
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
D

ep
ar

tm
en

t o
f I

CT
 a

nd
 N

at
ur

al
 S

ci
en

ce
s

Tynes, Odd Arne Skjeret
Furnes, Pål-André
Melaas, Marius Høyer

Redesigning the Point Cloud
Acquisition for Sort™

Bachelor’s thesis in Electrical Engineering
Supervisor: Hatledal, Lars Ivar
Co-supervisor: Coates, Erlend Magnus Lervik
May 2022

Ba
ch

el
or

’s
th

es
is

Tynes, Odd Arne Skjeret
Furnes, Pål-André
Melaas, Marius Høyer

Redesigning the Point Cloud
Acquisition for Sort™

Bachelor’s thesis in Electrical Engineering
Supervisor: Hatledal, Lars Ivar
Co-supervisor: Coates, Erlend Magnus Lervik
May 2022

Norwegian University of Science and Technology
Department of ICT and Natural Sciences

←↩

SOLWR

IELEA2920 - BACHELOR THESIS

Redesigning the Point Cloud
Acquisition for Sort™

ODD ARNE TYNES, PÅL-ANDRÉ FURNES,
MARIUS HØYER MELAAS

BACHELOR THESIS

May 2022

←↩

Summary

This bachelor thesis is a detailed explanation of how the bachelor group went about re-
designing the point cloud acquisition for Solwr’s Sort™, a pallet sorting machine designed
for the logistics industry. The current camera solution is using six Intel® RealSense™
L515 cameras, which are discontinued.

The project started with a research period investigating the current system at Sort, and
generated ideas through several brainstorm meetings. The group presented the ideas to
Solwr on a regular basis in order to get their feedback, and to decide which designs to pur-
sue further. During the progress meetings with Solwr the group presented both ambitious
and simple designs. Based on Solwr’s feedback, some of the designs would be simulated,
collecting more detailed information about their positive and negative aspects.

The group researched the leading manufacturers in 3D vision. Each camera and design
was evaluated based on delivery time, cost, complexity, performance, sorting time and
feasibility. The goal was to design a solution using industrial cameras that at least per-
forms equally to the current solution, in the above mentioned domains. Sort™ has re-
cently been commercialized and therefore Solwr wished to use industrial cameras in the
new point cloud acquisition.

In order to compare the different cameras and placements, the group utilized 3D visual-
izations through CAD, and programmed their own field of view verification software. The
software allowed for different tests in cameras and placements, without having the need
to build prototypes for each one. The software has two different modes, graphical FOV
and point cloud verification. The graphical FOV mode produces graphs showing a cam-
era’s field of view. The point cloud verification mode generates a point cloud representing
a pallet, and displays whether the points are seen or not, given a certain camera placement.

Based on the camera comparison result and meetings with Solwr, a simulation was made.
The simulator gave more realistic data to analyze, and the basis needed to build a proto-
type. The simulated cameras were given the same resolution and the calculated distance
as the group’s chosen camera. The data collected allowed the group to further confirm
their proposed solution.

Finally, a new design was chosen based on the simulator, 3D-models, calculations and
FOV software. Thereafter, a working prototype was built using the current Intel cameras,
in Solwr’s warehouse. Fortunately, Solwr had components from previous installations
and prototypes, and therefore there were no need to buy additional hardware. The data
gathered from the prototype was used in order to form the final conclusion. The thesis
concludes that the new point cloud acquisition is a viable solution, both mechanically and
economically, considering Solwr’s requirements. Solwr has now ordered two Zivid One+

Large cameras per the group’s proposed solution. Further testing will be the deciding
factor for the new design of Sort™. However, due to a two month delivery time of the
ordered cameras, the final testing will be executed by Solwr.

1

←↩

Sammendrag

Denne bacheloroppgaven er en detaljert forklaring på hvordan bachelorgruppen gikk frem
for å redesigne punktsky-anskaffelsen for Solwr’s Sort™, en pallsorteringsmaskin de-
signet for logistikkbransjen. Den nåværende kameraløsningen bruker seks Intel® Re-
alSense™ L515 kameraer, som har gått ut av produksjon.

Prosjektet startet med en forskningsperiode som undersøkte dagens Sort™ og genererte
ideer gjennom flere idémyldringer. Gruppen presenterte ideene for Solwr med jevne mel-
lomrom for å få tilbakemeldinger og for å bestemme hvilke design å forfølge videre.
Under fremdriftsmøtene med Solwr presenterte gruppen både ambisiøse og enkle design.
Basert på Solwrs tilbakemelding vil noen av designene bli simulert for å samle inn mer
detaljert informasjon om deres positive og negative aspekter.

Gruppen undersøkte de ledende produsentene innen 3D-kameraer. Hvert kamera og de-
sign ble evaluert basert på leveringstid, kostnad, kompleksitet, ytelse, sorteringstid og
gjennomførbarhet. Målet var å designe en løsning ved hjelp av industrikameraer som
minst yter likt som dagens løsning, i de ovennevnte domenene. Sort™ har nylig blitt
kommersialisert og derfor ønsket Solwr å bruke industrielle kameraer i den nye punktsky-
anskaffelsen.

For å sammenligne de forskjellige kameraene og plasseringene brukte gruppen 3D-modeller
og programmerte sin egen verifiseringsprogramvare for synsfelt. Programvaren gjorde
det mulig å gjøre forskjellige tester angående kameraer og plasseringer uten at det er
nødvendig bygge prototyper for hver enkelt. Programvaren har to forskjellige moduser,
grafisk FOV og punktskyverifisering. Den grafiske FOV-modusen produserer grafer som
viser et kameras synsfelt. Punktskyverifiseringsmodusen genererer en punktsky som rep-
resenterer en pall og viser om punktene er sett eller ikke, gitt en bestemt kameraplassering.

Basert på kamerasammenligningen og møter med Solwr, ble det laget en simulering. Sim-
ulatoren ga mer realistiske data å analysere, samt grunnlaget for å bygge en prototype. De
simulerte kameraene hadde samme oppløsning og avstand som gruppens valgte kamera.
Dataene som ble samlet inn gjorde at gruppen kunne bekrefte deres løsning ytterligere.

Til slutt ble et design valgt basert på simulatoren, 3D-modeller, beregninger og FOV-
programvare. Deretter ble det bygget en fungerende prototype ved bruk av de nåværende
Intel-kameraene, i Solwrs lager. Solwr hadde komponenter fra tidligere installasjoner og
prototyper, og derfor var det ikke nødvendig med innkjøp av flere komponenter. Dataene
gruppen samlet fra prototypen ble brukt for å danne den endelige konklusjonen. Avhan-
dlingen konkluderer med at den nye punktsky-anskaffelsen er en levedyktig løsning både
mekanisk og økonomisk, i forhold til Solwrs krav. Solwr har nå bestilt to Zivid One+

Large kamera per gruppens foreslåtte løsning. Videre tester vil være avgjørende for det
neste designet av Sort™. Grunnet en to måneders leveringstid på de bestilte kameraene
vil den endelige testingen bli utført av Solwr.

2

←↩

Preface

This thesis is submitted as part of a bachelor degree in electrical engineering at the Nor-
wegian University of Science and Technology (NTNU). The assignment is provided by
Solwr, a Norwegian logtech company, in collaboration with NTNU Ålesund.

The students collaborating on this thesis are all graduating in the spring of 2022. They
have a variety of backgrounds and qualifications, with one having a bachelor degree in
physics, another having a certificate of apprenticeship in automation, and the third hav-
ing certificates of apprenticeship in both automation and as an electrician. During their
education at NTNU Ålesund, they have all taken subjects that have prepared them for
this thesis. Together, they have a wide foundation in both theoretical and physical aspects
beneficial to this thesis.

The work on this thesis has provided a good look into the development of a industrial
product. It has allowed the group to put a lot of the theoretical knowledge they have
accrued over their studies into practice while gaining experience about working with es-
tablished companies.

None of the students started working for Solwr after the thesis, However, one of the stu-
dents did have a part time job in Solwr during the bachelor period.

We would like to thank our advisors, Lars Ivar Hatledal and Erlend Magnus Lervik
Coates, as well as all engineers employed at our employer, Solwr. The group made a
presentation video of the results and software during this thesis, and can be viewed at
This Youtube link, or at the URL: https://youtu.be/ Ffkh-aWm6I

3

https://youtu.be/_Ffkh-aWm6I

←↩

Contents Contents

Contents

List of Figures 8

List of Tables 10

1 Introduction 12
1.1 Background . 13
1.2 Motivation . 14
1.3 Scope . 15
1.4 Contributions . 16
1.5 Thesis outline . 17
1.6 Related work . 18

1.6.1 Applications of High-Precision Optical Imaging Systems for Small
Unmanned Aerial Systems in Maritime Environments 18

1.6.2 Image space coverage model for deployment of multi-camera net-
works . 18

2 Preliminaries 19
2.1 Terminology . 20
2.2 Theory . 21

2.2.1 Point clouds . 21
2.2.2 Ray casting . 21
2.2.3 Asynchronous programming . 22
2.2.4 Formulas and mathematical methods 22
2.2.5 3D cameras . 28
2.2.6 Pixel coordinates to world coordinates 28
2.2.7 3D Transformations . 29

2.3 Software, protocols and technology . 29
2.3.1 PLC OPEN . 29
2.3.2 EtherCAT . 29
2.3.3 Encoder . 30

3 Research, software & simulation 32
3.1 Current solution . 33

3.1.1 Introduction current Sort™ solution 33
3.1.2 Work flow . 34
3.1.3 Conveyor system . 35
3.1.4 Camera portal . 36
3.1.5 Robot gripper . 37
3.1.6 Movable axes . 38
3.1.7 Out-feed . 39
3.1.8 Current camera solution . 40
3.1.9 Point cloud . 43
3.1.10 Economy . 44

4

←↩

Contents Contents

3.1.11 Statistics . 45
3.2 Self-developed FOV software . 46

3.2.1 Object representation . 47
3.2.2 Checking field of view . 49
3.2.3 Checking seen points . 55

3.3 Possible designs . 59
3.3.1 Using CAD as inspiration and visualization 59
3.3.2 Imported Zivid FOV . 60
3.3.3 Obstacle handling . 61
3.3.4 Design one, four & five . 62
3.3.5 Design two & three . 63
3.3.6 Design six . 64
3.3.7 Design seven . 65
3.3.8 Design eight . 66
3.3.9 Chosen design . 67

3.4 Possible cameras . 69
3.4.1 Zivid - One+ Medium . 70
3.4.2 Zivid - One+ Large . 71
3.4.3 Zivid - Two . 72
3.4.4 Nerian - Scarlet 3D depth camera 73
3.4.5 Mech-mind - Mech-Eye laser L 74
3.4.6 Cognex - 3D-A5120, extended working volume 75
3.4.7 Chosen camera . 76

3.5 The Webots simulator . 77

4 Physical prototyping 82
4.1 The first prototype . 83
4.2 The second prototype . 84

4.2.1 Camera mounting on the linear axis 85
4.3 Camera placement . 86
4.4 Using the Zivid One+ Large in the prototype 87
4.5 Prototype hardware and software . 88

4.5.1 Electrical wiring - Motor, Drive, Encoder, and Power supply . . . 89
4.5.2 Static IPv4 controller and PC . 91
4.5.3 Motor setup using Ethernet in Plug&Drive Studio 1 91

4.6 Beckhoff and TwinCAT 3 PLCs . 92
4.6.1 Adding and installing the drive’s ESI-file to TwinCAT 92
4.6.2 Linking motor controller and axis in TwinCAT 3 92
4.6.3 Building the HMI . 94
4.6.4 Axis parameter settings . 94

4.7 Motor controller tuning using Plug&Drive Studio 1 95
4.8 Processing the prototype data . 96

5 Results 97
5.1 Design . 98
5.2 Camera . 99
5.3 Self-developed FOV software . 100
5.4 Simulation . 101

5.4.1 Webots simulation of two solutions 101

5

←↩

Contents Contents

5.4.2 Zivid One+ Large simulated pallet point cloud 102
5.5 Prototype . 103

5.5.1 Camera setup . 103
5.5.2 Mechanical setup . 103
5.5.3 Comparison of detected points in the point cloud 104
5.5.4 Distance between points . 105
5.5.5 Speed of the prototype . 108
5.5.6 HMI . 109

5.6 Economy for the chosen solution . 110

6 Discussion 111
6.1 Self-developed FOV software . 112

6.1.1 Step count . 112
6.1.2 Importing 3D-models . 112
6.1.3 Adding points of angled surfaces 112
6.1.4 Expected results proved to be trustworthy 112

6.2 Camera . 113
6.2.1 Cognex . 113
6.2.2 USB vs. Ethernet . 113
6.2.3 How the discontinuation of the Intel® RealSense™ L515 might

impact the industry . 113
6.2.4 Reduction of cameras and its challenges 114
6.2.5 Distance between points in the point cloud 114

6.3 Simulator . 115
6.4 Prototype . 115

6.4.1 Prototyping using the Intel® RealSense™ L515 camera 115
6.4.2 The height of the linear axis . 115
6.4.3 Incremental encoder . 116
6.4.4 Adding a light source . 116
6.4.5 Uncertainty in the new solution 116
6.4.6 Added cost with the new solution 116
6.4.7 Speed of the new solution . 117
6.4.8 Data from the prototype . 117

6.5 Workflow . 117

7 Conclusion and future work 118
7.1 Conclusion . 119
7.2 Future work . 120

References 122

8 Appendix i

A The group’s how-to-guide for programming drives, PLC and HMI ii
A.1 Setting static IPv4 for motor controller ii
A.2 Setting static IPv4 for a computer . v
A.3 Motor setup though Ethernet in PlugDrive Studio 1 vii
A.4 Linking motor controller and axis in TwinCAT xi
A.5 Connecting and linking a drive to an axis in TwinCAT xii

6

←↩

Contents Contents

A.6 Axis parameter settings . xv

B Intel RealSense L515 Datasheet xix

C Zivid One+ Large Datasheet xlv

D Nanotec DC motor datasheet lxvii

E Nanotec encoder Datasheet lxix

F Nanotec N5 2-1 motor controller quick guide lxxi

G Source code, field of view software lxxiv

H Source code, Webots simulator lxxxiii

I Source code, point cloud generator lxxxviii

J Source code, PLC program xciii

K Bachelor poster c

L Cooperation agreement cii

M Final Gantt diagram & daily logs cvi

N Original Gantt diagram cxi

O Hours worked cxv

P Sprint review & planning cxix

Q Bachelor meetings report cxlvii

R Project preliminary report clxiii

7

←↩

List of Figures List of Figures

List of Figures

1 Ray casting, visualized . 21
2 Asynchronous programming, visualized 22
3 Sampling of continuous function . 22
4 Normal vector in red perpendicular to plane 24
5 Visualization of formula . 25
6 Coordinate system suspended by two vectors 26
7 Vectors creating a new coordinate system 26
8 Rectangular coordinates . 27
9 Spherical coordinates . 27
10 Illustrations of a incremental and absolute encoder [1] 30
11 Mockup of Sort™ [2] . 33
12 Sorting different pallets using forklift 34
13 Conveyors and the resistance rollers . 35
14 Sort™ in action . 36
15 Illustration of the robot gripper . 37
16 Illustrates axis one, two and three as x, y, and z on Sort™. 38
17 Illustrates axis four and five as the rotating and gripping axis on Sort™. . 38
18 Intel® RealSense™ L515 . 40
19 Intel® RealSense™ L515 internal components [B] 40
20 Placement of the four cameras capturing the side and bottom of the pallets. 41
21 Illustration of all current camera placements, and field of view 41
22 One of four cameras in figure 20 and field of view. 42
23 NLP pallet [3] . 43
24 Point cloud image of a NLP pallet using Intel® RealSense™ L515, pro-

vided by Solwr. 43
25 Text representing surfaces and corners of a euro pallet in 3D-space. 47
26 Method of representing pallet as a text file 47
27 Additional points generated for a higher resolution 48
28 Increasing resolution of 3D-model . 48
29 Testing of FOV . 49
30 New coordinate system based on the blue vectors 49
31 Rotation matrix used for first axis. 50
32 Method for converting angle information to vector information 50
33 Field of view . 51
34 Shape of FOV pyramid . 51
35 Normal vectors out of planes . 52
36 Field of view test . 53
37 Field of view range . 53
38 Rotations using spherical coordinates 54
39 Discrete ray through surface . 55
40 Two discrete rays crossing a plane . 56
41 Box created in order to capture discrete values not exactly in the plane . . 56
42 3D-plots showing results of algorithm. Cameras are shown as black dots. 57

8

←↩

List of Figures List of Figures

43 Asynchronous workflow . 58
44 3D CAD of sort . 59
45 Difference between small, medium and large FOV, with the small FOV

outlined in yellow. 60
46 Displaying the limitation due to the pole, marked in yellow 61
47 Displaying the limitation due to the following stack, marked in yellow . . 61
48 Illustration of design 1, 4 and 5 . 62
49 Illustration of designs 2 and 3 . 63
50 Dead zone using two static cameras, marked in blue. 63
51 Illustration of design 6 . 64
52 Illustration of design seven . 65
53 Illustration of design eight . 66
54 Presenting two viable solutions in CAD through Onshape 67
55 Variant of design seven . 68
56 Checks if a EURO pallet fits within the Zivid One+ Medium FOV 70
57 Checks if a EURO pallet fits within the Zivid One+ Large FOV 71
58 Checks if a EURO pallet fits within the Zivid Two FOV 72
59 Checks if a EURO pallet fits within the Nerian, Scarlet 3D depth camera

FOV . 73
60 Checks if a EURO pallet fits within the Mech-mind, Mech-eye Laser L FOV 74
61 Checks if a EURO pallet fits within the Cognex extended FOV 75
62 Concept drawing of Lidar and RangeFinder 77
63 Two different methods to sample data for a point cloud 78
64 The scene tree showing the robot and camera nodes 79
65 The webots simulation window of the simple simulation environment . . 80
66 The combined point clouds from the simple simulation, the axes represent

the camera positions. 81
67 Prototype 1 . 83
68 Prototype 2 . 84
69 3D-printed camera mount . 85
70 Camera placement . 86
71 Calculation of new distances . 87
72 Component hierarchy . 89
73 Nanotec N5 2-1 motor controller I/O drawing 90
74 Nanotec N5-2-1 motor controller electrical wiring 90
75 The file pathway for inserting the N5-2-1 ESI file 92
76 Installment of the Tc2 Mc2 library through references within the solution

explorer. 93
77 Navigate to ”Axis” in the solution explorer, and then into the ”settings”

tab. Make a link for both PLC and I/O. 93
78 HMI building environment in Visual Studio 94
79 The motor controller tuning parameters in the Plug&Drive Studio 1 software 95
80 Design seven . 98
81 Zivid camera . 99
82 Results from FOV software . 100
83 Two different solution simulated in the simulator environment Webots . . 101
84 Point clouds from the simulated pallet taken with the Zivid one+ Large

camera specifications . 102
85 Prototype, point clouds . 103

9

←↩

List of Tables List of Tables

86 Finished prototype . 103
87 Compared point clouds . 104
88 Calculating angle between the ground and the farthest point 105
89 Distance between points . 107
90 The HMI explanation . 109
91 Illustration of design seven . 119
92 Zivid camera . 120
93 Illustration of variant . 121
94 Connect to drive, by pressing ”Connect controller” iii
95 Chose the communication protocol ”EtherCAT” and continue by pressing

”Next” . iii
96 Selecting of network interface, and EtherCAT device iv
97 Changing or reading the ”Static-IPv4-Address” from the ”value” column.

The IP is displayed in HEX decimal. iv
98 Changing the computers internal Ethernet IP to 10.0.0.3, through ”Nettverks-

og delingssenter”. vi
99 Connect and select ”Ethernet” as the communication protocol of choice,

and continue by pressing ”Next” . viii
100 Type in the drives ”Static-IPv4-Address” and check connection ix
101 Set the ”motor drive submode select” to ”BLDC”, and ”pole pair count”

to ”4”. ix
102 Change the parameters for ”Max current” and ”Nominal current” x
103 Press ”Start Auto Setup”, while the motor is lying still and unloaded . . . x
104 Press ”Choose Target System” . xii
105 Press ”Search (Ethernet)...” . xii
106 First press ”Broadcast Search”, and in ”Select Adapters” select the adapter

with the computers IPv4 address. xiii
107 Nanotec’s drive default password = 1 xiii
108 Right click on devices in solution explorer, and press ”Scan” xiv
109 Select ”device 1 (EtherCAT)” and press ”OK” xiv
110 Both the devices and a axis are now added xiv
111 Fill in the wanted unit for the axis movement. The group choose the unit

”m” for meter. xvi
112 Calculate the theoretical max velocity of the motor, and fill it in under

”Reference velocity”. Fill in the actual wanted max velocity in under
”Maximum velocity” . xvii

113 Calculate the scaling factor and fill it in under ”Scaling Factor Numerator” xviii

List of Tables

1 Intel® RealSense™ L515 depth specifications B 42
2 The current camera systems hardware pricing 44

10

←↩

List of Tables List of Tables

3 Sort™’s statistics gathered the 5th of May 2022 45
4 Specifications for possible new cameras 69
5 Possible cameras’ pricing and delivery times 76
6 Zivid specifications and price . 99
7 The new camera system’s pricing . 110

11

←↩

1 Introduction

Chapter 1

Introduction

This chapter contains the background, motivation, scope, contribution, outline and
related work for the bachelor thesis. It is meant to give the reader insight into the
issue solved in the thesis and provide reasoning for doing so.

