
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Audun Mostad, Jonatan Lærdahl, Karl Peder
Mørkeseth, Mathias Kommedal

Development of miniature metal 3D
printer

Utvikling av miniatyr 3D printer

Bachelor’s thesis in Electrical engineering
Supervisor: Sigurd Gosse
May 2022

Karl Peder Mørkeseth

Ba
ch

el
or

’s
th

es
is

Audun Mostad, Jonatan Lærdahl, Karl Peder
Mørkeseth, Mathias Kommedal

Development of miniature metal 3D
printer

Utvikling av miniatyr 3D printer

Bachelor’s thesis in Electrical engineering
Supervisor: Sigurd Gosse
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Tittelside Bacheloroppgave BIELEKTRO
Oppgavetittel (norsk og engelsk):
Utvikling av metall 3D-printer
Forfattere:
Mathias Kommedal
Jonathan Lærdal
Audun Mostad
Karl Peder Mørkeseth

Prosjektnummer: E2208

Innleveringsdato: 20.05.2022
Gradering: [x] åpen

[] lukket
Studium: Elektroingeniør - BIELEKTRO
Studieretning: Automatisering og robotikk
Veileder internt: Sigurd Gosse
Institutt: Institutt for teknisk kybernetikk
Oppdragsgiver: SINTEF, Trondheim
Kontaktperson: Eivind Johannes Øvrelid, tlf: 982 30 449,

email: EivindJohannes.Ovrelid@sintef..no
Sammendrag (norsk og engelsk):
SINTEF ønsket en metall 3D-printer for å teste nye metallegeringer. Det var derfor
ønskelig å lage en egen 3D-printer med et lite printeomr̊ade. Hovedkomponentene var
en eldre graveringslaser fra Rofin og et pulverdistribusjonsbord. Gruppen har utviklet
et kommunikasjonssystem mellom de to komponentene, og utviklet programvare som
gjør det mulig å printe 3D-modeller i metall. Dette gjøres ved å “slice” en STL-fil
(3D-modell) til DXF-filer som laseren kan lese. Pulverdistrubusjonsbordet legger ut et
tynt lag metallpulver. Laseren smelter pulveret etter informasjon fra dxf-filen. Denne
prosessen repeteres lag for lag til metall-modellen er ferdig printet. Det har blitt gjort
mange modifikasjoner p̊a omramningen til laseren og de elektriske kretsene i systemet
for å optimalisere produktet.

Engelsk:
SINTEF wanted a metal 3D printer to test new metal alloys. It was therefore desirable to
create a 3D printer with a small print area. The main components were an older engraving
laser from Rofin and a powder distribution table. The group has developed a communication
system between these two components, and developed software making 3D printing in metal
possible . This is done by ”slicing” an STL file (3D model) into DXF files for the laser to
read. The powder distribution table applies a thin layer of metal powder. The laser melts
the powder according to information in the dxf files. This process is repeated layer by
layer until the metal object is finished. Multiple modifications have been done on the
lasers framing and the systems electrical circuits to optimize the product.
Stikkord norsk:
3D-printing, metallegeringer, laser,
programmering, kommunikasjonssystem,
automasjon, elektriske kretser

Stikkord engelsk:
3D printing, metal alloys, laser,
programing, communication system,
automation, electrical circuits

1

Preface

This bachelor thesis is the concluding project of the participants bachelors degree
at the Norwegian University of Science and Technology. The project consist of 20
out of 30 credits in the spring semester of 2022. This makes up about 500 hours
of work per student. Our group consist of four electrical engineering students. All
four students study “automation and robotics” as their major. This bachelor thesis
is written for SINTEF, with the goal of developing a small scale metal 3D printer.

We would like to thank senior researcher Eivind Johannes Øvrelid from the sus-
tainable energy technology department at SINTEF as our supervisor through the
project. We thank him for the positive continuous dialog, sound advice and aid
through the course. We would also like to thank Bendik Sægrov-Sorte for his tech-
nical support and aid in 3D printing of necessary parts. We also thank Sigurd Gosse
as our supervisor from NTNU for guidance and feedback throughout the project.

Signatures

i

Contents

List of Figures v

List of Tables vii

1 Introduction 1

2 Background 2
2.1 Theory . 2

2.1.1 Additive manufacturing (3D printing) 2
2.1.2 System concept . 2
2.1.3 STL file . 3
2.1.4 DXF file . 4
2.1.5 Slicing . 4
2.1.6 Metallic powder . 5
2.1.7 Powder Melting and Oxidation 5
2.1.8 Communication . 6
2.1.9 Electrical components . 7
2.1.10 Python . 8

2.2 Equipment . 9
2.2.1 Rofin F30 . 9
2.2.2 The framing (CombiLine Advanced RT 800) 12
2.2.3 Powder distribution system (PDS) 13
2.2.4 Raspberry Pi 3 Model B (RPi) 14
2.2.5 New control panel . 15
2.2.6 Inspection cam . 15

2.3 Programs . 16
2.3.1 VisualLaserMarker (VLM) . 16
2.3.2 LaserConsole (LC) . 16
2.3.3 Autodesk Fusion 360 . 16

2.4 Specifications the laser . 17

3 Methods 19
3.1 Two solutions . 19

3.1.1 Pros and cons . 19
3.1.2 Decision of workpath . 20

3.2 Design process . 21
3.3 Approaches . 22

3.3.1 The framing . 22
3.3.2 Electrical circuits and terminal blocks 26
3.3.3 Printing Chamber . 29
3.3.4 New powder overflow-collector 30
3.3.5 New recoater . 30
3.3.6 File Transfer . 32

3.4 Software development . 34
3.4.1 Slicing script . 34
3.4.2 Visual Laser Marker (VLM) 38
3.4.3 The powder distribution system 42

ii

3.4.4 Graphical User Interface . 44
3.5 Manual . 49

3.5.1 Setting up the Powder distribution table 49
3.5.2 Setting up the laser . 50

3.6 Flowchart of the system . 52

4 Results 53
4.1 End product . 53

4.1.1 Print process . 53
4.1.2 Safety . 54

4.2 Communication . 54
4.2.1 Step by step . 55

4.3 Print testing . 56
4.4 Print quality . 58

4.4.1 Without protective atmosphere 58
4.4.2 With protective atmosphere 58

5 Discussion 59
5.1 The work process . 59
5.2 Product . 59
5.3 Further development . 60

5.3.1 Different linear actuator . 60
5.3.2 Chamber . 61

5.4 SINTEFs feedback . 61

6 Conclusion 62

7 References 63

A Accounting 66

B Power diagram to supplementary components 68

C M-functions IO 69

D Raspberry Pi − > Relay controlling unit 70

E Relay controlling unit 71

F Front drawing 72

G Control room drawings 73

H Main program and GUI script 78

I Controlling the PDS script 85

J Create and show plot script 88

K Converting STL file to DXF files script 90

iii

L Moving files from USB drive to folder script 93

M Numbers keyboard script 95

N Show video script 97

O VLM script 98

iv

List of Figures

1 System sketch of the 3D printing process. 3
2 Concept of tessellation with the use of triangles [5]. 3
3 Slicing process [10]. From 3D model to sliced 3D model to 3D model

being printed one slice at a time. 4
4 Oxidation with different levels of O2 [18]. 6
5 Example of terminal block. 7
6 24 V relay with DIN rail mount. 7
7 Siemens Sirius 24 V Contactor. 7
8 Power unit for the laser [23]. 9
9 Backside of the power unit for the laser [23]. 9
10 Front view of the 19” plug-in PC [23]. 10
11 Back view of the 19” plug-in PC [23]. 10
12 Originally external control panel [23]. 10
13 Laser head, marked in the red square [23]. 11
14 Marking head, marked in the red square [23]. 11
15 The original frame of the system [24]. 12
16 Powder distribution system in the chamber. 13
17 Raspberry Pi 3 Model B collected from [30]. 14
18 10.1 inch LCD screen for Raspberry Pi. 15
19 Endoscope for the RPi [32]. 15
20 The external control panel. 22
21 External control panel removed. 23
22 Front housing removed. 23
23 New control room design. 24
24 New front design. 24
25 New lighting on the ceiling. 25
26 New lighting in the control room. 25
27 Interfacing between different control units. 26
28 Light curtains and control unit. 27
29 Rotary table and engine. 27
30 Relay closes a switch on receiving an electrical signal. 27
31 The control system. 28
32 The printing chamber. 29
33 Components designed in Fusion 360. 30
34 New recoater solution. 31
35 Diagram of the file transfer setup. 32
36 Two points of intersection at the second layer. 34
37 The outline created by drawing a polyline between all of the points. . 37
38 The outline hatched within VLM. 37
39 Function to define what DXF file is imported. 38
40 Function to import DXF file (dxfImport). 39
41 Declared file path for the folder that the ”import.DXF”-function. . . 39
42 Location of the folder. 39
43 Example of the DXF files structured in the ”Converted”- folder. . . . 39
44 Function that imports hatching settings for the DXF files. 40
45 Incrementing hatch angle. 40

v

46 Sends signal for to the PDS to start. 41
47 Receives signal that PDS is finished. 41
48 Write, WaitOn and Read IOBit for communication between the units. 41
49 Example of communication between PC and a Zaber device from

Zaber ASCII protocol [36]. 42
50 Overview of the Raspberry Pi’s GPIO-pins. 43
51 Snippet collected from the logging file, communication log.txt. This

is the same communication as can be seen in figure 49 taken directly
from Zabers ASCII protocol. 44

52 The info box in the GUI. 45
53 The parameters-box in the GUI. 45
54 The pop up keyboard. 45
55 The progress-box in the GUI. 46
56 The text box with progress bar. 46
57 Buttons box. 47
58 Pressing the Preview-button shows a pyplot of the figure from the

selected file. 47
59 Safety messages telling the user what needs to be done before the

program can complete the desired task. 48
60 Parameters-box . 49
61 Preview-box . 49
62 Convert-box . 49
63 Buttons-box. 50
64 Buttons-box. 50
65 Shutter open. 50
66 Initialize hardware. 51
67 Load job. 51
68 Start marking. 51
69 New front panel mounted. 54
70 The new control room. 54
71 Illustration of the systems general communication. 55
72 Communication between units. 56
73 An example of how print testing was done. 57
74 The upper side. 58
75 The under side. 58
76 Test print with one layer. 58
77 Test print with 2 layers. 58

vi

List of Tables

1 Technical data on the laser head. Obtained from the Rofin manual
[23]. 17

2 Technical data on the marking head. Obtained from the Rofin manual
[23]. 18

3 Zaber motion commands. [37] . 42
4 Accounting of purchases . 66
5 Accounting of purchases, pt.2 . 67

vii

Abbreviations

AM - Additive Manufactoring
UI - User Interface
SLM - Selective Laser Melting
SLS - Selective Laser Sintering
EBM - Electron Beam Melting
DMLS - Direct Metal Laser Sintering
GUI - Graphic User Interface
PDS - Powder Distribution System
VLM - Visual Laser Marker
VMC2 - Visual Marker Control 2
RPi - Raspberry Pi
STL - Standard Triangle Language
DXF - Drawing Exchange Format
FTP - File Transfer Protocol
GPIO - General Purpose Input/Output

viii

1 Introduction

This bachelor thesis is written by four students at the Norwegian University of
Science and Technology (NTNU). All four students study electrical engineering and
have “automation and robotics” as their major. The thesis consist of 20 out of 30
credits of the final semester of the study plan. The group wanted to work with a
hands on assignment in cooperation with a company that could offer a challenging
task, good resources and experienced guidance. From the many bachelor thesis
presented to us, “Development of control system for metal 3D printer” announced
by SINTEF Industri caught our attention. The thesis was the groups first choice
and we were happy to be assigned to it.

SINTEF wanted to create a metal 3D printer for testing metal alloys. In the cellar
of the Berg-building at NTNU, campus Gløshaugen, SINTEF had a laser from Rofin
developed for engraving in metal. This unit was going to be one of two main
components of the 3D-printer. The lasers new task is melting metal powder. The
other component is a powder distribution system (PDS). It would be distributing
metal powder. The PDS consisted of 3 actuators.

The task written by SINTEF was to develop a communication system between these
two components and by doing so creating a functioning 3D printer. The finished
system should run a printing process automatically. Meaning that the process, from
pushing a print button until the finished result, should run without any manual
assistance from an operator. A subtask introduced by SINTEF was to optimize the
framing surrounding the components to reduce the systems volume. This included
maintaining safety features while the laser is running. The group were given the
freedom to explore their own solutions and approaches.

To solve the task and deliver a satisfactory end product the group has worked with
multiple relevant fields. This includes disassembling and mounting a new framing
for the system, software development in python and Microsoft visual basic, reporting
and project management and electric circuit work. This report starts with describing
used equipment and explaining the necessary theory to understand the methods
used in the project. It continues with the approaches and methods used to explore
the projects solutions, followed by the achieved results. The report finishes with a
discussion and a conclusion. Accounting, circuit diagrams, sketches, scripts and a
poster are added as appendices at the end.

In summary, the main task of the project is to make a functional metal 3D printer
automatically printing from 3D models.

1

2 Background

This chapter is included to provide the necessary theory needed to get an under-
standing of the project. The background theory, chapter 2.1, consist of knowledge
the group has acquired throughout the electrical engineering study program and dur-
ing this bachelor thesis. The chapter also contains information about the equipment
and software used in the project.

2.1 Theory

2.1.1 Additive manufacturing (3D printing)

Additive production or additive manufacturing (AM) is a production technique
where 3D models are built up by layers using a marking head. Additive manu-
facturing is the opposite of subtractive manufacturing. Here the product is made
by removing parts of the raw material around the desired product. There are some
advantages with AM. The waste of raw material is far less, as unused powder can
be recycled and reused. It is also much more suited for prototyping and small
productions considering resources, cost and time.

Additive manufacturing can be done using multiple techniques. The most common
techniques used for production of metal units are Selective laser sintering/melting
(SLS/SLM), Direct Metal Laser Sintering (DMLS), and Electron Beam Melting
(EBM) [1]. These techniques are all powder based. The technique used in this
bachelor thesis is Selective laser melting (SLM).

2.1.2 System concept

Briefly explained, the general system is driven by four main moving components:
two vertical actuators, a powder recoater and the laser. The first vertical actuator
delivers powder by moving upwards. The second vertical actuator, which is the
building platform, moves down to make space for a new layer of powder. The
powder recoater moves horizontally, distributing powder from the powder chamber
to the build platform on the second actuator before returning. When the recoater
has returned back to its nominal position, the laser melts the powder in accordance
with the figure for the current slice. These steps are repeated until all the ”slices”
are melted and the finished product has been produced. The figure below is made
by the group to visualise the concept.

2

Figure 1: System sketch of the 3D printing process.

2.1.3 STL file

One of the most common file formats used for 3D printing is “.STL” [2]. STL
stands for Standard Triangle Language or Standard Tessellation Language. The
files consists of the surface geometry of a 3D model and is generated by using a
concept called tessellation. Tessellation is when a geometric shape covers a 2D or
3D surface without overlapping or leaving any gaps by repeating itself [3]. The STL-
file describes the surface of the 3D object, without considering texture and color, by
using large amounts of triangles. The triangles are called facets and each facet has
a perpendicular direction as well as the three points that represents the corners of
the triangle [4].

Figure 2: Concept of tessellation with the use of triangles [5].

3

The majority of 3D modelling programs have an STL export option. Before being
used for printing the STL-file needs to be sliced. The group has built a program for
this process. It will be explained in depth later on in the report.

2.1.4 DXF file

DXF stands for Drawing Exchange/Interchange Format. The file is a tagged data
representation of an AutoCAD drawing file [6]. It can therefore represent both 2D
and 3D models. The DXF-file type is a vector file type [7]. Vector based files use
mathematical equations, lines and curves and not pixels as a raster file type does
[8]. Examples of raster file types are .JPG and .PNG.

One of the advantages of using vectors is that there are no loss of resolution after
scaling [8]. Pixel based files on the contrary only maintain its resolution when it is
a specific size. DXF files are also open source so anyone can edit the file without
requiring a specific program or license.

2.1.5 Slicing

The 3D printer builds the product up by stacking multiple layers. For the 3D
structure to be built, a model needs to be processed by a slicing software. This
software manipulates the 3D model by dividing it into multiple slices. These slices
are 2D representations of a layer, and recreates the 3D model when stacked. The
resolution depends on the layer thickness, a variable decided by the operator, it also
decides how many slices the model is cut into. By having a smaller layer thickness
the model is cut into more slices. The layer thickness also plays a role in how the
physical performance and properties of the finished product ends up. These factors
are also affected by which metals are used and different parameters set by the laser.

A good method for slicing 3D models is using data from an STL file[9]. STL files
(more about these in section 2.1.3) contains information about the outline of a 3D
model and is supported by most modelling software’s. For example Fusion360, which
is a program used for creating 2D and 3D models. Some 3D modelling programs
have a slicing function implemented, but for the most part the slicing is done in
another program after the model is exported as an STL file. The figure below is a
simple illustration of the process:

Figure 3: Slicing process [10]. From 3D model to sliced 3D model to 3D model being
printed one slice at a time.

4

2.1.6 Metallic powder

Metallic powder is metal broken into small particles. The powder particles used for
SLM usually have a spherical form and have an average diameter of 10-45 microm-
eters [11]. The most common powders used are steel and iron-, nickel-, titanium-
and aluminium-based alloys, alumina, silicon carbide and yttria stabilised zirconia
[12].

Based on the metallic powder being used the user must choose suitable parameters
such as layer thickness, laser power, frequency, scanning speed, pulse width, line
width, scan strategy and more to get the desired integrity of the product.

Heat treatment is also an additional option to reduce the thermal residue stress and
improving print quality [13].

2.1.7 Powder Melting and Oxidation

The metal powder melts when the laser beam is directed at it with the right effect and
focus. Printing in an environment with high levels of oxygen will cause oxidation
in the metal powder. Oxidation is a chemical reaction when a molecule, atom
or ion loses an electron [14]. Oxidation can cause lower mechanical, thermal and
electrical properties and will corrupt the end product [15]. To remove or minimize
the oxidation, the system must be in a protective environment with reduced oxygen
levels. A way to achieve this is by using a sealed chamber that supports the injection
of an inert gas. Inert gases are used to prevent chemical reactions, in this case
oxidation [16]. A noble gas, like argon or for example nitrogen can work as an inert
gas for this cause.

Nitrogen is number 7 in the periodic table. As the group has learned in the physics
and chemistry course, and since it is a neutral atom it is atomic number is equal to
the amount of electrons in the atom. An atom has a maximum 2 electrons in the
inner shell. This leaves the nitrogen atom with 5 electrons in the outer shell. Atoms
“want” eight electrons in their outer shell. Therefore two nitrogen atoms can form
a strong triple bond. This means that they are sharing three electrons. This creates
the N2 gas, which is very stable because of the amount of energy which is require to
break the triple bond[17]. It also means that it will not react with other atoms in a
melting process. SINTEF manufacturing uses nitrogen gas as they have a nitrogen
gas generator.

The second gas used in SLM is argon. Argon is the inert gas used in this project.
Argon is number 18 in the periodic table and is the third of total seven noble gases.
Since it is a noble gas the outer shell is filled with 8 electrons. Therefore argon
is non reactive in a melting process, making it the perfect option for SLM when
considering oxidation.

5

The pictures below are taken from an article by Chalmers University of Technology
[18]. The article is about the properties of argon and nitrogen gas used as shielding
gasses in a laser-powder print bed making parts of stainless steel. The pictures show
the materials and powder in two different atmospheres, one with 0.2% O2 and one
with 0.08% O2. One can clearly see the oxidation which has occurred at the upper
pictures with 0.2% O2. The oxidation has caused bobbles and an uneven surface
with fractures. This makes the product considerably weaker. The group aims to
avoid such a reaction.

