except for 0 and 11.
Thus (0, 10] contains no critical values. The theorem states that we should be able to
collapse𝐾5(10) to𝐾5(0), as evidenced by the sequence of collapses shown in Figure 16.
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3

5
10

7

↘

0 2
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6 8

1

3

5

7

↘

0 2

4

6

1

3

5

↘

0 2

4

1

3

↘ 0 2
1

↘ 0

Figure 16: A sequence of collapses from 𝐾(10) to 𝐾(0).

We will now give a rough outline of the theory of CW-complexes, which as we
will see in the next theorem, have a strong connection to simplicial complexes. A CW-
complex, also called a cell complex, is a topological space that can be constructed by
attaching unit balls of increasing dimension to a set of points. We call a unit ball of
dimension 𝑛 an 𝑛 − 𝑐𝑒𝑙𝑙. For example, the 1-dimensional open ball is the unit interval
(0, 1). We can continuously deform this line to a half circle and attach the endpoints to
two different points, giving the CW-complex represented by Figure 17. The interested
reader can find a complete definition in [1, pp. 149–150].

Figure 17: Two points and a 1-cell.

The following theorem can be considered the main result in discrete Morse theory,
as it gives a strong connection between simplicial complexes and topological spaces.

Theorem 5.3. Let 𝐾 be a simplicial complex with a discrete Morse function 𝑓 and 𝑚𝑖
critical i-simplices. Then the geometric realization of 𝐾 is homotopy equivalent to a
CW-complex with 𝑚𝑖 cells of dimension 𝑖.

A proof of this theorem can be found in [4, p. 107].

Example 5.4. We can verify this theorem by applying it to 𝐾5 with 𝑓 , as represented
by Figure 5(a).We first note that 𝐾5 should be homotopy equivalent to a circle. As 𝐾5
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has one critical 0-simplex and one critical 1-simplex, the theorem says that it should
be homotopy equivalent to a CW-complex with one cell of dimension 0 and one cell
of dimension 1. That means we have to attach the boundary of a line to a single point,
which yields the CW-complex represented by Figure 18. As expected, this CW-complex
is a circle.

Figure 18: The circle as a CW-complex.

If we instead used 𝑔, we would have 𝑚0 = 𝑚1 = 2. In that case, we would know
that 𝐾5 must be homotopy equivalent to at least one of the four CW-complexes that can
be created from two points and two 1-cells, displayed in Figure 19, but we would not
immediately know which.

(a) (b) (c) (d)

Figure 19: Four CW-complexes constructed from two points and two 1-cells.

𝑣0 𝑣1 𝑣2

𝑣0

𝑣1

𝑣2

(a) A triangulation of the real projective plane.

𝑣0 𝑣1 𝑣2

𝑣0

𝑣1

𝑣2

(b) An induced gradient vector field on the real pro-
jective plane.

Figure 20: Applying Theorem 5.3 to the real projective plane.

Example 5.5. We borrow an example from [5, p. 16]. The real projective plane, ℝP2,
can be triangulated as represented by Figure 20(a). As the real projective plane is not
easily represented in two dimensions, or even in three dimensions, we have to draw
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some vertices multiple times. Now, there is a discrete vector field with no non-trivial
closed V-paths i.e., an induced gradient vector field, as demonstrated in Figure 20(b).
The simplices marked in red are neither the head nor the tail of an arrow and therefore
critical. There is one 0-simplex, one 1-simplex and one 2-simplex, so by Theorem 5.3,
the real projective plane is homotopy equivalent to a CW-complex consisting of a 0-cell,
a 1-cell and a 2-cell.

The following inequalities represent relations between the number of critical sim-
plices of a simplicial complex and its Betti numbers.

Theorem 5.6 (Strong Morse inequalities). Let 𝑓 : 𝐾 ←←→ ℝ be a discrete Morse function,
𝑚𝑖 be the number of critical i-simplices and 𝑏𝑖 be the 𝑖-th Betti number as defined earlier.
For each 𝑛 such that 0 ≤ 𝑛 ≤ dim(𝐾) + 1, the following inequality holds:

𝑛
∑

𝑖=0
(−1)𝑛−𝑖𝑏𝑖 ≤

𝑛
∑

𝑖=0
(−1)𝑛−𝑖𝑚𝑖.