The background explains the historical development of cameras and how they are
used in the industry. The motivation details the group’s reason for solving the issue,
as well as Solwr’s. The scope defines the limits of this thesis, explicitly stating which
areas of Sort™ the group is redesigning. The contribution states what the group
has found during the bachelor period and what areas their work has contributed to.
The outline is meant to guide the user through the structure of the thesis, explaining
what each other chapter contains. Finally, related work is similar papers that share
some of the issue solved in this thesis.

12

←↩

1.1 Background 1 Introduction

1.1 Background
Before the advent of the Industrial Revolution in the eighteenth to nineteenth century,
most hard labor was done by humans or animals [4]. However, the invention of the steam
engine, the age of science and mass production, and the rise of digital technology revolu-
tionized the world.

In modern society, the importance of robots, sensors and automated systems are growing
rapidly. In the last decade the technology has had big leaps in advancements and com-
putation power [5]. Processes are automatized and the need for automation engineers is
increasing. As the technology gets cheaper and more advanced, the importance of ethical
thinking is crucial for the worlds future, due to the coexistence between humans, robots,
and automated systems.

In the early days of automated systems, relays were used until the invention of the PLC,
which to this day is widely used in the automation industry [1]. However, the PLC, sensors
and I/O used today have evolved into more then just binary signals. An up and coming
trend is the utilization of cameras and high level programming, to replace sensors and
to create a adaptable dynamic systems. Examples of use cases are: Product Assembly,
Defect Detection, 3D Vision Systems, Predictive Maintenance and Safety and Security
Standards etc.

Solwr is Norwegian logtech (Logistics and Technology) company that develops software
and manufactures robots for the logistics industry such as Asko and H.I Giørtz.

Recently Solwr was two individual companies named ”Driw”, and ”Currence Robotics”,
which have now combined. Currence Robotics was the original employer of this thesis,
and is the owner of the pallet sorter robot called Sort™, located in Ålesund.

Solwr has offices in Oslo, Trondheim and headquarters located in Ålesund, Norway.
Solwr offers a plug-and-play product portfolio of software and hardware. Customers
of Solwr include some of Norway’s top retailers [6]. They have approximately one hun-
dred employees with a wide spread expertise of mathematicians, engineers, scientists, full
stack developers, intelligent system developers, logistic experts and a marketing team. In
addition to this, they are partly funded by Innovation Norway and the Norwegian Re-
search Council [7].

The camera currently used at Sort™ is the Intel® RealSense™ L515 LiDAR camera,
which generates point clouds to classify an assortment of used pallets. Intel, the manufac-
turer, has decided to discontinue a number of cameras, including the L515, with no official
reason [8]. According to framos.com it was ”to focus on their existing D400 series Stereo
Vision product line” [9]. However, Solwr ordered a substantial amount of L515 cameras
in order to keep building Sort™, while researching new cameras and solutions.

13

←↩

1.2 Motivation 1 Introduction

1.2 Motivation
The motivation of this thesis was Solwr’s need of a new point cloud acquisition for their
sorting robot, named Sort™. The current cameras used on Sort™ are now discontinued,
and Solwr therefore is in need of new cameras and a new camera solution.

The current cameras are defined as consumer cameras due to the low cost and availability.
Solwr needed six cameras to generate the resolution required in their point cloud. Sort™
has been in development as a beta prototype at H.I Giørtz (H.I.G) in Ålesund since 2019,
and has now evolved into a commercial product. Therefore, Solwr wanted an industrial
camera for better performance, stability, with a reliable manufacturer. The group’s re-
search in this thesis focuses on high-end industrial cameras with significantly improved
resolution, as well as specifications from specialized camera manufacturers. Industrial
cameras, on the other hand, are far more expensive, creating an incentive to reduce the
number of cameras required as much as feasible.

The new solution will be measured in delivery time, cost, complexity, performance, sort-
ing time and feasibility. The goal is to design a solution using industrial cameras that
at least performs equally to the current solution, in the above mentioned domains. In
this thesis the planned tasks is to CAD, simulate, calculate, and plan a feasible solution.
Furthermore to build a prototype and finally document a proof of concept. The main
motivation to maintain a relatively low cost solution is for Solwr to stay economically
competitive, since Sort™ is now a commercial product.

According to Solwr, most professional camera manufactures offer to perform testing on
the companies behalf, or alternatively provides the company with cameras to perform own
tests, for a small shipping fee. Solwr also mentioned that in most cases they prefer to do
their own testing, due to it being more time efficient and result effective. One of the the-
sis’ goals was to come to a conclusion on a camera based on Solwr’s requirements, and
to order one for Solwr to test. Utilizing the prototype produced for this thesis, as well as
full scale testing on site, at H.I.G.

The bachelor group’s personal motivation for this thesis was personal development as
engineers, due to the relevancy of their education. Furthermore, to physically and theo-
retically implement knowledge learned during the bachelor studies.

14

←↩

1.3 Scope 1 Introduction

1.3 Scope
The bachelor thesis is researched and written by three students at NTNU Ålesund in
Norway, during the period January 10th through May 20th, 2022. All three students are
graduating in the spring of 2022, in the field of automation engineering.
The scope of this thesis include 3D modeling, data collection and analysis, software de-
velopment, simulator-, PLC-, and HMI programming, electrical wiring, and a prototype
assembly. The group will focus on redesigning and prototyping the point cloud acquisi-
tion of Sort™. The other areas of the system will be left unchanged.

The bachelor group will brainstorm and make several sketches of different solutions.
Thereafter, the sketches will be modeled in a browser-based 3D-modelling software,
named Onshape. In addition to this, the group will develop their own software for FOV
verification using ray casting. Based on the mentors’ and employer’s feedback, several so-
lutions will be simulated for further research. The simulation will be built in Webots. We-
bots supports user-defined robots, cameras, and rangefinders. It can also be programmed
using several different programming languages, while Python being the group’s choice
for all high level programming. Thereafter, a prototype will be built based on the most
promising solution. The hardware for the prototype will be provided by Solwr. The mo-
tor and drive setup, PLC code, and HMI will be created in structured text by the bachelor
group using Microsoft Visual Studio, with TwinCAT 3 integration [R].

The group will use GitHub to exchange software both with each other and the employer.
This is a development and version control tool. Because everything is saved online and in
successive versions, using GitHub makes data loss highly unlikely. See risk chart in the
project preliminary report [R].

15

←↩

1.4 Contributions 1 Introduction

1.4 Contributions
During the bachelor project period, the group has done contributions in line with the mo-
tivation and scope of this thesis. The group has done research, tests, and simulations to-
wards presenting a new image acquisition for Solwr, meeting Solwr’s requirements. This
solution is contributing in research and development of a commercial product, in the large
industry of logistics. While doing the research of this thesis, the group has also found so-
lutions that are not viable, which is, in the group’s opinion, just as important. Choosing a
camera was done by comparing the leading 3D manufacturer’s cameras objectively, and
filling out a comparison tables within this thesis. I.e the information gathered may be used
to find suitable cameras, or exclude them, for other point cloud acquisitions.

The group has made their own FOV software, that has given the group great contribution
to their research. This software can also be used outside the scope of this thesis, using
other 3D objects. This tool can be used in several camera based applications. For in-
stance, to quickly test a one- or multi-camera setup.

The group has built a prototype for Solwr to use for extended testing, and have detailed
their work in how-to-guides in the appendix. These guides might be helpful for anyone
using a similar setup to recreate the work described in the thesis.

The group has made a simulator. They created an environment for inserting camera specs,
and outputting a simulated point cloud based on the cameras’ positions. The Webots sim-
ulator has been a big part of the research done in this thesis, and can be used by others
facing similar challenges.

The group’s simulation and FOV software provided data, which the group offer to other
thesis’ as useful insight, and resource to build new software/projects.

16

←↩

1.5 Thesis outline 1 Introduction

1.5 Thesis outline
The thesis is written in a chronological manner, giving the reader an idea of how the group
proceeded in order to reach their conclusion. A list of tables, figures as well as an inter-
active table of contents is placed at the beginning of the thesis.

Chapter 2 provides information needed in order to fully understand the rest of the thesis.
It provides explanations for terms, mathematical methods and formulas and hardware ex-
planations.

Chapter 3 contains the methods in which the group has reached their conclusion and de-
tails how the current solution of Sort™ functions. It details the workings of their own
software, the possible designs they considered, the possible cameras they considered, as
well as their simulator. Each part’s results provided the group with the theoretical foun-
dation on which they based their conclusion.

Chapter 4 gives the reader insight into the building process and programming of the
group’s prototype. It was based on the results from chapter 3, and was built in Solwr’s
own warehouse. Included in the appendix and referenced from the chapter, there is a
guide anyone can use in order to replicate the group’s results.

Chapter 5 is the results of the work outlined in chapters 3 and 4. Chapter 5 includes the
results and the thought process, which lead to the group’s proposed solution.

Chapter 6 is where the group discusses the results, possible shortcomings, things to re-
member and think about and their ideas for improvement they themselves did not get
around to.

Chapter 7 contains the final conclusion. This is where the group gives their recommen-
dation for how Solwr should proceed in regards to Sort™. In addition to this, it explains
the remaining work needed before the proposed solution can be fully implemented into
Sort™.

The appendix is a collection of documents the group has deemed helpful for the reader
and/or anyone wanting to replicate the results of this thesis.

17

←↩

1.6 Related work 1 Introduction

1.6 Related work
Cameras and camera acquisitions are topics which is widely researched, since it is rapidly
evolving and automating society. In this chapter, research carried out in the industry on
potential problems that are relevant to this thesis are discussed. The aim of this chapter
is to summarize the contributions from various researchers across the domains of cam-
era technology, stability, and accuracy in a industrial environment. With a prospect to
understand the scope of these thesis’s, which in turn influences the choices of this thesis.

1.6.1 Applications of High-Precision Optical Imaging Systems for Small
Unmanned Aerial Systems in Maritime Environments

This thesis for the degree of Philosophiae Doctor and written by Christopher Dahlin Rodin
with the university of Norwegian University of Science and Technology. This thesis pro-
vided useful research regarding cameras exposed for various maritime environments. It
explains several ways an image can be distorted by the environment a camera is placed
within, and how the image is effected. There are several methods presented towards pre-
venting distorted images, both by utilizing software and hardware. This thesis provided
valuable knowledge since the group decided on a move-able camera in the new acquisi-
tion, which may cause some distortion in the images when moved at high velocity [10].

1.6.2 Image space coverage model for deployment of multi-camera
networks

A master thesis written by Eslam Samir Eissa with the University of Windsor has de-
scribed a similar issue in regards to area covered by cameras. His thesis is based on a
multi-camera setup and how to place each camera in order to see the entire surface of a
3D-object. His result is a model that places cameras with maximum coverage in mind.
[11]

18

←↩

2 Preliminaries

Chapter 2

Preliminaries

This chapter contains explanations for terms, mathematical methods, formulas, con-
cepts and hardware used in this bachelor thesis.

19

←↩

2.1 Terminology 2 Preliminaries

2.1 Terminology
Acronyms
IPC Industrial Personal Computer

PLC Programmable Logic Controller

POU Programmable Organization Unit

PRG Program

FB Function Block

FUN Function

DUTs data unit types

ENUM enumeration

GVL Global

I/O Input / Output

HMI Human Machine Interface

FOV Field of view

ToF Time of flight

LiDAR Light Detection and Ranging

VAT Value added tax

Notations
V AC Voltage Alternating Current

V DV Voltage Direct Current

20

←↩

2.2 Theory 2 Preliminaries

2.2 Theory
This section covers concepts, methods and mathematical formulas used in the bach-
elor thesis. It is meant to give the reader a theoretical foundation of the concepts
used in the thesis.

2.2.1 Point clouds
Point clouds are a method of showing 3D information. When a sensor scans a 3D object it
returns points detected along the surface of the object. In addition to the position of each
point on the surface in 3D space, the color of each point can be added to the point cloud
to reproduce both the shape and color of the object.

2.2.2 Ray casting
Ray casting is a technique used in computer graphics. The technique determines what
objects are visible from a certain view point, like from a camera. Rays with origins in
the camera lens are cast outward until they reach a surface. The computer renders objects
whose surface has been reached by a ray [12].

Figure 1: Ray casting, visualized

21

←↩

2.2 Theory 2 Preliminaries

2.2.3 Asynchronous programming
Asynchronous programming is a programming method where a computer performs sev-
eral tasks simultaneously. This method uses more of the computational power available
to the computer, but makes tasks that can be divided into several sub tasks, less time-
consuming [13].

Figure 2: Asynchronous programming, visualized

2.2.4 Formulas and mathematical methods
Discretization of functions

Typically, when graphing functions, one would use a continuous parameter value. i.e the
output for all possible parameter values are presented. It is impossible to store all possible
values when digitally analyzing functions.

Instead, one normally uses discrete parameter values, and stores the values of the func-
tions at those values in memory. This is called sampling. The resolution can be adjusted
to be higher or lower, depending on the sampling frequency. A higher frequency gives a
higher resolution, and a frequency approaching infinity gives seemingly continuous val-
ues.

Figure 3 illustrates this method. It shows a continuous sine function with a sample per
one unit along the x-axis. The output of this discretization can be seen in sub figure 3c.

(a) Continuous function (b) Sampled function (c) Samples

Figure 3: Sampling of continuous function

22

←↩

2.2 Theory 2 Preliminaries

Direction of vectors

In order to construct a vector, one needs two points in space. The vector between them
contains information about the direction of movement needed to move from one point to
the other.

Vector = (x1,y1,z1)− (x2,y2,z2) [14] (1)

Where x, y and z are the points’ coordinates.

Length of vectors

Vectors have both direction and magnitude. In order to calculate it’s magnitude, or length,
one can use the following formula:

Magnitude =
√

a2 +b2 + c2 [14] (2)

Where a, b and c are the vector components.

Euclidean space
Euclidean space is a fundamental space of geometry. It represent physical space. It can
represent both 2D- and 3D-coordinate systems. It was the first way of representing phys-
ical space. It remains the de facto standard today [15].

Rotation matrices
Rotational matrices are used in linear algebra in order to perform rotations in euclidean

space [16]. An example of such a matrix is as follows:

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


This rotational matrix performs a rotation of θ degrees/radians around the z-axis.
For rotations along the x- and y-axes. The rotations would look like this:1 0 0

0 cos(θ) −sin(θ
0 sin(θ) cos(θ)

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)


Rotation matrices for x- and y-axes, respectively

23

←↩

2.2 Theory 2 Preliminaries

Normal vector
A normal vector is a vector that is perpendicular to a surface at a given point. It can be
constructed using no less than three points, or two vectors, that exists on the surface it is
perpendicular to. The formula for a normal vector is:

N⃗ = A⃗B× A⃗C [14] (3)

Where A⃗B and A⃗C are vectors pointing from the same origin to two different points.

In order to simplify usage of this vector, the normal vector can be converted to a unit nor-
mal vector, represented by N̂. This operation leaves the direction of the vector unchanged,
but changes the length to 1. This is done by dividing all components by the total length
of the vector.

N̂ =
N⃗
|N| =

(a,b,c)√
a2 +b2 + c2

[14] (4)

Figure 4: Normal vector in red perpendicular to plane

Planar equation
A plane in 3D-space can be represented as an equation. The equation for any plane is:

a · x+b · y+ c · z+d = 0 [14] (5)

Where a, b and c are the components of a normal vector, x, y and z make up a point in
3D-space and d is a constant. Alternatively, it can be written as such:

a · (x− x0)+b · (y− y0)+ c · (z− z0) = 0 [14] (6)

Where a, b and c are the components of a normal vector, x, y and z make up a point in
3D-space and x0, y0 and z0 is a point in the plane.

24

←↩

2.2 Theory 2 Preliminaries

Points’ relative position to planes
Once a unit normal and a point in the plane is obtained, a different point can be deter-

mined to be above or below said plane, relative to the normal vector. By using the property
of a vector where if it is inverted, it has negative length, one can determine the perpen-
dicular movement from the plane to an arbitrary point. Meaning if the normal vector has
positive direction as seen on figure 4 any movement towards a point on the opposite side
of the plane would be in the vector’s negative direction.

Whether the movement is positive or negative, can be determined by taking the dot prod-
uct of the normal vector and a vector going from the origin point of the normal vector to
an arbitrary point.

Amount o f normal vectors = (P−O) · N̂ [14] (7)

Where P is an arbitrary point, O is the origin of the normal vector and N̂ is the unit normal
vector.

Should the amount of normal vectors be negative, the movement is opposite to the normal
vector. Therefore, the point is below the plane relative to the normal vector.

Converting distances for one camera to another
Seeing that most cameras have different fields of view, two different cameras will see

two different pictures from the same view point. In order to calculate what vantage points
will provide the same picture, at least along one axis, the group has defined the following
formula:

Distance2 =
tan(theta1) ·distance1

tan(theta2)
(8)

Figure 5: Visualization of formula

Where distance1 is the distances used with the first camera, distance2 is the same distance
for the new camera, theta1 is the FOV angle of the first camera and theta2 is the FOV
angle of the new cameras.

25

←↩

2.2 Theory 2 Preliminaries

Defining a coordinate system using vectors
A coordinate system is suspended by n number of axes, with a single point considered as
its origin.

A new coordinate system can be created using self-defined vectors representing the axes
and aligning the ends of the vectors in the origin.

Figure 6: Coordinate system suspended by two vectors

The coordinate system in figure 6 can for example be made using vectors defined in a dif-
ferent coordinate system. For instance, the horizontal vector can be defined as [x,y,z] in
the original coordinate system. The vertical vector would then be a vector perpendicular
to the first one. The origin in the new coordinate system would be the blue dot, which is
an arbitrary point in the original coordinate system.

Using these vectors as the axes, one can now describe location in space using the amount
of each vector, moving relative to the origin. One unit along an axis would mean one
length of the respective vector. An example of vectors representing a new coordinate
system can be seen in figure 7. Any point defined in the new coordinate system can be
transformed back to the original system by using equation 9.

Point in space = x · vector1 + y · vector2 +origin (9)

Figure 7: Vectors creating a new coordinate system

26

←↩

2.2 Theory 2 Preliminaries

Rectangular- and spherical coordinates
Coordinates in euclidean space can be represented in multiple ways. Two of which are
rectangular coordinates and spherical coordinates [14].

Rectangular coordinates, or Cartesian coordinates, are based on axes that are perpendic-
ular to one another. For example the x-, y- and z-axis. Positions are defined by moving
along each of the axes. E.g (2, 3, 4).

Figure 8: Rectangular coordinates

Spherical coordinates are based on angles and the total length of the vector from an origin
to a point on a sphere around it. This way of representing coordinates is preferred when
applying rotations. Coordinates are represented by ρ/r (radius of sphere), φ (vertical
angle) and θ (horizontal angle). E.g (1, 0.5π , pi)

Figure 9: Spherical coordinates

27

←↩

2.2 Theory 2 Preliminaries

In order to convert between rectangular and spherical coordinates one can use the follow-
ing equations:

From rectangular- to spherical coordinates:

ρ =
√

x2 + y2 + z2 (10)

φ = arccos(
z√

x2 + y2 + z2
) (11)

θ = arccos(
y
x
) (12)

From spherical- to rectangular coordinates:

x = ρ · sin(φ) · cos(θ) (13)

y = ρ · sin(φ) · sin(θ) (14)

z = ρ · cos(φ) (15)

2.2.5 3D cameras
There are multiple ways of collecting 3D information using cameras. One way is by using
multiple cameras or by using a camera in combination with a different sensor. Using two
cameras to gather 3D data is called a stereo camera. Two images are taken at slightly
different points and by identifying common features and looking at the displacement, the
depth can be calculated for each feature. Instead of using two cameras, one of them can
be replaced with a projector that sends out structured light patterns. When these patterns
reaches a surface they will be distorted when viewed from a different angle to the pro-
jector. The depth can be calculated using this distortion. Instead of a projector it is also
possible to use a LiDAR to get information on depth in the image. This type of camera
falls under the ToF category, time of flight [17].