Figure 4: Oxidation with different levels of O2 [18].

2.1.8 Communication

Serial communication
Serial communication is a type of communication where data is sent and received
one bit at a time over one or two transmission lines [19]. The communication is
controlled via protocols. An example of a well known serial communication protocol
is USB. This protocol is used in the project.

Network
Two computers are connected to a router creating a local area network (LAN). Cat
5 Ethernet cables are used to establish communication between the different devices.
Using a LAN has multiple advantages as it has low latency and high stability.

FTP-server
The file transfer protocol makes it possible to share files from one computer to
another as long as they are connected to a common network [20]. An FTP-server
can be set up on a device. When this is done another device can now connect to
the server and these two devices can share files.

6

2.1.9 Electrical components

In this subsection some of the key electrical components used in the project are
described.

Terminal blocks
Terminal blocks are components used to connect to-
gether two, or more wires. The most usual layout is that
there are multiple individual terminals lined linearly on
a strip as shown in the figure to the right.

Figure 5: Example of
terminal block.

Relays
Relays are electrical components working as an electri-
cally controlled switch. These can be used to control
electrical signals and is perfect to shield components
when operating with different voltages.

Figure 6: 24 V relay
with DIN rail mount.

Contactor
Contactors are also electrical controlled switches and
work generally in the same way as a normal relay. They
can both break and make electrical power circuits. The
main difference between a contactor and a relay is that
the contactor is used on currents over 9A, and on volt-
ages up to 1000 VAC. A relay is used on 10A or less,
and on voltages up to 250 VAC. Contactors can also be
used on circuits with one or three phases while relays
can only be used on one phase circuits.

Figure 7: Siemens Sir-
ius 24 V Contactor.

7

2.1.10 Python

Python is an object oriented programming language with a simple syntax [21]. This
has quickly made python one of the most popular programming languages in the
world. The group has used python throughout the project for the mentioned reasons,
but also because it is the programming language taught throughout the electrical
engineering study-program.

A python script is a collection of commands, which put together is executed as a
program [22]. In this project scripts for controlling the actions of hardware, making
slices from 3D-models (from one stl-file to several DXF-files) and creating a user
interface has been developed. The advantage of writing a python script for a desired
task over using existing software is that programs can be modified. This opens the
possibility for adding improvements or necessary updates in the scripts allowing
them to evolve as the project progresses.

8

2.2 Equipment

In this subsection the equipment used throughout project is described in detail.

2.2.1 Rofin F30

One of the main components of the system is the Rofin PowerLine F30. This is a
fibre pulsed engraving laser.

The main components of the laser system are:

- 19” plug-in for electrical components where the laser beam is generated.
- Laser head that couples the laser beam in the marking head.
– Marking head.
– 19” plug-in PC.
– A monitor, mouse and keyboard. These are now replaced.

19” plug-in for electrical components
This is the component of the laser system where the fiber laser is created and where
the main switch is located. The device generates all necessary supply voltages, has
an emergency stop relay and also controls and monitors the fiber laser. The fiber
laser is first generated in pulses, then amplified by a fiber amplifier before getting
transported via a fiber optic cable to the laser head.

Figure 8: Power unit for the laser [23].

Figure 9: Backside of the power unit for the laser [23].

9

19” plug-in PC (Rofin PC)
This is the computer that operates the laser system and executes the printing jobs.
The PC operates on Windows Embedded and is running the software required for
operating the laser system. These software’s are LaserConsole and VisualLaser-
Marker (VLM) or Visual Marker Controller (VMC2). It also includes a DVD-RW
drive and a USB port. The specs are a CPU dual core 2.4GHz, 1 GB RAM and 160
GB HDD of storage.

Figure 10: Front view of the 19” plug-in PC [23].

Figure 11: Back view of the 19” plug-in PC [23].

External control panel
The laser system came with an external control
panel. The group has removed most of the control
panel and moved it to a new location with a new
layout and components. The panel marked with
number 2 in figure 12 is reused in the new control
panel as it is critical when initialising the system.
The approach is described later in the document in
section 3.3.1. The external control panels original
look can be seen in figure 12.

Figure 12: Originally exter-
nal control panel [23].

10

Laser head that couples the laser beam in the marking head
This component of the laser system couples the laser beam to the marking head
where the laser beam is angled. The laser head also consists of a warning light
that lights up in red when the laser system is turned on and flashes if an error has
occured.

Figure 13: Laser head, marked in the red square [23].

Marking head
This is the part of the system that emits the laser beam. The emitted laser is angled
by two mirrors in x and y direction. These mirrors are controlled by the plug-in PC
and focuses on the desired spot on the printing area. It also contains a protective
glass which is replaceable. This protection prevents dust particles from coming in
conflict with the optical unit located in the marking head.

Figure 14: Marking head, marked in the red square [23].

11

2.2.2 The framing (CombiLine Advanced RT 800)

The name of the framing is CombiLine advanced RT 800 from Rofin. The framing
protects the system from outside impact and the user from dangerous light radiation
from the laser. The 19” plug-in PC and the control system is located in the space
under the work table. The control system consist of a Raspberry Pi and electrical
circuits connected together with terminal blocks.

On the work table there was a rotary indexing table, driven by a motor and gear
unit. When the table rotated, the object that had been engraved got swapped for
one waiting to be engraved. This allowed for continuous engraving. The motor with
the gear unit were removed by the group to free up space and reduce weight. The
laser itself is mounted in the middle of the enclosure on the work table. It can be
raised or lowered along the z-axis to find optimal focus on the workpiece.

There is a slide door on the side of the machine. To ensure safe use there is a switch
that triggers if the door is open or closed. If the door is open the laser will not start
and any work that is running when the door is being opened is abruptly stopped.
The light curtains were mounted on both sides inside the housing in the front. They
were mounted to prevent the user from reaching inside while the system was running
and to trigger when to rotate the indexing table. If the light curtain was breached
while running the laser would stop. The extension arm with the external control
panel was placed in the front of the framing. Several modifications has been done
to the framing. These are described in chapter 3, “Methods”.

Figure 15: The original frame of the system [24].

12

2.2.3 Powder distribution system (PDS)

The powder distribution system (PDS) was built as a bachelor thesis in 2021 [25]
by electrical engineering students. It is built up of three Zaber stages in metal sur-
roundings. Two of the stages (X-VSR20A, [26]) are identical and have functionality
similar too pistons. The two X-VSR20A raises and lowers metal cylinders in the
two chambers, the powder-chamber and the printing-chamber. The other stage (X-
LSM100A, [27]) controls the recoater and moves along a horizontal axis over the top
of the table. This stage has a plastic device attached to it and moves the metal-
lic powder from the powder-chamber to the printing-chamber and over the powder
deposit-chambers.

The Zaber stages were chosen for their extreme accuracy. The vertical stages small-
est step size is 0.09525 µm [28]. The travel range of the vertical stages is 20 mm,
meaning 3D-models produced by the printer will be a maximum of 2 cm high. As
the printing will require a thin surface to print the 3D-model on, the maximum
height will be a little less than 20 mm depending on the thickness of the print plate.

The linear stages smallest step size is 0.047625 µm [29]. This is used to move the
recoater. It has a travel range of 101.6 mm, which is long enough to cover the two
chambers on the PDS. The maximum travel speed is 26 mm/s. To achieve an even
and smooth layer the linear stage will not operate at maximum speed. The recoater
must move to the end and back, therefore it will take some time to add one layer
of powder. This component started to malfunction as the project came to an end.
The group came up with a temporary solution to replace it, described in 3.3.5.

Figure 16: Powder distribution system in the chamber.

13

2.2.4 Raspberry Pi 3 Model B (RPi)

The Raspberry Pi 3 Model B (RPi) is one of the many models in the Raspberry Pi
series. It was released in 2016. Generally, a Raspberry Pi is a small single board
computer that can be used for multiple applications and services. The model 3B
has a Quad Core 1.2GHz Broadcom BCM2837 64bit CPU and 1 GB RAM. The
device is equipped with general-purpose input/output (GPIO) pins. This makes it
possible to externally control other electric components.

Figure 17: Raspberry Pi 3 Model B collected from [30].

In addition to these pins, it has:
- Full size HDMI output for the option of visualizing data on an external monitor.
- Ethernet port.
- 4 USB2 ports.
- Micro USB for power supply.
- Micro SD port for loading the operating system and storing data.
- DSI port for connecting touchscreen display.
- CSI port for connecting camera.
- BCM43438 wireless LAN and Bluetooth Low Energy (BLE).

Raspberry Pi OS
Raspberry Pi OS is the installed operating system on the RPi. It is a free operating
system based on Debian and is optimized for the RPi. Debian is a Linux distribution.
This makes Raspberry Pi OS a Linux based operating system [31].

14

2.2.5 New control panel

A new control panel has been made. It is made by a HP 27” monitor, a LCD 10.1”
touch screen and a new keyboard. The HP monitor and keyboard is used to replace
the old control panel showed in figure 12. These were very outdated and challenging
to operate. The LCD screen is designed for use with Raspberry Pi. The touch screen
makes it easy to control the user interface built on the Raspberry PI.

Figure 18: 10.1 inch LCD screen for Raspberry Pi.

2.2.6 Inspection cam

A Raspberry Pi inspection cam has been installed inside the framing. This has
been done so the operator can monitor the process while the laser is running. The
framing has no glass or windows. This has been done as a safety measure due to
the hazard of laser radiation. Therefore the system needed another way to visually
monitor the process directly.

Figure 19: Endoscope for the RPi [32].

15

2.3 Programs

2.3.1 VisualLaserMarker (VLM)

VisualLaserMarker is a software package installed on the laser system and runs
on Microsoft Windows XP Embedded. It is a powerful and flexible tool used for
laser marking. Graphical objects such as text, shapes, figures, bitmaps, etc. can
be made inside the program on a grid net with accurate positions referenced to
the lasers marking position. Different file formats (PLO, Logo, DXF (R13), XML,
AI/PS/PDF) can also be directly imported to the program. The different created
objects can be grouped into individual marking objects and laser parameters can be
set to each of these objects.

VLM is originally used for laser marking but has the option to use scripts and can
therefore be instructed to do the same job as a laser printer.

2.3.2 LaserConsole (LC)

The LaserConsole is the user interface on the Rofin computer. It shows which pro-
grams are up and running (connected to the laser system). Three of these programs
are displayed directly in the LaserConsole and is called LaserDisplay, WebVisu and
Configurator. The other programs are for example VMC2 or VLM.

The LaserDisplay displays the majority of events and information connected to the
laser. For example statuses, errors, inputs and outputs. Diagnostics is also located
in this program and parameters such as z-axis, power, speed and frequency can be
adjusted here.

WebVisu is the second program displayed directly in the LaserConsole. This pro-
gram displays some of the same elements as in LaserDisplay. It contains 5 main
windows: Auto mode, Manual mode, System status, Messages and Service.

The Configurator is the program used to declare variables and bits and configure
different parameters to the laser and the belonging software. Unlike WebVisu and
Laser Display the laser can not be controlled and set in motion via the configurator.
It can only configure parameters and settings for the laser and load them up to the
RCU for the next use. There are multiple configurator options such as AxesControl,
GalvoControl and VLMIOMap.

2.3.3 Autodesk Fusion 360

Autodesk Fusion 360 is a cloud based 3D modelling software for product design [33].
It is used for creating 3D models. By saving the 3D model as an stl-file it can used
in a 3D-printer. Free access to the program by creating a student account through
NTNU makes it an easy choice.

16

2.4 Specifications the laser

The Rofin PowerLine F30 is a fiber laser. The laser beam has a wave length of
1055-1070 nm and delivers a power of 30W [23]. The beam has a diameter of just
7.5 mm, which concentrate the energy in such a way that it can melt metal powder.
The laser is not equipped with focusing axis FFM (Fast Focusing Module), meaning
the laser must be adjusted manually to the right height for optimal focus. This
height is set in the configurator on the Laser Console software by adjusting the z-
axis. The two underlying tables show the technical specifications on the laser head
and marking head.

Table 1: Technical data on the laser head. Obtained from the Rofin manual [23].

PowerLine F 30 laser head
Laser Medium Fiber laser
Wavelenght [nm] 1055-1070
Linewidth [FWHM] <10 nm
Output power, nominal [W] >28.5
Minimal adjustable output power [W] 3
Pulse frequency [kHz] 30 - 100
Pulse length [ns] 100 ± 20 @ 30 kHz
Power stability [min/max] <± 2.5 %
Pulse energy [mJ] 0.95 @ 30 kHz
M2 <2.0
Beam diameter (collimator output) [nm] 7.5 ± 1.5
Beam roundness >80 %
Beam divergence [mrad] ± 0.3
Weight without marking head [kg] approx. 5.7
Operating sorrounding temperature [◦C] 15 - 35

17

Table 2: Technical data on the marking head. Obtained from the Rofin manual [23].

PowerLine F 30 marking head - 1064 nm
Max diameter of the beam
inside the marking head [mm]

14

Step response (settling to 1/1000 full scale)
At 1% full scale [ms] 0.40
At 10 % full scale [ms] 1.60
Optimal performance
Nominal deflection angle [rad] 0.82
Gain error [mrad] <5
Zero offset [mrad] <5
Skew [mrad] <1.5
Non-linearity [mrad] <2.1
Dynamical performance
Tracking delay [ms] 0.24
Repeatatabilty [mikrorad] <22
Long-term drift over 8 hours
at operating temp [mrad]

<0.6

Electrical connections
Max, theoretic range of input values 0 to 65535 increments
Input and output signals XY2-100 Standard

Supply voltage
plumin (15 + 1.5) V
DC, max. 3 A per supply volt.

Mirrors

Coating
Dielectrical high
Performance coating (YAG)

Wavelength [nm] 1064
Max. permisiible power density:
pulsed (at 50 ns pulselength) [MW/cmˆ2]:

100

Weight without lens [kg] Approx. 3
Operating sourounding temeprature [C] 15-35

18

3 Methods

This sections is dedicated to describing the different methods and approaches used to
achieve the results. The first two sections are used to explain the groups thoughts
behind the main solution and the design process to complete it. After this the
subsections goes in technical details in how the solutions are implemented.

3.1 Two solutions

After thoroughly discussing the task and looking through the equipment and it’s
documentation the group concluded that there were two main paths to a satisfying
end product.

The first path was a single computer solution. This would mean using a Linux
based computer system and programming all functionality, both distribution system
control and laser control, in python. The PDS would be controlled by a python script
and the user interface would be programmed in the tkinter library. The group would
have to find a way to communicate with the laser and marking head using G-code
and implement this in python. This would be a completely open source solution.

The second option was to reuse the 19” plug-in computer for parts of the systems
functionality. The reason for using this computer would be the previously installed
software’s on the computer and their built in functionality for controlling the laser.
The installed application Visual Laser Marker (VLM) is very useful for controlling
the laser. Therefore this solution could make the route to the end product clearer
and faster. Controlling the PDS will still be to done with a python script.

3.1.1 Pros and cons

The advantage with option one is the freedom that comes with an open source
system. A developer can change more or less every aspect of the system by adding,
removing or changing the scripts. Therefore it is the optimal solution for further
development and updates. The big challenge is to control the laser through python.
The laser can be operated with g-code, and the python code must somehow be
translated to g-code for controlling of the laser.

The pros and cons with option two are the opposite of option ones. The built in
application VLM makes it very easy to control the laser, and it is possible to write
scripts directly to the laser. The con is the age of operative system on the computer.
This could make it more difficult to create further updates and developments.

The optimization of volume, automating the slice process, sealing the chamber and
controlling the PDS with python scripts was included in both options.

19

3.1.2 Decision of workpath

After discussing the different options and considering the outcomes within the group,
with our mentor from SINTEF and with other SINTEF employees, the group chose
to go for option two. The reasoning behind the decision is that the VLM and the
Rofin computers already have an implemented solution for communicating with the
laser. During the discussion the group did not come up with any clear solutions for
controlling the laser with G-code.

Considering the project is on a limited amount of time, and the group already has
a lot of new subjects to study, the possibility of not having a finished, satisfactory
product in time using method one was significantly larger than with method two.
The group was afraid that with choosing option one there was a chance of getting
stuck trying to solve the laser control.

20

3.2 Design process

During this project the group learned that the route to an end product consist
of trying and failing at different approaches, until the goals are reached. In the
preliminary project the group made a plan of action for the project. Here the
groups main goals were set. The main goals were also given sub goals. This was
done to create a clearer path to a good end product. The main goals were as follows:

- M1: Build the new framing and acquire a new chamber.
- M2: Build and set up communication between the units, the laser and the PDS,
and the user interface (UI).
- M3: Successfully print in 3D.
- M4: Project reporting.

The sub goals were set as stepping stones to reach the main goals. The first sub goal
to complete M1 was to dismantle the framing. The group bought tools from Würth
for this task. The tools with individual prices are listed in Appendix A. Designing
the new framing was an important step before building it. The group made hand
drawings and 3D-models for various parts of the framing. These parts were later
produced and mounted. The chamber was the last part needed for completing the
frame (M1). SINTEF would require a new chamber designed with the properties
needed for the 3D-printing.

Building a communication system for the units is one of the major and most chal-
lenging parts of the project. Creating a communication system requires a lot of
understanding, both in communication protocols and electrical circuits. The most
important sub goal for achieving M2 was to make the control scripts. These scripts
have to perform to perfection as each script is a part of the whole system. A small
error might fault the entire system. Creating a user interface was one of the sub
goals as this is where the communication is controlled. The interface is used to start
the desired 3D-printing, but also visualize the process of the printing. More in depth
data like laser parameters and hatching patterns were also planned under M2.

The third main goal was to print successfully in 3D. This goal requires that M1
and M2 are completed and without errors. The group realized early that a program
that could take an STL file and create slices as DXF files with the desired thickness
would be a great invention. The printing process should also be automatic from
start to finish. Both of these solutions are completed by scripts. The chamber must
be purged for oxygen with argon gas before the printing starts.

The last main goal is successful project reporting. The grade from the bachelor
thesis is mostly set considering the contents of the report. Therefore is it very
important to prioritize working on it. The most important sub goal for M4 was
to regularly update the report as the project went forward. This would assure the
quality of the report and prevent the group for getting in time trouble close to the
deadline. Good project management was also a sub goal. Close communication with
SINTEF, regular group meetings, updates, two-week reports and accounting were
all important parts in achieving M4.

21

3.3 Approaches

3.3.1 The framing

One of the criteria for the 3D printer was making the framing smaller. The original
framing was unnecessarily large, containing multiple unused physical functionalities.
The original idea was to make a new framing from scratch. This would be to make
the framing as small as possible.

This solution would be the most convenient considering it would be taking up less
space and transporting it would be easier. Despite this, the time used to achieve a
completely new framing would not be worth the potential lack of results elsewhere
in the project. Thorough planning and documenting all terminal blocks and wires
would take a lot of time. The most important goal is to get the system to print
metal 3D models, and a small framing does not directly affect this goal. Due to these
conclusions the chosen approach became to use the original framing and remove the
parts not needed in the final product. This approach still achieves the smaller
framing, and the group saves a lot of time.

The external control panel mounted on the outside of the framing was fully removed
[figure 21] due to its inconvenient positioning and replaced with a new screen and
keyboard in the rear part of the system. On the front side of the printer there
was a housing which made room for a rotating indexing table and a safety light
curtain system. Both of these features has been removed [figure 70]. The motor
and gearbox for the rotating indexing table was also removed. Figure 20 shows the
external control panel on the right.

Figure 20: The external control panel.

22

Safety measures

There were several safety measures built into the old framing. One of these are in
connection with the service door. While the door is open a signal prevents the laser
from running. This is a necessary safety measure as the light radiation from the
laser could be harmful. The doors safety system has been kept as it originally were.