We will not prove the strong Morse inequalities here, as the proof relies on quite
technical results that are beyond the scope of this paper. A proof of the strong Morse
inequalities can be found in [10, pp. 103–104]. We will, however, show that the strong
Morse inequalities imply the weak Morse inequalities.

Theorem 5.7 (Weak Morse inequalities). Let 𝑓 : 𝐾 ←←→ ℝ be a discrete Morse function,
𝑚𝑛 be the number of critical 𝑛-simplices, 𝑏𝑛 be the 𝑛-th Betti number as defined earlier
and 𝜒 the Euler characteristic. Then the following hold:

(i) 𝑏𝑛 ≤ 𝑚𝑛, for 0 ≤ 𝑛 ≤ dim(𝐾)

(ii)
dim(𝐾)
∑

𝑖=0
(−1)𝑖𝑚𝑖 = 𝜒(𝐾)

Proof. We first show that 𝑏𝑖 ≤ 𝑚𝑖 for 0 ≤ 𝑖 ≤ dim(𝐾). For 𝑛 = 0, the strong Morse
inequality immediately gives 𝑏𝑛 ≤ 𝑚𝑛. For any 𝑛 such that 0 < 𝑛 ≤ dim(𝐾), we have
the strong Morse inequalities

𝑛
∑

𝑖=0
(−1)𝑛−𝑖𝑏𝑖 ≤

𝑛
∑

𝑖=0
(−1)𝑛−𝑖𝑚𝑖 (2)

and
𝑛−1
∑

𝑖=0
(−1)𝑛−1−𝑖𝑏𝑖 ≤

𝑛−1
∑

𝑖=0
(−1)𝑛−1−𝑖𝑚𝑖. (3)

Adding (2) and (3) yields
𝑛
∑

𝑖=0
(−1)𝑛−𝑖𝑏𝑖 +

𝑛−1
∑

𝑖=0
(−1)𝑛−1−𝑖𝑏𝑖 ≤

𝑛
∑

𝑖=0
(−1)𝑛−𝑖𝑚𝑖 +

𝑛−1
∑

𝑖=0
(−1)𝑛−1−𝑖𝑚𝑖

𝑏𝑛 +
𝑛−1
∑

𝑖=0
((−1)𝑛−𝑖𝑏𝑖 + (−1)𝑛−1−𝑖𝑏𝑖) ≤ 𝑚𝑛 +

𝑛−1
∑

𝑖=0
((−1)𝑛−𝑖𝑚𝑖 + (−1)𝑛−1−𝑖𝑚𝑖)

𝑏𝑛 +
𝑛−1
∑

𝑖=0
((−1 + 1)𝑛−𝑖𝑏𝑖) ≤ 𝑚𝑛 +

𝑛−1
∑

𝑖=0
((−1 + 1)𝑛−𝑖𝑚𝑖)

𝑏𝑛 ≤ 𝑚𝑛.
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We now show that
dim(𝐾)
∑

𝑖=0
(−1)𝑖𝑚𝑖 = 𝜒(𝐾).

The strong Morse inequalities for dim(𝐾) and dim(𝐾) + 1 are

dim(𝐾)
∑

𝑖=0
(−1)dim(𝐾)−𝑖𝑏𝑖 ≤

dim(𝐾)
∑

𝑖=0
(−1)dim(𝐾)−𝑖𝑚𝑖 (4)

and
dim(𝐾)+1
∑

𝑖=0
(−1)dim(𝐾)+1−𝑖𝑏𝑖 ≤

dim(𝐾)+1
∑

𝑖=0
(−1)dim(𝐾)+1−𝑖𝑚𝑖. (5)

We know that 𝐾 has no simplices of higher dimension than dim(𝐾), meaning that
𝑚dim(𝐾)+1 = 0, and 𝐾 has no holes of higher dimension than dim(𝐾), meaning that
𝑏dim(𝐾)+1 = 0. Thus (5) becomes

dim(𝐾)
∑

𝑖=0
(−1)dim(𝐾)+1−𝑖𝑏𝑖 ≤

dim(𝐾)
∑

𝑖=0
(−1)dim(𝐾)+1−𝑖𝑚𝑖

−
dim(𝐾)
∑

𝑖=0
(−1)dim(𝐾)−𝑖𝑏𝑖 ≤ −

dim(𝐾)
∑

𝑖=0
(−1)dim(𝐾)−𝑖𝑚𝑖

dim(𝐾)
∑

𝑖=0
(−1)dim(𝐾)−𝑖𝑏𝑖 ≥

dim(𝐾)
∑

𝑖=0
(−1)dim(𝐾)−𝑖𝑚𝑖. (6)