2.2.6 Pixel coordinates to world coordinates
In order to go from pixel values with depth to full coordinates, a transformation is needed.
This transformation is built on the intrinsic parameters of the camera taking a picture. This
info is either known ahead of time or gained trough a calibration of the camera. This in-
formation forms a matrix called the calibration matrix or the intrinsic parameter matrix
and is denoted by K. The K matrix is built up as follows:

 f · sx f · sθ ox
0 f · sy oy
0 0 1


28

←↩

2.3 Software, protocols and technology 2 Preliminaries

Where the f is the focal length of the camera. sx and sy are the size of the pixels, so if
they have the same value the pixels are square. sθ is the skew of the pixels, usually there
is little to no skew. ox and oy are the coordinates of the center pixel. If you have the
pixel value and distance out to the point, this can be converted into world coordinates by
multiplying the pixel coordinate with the inverse of the K matrix.[18]

2.2.7 3D Transformations
In order to move a 3D object, you need to apply a transformation. This transformation
can be done with a transformation matrix, T. The transformation is a combination of ro-
tation and translation. For a 3D rotation you need a 4x4 transformation matrix containing
a rotation matrix and a translation matrix.

[
R T
0 1

]
Here the R is the 3x3 rotation matrix and T is the translation vector.[18]

2.3 Software, protocols and technology
2.3.1 PLC OPEN
PLC open is an association representing various industries, with a focus on harmonization
of control programming, application and interfacing engineering. PLC open is standard-
izing base functions for a re-usable software across multiple hardware platforms, this is
in order to increase efficiency in cost and time [19].

2.3.2 EtherCAT
”EtherCAT (Ethernet for Control Automation Technology) is a real-time Ethernet field bus
that developed by Beckhoff and managed by ETG (EtherCAT Technology Group)”[20].

EtherCAT is built on standard Ethernet, employing the physical layer of Ethernet, RJ45
connectors, 100BASE-TX, and EBUS to transport LVDS signals as the transmitting me-
dia. Full duplex data transport is possible with EtherCAT, with a maximum rate of 100
Mb/s. It also enables redundancy and hot swap technologies in terms of safety and relia-
bility [20].

29

←↩

2.3 Software, protocols and technology 2 Preliminaries

2.3.3 Encoder
Positioning, RPM, and speed control are common uses for encoders. The use of light is a
commonly utilized principle in encoders. In general, an optical encoder is made up of one
or more sets of light emitting diodes, photo-detectors (photo transistors), and a disk. The
number of holes on the revolving disk determines the encoder’s resolution. Incremental
and absolute encoders are the two most common types [1].

(a) Pulse train using channel A, B and 0 in an
incremental encoder

(b) Absolute encoder disk

Figure 10: Illustrations of a incremental and absolute encoder [1]

Incremental encoder
A PLC can utilize an incremental encoder by counting the number of pulses received.

However, a exact reference point is required for the encoder to function. E.g to move an
axis until it reaches a set point, and store this position as reference. This action is often
referred to as a homing. After determining the axis position, the axis can be moved with
the accuracy of the encoder. However, if the encoder loses power a new homing will be
required. A common incremental encoder has 3 channels: A, B and 0, and is illustrated
in figure 10a. [1]

The pulse train on channels A and B are 90 degrees out of phase with each other. This
allows you to figure out which way the encoder turns. The rotation is clockwise if A has
a rising edge before B, and vice versa if B is first. Channel 0 is a pulse that is used to keep
track of the encoders full rotation. [1]

30

←↩

2.3 Software, protocols and technology 2 Preliminaries

Absolute encoder
Absolute encoders know the exact position at all times without needing to calibrate to a

known reference position. An absolute encoder outputs the actual angle or position as a
binary signal. The number of bits is equal to the number of rows of holes in the disk. It is
common to arrange the holes in line with Gray coding. Gray code is a method where only
one bit changes between the sectors in the disk. Figure 10b is an example of a disk using
3 rows and gray code. Since the disk has 3 rows of holes, the encoder has a resolution of
45◦, calculated in equation 16 and 17 [1].

Number o f positions = 2number o f rows in disk = 23 = 8 (16)

Encoder resolution =
360◦

8
= 45◦ (17)

31

←↩

3 Research, software & simulation

Chapter 3

Research, software & simulation

This chapter details how the group has found limitations for their camera placement
through CAD, considered several designs and chose the most suitable camera. In
addition to this, it explains the group’s software and how their simulator was built.

Chapter 3 is the main part of the thesis where the group details their workflow in
order to reach the final results. The chapter also gives the reader insight into the
thought process behind the decisions made.

The subsections 3.3 and 3.4, which detail the choices made regarding the design and
camera, include a summary that explain the chosen option and why.

32

←↩

3.1 Current solution 3 Research, software & simulation

3.1 Current solution
This section contains information about the current version of Sort™. It is meant to pro-
vide the reader with context and give an understanding of how the cameras work together
with the other parts of the system.

3.1.1 Introduction current Sort™ solution

Figure 11: Mockup of Sort™ [2]

Sort™ is a pallet sorter robot, illustrated in figure 11, developed by Solwr, previously
known as Currence Robotics. Sort™ was developed with scalability in mind, and there-
fore is modular to fit both small and large facilities. It can work 24 hours a day, if needed.
It can sort all pallets including: Euro pallet, plastic pallets, eco-pallets, half sized pallets
and quarter sized pallets[2].

Sort™ is made up of a pallet-transporting conveyor system, numerous out-feed towers,
and one in-feed tower for receiving pallet stacks. A robotic gripper is also used to sort
each pallet. Sort™ is designed for warehouses and enterprises like H.I. Girtz and ASKO,
who receive hundreds of pallets per day of all types.

33

←↩

3.1 Current solution 3 Research, software & simulation

3.1.2 Work flow

(a) Sorting using forklift [21]

(b) Wooden and plastic pallet [22]

Figure 12: Sorting different pallets using forklift

Traditionally, the incoming pallets must be manually sorted by staff using a forklift. Since
this method is repetitious and demands precision over lengthy periods of time, it is time
consuming and psychologically demanding. Employees must sort the pallets in addition
to looking for faults, and other reasons why the pallet should be eliminated from pro-
duction. Pallets that have been discarded will be repaired or recycled, thus they must be
placed into separate stacks.

Instead, by utilizing Sort™, the employee only needs to sort an assortment of pallets into
stacks. The stacks can be from one and up to 17 pallets high. Thereafter, the pallet stack
is delivered at the in-feed tower, which is the center conveyor in figure 11.

34

←↩

3.1 Current solution 3 Research, software & simulation

3.1.3 Conveyor system

(a) Conveyor and resistance rollers (b) How it is used

Figure 13: Conveyors and the resistance rollers

The conveyor system on the current version of Sort™ is mechanical, which means there
are no motors or other forces pushing the pallets forward. This locomotion is due to the
angle of each conveyor, and low resistance rollers to gain speed. To prevent pallets gain-
ing too high velocity, some of the rollers are braking rollers, which means rollers with
high resistance. The conveyor system will be adapted for each customer, due to each fa-
cility and their needs.

35

←↩

3.1 Current solution 3 Research, software & simulation

3.1.4 Camera portal

Figure 14: Sort™ in action

The in-feed tower also consist of a frame surrounding the pallet stack, called the camera
portal. The camera portal is where six LiDAR cameras are used to create a 3D point cloud
of each pallet with today’s design. The point cloud in combination with Solwr’s image al-
gorithm, the system can determine the type, size, and the state of each pallet. The state is
evaluated by cleanliness, rotation in any parts, cracks, missing material and other defects.

36

←↩

3.1 Current solution 3 Research, software & simulation

3.1.5 Robot gripper

Figure 15: Illustration of the robot gripper

The robot gripper is illustrated in figure 15, and has 5 movable axes to navigate. The robot
is fully automated, and is programmed using high level programming, machine learning,
and a PLC.

37

←↩

3.1 Current solution 3 Research, software & simulation

3.1.6 Movable axes

Figure 16: Illustrates axis one, two and three as x, y, and z on Sort™.

Figure 17: Illustrates axis four and five as the rotating and gripping axis on Sort™.

• Axis 1: Horizontal axis (red)

• Axis 2: Vertical axis (blue)

• Axis 3: The depth axis (green)

• Axis 4: Rotational axis (orange)

• Axis 5: The gripping axis (purple)

38

←↩

3.1 Current solution 3 Research, software & simulation

3.1.7 Out-feed
Using sensors and high-level programming, the robot counts every pallet within each
tower. When a tower’s capacity is reached, the out-feed tower is lowered and unloaded
for an employee to collect. The stack’s maximum capacity can be adjusted throughout
development, however it is currently set at 17 pallets.

The group will be working with the version of Sort™ located at H.I. Giørtz, illustrated
in figure 11. It was built in 2019 and continuously updated with improvements. This
instance of Sort™ was originally built as a prototype, but has since been developed into
a commercial product [R].

39

←↩

3.1 Current solution 3 Research, software & simulation

3.1.8 Current camera solution

Figure 18: Intel® RealSense™ L515

The camera currently used on Sort™ is the Intel® RealSense™ L515 [23], seen in figure
18. This is an affordable off-the-shelf LIDAR camera, with free plug-and-play software,
named Intel® RealSense™ Viewer.

Figure 19: Intel® RealSense™ L515 internal components [B]

40

←↩

3.1 Current solution 3 Research, software & simulation

Figure 20: Placement of the four cameras capturing the side and bottom of the pallets.

Six L515 cameras are installed in the current version of Sort™. Four cameras are located
inside the camera portal shown in figure 20. They are responsible for capturing the sides
and bottom of the incoming pallet. The two remaining cameras are placed in front and
behind the incoming pallet, as illustrated in figure 21a and 21b. These cameras capture
the four corners, front, back, and the top of the pallet. Together, all images forms a 3D
point cloud representing the pallet, and can be used to determine the type and state of the
pallet.

(a) Back top camera position and field of view (b) Front top camera position and field of view

Figure 21: Illustration of all current camera placements, and field of view

41

←↩

3.1 Current solution 3 Research, software & simulation

Figure 22: One of four cameras in figure 20 and field of view.

The Intel® RealSense™ L515 cameras are ideally used in the range 0.25 to 9 meters.
Their field of view (FOV) is 70◦ by 55◦ (±3◦). The depth output resolution can be up to
1024x768 pixels with a frame rate of 30 frames per second (FPS) and the depth accuracy
is 5mm to 14mm. The resolution and ideal range vary based on the cameras picture
format. The different formats and their specifications can be seen in table 1 [B].

Format(Depth
Resolution)

Number of depth
points per second

FOV Range @15%
reflectivity

Range @95%
reflectivity

QVGA (320x240) 2.3M 70◦ x 55◦ 0.25 - 3.9m 0.25 - 9m
VGA (640x480) 9.2M 70◦ x 55◦ 0.25 - 3.9m 0.25 - 9m
XGA (1024x768) 23.6M 70◦ x 55◦ 0.25 - 2.6m 0.25 - 6.5m

Table 1: Intel® RealSense™ L515 depth specifications B

42

←↩

3.1 Current solution 3 Research, software & simulation

3.1.9 Point cloud

Figure 23: NLP pallet [3]

(a) Top view point cloud of an NLP pallet (b) Side view point cloud of an NLP
pallet

Figure 24: Point cloud image of a NLP pallet using Intel® RealSense™ L515, provided
by Solwr.

The current cameras each take a single picture and then combine them with LiDAR mea-
surements to generate 3D data for various points in the image. This is represented as a
point cloud that combines the photo with 3D world coordinates, as seen in figure ??. Since
the cameras are at fixed positions relative to each other, it is possible to stitch together the
different point clouds into one piece of 3D information. This shows all the surfaces of
the pallets that the six different cameras can see. The combined 3D model is then used to
classify the type of pallet, and analyzed for potential damages.

The LiDAR camera is a type of ToF camera, a time of flight camera. It generates the 3D
image by combining a time of flight sensor with a camera. In the Intel® RealSense™
L515 camera the ToF sensor is a laser that sends out a beam, and then measures the time
it takes for it to reflect off something and return. This data gives the depth of any given
point in the image taken by the camera component.

43

←↩

3.1 Current solution 3 Research, software & simulation

3.1.10 Economy
In the economy section the group considers components and components that is likely to
be upgraded, removed or replaced in a potential new solution.

Intel® RealSense™ Camera & robot gripper
The current pricing for the Intel® RealSense™ L515 is 589$ per camera[23]. Since the
current camera system is a static system, there are no moving mechanical components
changing the cameras position. This means that the cameras needs close to zero mainte-
nance, and therefore adds little to nothing maintains cost. However, in order to capture
a complete coverage 3D point cloud in the current image acquisition, the robot gripper
must lift each pallet. The lifting mechanism will almost certainly be included in future
solutions, and therefore can be excluded from the economy calculations.

Raspberry Pi
In the current solution each camera requires one Raspberry Pi for each camera, since the
cameras uses the USB protocol. The USB protocol has limitations in data-flow, and by
using a Raspberry PI the data can be transferred to the industrial computer, using the Eth-
ernet protocol.

Camera portal
The camera portal will most likely be altered in some way, in the new camera acquisition.
However, this does not cause any problems, since the camera portal in designed by needs
of the cameras localization. A cost in altering the camera portal design is highly likely,
but impossible to calculate. The group has therefore evaluated that it’s important to factor
in, but as a unknown cost this early in the process.

components that is likely to be upgraded

Hardware Quantity Price per unit Total price
Intel® RealSense™
L515

6 589$ [23] excluded tax and shipping 3 534$

Raspberry Pi 6 145$ [24] bought locally in Norway 870$
Ethernet cables 6 unknown unknown
Camera portal 1 unknown unknown

Table 2: The current camera systems hardware pricing

44

←↩

3.1 Current solution 3 Research, software & simulation

3.1.11 Statistics
The Sort™ system at H.I Giørtz is linked to a data collection server named Datadog.
Datadog allows Solwr to monitor the system’s performance and accuracy in real time.
Table 3 was created using the data collected over the last month, as of the 5th of May,
2022.

Measurement Value
Active, per day 6.0h
Pallets processed 25054
Average cycle time 24s
Pallets per hour 150

Table 3: Sort™’s statistics gathered the 5th of May 2022

45

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

3.2 Self-developed FOV software
In order to visualize and demonstrate different solutions, as well as test the viability of
certain cameras, the group has created software that presents the results visually. The
script, found in appendix [G], was used as a quick way to get rough results without need-
ing to program a simulator or build a prototype.

The script is written in Python, can visualize a camera’s field of view and determine
which points of a 3D-object that can be seen from a camera’s position. The results are
based on the camera specifications the user specifies within the script, and the placement
and orientation of the camera. If needed, the script handles several cameras and outputs
the combined results of all cameras.

This section details the creation of this script, as well as a detailed explanation of how
each mode works.

A link to the most recent version of the software can be found at: Website link.

46

https://github.com/NotAPole/Bachelor/releases/tag/Final_submission

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

3.2.1 Object representation
The group has developed a script in order to calculate the field of view (FOV) of different
cameras. Any 3D-object can be used as a reference. The script requires a file containing
details about the 3D-object. More specifically, it needs coordinates in 3D-space of all
corners of the object.

Figure 25: Text representing surfaces and corners of a euro pallet in 3D-space.

The algorithm first off imports a text file containing the corners and surfaces of a pallet,
seen in figure 25. It generates a list where each element of the list contains four points in
3D-space. These four points make up a surface. An example of how these points represent
a pallet can be seen in figure 26. The blue points are written as coordinates in 3D-space
and the red area is the surface generated by them.

Figure 26: Method of representing pallet as a text file

Secondly, it uses the initial points to generate additional points along the sides of each
surface. This is done by mathematically calculating which direction the side is pointing
and then generating a specified amount of points along it, starting at one corner and end-
ing at another. This is repeated for each side, and then for each surface. This is done in
order to make the results more detailed.

47

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

Figure 27: Additional points generated for a higher resolution

The generation of additional points is exemplified in figure 27. The points in blue are
initial ones, retrieved from the text file. The red points mark the additional ones generated
by the algorithm. This process gives the user a better understanding of which areas are
seen by the camera and which are not. Before the additional points, the algorithm would
not be able to tell how much of the sides could be seen. The increased resolution is shown
in figure 28.

(a) Before adding points (b) After adding points

Figure 28: Increasing resolution of 3D-model

48

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

3.2.2 Checking field of view
An example of this script in use can be seen in figure 29. Blue points are points inside the
FOV, red points are not within the FOV. It is important to note that this mode does not take
into account obstructed points and is only used to verify the viability of cameras and cam-
era placements. If the results of the FOV test are promising the camera setup can be tested
using another mode, where surfaces are used to detect line-of-sight obstructions of points.

(a) FOV, angle 1 (b) FOV, angle 2

Figure 29: Testing of FOV

This mode requires the camera placement, its FOV represented in horizontal and vertical
angles, its focus point and it’s range span. The camera placement is the origin of the FOV.
The FOV angles determine the width and height of the FOV. The focus point is a point
in 3D-space where the camera is pointed. Finally, the range is the cameras minimum and
maximum viewing distance.

In order to represent the FOV in vectors and planes, the script uses methods and formulas
described in section 2.2.4. A unit vector is constructed between the camera and the fo-
cus point, which is used to make two perpendicular vectors that define a new coordinate
system, seen in figure 30.

Figure 30: New coordinate system based on the blue vectors

49

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

The first of the two vectors is created using vector rotation. By using a rotation matrix that
rotates the focus vector 90 degrees around the Z-axis, explained in section 2.2.4, seen in
figure 31, a perpendicular vector to the focus vector is created. Due to the Z-component
of the matrix being set to 0, the vector only spans along the XY-plane. After it has been
rotated, it is scaled to be a unit vector. The resulting vector is placed at the end of the
focus vector.

Figure 31: Rotation matrix used for first axis.

With two vectors defined, a third one can be created perpendicular to both of them using
the cross product. This vector is the second axis of the new coordinate system. Seeing that
the third vector is a cross product of two unit vectors, no additional scaling is necessary
for it to also be a unit vector.

The script then uses the angles of the camera FOV to determine the direction of the FOV
vectors. Using trigonometry, the angles are converted to vectors. Since all vectors are
made to be unit vectors, the movement along the newly defined axes is the tangent of the
FOV angle.

Figure 32: Method for converting angle information to vector information

The method for converting angle information to vector information is done for both axes.
The movement along the axes are the same, but negative, for the mirrored sides. This
means four vectors can be made by combining positive and negative movement along
both axes. These four vectors make up the corners of the FOV.

50

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

(a) Viewing angle 1 (b) Viewing angle 2

(c) Viewing angle 3 (d) Viewing angle 4

Figure 33: Field of view

After the FOV vectors have been constructed, the sides of the FOV ”pyramid” are defined
as planes. This is done by using two of the FOV vectors and the camera’s placement with
the formula described in section 2.2.4. This is repeated four times. These planes define a
four-sided pyramid in 3D-space, excluding the bottom, as seen in figure 34.

Figure 34: Shape of FOV pyramid

51

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

Next, the script constructs normal vectors out of these planes. This is done in an order
which makes the normal vectors point outwards from the center. The normal vectors are
shown in figure 35, in yellow.

Figure 35: Normal vectors out of planes

52

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

Finally, all the points representing the pallet are run through a calculation of whether or
not they are within the FOV. This is done by using the method described in section 2.2.4.
By comparing each surface of the FOV and the amount of their corresponding normal
vector needed to reach each point of the pallet, the script determines if they are within the
FOV of the camera or not. Because of the normal vectors all pointing outward from the
FOV pyramid, the movement should require a negative amount of all the normal vectors
if it is within the FOV. The script then displays all points, where their color represents if
they are seen or not, as seen in figure 36. Blue means they are seen, red means they are
not seen.

(a) Viewing angle 1 (b) Viewing angle 2

Figure 36: Field of view test

In addition to this, the camera can be set to have a minimum and maximum range. In
order to verify that the points are also within these limits, the script uses the formula de-
scribed in 2.2.4. The points’ distance to the camera are compared to be between the lower
and higher range. In figure 37 this is exemplified with three points that are all within the
FOV, but only one is within the camera’s operating range.

(a) Viewing angle 1 (b) Viewing angle 2

Figure 37: Field of view range

53

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

Software that did not work

Before the idea of creating their own coordinate system, the group also tried creating the
FOV pyramid using spherical coordinates. This did not work because of how vectors
converge when applying vertical rotation using these methods. The problem is visualized
in figure 38. The rotation around the Z-axis is correct, but all vectors converge to point
directly upwards when applying rotation around the XY-plane.