Light curtains were attached on both sides of the framing. These were used to
prevent the user from putting their hands in the machine while the rotating indexing
table was active. Because the rotating indexing table was removed the light curtains
no longer had any use. The light curtains have therefore now been removed.

When the safety light curtain system was removed it caused a safety alarm in the
system. This is because the Rofin now received a “low” signal from the light curtains.
The Rofin interprets this signal as the curtains being breached, and the laser would
not run in this state.

After trial and error the solution to the error was found in the circuit diagrams. The
group realised that connecting a 24V signal as an input on port A3:6 would set the
light curtain value to “high”. The Rofin interprets this signal as the system being
ready to run with no breaches in the light curtain.

In addition to the service door safety function there is a light column at the top of
the framing. The column consists of a green, orange and red light. These lights give
the operator visual indicators about the state of the system. The red light states
that there is an error on the system which can for example be that the service doors
has been opened.

Figure 21: External control panel re-
moved.

Figure 22: Front housing removed.

23

New control panel
The old external control panel has been removed and replaced with a new compart-
ment, designed by the group, in the rear part of the framing. This can be done
because of the extra space in the back of the framing achieved from moving unnec-
essary parts. The compartment was created by cutting out a part of the back wall
with an angle grinder. The steel plate was then removed and a new part, designed
in Fusion 360, was fitted into the hole in the framing.

The new part was designed with measured holes. This is because the group wanted
the compartment to be screwed in place instead of being welded. This assessment
was made to make unscrewing the compartment in case of maintenance, alterations
or adjustments possible. The compartment also has flanges on every outer edge so
that there are no sharp edges exposed.

The right side wall of the new compartment was designed with open areas measured
to fit the old switch control panel, an LCD screen, a USB port and a cable gland.
The switch panel contains switches for emergency stop, auto/manual mode, laser
off/laser on/shutter open and two lamps. These are convenient to have in close
range of the working space in case of the immediate need of an emergency stop and
for monitoring the state of the laser.

The LCD screen has been connected to the Raspberry Pi and displays an user inter-
face (UI) for the execution of the PDS. The UI gives the operator the opportunity
to control parts of the printing process and visualize a plot of the sliced 3D model.
A live stream of the printing process is also visible on the UI via the inspection
camera mounted over the print bed.

The third and second smallest hole is for the USB port. The USB drive containing
3D models STL file is plugged into this port.

The fourth and smallest hole is for the cables to the lights in the ceiling. The
complete sketch which were sent to the company responsible for making the two
new parts are added in appendix F and G.

Figure 23: New control room design. Figure 24: New front design.

24

Lighting

The lighting inside the framing were initially mounted on the front housing. These
lights were removed as they were a part of the front. The group decided to invest
in new lighting for the printer. New LED strips with aluminium lists and plastic
diffusers were bought. The LED’s were mounted by drilling holes in the ceiling, and
aluminum lists were attached to the ceiling with nuts and bolts. The LED-strips
were glued to the aluminum lists, before the plastic diffusers were latched on to
complete the housing around the LED-strips. The plastic diffusers spread the light
evenly.

The lights were mounted on 3 sides of the inside roof of the framing, one at the front
and one on each of the long sides. The LED strips provide 1570 lumen per meter,
with a total of 3 meters of LED strips. The LED’s provide great and evenly spread
lighting inside for the whole workspace.

Figure 25: New lighting on the ceiling.

The same approach, used in the work space to attach the new LED strips, was used
inside of the new control room. Aluminium list with a length of 44 cm was mounted
on both sides. This gives excellent lighting to the operator.

Figure 26: New lighting in the control room.

25

3.3.2 Electrical circuits and terminal blocks

To further develop the functionality of the printer there was a need for new and
upgraded electrical circuits and wiring. New electrical cables has been made ready.
This has been done by researching the required length of wire and cutting it with
side cutter. Both ends are then stripped of isolation. If needed, a ferrule is pressed
together on both sides to create the connection points. The cables are now ready to
be connected in terminal blocks or directly to the system components.

Figure 27: Interfacing between different control units.

Removed components
The group has completely removed three components. The “Cedes safe 400” emitter
and receiver has been removed. These were the light curtains that previously were
used to control the rotary table and engine. The rotary table and engine has also
been removed. In addition, the National Instruments control unit was removed.
This unit was previously used as a control unit for triggering the laser to add an
additional layer. In this process the group studied the circuit diagrams to understand
what wiring could be removed without affecting any other part of the system, and
what wire bridges had to be implemented to keep systems in place.

26

Figure 28: Light curtains and control unit. Figure 29: Rotary table and engine.

Rewiring
When modifying the machine the group removed all of the wiring used by the obso-
lete hardware. Any new wiring added was added in an equivalent way. Old markings
were hidden inside the cable gates and new markings were added at the connect-
ing points. This was done to ensure reversibility of the groups modifications to the
highest degree possible, and to easier understand what modifications had been done.

The group used orange wiring when adding new components. This was done to avoid
mixing up new wiring with previous wiring. Also the color was deemed appropriate
as almost every wire added is to transmit a signal. The group made use of the
existing cable canals, but needed to add additional ones as the project developed.
The wires previously running through the front of the machine have now been moved
and extended so they could be run through the back.

To ensure that there are no modifications done due to uncertainty regarding the ex-
tra wiring the group has kept everything structured and organized. Any additional
wiring has been labeled according to the circuit diagrams. The circuit diagrams are
found in the appendices.

Relay circuits between the laser and the RPi
The two major components in the systems communication, the Rofin PC and the
Raspberry Pi, works on different voltage levels. The Raspberry Pi uses a maximum
of 3.3V as input/output (IO) and the laser uses 24V as IO. This means that a direct
signal from the laser to the RPi will fry the RPi and a direct signal from the RPi
to the laser will not be registered as a high input, but as noise. Relay circuits has
been integrated to solve this problem.

Figure 30: Relay closes a switch on receiving an electrical signal.

27

A relay is an electrically activated switch. In this system relays allow the RPi
and the laser to use its own output signal as an input signal with the switch being
controlled by the other device. This means that the RPi has a circuit from an output
to an input broken by a switch. This switch is controlled by an output on the laser.
When the laser outputs a high signal (24V), the switch closes and the RPi gets a
high signal (3.3V) without it being fried. The laser gets a high signal through a
similar circuit. Here the laser receives its own 24V output as an input controlled by
a switch controlled by the RPi.

Figure 31: The control system.

The box in the middle of figure 31 contains the relays connected to a circuit board.
The RPi is located in the bottom right corner. This system is built by the group.

28

3.3.3 Printing Chamber

The existing printing chamber was made from a stainless-steel pot with a 40 cm
diameter. The chamber consist of two parts with a height of 9 cm with a plexiglass
”adapter” between them. Tape was added in the joint as an attempt to further seal
the chamber. The lid is also made of plexiglass, with a round hole to put a special
made laser glass. This glass lets the laser through.

Originally the plan was that SINTEF would require a new chamber. This due to
concern about the chamber not being sealed properly. Not having a fully sealed
chamber could cause oxidation during the printing process [2.1.7]. However, due to
time limitations the group made an agreement with SINTEF to continue using the
old chamber as an temporary solution.

The old chamber will usable with some minor modifications. Argon gas has a higher
density than air, with 1.69 kg/m3 [34]. Air has a density of 1.225 kg/m3 for normal
conditions at 1 atmosphere pressure. This causes the argon gas to gather at the
bottom of the chamber and makes it possible to purge out the air. A diffuser stone
has been used to ensure that the argon gas is releases with a turbulent flow in all
directions. A laminar gas flow in one direction can cause the air and argon to mix
and it can take some time for the gases to separate again. By ensuring a turbulent
flow the difference in density will cause the argon to slowly fill the chamber. The
air will be forced out with minimal blending. This makes sure that the PDS is kept
within a protective atmosphere.

Figure 32: The printing chamber.

29

Argon gas
As explained in chapter 2.1.7, an unprotected atmosphere with normal levels of
oxygen would allow the printing material to react and oxidise, which is undesirable.
By filling the chamber with argon gas it is ensured that there is minimal amounts
of oxygen and that there will be no reactions in the melting process. This assures a
good print result.

3.3.4 New powder overflow-collector

The recoater moves powder from the powder chamber to the printing surface. Any
excess material will be pushed down a oblong hole at the end of the PDS-table.
From the previous solution of the PDS there was mounted a shelf underneath the
hole. A drawer was placed in this shelf and was used to collect excess powder. This
solution had a major flaw. The walls on the shelf caused the drawer to be just partly
beneath the hole. This caused some of the powder to spill.

To resolve this issue a solution based on the same principle was developed, but with
new design and dimensions. The wall causing the spill, located between the drawer
and the PDS-table, was removed to ensure that the drawer was located directly
beneath the hole. This would make sure that powder would miss. The shelf and
drawer was also increased in width and length. The components were designed in
Fusion 360, and 3D-printed. When the print was finished the ledge was glued on.
This allowed the drawer to slide on perfectly.

Figure 33: Components designed in Fusion 360.

3.3.5 New recoater

The recoater was, until the last two weeks of the project, moved by a linear Zaber
actuator. During a testing of the PDS the linear actuator started to malfunction.
When running the actuator it vibrated and made a continuous high pitched noise.
When trying to locate the cause of the problem the actuator appeared to get stuck
as it would refuse to move at all. By disassembling the actuator, cleaning all parts
and applying lubricant the linear actuator was moving again. However, the issues
persisted when running at “normal and high speeds”.

30

The linear actuator is made for extreme precision and not for repeated back and
forth motion at max distance and high speeds. This could be the reason it started
to malfunction. In testing the actuator used 32 seconds to move from start to end
position and back. As the actuator was very slow and malfunctioning the group
decide to find a new solution quite quickly with little time left of the project.

The solution was very inventive. It uses an old DVD-player as a linear actuator.
The 3D printed end-effector previously mounted on the Zaber actuator has been
attached with glue to the edge of the DVD drive. Using a relay soldered to the
button of the DVD-player it is possible to simulate the eject-button being pressed
and trigger it to open. This results in the powder being distributed evenly.

The new solution is more stable than its predecessor as it is attached at multiple
points in the direction of work. The previous solution was an extended arm attached
at one side. This caused the end to raise from the PDS-table when mounted to the
actuator. In addition, having just one mounting point causes more stress and force
on the outermost part of the recoater as the group has learned in physics during the
study course. This could cause the recoater to bend or not being swept completely
horizontal resulting in an uneven layer of powder. The solution is more stable and
straight, it is also much faster.

As mentioned the old linear actuator took 32 seconds to complete a layer. The new
recoater only takes 5 seconds. At 0.05 mm per layer, a model with a height of 15
mm demands 300 layers. The old recoater would use more than 2.5 hours in the
recoating process. The new recoater does the same job in about 25 minutes. This
is about 6 times faster.

Figure 34: New recoater solution.

31

3.3.6 File Transfer

A necessary step in the printing process is to upload the slices to the stationary
computer. Since it is running an old operating system on dated hardware it is
preferred that it only controls the laser. Therefore segmenting the 3D model is done
on external hardware. The DXF-files are created on the RPi and then moved to the
laser.

The first attempted solution was to upload the files to a memory stick. This did not
work as it appears that there are limitations implemented by Rofin. The machine
refused to recognise any memory stick but their own.

The next attempt was to set up a local network from a laptop to share files. Yet
again this proved to be problematic. This was because of differences in the way old
and modern operative systems manage file sharing. In every configuration tested the
computers responded to each other while running a network test. Still they refused
to share any files.

File Transfer Protocol (FTP) Server
The solution was to set up an FTP-server on the Rofin computer. A FTP server
is used for transferring files between devices over a network [35]. After attempting
both directions the only functioning solution was to set up the FTP server on the
Rofin computer. This setup gives the RPi the opportunity to send files to the Rofin
computer by being connected to the same local area network. The network is set
up on a router with a static IP configuration on both devices. This ensure a stable
file transfer.

When a memory stick is inserted the RPi fetches a STL file and moves it to a folder
for it to be manipulated by the slicing script. The files output by the slicing script
are transferred to a directory named FTP/files for print. This folder is connected
to the FTP folder on the Rofin computer. This means that files added to the folder
on the RPi are automatically moved to the correct folder on the computer.

Figure 35: Diagram of the file transfer setup.

32

Python script
In connection with the FTP server there has been made a python script on the
RPi. This script detects when a USB disk has been connected to the RPi and then
handles the files used for the printing. The script holds up the process and waits
until it detects a USB disk. When a USB disk has been detected the script transfers
the files over to the folder in association with the FTP server. When the printing
process is completed the script deletes the files from the FTP folder. This is done
so that there are no left over files from the last print. This script is attached at the
end of the report in the appendices.

33

3.4 Software development

3.4.1 Slicing script

An essential part of the printing process is to generate the slices from the STL-file.
To achieve this the group have made a python script. The script checks the inserted
USB drive for a STL-file and retrieves the desired layer thickness from an input in
the user interface. The program checks the coordinates of every point in the STL-file
and records what the highest value of the z-coordinate was. It then uses this value
as the height of the model.

The script now slices through the model in increments defined by the layer thickness
set in the UI. At every slice it runs through every facet and checks if the current
slices height is within the minimum and maximum z-values of the facet. If that is
the case, the script checks which of the three vectors intersect with an x,y plane
generated at the current height. The vector are created between the three corners
of the facet. It also generates a corresponding normal vector.

Figure 36: Two points of intersection at the second layer.

The group had to use principles that had been learned in the courses “robotics
(IELET20107)” and “linear systems (TTK4225)” to tell which vectors intersect.

A line and a plane can occur in 3 different states:
1. They have no point of intersection. This means that the line is parallel with the
plane.
2. They have an endless amount of points of intersection. This means that the line
is in the plane itself.
3. They intersect. This means that the line is not parallel with the plane.

34

One way of checking if the line and the plane is parallel is to use the normal vector
of the plane. If the line is perpendicular to the normal vector of the plane it will be
parallel with the plane.

To check if they are parallel take the dot product between the facet vector and the
normal vector. If the resulting dot product is zero, this confirms that the two vectors
are perpendicular. This, in turn, means that the vector is parallel with the plane
and they never intersect. Another conclusion to take from the result is that if the
dot product is not equal to zero there will be a common point shared between the
facet vector and the plane.

This shared point is where the line equation {x = xo + at, y = yo + bt, z = zo + ct}
satisfies the scalar form of the plane equation Ax+By +Cz +D = 0. The general
solution can be found by replacing x, y, z in the plane equation. The resulting
equation is A(xo + a ∗ t) + B(yo + b ∗ t) + C(zo + c ∗ t) +D = 0 where t is a factor
of the point between the start and end of the facet vector. If t is 0 ≤ t ≤ 1 there is
an intersection. If t is < 0.0 then there point of intersection is behind the vector. If
t is > 1.0 then the point of intersection is in front of the vector. Neither of these is
of any use to us.

The complete process of calculating the intersection:

• Write the equation of the line in its parametric form:

{x = xo + a ∗ t, y = yo + b ∗ t, z = zo + c ∗ t}

• Write the equation of the plane in its scalar form:

Ax+By + Cz +D = 0

• Use x, y, z corresponding parametric equations to rewrite the scalar equation
of the plane. This leaves a single-variable equation, that can now be solved
for t.

• Substitute t back into the parametric equations to find the x, y, z components
of the intersection.

First define a line L by using a point P and a directional vector
−→
Vd defined by point

P0 = (xo, yo, zo) = (1.085, 1.588, 0.085)

and point
P1 = (x1, y1, z1) = (1, 1.6, 0)

. P0 and P1 are the top and the bottom left corner of the facet in figure 36.

−→
Vd[a, b, c] = P1 − P0 => [−0.0845, 0.0121,−0.0854]

x = xo + a ∗ t

x = 1.085− 0.085 ∗ t

35

y = y0 + b ∗ t

y = 1.588 + 0.012 ∗ t

z = z0 + c ∗ t

z = 0.085− 0.085 ∗ t

Then write the equation of a plane in it’s scalar form using a known point on the
plane combined with the normal vector:

Pp(xp, yp, zp) = (1, 1, 0.03)

n = [A,B,C] = [0, 0, 1.03]

A(x− xp) +B(y − yp) + C(z − zp) = 0

0(x− 1) + 0(y − 1) + 1.03(z − 0.03) = 0

1.03(z − 0.03) = 0

Now solve for t by rewriting the scalar equation for the plane combined with the
parametric equation from the line.

0(x− 1) + 0(y − 1) + 1.03(z − 0.03) = 0

0(1.085− 0.085 ∗ t− 1)+ 0(1.588+ 0.012 ∗ t− 1)+ 1.03(0.085− 0.085 ∗ t− 0.03) = 0

1.03(0.085− 0.085 ∗ t− 0.03) = 0

0.05665− 0.08755t = 0

t =
0.05665

0.08755
= 0.06471

Now it is possible to substitute t back into the parametric equations to find the
x, y, z components of the intersection.

x = xo + a ∗ t

x = 1.085− 0.085 ∗ t

x = 1.085− 0.085 ∗ 0.06471 = 1.03

y = y0 + b ∗ t

y = 1.588 + 0.012 ∗ t

y = 1.588 + 0.012 ∗ 0.06471 = 1.59

z = z0 + c ∗ t

36

z = 0.085− 0.085 ∗ t
z = 0.085− 0.085 ∗ 0.06471 = 0.03

The line and plane intersects at P (1.03, 1.59, 0.03). This process is repeated for all
three vectors in a facet and every point of intersection is added to a list.

Figure 37: The outline created by drawing a polyline between all of the points.
.

This is done for every layer throughout the whole model and the slices are exported
as DXF-files.

When the script has run through all of the facets it will
have a complete list of all the points of intersection.
This list is then used to create a polygonal chain also
known as a polyline as shown in figure 37. A polyline is
a series of connecting lines. This is done to allow VLM
to recognise what lines are a part of which outline and
enables it to use logic on how to properly create the
hatch pattern of the layer.

Figure 38: The outline
hatched within VLM.
.

37

3.4.2 Visual Laser Marker (VLM)

After deciding to go with the selected solution the software installed on the existing
computer plays an important role in the systems functionality.

VLM, as previously mentioned in subsection 2.3.1 is a program installed on the Rofin
computer and is used for the laser marking process. It has a scripting environment
with a variety of built in functions that enabled the group to control the laser in a
desired way. The program does not have built in functions for SLM and SLS as the
lasers intended use is for marking and engraving, not 3D printing.

The principle behind SLM is to melt metallic powder in layers. The slices determine
the pattern which is going to be melted. The 2D drawings of the pattern is acquired
from the outline created at relevant cross sections of the 3D model. Since the laser
can handle 2D formats it is possible to import each slice and create a marking job
in VLM.

There are multiple file formats supporting advanced 2D models that are also exe-
cutable as marking objects in VLM. The first one is the original VLM file formats.
These files are created directly in VLM which is not an open standard. Therefore
it would be difficult for a python script to convert a STL-file into this format. The
second option is to use the bitmap format (.BMP). Bitmaps are capable of storing
2D digital images. This approach is possible. However, when converting a STL
model into a digital image all information regarding size is lost, making it unusable
when the system depends on high accuracy between every layer created.

The DXF file format was the third option and proved to be the solution. Since it
is an open standard possible to decipher just by reading through it as a text file.
After coming to this conclusion the group needed to make a python script able to
slice an STL-file and convert each slice into DXF format. This script is described
in detail in subsection 3.4.1.

With this script developed the DXF-files are ready to be used in the VLM software.
The program is as previously mentioned only designed for marking and engraving.
Therefore is does not originally support the execution of a sequence of layers with
varying 2D models.