Combining (4) and (6) we get that

dim(𝐾)
∑

𝑖=0
(−1)dim(𝐾)−𝑖𝑏𝑖 =

dim(𝐾)
∑

𝑖=0
(−1)dim(𝐾)−𝑖𝑚𝑖,

which is equivalent to

𝜒(𝐾) =
dim(𝐾)
∑

𝑖=0
(−1)𝑖𝑏𝑖 =

dim(𝐾)
∑

𝑖=0
(−1)𝑖𝑚𝑖.

Example 5.8. Given any simplicial complex 𝐾 and discrete Morse function 𝑓 ∶ 𝐾 →
ℝ, we can use the Morse inequality 𝑏𝑖 ≤ 𝑚𝑖 to obtain an upper bound on the Betti
numbers of 𝐾 . The result depends on the choice of function, and may give very loose
or very tight upper bounds, possibly even the Betti numbers themselves. We use 𝐾5 as
introduced in Example 2.10 as an example. The function 𝑔, represented by Figure 5(b)
has four critical simplices, two of dimension 0 and two of dimension 1. Thus we know
that 𝑏0 ≤ 𝑚0 = 2 and 𝑏1 ≤ 𝑚1 = 2. If we instead chose the function 𝑓 , represented by
Figure 5(a), we would get one critical simplex of dimension 0 and one of dimension 1.
That would give us 𝑏0 ≤ 𝑚0 = 1 and 𝑏1 ≤ 𝑚1 = 1, which in fact are the Betti numbers
of 𝐾5.

We will now discuss in detail an easily imaginable real life application from [10, pp.
2–6]. Most people have a cell phone, which communicates with the rest of the world via
cell phone towers. But most of us have probably also experienced lacking cell phone
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service, as the cell phone towers have a limited range or for any other reason. We can
use discrete Morse theory to find if there are any holes in the coverage. We assume
that the towers have a set radius and that there are no obstructions blocking the signals.
We also assume that the towers communicate with each other and know whether their
ranges overlap. Let Figure 21 represent the grid.

Figure 21: A grid of cell phone towers, showing their covered area.

We know which towers have overlapping coverage and can represent this data by
a simplicial complex where the 0-simplices are the towers, the 1-simplices connecting
two towers represent that their ranges overlap and the 2-simplices connecting three tow-
ers that they all their ranges overlap. Then we get the simplicial complex𝐾𝑔 represented
by Figure 22.

Figure 22: The connectivity of the towers represented by a simplicial complex 𝐾𝑔 .

Now, we can use discrete Morse theory to find whether there is a hole in the simpli-
cial complex. We find a discrete vector field on 𝐾𝑔 with no non-trivial closed V-paths,
as represented by Figure 23. Then the two red simplices are the two critical simplices.
Using the weak Morse inequalities, Theorem 5.7, we learn that 𝑏0 ≤ 1, 𝑏1 ≤ 1 and
𝑏𝑖 = 0 for 𝑖 > 1. Thus, 𝑏0 = 𝑏1 = 1, and Theorem 5.3 gives us that the geometric
realization of 𝐾𝑔 is homotopy equivalent to the circle, meaning that there is a hole in
the coverage. We could also have seen directly from 𝑏1 = 1 that there is a hole.
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Figure 23: An induced gradient vector field on the grid.

6 Summary
We have now presented an introduction to discrete Morse theory, starting with defining
simplicial complexes and moving on to discrete Morse functions and induced gradient
vector fields. We now know how to construct one from the other and how they help us
learn about the simplicial homology of a simplicial complex as well as being able to
compare different simplicial complexes. Just as discrete Morse theory is comparable to
a topographic map, we hope this introduction can be comparable to a road map on the
readers way to understanding the subject. The next step, if one wishes to learn more
about discrete Morse theory, might be to read [10] for a more thorough discussion or
[8] for an introduction to Morse theory in the smooth case.
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