(a) Starting vector (b) Rotation around Z-axis (theta)

(c) Rotation upwards (phi) (d) Vectors converging at 90◦ rota-
tion along the XY-plane

Figure 38: Rotations using spherical coordinates

54

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

3.2.3 Checking seen points
In order to verify the viability of the possible solutions, the group uses the same script as
to check the FOV, but in a different mode. The script uses the same text file containing
all corners of a pallet in 3D-space. This file is run through an algorithm to check which
points are seen from a certain point, and which are obstructed by various surfaces. In
addition to this, the algorithm takes into account the specified FOV of the camera, and it’s
operating range. The algorithm can be configured to include as many cameras as needed.
The resulting plots are their collectively seen and not seen points.

The script first off increases the resolution of the pallet using the method described in
section 3.2.1. Then, it checks to see which points are within the first camera’s FOV, same
as in section 3.2.2. Only the points that are within the camera’s FOV are run through the
rest of the algorithm. The points outside of the FOV are stored in a cache. These are
either checked by the next camera or marked as not seen if the current camera is the last.

While adding more points, the script also defines planar equations for all the surfaces
formed by the initial points. The planar equations, described in section 2.2.4, are used
later in order to check whether or not the line-of-sight to a point is obstructed.

The points within the FOV are assessed using a method similar to ray casting, described
in section 2.2.2. The ray is a vector between the camera origin and each individual point.
Based on the settings of the script, this ray is discretized a certain amount of times. Dis-
cretization is explained in section 2.2.4. By comparing all the discrete values of the ray to
all the surfaces of the pallet, the script can determine when the ray approaches and crosses
a surface. The ray crosses a plane when the planar equation equals zero.

Given that it is not a continuous ray, some margin must be accounted for. An illustration
of why can be seen in figure 39. The discrete values of the ray might not land exactly in
the plane, but rather have two values close on either side. In figure 39 the point marked
as a red cross would have been the crossing point, if it were continuous.

Figure 39: Discrete ray through surface

55

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

Should the result of the planar equation equal zero ± the specified margin, the script
checks to see whether or not the ray is within the four corners of the surface. The reason
for this is because of how a planar equation is not confined. It is defined without limits
from negative infinity and to positive infinity along all axes. The planar equation using
the two rays’ points shown in figure 40 will both equal zero where the red crosses are,
even though one of them does not go through the surface.

Figure 40: Two discrete rays crossing a plane

Due to the same reason as before, there also needs to be some margin accounted for in
this step. When checking if the ray is within the confined surface, a margin is added to
the surfaces’ position. This creates a box in 3D-space, shown in figure 41. If the ray is
within this box, the current point is labeled as not seen by this camera. In other words; if
the ray crosses a surface on it’s way to a point, then that point is obstructed. Then, that
point is sent to the cache for the next camera to check it.

Figure 41: Box created in order to capture discrete values not exactly in the plane

56

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

(a) First viewing angle (b) Second viewing angle

(c) Third viewing angle

Figure 42: 3D-plots showing results of algorithm. Cameras are shown as black dots.

After all cameras are finished, the points are shown in a 3D-plot. Their color tells the user
if they are seen or not. Green is seen, and red is not seen. An example of this can be seen
in figure 42. In that example the script used three cameras, one above and two below to
the side.

57

←↩

3.2 Self-developed FOV software 3 Research, software & simulation

Asynchronous programming

In order to optimize the script, asynchronous programming was used, described in sec-
tion 2.2.3. This a more resource-intensive method, but it is faster. Instead of running the
algorithm one camera at a time, all cameras are run simultaneously. This is configurable
within the script. If the user for some reason does not want to tie up the computer’s re-
sources, the algorithm can be run synchronously at the expense of the total time used.

Using this method, the cameras do not initially know which points are seen by the others.
Therefore, a queue had to be implemented. The algorithms for each camera pull out the
element, or point, at the front of the queue and checks whether or not it can see it. The
next camera pulls out the next element. If the point can be seen, this point is added to
a collection of seen points. If it cannot be seen, it is added to the back of the queue for
it to be checked by a different camera. All cameras keep track of which points it cannot
see, so that when the points is at the front of the queue once more, it does not bother to
check it again. When all points remaining in the queue are checked by each camera, the
algorithm finishes and the remaining points are labeled as not seen.

The workflow of the algorithm using asynchronous programming can be seen in figure
43.

Figure 43: Asynchronous workflow

58

←↩

3.3 Possible designs 3 Research, software & simulation

3.3 Possible designs
This section contains information about how the group used Onshape in order to model
possible designs. The first chapter details the models the group received from Solwr and
how these models uncovered important limitations.

In addition to this, it details the designs the group has come up with. Some of the designs
are grouped together with similar ones. Each design is numerated by the chronological
order in which they were created. On every design, the cameras are illustrated with a
black box. All 3D-models are made using Onshape, an online 3D CAD software.

This section is meant to convey the different designs the group has looked at and detail
their positive and negative aspects.

3.3.1 Using CAD as inspiration and visualization
Since the majority of the hardware development for Sort™ was conducted using CAD,
Solwr now has a comprehensive and detailed 3D CAD of the current version of Sort™.
The group was granted access to Sort™ in 3D, which was utilized to visualize ideas
throughout the brainstorming session.

Figure 44: 3D CAD of sort

59

←↩

3.3 Possible designs 3 Research, software & simulation

3.3.2 Imported Zivid FOV

(a)

(b)

Figure 45: Difference between small, medium and large FOV, with the small FOV out-
lined in yellow.

One benefit was the possibility to import a 3D CAD and FOV from Zivid One+ cameras.
Zivid provides FOV for all three cameras in their line up: Small, medium and large.
However, the CAD representing Zivid’s FOV does project the correct FOV, but does not
factor in each cameras operating distance. In figure 45 are all three models located in
parallel, to illustrate the difference in angle and size. See appendix [C] for each cameras
operating distance.

60

←↩

3.3 Possible designs 3 Research, software & simulation

3.3.3 Obstacle handling

(a) (b)

Figure 46: Displaying the limitation due to the pole, marked in yellow

(a) (b)

Figure 47: Displaying the limitation due to the following stack, marked in yellow

The 3D CAD was not only useful for the brainstorm process, but also to be alert of pos-
sible obstacles to be aware of. One obstacle was the pole illustrated in figure 46, where
the pole highlighted in yellow had to be considered when designing the solution. Another
obstacle to be aware of was the following pallet stack illustrated in figure 47, where the
pallet stack highlighted in yellow could block some of the camera’s FOV. However, the
distance between stacks, is highly customizable if being a limiting factor.

61

←↩

3.3 Possible designs 3 Research, software & simulation

3.3.4 Design one, four & five
Characteristics:

• one & two cameras

• movement of cameras, horizontal

• movement of cameras, vertical

• circular axis

(a) Design one (b) Design four

(c) Design five

Figure 48: Illustration of design 1, 4 and 5

These designs only use two cameras, but they are unnecessary complex because of the
circular axis. If the cameras only take photos at the end of every bar, it would make just
as much sense to use a linear axis. The group also learned that a circular axis is not a
standard, in comparison with a linear axis, which is widely used in the industry. Previous
experiences from engineers at Solwr informed that with custom parts require longer de-
livery times, and additional cost. Due to these reasons, design one, four and five was not
pursued further.

62

←↩

3.3 Possible designs 3 Research, software & simulation

3.3.5 Design two & three
Characteristics:

• two & four cameras

• stationary cameras

• pillars mounted to frame

(a) Design two (b) Design three

Figure 49: Illustration of designs 2 and 3

Figure 50: Dead zone using two static cameras, marked in blue.

Two cameras, as seen in figure 49a are not sufficient when both cameras and the pallet are
stationary. There would be blind spots in between the legs of the pallet, marked in blue
in figure 50. Four cameras, seen in figure 49b, would be too expensive. A possible way
to fix the issue with design two, would be to add a third camera. The third camera would
be used to map the top of the pallet. Due to these reasons, design two, and three were not
pursued further.

63

←↩

3.3 Possible designs 3 Research, software & simulation

3.3.6 Design six
Characteristics:

• two cameras

• moving cameras

• pillars mounted to frame

• rotating pallet

(a) Design six, initial

(b) Design six, turned

Figure 51: Illustration of design 6

Using this design, the total cost of the cameras would be low, since its only using two
cameras. However, the group evaluated it to be hard to cover the inner center of the pallet,
and therefor not a optimal solution since there might be damages in that area. It also re-
quires movement along non-linear axes when moving vertically, making it unnecessarily
complex. In addition to this, the rotation of the pallet would add significant time to the
total time needed per pallet. Due to these reasons, design six was not pursued further.

64

←↩

3.3 Possible designs 3 Research, software & simulation

3.3.7 Design seven
Characteristics:

• two cameras

• moving cameras

• pillars mounted to frame

(a) Design seven, initial (b) Design seven, transformed

Figure 52: Illustration of design seven

This design improves upon design two, three and six. One of the cameras are mounted on
a linear axis, making it function as a hybrid between design two and four, while including
the movement from design six. This looks to be a cost-effective solution. The design
will with high probability be a cheaper design utilizing an axis, a motor and a control
system, than to purchase a third camera. Since the group evaluated this as a possible
viable solution, this was one of the pursued designs.

65

←↩

3.3 Possible designs 3 Research, software & simulation

3.3.8 Design eight
Characteristics:

• two cameras

• moving cameras

• moving camera mounts

• pillars mounted to frame

(a) Design eight, initial (b) Design eight, moving

(c) Design eight, moved

Figure 53: Illustration of design eight

Design eight involves moving both cameras and the mount they are attached to. It would
be quite complex and heavily dependent upon accurate and fast movement. Design eight
was therefore not pursued further.

66

←↩

3.3 Possible designs 3 Research, software & simulation

3.3.9 Chosen design

(a) First evaluated design (b) First evaluated design

(c) Final design using linear axis

Figure 54: Presenting two viable solutions in CAD through Onshape

After several concepts during the brainstorm session, the group preferred the solution in
figure 54a and 54b using three cameras. Placing two cameras diagonally to each other,
and the third camera as a top camera. The top camera could either be in front or behind the
camera portal on Sort™. The top camera’s sole job was to cover the pallet’s top surface,
while the two diagonal cameras covered the sides and bottom. However, in order to keep
the number of cameras as low as feasible, the group decided that the top camera should be
located directly above one of the diagonal cameras, rather than in front or behind Sort™.

67

←↩

3.3 Possible designs 3 Research, software & simulation

This solution is illustrated in figure 54c, and allows the group to use the same camera in
both locations by implementing a linear axis as illustrated in figure 52.

After considering all the designs, both Solwr and the bachelor group decided that design
seven, or a variant thereof, would be the most promising one. It keeps the total cost rel-
atively low compared to the other ones, while not adding a lot of complexity to the system.

Figure 55: Variant of design seven

If the linear axis and the servo implementation for adjusting height and angle is too com-
plex, a possible variant would be to use a design with three cameras, seen in figure 55.
This would reduce the complexity whilst maintaining the area covered by design seven.

68

←↩

3.4 Possible cameras 3 Research, software & simulation

3.4 Possible cameras
The process for finding the optimal camera for this project solution had several steps:

• Evaluation of each camera’s specifications

• Evaluation of FOVs

• Evaluation of delivery times & prices

• Consider Norwegian tax laws, how the import from other countries would effect the
total price.

Camera specification evaluation
Research was done, documenting the different manufacturers’ datasheets for each indi-
vidual camera. The gathered results are displayed in table 4.

Specifications for possible new cameras
Name Resolution FOV size at (mm) Depth accu-

racy
Range (mm) Link

Intel -
RealSense

L515

1024×768 70◦horizontal
55◦vertical (±3◦)

5̃ mm to 1̃4
mm thru 9 m2

250 to 9000 1[B]

Zivid -
One+

Medium

1920x1200 33◦horizontal
25◦vertical

<100µm
(1800)

euclidean
distance

500 to 2000 [1]

Zivid -
One+

Large

1920x1200 39◦horizontal
25◦vertical

<350µm
(1800)

euclidean
distance

1200 to
3000

1[C]

Zivid - Two 1944x1200 50◦horizontal
36◦vertical

55µm(700)
euclidean
distance

300 to 1500 1

Nerian -
Scarlet 3D

Depth
Camera

1921x2048 38.5◦horizontal
32.8◦vertical

2.7mm at 3m 1700 to
5000

1, 2

Mech-mind
- Mech-Eye

laser L

2048x1536 50◦horizontal
45◦vertical

1mm at 3m 1500 to 3000 1

Cognex -
3D-A5120
Extended
working
volume

n/a 53◦horizontal
39◦vertical

n/a 800 to 2800 1

Table 4: Specifications for possible new cameras

69

https://www.intelrealsense.com/lidar-camera-l515/
https://www.zivid.com/hubfs/Zivid%20One%20Plus%20Datasheet%20(1).pdf?hsCtaTracking=f6b119a4-7444-47ac-83a3-44d4840aa429%7Ccabb4557-32f2-4851-9612-99fe7552235b
https://www.zivid.com/hubfs/Zivid%20One%20Plus%20Datasheet%20(1).pdf?hsCtaTracking=f6b119a4-7444-47ac-83a3-44d4840aa429%7Ccabb4557-32f2-4851-9612-99fe7552235b
https://www.zivid.com/hubfs/files/SPEC/Zivid%20Two%20Datasheet.pdf?hsCtaTracking=d302d49c-3101-48cb-9ba0-55596fa0e812%7Cd2816fde-da98-41b7-97d3-0e59fc059461
https://nerian.com/support/calculator/?1,12,0,6,2,2448,2048,0,0,1,2432,2048,1,12,2,0,38.5,0,0,1,1,0,5,0,0,0,1.70,0,1,25,1,0,1,512,0.25,512,4.0,5.0,0,1.5,1,#results
https://nerian.com/products/scarlet-3d-depth-camera/
https://www.mech-mind.com/product/mech-eye-industrial-3d-camera.html
https://www.cognex.com/products/machine-vision/3d-machine-vision-systems/3d-a5000-series-area-scan/specifications

←↩

3.4 Possible cameras 3 Research, software & simulation

FOV evaluation

The FOV evaluation is carried out with the use of the group’s own software, which is
detailed in chapter 3.2.2. The software verifies that one Euro pallet fits within the field
of view of the cameras, which is essential to achieve sufficient reductions in the number
of cameras used. The pallet is made up of blue points, which turn red if one of them is
outside the FOV. Three photos of the same camera are given from different perspectives
for each camera to demonstrate that there are no red dots.

3.4.1 Zivid - One+ Medium

(a) First view (b) Second view

(c) Third view

Figure 56: Checks if a EURO pallet fits within the Zivid One+ Medium FOV

Due to the low FOV combined with the short operating range, Zivid One+ Medium is not
a viable camera. It would require too many cameras in order to cover every corner of the
pallet. In addition to this, the camera uses USB for data transfer and not Ethernet, which
is preferred.

70

←↩

3.4 Possible cameras 3 Research, software & simulation

3.4.2 Zivid - One+ Large

(a) First view (b) Second view

(c) Third view

Figure 57: Checks if a EURO pallet fits within the Zivid One+ Large FOV

Zivid One+ Large looks to be a viable option due to its accuracy and FOV. This cam-
era has been considered by Solwr previously. Zivid is an Norwegian vendor, which is
beneficial in regards to delivery time and price. One downside with Zivid is the USB
communication. However, Zivid provides optical USB cables with 25M length for 420
Euros [25]. Using an optical USB cable would remove the need to have Raspberry Pis
mounted on the camera portal.

71

←↩

3.4 Possible cameras 3 Research, software & simulation

3.4.3 Zivid - Two

(a) First view (b) Second view

(c) Third view

Figure 58: Checks if a EURO pallet fits within the Zivid Two FOV

The Zivid Two camera has high accuracy and Ethernet communication, but due to a short
FOV this camera is not a viable option for Sort™. It would require too many cameras in
order to cover the entire pallet.

72

←↩

3.4 Possible cameras 3 Research, software & simulation

3.4.4 Nerian - Scarlet 3D depth camera

(a) First view (b) Second view

(c) Third view

Figure 59: Checks if a EURO pallet fits within the Nerian, Scarlet 3D depth camera FOV

The Nerian Scarlet 3D camera is promising due to its high accuracy, FOV and range. In
addition to this, it uses Ethernet communication.

73

←↩

3.4 Possible cameras 3 Research, software & simulation

3.4.5 Mech-mind - Mech-Eye laser L

(a) First view (b) Second view

(c) Third view

Figure 60: Checks if a EURO pallet fits within the Mech-mind, Mech-eye Laser L FOV

The Mech-Eye camera range from Mech-Mind has two models that look promising for
this application. The Mech-Eye laser L and the Mech-Eye Deep both offer a large FoV
suitable for pallet detection. The Laser L looks like the better choice due to it’s quicker
capture time and better accuracy. The cameras also offer Ethernet communication, Solwr
has expressed a desire to move away from the current USB solution.

74

←↩

3.4 Possible cameras 3 Research, software & simulation

3.4.6 Cognex - 3D-A5120, extended working volume

(a) First view (b) Second view

(c) Third view

Figure 61: Checks if a EURO pallet fits within the Cognex extended FOV

The Cognex camera with extended working volume has more then 1.5 million 3D data
points detected, due to its patented 3D LightBurst technology. The camera also uses
10Gb Ethernet for communication. The software used is VisionPro which is the industry-
leading PC-based vision software for the Microsoft® Visual Studio® .NET programming
environment [26].

75

←↩

3.4 Possible cameras 3 Research, software & simulation

Price and delivery time, according to each manufacturer
Each company was contacted per mail, and all companies with an exception of Cognex
responded. Each sales agent operated with different currencies, which the group decided
to not alter.

Pricing & delivery time
Name Model Price FOB Delivery time Located
Zivid One+

Medium
10 500 EURO 4 weeks NORWAY

Zivid One+

Large
10 500 EURO 4 weeks NORWAY

Mech-mind -
Mech-Eye

Laser L 8 500 USD + tax 2 weeks EUROPE

Mech-mind -
Mech-Eye

Deep 8 000 USD + tax 2 weeks EUROPE

Cognex -
3D-A5120

Extended
Working
Volume

n/a n/a EUROPE

Nerian Scarlet 11 000 EURO 7 months SWEDEN

Table 5: Possible cameras’ pricing and delivery times

Norwegian VAT

By buying components locally within Norwegian borders, the VAT will be paid in full.
However, the VAT will then be deducted at a later time [27]. This results in a 20% reduc-
tion in the total price buying from the Norwegian supplier Zivid. See the calculation in
equation 20.

Price included VAT = 10 500 Euro (18)

Total VAT = 25% (19)

Price excluded VAT =
10 500 Euro

125%
= 8 400 Euro (20)

3.4.7 Chosen camera
After comparing the cameras’ specifications, price and delivery time, the group has con-
cluded that the most suitable camera is the Zivid One+ Large. The company is Norwegian
which gives Solwr the advantage of deducting the VAT of the camera pricing, due to the
camera not needing to be imported. This makes the Zivid the cheapest camera relative
to the resolution it has, by a good margin. Therefore, the group is confident that Solwr
should order these cameras for testing, since real tests are a necessary to be certain that
camera meets all the requirement when in the given environment.

76

←↩

3.5 The Webots simulator 3 Research, software & simulation

3.5 The Webots simulator
Webots’ software is used for creating advanced simulations. The group’s goal was to
create a simulator with the ability to collect realistic data. Afterwards, they would use
this data to project a point cloud and determine the optimal camera solution. The optimal
solution was derived from how the simulator generated the best point cloud.

(a) LiDAR node concept drawing [28]

(b) Range finder concept drawing [29]

Figure 62: Concept drawing of Lidar and RangeFinder

After researching the Webots library, the group discovered two possible ways to sample
3D data, seen in figure 62. The group’s first attempt was to use a LiDAR node on top of
a moving robot. This was done in order to model and simulate a laser scan, as seen in
figure 63a [28].

77

←↩

3.5 The Webots simulator 3 Research, software & simulation

The other solution was to use a range finder that models a depth camera [29]. Along with
the range finder, the group attached a camera module with the same specifications. This
made it possible to display both the camera view and the depth in separate windows, seen
in figure 63b.

(a) LiDAR node implemented (b) Camera range finder implemented

Figure 63: Two different methods to sample data for a point cloud

The key distinction is that the vertical field of view of the range finder node is enforced
by the image size (width and height), whereas the LiDAR node’s vertical field of view
is imposed by the depth buffer lines of pixels (laser scan). It will therefore be easier to
model various 3D cameras through the rangefinder and camera combination [29].

The group found that a range finder combined with a camera would be the best way to
gather data. By combining the two, the group would, in addition to displaying a point
cloud, be able to display color of each point. This made for more intuitive results as they
could now fully reconstruct an object.