For this problem the software has an opportunity to write scripts in a programming
language similar to Microsoft visual basic. This functionality is used to develop a
script allowing the laser to accomplish building 3D models.

For the process to be fully automated, the program would need to fetch a new DXF
file for each slice. This is because the software is limited to only handle one drawing
at once. The built in function “import.DXF” fetches a file from a specified folder by
its numerical value in ascending order. The following pictures are taken with mobile
camera. This is because it was not possible to achieve a good quality print screen
on any file formats from the old computer.

Figure 39: Function to define what DXF file is imported.

38

Figure 40: Function to import DXF file (dxfImport).

The file path of the specified folder that the function collects the files from is declared
in the ”Import/export” tab in the Editor settings in VLM shown in figure 41.

Figure 41: Declared file path for the folder that the ”import.DXF”-function.

The folders location is now C: → Program Files → VisualLaserMarker → Dxf →
Converted, as shown in the figure below:

Figure 42: Location of the folder.

For all the DXF-files to be executed in the correct order they are named in ascending
order, 1.dxf, 2.dxf, 3.dxf... n.dxf. The figure below shows an example of what the
folder could look like when a model is divided into 10 slices.

Figure 43: Example of the DXF files structured in the ”Converted”- folder.

39

Because “while” loops are not supported in the VLM software the developed script
uses a “for” loop iterating from 1 to 5000. This is enough iterations for any reason-
able print. In the loop the current number is used as the DXF file name. The files
are therefore fetched from the directory in the correct order. The script will run
until there are no more files left in the directory.

Hatching

The script that converts the STL file to DXF files [3.4.1] only creates the outline
of each slice. To print, the laser needs to melt the entire area inside the outlines.
To accomplish this there is a function in VLM called hatching. With this option
enabled, the figure in the DXF gets filled with a large number of lines based on
the specified line width. These lines also have a certain direction, and can overlap
if wanted. In the scripting environment there are functions that can import the
desired settings as well as change the angle of the hatching lines.

Figure 44: Function that imports hatching settings for the DXF files.

To avoid fracture, the lines should not go in the same direction for each layer. This
will cause weaknesses in the product. To get a more solid structure, the hatching
angle is incremented with 67 degrees for each layer.

Figure 45: Incrementing hatch angle.

Communication
For the system to run automatically the units have to communicate with each other.
For this task there is a port (XC3a) on the Rofin PC available for external com-
munication and GPIO pins on the RPi. VLM can communicate with XC3a via
Machine-functions (M-functions) in the scripting environment.

M-functions
The M-functions used for the communication between the units are declared and
uploaded in the Configurator on the Rofin computer. ”StartPowderDistrubution”
is set as an output to bit 14 which is pin nr. 13 on the XC3a port. ”FinishedPow-
derDistrubution” is set as an input to bit 10 which is pin nr. 1 on the XC3a port.
This can be seen in appendix C.

40

Figure 46: Sends signal for to the PDS to start.

Figure 47: Receives signal that PDS is finished.

Before the script can fetch a new file, the PDS needs information that the laser
is finished marking to start distributing a new layer of powder. The LaserMarker
function ”WriteIOBit” writes the M-function ”StartPowderDistrubution” to True.
The PDS receives this signal via the GPIO pins and starts to distribute a new layer
of powder. While the PDS is running, the function ”WaitonIOBit” waits for the
M-function ”FinishedPowderDistrubution” to turn True. When the PDS is finished
distributing the new layer of powder, VLM uses the function ”ReadIOBit” to read
if the M-function ”FinishedPowderDistrubution” has turned True.

Figure 48: Write, WaitOn and Read IOBit for communication between the units.

If the state of ”FinishedPowderDistrubution” is ”True”, VLM imports the next DXF
file from the directory and starts marking that file. This sequence will continue to
loop until there are no more files left in the directory to fetch and the 3D model is
complete. The complete VLM script is in the appendices.

41

3.4.3 The powder distribution system

USB to serial communication
The three stages described in subsection 2.2.3 communicates with the Raspberry
Pi (RPi) through Universal Serial Bus (USB) to RS232 signals. On the RPi side a
python script controls what is sent to the stages, and on the stages side the data
is received and executed on. The Zaber stages uses Zaber’s ASCII protocol [36] for
the devices settings and commands.

The Zaber protocol exists in two versions, the Zaber ASCII protocol and the Zaber
binary protocol. In this project the ASCII protocol [36] was used because it is
the default protocol for the Zaber devices and because it is a requirement for a
python library described later. Zaber devices listen to commands sent through the
serial port and replies immediately. The protocol consists of the commands used to
communicate with Zaber devices. These commands always start with a ”/” and ends
with a newline. The devices answers starts with an ”@” and ends with a newline.

Figure 49: Example of communication between PC and a Zaber device from Zaber
ASCII protocol [36].

The libraries
The python script uses two libraries to control and communicate with outside hard-
ware. These two libraries are Zabers zaber motion library [37] and a library called
RPi.GPIO [38] to control the RPis GPIO-pins. The full code is added as an appendix
in this report [Appendix I].

The zaber motion library is simple and well documented on Zabers website [37].
Zaber motion provides the possibility to communicate directly with the stages with
simple, built in commands. The library requires the connected devices to use the
ASCII protocol. With zaber motion implemented, the python script sends data
through the commands shown and described in the table below.

Table 3: Zaber motion commands. [37]

Function Functionality
axis.move absolute Moves the acquired axis to an absolute positon.
get axis Gets an Axis class instance. Allowing control over an axis.
axis.home Returns all axes to their homing positions.
axis.move max/min Moves the axis to the maximum/minimum position.
axis.get position Returns current axis position.
axis.move velocity Begins to move axis at specified speed.
library.set log output Sets library logging output.

The RPi provides the system with important functionality through its GPIO-pins
(General-Purpose Input Output-pins), see figure 50. These pins are digital signal

42

pins on the RPis circuit board and may be used as both input- and output-pins.
The GPIO pins are a way for the Raspberry Pi to control and monitor the outside
world, in this case outside hardware such as the laser and the powder distribution
table. This is done by integrating the pins in electronic circuits [39].

Figure 50: Overview of the Raspberry Pi’s GPIO-pins.

The GPIO-pins can be controlled through a python library called RPi.GPIO [38].
This library makes it possible to read and write to the GPIO-pins on the RPi and has
been integrated into the python control script. By doing this the powder distribution
table and the laser can communicate through the RPi. It is crucial that the powder
distribution table and the laser communicates. This is so that the process can work
in the correct order and nothing goes wrong during the printing process. Small
misses in the timings will lead to a corrupted end product, and potentially damage
the equipment.

Example of communication (figure 71):
- Laser says that the table can do its job.
- The table lifts and lowers the chambers then moves the powder from one chamber
to the other with the recoater and then back to nominal position.
- The table tells the laser ”I am done with my job, you can do yours”.
- The laser does it’s job.

The code
The script used to control the distribution table is called driving the stages.py. The
script uses the libraries discussed above to send messages using the ASCII-protocol
to the stages and to give outputs and collect input through the GPIO-pins. This
script is called in the main program when the user pushes the run-button in the UI
and is fully automated.

The python script also produces a logging file named communication log.txt. This
file is produced through the function ”Library.set log output” and it logs the data
messages sent from the computer to the stages and the stages’ answers.

43

Figure 51: Snippet collected from the logging file, communication log.txt. This is
the same communication as can be seen in figure 49 taken directly from Zabers
ASCII protocol.

Approach
The PDS is a very important part of the system. The group therefore wanted to
achieve its functionality early on in the project. The first attempt at communica-
tion between the computer and the PDS was with the USB protocol. The group
decided to use libraries called pyusb [40] and libusb [41]. These libraries are pretty
intricate, with little documentation and requires a large amount of knowledge of
the USB protocol. Using this library the group achieved little to no progress. At
first it seemed he group had missed a part of the communication. For example a
communication setup, like the three-way-handshake for the TCP-protocol [42].

After this attempt lead nowhere the group started to research other possible libraries
and found a library made by Zaber for use with Zaber devices. This library worked
almost immediately and the group got control over the PDS-table.

During further testing and development of the distribution table an error was found.
The Zaber devices moves on an absolute scale where the nominal position, the
starting position, equals zero. If the device is not in this nominal position when
the devices are turned on they might get desynchronized and move according to the
wrong nominal position. This was fixed by always starting with an initialization-
process and is why initializing is a obligatory step in the manual 3.5 before running
the printing process. The initialization process is done by setting all devices back
to their nominal position and then moving them to their assigned “home” position.
The devices now move according the correct nominal position.

3.4.4 Graphical User Interface

The Graphical User Interface (GUI) is made in python with the library tkinter [43].
Tkinter is the built in python module to make GUI’s. The interface created in this
project controls all functionality on the powder distribution table, sets variables,
shows a live video feed and a preview of the sliced figure and shows information
about the execution. It is built on the RPi and interacts through a touchscreen.

Design
The design of the GUI is made for simple interaction. It is built up by boxes with
each box being clearly separated. The boxes are set up underneath each other for
simple viewing. They are called information, parameters, progress, files, preview
and buttons.

44

The first box is an information box. It contains a step by step guide to start the
process. This is done for the user to have a clear overview of what needs to be done
in order to be ready for running the 3D printer.

Figure 52: The info box in the GUI.

The next box is called “Parameters”. In this box the user sets the necessary variables
to a desired value. This is done by writing the desired value in the text box. As the
GUI is shown on a touch screen it has no connected keyboard. Because of this, when
the user clicks to edit the parameter a number keyboard opens up on the screen,
seen in figure 54. Here the user can type in the desired value. The set value is
clearly shown on the right side of the box and is set as the user presses the “Done”
button.

Figure 53: The parameters-box in the GUI.

Figure 54: The pop up keyboard.

The progress box of the GUI is a text screen. This screen is updated with information
about progress and instructions for moving forward as the user interacts with the
system.

45

Figure 55: The progress-box in the GUI.

The next two boxes are “Preview” and “Files”. Both of these contain a single
button. When the “Preview” button is pressed a popup window with a pyplot of
the figure is shown. When the “Convert file” button is pressed the progress text
box is updated with a progress-bar. The bar indicates how far the slicing-process
has come. There is also a percentage indicating the same thing.

Figure 56: The text box with progress bar.

The last part of the GUI is four buttons. The buttons say “Initialize table”, “Run”,
“Close”, “Eject Print Disk”, “Show video” and “Close video”. The design also uses
simple color coding to improve user experience. The “Run” button is colored green
and the “Close” button is colored red.

46

Figure 57: Buttons box.

Functionality
The GUI controls the initialization and the start of the powder distribution table
through the buttons named “Initialize” and “Run”. These buttons trigger functions
in the python script “drive the stages.py”. This is the script made for functionality,
such as movement, on the powder distribution table.

The “Preview” button in the GUI shows a preview of the figure from the selected
file. Behind this button is a python script called “Butcher.py”. The butcher-script
slices the figures outline with the desired layer thickness and plots the result, as can
be seen in figure 58. In this figure a 3D-model of a hollow cap has been sliced up
and plotted layer by layer.

Figure 58: Pressing the Preview-button shows a pyplot of the figure from the selected
file.

47

In the Files box the “Convert file” button triggers the slicing script. This script
converts the STL figure into slices based on layer thickness and puts them in a
folder on the FTP server called files for print. The close button closes the GUI
and the eject print disk button lifts the printing chamber so the print disk can be
removed. If the show video button is pressed a window with a live video from a
webcam is displayed. The video can be closed again with the close video button.

Safety
The distribution table has no concept of what goes on in the GUI unless the script
tells it. Therefore, to make sure that the printing is running smoothly and nothing
is running in the wrong order, the GUI has been implemented with some safety
mechanisms.

As the info box suggests the distribution table should be initialized and a layer
thickness set before running the program. If these criteria are not fulfilled when the
program starts, the program will stop and output an error message. Because of this
the script has been implemented with code that stops the user from pressing the run
button without setting a layer thickness and running the initialize sequence. If this
is still done, the progress box is updated with a messages telling the user to fulfill
the criteria.

As it is not possible to create a preview of the figure without setting a layer thickness
there has been implemented an identical safety method. Pressing the preview button
before setting a layer thickness will update the progress box with a message telling
the user to set the layer thickness before generating a preview.

Figure 59: Safety messages telling the user what needs to be done before the program
can complete the desired task.

48

3.5 Manual

To start the printing process there are two parts that need to run. The first one is the
python scripts on the Raspberry Pi controlled by the user interface and the second
one is the visual basic script made in the VLM software on the Rofin computer.

3.5.1 Setting up the Powder distribution table

Readying the distribution table for execution is done through the user interface on
the Raspberry Pi, and is done through four obligatory steps. There are also a few
optional steps to get a better understanding and to make sure the process is going
as expected.

Step 1: Enter data
Plug a memory USB drive with the STL file into the USB port on the inside wall of
the control room. The Raspberry Pi automatically moves the files from the USB-
drive to the correct folder.

Step 2: Set the layer thickness
Setting the layer thickness is a necessary step. This is done by pressing the entry
box in the parameters box. A numbers keyboard will appear and the user input the
desired value. Click “Done” in the numbers keyboard. The applied layer thickness
is shown in the same box.

Figure 60: Parameters-box

Step 3: Show preview (Optional)
Pressing the “Show Preview”-button displays the input STL file in a plot. Here the
user can see the outline of the figure about to be printed.

Figure 61: Preview-box

Step 4: Convert file
Press the “Covert file”-button. This takes the STL file and converts each layer into
its own DXF file. These are the files that are sent to the FTP-folder on the Rofin
computer.

Figure 62: Convert-box

49

Step 5: Run
Pressing the “Run” button sets the distribution table ready, and is now waiting for
a signal from the laser.

Figure 63: Buttons-box.

Step 6: Show video (Optional)
If the user wants to view the process while it is going the user can press the “Show
video” button. This opens up a window with a live video from the inspection camera.
The window can be closed again with the “Close video” button.

Step 7: Eject the print disk
After the print it is necessary to lift the print bed to its top position in order to
remove the finished product. This is done by pressing the “Eject print disk” button.

3.5.2 Setting up the laser

Readying the laser for execution is done through the laser console software and the
VLM software. It is done through four obligatory steps.

Step 1: Start reference axis
Navigate into the laser console. On the bottom of the page press the “start reference
axis” button.

Figure 64: Buttons-box.

Step 2: Open shutter
On the button panel turn the right key to “shutter open” position. This opens the
shutter, allowing the laser to come through.

Figure 65: Shutter open.

50

Step 3: Initialize hardware
Open the VLM software. Press the “initialize hardware” button. This button
establishes the connection between the laser and the VLM software.

Figure 66: Initialize hardware.

Step 4: Load job
Press the “Load Job” button. This button loads the job onto the laser.

Figure 67: Load job.

Step 5: Start marking
Press the “Start marking” button. This runs the laser and the printing process is
now running.

Figure 68: Start marking.

51

Run Eitri software

Plug in USB memory
stick

Input
parameters

Convert file

Initialize
distribution

table

Run program

Press "start reference
axis" [Manual, setting
up the laser, step1]

Open VLM

Press
initialize

hardware

Press load
job

Open Shutter

Run job

The PC signals
powder distribution to

run

Powder distribution
table adds a layer

Powder distribution
table signals the PC

to start melting
process

Laser melts metallic
powder

If there are more
layers to print

Powder distribution
table signals Eitri that

the job is finished

Eitri stops. Print is
finished

Raspberry Pi Laser

3.6 Flowchart of the system

52

4 Results

This section describes the groups results from the bachelor thesis.

4.1 End product

The end product of this bachelor is a functional 3D printer. The group has developed
software and a communication system between all the units in the printer system.
The physical system consist of the framing, the chamber, the powder distribution
system and the laser.

There has been major changes to the framing of the system. The new housing
fits well in the rear, and creates the space for a brand new screen and keyboard.
Together with these two components a touch screen, connected to the RPi, mounted
on the right wall in the housing makes up the new control unit. The programmed
GUI appears on this screen. An endoscope attached underneath the laser makes
it possible to watch the printing process on the RPis screen. This control panel is
a major upgrade to the previous control panel. It also takes up significantly less
space.

The system has become lighter and smaller. The length has been reduced from
2.21 meters to approximately 1.5m. This was achieved by removing the old front
housing and control panel. Inside the framing the light bulbs, safety light curtains,
motor and rotary indexing table has been removed as they are not necessary in the
new system. The result of these modifications are an optimization of volume and a
major weight reduction.

4.1.1 Print process

The print process is now automatic from the moment the operator pushes the “Run”
button on the GUI and the “Start Marking” button in VLM. Before the operator
can start the process, the powder bed must be filled with powder and the chamber
must be purged with argon gas. The operator needs a 3D model of the desired print
saved as a STL file. This file must be transferred to a memory stick. This stick is
connected to the USB port in the control room.

On the touch screen the operator can click on the “convert file” button. The STL
file will now be sliced, in the slicing script made by the group, using the desired
layer thickness. The script will produce DXF files and store them in a folder on
the RPi. This folder is connected to a folder on the Rofin computer. This makes it
possible for the VLM to import the files.

A VLM script has been created to give the system functionality to print 3D models
with varying x and y coordinates and to import the previously mentioned DXF files.
This script automatically opens when the system is initialised. The process is now
ready to start. When the process is running the communication system will move
the process forward described in subsection 4.2.

The laser melting one layer equals one DXF file used. This is repeated until every
DXF file is used, and the 3D model is finished.

53

4.1.2 Safety

The new framing is fully closed. This protects the operator and others in the area
from dangerous light radiation. A safety mechanism prevents the laser from running
when the doors are open. This is a necessary feature that prevents users or spectators
from looking directly at the laser while it is running. A camera is mounted next to
the PDS. This allows the operator to overlook the process in a safe way from the
control panel.

The lasers control panel is mounted in the control panel compartment underneath
the RPis screen. An emergency stop button is included. Pushing this button would
immediately stop the laser from running and is an essential safety mechanism for
urgent stops.

Figure 69: New front panel mounted. Figure 70: The new control room.

4.2 Communication

The systems general communication is summed up in four steps. The first step is
the RPi being notified by the laser to start the printing process. The RPi then
signals the powder distribution system (PDS) to apply a layer. The PDS signals
back to the RPi after the powder distribution is finished. When the RPi receives
this signal it tells the laser to run the melting process. After the melting process is
finished, the laser tells the RPi that it has completed the current layer and a new
layer can be distributed. Figure 71 illustrates the communication.

54

Figure 71: Illustration of the systems general communication.

4.2.1 Step by step

Step 1: Raspberry Pi → Powder distribution-table:

The communication between the RPi and the powder distribution-table is done
through a python script on the RPi. This python script uses two libraries to connect
software and hardware. Only one of these are used for communicating between the
RPi and the powder distribution-table. This is the zaber movement library [37]. The
zaber movement library is specifically built for moving zaber devices like the ones
that control the distribution table. This library constructs messages following the
Zaber ASCII-protocol [36]. An example of a message is ”/1 25 move abs 146982:6C”.
More on how this communication works is described in subsection 2.2.3.

Step 2: Powder distribution-table → Raspberry Pi:

The communication between the powder distribution table and RPi is the table’s
answer to the previous step. The zaber motion library has functionality to read
the answer from the devices as well as generate and send messages. Because of the
answers from the devices can be read. When the devices are done with their task
they reply with a message including ”OK IDLE”. By listening for this message
the script can understand when the powder distribution is done. An example of a
message is ”@01 1 25 OK IDLE –0”. More on how this communication works is
described in subsection 2.2.3.

Step 3: Raspberry Pi → Laser:

The communication between the RPi and the laser is the RPi sending a high sig-
nal through one of its GPIO pins. This is done by using a python library called
RPi.GPIO [38]. A high output on the RPi means a 3.3V output. As the laser needs
a 24V input for it to be read as high the signal needed to be run through a relay.
This relay closes a switch on a high signal from the RPi and allows the laser to
read one of its own 24V outputs as an input. This signal tells the laser that the
distribution process is done and it can start the melting process again.