With the method of data gathering selected, next came the building of the simulation en-
vironment. For each camera, a robot node with a range finder and camera was created.
These child nodes can be configured to have the specifications of the cameras the group
wanted to simulate. Child nodes inherit the position of their parent, so moving the camera
is simply moving the robot node and both children move with it.

78

←↩

3.5 The Webots simulator 3 Research, software & simulation

(a) Robot in the scene tree (b) Camera in the scene tree

Figure 64: The scene tree showing the robot and camera nodes

These robots can then be moved into position. The groups first simulator environment
was two robots facing a simple box. In order to capture the images and analyze them fur-
ther, the robot controllers need to be programmed. The controllers can be programmed in
several languages, Python, Matlab, C, C++, java and ROS. The group was most familiar
with python, so that was the language selected for the controller program [H].

The controller has to initialize both the camera and rangefinder nodes, and export the cap-
tured data in a useful format for the point cloud generation. The data from each of the
sensor elements is an image matrix. The camera contains the RGB color values for each
pixel and the range finder matrix contains the distance to any detected surface for each
pixel. Using the numpy library, these matrices are written to text files and can then be
accessed by other programs for processing.

79

←↩

3.5 The Webots simulator 3 Research, software & simulation

Figure 65: The webots simulation window of the simple simulation environment

With the simple simulation environment and robot controllers complete, the next step was
to process the data into point clouds and verify that it was working as intended. In order
to display and manipulate the point clouds the group needed to find a new toolkit. In
previous 3D geometry applications the group had done, the python module ”matplotlib”
was used. For these point clouds with several thousand points, this module is not well
suited. After looking into what tools existed, the group decided to use the python module
”open3D”. This was because it is well documented with several examples available. As
well as having a set of point cloud specific functions that fit the group’s needs. Using the
open3D module, the matrices are imported by another python script [I]. It also uses the
camera parameters converted to coordinates rather than pixel values. With the rotation
and translation from the Webots environment, a transformation matrix is created, and the
point clouds are oriented such that they fit together.

80

←↩

3.5 The Webots simulator 3 Research, software & simulation

Figure 66: The combined point clouds from the simple simulation, the axes represent the
camera positions.

Satisfied that the method for extracting and processing data works, the group then started
modifying the simulator environment to fit the Sort™ parameters. A simple model of the
main tower was created in Onshape and imported into Webots. A simplified model of
Sort™ was used rather than a more complex one to lessen the computing power required.
A third camera was added and the cameras were moved into position. This simulation
environment then allowed the group to take the three pictures, and verify that they detect
enough of the pallet to make a successful identification.

To model the possibility of using two cameras to capture three images, a movable camera
was added to a linear axis. To simulate the linear axis, several movable objects had to be
added. A static beam would serve as the base. A movable box was added to the beam,
and another box that could be tilted was added to the movable box. The camera was then
added as a child of the tiltable box. The camera could now be moved up and down the
beam, as well as being tilted up and down.

With the environment set up and the data processing script done, the simulation was
complete and the camera data can be examined.

81

←↩

4 Physical prototyping

Chapter 4

Physical prototyping

This chapter details the group’s efforts to create physical prototypes of the suggested
solution. The prototypes was developed at Solwr’s warehouse with equipment that
had previously been used to build prior versions of Sort™.

The prototypes used the Intel cameras from the current version of Sort™. Therefore,
the prototypes are based on their FOV and range. Subsection 4.4, however, shows a
conversion for the setup needed for the new Zivid cameras.

82

←↩

4.1 The first prototype 4 Physical prototyping

4.1 The first prototype
Boxes, straps, pallets, and the current cameras were used to construct the initial proto-
type. The scanned pallet was held in the air by straps, and the cameras were mounted on
stacked boxes of everyday items found throughout the warehouse. This setup can be seen
in figure 67.

This prototype was meant to verify the field of view using two cameras directly above one
another. Because of how time consuming setting up a motor-controlled linear axis is, the
group wanted to make sure that the solution was viable before proceeding.

(a) Viewing angle 1 (b) Viewing angle 2

(c) Viewing angle 3 (d) Viewing angle 4

Figure 67: Prototype 1

83

←↩

4.2 The second prototype 4 Physical prototyping

4.2 The second prototype
The second prototype introduced a linear axis. The first prototype showed that the cameras
were able to map a sufficient area of the pallet with two of the cameras placed directly
vertical of one another. Therefore, the group proceeded by adding a motor, a linear axis,
a PLC and an HMI. The two vertical cameras were now replaced by one camera being
moved up and down the axis. The setup can be seen in figure 68.

(a) Viewing angle 1 (b) Viewing angle 2

(c) Viewing angle 3 (d) Viewing angle 4

Figure 68: Prototype 2

84

←↩

4.2 The second prototype 4 Physical prototyping

4.2.1 Camera mounting on the linear axis

(a) L515 camera mounted on the linear axis,
and located in the top position.

(b) L515 camera mounted on the linear axis,
and located in the bottom position.

(c) The L515 camera mount CAD, front view (d) The L515 camera mount CAD, side
view

Figure 69: 3D-printed camera mount

85

←↩

4.3 Camera placement 4 Physical prototyping

4.3 Camera placement
Given that the group was using Intel’s RealSense cameras, the camera placement will vary
from what is intended with the new cameras. This setup should still work as a proof-of-
concept, seeing that the new cameras have better specifications. The camera setup can be
seen in figure 70.

(a) Angled view

(b) Side view

Figure 70: Camera placement

Two of the cameras are placed directly vertical to one another, while the third is placed
diagonally from the bottom one of the first two.

86

←↩

4.4 Using the Zivid One+ Large in the prototype 4 Physical prototyping

4.4 Using the Zivid One+ Large in the prototype
In order to use this setup with the new cameras, the distances would have to be increased.
This is because of the higher minimum operating range of the Zivid One+ Large cameras,
as well as its smaller FOV. To determine the limiting factor, the group has defined a for-
mula described in 2.2.4. The limiting factor was discovered to be the vertical FOV angle.
In order to compensate, the distance from the camera to the center of the pallet would
need to be 2.78m instead of the 1.185m when using the Intel cameras. The conversion
can be seen in figure 71.

(a) Converted distance to center

(b) Converted distances, side view

Figure 71: Calculation of new distances

87

←↩

4.5 Prototype hardware and software 4 Physical prototyping

4.5 Prototype hardware and software
To achieve building a prototype, the group needed several components. Fortunately Solwr
had components from previous installations and prototypes, and therefore there was no
need to buy additional hardware.

Hardware that Solwr provided:

• 3 x RealSense L515 cameras

• Nanotec brushless DC motor, DB87L01-S

• Nanotec motor controller/ Drive, N5-2-1

• Incremental encoder, WEDS5541

• A linear axis

• Beckhoff PLC with touch screen, CP6606

• 230V AC / 24V DC converter

• 230V AC / 48V DC converter

88

←↩

4.5 Prototype hardware and software 4 Physical prototyping

4.5.1 Electrical wiring - Motor, Drive, Encoder, and Power supply

Figure 72: Component hierarchy

The group needed to establish connection between the PLC, motor controller, motor, and
encoder in order for the linear axis to function. Furthermore, the group needed to learn
Nanotec’s software in order to set up and sync all of the hardware. Finally, the group
needed to write a PLC program for controlling the axis, using an HMI.

The group used Ethernet and EtherCAT communication, as well as Nanotec’s Plug&Drive
Studio 1 software, to program and set up the controller. The group used EtherCAT to
manually set the IP, and Ethernet to setup the motor controller. They were recommended
to do this by Solwr. EtherCAT was also the protocol chosen for operations after the setup,
and the system architecture is illustrated in figure 72.

89

←↩

4.5 Prototype hardware and software 4 Physical prototyping

Figure 73: Nanotec N5 2-1 motor controller I/O drawing

Figure 74: Nanotec N5-2-1 motor controller electrical wiring

A three-phase 48V DC power source was required to power the drive and motor. A 230V
AC / 48V DC converter was utilized and wired to port X6. The three phases of the mo-
tor was wired to X5. Finally, the encoder was linked to X2, and wired according to the
encoder datasheet and the drive quick guide in Appendix [E] and [F]. To terminate the
encoder cables, the tool WC-244 ?? were used, together with sph-001t-p0.5 sockets.

The motor has a brake mounted on it’s rotor which is always applied, unless the brake is
provided with 24V DC. Therefore a 230v AC / DC regulator was utilized.

90

←↩

4.5 Prototype hardware and software 4 Physical prototyping

4.5.2 Static IPv4 controller and PC
Neither the group or Solwr knew the static IPv4 address for the motor controller. The
group was not able to connect to it. Therefore, the group needed to read or set a new static
IPv4 address for the drive. The group achieved this with a combination of research and
trial and error. There are several ways for the drive to obtain an IP, according to the motor
controllers quick guide in appendix [F]. A DHCP server, for example, can automatically
assign an IP address. Another option is to use EtherCAT to manually set it, which was
the technique used using Plug&Drive Studio 1. The group made a how-to-guide located
in appendix [A.1]. The static IPv4 was read to be 10.0.0.6.

The static IPv4 address of the computer in use was set to 10.0.0.3. Any address that has
the same three first numbers, but a different fourth one, can be used.. The group made a
how-to-guide on setting a static Ethernet IP on a PC, and is located in appendix [A.2].

4.5.3 Motor setup using Ethernet in Plug&Drive Studio 1
Since the IP had been manually set, the Ethernet Port X1 could now be utilized to estab-
lish a link between the PC and the drive. The setup required some motor specification,
which is located in the motor datasheet in appendix [D]. During the automatic setup, the
electrical peak and rated current restrictions, as well as the number of poles, were required
specifications to avoid damaging the motor controller. The group made a guide for con-
necting to and setting up the motor controller using the Plug&Drive Studio 1. This guide
is in appendix [A.3].

The group left the motor unloaded on a table during the automatic setup. The rotor started
turning as soon as the auto setup started. All other essential parameters, including encoder
requirements, were determined by the auto setup.

The group went on to designing and building the PLC software for moving the axis now
that all of the components were properly set up.

91

←↩

4.6 Beckhoff and TwinCAT 3 PLCs 4 Physical prototyping

4.6 Beckhoff and TwinCAT 3 PLCs
Solwr uses Beckhoff PLCs to control the movement of their robots. Their PLCs are pro-
grammed in TwinCAT 3, and this is what the group will be doing as well. TwinCAT 3
runs on Microsoft Visual Studio, with Structured Text as the group’s programming lan-
guage of choice.

In this project, the group used a CP6606 PLC with a built-in touchscreen as the HMI. The
group created a program that moves a linear axis between a minimum and maximum po-
sition at different speeds. Between the PLC and the drive, the EtherCAT communication
is wired through port X7.

4.6.1 Adding and installing the drive’s ESI-file to TwinCAT
The PLC must be able to communicate with the motor drive in order to operate the motor.
TwinCAT 3 has an NC-Axis capability that allows it to create a link between the PLC
and the drive. Since the drive was manufactured by Nanotec, an EtherCAT ESI-file must
be added before TwinCAT 3 can read it. The file required in this case is N5-2-1, which
may be downloaded from Nanotec’s website. Afterwards, the file must be copied into the
EtherCAT folder, found within the TwinCAT 3 installation folder. Figure 75 illustrates
the file name and the folder pathway. A PC restart is recommended after adding the file.

Figure 75: The file pathway for inserting the N5-2-1 ESI file

4.6.2 Linking motor controller and axis in TwinCAT 3
Within Visual Studio the group was able to locate the motor drive as a device, within ”I/O”
in the side menu named the Solution Explorer. This was accomplished by right-clicking
”I/O” and selecting ”search”. TwinCAT 3 establishes an axis automatically, for the group
to link with the drive. TwinCAT 3 can after pairing read all real-time values directly from
the motor drive, such as values for velocity, position, torque, etc. The groups how-to-
guide is listed in appendix [A.4].

92

←↩

4.6 Beckhoff and TwinCAT 3 PLCs 4 Physical prototyping

Installing Tc2 Mc2 library

Figure 76: Installment of the Tc2 Mc2 library through references within the solution
explorer.

The Tc2 MC2 library from TwinCAT 3 Motion Control offers function blocks for pro-
gramming machine applications. It is based on the Motion Control function blocks V2.0
PLCopen specification [30].

To establish a link between the axis and PLC, an axis reference variable ”AXIS REF”
needs to be created. All manufacturers who use PLC Open offer this axis reference as
a standard variable type. The Tc2 MC2 library provides ”AXIS REF” which must be
included in the PLC’s ”References” section. To install a new library simply right-click
”references” in the solution explorer seen in figure 76, and select ”Add new library”.

The AXIS REF was placed in a function block in the PLC program under the variable
name: ”stAxis” [31].

Figure 77: Navigate to ”Axis” in the solution explorer, and then into the ”settings” tab.
Make a link for both PLC and I/O.

When the Tc2 MC2 library is installed and the ”AXIS REF” is referenced, a link between
the PLC and the drive can be established. As illustrated in Figure 77 , create a ”Link to
I/O” and ”Link to PLC.”

93

←↩

4.6 Beckhoff and TwinCAT 3 PLCs 4 Physical prototyping

4.6.3 Building the HMI

Figure 78: HMI building environment in Visual Studio

The HMI is created in Visual studio and is linked to variables in the PLC program. All
buttons and lamps are picked from the ”Toolbox” located to the right in figure 78. After-
wards, each button is linked to several variables or states that decides if the button should
execute an action or be hidden. This makes it seem like the HMI switches between several
screens. While in reality, the buttons that are not needed, are hidden.

If the prototype was more complex, the group would have made multi-screen HMI. This
makes the HMI easier to edit or change in future updates. However, for this simple pro-
totype, this was not needed.

4.6.4 Axis parameter settings
Several settings regarding the axis and encoder have to be specified in order to ensure
that the linear axis travels as predicted. The group found inspiration in a Beckhoff guide
[32], and discovered that the majority of parameters were set correctly by default. The
calculations for maximum velocity and scaling factor, however, did not match the needs
of the group. The group found the needed formulas in Beckhoff’s guide, and calculated
new maximum velocity and scaling factor values based on those. To see the group’s cal-
culations, and the group’s how-to-guide, see appendix [A.6]

94

←↩

4.7 Motor controller tuning using Plug&Drive Studio 1 4 Physical prototyping

4.7 Motor controller tuning using Plug&Drive Studio 1

Figure 79: The motor controller tuning parameters in the Plug&Drive Studio 1 software

Since the motor, motor controller, encoder and PLC are all set up and connected using
EtherCAT, the remaining task is to tune the motor controller output. The parameters ap-
ply to the position, velocity, current and torque. The tuning is done through adjusting
the P (proportional) and I (integral) values in the Plug&Drive Studio 1 software. Before
tuning, the motor and linear axis must be connected, the correct weight must be attached
to the linear axis.

The tuning was mostly done through trial and error, and the group noticed that with im-
proper tuning the motor had a high pitched sound and a rough jerk while starting and
stopping the movement. After tuning, the motor and axis are moving silently and smooth.
The final PI values are displayed in figure 79.

95

←↩

4.8 Processing the prototype data 4 Physical prototyping

4.8 Processing the prototype data
The data acquired from the prototype is in the form of three separate point clouds gener-
ated by the intel cameras. These need to be transformed such that they fit together. The
exact position and rotation of the cameras is not known so the group sought to use an-
other method to fit the point clouds together. The group landed on the open3d multiway
registration method[33]. This method uses as inputs the three point clouds and finds the
transformation required for the surfaces to overlap.

For the first attempt the method failed. Due to the large amount of extra points from the
walls and floor there were a lot of extra flat surfaces that interfere. In order to solve this
problem the group wanted to filter out the unnecessary data from the point clouds. The
first attempts at this were made using the built in filters that remove outliers. This did not
remove the large flat surface from the floor and wall. So another filter that removes any
points further away from an arbitrary point was used. In our case the camera was selected
as the filter point and any point more than 2 meters from the camera were removed.

With the filtered point clouds the multiway registration succeeded in creating a transfor-
mation for each of the three point clouds and placed them on top of each other.

96

←↩

5 Results

Chapter 5

Results

This chapter contains 3D-models, 3D-plots and a description of what the group has
accomplished during the project period. It will also contain the group’s recommen-
dation on how the employer should proceed in regards to redesigning the current
version of Sort™.

97

←↩

5.1 Design 5 Results

5.1 Design
The group chose design seven in chapter 3.3.7 as the most suitable solution. This solution
included the fewest amount of cameras, while still maintaining the resolution and speed
the system requires. The group decided that a linear axis would be a viable solution for
moving the camera between two vertical positions. The moving camera would first take
a photo from the top view, and then move to the lower position. After reaching the set
position and the grabber having picked up the pallet, the camera would capture a photo of
the bottom and sides.

Several components are required. To construct the linear axis, the Zivid One+ Large
camera and a frame, as well as a tiny servo to alter the camera’s angle, will be needed.
The linear axis will need to be highly accurate. A larger, powerful servo or stepper motor
will be required to move that axis. A encoder is required for the motor to rotate the desired
distance. For emergency stops, a brake is preferred. A PLC is required to run the program
and set up a motor controller in TwinCAT. The last is a power supply for the PLC and
motor/motor controller. When the linear axis is built, the remaining component is the
diagonally camera.

(a) Camera in bottom position (b) Camera in top position

Figure 80: Design seven

98

←↩

5.2 Camera 5 Results

5.2 Camera
The chosen camera was Zivid’s One+ Large. The decision was made by comparing
prices, resolutions, fields of view and delivery times of several different cameras. The
One+ Large has specification suitable for the needs of Solwr and their Sort™. Zivid is
also Norwegian, meaning delivery time is short and Solwr can deduct the VAT from the
purchase.

Figure 81: Zivid camera

The camera specifications and price can be seen in table 6.

Specifications for Zivid One+ Large
Resolution FOV Depth accuracy

(distance in
mm)

Range
(mm)

Delivery
time

Price (ex. VAT)

1920x1200 39◦horizontal
25◦vertical

<350µm
(1800)

1200 to
3000

4 WEEKS 8400 EURO

Table 6: Zivid specifications and price

99

←↩

5.3 Self-developed FOV software 5 Results

5.3 Self-developed FOV software
The self developed software proved to be a important tool for the groups research. Both
while testing out different designs, and in verification in the groups hypothesis regarding
camera, angle and acquisition. Once the group had received feedback from Solwr regard-
ing one of their designs, the camera specification and location were run through the script,
with promising results displayed in figure 82.

The figure 82 shows that there are some blind spots. However, these blind spots are in the
current acquisition as well. After conferring with Solwr they concluded that it will have
little to no impact on Sort™’s sorting results.

(a) Viewing angle 1 (b) Viewing angle 2

(c) Viewing angle 3

Figure 82: Results from FOV software

100

←↩

5.4 Simulation 5 Results

5.4 Simulation
5.4.1 Webots simulation of two solutions

(a) simulation environment with three
static cameras

(b) Different angle of showing both simulations

(c) Linear axis camera(blue object) in the top po-
sition

(d) Linear axis camera(blue object) in the bottom
position

Figure 83: Two different solution simulated in the simulator environment Webots

In Webots the group made a simpler version of Sort™, to make simulation less computa-
tional demanding. However, the dimensions are still intact to simulate a realistic scenario.
Two solution were simulated, one being a 3 camera setup illustrated in figure 83a using
the three red static objects. The other simulation utilizes both a pole and joints to behave
as a linear axis. This way the simulation only needs the blue moving object, and the red
objects on is diagonal, illustrated in figure 83c and 83d.

The simulated version gave the group the ability to test out different positions and angles.
In addition to this, the group collected data for the three scan points used to generate the
3D data. By simulating the linear axis, the group could find the length needed for the
linear axis used in the prototype.

101

←↩

5.4 Simulation 5 Results

5.4.2 Zivid One+ Large simulated pallet point cloud

(a) Front camera (b) Closeup of the furthest corner from
the front camera

(c) Back camera (d) Closeup of the furthest cor-
ner from the back camera

(e) Top camera

Figure 84: Point clouds from the simulated pallet taken with the Zivid one+ Large camera
specifications

The simulation cameras were set up with the Zivid one+ Large specifications. The data
was then fed trough the python point cloud generation script [I] to generate the point
clouds.

102

←↩

5.5 Prototype 5 Results

5.5 Prototype
5.5.1 Camera setup

(a) Point cloud from bottom of axis (b) Point cloud from top of axis

(c) Point cloud from diagonal camera (d) Combined point clouds

Figure 85: Prototype, point clouds

The working prototype uses two cameras as planned and simulated, and in line with the
motivation of this thesis. The motivation to limit the number of cameras as much as fea-
sible, and make Sort™ economical competitive. One camera was mounted on a linear
axis, moving vertically between a upper and a lower position. Each camera position gen-
erates a point cloud of the pallet from that perspective, shown in figure 85. Individually,
these are deficient in regards to detail. They can, however, be meshed together, creating a
3D-object representing the pallet, shown in figure 85d.