55

Step 4: Laser → Raspberry Pi:

The communication between the laser and the RPi is a message from the laser saying
that it has finished the melting process. This message is sent by the laser setting a
high output. This means setting a 24V signal on an output for the RPi to read. As
the RPi cannot endure a 24V signal [44], the signal runs through a relay. This relay
controls a switch that allows the RPi to read on one of its own output as an input.

Figure 72: Communication between units.

This communication works without any issues. Throughout the print testing there
has been no issues in connection with the timings of the communication system or
any signals getting lost in transmission.

4.3 Print testing

When the full system was up and running the group started testing printing pa-
rameters. The testing was done to acquire an understanding of how the parameters
affected the printing result. This was done by gradually changing the parameters
of the laser and looking at what parameter changes affected the print in what way.
The group was also looking for what combination of parameters provided the best
print result.

The specific parameters being tested and experimented with were the laser power,
layer thickness, laser pulse frequency, the lasers speed, the overlap and adjusting the
height of the laser compared to the print table.

The discovered results from testing each individual variable is:

• The lasers power affects how much energy the metallic powder is melted with.
More power equals more energy delivered to the powder.

56

• The layer thickness controls how much powder is distributed. This affects the
amount of energy required for the laser to properly melt it.

• The laser pulse frequency represents the rate of the pulses. This affects how
long each pulse last and then how much energy they deliver. Higher frequen-
cies gives shorter pulses. Shorter pulses transfers less energy per pulse, but at
a more consistent rate. Lower frequencies gives longer pulses. Longer pulses
transfers more energy but can quickly result in the powder layer being dis-
rupted by the impact.

• The lasers speed defines how fast the laser moves. The slower the laser moves,
the more contact it has with the powder. Therefore, a slower laser speed will
result in more melting of the powder and a higher laser speed will result in
less melting of the powder.

• The overlap variable controls how much one line in the hatching will overlap
with the previous one. A higher percentage of overlap will result in the powder
being exposed to the laser for a longer amount of time. This helps contribute
to a smoother melting.

Figure 73: An example of how print testing was done.

Figure 73 shows an example of a test print. In this test the group was trying to
figure out how to get a complete printed figure without the metal melting into small
pearls. This was done by changing the parameters step by step for each print of
a star. The metal gathering in small pearls can clearly be seen in print number 7
(fourth from the left on the second row).

57

4.4 Print quality

4.4.1 Without protective atmosphere

As explained in the background theory in subsection 2.1.7 about argon gas and
oxidation, printing in an unprotected atmosphere will cause a corrupted result. Be-
fore the group could acquire argon gas, printing in an unprotected environment was
tested. The result from this test can be see in figure 74 and 75. This is the front
and back of the same print.

Figure 74: The upper side. Figure 75: The under side.

The two pictures clearly shows that the tests results are poor without a protective
atmosphere. The structural integrity of the product is greatly reduced. The product
is very porous and it breaks easily. The product also has low conductivity. All of
these qualities are unwanted and a result of the print process being in an unprotected
environment with too high levels of oxygen. This product is unfit for any structural
testing of alloys.

4.4.2 With protective atmosphere

The printed result with a protective atmosphere is a lot better quality than without
protective atmosphere. In this print the layer thickness is set to 0.8 mm. The first
figure consists of only one layer and the second consists of two layers.

Figure 76: Test print with one layer. Figure 77: Test print with 2 layers.

You can see from the pictures that the metal looks a lot more coherent than the ones
printed without a protective atmosphere. Further testing with different parameters
was done to achieve a continuous improvement of the print quality, but no single
solution exists as this varies depending on the size of the figure being printed as well
as the thickness of the layer.

58

5 Discussion

5.1 The work process

The development of the metal 3D printer and its communication was a complex and
difficult task. The process required a lot of knowledge within several different fields
of study. Programming and work with industrial electrical circuits has been the two
main jobs. The group had a considerable amount of background information to read
regarding the laser systems functionality and previous work which had been done.
Considering that the group had little experience with 3D printing in general, it
proved difficult to estimate the projects time consumption and how the end product
would turn out.

The project has without a doubt been very educational for the group members.
Throughout the project theory from various subject has been put to good use.
Especially subjects regarding mathematics, digital communication, electrical circuits
and industrial control systems has come in handy. The project has given great
practice in practical work. This is something which regular coursework provides
little training in, as most subject are focused on theoretical aspects.

The bachelor thesis has also given good training in teamwork. This is an essential
part of the students future careers as engineers. The group has realised that good
project management requires a collective effort and continuous information flow
within the group and to the employer.

In the preliminary project report the group decided on four main points to achieve
good project management. These were, weekly Monday meetings to decide the
weeks goal, weekly Friday meetings, and more frequently later on in the project,
for reporting, collective discussions surrounding disagreements and continuous doc-
umentation. All of these four points has been achieved during the project. The
group is specially pleased with the decision to update the report week by week.
This is because, as the project developed, the group could look back on when and
why certain solutions were chosen and why problems occurred. This helped majorly
in further development and in understanding the process of development.

5.2 Product

The main task of the project was to develop a communication system between the
3D printers components. To accomplish this goal the group could have gone for
several different solutions considering the amount of communication protocols that
exist today. The operating system Windows XP Embedded on the Rofin computer
is very old in computer context. This made it challenging to communicate with
newer computers. For this reason the group decided to develop a hardware solution
for connecting the old computer and the RPi. This proved to be a good choice as
no signals will be interfered with or get lost in transmission. The communication is
very robust.

Implementing the Raspberry Pi was a good decision. It became an intermediary
between the PDS and old computer, with the ability to handle operations the old
computer could not. For instance it runs the scripts for controlling the PDS and

59

the slicing script. Also the GPIO pins was needed for controlling the sequence in
the printing process. The installed Raspberry Pi OS operating system on the RPi
is based on Linux, and proved useful in making the GUI. A RPi also cost a fraction
of the price compared to a industrial computer. The project would not have been
possible without this component.

The group decided to use a memory stick transferring STL files to the Rofin com-
puter. The desirable solution would be to wirelessly transfer the files, but this proved
impossible due to the differences between the Rofin computer and the RPi.

Another task was to reduce the volume used by the system. The first thought
were to completely build a new frame design for the laser and 3D printer, but the
group realized it was possible to optimize the framing which was already in use.
The laser required more or less the same height and width as the working space
already provided. The terminal blocks, power supply and wiring also needed space
underneath the work table. It is also favorable to have the work table about 70 cm
above the floor, for easy access and good working conditions. These requirements
were fulfilled with the existing framing and the group agrees that it was the right
decision to keep the old framing. Both because it works ideally and because it saved
the project a lot of time to focus on the communication and functionality of the 3D
printer. The group believes the potential of the framing was maximized, and are
extremely pleased with the new control panel.

The linear actuator malfunctioned at the same time as the rest of the system was
ready for testing. This costed the project about a week of work as the group could
not run tests until a new recoater was acquired. This was a frustrating period of
the project as the actuator was not a solution the group was responsible for. This
extra week could have been used for testing 3D prints with different layer thickness
and parameters to get an optimal result. Much of the time after the new recoater
was finished were used on completing the report due to the deadline.

The very first printing tests were done without argon gas in the chamber. The result
was a super porous and weak “metal” sample, as shown in 4.4.1. Later print tests
with the chamber filled with argon gas left a shiny and compact metal object. This
proved the importance of using an inert gas to the group.

5.3 Further development

Although the group is very pleased with the solutions achieved in this project,
there are a few possible improvements and alternations. Due to the broadness and
magnitude of the project there are some problems the group would have solved
differently had there been more time available.

5.3.1 Different linear actuator

The linear actuator from Zaber used from a previous project was not suited for its
task. Due to mechanical wear it malfunctioned and was replaced with a creative
solution during the last two weeks. This solution was necessary for testing the
system before the delivery date arrived and worked its purpose but is obviously not
a satisfactory permanent solution.

60

A more optimal solution would be to invest in a motor and actuator suited for
moving back and forth horizontally many times. This would be a more industrial
and stable solution and would also look better. The new solution would also have to
be rigid in the vertical direction so that the recoater distributes the powder smooth
every time. This is an easy implementation but the delivery time for this kind of
motor was too long.

5.3.2 Chamber

It’s not possible to achieve a good quality print in open atmosphere due to oxidation.
The chamber were the PDS is located has to be free of oxygen, and is purged with a
noble gas to achieve this. The current chamber is not ideal because it is not properly
sealed, neither on the sides or in the top. This makes it difficult to maintain a low
oxygen environment during the printing process. Because this part of the system was
not a part of our task the group continued using the existing chamber in agreement
with SINTEF.

The area were the laser started to melt a new layer left a uneven and black surface.
This can be seen on the right side of the metal object at figure 77. The groups
supervisor at SINTEF was certain that this is caused by oxidation. This means the
chamber has problems with keeping the print area free of oxygen.

To get an even better result the current chamber has to be replaced with a more
fitting chamber optimized for maintaining an oxygen free environment. This is a
development that also could have been completed had the group had more time left
at the end of the project.

5.4 SINTEFs feedback

At the end of the project the group received feedback from the supervisor at SIN-
TEF. The feedback was very good. It was as follows:

SINTEF is very satisfied with the solutions chosen by the group in the development
of a miniature 3D printer for alloy development. There has been developed multiple
innovative solutions. The communication system between all components is a very
good and well thought out innovation. The algorithms for slicing the geometry into
layers that will be printed is completely new and innovative. The interface and
physical layout is very good. The physical restructuring of the framing makes the
printer more functional and flexible for research. First attempts at printing shows
that it is possible to print 3D geometries. For SINTEF and NTNU this new machine
will reduce time and cost and we have now received a tool suitable for master and
Phd work.

61

6 Conclusion

This chapter will summarize the project through a few conclusions. The main
challenge was to create a communication system between the Rofin laser and the
PDS This challenge has been successfully accomplished through the use of a RPi.
The communication between the units runs without faults and errors. This allows
the system to print in 3D.

The system will also be able to produce different three dimensional geometric struc-
tures from metal powder with the correct parameters. The printing results can be
optimized with further research into the parameters and making sure the printing
area is free of oxygen.

The physical components designed by the group fits well into the assigned areas
of the framing. By making the framing smaller the system now takes up a lot
less area and has a drastically reduced weight. The old control panel has been
removed and replaced with a new upgraded control panel and work station in the
new compartment in the rear part of the system.

The group is very pleased with the outcome of the bachelor thesis as a whole. When
starting to work on the project the group knew that it was a challenging task. The
group was set on delivering a functional system through consistent work and by
putting our knowledge into a physical product.

As the product is finished and the 3D printer is running the group is confident that
the product is satisfactory and is going to be of good use to SINTEF. This conclusion
is based of the results seen in testing and the systems communication working from
start to finish without any malfunctions.

As can be seen in subsection 5.4 SINTEFs assessment of the project is in accor-
dance with the groups assessment. SINTEF agrees that the finished product is well
produced and is going to be of good use to SINTEF.

62

7 References

usynlig

[1] 3D Metal Printing Technology - ScienceDirect. https://www.sciencedirect.com/
science/article/pii/S2405896316325496. (Accessed on 05/13/2022).

[2] 3D Printing File Formats: Everything you need to Know - Additive-X. https:
//www.additive - x . com/blog/file - formats - used - 3d - printing/. (Accessed on
05/05/2022).

[3] The History of Tessellations: The Mathematical Art of Repeating Patterns.
https://mymodernmet.com/tessellation-art/. (Accessed on 04/20/2022).

[4] STL File Format. https://docs.fileformat.com/cad/stl/. (Accessed on 05/19/2022).

[5] What is an STL file? — Everything You Need to Know About This File For-
mat. https://www.sculpteo.com/en/3d-learning-hub/create-3d-file/what-is-an-
stl-file/. (Accessed on 05/05/2022).

[6] DXF File Format. https : / / docs . fileformat . com / cad / dxf/. (Accessed on
04/20/2022).

[7] DXF file - What it is and how do you open it? — Adobe. https://www.adobe.
com/creativecloud/file-types/image/vector/dxf-file.html#:∼:text=DXF%20is%
20short%20for%20Drawing,3D%20drawings%20during%20product%20design..
(Accessed on 05/19/2022).

[8] Raster vs. Vector: Understanding Design File Types 101. https://www.vecteezy.
com/blog/design- tips/raster- vs- vector#:∼ :text=Raster%20files%20consist%
20of%20tiny,distortion%20or%20loss%20of%20quality.. (Accessed on 05/19/2022).

[9] Study on STL-Based Slicing Process for 3D Printing. https://repositories.lib.
utexas.edu/handle/2152/89888. (Accessed on 05/13/2022).

[10] IV. Slicing. As Lulzbot says, “slicing software. . . — by Garrett Spiegel — 3D
Printing in O&P — Medium. https://medium.com/3d-printing- in- o- p/iv-
slicing-72a9515f44bc. (Accessed on 04/04/2022).

[11] Metal powder for additive manufacturing — Metal powder — Sandvik. https:
//www.metalpowder.sandvik/en/products/applications/additive-manufacturing/.
(Accessed on 05/13/2022).

[12] Materials Used in Selective Laser Melting (SLM) - Matmatch. https://matmatch.
com/learn/material/materials-used-in-selective-laser-melting-slm. (Accessed on
03/31/2022).

[13] Sudha Cheruvathur, Eric A Lass, and Carelyn E Campbell. “Additive manu-
facturing of 17-4 PH stainless steel: post-processing heat treatment to achieve
uniform reproducible microstructure”. In: Jom 68.3 (2016), pp. 930–942.

[14] What Is Oxidation? Definition and Example. https://www.thoughtco.com/
definition-of-oxidation-in-chemistry-605456#:∼:text=Oxidation%20is%20the%
20loss%20of,%2C%20molecule%2C%20or%20ion%20decreases.. (Accessed on
05/12/2022).

63

https://www.sciencedirect.com/science/article/pii/S2405896316325496
https://www.sciencedirect.com/science/article/pii/S2405896316325496
https://www.additive-x.com/blog/file-formats-used-3d-printing/
https://www.additive-x.com/blog/file-formats-used-3d-printing/
https://mymodernmet.com/tessellation-art/
https://docs.fileformat.com/cad/stl/
https://www.sculpteo.com/en/3d-learning-hub/create-3d-file/what-is-an-stl-file/
https://www.sculpteo.com/en/3d-learning-hub/create-3d-file/what-is-an-stl-file/
https://docs.fileformat.com/cad/dxf/
https://www.adobe.com/creativecloud/file-types/image/vector/dxf-file.html##:~:text=DXF%20is%20short%20for%20Drawing,3D%20drawings%20during%20product%20design.
https://www.adobe.com/creativecloud/file-types/image/vector/dxf-file.html##:~:text=DXF%20is%20short%20for%20Drawing,3D%20drawings%20during%20product%20design.
https://www.adobe.com/creativecloud/file-types/image/vector/dxf-file.html##:~:text=DXF%20is%20short%20for%20Drawing,3D%20drawings%20during%20product%20design.
https://www.vecteezy.com/blog/design-tips/raster-vs-vector##:~:text=Raster%20files%20consist%20of%20tiny,distortion%20or%20loss%20of%20quality.
https://www.vecteezy.com/blog/design-tips/raster-vs-vector##:~:text=Raster%20files%20consist%20of%20tiny,distortion%20or%20loss%20of%20quality.
https://www.vecteezy.com/blog/design-tips/raster-vs-vector##:~:text=Raster%20files%20consist%20of%20tiny,distortion%20or%20loss%20of%20quality.
https://repositories.lib.utexas.edu/handle/2152/89888
https://repositories.lib.utexas.edu/handle/2152/89888
https://medium.com/3d-printing-in-o-p/iv-slicing-72a9515f44bc
https://medium.com/3d-printing-in-o-p/iv-slicing-72a9515f44bc
https://www.metalpowder.sandvik/en/products/applications/additive-manufacturing/
https://www.metalpowder.sandvik/en/products/applications/additive-manufacturing/
https://matmatch.com/learn/material/materials-used-in-selective-laser-melting-slm
https://matmatch.com/learn/material/materials-used-in-selective-laser-melting-slm
https://www.thoughtco.com/definition-of-oxidation-in-chemistry-605456##:~:text=Oxidation%20is%20the%20loss%20of,%2C%20molecule%2C%20or%20ion%20decreases.
https://www.thoughtco.com/definition-of-oxidation-in-chemistry-605456##:~:text=Oxidation%20is%20the%20loss%20of,%2C%20molecule%2C%20or%20ion%20decreases.
https://www.thoughtco.com/definition-of-oxidation-in-chemistry-605456##:~:text=Oxidation%20is%20the%20loss%20of,%2C%20molecule%2C%20or%20ion%20decreases.

[15] The effect of powder oxidation on defect formation in laser additive manu-
facturing - ScienceDirect. https://www.sciencedirect.com/science/article/pii/
S1359645418309698. (Accessed on 05/13/2022).

[16] inertgass – Store norske leksikon. https : / / snl . no / inertgass. (Accessed on
03/30/2022).

[17] Bond Energy — Chemistry for Non-Majors. https ://courses . lumenlearning .
com/cheminter/chapter/bond-energy/. (Accessed on 05/10/2022).

[18] Pauzon. Camille. Effect of argon and nitrogen atmospheres on the properties
of stainless steel 316 L parts produced by laser-powder bed fusion. https ://
research.chalmers.se/publication/510755/file/510755 Fulltext.pdf. (Accessed on
04/26/2022). Mar. 2019.

[19] Serial communication Basic Knowledge -RS-232C/RS-422/RS-485- — CON-
TEC. https://www.contec.com/support/basic-knowledge/daq-control/serial-
communicatin/#:∼:text=Serial%20communication%20is%20a%20communication,
one%20bit%20at%20a%20time.. (Accessed on 05/12/2022).

[20] File Transfer Protocol (FTP) Definition. https : / /www . investopedia . com /
terms/f/ftp-file-transfer-protocol.asp. (Accessed on 05/12/2022).

[21] What is Python? Executive Summary — Python.org. https://www.python.org/
doc/essays/blurb/. (Accessed on 05/19/2022).

[22] Python scripts and modules — AMath 483/583, Spring 2013 1.0 documenta-
tion. https ://faculty.washington.edu/rjl/classes/am583s2014/notes/python
scripts modules.html. (Accessed on 05/19/2022).

[23] PowerLine F Operator’s Manual Version 1.2.6 (RCU).

[24] Combiline Advanced RT 800/RT 1000 Manual, Version 1.0, 2007.

[25] Hovedrapport.pdf. https://drive.google.com/file/d/12y9oDkHQdA5QgiTuCuc4MMH6sB-
YDepq/view?usp=sharing. (Accessed on 04/20/2022).

[26] X-VSR-SV1 User’s Manual - Zaber. https://www.zaber.com/manuals/X-VSR-
SV1. (Accessed on 04/01/2022).

[27] X-LSM User’s Manual - Zaber. https ://www.zaber .com/manuals/X- LSM.
(Accessed on 04/01/2022).

[28] X-VSR20A Specifications - Zaber. https://www.zaber.com/products/vertical-
stages/X-VSR/specs?part=X-VSR20A. (Accessed on 04/21/2022).

[29] X-LSM100A Specifications - Zaber. https://www.zaber.com/products/linear-
stages/X-LSM/specs?part=X-LSM100A. (Accessed on 04/21/2022).

[30] Best pris p̊a Raspberry Pi 3 Model B+ - Se priser før kjøp i Prisguiden.
https : //prisguiden . no/produkt/ raspberry - pi - 3 - model - b - 326717. (Accessed
on 04/28/2022).

[31] Raspberry Pi OS – Raspberry Pi. https ://www. raspberrypi . com/software/.
(Accessed on 05/18/2022).

[32] 3 in 1 USB Type C Endoscope 7mm Inspection HD Camera For Android
PC Borescope kjøp billig — fri frakt, ekte anmeldelser med bilder — Joom.
https://www.joom.com/nb/products/60b5cc0ced7e3201f0fa7185. (Accessed on
05/15/2022).

64

https://www.sciencedirect.com/science/article/pii/S1359645418309698
https://www.sciencedirect.com/science/article/pii/S1359645418309698
https://snl.no/inertgass
https://courses.lumenlearning.com/cheminter/chapter/bond-energy/
https://courses.lumenlearning.com/cheminter/chapter/bond-energy/
https://research.chalmers.se/publication/510755/file/510755_Fulltext.pdf
https://research.chalmers.se/publication/510755/file/510755_Fulltext.pdf
https://www.contec.com/support/basic-knowledge/daq-control/serial-communicatin/##:~:text=Serial%20communication%20is%20a%20communication,one%20bit%20at%20a%20time.
https://www.contec.com/support/basic-knowledge/daq-control/serial-communicatin/##:~:text=Serial%20communication%20is%20a%20communication,one%20bit%20at%20a%20time.
https://www.contec.com/support/basic-knowledge/daq-control/serial-communicatin/##:~:text=Serial%20communication%20is%20a%20communication,one%20bit%20at%20a%20time.
https://www.investopedia.com/terms/f/ftp-file-transfer-protocol.asp
https://www.investopedia.com/terms/f/ftp-file-transfer-protocol.asp
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://faculty.washington.edu/rjl/classes/am583s2014/notes/python_scripts_modules.html
https://faculty.washington.edu/rjl/classes/am583s2014/notes/python_scripts_modules.html
https://drive.google.com/file/d/12y9oDkHQdA5QgiTuCuc4MMH6sB-YDepq/view?usp=sharing
https://drive.google.com/file/d/12y9oDkHQdA5QgiTuCuc4MMH6sB-YDepq/view?usp=sharing
https://www.zaber.com/manuals/X-VSR-SV1
https://www.zaber.com/manuals/X-VSR-SV1
https://www.zaber.com/manuals/X-LSM
https://www.zaber.com/products/vertical-stages/X-VSR/specs?part=X-VSR20A
https://www.zaber.com/products/vertical-stages/X-VSR/specs?part=X-VSR20A
https://www.zaber.com/products/linear-stages/X-LSM/specs?part=X-LSM100A
https://www.zaber.com/products/linear-stages/X-LSM/specs?part=X-LSM100A
https://prisguiden.no/produkt/raspberry-pi-3-model-b-326717
https://www.raspberrypi.com/software/
https://www.joom.com/nb/products/60b5cc0ced7e3201f0fa7185

[33] Fusion 360 — 3D CAD, CAM, CAE & PCB Cloud-Based Software — Au-
todesk. https://www.autodesk.com/products/fusion- 360/overview?term=1-
YEAR&tab=subscription. (Accessed on 05/11/2022).

[34] Gas Technologies & Chemicals - Argon. https://www.gastech.co.il/en/argon.
(Accessed on 05/05/2022).

[35] File Transfer Protocol (FTP) Definition. https : / /www . investopedia . com /
terms/f/ftp-file-transfer-protocol.asp. (Accessed on 04/21/2022).

[36] Zaber ASCII Protocol Manual - Zaber. https : / /www . zaber . com/protocol -
manual?device=X-LSM100A&peripheral=N%2FA&version=7.26&protocol=
ASCII. (Accessed on 04/01/2022).

[37] Zaber Motion Library (ASCII). https://www.zaber.com/software/docs/motion-
library/ascii/. (Accessed on 04/01/2022).

[38] Control Raspberry Pi GPIO Pins from Python — ICS. https://www.ics.com/
blog/control-raspberry-pi-gpio-pins-python. (Accessed on 04/20/2022).

[39] General Purpose Input Output on the Raspberry Pi. https://www.futurelearn.
com/info/courses/physical- computing- raspberry-pi-python/0/steps/23033#:
∼ : text=The%20GPIO%20pins%20are%20one , interact%20with%20many%
20other%20objects.. (Accessed on 04/04/2022).

[40] GitHub - pyusb/pyusb: Easy USB access for Python. https : //github . com/
pyusb/pyusb. (Accessed on 05/10/2022).

[41] libusb. https://libusb.info/. (Accessed on 05/10/2022).

[42] Three-Way Handshake - an overview — ScienceDirect Topics. https://www.
sciencedirect . com/topics/computer - science/three - way - handshake#:∼ : text=
The%20TCP%20handshake,as%20shown%20in%20Figure%203.8.. (Accessed on
05/10/2022).

[43] tkinter — Python interface to Tcl/Tk — Python 3.10.4 documentation. https:
//docs.python.org/3/library/tkinter.html. (Accessed on 05/03/2022).

[44] Raspberry Pi and General-Purpose Input/Output. https ://www.futurelearn .
com/info/courses/robotics -with- raspberry- pi/0/steps/75878#:∼ : text=A%
20voltage%20between%201.8V,you%20will%20fry%20your%20Pi!. (Accessed on
04/25/2022).

65

https://www.autodesk.com/products/fusion-360/overview?term=1-YEAR&tab=subscription
https://www.autodesk.com/products/fusion-360/overview?term=1-YEAR&tab=subscription
https://www.gastech.co.il/en/argon
https://www.investopedia.com/terms/f/ftp-file-transfer-protocol.asp
https://www.investopedia.com/terms/f/ftp-file-transfer-protocol.asp
https://www.zaber.com/protocol-manual?device=X-LSM100A&peripheral=N%2FA&version=7.26&protocol=ASCII
https://www.zaber.com/protocol-manual?device=X-LSM100A&peripheral=N%2FA&version=7.26&protocol=ASCII
https://www.zaber.com/protocol-manual?device=X-LSM100A&peripheral=N%2FA&version=7.26&protocol=ASCII
https://www.zaber.com/software/docs/motion-library/ascii/
https://www.zaber.com/software/docs/motion-library/ascii/
https://www.ics.com/blog/control-raspberry-pi-gpio-pins-python
https://www.ics.com/blog/control-raspberry-pi-gpio-pins-python
https://www.futurelearn.com/info/courses/physical-computing-raspberry-pi-python/0/steps/23033##:~:text=The%20GPIO%20pins%20are%20one,interact%20with%20many%20other%20objects.
https://www.futurelearn.com/info/courses/physical-computing-raspberry-pi-python/0/steps/23033##:~:text=The%20GPIO%20pins%20are%20one,interact%20with%20many%20other%20objects.
https://www.futurelearn.com/info/courses/physical-computing-raspberry-pi-python/0/steps/23033##:~:text=The%20GPIO%20pins%20are%20one,interact%20with%20many%20other%20objects.
https://www.futurelearn.com/info/courses/physical-computing-raspberry-pi-python/0/steps/23033##:~:text=The%20GPIO%20pins%20are%20one,interact%20with%20many%20other%20objects.
https://github.com/pyusb/pyusb
https://github.com/pyusb/pyusb
https://libusb.info/
https://www.sciencedirect.com/topics/computer-science/three-way-handshake##:~:text=The%20TCP%20handshake,as%20shown%20in%20Figure%203.8.
https://www.sciencedirect.com/topics/computer-science/three-way-handshake##:~:text=The%20TCP%20handshake,as%20shown%20in%20Figure%203.8.
https://www.sciencedirect.com/topics/computer-science/three-way-handshake##:~:text=The%20TCP%20handshake,as%20shown%20in%20Figure%203.8.
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://www.futurelearn.com/info/courses/robotics-with-raspberry-pi/0/steps/75878##:~:text=A%20voltage%20between%201.8V,you%20will%20fry%20your%20Pi!
https://www.futurelearn.com/info/courses/robotics-with-raspberry-pi/0/steps/75878##:~:text=A%20voltage%20between%201.8V,you%20will%20fry%20your%20Pi!
https://www.futurelearn.com/info/courses/robotics-with-raspberry-pi/0/steps/75878##:~:text=A%20voltage%20between%201.8V,you%20will%20fry%20your%20Pi!

A Accounting

Throughout the project the group have made several purchases necessary for com-
pleting the product. This includes difference tools, components, electrical compo-
nents and minor things for the work space. The cost of the different objects are
listed in the table below.

Table 4: Accounting of purchases

Product Price Comment
Würth, Drill - -
Würth, Angle grinder - -
Würth, battery screwdriver
S4-A

- -

Würth, battery package for
tools

- -

Würth, pipe and bit set - -

Würth tools (Total) 7300.00 NOK
Equipment for disassembly
and building framework

Earplugs 10 pairs 36.90 NOK Safety
Safety googles 29.90 NOK Safety
Solder Sleeves 99.80 NOK Joining cables
Heat shrink tubing 69.90 NOK Use to seal joint cable
HDMI to DVI-D adapter 159.90 NOK Adapter for new screen
USB2-HUB 4-ports 199.90 NOK USB2 extra inputs
Electrical tape, red & black 59.80 NOK Tape
Wago terminal block, 2 and 3-
ways

219.80 NOK Connect cables

Storing box 35.90 NOK Store screws etc
Strips (Cable tie set) 159.90 NOK Secure cables to the framing

Extension lead, 3 and 6-ways 349.90 NOK
Power supplies to components
and PC’s

Drill set 159.90 NOK For drilling
Bits screwdriver (2x) 499.80 NOK For bits
Cabel FQ 1.5mm2 49.90 NOK Cables for wiring
Cable collector 69.90 NOK Collecting wires
Tape measure 119.90 NOK Measuring
HDMI 3m 169.90 NOK HDMI for screen

Wall hooks 179.90 NOK
Hanging up cloths in work
space.

HP V27i 27” monitor 1490.00 NOK New screen for framing
LableManager + lable tape 475.00 NOK Put lable on new wires
Bootlace Ferrule 2.5mm2, 100
pieces

29.10 NOK Make terminals

Twin Entry Ferrule 2.5mm2,
100 pieces

38.45 NOK Make terminals

66

Table 5: Accounting of purchases, pt.2

Electronic side cutter 214.80 NOK For cutting cables
TRAP 22-10 Crimp Tool 421.18 NOK Seal cables

A-DS15-HOOD-WP 128.07 NOK
Connection from PC to Rasp-
berry PI

Network cable 98.37 NOK
Connection from PC to Rasp-
berry PI

Orange Ferrule Connector 100
pieces

77 NOK Make terminals

Namron LED strip 5m 719.10 NOK Lighting
Namron Driver dimbar LED
strip

879.12 NOK Lighting

Namron Aluminiumsprofil 2m,
2x

898.20 NOK Lighting

Bolts and nuts, M4 89.70 NOK Attach list for lighting
TP-Link Omada TL-R605 668.00 NOK Router
USB endoscope 185.47 NOK Camera inside framing
USB-extension 36.81 NOK USB-extension
LCD screen, 10.1 inch 1258.2 NOK Screen
Power-extension 59.09 NOK For PC-screen
HDMI 3m 185.65 NOK HDMI cable
Relay, 3x 395.64 NOK Control system
USB to micro-B 3m 228.43 NOK Power/Charger
USB 2m 106.06 NOK USB cable
Raspeberry Pi power supply 133.93 NOK Power supply
Keyboard 698.44 NOK Keyboard
HUB USB 4-port 95.90 NOK USB HUB
Socket 89.00 NOK Socket for power supply
Silicon spray 59.90 NOK Lubricant spray
Cable gland, 2x 73.80 NOK For new cables
Junction box 36.90 NOK Protect the wire connection.
Razor blad 139.00 NOK Used as new recoater
Superglue 99.00 NOK Glue components
Different M4 screws 167.70 NOK Building
Metal discs 106.80 NOK Building
Namron mounting set 79.00 NOK Mount aluminiumprofil
Cabel cutter 219.00 NOK Cutting cables
Springs 119.00 NOK Making new recoater
Different cables 353.70 NOK Building
Mounting table 26.90 NOK Mounting
Drill screws 4, 2X19mm 54.90 NOK Mounting
Electronic cleaning 89.90 NOK Clean components
Front cover and control cabi-
net

13937.50 NOK
New components to the fram-
ing

Total
35236.41
NOK

67

B Power diagram to supplementary components

68

C M-functions IO

69

D Raspberry Pi − > Relay controlling unit

70

E Relay controlling unit

71

1

A

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

B

C

D

E

F

A

B

C

D

E

F

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

04.05.2022

1/1

Front

Bend Table
ID Direction Angle Radius
1 Down 85.14 2
2 Down 90 2
3 Down 4.86 2
4 Down 90 2

3

4

1

2

X

Y

Hole Table
Hole X Dim Y Dim Description
A1 17 1127.05 Ø5 x 2
A2 21.5 9 Ø5 x 2
A3 21.5 70.4 Ø5 x 2
A4 931.5 9 Ø5 x 2
A5 931.5 70.4 Ø5 x 2
A6 936 1127.05 Ø5 x 2
B1 208 1171.33 Ø12 x 2
B2 745 1171.33 Ø12 x 2

A2
A3

A4
A5

B1 B2
A

A (1:2)

A

A1 A6

F Front drawing

72

1

A

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

B

C

D

E

F

A

B

C

D

E

F

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

29.04.2022

1/5

Romm

89
7

1598.1

709.05

51
7.

71

G Control room drawings

73

1

A

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

B

C

D

E

F

A

B

C

D

E

F

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

29.04.2022

2/5

Vegger

X

Y

A1

A2

A3

A4

A11

A12

A13

A14

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

C1

C2

C3

C4

D1

D2

D3

D4

D5

D6

D7 D8

D9

D10

D11

D12

A5

A6

A7

A8

A9

A10

74

1

A

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

B

C

D

E

F

A

B

C

D

E

F

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

29.04.2022

3/5

Vegger

Audun Mostad

Bend Table
ID Direction Angle Radius
1 Down 90 2
2 Down 90 2
3 Up 90 2
4 Up 90 2

4 32 189
7

1598.1

0

0

Hole Table
Hole X Dim Y Dim Description
A1 24 24 Ø5 x 2
A2 24 307 Ø5 x 2
A3 24 590 Ø5 x 2
A4 24 873 Ø5 x 2
A5 1251.63 55.5 Ø5 x 2
A6 1251.63 120.2 Ø5 x 2
A7 1378.78 55.5 Ø5 x 2
A8 1378.78 120.2 Ø5 x 2
A9 1505.93 55.5 Ø5 x 2
A10 1505.93 120.2 Ø5 x 2
A11 1574.1 24 Ø5 x 2
A12 1574.1 307 Ø5 x 2
A13 1574.1 590 Ø5 x 2
A14 1574.1 873 Ø5 x 2
B1 76.52 25.44 Ø5 x 6
B2 76.52 871 Ø5 x 6

Hole Table
Hole X Dim Y Dim Description
B3 276.52 25.44 Ø5 x 6
B4 276.52 871 Ø5 x 6
B5 476.52 25.44 Ø5 x 6
B6 476.52 871 Ø5 x 6
B7 521.05 25.44 Ø5 x 6
B8 521.05 871 Ø5 x 6
B9 799.05 25.44 Ø5 x 6
B10 799.05 871 Ø5 x 6
B11 1077.05 25.44 Ø5 x 6
B12 1077.05 871 Ø5 x 6
B13 1121.57 25.44 Ø5 x 6
B14 1121.57 871 Ø5 x 6
B15 1321.57 25.44 Ø5 x 6
B16 1321.57 871 Ø5 x 6
B17 1521.57 25.44 Ø5 x 6
B18 1521.57 871 Ø5 x 6

Hole Table
Hole X Dim Y Dim Description
C1 1137.72 62.55 Ø5.5 x 2
C2 1137.72 192.45 Ø5.5 x 2
C3 1169.62 62.55 Ø5.5 x 2
C4 1169.62 192.45 Ø5.5 x 2
D1 1247.02 304 Ø3 x 2
D2 1247.02 483 Ø3 x 2
D3 1247.02 361.5 Ø3 x 2
D4 1247.02 428.5 Ø3 x 2
D5 1379.57 304 Ø3 x 2
D6 1379.57 483 Ø3 x 2
D7 1465.13 254 Ø3 x 2
D8 1503.13 254 Ø3 x 2
D9 1512.13 361.5 Ø3 x 2
D10 1512.13 483 Ø3 x 2
D11 1512.13 304 Ø3 x 2
D12 1512.13 428.5 Ø3 x 2

A1

A2

A3

A4

A11

A12

A13

A14

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

D5

D6

D7 D8

C1

C2

C3

C4

D1

D2

D3
D4

D9
D11

D10
D12

A5
A6

A7
A8

A9
A10

75

1

A

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

B

C

D

E

F

A

B

C

D

E

F

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

29.04.2022

4/5

Topp

Audun Mostad
X

Y

Hole Table
Hole X Dim Y Dim Description
A1 24 24 Ø5 x 6
A2 24 224 Ø5 x 6
A3 24 424 Ø5 x 6
A4 76.52 476.52 Ø5 x 6
A5 354.52 476.52 Ø5 x 6
A6 632.52 476.52 Ø5 x 6
A7 685.05 24 Ø5 x 6
A8 685.05 224 Ø5 x 6
A9 685.05 424 Ø5 x 6

A1

A2

A3

A4 A5 A6

A7

A8

A9

Bend Table
ID Direction Angle Radius
1 Up 179.9 3
2 Down 90 2
3 Down 90 2
4 Down 90 2

4

3

2

1

Bend 1

76

1

A

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

B

C

D

E

F

A

B

C

D

E

F

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

29.04.2022

5/5

Bunn

Audun Mostad
X

Y

Hole Table
Hole X Dim Y Dim Description
A1 24 24 Ø5 x 6
A2 24 224 Ø5 x 6
A3 24 424 Ø5 x 6
A4 76.52 476.52 Ø5 x 6
A5 354.52 476.52 Ø5 x 6
A6 632.52 476.52 Ø5 x 6
A7 685.05 24 Ø5 x 6
A8 685.05 224 Ø5 x 6
A9 685.05 424 Ø5 x 6

A1

A2

A3

A4 A5 A6

A7

A8

A9

Bend Table
ID Direction Angle Radius
1 Up 179.9 3
2 Down 90 2
3 Down 90 2
4 Down 90 2

4

3

2

1

Bend 1

77

5/20/22, 9:09 PM Eitri.py

localhost:4649/?mode=python 1/8

#!/bachelor/bin/python

Importing neccessary libraries
import tkinter as tk
from tkinter import ttk
import os
import matplotlib.pyplot as plt
import matplotlib.figure as Figure
from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg,
NavigationToolbar2Tk)
import drive_the_stages as dts
import zaber_motion
from zaber_motion import Library, log_output_mode, Units
from zaber_motion.ascii import Connection
from zaber_motion.gcode import OfflineTranslator
import time
import RPi.GPIO as GPIO
from moving_files import run_moving_files, delete_files_from_FTP_server
from Butcher import butcher
from Damascus import run_damascus
from numbers_table import run_numbers
import numbers_table
from Mandoline import chef
import threading as thr
import cv2
from video_file import run_video
from ftplib import FTP
from mpl_toolkits import mplot3d

Function for opening the numbers-popup-window
def click_entry(event):
 global lt_entry, window, calc_gui, txt_edit, label_lt

 if calc_gui == 0:
 # Creating pop-up-window
 calc_gui = tk.Toplevel(window)

 calc_gui.attributes('-topmost', True)
 calc_gui.update()

 calc_gui.configure(background="white")

 calc_gui.title("Numbers input")

 calc_gui.geometry("600x340")