5.5.2 Mechanical setup

(a) Prototype, viewing angle 1 (b) Prototype, viewing angle 2

Figure 86: Finished prototype

103

←↩

5.5 Prototype 5 Results

5.5.3 Comparison of detected points in the point cloud
The group compared the expected and actual outcomes regarding detected points in the
point cloud, in order to verify the results. They were able to assess whether or not the
final output matched what they initially thought. This was done using the software’s 3D
plots and a merged point cloud, from the cameras used in the prototype.

(a) Actual results (b) Theoretical results

(c) Actual image

Figure 87: Compared point clouds

The expected results through software and the results from the prototype were very simi-
lar, as seen in figure 87. Because the prototype was built with the Intel RealSense L515,
the software is configured to have the same specifications. As mentioned previously in
chapter 5.3, there are certain blind spots, but these are non-critical. These are findings
that supports the group hypothesis to be a viable option for the next generation of Sort™.

104

←↩

5.5 Prototype 5 Results

5.5.4 Distance between points
Before confirming the viability of the decided upon camera setup, the group had to make
sure the resolution would be high enough to meet Solwr’s criteria of a maximum of 5mm
between points. In order to do this they used trigonometry in order to calculate the dis-
tance between two adjacent point along the limiting factor. Same as before, this would be
the horizontal angle and horizontal resolution of the camera. Reading the camera specifi-
cations, the camera produced 1200 points along a 25◦ FOV.

First, they calculated the angle difference between two consecutive points.

Angle between points =
25

1200
= 0.0208◦ (21)

Then, they calculated the angle from the camera to the farthermost point of the pallet,
relative to the ground. The distance is simplified to only consider two dimensions. In the
prototype, the total distance consists of movement along two axes, but these calculations
treat the total distance as an axis of it’s own. This makes the next calculations easier.

(a) Distance from center pallet to corner

(b) Calculating angle

Figure 88: Calculating angle between the ground and the farthest point

Angle = arccos(
329.111

345.9165
) = 17.933◦ (22)

105

←↩

5.5 Prototype 5 Results

Using that angle, they constructed unit vectors between the camera and the two farthest
points using spherical coordinates converted to rectangular coordinates.

ρ = 1
∆φ = 25

1200 = 0.0208◦

φ1 = 72.067◦

φ2 = 72.0462◦

θ = 0◦

v⃗1 =
[
sin(72.067) · cos(0) 0 cos(72.067)

]
v⃗2 =

[
sin(72.0462) · cos(0) 0 cos(72.0462)

]

In order to determine where these vectors reach the surface of the pallet, the group needed
to define a planar equation 2.2.4, same as in the FOV software 3.2.3.

N̂ =
[
0 0 −1

]
Planar equation =−1 · (z−104)→ z = 104 (23)

Because the bottom of the pallet is a flat surface in the xy-plane, crossing it only depends
on the z-component. The d-component of the planar equation is based on the height dif-
ference of the camera and the bottom of the pallet, 104cm.

106

←↩

5.5 Prototype 5 Results

The next step is to find the ρ-value where the z-component of each vector is 104.

ρ1 =
104

cos(72.067)
= 337.76691 (24)

ρ2 =
104

cos(72.0462)
= 337.38846 (25)

Using these values of ρ , the group can calculate where in 3D-space the two neighboring
points are. This, in turn, can be used to calculate their distance.

p1 = 337.76691 · v⃗1 = [321.35726,0,104] (26)

p2 = 337.38846 · v⃗2 = [320.95946,0,104] (27)

distance = p1− p2 = 0.3978cm≈ 4mm (28)

Figure 89: Distance between points

From these calculations the group concluded that the proposed camera setup is viable us-
ing Zivid One+ Large.

The results of the prototype shows that the group’s camera setup is viable. Seeing that
the prototype pallet was suspended by straps, some parts of the pallet was missing, but
that would not be the case in the real Sort™. With the distances converted to the distances
needed with the Zivid cameras, the group calculated that the maximum distance between
each point would be 4mm. This is sufficiently below the maximum Solwr had set for the
group, which was 5mm.

107

←↩

5.5 Prototype 5 Results

5.5.5 Speed of the prototype
By using Beckhoff’s guide, the group calculated the maximum velocity the camera could
reach with the prototype. A detailed calculation can be seen in [A.6]. The speed was
found to be 0.416m/s. This would not negatively impact the time Sort™ uses per pallet.
The current average cycle time is 24 seconds 3, this is enough time for the camera to take
a photo of the top, then move to the bottom of the axis.

108

←↩

5.5 Prototype 5 Results

5.5.6 HMI
While building and programming the prototype the group created a HMI (Human Ma-
chine Interface) in order to move the camera along the linear axis. Solwr will be using the
prototype for several tests using the actual Zivid camera, therefore the group prioritized
to create a easy, intuitively user experience. The group considered the design to be infor-
mative, not overly advanced, and having two speed options as useful when experimenting
with different positions and angels.

(a) The system starts up in error state, in order
to make the user acknowledge the startup.

(b) The system is in ready state, and the axis
will be enabled by pressing ”Start”.

(c) The state is in running state, and the axis
can now be moved using the up/down but-
tons.

(d) Illustrates the using pressing the ”Down”
button using high speed.

Figure 90: The HMI explanation

HMI user explanation:
As seen in figure 90a the systems starts up in error state, with a explanatory message to
the user. This will require the user to reset the error, to proceed towards enabling the axis.
During error state the led is blinking red.

In figure 90b the system has reached ready state, and the axis can be enabled by pressing
”Start”. The speed can at all times be adjusted between two levels high and low. The
values for high and low speed is permanently set in the PLC software. During ready state
the led is blinking green, and both buttons has no function, and therefore displayed with
a gray color.

In figure 90c the axis is enabled, and the linear axis can be moved, using the up/down
button. During running state the led is constant green.

In figure 90d is the ”Down” button pressed and is indicated by the gray color. The axis
will automatically stop when reached the max or min position.

109

←↩

5.6 Economy for the chosen solution 5 Results

5.6 Economy for the chosen solution

Hardware Quantity Price Total price
Zivid One+ Large 2 10 500 C 21 000$
Intel RealSense L515 -6 589$ -3534$
Raspberry Pi -4 145$ -580$
Optical cables 2 420 C 840 C
Linear axis 1x3m unknown unknown
Actuator 1 unknown unknown
Camera portal -1 unknown unknown
Motor 1 unknown unknown
Servo 1 unknown unknown
Servo drive 1 unknown unknown
Absolute encoder 1 unknown unknown
Maintenance 1 unknown unknown
Further research 1 unknown unknown

Table 7: The new camera system’s pricing

In table 7 the group has compiled a list of expenses and savings expected with the pro-
posed solution. There are some items that need to be added once Solwr has made further
progress. The group has not been able to get pricing for the axis, servo and motor. Once
Solwr has done more research about the solution, they would be able to fill out the rest of
the table. The savings are noted as a negative quantity, making the total sum of the table
the price difference of the new versus the old system.

110

←↩

6 Discussion

Chapter 6

Discussion

This chapter includes discussion about the results, uncertain elements within the the-
sis, possibilities the group did not have time to implement and possible shortcomings
of the work done by the group.

111

←↩

6.1 Self-developed FOV software 6 Discussion

6.1 Self-developed FOV software
6.1.1 Step count
The software currently has no recommended step count. Meaning the ray is discretized
at a seemingly random, but high, number of intervals. The uncertainty of how the result
of the planar equation varies as the ray approaches the plane is the reason for this. Cur-
rently, the software uses a very high step count, resulting in high margins at the expense
of efficiency. The efficiency can be improved by calculating the smallest number of steps
required for at least one sample of the ray to be within the ”box” around the surface, as
illustrated in figure 41.

The current method of determining whether or not the ray travels through a surface is,
in the groups opinion, satisfactory. The only consequence being an inefficient use of
computational power. The most accurate result of the software would be when using a
continuous ray, but the current version of the software does not support that.

6.1.2 Importing 3D-models
An improvement to the current software would be to implement a function to import .stl-
files directly. The current software uses a .txt-file with hard coded points that represent
the corners of a euro pallet, which limits the functionality of the software. Using .stl-files,
the script would be able to handle all 3D-object. Since Solwr’s customers handles a va-
riety of pallets, this feature is recommended for future work. However, the group is very
satisfied being able to write this code from the ground up, since it has contributed heavily
the group’s research.

6.1.3 Adding points of angled surfaces
The current software does not handle angled surfaces when adding additional points.
Adding support for this would be relatively simple and make the software more versatile.
The reason for not implementing this functionality in the current version of the software,
is due to lack of angled surfaces on today’s pallets. Therefore, this feature is not necessary
in the current usage of the software, and the group decided to prioritize other tasks.

6.1.4 Expected results proved to be trustworthy
In the comparison of the expected results from the software, and the actual results from
the camera placed on the prototype, were promising. the data was very similar, which
indicates that the calculation done in software were valid. By adding other 3D objects, the
software can now be more trusted to be correct. However, the software has not been tested
using other 3D objects, and therefore needs more testings before used commercially.

112

←↩

6.2 Camera 6 Discussion

6.2 Camera
6.2.1 Cognex
The group reached out to several manufactures and discussed price, delivery, and specific
camera features for the intended use case. However, some did not respond. One of which
was Cognex. Cognex advertised a promising camera, but the group was not able to get
in contact with them, nor did they have necessary details on their website to form a de-
cision. The advertised field of view was promising, and given limited time, the group
recommends Solwr to again reach out to Cognex before making a final decision on Zivid
One+ Large.

6.2.2 USB vs. Ethernet
Initially, Solwr wanted the new cameras to utilize Ethernet for the camera data transfer.
The new camera does not. The resolution and price of the Zivid One+ Large took prece-
dence. Going forward, Solwr should stay up-to-date on developments from Zivid in case
of new releases with all the wanted specifications. This is probable since the Zivid two
camera does use Ethernet, but does not have the required FOV.

6.2.3 How the discontinuation of the Intel® RealSense™ L515 might
impact the industry

Previously, Solwr had little incentive to consider any other cameras than the L515’s. The
lower resolution could be compensated for by having more cameras. Now that the L515’s
are discontinued, it removes the supply of low-cost cameras and generate a higher demand
for high-cost industrial cameras. As a consequence, this might accelerate the development
of the industrial cameras.

113

←↩

6.2 Camera 6 Discussion

6.2.4 Reduction of cameras and its challenges
In the beginning of the process of finding a viable acquisition, the three static camera so-
lution was considered. The group evaluated if the complexity would be an issue by having
movable cameras. Both due to maintenance, added cost, and calibration issues. However,
the group learned that a linear axis can be moved with high accuracy, which will lead to
the camera not needing to be recalibrated during normal use. The camera itself is built
to handle rough environments [34], hence does not need service often, nor will the servo
require more service then the other servos that are installed on Sort™. According to Solwr
the motor that will be used will require very little maintenance. The saved cost by limiting
the solution to two cameras, will reduce the total cost greatly, and it is considered cheaper
to implement the linear axis then buying three cameras. By adding movable cameras,
distortion of images can be a challenge. In related work the group learned that there are
several ways, both in software and hardware to make up for or reduce vibration.

Vibration in the new solution
The linear axis movement looks solid, but the group have not tested the prototype travel-
ing at full speed. With high speed the group estimates vibration that needs to be assessed.
The camera and all other components must be rigid enough to dissipate any vibration
before taking a photo. Otherwise the point cloud may be distorted. This is explained in
more detail in chapter 1.6.1.

Complexity by adding more movement in the new solution
The group did consider including more camera motion to capture even more images using
only the two cameras. This was turned down in order to reduce the number of moving
parts required. Since identification could be done with the three images it would add
more complexity to the system that would require more parts, more controllers and would
introduce more points of failure. Due to the robot grippers path it was also decided that
the back camera should be stationary in the lower position to remove the possibility of
collisions.

6.2.5 Distance between points in the point cloud
The group had a requirement that the point cloud in the new acquisition could not exceed
5mm between two point’s, and in the groups calculations the maximum distance between
points was 4mm. This strongly suggests that even with only using two Zivid cameras the
groups solution will be viable. However, real tests using the Zivid cameras will be the
deciding factor.

114

←↩

6.3 Simulator 6 Discussion

6.3 Simulator
The point cloud from the simulator shows very clear edges and clearly defined planks for
the pallet. This will make identification of the pallets possible with the proposed camera
setup. The important step past this is catching faults. Rotation in the wooden blocks, tears
or breaks. With the high resolution from the cameras these faults should be just as visible,
if not clearer than the current system.
The issues with the simulator is that in it, everything is assumed to be ideal. There is
no variation in lighting, the pallets are all uniformly placed and there is no noise in the
signal. In the real world, this would not be the case. The pallets are stacked and placed
on the in feed by human operators so there will be a slight variation in position across the
pallets. Different warehouses will have different lighting conditions and pallets might be
wet and cause glare or reflections not picked up in the simulator. In order to determine
that the system is robust enough to handle these conditions, more physical testing is re-
quired. Webots does offer the option for introducing noise to the signal, but from Solwr’s
experience it does not translate well into real world applications.

6.4 Prototype
6.4.1 Prototyping using the Intel® RealSense™ L515 camera
The group had to prototype using the Intel® RealSense™ L515 camera, since the ex-
pected delivery for the Zivid One+ Large camera was set to 8 weeks if rented, and four
weeks if purchased. When the group, together with Solwr, found Zivid to be the opti-
mal supplier, Solwr wanted to rent the cameras. Even with all of the calculations, actual
testing was required before investing 10 500C per camera. Since Zivid’s rental cost was
250C, it was not ordered until the group had documented satisfactory result. This is the
reason the cameras have yet to arrive at Solwr’s warehouse as of the end of the project
period. Because the group deemed a prototype to be a high-value asset to the research,
it was carried out with the available components, and theoretical calculations were made
based on the results.

6.4.2 The height of the linear axis
Solwr provided a linear axis, that fortunately met the projects requirements, while using
the Intel® RealSense™ L515 camera. However, if the group were to implement the Zivid
One+ Large camera in the second prototype, the group would need a longer linear axis
illustrated in figure 71. Today’s linear axis enables for 144cm of movement, and the cal-
culated required length using the Zivid cameras is 342cm. The conversion is explained in
chapter 2.2.4.

If the proposed solution were to be implemented into Sort™, some of the needed length
will be gained from the movement of the pallet. The grabber lifts the pallet from the rest
of the stack in order to take photos of the bottom. The amount it is lifted can be adjusted
so that the total length of the axis does not have to be as long as in the prototype.

115

←↩

6.4 Prototype 6 Discussion

6.4.3 Incremental encoder
The prototype in chapter 4.2 is using a incremental encoder, since this was the compo-
nents Solwr had at hand. One issue is that when enabling the axis, the encoder sets the
current position as the reference also called position zero. Therefore the axis needs to
be in the correct position when the axis is enabled, for the axis to have correct top and
bottom position.

This issue can be resolved in several ways. One way is to implement a homing sequence,
which is explained in 2.3.3. The group would also have to program a homing within in the
PLC software, by utilizing the Tc2 MC2 library explained in chapter 4.6.2. The function
to utilize is called MC Home [35]. Another solution would be using a absolute encoder
since the absolute encoder knows its position at all times, regardless of the axis status.
The absolute encoder is explained in chapter 2.3.3.

6.4.4 Adding a light source
In most point cloud acquisitions, the cameras output is highly dependent on the ambient
light. Adding a light source would be preferred to better ensure correct and consistent
results. This is especially important since Sort™ will be placed in different warehouses
with different light conditions. The amount of light reflected off a surface might vary de-
pending on the ambient light or its dryness and cleanliness. Having lights mounted on or
around the camera can partly negate the impact of these factors. An evenly diffused light
would be the optimal solution, due to the fact that light can directly impact the robot’s
ability to sort pallets correctly.

6.4.5 Uncertainty in the new solution
When adding complexity to a system it usually results in a higher system uncertainty.
However, most components have defined uncertainty from industrial factory testing. Then,
the components purchased can be selected with an accuracy requirement, which can pre-
dict the system’s uncertainty. The linear axis if used in Sort™ need to be accurate and
consistent. A small error over a longer period of time could eventually become significant,
and make the image processing unreliable. This can be addressed by having a higher gear
or more accurate encoder in order to have a smaller distance traveled per encoder pulse.

6.4.6 Added cost with the new solution
Due to the old cameras’ price being considerably lower than the others on the market
there will be a price increase with the new solution. The groups goal has therefore been
to minimize this increase. An important factor has been to make sure as few as possible
cameras are used without adding too much maintenance costs in movable parts. The group
is satisfied that the removal of one camera will reduce the cost even with the added axis
and rotating motor.

116

←↩

6.5 Workflow 6 Discussion

6.4.7 Speed of the new solution
The current system uses ≈24 seconds per pallet, including moving the pallet to the cor-
rect stack 3. The current image acquisition uses ≈6 seconds per pallet. The new solution
would have to be configured with a high enough motor speed in order to not negatively
impact how fast the system is. This can be done when configuring the motor controller
4.5.3. There is still a difference between the motion in the prototype and Sort™. In the
groups prototype the linear axis provides all the movement, but in the Sort™ the pallet
will be lifted by the robot gripper simultaneously as the camera moves along the linear
axis. The lifting height can also be adjusted, and the camera will therefore travel less than
the static prototype. This means that the camera get into position faster, making it less
likely to negatively impact the sorting time.

The calculated max velocity for the linear axis prototype is 0.4m/s, which is sufficient
considering the distance the camera needs to travel can be estimated to be 342cm - the
robot gripper movement and approximated to be 70cm. i.e approximated distance if in-
stalled on Sort™ will be 272cm traveling distance. The linear axis used in the prototype
will then use about 4,6 seconds to change positions. This time can be reduced with more
powerful hardware.

6.4.8 Data from the prototype
The data taken from the prototype was stitched together using an existing algorithm. The
algorithm was very susceptible to noise and random points in the different point clouds.
In the first few test the presence of large surfaces such as the floor or wall, it struggled to
orient the pallets due to the other surfaces dominating the data. After the unnecessary data
was removed the matching improved significantly. In further projects either accurately
measuring each camera position or including a common reference would improve the
process of combining the different views.

6.5 Workflow
The group did not deviate much from the original Gantt diagram [N]. The updated Gantt
diagram shows that the group completed the prototype faster, and spent more time writing
the thesis than expected [M]. The group also added the FOV software some time into the
bachelor period. This proved to be a valuable addition seeing that the FOV software has
contributed to many of the group’s results.

117

←↩

7 Conclusion and future work

Chapter 7

Conclusion and future work

This chapter contains a summary of the group’s results and the work needed in order
to implement the proposed solution in the next version of Sort™.

118

←↩

7.1 Conclusion 7 Conclusion and future work

7.1 Conclusion
As stated in the project preliminary report, the group’s objective was as follows: ”The
project is to develop, test and evaluate enhancements to a pallet sorting machine produced
for logistics centers across Norway by Currence Robotics. The group will primarily work
with designing a new image acquisition solution. This is due to the current cameras being
discontinued by the manufacturer. The current setup uses 6 cameras to map each pallet
from multiple angles. The camera that is considered to be the replacement is too expen-
sive for this setup, due to competing systems’ pricing. The group will therefore attempt to
minimize the amount of cameras needed, without compromising the system’s accuracy”
[R]. Note that the name of the employer has changed since the start of the project, from
”Currence Robotics” to ”Solwr”. The scope has also been redefined to ”redesign the point
cloud acquisition for Sort™”.

Given the results they have produced, the bachelor group has concluded that the most
promising design is design seven with the Zivid One+ Large. The two bottom cameras
combine to cover the entire bottom of the pallet. With the Zivid One+ Large’s resolution,
the corners and edges appear sharp and clear. The design includes a linear axis, which
moves one of the cameras up and down vertically. The camera would be mounted on
a tiltable mount, to be able to take images in both top and bottom position. Since the
position changes, the angle would also have to be adjusted. This would be done by a
mechanism that tilts the camera. The mechanism is not detailed in this thesis. Due to
it only being a prototype, the group prioritized other tasks, since they did not deem it
a critical feature. The tilt was adjusted manually using marked positions on the camera
mount. One option would be to have a servo motor tilting the camera while moving along
the linear axis. Another would be to have a spring loaded mechanism, which would be a
cheaper option.

(a) Design seven, initial (b) Design seven, transformed

Figure 91: Illustration of design seven

The choice between different designs and different cameras is based on several factors.
The design is chosen based on its complexity, number of required cameras and its mechan-
ical feasibility. The camera is chosen based on its FOV, resolution, price and delivery time.