 # Runs the main function in the numbers_table-script
 run_numbers(window, lt_entry, calc_gui)

 done_b = tk.Button(calc_gui, text='Done', fg='black', bg='grey',
 command=done, height=3, width=20)
 done_b.grid(row=6, column='2')

 else:
 calc_gui.deiconify()

Function to hide the numbers popup-window
def done():
 global lt, calc_gui, plot_req

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

H Main program and GUI script

78

5/20/22, 9:09 PM Eitri.py

localhost:4649/?mode=python 2/8

 lt = lt_entry.get()
 label_lt["text"] = f"current layer thickness: {lt} mm"
 f_vars = open('print_variables.txt', 'w')
 f_vars.write(f'layer_thickness={lt}\n')
 plot_req = True
 txt_edit.insert(tk.END, f'Layer thickness set to {lt} mm\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')
 calc_gui.withdraw()

Function to eject the print disk
def eject_disk():
 global axis_list
 axis_list[0].move_absolute(19.7, Units.LENGTH_MILLIMETRES)

Function to show the preview-plot
def plot_show():
 global lt, plot_req, txt_edit
 if plot_req == True:
 txt_edit.insert(tk.END, 'Generating preview. This might take a while...\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')
 path = '/home/bachelor/FTP/files_for_transfer'
 for filename in os.listdir(path):
 stl_file = path+'/'+str(filename)
 plot_to_show = plt.figure()
 axes = mplot3d.Axes3D(plot_to_show)
 plot_to_show.add_axes(axes, auto_add_to_figure = False)
 run_damascus(stl_file, lt, txt_edit, plot_to_show)
 else:
 txt_edit.insert(tk.END, 'Preview requires layer thickness to be set\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

Function to set the layer thickness
def lt_set():
 global lt, plot_req
 lt = lt_entry.get()
 label_lt["text"] = f"current layer thickness: {lt} mm"
 f_vars = open('print_variables.txt', 'w')
 f_vars.write(f'layer_thickness={lt}\n')
 plot_req = True
 txt_edit.insert(tk.END, f'Layer thickness set to {lt} mm\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')
 f_vars.close()

Function to convert the stl file into many dxf-files (one for each slice)
def chop_files():
 global lt, txt_edit, chop_req
 float_lt = float(lt)
 txt_edit.insert(tk.END, '\n')
 t1 = thr.Thread(target=chef,args=(float_lt, txt_edit))
 t1.start()
 chop_req = True

Function to close the GUI
Is called when close-button is pressed
def close_window():
 os.system('fusermount -u /home/bachelor/FTP/files_for_print')

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

79

5/20/22, 9:09 PM Eitri.py

localhost:4649/?mode=python 3/8

 window.destroy()

Function to initialize the distribution table
Is called when initialize the stages-button is pressed
def init():
 global axis_list, txt_edit, run_req
 txt_edit.insert(tk.END, 'Initializing stages\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')
 dts.initialize(axis_list)
 run_req = True
 txt_edit.insert(tk.END, 'Initialisation done\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

Function to show the video
Is called when show video button is pressed
def show_video():
 global t2, stop_video,lt
 stop_video = False
 stop_video_args = [lambda : stop_video]
 t2 = thr.Thread(target=run_video,args=(stop_video_args))
 t2.start()

Function to close the video
Is called when the close video button is pressed
def close_video():
 global t2, stop_video
 stop_video = True

Function to run the distribution table
Is called when run-button is pressed
def run_eitri():
 global pin_IN, pin_OUT, pin_const_1, pin_coater, run_pin, run, axis_list,
run_req, txt_edit, plot_req, lt, chop_req

 # If all requirements are met
 # Calls the drive_the_stages script
 if run_req == True and plot_req == True and chop_req == True:
 txt_edit.insert(tk.END, 'Running...\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')
 dts.main_part(pin_IN, pin_OUT, pin_const_1, run_pin, run, axis_list,
txt_edit, lt, pin_coater)
 dts.home_all_devices(axis_list, 14)
 txt_edit.insert(tk.END, 'Printing complete\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')
 delete_files_from_FTP_server(txt_edit)
 GPIO.cleanup()
 # Gives output of what is wrong if all requirements are not met
 else:
 if run_req == False:
 txt_edit.insert(tk.END, 'Initialize before running\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')
 if plot_req == False:
 txt_edit.insert(tk.END, 'Set layer thickness before running\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153
154
155
156
157
158
159
160

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

80

5/20/22, 9:09 PM Eitri.py

localhost:4649/?mode=python 4/8

 if chop_req == False:
 txt_edit.insert(tk.END, 'Convert files before running\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

Unmounts the FTP folder
try:
 os.system('fusermount -u /home/bachelor/FTP/files_for_print')
except:
 pass

open('communication_log.txt', 'w').close() # Starts the communication loggging

Defining variables for running the program
run_pin = 'True' #
run = True
ftp_state = 2

Defining variables for GUI-safety
plot_req = False
run_req = False
chop_req = False
calc_gui = 0
cam = True

#Defining the GPIO-pins
pin_IN = 18 # Input GPIO-pin. Pin to get value from laser
pin_OUT = 16 # Output GPIO-pin. Pin to send value to laser
pin_const_1 = 22 # Output GPIO-pin. For sending constant value to a relay
pin_coater = 15
GPIO.setmode(GPIO.BOARD)
GPIO.setup(pin_IN, GPIO.IN) # Sets up the input-pin
GPIO.setup(pin_coater, GPIO.OUT)
GPIO.setup(pin_OUT, GPIO.OUT) # Sets up the output-pins
GPIO.setup(pin_const_1, GPIO.OUT)

GPIO.output(pin_const_1, GPIO.HIGH) # Sets the constant pin high

Library.enable_device_db_store()

If there is connection with the laser
try:
 with Connection.open_serial_port("/dev/ttyUSB0") as connection: # Sets up
communication with the stages
 axis_list = dts.get_devices(connection, pin_OUT) # Collects the axises for
commmunication

 # Builds the GUI-main window
 window = tk.Tk()
 window.title('Eitri')
 window.geometry('1000x800')

 window.resizable(width=True, height=True)

 # Builds info-box
 frame_0 = tk.Frame(
 master=window,
 relief=tk.RAISED,
 borderwidth=1
)

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

220

221
222
223
224
225
226
227
228
229
230
231
232
233
234

81

5/20/22, 9:09 PM Eitri.py

localhost:4649/?mode=python 5/8

 frame_0.pack(expand=False)
 info_header = tk.Label(master=frame_0, width=80, text=f"Info")
 info_lable_1 = tk.Label(master=frame_0, width=80, text=f"Step 1: Set
variables")
 info_lable_2 = tk.Label(master=frame_0, width=80, text=f"Step 2:
Initialize")
 info_lable_3 = tk.Label(master=frame_0, width=80, text=f"Step 3: Convert the
file")
 info_lable_4 = tk.Label(master=frame_0, width=80, text=f"Step 4: Run")
 info_header.pack()
 info_lable_1.pack()
 info_lable_2.pack()
 info_lable_3.pack()
 info_lable_4.pack()

 # Builds parameters-box
 frame_1 = tk.Frame(
 master=window,
 relief=tk.RAISED,
 borderwidth=1
)
 frame_1.pack(expand=False)

 label_1 = tk.Label(master=frame_1, width=80, text=f"Parameters")
 label_1.pack()
 lt = tk.Label(pady=5, master=frame_1,text=f"Layer thickness[mm]: ")
 lt.pack(side=tk.LEFT)
 lt_entry = tk.Entry(master=frame_1)
 lt_value = tk.Entry(master=lt_entry, width=10)
 lt_entry.pack(side=tk.LEFT)
 lt_entry.bind('<1>', click_entry)

 label_lt = tk.Label(master=frame_1, padx=5, text=f"Current layer thickness:
NONE")
 label_lt.pack(side=tk.LEFT)

 # Builds Progress-box
 frame_2 = tk.Frame(
 master=window,
 relief=tk.RAISED,
 borderwidth=1
)
 frame_2.pack(expand=False)

 label_2 = tk.Label(pady=5, width=80, master=frame_2, text=f"Progress")
 label_2.pack()
 txt_edit = tk.Text(master=frame_2, height=10, width=80)
 txt_edit.pack()

 # Builds Preview-box
 frame_4 = tk.Frame(
 master=window,
 relief=tk.RAISED,
 borderwidth=1
)
 frame_4.pack(expand=False)

 label_4 = tk.Label(pady=5, width=80, master=frame_4, text=f"Preview")
 label_4.pack()

235
236
237

238

239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

82

5/20/22, 9:09 PM Eitri.py

localhost:4649/?mode=python 6/8

 btn_preview= tk.Button(
 master=frame_4,
 text='Show preview',
 command=plot_show,
 height=2,
 width=10
)
 btn_preview.pack()

 # Builds files-box
 frame_3 = tk.Frame(
 master=window,
 relief=tk.RAISED,
 borderwidth=1
)
 frame_3.pack(expand=False)

 label_3 = tk.Label(pady=5, width=80, master=frame_3, text=f"Files")
 label_3.pack()
 btn_files = tk.Button(
 master=frame_3,
 text='Convert file',
 command=chop_files,
 height=2,
 width=10
)
 btn_files.pack()

 # Builds buttons-box
 frame_5 = tk.Frame(
 master=window,
 relief=tk.RAISED,
 borderwidth=1
)
 frame_5.pack(expand=False)

 btn_init= tk.Button(
 master=frame_5,
 text='Initialize table',
 command=init,
 height=2,
 width=10
)

 btn_init.pack(side=tk.LEFT)

 btn_run= tk.Button(
 master=frame_5,
 text='Run',
 command=run_eitri,
 bg='green',
 fg= 'white',
 height=2,
 width=10
)

 btn_run.pack(side=tk.LEFT)

 btn_close= tk.Button(
 master=frame_5,

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

83

5/20/22, 9:09 PM Eitri.py

localhost:4649/?mode=python 7/8

 text='Close',
 command=close_window,
 bg='red',
 fg= 'white',
 height=2,
 width=10
)

 btn_close.pack(side=tk.LEFT)

 btn_eject= tk.Button(
 master=frame_5,
 text='Eject print disk',
 command=eject_disk,
 height=2,
 width=10
)

 btn_eject.pack(side=tk.LEFT)

 btn_video= tk.Button(
 master=frame_5,
 text='Show video',
 command=show_video,
 height=2,
 width=10
)

 btn_video.pack(side=tk.LEFT)

 btn_c_video= tk.Button(
 master=frame_5,
 text='Close video',
 command=close_video,
 height=2,
 width=10
)

 btn_c_video.pack(side=tk.LEFT)

 # Tries to connect the FTP folder to the laser
 if os.system('curlftpfs -o nonempty @192.168.1.160
/home/bachelor/FTP/files_for_print') == 0:
 txt_edit.insert(tk.END, 'Connected to laser\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')
 else:
 txt_edit.insert(tk.END, 'No connection or with laser\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

 # runs_the script for moving files to the FTP-folder
 run_moving_files(txt_edit)
 lt = lt_entry.get()
 window.mainloop()

If there is no connection with the laser
except zaber_motion.exceptions.serial_port_busy_exception.SerialPortBusyException:
 print('Ensure laser system is powered on completely and connected to router')

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

84

5/20/22, 9:04 PM drive_the_stages.py

localhost:4649/?mode=python 1/3

All code used to control the old recoater is commented out

Imports all libraries
Zaber_motion controls the Zaber stages
Time is not implemented and was used for testing
RPi.GPIO is used for controlling the GPIO-pins on the Raspberry Pi
from zaber_motion import Library, log_output_mode, Units
from zaber_motion.ascii import Connection
from zaber_motion.gcode import OfflineTranslator
import time
import RPi.GPIO as GPIO
from moving_files import run_moving_files, delete_files_from_FTP_server
import tkinter as tk
import os

Function moves a device to a position compared to the home position (all of the
devices in our project have only one axis)
def move_device_abs(length, axis):
 print('moves', axis)
 axis.move_absolute(length, Units.LENGTH_MILLIMETRES)

Function moves a device to a position compared to the devices relaitve position
(all of the devices in our project have only one axis)
def move_device_rel(length, axis):
 axis.move_absolute(length, Units.LENGTH_MILLIMETRES)

Function initializes the stages. This is to avoid potentional startup errors
def initialize(axis_list):
 home_all_devices(axis_list, 0)
axis_list[2].move_max()
axis_list[2].move_min()
 home_all_devices(axis_list, 14.35)

Function homes all devices (moves all devices to their home positions)
The home position of axis[0] (the printing chamber) has been changed to 14
millimetres from original home position.
This is because the printing chamber must start at the top.
def home_all_devices(axis_list, axis_0_home_mm):
 axis_list[0].move_absolute(axis_0_home_mm,Units.LENGTH_MILLIMETRES)
 axis_list[1].home()
axis_list[2].home()

Function moves the printing chamber
def move_bed_1(length, axis_list):
 axis_list[0].move_absolute(length, Units.LENGTH_MILLIMETRES)

Function moves the powder chamber
def move_bed_2(length, axis_list):
 axis_list[1].move_absolute(length, Units.LENGTH_MILLIMETRES)

Function moves the recoater
def move_recoater(length, axis_list):
 axis_list[2].move_absolute(length, Units.LENGTH_MILLIMETRES)

def drive_cd():
 global pin_out_coater
 GPIO.output(pin_out_coater, GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(pin_out_coater, GPIO.LOW)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

I Controlling the PDS script

85

5/20/22, 9:04 PM drive_the_stages.py

localhost:4649/?mode=python 2/3

 time.sleep(2.25)
 GPIO.output(pin_out_coater, GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(pin_out_coater, GPIO.LOW)
 time.sleep(2.25)

def get_devices(connection, pin_OUT):
 # While loop for the main code. Runs while connected to the powder distribution-
table
 # Gets the devices in a list
 device_list = connection.detect_devices()
 print("Found {} devices".format(len(device_list)))

 # Setting logging file
 Library.set_log_output(log_output_mode.LogOutputMode.FILE,
"communication_log.txt")

 # Finds every device in the device list and gives it too a descriptive variable
 bed_1 = device_list[0]
 bed_2 = device_list[1]
recoater = device_list[2]

 # Finds every axis in the device list and gives it too a descriptive variable.
And adds them all to a list
recoater_axis = recoater.get_axis(1)
 bed_1_axis = bed_1.get_axis(1)
 bed_2_axis = bed_2.get_axis(1)
axis_list = [bed_1_axis, bed_2_axis, recoater_axis]
 axis_list = [bed_1_axis, bed_2_axis]
 GPIO.output(pin_OUT, GPIO.LOW)
 return axis_list

def main_part(pin_IN, pin_OUT, pin_const_1, run_pin, run, axis_list, txt_edit, lt,
pin_coater):
 global pin_out_coater
 lt = float(lt)
 pin_out_coater = pin_coater

 width_microm = 30 # This variable tells the width of each slice and is
implemented in the movement of the chambers as moveemnt per slice. Value is
collected from the laser.
 home_bed_1 = 14.4 # Defines the starting position of the printing chamber
 move_bed_1_mm = home_bed_1 # Variable to control the movement of the printing
chamber
 move_bed_2_mm = 1.5 # Variable to control the movement of the chambers
 i = 0 # Variable to keep count of the number of layers finished

 f = open('/home/bachelor/FTP/files_for_print/DXF_config.txt', 'r')
 f_cont = f.read()
 f_split = f_cont.split(':')
 max_count = int(f_split[1].split('\n')[0])

 # Checks for connection with the laser
 if os.system('ping -c 1 192.168.1.160') == 0:
 # Loop that runs while the printing process is underway.
 while run_pin == 'True': # GPIO.input(run_pin) == 1:
 # If the laser says that it is the powder distribution-tables turn to
move.

57
58
59
60
61
62
63
64
65

66
67
68
69
70
71

72
73
74
75
76
77
78

79
80
81
82
83
84
85
86
87
88

89
90
91
92
93

94
95

96
97
98
99

100
101
102
103
104
105
106
107
108

86

5/20/22, 9:04 PM drive_the_stages.py

localhost:4649/?mode=python 3/3

 GPIO.output(pin_OUT, GPIO.LOW)
 if GPIO.input(pin_IN) == 1:
 # Moves the chambers and the recoater
 i += 1
 txt_edit.insert(tk.END, f'Running layer {i}\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

 move_bed_1_mm -= lt
 move_bed_2_mm += lt*1.5

 move_bed_1(move_bed_1_mm, axis_list)
 move_bed_2(move_bed_2_mm, axis_list)

 drive_cd()

 # axis_list[2].move_max()
 # axis_list[2].move_min()

 txt_edit.insert(tk.END, f'Done with layer {i}\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

 GPIO.output(pin_OUT, GPIO.HIGH)
 time.sleep(0.1)

 if i >= max_count-1:
 run_pin = False
 GPIO.output(pin_OUT, GPIO.LOW)

 # If there is no connection with the laser
 else:
 txt_edit.insert(tk.END, 'No connection or with laser\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

87

5/20/22, 9:29 PM Damascus.py

localhost:4649/?mode=python 1/2

Imports libraries
import numpy as np
from stl import mesh
from mpl_toolkits import mplot3d
from matplotlib import pyplot

Function to find intersections
def isect_line_plane_v3(p0, p1, elevation):
 epsilon = 1e-6
 planePoint = np.array([0,0,elevation])
 planeNormal = np.array([0,0,1])

 LineDirection = p1-p0
 LinePoint = p0
 dot = np.dot(planeNormal, LineDirection)
 if abs(dot) > epsilon:
 # The factor of the point between p0 -> p1 (0 - 1)
 # if 'si' is between (0 - 1) the point intersects with the segment.
 # Otherwise:
 # < 0.0: behind p0.
 # > 1.0: infront of p1.
 w = LinePoint - planePoint
 si = -planeNormal.dot(w) / dot
 u = LineDirection*si
 impact = p0 + u
 if (p0[0] < impact[0] > p1[0] or p0[0] > impact[0] < p1[0]) or p0[1] <
impact[1] > p1[1] or p0[1] > impact[1] < p1[1]:
 return None
 return impact
 # The segment is parallel to plane.
 return None

Function checks if lines with the correct z values intersect with the plane
def slicer(list,h):
 lines = []
 LAB = []
 LAC = []
 LBC = []
 if np.all(list == list[2,:], axis = 0)[2]:
 return
 corners = list[list[:,-1].argsort()[::-1]]
 A = corners[0]
 B = corners[1]
 C = corners[2]

 #Check if the plan intersect the line between A and B.
 AB = isect_line_plane_v3(A,B,h)
 if np.all(AB) != None:
 for val in AB:
 LAB.append(val)
 lines.append(LAB)

 #Check if the plan intersect the line between A and C.
 AC =isect_line_plane_v3(A,C,h)
 if np.all(AC) != None:
 for val in AC:
 LAC.append(val)
 lines.append(LAC)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

J Create and show plot script

88

5/20/22, 9:29 PM Damascus.py

localhost:4649/?mode=python 2/2

 #Check if the plan intersect the line between B and C.
 BC = isect_line_plane_v3(B,C,h)
 if np.all(BC) != None:
 for val in BC:
 LBC.append(val)
 lines.append(LBC)

 if len(lines) >= 2:
 pyplot.plot([lines[0][0],lines[1][0]],[lines[0][1],lines[1][1]],[lines[0]
[2],lines[1][2]])

Main function to be called from Eitri (main program)
Function to create the plot
def run_damascus(stl_file, lt, txt_edit, figure):
 # Load the STL files.
 lt = float(lt)
 your_mesh = mesh.Mesh.from_file(stl_file)
 height = 0
 for val in your_mesh.z:
 if max(val) > height:
 height = max(val)
 current_height = 0
 load = 0

 # Build the plot
 while current_height < height:
 for i in range(0,len(your_mesh.vectors)):
 matrix = your_mesh.vectors[i]
 cords = matrix[:,0],matrix[:,1],matrix[:,2]
 vectors = np.array([cords[0],cords[1],cords[2]])
 if (np.all(np.round(matrix[:,2],2) > current_height) or
 np.all(np.round(matrix[:,2],2) < current_height)):
 pass
 else:
 slicer(your_mesh.vectors[i],current_height)
 load += 1
 current_height = round(current_height+lt,3)
 pyplot.show()

59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

89

5/20/22, 9:21 PM Mandoline.py

localhost:4649/?mode=python 1/3

Imports libraries
import os, os.path
import os, sys
import numpy as np
import ezdxf
from stl import mesh
import tkinter as tk

Function creates and writes the progress bar
def print_percent_done(index, total, title, bar_len=50):
 global progress_file
 '''
 index is expected to be 0 based index.
 0 <= index < total
 '''
 percent_done = (index+1)/total*100
 percent_done = round(percent_done,1)
 if percent_done > 100:
 percent_done = 100.0

 done = round(percent_done/(100/bar_len))
 togo = bar_len-done

 done_str = '█'*int(done)
 togo_str = '░'*int(togo)

 last_index = progress_file.index('end')

 last_index_int = float(last_index)-1.0

 progress_file.insert(str(last_index_int),f'[{done_str}{togo_str}]
{percent_done}% done\n')
 progress_file.delete(str(last_index_int-1.0), str(last_index_int))

 if round(percent_done) == 100:
 progress_file.insert(tk.END, f'✅{title}: done slicing\n')

Function finds the intersections
def isect_line_plane_v3(p0, p1, elevation):
 epsilon = 1e-6
 planePoint = np.array([0,0,elevation])
 planeNormal = np.array([0,0,1])

 LineDirection = p1-p0
 LinePoint = p0
 dot = np.dot(planeNormal, LineDirection)
 if abs(dot) > epsilon:
 # The factor of the point between p0 -> p1 (0 - 1)
 # if 'si' is between (0 - 1) the point intersects with the segment.
 # Otherwise:
 # < 0.0: behind p0.
 # > 1.0: infront of p1.
 w = LinePoint - planePoint
 si = -planeNormal.dot(w) / dot
 u = LineDirection*si
 impact = p0 + u
 if (p0[0] < impact[0] > p1[0] or p0[0] > impact[0] < p1[0]) or p0[1] <
impact[1] > p1[1] or p0[1] > impact[1] < p1[1]:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

K Converting STL file to DXF files script

90

5/20/22, 9:21 PM Mandoline.py

localhost:4649/?mode=python 2/3

 return None
 return impact
 # The segment is parallel to plane.
 return None

Function checks if lines with the correct z values intersect with the plane
def slicer(list,h):
 list = np.round(list,3)
 #If all of the z values are above or below the current height.
 #Then no calculation is needed.
 if np.all(list == list[:,2], axis = 0)[2]:
 return
 if not np.any(h >= list[:,2], axis = 0) or not np.any(h <= list[:,2], axis = 0):
 return
 #Retrives the cordiantes for A,B and C.
 corners = list[list[:,-1].argsort()[::-1]]
 A = corners[0]
 B = corners[1]
 C = corners[2]
 fragments = []
 LAB = []
 LAC = []
 LBC = []
 #Check if the plan intersect the line between A and B.
 AB = isect_line_plane_v3(A,B,h)
 if type(AB) != type(None):
 for val in AB:
 LAB.append(val)
 fragments.append(LAB[0:2])

 #Check if the plan intersect the line between A and C.
 AC =isect_line_plane_v3(A,C,h)
 if type(AC) != type(None):
 for val in AC:
 LAC.append(val)
 fragments.append(LAC[0:2])

 #Check if the plan intersect the line between B and C.
 BC = isect_line_plane_v3(B,C,h)
 if type(BC) != type(None):
 for val in BC:
 LBC.append(val)
 fragments.append(LBC[0:2])
 return fragments

Function to check for STL files
def countImage():
 #Retrivers the path to current directory
 source_dir = "/home/bachelor/FTP/files_for_transfer"
 files = []
 #Finds a STL file.
 for file in os.listdir(source_dir):
 if file.endswith(".stl"):
 stl_file = os.path.join(source_dir, file)
 print(stl_file)
 files.append(stl_file)
 #Move return outside for: to get all STL files in directory.
 return files,source_dir

Function to convert files to DXF

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

91

5/20/22, 9:21 PM Mandoline.py

localhost:4649/?mode=python 3/3

def convertImage(file,lt):
 final_dir = '/home/bachelor/FTP/files_for_print'
 # Retrivers the tringular polygons from the STL files.
 for filename in os.listdir(final_dir):
 os.remove(final_dir+'/'+filename)
 your_mesh = mesh.Mesh.from_file(file)
 height = 0
 for val in your_mesh.z:
 if max(val) > height:
 height = max(val)
 nmb = height/lt
 layers = 0
 current_height = 1e-6
 while current_height < height:
 layers = layers+1
 print_percent_done(layers,nmb,file.split("\\")[-1])
 name = str(layers)+".dxf"
 lines = []
 for i in range(0,len(your_mesh.vectors)):
 if (np.all(np.round(your_mesh.vectors[i][:,2],2) > current_height) or
 np.all(np.round(your_mesh.vectors[i][:,2],2) < current_height)):
 pass
 else:
 lines.append(slicer(your_mesh.vectors[i],current_height))
 dwg = ezdxf.new("R2007")
 msp = dwg.modelspace()
 dwg.layers.new(name="RofinStandard")
 exp_ind = final_dir+'/'+name
 for ctr in lines:
 if ctr != None:
 msp.add_lwpolyline(ctr)
 dwg.saveas(exp_ind)
 dwg.save()
 current_height += lt
 fullname = final_dir+"/"+"DXF_config.txt"
 f = open(fullname,"w")
 f.write("LayerCount:"+str(int(nmb+1))+"\n")
 f.write("LayerThickness:"+str(lt)+"\n")
 f.close

Function to be called from Eitri (main program)
def chef(SliceThickness, txt_edit):
 global progress_file

 progress_file = txt_edit
 images,parent_dir = countImage()
 nmb = 0
 for files in images:
 convertImage(files,SliceThickness)

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

92

5/20/22, 9:13 PM moving_files.py

localhost:4649/?mode=python 1/2

Importing necessary libraries
import os
import time
import shutil
import tkinter as tk

Checks for a USB disk
Waits until USB disk is found
Moves the files from the USB drive into the correct folder
For the slicing script to collect
def run_moving_files(txt_edit):

 run = True # Setting up a run variable

 directory = '/media/bachelor' # Empty directory in wich the disk will show up

 txt_edit.insert(tk.END, f'Waiting for data\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

 # While loop to check for disk in empty directory
 while run == True:
 for disk in os.listdir(directory):
 if disk:
 run = False

 time.sleep(1)

 FTP_path = '/home/bachelor/FTP/files_for_transfer'
 current_directories_list = []

 for filename in os.listdir(FTP_path):
 current_directories_list.append(str(filename))

 for filename in os.listdir(directory+'/'+str(disk)):
 disk_path = directory+'/'+str(disk)+'/'+str(filename)

 # Checks if files is already in the FTP folder
 # If it is. The file is not moved
 if '.stl' not in disk_path:
 txt_edit.insert(tk.END, f'{disk_path} not moved\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

 # Moves if the path is a file
 else:
 if os.path.isfile(disk_path):
 if filename not in current_directories_list:
 shutil.copy(disk_path, FTP_path)
 txt_edit.insert(tk.END, f'{disk_path} moved to FTP folder\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')
 else:
 txt_edit.insert(tk.END, f'{disk_path} already in FTP folder\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

 # Moves if the path is a directory

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

L Moving files from USB drive to folder script

93

5/20/22, 9:13 PM moving_files.py

localhost:4649/?mode=python 2/2

 elif os.path.isdir(disk_path):
 if filename not in current_directories_list:
 shutil.copytree(disk_path, FTP_path+'/'+str(filename))
 txt_edit.insert(tk.END, f'{disk_path} moved to FTP folder\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')
 else:
 txt_edit.insert(tk.END, f'{disk_path} already in FTP folder\n')
 txt_edit.update()

Deletes files from the folder
def delete_files_from_FTP_server(txt_edit):

 FTP_path = '/home/bachelor/FTP/files_for_transfer'

 for filename in os.listdir(FTP_path):
 # Deletes if path is a file
 if os.path.isfile(FTP_path+'/'+str(filename)):
 os.remove(FTP_path+'/'+str(filename))
 txt_edit.insert(tk.END, f'File{FTP_path}/{str(filename)} deleted\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

 # Deletes is path is a folder
 elif os.path.isdir(FTP_path+'/'+str(filename)):
 shutil.rmtree(FTP_path+'/'+str(filename))
 txt_edit.insert(tk.END, f'Directory{FTP_path}/{str(filename)} and file
contents deleted\n')
 txt_edit.update()
 txt_edit.yview_pickplace('end')

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

87
88
89

94

5/20/22, 9:16 PM numbers_table.py

localhost:4649/?mode=python 1/2

import tkinter (everything)
from tkinter import *

Function to update the entry-textbox
def press(num):
 global expression, equation, lt_entryen

 expression = str(num)

 # update variable
 equation.set(expression)

 # Get variable from insert box
 lt_streng = equation.get()

 lt_entryen.insert(END, lt_streng)

Function to clear the input
def clear():
 global expression
 lt_entryen.delete(0, END)

Main function to be called from eitri-script
def run_numbers(win, lt_entry, calc_gui):
 global expression, equation, gui, lt_entryen
 lt_entryen = lt_entry

 lt_entryen.delete(0, END)

 # Sets up the entry as variable
 gui = calc_gui
 expression = ""
 equation = StringVar()

 # Create all the buttons with a number or functioanlity attached to it
 button1 = Button(gui, text=' 1 ', fg='black', bg='grey',
 command=lambda: press(1), height=3, width=20)
 button1.grid(row=2, column=0)

 button2 = Button(gui, text=' 2 ', fg='black', bg='grey',
 command=lambda: press(2), height=3, width=20)
 button2.grid(row=2, column=1)

 button3 = Button(gui, text=' 3 ', fg='black', bg='grey',
 command=lambda: press(3), height=3, width=20)
 button3.grid(row=2, column=2)

 button4 = Button(gui, text=' 4 ', fg='black', bg='grey',
 command=lambda: press(4), height=3, width=20)
 button4.grid(row=3, column=0)

 button5 = Button(gui, text=' 5 ', fg='black', bg='grey',
 command=lambda: press(5), height=3, width=20)
 button5.grid(row=3, column=1)

 button6 = Button(gui, text=' 6 ', fg='black', bg='grey',
 command=lambda: press(6), height=3, width=20)
 button6.grid(row=3, column=2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

M Numbers keyboard script

95

5/20/22, 9:16 PM numbers_table.py

localhost:4649/?mode=python 2/2

 button7 = Button(gui, text=' 7 ', fg='black', bg='grey',
 command=lambda: press(7), height=3, width=20)
 button7.grid(row=4, column=0)

 button8 = Button(gui, text=' 8 ', fg='black', bg='grey',
 command=lambda: press(8), height=3, width=20)
 button8.grid(row=4, column=1)

 button9 = Button(gui, text=' 9 ', fg='black', bg='grey',
 command=lambda: press(9), height=3, width=20)
 button9.grid(row=4, column=2)

 button0 = Button(gui, text='.', fg='black', bg='grey',
 command=lambda: press('.'), height=3, width=20)
 button0.grid(row=5, column=0)

 clear_b = Button(gui, text='Clear', fg='black', bg='grey',
 command=clear, height=3, width=20)
 clear_b.grid(row=6, column='1')

 Decimal= Button(gui, text=' 0 ', fg='black', bg='grey',
 command=lambda: press(0), height=3, width=20)
 Decimal.grid(row=5, column=1)

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

96

5/20/22, 9:17 PM video_file.py

localhost:4649/?mode=python 1/1

Imports libraries
import cv2

Opens video in a new window
def run_video(stop):
 cam = cv2.VideoCapture(0)

 # Runs the video stream until
 # close video button is pressed
 while True:
 ret, image = cam.read()
 cv2.imshow('Imagetest',image)
 k = cv2.waitKey(1)
 if stop():
 break
 cam.release()
 cv2.destroyAllWindows()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

N Show video script

97

Option Explicit
'LMOSInPortConstants
Const FinishedPowderDistrubution = 10
Const StartPowderDistrubution = 14

Dim state
Sub LaserMarker_ScriptBegin ()
 Dim dxfImport,hs
 Set dxfImport =
lasermarker.drawing.getmosbyname("MO_DXF_IMPORT").item(1)
 Set hs = dxfImport.HatchSettings
 hs.HatchAngle = 0
 Dim i,var,Layers
 'arbitary number of layers
 'ending the print is controlled by the print table.
 Layers = 5000
 For i = 1 To Layers
 'Sends signal to distrubute a new powder layer.
 LaserMarker.WriteIOBit "StartPowderDistrubution",1
 'Waiting for a signal that the layer has been completed.
 LaserMarker.WaitOnIOBit "FinishedPowderDistrubution", 1, 90000
 'Writing the state of the signal to the "state" variable.
 Lasermarker.ReadIOBit "FinishedPowderDistrubution", state
 'Stops the print job if failed to receive signal.
 If state = False Then
 lasermarker.scriptutils.message "Job ended by print
table."
 LaserMarker.StopMarking()
 LaserMarker.WriteIOBit "StartPowderDistrubution",0
 i = Layers
 Else
 LaserMarker.WriteIOBit "StartPowderDistrubution",0
 'Incrementally work through the layers in the print folder.
 dxfImport.value = cstr(i) & ".dxf"
 'Print the current layer being printed.
 lasermarker.scriptutils.message dxfImport.value
 'Notifies the laser to start printing.
 dxfImport.Mark
 'Chache Purge.
 LaserMarker.Synchronize
 'Rotate the hatching pattern 67 degrees every layer.
 hs.HatchAngle = hs.HatchAngle + 67
 End If
 Next
 'When done set the import value
 'so the next print starts at 1.
 dxfImport.value = cstr(1) & ".dxf"
End Sub

O VLM script

98

Development of metal 3D printer
By Mathias Kommedal, Karl Peder Mørkeseth, Audun Mostad and Jonatan Lærdahl

Motivation

Framing Control Panel

CommunicationSlicing script

The end product

Metal 3D printers are rapidly increasing in popularity. The material used in the printing process
are limited. SINTEF wants to research new metal alloys, which can be used in 3D printing . The
technology is new and expensive. Building a new 3D printer which a capable of printing small
samples gives SINTEF the opportunity to research this technology. A powerful engraving laser
was available for melting metal powder, and a powder distribution system had previously been
made. The challenge was to make a communication system between the two units and to
automate the process. The project was completed by four students as a bachelor thesis in
electrical engineering.

The control panel was moved to the rear of
the framing. The rear wall was partly
removed by an angle grinder. A special made
housing was mounted. A new screen and
keyboard were added to operate the laser.
Holes in the new designed housing made
place for a new touch screen and a USB port.
The touch screen is integrated with a
graphical user interface (GUI) made by the
group. The GUI is used to start the print
process. It also provides the option the view
the print process live through a camera
mounted inside the framing.

The laser were mounted in a large enclosure.
By removing an external control panel and the
front housing the size has been significantly
reduced. New LED-strips has been attached to
the ceiling for optimal lighting. The various
measures have led to an optimized volume
and weight reduction . The system now
utilizes the space available by unnecessary
parts being removed and the control panel
being relocated.

The laser can read a DXF file and melt a
layer of powder accordingly. Converting 3D
models (STL file) to several DXF files is
therefore an essential part. A python script
takes a STL file and the desired layer
thickness as a variable in the GUI. By using
vector algebra, the script can find the
outline, and potentially an
inner rim like the figure
shows. The script works
its way from the bottom
to the top of the model,
where each layer is
saved as a DXF file.

The communication is controlled by a
Rasperberry Pi (RPi). This is achieved with a relay
circuit. The laser operates with 24V I/O, and the
RPi I/O pins uses 3.3V. A relay circuit prevents
the RPi from getting fried. The RPi tells the PDS
to coat a layer using a python library for
communicating with the devices on the PDS.
The PDS responds to the RPi when its done.
Next, the RPi sends a 3.3V signal via a relay
circuit to the laser. The laser melts the first layer
according to information in the first DXF file and
sends a 24V signal through a relay circuit when
it is finished. This process repeats itself until all
the DXF files are used. This results in the finished
3D model in metal.

The product works as intended. The system is an automated process from the moment a STL
file is uploaded, and the operator push the “RUN” button on the GUI and the “Start marking”
button in the VisualLaserMarker (VLM) software. The new framing protects the spectators
from dangerous light radiation. They can control and watch the process from the new control
panel. The PDS is attached in a sealed chamber, which is filled with argon gas before printing.
Argon gas protects the powder from oxidation, which would cause fractures in the metal. The
group has successfully fulfilled their tasks and are very satisfied with the results. We would like
to thank our supervisor Eivind Johannes Øvrelid from SINTEF and Bendik Sægrov-Sorte for
advice and technical support and our supervisor at NTNU, Sigurd Gosse.

May 2022

Metal 3D printing
The printing is achieved by melting metal powder with a high
energy source (the laser). A 3D model is printed layer by layer. The
powder distribution system (PDS) has two chambers, one powder
bed and one printing bed. These are adjusted vertically by
actuators. The powder bed is slightly lifted, and the print bed is
slightly lowered. A recoater sweeps over the PDS which leaves a
thin layer of powder in the print bed. The laser reads a DXF file
which describes how the layer shall be melted. This process is
repeated layer for layer until the model is completed.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Audun Mostad, Jonatan Lærdahl, Karl Peder
Mørkeseth, Mathias Kommedal

Development of miniature metal 3D
printer

Utvikling av miniatyr 3D printer

Bachelor’s thesis in Electrical engineering
Supervisor: Sigurd Gosse
May 2022

Karl Peder Mørkeseth

Ba
ch

el
or

’s
th

es
is

	List of Figures
	List of Tables
	Introduction
	Background
	Theory
	Additive manufacturing (3D printing)
	System concept
	STL file
	DXF file
	Slicing
	Metallic powder
	Powder Melting and Oxidation
	Communication
	Electrical components
	Python

	Equipment
	Rofin F30
	The framing (CombiLine Advanced RT 800)
	Powder distribution system (PDS)
	Raspberry Pi 3 Model B (RPi)
	New control panel
	Inspection cam

	Programs
	VisualLaserMarker (VLM)
	LaserConsole (LC)
	Autodesk Fusion 360

	Specifications the laser

	Methods
	Two solutions
	Pros and cons
	Decision of workpath

	Design process
	Approaches
	The framing
	Electrical circuits and terminal blocks
	Printing Chamber
	New powder overflow-collector
	New recoater
	File Transfer

	Software development
	Slicing script
	Visual Laser Marker (VLM)
	The powder distribution system
	Graphical User Interface

	Manual
	Setting up the Powder distribution table
	Setting up the laser

	Flowchart of the system

	Results
	End product
	Print process
	Safety

	Communication
	Step by step

	Print testing
	Print quality
	Without protective atmosphere
	With protective atmosphere

	Discussion
	The work process
	Product
	Further development
	Different linear actuator
	Chamber

	SINTEFs feedback

	Conclusion
	References
	Accounting
	Power diagram to supplementary components
	M-functions IO
	Raspberry Pi -> Relay controlling unit
	Relay controlling unit
	Front drawing
	Control room drawings
	Main program and GUI script
	Controlling the PDS script
	Create and show plot script
	Converting STL file to DXF files script
	Moving files from USB drive to folder script
	Numbers keyboard script
	Show video script
	VLM script