The proposed solution complies with all of Solwr’s criteria and would not add too much
complexity to Sort™. This includes generating a point cloud dense enough so that points
within it are no more than 5mm apart. The calculated distance using the chosen design
and camera was 4mm between points at the surface farthest away from the camera.

119

←↩

7.2 Future work 7 Conclusion and future work

Figure 92: Zivid camera

The prototype data introduced more noise and uncertainty compared to the simulated and
calculated data. The edges and corners were still clear. However, the group now had
to filter out the background. This proved to be quite hard, and some noise still remained.
Solwr’s engineers have already made software that handles this issue. However, the group
wanted to produce their own software, to learn and to provide their own solution.

Based on the results from the FOV software, the simulation and the physical prototype,
the group concluded that their results are satisfactory, and that they have completed their
objective.

Before implementing the proposed camera setup, it should be tested using the new Zivid
cameras. The cameras have yet to be delivered, due to a long delivery time frame. How-
ever, testing the new cameras is necessary in order to verify the group’s results. In order
to do this, Solwr can adjust the prototype as described in section 4.4. Some adjustments
to the measurements are to be expected.

7.2 Future work
A light source should be added to the camera setup. As explained in section 6.4.4, this
would result in more consistent point clouds. The project preliminary report did mention
this was one of the things the group would look at [R], but the group did not have suffi-
cient time to include it in the prototyping.

The linear axis of the prototype would need to be replaced. Given the longer distances
required when using the new cameras, the linear axis needs to be longer in order for the
prototype to work. The chosen cameras have a narrower field of view. This means they
need to be farther from the pallet. Seeing that the cameras are angled, this means they
also need to be placed higher and lower relative to the pallet.

Another important step that remains is to design the mechanism that will change the angle
of the camera. The simplest one would be a servo that rotates the camera mount while the
linear axis is moving the camera, but mechanical solutions using springs were discussed
with Solwr during one of the progress meetings.

120

←↩

7.2 Future work 7 Conclusion and future work

It will also be important to test different types of- and damaged pallets with the physical
prototype to be certain that the pallets can be correctly classified.

In order to verify the time it takes for the proposed solution to move the camera, Solwr
would need to adjust the speed of the motor. As it stands, it travels at a speed of 0.1m/s.
This is too slow for the actual Sort™. When increasing the velocity, a problem to con-
sider is distortion caused by vibration. Chapter 1.6.1 includes a thesis on several methods
to counteract this. Too much residual vibration could make the point cloud acquisition
unreliable.

Should the linear axis prove to be too complex, Solwr should consider using the variant
of design seven 55. It removes the linear axis, but adds a third camera.

Figure 93: Illustration of variant

There is also the possibility of moving forward with more research independently from
Solwr in the point cloud analysis. The group’s scope did not cover the pallet identification
and classification, but future thesis’ could. Data from the simulation and software could
provide useful insight, and can be a useful resource in other thesis’. A possible topic
would be to use the data in order to train a neural net to differentiate between pallets.

The software can be upgraded with the functionality of importing .stl-files. This would
make it more versatile and more useful in different applications.

121

←↩

References References

References

[1] Dag Håkon Hanssen, Programmerbare logiske styringer. Bergen: Fagbokforlaget,
2015.

[2] Currence Robotics, “Sort™,” 2021. Website link, date accessed 25-January-2022.

[3] nlpool, “Nlp plastic full pallet.” Website link, date accessed 02-February-2022.

[4] Allen, The British Industrial Revolution in Global Perspective: How Commerce
Rather than Science Caused The Industrial Revolution and Modern Economic
Growth. Bloomington: Indiana University Press, 2006.

[5] Rosheim, Robot Evolution: The Development of Anthrobotics. Hoboken: Wiley-
Interscience, 1994.

[6] Solwr.com, “Solwr delivers tomorrow’s logtech solutions.” Website link, date ac-
cessed 17-May-2022.

[7] I. Norge, “Finansiering av oppstart.” Website link, date accessed 19-May-2022.

[8] Intel.com, “Are the intel® realsense™ lidar, facial authentication and tracking prod-
uct families being discontinued?.” Website link, date accessed 17-May-2022.

[9] Framos.com, “Intel® realsense™ discontinues lidar, fa and tracking product lines,
focuses on stereo vision.” Website link, date accessed 17-May-2022.

[10] C. D. Rodin, “Applications of high-precision optical imaging systems for small un-
manned aerial systems in maritime environments,” 2019.

[11] E. S. Eissa, “Image space coverage model for deployment of multi-camera net-
works.” Website link, date accessed 5-May-2022.

[12] Haines, Hanrahan, Cook, Arvo, Kirk, Heckbert, An Introduction to Ray Tracing
(The Morgan Kaufmann Series in Computer Graphics) 1st Edition. Burlington:
Morgan Kaufmann Publishers, 1989.

[13] BMC.com, “Asynchronous programming: A beginner’s guide.” Website link, date
accessed 9-May-2022.

[14] Adams, Essex, Calculus - A Complete Course 7th ed. Toronto: Pearson Canada,
2009.

[15] Hartshorne, Euclid and Beyond. New York: Springer New York, 2005.

[16] Kuipers, Quaternions and rotation sequences : a primer with applications to orbits,
aerospace, and virtual reality. New Jersey: Princeton University Press, 2002.

[17] ZIVID, “Basic 3d machine vision techniques and principles.” Website link, date
accessed 12-May-2022.

122

https://web.archive.org/web/20220103051705/https://www.currence-robotics.com/
https://nlpool.no/en/products/nlp-plastic-pallet/
https://www.solwr.com/en
https://www.innovasjonnorge.no/no/tjenester/oppstart-av-bedrift/oppstartfinansiering/
https://www.intel.com/content/www/us/en/support/articles/000087450/emerging-technologies/intel-realsense-technology.html
https://www.framos.com/en/news/intel-realsense-discontinues-lidar-fa-and-tracking-product-lines-focuses-on-stereo-vision
https://scholar.uwindsor.ca/cgi/viewcontent.cgi?article=9420&context=etd
https://www.bmc.com/blogs/asynchronous-programming/
https://www.zivid.com/3d-vision-technology-principles

←↩

References References

[18] Ma, Soatto, Košecká, Sastry, An Invitaion to 3-D Vision. New York: Springer, 2004.

[19] plcopen.org, “What is plcopen.” Website link, date accessed 8-May-2022.

[20] Y. Chen, H. Chen, M. Zhang, and Y. Li, “The relevant research of coe protocol in
ethercat industrial ethernet,” 10 2010.

[21] AP associated pallets, “Protecting pallets from forklift damage,” 2018. Website link,
date accessed 25-January-2022.

[22] Advice monkey, Sirdion, “Choosing between wood and plastic pallets,” 2014. Web-
site link, date accessed 25-January-2022.

[23] Intel, “Intel realsense l515.” Website link, date accessed 02-February-2022.

[24] Power.no, “Raspberry pi 4 model b 8gb.” Website link, date accessed 12-May-2022.

[25] Zivid.com, “Data cables - zivid one+.” Website link, date accessed 13-May-2022.

[26] cognex.com, “3d-a5000 series area scan 3d camera.” Website link, date accessed
03-April-2022.

[27] Skatteetaten, “Slik fungerer mva.” Website link, date accessed 13-May-2022.

[28] Webots, “Lidar.” Website link, date accessed 19-May-2022.

[29] Webots, “Rangefinder.” Website link, date accessed 19-May-2022.

[30] Beckhoff.com, “Plc library: Tc2 mc2 overview.” Website link, date accessed 14-
May-2022.

[31] Beckhoff, “Axis ref.” Website link, date accessed 11-May-2022.

[32] Beckhoff, “Nc settings.” Website link, date accessed 11-May-2022.

[33] open3D, “Multiway registration.” Website link, date accessed 19-April-2022.

[34] Zivid, “Zivid one+ main page.” Website link, date accessed 19-January-2022.

[35] Beckhoff.com, “Plc library tc2 mc2 mc home.” Website link, date accessed 14-
May-2022.

123

https://plcopen.org/what-plcopen
https://associated-pallets.co.uk/blog/protecting-pallets-forklift-damage/
https://advicemonkey.com/choosing-wood-plastic-pallets/
https://advicemonkey.com/choosing-wood-plastic-pallets/
https://store.intelrealsense.com/buy-intel-realsense-lidar-camera-l515.html
https://www.power.no/data-og-tilbehoer/datakomponenter/mikrokontroller/raspberry-pi-4-model-b-8gb/p-1086755/store/?gclid=Cj0KCQjw4PKTBhD8ARIsAHChzRIjCiI52z1vgWqEr7n528iKZwDy12zjYJTcl8NlRdYd66tylC1hC_8aApD2EALw_wcB&gclsrc=aw.ds
https://shop.zivid.com/products/extension-and-spare-usb-cables?variant=32362721312849
https://www.cognex.com/products/machine-vision/3d-machine-vision-systems/3d-a5000-series-area-scan
https://www.skatteetaten.no/bedrift-og-organisasjon/avgifter/mva/slik-fungerer-mva/
https://cyberbotics.com/doc/reference/lidar
https://www.cyberbotics.com/doc/reference/rangefinder
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplclib_tc2_mc2/index.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplclibmc2/458448779.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/el72x1-001x/3170742667.html&id=5324479581782515474
http://www.open3d.org/docs/latest/tutorial/Advanced/multiway_registration.html
https://www.zivid.com/zivid-one-plus
https://infosys.beckhoff.com/english.php?content=../content/1033/tcplclibmc2/458433931.html&id=

←↩

8 Appendix

Chapter 8

Appendix

i

←↩

A The group’s how-to-guide for programming drives, PLC and HMI

Appendix A

The group’s how-to-guide for pro-
gramming drives, PLC and HMI

A.1 Setting static IPv4 for motor controller

ii

←↩

A.1 Setting static IPv4 for motor controllerA The group’s how-to-guide for programming drives, PLC and HMI

Setting static IPv4 for motor controller
A how-to-guide to set a static IPv4 Ethernet address on motor controller.

There are several ways for the drive to obtain an IP, according to the motor controllers
quick guide in appendix [F]. A DHCP server, for example, can automatically assign an IP
address. Another option is to use EtherCAT to manually set it, which was the technique
used using PlugDrive Studio 1. When the guide is completed, keep following instructions
in chapter [4.5.2].

To manually set an IP address connect a PC to port X7, which is the EtherCAT input, and
follow the steps below:

Figure 94: Connect to drive, by pressing ”Connect controller”

Figure 95: Chose the communication protocol ”EtherCAT” and continue by pressing
”Next”

iii

←↩

A.1 Setting static IPv4 for motor controllerA The group’s how-to-guide for programming drives, PLC and HMI

(a) Select the network interface with the cor-
responding IP of the computer being used.

(b) Select the drive in use, and check connec-
tion.

Figure 96: Selecting of network interface, and EtherCAT device

Figure 97: Changing or reading the ”Static-IPv4-Address” from the ”value” column. The
IP is displayed in HEX decimal.

A large list will appear after selecting ”Object Dictionary” from the main menu in Plug-
Drive Studio 1. Then, in the search area, type ”ip,” and the list will be reduced down
to the list shown in Figure 96. The second line’s ”Static-IPv4-Address” can now be
changed/read. The IP address is displayed in HEX decimal in the ”value” column and
must be converted bit by bit. The static IP address is 10.0.0.6 since 0A=10, 00=0, 00=0,
06=6.

iv

←↩

A.2 Setting static IPv4 for a computerA The group’s how-to-guide for programming drives, PLC and HMI

A.2 Setting static IPv4 for a computer

v

←↩

A.2 Setting static IPv4 for a computerA The group’s how-to-guide for programming drives, PLC and HMI

Setting static IPv4 for a computer
A how-to-guide to set a static IPv4 Ethernet address on a PC. In this example it is sat to
10.0.0.3. When the guide is completed, keep following instructions in chapter [4.5.3].

(a) Navigate to ”Nettverks- of delingssenter”, and select ”Tilkoblinger: Ethernet”

(b) In ”status for Ethernet”, double-click ”Egenskaper”. In the next sub-menu select ”Internet Pro-
tocol Version 4(TCP/IPv4)”, and finally change the IP address.

Figure 98: Changing the computers internal Ethernet IP to 10.0.0.3, through ”Nettverks-
og delingssenter”.

Navigate to ”Nettverks- og delingsenter” and follow the submenus in figure 98 to alter the
computer’s static IPv4 address. Since the drive’s static IP is now 10.0.0.6, the computer’s
IP must be 10.0.0.X, with the final digit in the range 0-5 or 7-255. Figure 98b’s IP address
is an compatible example: 10.0.0.3.

vi

←↩

A.3 Motor setup though Ethernet in PlugDrive Studio 1A The group’s how-to-guide for programming drives, PLC and HMI

A.3 Motor setup though Ethernet in PlugDrive Studio 1

vii

←↩

A.3 Motor setup though Ethernet in PlugDrive Studio 1A The group’s how-to-guide for programming drives, PLC and HMI

Motor setup though Ethernet in PlugDrive Studio 1
A how-to-guide to setup the motor and motor controller using the Nanotec’s software
PlugDrive Studio 1.

The Ethernet Port X1 could now be used to establish a link between the PC and the drive
because the IP had been manually specified. Some motor requirements were required for
the setup, which were found in the motor datasheet in appendix [D]. The electrical peak
and rated current limits, as well as the number of poles, were necessary specifications
in order to avoid damaging or breaking the motor controller, during the automatic setup.
Follow the guide below to connect, and preform the setup in PlugDrive Studio 1. When
the guide is completed, keep following instructions in chapter [4.6].

(a) Connect to drive, by pressing ”Connect controller”

(b) Chose the communication protocol ”Ethernet”

Figure 99: Connect and select ”Ethernet” as the communication protocol of choice, and
continue by pressing ”Next”

viii

←↩

A.3 Motor setup though Ethernet in PlugDrive Studio 1A The group’s how-to-guide for programming drives, PLC and HMI

Figure 100: Type in the drives ”Static-IPv4-Address” and check connection

Figure 101: Set the ”motor drive submode select” to ”BLDC”, and ”pole pair count” to
”4”.

In this set up process the first parameters to change are within ”setup” and then within
the tab called ”Drive” like in figure 101. Parameters for Encoder and Brake will be filled
in during auto setup. However, choose to use a closed loop, since the motor is getting a
feedback on it’s position. Thereafter fill in the motor parameters found in appendix [D]:

Motor

• Motor drive submode select = BLDC

• Pole pair count = 4
(The step angle will adjust depending on the number of pole pair)

ix

←↩

A.3 Motor setup though Ethernet in PlugDrive Studio 1A The group’s how-to-guide for programming drives, PLC and HMI

Figure 102: Change the parameters for ”Max current” and ”Nominal current”

The second parameters to is located in the tab ”Current”, seen in figure 102. Parameters
to be filled in are ”Max current” and ”Nominal current”, which is found in appendix [D].
However, the the ”Max current” has a real value of 53.85A, but the drive can max output
40A.

Figure 103: Press ”Start Auto Setup”, while the motor is lying still and unloaded

The next step is within the tab ”Auto setup”, seen in figure 103. Leave the motor without
load, and for instance laying on a table while the auto setup is running. Now the auto
setup will start rotating the motor, and collecting the remaining parameters.

x

←↩

A.4 Linking motor controller and axis in TwinCATA The group’s how-to-guide for programming drives, PLC and HMI

A.4 Linking motor controller and axis in TwinCAT

xi

←↩

A.5 Connecting and linking a drive to an axis in TwinCATA The group’s how-to-guide for programming drives, PLC and HMI

A.5 Connecting and linking a drive to an axis in Twin-
CAT

A how-to-guide to connect to the Nanotec’s N5-2-1 drive from the PLC, and added the
drive as an device. Thereafter a axis will be added automatically, but not linked. When
the guide is completed, keep following instructions in chapter [4.6.2].

Figure 104: Press ”Choose Target System”

Figure 105: Press ”Search (Ethernet)...”

xii

←↩

A.5 Connecting and linking a drive to an axis in TwinCATA The group’s how-to-guide for programming drives, PLC and HMI

Figure 106: First press ”Broadcast Search”, and in ”Select Adapters” select the adapter
with the computers IPv4 address.

Figure 107: Nanotec’s drive default password = 1

xiii

←↩

A.5 Connecting and linking a drive to an axis in TwinCATA The group’s how-to-guide for programming drives, PLC and HMI

Figure 108: Right click on devices in solution explorer, and press ”Scan”

Figure 109: Select ”device 1 (EtherCAT)” and press ”OK”

(a) The N5-2-1 drive has been added as
Device 1(EtherCAT)

(b) A axis will automatically be added

Figure 110: Both the devices and a axis are now added

xiv

←↩

A.6 Axis parameter settingsA The group’s how-to-guide for programming drives, PLC and HMI

A.6 Axis parameter settings

xv

←↩

A.6 Axis parameter settingsA The group’s how-to-guide for programming drives, PLC and HMI

Axis parameter settings
How-to-guide to fill in paramters within the axis and encoder in the soultion explorer in
TwinCAT.

Several settings in the axis and encoder have to be filled in to ensure that the linear axis
travels as predicted. The group found inspiration in a Backhoff guide [32], and discov-
ered that majority of the parameters were set correctly by default. The calculations for
maximum velocity and scaling factor, however, did not match the needs of the group.
The team derived new formulas and calculated new maximum velocity and scaling factor
values. When the guide is completed, keep following instructions in chapter [4.7].

Select the unit for the axis distance traveled

Figure 111: Fill in the wanted unit for the axis movement. The group choose the unit ”m”
for meter.

xvi

←↩

A.6 Axis parameter settingsA The group’s how-to-guide for programming drives, PLC and HMI

Theoretical Max Velocity calculations

Figure 112: Calculate the theoretical max velocity of the motor, and fill it in under ”Ref-
erence velocity”. Fill in the actual wanted max velocity in under ”Maximum velocity”

”Maximum velocity” is the maximum allowed speed for the axis, and the group choose
0.1 m/s for this prototype.

Distance motor rotation =
Distance axis rotation

Motor gear ratio
=

0.025m
3

= 8.333 ·10−3 [m] (29)

Max motor velocity=
MotorRPM ·Distance motor rotation

Seconds in one minute
=

3000 ·8.33 ·10−3

60s
= 0.416 [m/s]

(30)

xvii

←↩

A.6 Axis parameter settingsA The group’s how-to-guide for programming drives, PLC and HMI

Scaling factor calculations

Figure 113: Calculate the scaling factor and fill it in under ”Scaling Factor Numerator”

Scaling f actor =
Distance motor rotation

Pulses per rotation
=

8.33 ·10−3

2000
= 4.166 ·10−6 [m/pulse]

(31)

xviii

←↩

B Intel RealSense L515 Datasheet

Appendix B

Intel RealSense L515 Datasheet

xix

 Revision: 003

Intel® RealSenseTM
LiDAR Camera L515

Datasheet

Intel® RealSense™ LiDAR Camera L515

Revision 003

January 2021

←↩

2 Rev 003

Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter

drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service

activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with

your system manufacturer or retailer or learn more at intel.com.

Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer

or retailer.

The products described may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness

for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or

usage in trade.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel

product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-

4725 or visit www.intel.com/design/literature.htm.

Intel and the Intel logo, Intel® Core™, Intel® Atom™, trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2021 Intel Corporation. All rights reserved.

←↩

Description and Features

Rev 003 3

Contents

1 Description and Features .. 6

2 Introduction .. 7

2.1 Purpose and Scope of this Document ... 7
2.2 Terminology ... 7
2.3 LiDAR Technology Overview ... 7

3 Functional Specification .. 8

3.1 Depth Camera Specification ... 8
3.1.1 Camera Accuracy Health ... 8

3.2 Depth Camera Controls and Data Format ... 8
3.3 Depth Quality Metrics .. 9
3.4 Depth Start Point (Ground Zero Reference) .. 10

3.4.1 Depth Origin X-Y Coordinates .. 12
3.5 Image Formats and Color Camera Functions .. 12
3.6 IMU Specification and Operating Modes ... 13
3.7 L515 Device Firmware Update (DFU) ... 14

3.7.1 Update ... 14

4 Intel® RealSense™ LiDAR Camera L515 Hardware Specification 15

4.1 L515 Device Components ... 15
4.2 Color Camera Properties .. 15
4.3 Camera L515 Power Consumption ... 15
4.4 Camera Interface .. 16
4.5 Camera L515 Storage and Operating Conditions 17

(1) Controlled conditions should be used for long term storage of
product. ... 17

(2) Short exposure represents temporary max limits acceptable for
transportation conditions. ... 17

4.6 Material, Vendor and Device ID .. 17
4.6.1 Camera L515 Product Identifier and Material Code 17
4.6.2 Vendor Identification (VID) and Device Identification (DID) 17

5 Software (SDK) ... 18

5.1 Intel® RealSense™ Software Development Kit 2.0 18

6 Mechanical Specifications .. 19

6.1.1 Mechanical Dimensions ... 19
6.2 L515 Cover Material Cleaning Procedure .. 20

7 Regulatory Ecology Compliance ... 21

7.1 System Laser Compliance .. 21
7.1.1 Certification Statement... 21
7.1.2 Explanatory Label .. 21
7.1.3 Cautionary Statements ... 21
7.1.4 Embedded Laser Information .. 22
7.1.5 US FDA Accession Number .. 22

7.2 Regulatory Compliance .. 23
7.2.1 Manufacturer’s Information ... 23
7.2.2 EU Single Place of Contact .. 23

7.3 Ecology Compliance .. 23

←↩

4 Rev 003

7.3.1 China RoHS Declaration .. 23
7.3.2 Waste Electrical and Electronic Equipment (WEEE) 24

8 Appendix A – L515 Product Box ... 25

Figures

Figure 1-1. Intel® RealSense™ LiDAR Camera L515 Exploded View ... 6
Figure 3-1. Depth Quality Metric Illustration .. 10
Figure 3-2. LiDAR Camera Depth Start Point Reference .. 11
Figure 3-3. LiDAR Camera X-Y Depth Origin Reference ... 12
Figure 5-1. RealSense Viewer – L515 ... 18
Figure 6-1. Intel® RealSense™ LiDAR Camera L515 ... 19
Figure 6-2. Intel® RealSense™ LiDAR Camera L515 Cooling Vents ... 20
Figure 8-1. L515 Product Box .. 25

Tables

Table 2-1. Terminology Table .. 7
Table 3-1. Depth Specification ... 8
Table 3-2. Depth Camera Controls ... 8
Table 3-3: Depth and Infrared Data Formats ... 9
Table 3-4: Depth Quality Metrics ... 9
Table 3-5. Depth Quality Specification .. 10
Table 3-6. LiDAR Depth Start Point ... 11
Table 3-7. Image Formats .. 12
Table 3-8. Color Camera Controls .. 12
Table 3-9. Inertial Measurement Specifications .. 13
Table 4-1. Main components ... 15
Table 4-2. Color Camera Properties .. 15
Table 4-3. Power Requirements ... 16
Table 4-4. Power Consumption .. 16
Table 4-5. Storage and Operating Conditions .. 17
Table 4-6. Product Identifier and Material Code ... 17
Table 4-7. Vendor ID and Device ID Table .. 17
Table 6-1. Intel® RealSense™ LiDAR Camera L515 Mechanical Dimensions 19
Table 7-1. U.S. FDA Accession Number... 22

←↩

Description and Features

Rev 003 5

Revision History

Revision Number Description Revision Date

001 Initial release December 2019

002 • Section 1. Description and Features

• Section 3.1.1. Camera Accuracy Health

• Section 3.4. Depth Start Point (Ground Zero Reference)

• Section 7.1.4. Embedded Laser Information

• Table 3-2. Depth Camera Controls

• Table 3-4. Depth Quality Metrics

• Table 3-5. Depth Quality Specification

• Table 3-6. Depth Start Point

• Table 3-7. Image Formats

• Table 4-2. Color Camera Properties

• Table 4-5. Storage and Operating Conditions

• Figure 3-2. LiDAR Camera Depth Start Point Reference

• Figure 6-1. Intel® RealSense™ LiDAR Camera L515

June 2020

003 • Table 3-1. Depth Specification

• Table 3-2. Depth Camera Controls

• Table 3-7. Image Formats

• Figure 3-3. LiDAR Camera X-Y Depth Origin Reference

January 2021

§ §

←↩

Description and Features

Datasheet 6

1 Description and Features
Description

The Intel® RealSenseTM LiDAR Camera L515 is

Intel’s first release of a LiDAR camera enabling
highly accurate depth sensing in a small form
factor.

Small enough to fit in the palm of your hand, the

L515 is 61mm in diameter and 26mm in height. At
approximately 100g, it’s designed to be easily
situated on any system, or attached to a tablet or
phone. It also runs at less than 3.5W,

considerably lower than competing time-of-flight

(TOF) solutions. All depth calculations run on the
device resulting in true platform independence.

Features

• Depth Capture from 0.25 to 9m(1)

• 2MP RGB Camera(2)

• Inertial Measurement Unit (IMU)

• Up to 30FPS Depth at 1024x768 (XGA)

• Up to 30FPS Color at 1920x1080 (FHD)

• Class 1 Laser Compliant

• Device Accuracy Health(2)

(1) Tested at 95% reflectivity.

(2) RGB camera always on.

Minimum System Requirements

USB 3.1 Gen1

Ubuntu*16.xx/18.04 LTS

Windows*10 (build 15063 or later)

With a short exposure time of <100ns per depth
point, even rapidly moving objects can be
captured with minimal motion blur. Optimized for

indoor lighting, the L515 processes over 23 million
depth points per second via a custom made ASIC.
The product has been designed for use case
flexibility with the inclusion of an RGB camera and
an inertial measurement unit.

Figure 1-1. Intel® RealSense™ LiDAR Camera L515 Exploded View

 § §

←↩

Introduction

Rev 003 7

2 Introduction

2.1 Purpose and Scope of this Document

This document captures the specifications for the Intel® RealSense™ LiDAR Camera

L515.

2.2 Terminology

Table 2-1. Terminology Table

Term Description

Depth Depth video streams are like color video streams except each pixel has a

value representing the distance away from the camera instead of color

information

FOV Field Of View (FOV) describes the angular extent of a given scene that is

imaged by a camera. A camera's FOV can be measured horizontally,

vertically, or diagonally

Host System Computer or SOC connected to depth camera

IR Laser This refers to the source of infrared (IR) light used for illuminating a scene,

object, or person to collect depth data.

IMU Inertial Measurement Unit is a system-in-package for the detection of

acceleration in 3 dimensions and rotations in 3 dimensions.

LiDAR Light Detection and Ranging is a remote sensing technology that measures

the distance to objects and targets using a combination of laser light and

receivers.

MEMS Micro-Electro-Mechanical System

RH Relative humidity

TBD To Be Determined. In the context of this document, information will be

available in a later revision.

2.3 LiDAR Technology Overview

The Intel® RealSense™ LiDAR Camera L515 uses an IR laser, a MEMS, an IR

photodiode, an RGB imager, a MEMS controller, and a vison ASIC. The MEMS is used
to scan the IR laser beam over the entire field-of-view (FOV). The L515 vision ASIC
will process the data from the reflected beam captured by the photodiode and will
output a depth point representing the accurate distance of a specific point in the scene
from the camera. Aggregation of the depth points will generate a point cloud depth
data representing the full scene.

§ §

←↩

Functional Specification

8 Rev 003

3 Functional Specification

3.1 Depth Camera Specification

Table 3-1. Depth Specification

1 Due to mechanical tolerances, FOV can vary +/- 2 degrees.

2 Max range is specified for the center 10% ROI of the image, as long as the operating conditions

are met.

3.1.1 Camera Accuracy Health

In order to ensure the long-term optimal accuracy of the L515’s cutting edge depth

technology, Intel® has implemented an additional accuracy assurance method

utilizing the RGB camera. The feature runs on the host as part of the Intel®
RealSense™ SDK 2.0 and will require a few RGB frames to be sent to the host. These
RGB frames are used to analyze the scene and compared with the depth camera to
verify alignment between both cameras.

The accuracy health-test and maintenance feature is automatically enabled and all

customers gain this feature without any user interaction.

To ensure complete transparency, this functionality is in the Intel® RealSense™ SDK
2.0 open source SDK (LibRealSense).

3.2 Depth Camera Controls and Data Format

In order to achieve optimal performance of the camera, three presets are offered
based on the desired range of the application.

Table 3-2. Depth Camera Controls

Preset Description

Max Range This preset is useful when there is no ambient light in the scene (fully

indoors use case, with no light coming through windows). With this preset

the laser power is set to maximum as well as the receiver gain which

optimize the depth quality in indoor conditions.

Depth
Resolution

Number of depth points
per second

FOV1 Range @
15%

reflectivity2

Range @
95%

reflectivity2

QVGA (320x240) 2.3M 70o x 55o 0.25 - 3.9m 0.25 - 9m

VGA (640x480) 9.2M 70o x 55o 0.25 - 3.9m 0.25 - 9m

XGA (1024x768) 23.6M 70o x 55o 0.25 - 2.6m 0.25 - 6.5m

←↩

Functional Specification

Rev 003 9

Preset Description

Short Range This preset lowers the laser power and gain so that close objects do not

oversaturate the receiver. This allows operation at a close distance to

objects. This setting may not be good if objects further away in the scene

also need to perform well.

No Ambient Light Same as Max Range preset, this preset is useful when there is no ambient

sunlight in the scene. The main difference between the presets is the laser

power which is lower on this preset to avoid false depth on objects that

are on longer distances than the ambiguity range (10m-VGA, 6.5m-XGA).

Low Ambient Light

This preset is recommended for environments where there may be a low

amount of ambient sunlight present. Similar to Max Range preset the laser

power is set to maximum but the receiver gain is reduced to avoid

saturation of the camera due to ambient sunlight. The preset is also

recommended for cases that the user wants to detect close objects

(<50cm).

Table 3-3: Depth and Infrared Data Formats

FORMAT KEY TYPE DESCRIPTION

Depth Z 16b

UINT

Depth format equating to distance from the device

subassembly planar surface to the object.

Infrared Y8 8b

UINT

IR image representing the intensity of the reflected IR

laser reflected off the objects in the scene.

Confidence C 4b

UINT

Provides a per pixel confidence value, 0xF equals high

confidence and 0x0 represents low confidence.

3.3 Depth Quality Metrics

Table 3-4: Depth Quality Metrics

METRIC DEFINITION

Depth Accuracy
Represents the average difference of valid pixels relative to

ground truth.

Depth Standard Deviation
Represents the total spread (noise) of the depth values relative

to ground truth.

←↩

Functional Specification

10 Rev 003

Figure 3-1. Depth Quality Metric Illustration

DEPTH ACCURACY AND DEPTH RMS ERROR

Table 3-5. Depth Quality Specification

Metric Value Notes

Depth Accuracy – Avg
< 5mm @ 1m

< 14mm @ 9m
VGA resolution, 95% reflectivity

Depth – Std Dev
2.5mm @ 1m

15.5mm @ 9m
VGA resolution, 95% reflectivity

Exposure Time
< 100ns per depth

point
Robust against motion blur

Lighting Condition
< 500 lux sunlight

(0.4uW/cm2/nm)

3.4 Depth Start Point (Ground Zero Reference)
The depth start point or the ground zero reference can be described as the starting

point or plane where depth = 0. For LiDAR camera (L515), this point is referenced
from front of camera cover glass

←↩

Functional Specification

Rev 003 11

Figure 3-2. LiDAR Camera Depth Start Point Reference

Table 3-6. LiDAR Depth Start Point

LiDAR Camera Camera Front Glass (Z’)

L515 -4.5mm

NOTES:

If depth measurement reference is front cover glass, then |Z’| should be added to measured
value to determine Ground Truth.

This value can be read via Intel® RealSense™ SDK 2.0 APIs. Please see the latest SDK for
reference.

←↩

Functional Specification

12 Rev 003

3.4.1 Depth Origin X-Y Coordinates

The depth origin X-Y coordinates is the X-Y center of the IR Transmitter.

Figure 3-3. LiDAR Camera X-Y Depth Origin Reference

3.5 Image Formats and Color Camera Functions

Table 3-7. Image Formats

Format Resolution Frame Rate (FPS) Comment

YUY2

1920x1080 6,15,30
Color Stream from RGB

camera

1280x720 6,15,30,60

960x540 6,15,30,60

NOTE:

Color camera frame rates are expressed as nominal. Effective frame rates can vary
depending on the exposure settings of the camera. Camera settings that increase the
exposure time can decrease the effective frame rate.

Table 3-8. Color Camera Controls

Control Description Min Max

Auto-Exposure
Mode

Automatically sets
the exposure
time and gain for
the frame.

0x1 0x8

Manual Exposure
Time

Sets the absolute
exposure time
when auto-

1 10000

←↩

Functional Specification

Rev 003 13

Control Description Min Max

exposure is
disabled.

Brightness Sets the amount of
brightness
applied when auto-
exposure is
enabled.

-64 64

Contrast Sets the amount of
contrast based

on the brightness
of the scene.

0 100

Gain Sets the amount of
gain applied to
the frame if auto-
exposure is
disabled.

0 4096

Hue Sets the amount of
hue adjustment
applied to the
frame.

-180 180

Saturation Sets the amount of
saturation
adjustment applied
to the frame.

0 100

Sharpness

Sets the amount of
sharpening
adjustment applied
to the frame.

0 100

White Balance
Temperature
Control

Sets the white
balance when AWB
is
disabled.

2800 6500

White Balance
Temperature Auto
(AWB)

Enables or disables
the AWB
algorithm.

0 1

Power Line
Frequency

Specified based on
the local power
line frequency for
flicker avoidance.

Disabled

50Hz
60Hz
Auto

Backlight
Compensation

Sets a weighting
amount based on
brightness to the
frame.

0 255

3.6 IMU Specification and Operating Modes

Table 3-9. Inertial Measurement Specifications

Parameter Properties

Model Bosch BMI085

Degrees of Freedom 6

Acceleration Range ±4g

Accelerometer Output Data Rate 100Hz/200Hz/400Hz

←↩

Functional Specification

14 Rev 003

Gyroscope Range ±1000 Deg/s

Gyroscope Output Data Rate 100Hz/200Hz/400Hz

Data Format 32b Float

Accelerometer and gyroscope data streams from the onboard IMU are available via Intel®
RealSense™ SDK 2.0.

3.7 L515 Device Firmware Update (DFU)

The firmware contains the operation instructions. Upon runtime, Vision ASIC loads the
firmware and programs the component registers. If the Vision ASIC is configured for
update or recovery, the unlocked R/W region of the firmware can be changed.

3.7.1 Update

During a firmware update, the firmware utility will issue a device firmware update

command to the Vision ASIC. The Vision ASIC will then reset into firmware update

mode. The firmware utility uses a single binary file to maintain the firmware image.

3.7.1.1 Update Limits

The firmware update engine does not allow infinite update cycles between older and
current versions of firmware. The engine will establish a baseline version of firmware
based on the latest firmware version installed. The engine will allow a return to a
previous version or baseline version of firmware up to 20 times. After the 20th

update, the engine will only allow an update to a firmware revision higher than the

baseline version.

§§

←↩

Intel® RealSense™ LiDAR Camera L515 Hardware Specification

Rev 003 15

4 Intel® RealSense™ LiDAR

Camera L515 Hardware

Specification

4.1 L515 Device Components

Table 4-1. Main components

Component Description

BMI085 Accelerometer and Gyroscope in a single package

OV2740 RGB image sensor

IR emitter 860nm IR laser

4.2 Color Camera Properties

Table 4-2. Color Camera Properties

Parameter Camera Sensor Properties

Color Image Signal Processor Embedded*

Active Pixels 1920 X 1080

Sensor Aspect Ratio 16:9

Format 1/6”

F Number 2.0

Focal Length 1.88mm

Focus Fixed

Shutter Type Rolling Shutter

Signal Interface MIPI CSI-2, 2X Lanes

Horizontal Field of View 69o +/-1o

Vertical Field of View 42o +/-1o

* This product uses Arm® Assertive Camera™ technology by Arm Limited.

4.3 Camera L515 Power Consumption

The Intel® RealSense™ LiDAR Camera L515 is powered through USB VBUS power

connected to host platform via USB type-C connection. The same cable is used for
data transfer.

←↩

Intel® RealSense™ LiDAR Camera L515 Hardware Specification

16 Rev 003

Table 4-3. Power Requirements

Parameter

Min Nom Max Unit

VCC Supply Voltage 4.5 5 5.5 V

Table 4-4. Power Consumption

Model

Idle Power (W) Normal Power (W)

Typical Usage
Configuration

(@ 25⁰C)

Notes

L515

0.8 3.0 Depth (VGA)

3.2 Depth (VGA) + RGB (1080p, 30FPS)

3.1 Depth (XGA)

3.3 Depth (XGA) + RGB (1080p, 30FPS)

4.4 Camera Interface

The interface to L515 is USB 3.0 Type-C. Standard USB3 cables with max over-mold

size of 6.5mmx12mm are supported.

←↩

Intel® RealSense™ LiDAR Camera L515 Hardware Specification

Rev 003 17

4.5 Camera L515 Storage and Operating Conditions

Table 4-5. Storage and Operating Conditions

Parameter Condition Min Max Unit

Storage (Still Air), Not

Operating

Sustained, Controlled (1) 0 50 oC

Short Exposure (2) -20 70 oC

Humidity, Non-

Condensing
Temperature/ RH: 40oC / 90%

Operating(3)(4) Ambient temperature

range when the device is

streaming
0 30 oC

Skin Temperature @

25C Ambient(3)(4)

Camera housing

temperature
N/A 50 oC

NOTE:

(1) Controlled conditions should be used for long term storage of product.

(2) Short exposure represents temporary max limits acceptable for transportation

conditions.

(3) Under typical indoor air flow.

(4) Depth and RGB enabled simultaneously.

4.6 Material, Vendor and Device ID

4.6.1 Camera L515 Product Identifier and Material Code

Table 4-6. Product Identifier and Material Code

Production Product Material Code

Camera L515 999NGF

4.6.2 Vendor Identification (VID) and Device Identification

(DID)

Table 4-7. Vendor ID and Device ID Table

Depth Module/Depth Camera Vendor ID Device ID

Intel® RealSense™ LiDAR Camera L515 8086 0x0B64

§§

←↩

Software (SDK)

18 Rev 003

5 Software (SDK)

5.1 Intel® RealSense™ Software Development Kit 2.0

Intel® RealSense™ SDK 2.0 is a cross-platform library for working with Intel®

RealSense™ LiDAR Camera L515. It is open source and available on
https://www.intelrealsense.com/sdk-2/

The SDK at a minimum includes:

• Intel® RealSense™ Viewer - This application can be used view, record and

playback depth streams, set camera configurations and other controls.

• Depth Quality Tool - This application can be used to test depth quality,

including: distance to plane accuracy, Z accuracy, standard deviation of the Z

accuracy and fill rate.

• Debug Tools - These command line tools gather data and generate logs to

assist in debug of camera.

• Code Examples - Examples to demonstrate the use of SDK to include D400

Series camera code snippets into applications.

• Wrappers -Software wrappers supporting common programming languages

and environments such as ROS, Python, Matlab, node.js, LabVIEW, OpenCV,

PCL, .NET and more

Figure 5-1. RealSense Viewer – L515

§§

←↩

Mechanical Specifications

Rev 003 19

6 Mechanical Specifications

6.1.1 Mechanical Dimensions

Table 6-1. Intel® RealSense™ LiDAR Camera L515 Mechanical Dimensions

Dimension Nominal Unit

Diameter 61 mm

Height 26 mm

Weight 95 g

Figure 6-1. Intel® RealSense™ LiDAR Camera L515

When integrated into system, it is recommended that the L515 be secured via the two M3

mounting screw holes on the back of the product. The cooling vents need to remain
unobstructed at all times.

←↩

Mechanical Specifications

20 Rev 003

Figure 6-2. Intel® RealSense™ LiDAR Camera L515 Cooling Vents

The cooling vents need to remain unobstructed at all times. Clearance of 12mm

needed around the vents for airflow.

6.2 L515 Cover Material Cleaning Procedure
1. Do not use any chemical or water on the camera cover material

2. Remove dust and dirt as much as possible from the cover material with a lens
blower brush.

3. Wipe with a dry, clean micro-fiber cloth.

§§

←↩

Regulatory Ecology Compliance

Rev 003 21

7 Regulatory Ecology

Compliance

7.1 System Laser Compliance

The Intel® RealSense™ LiDAR Camera L515 certification is transferable to the system

and no system recertification is required. However, the following statements and
labels must be included in the user manual of the end product.

7.1.1 Certification Statement

This product is classified as a Class 1 Laser Product under the EN/IEC 60825-1, Edition
3 (2014) internationally.

In the US, this product is in conformity with performance standards for laser products

under 21 CFR 1040, except with respect to those characteristics authorized by
Variance Number 2018-V-3042-0001 effective on August 28, 2018.

7.1.2 Explanatory Label

7.1.3 Cautionary Statements

System integrators should refer to their respective regulatory and
compliance owner to finalize regulatory requirements for a specific
geography.

←↩

Regulatory Ecology Compliance

22 Rev 003

Caution - Use of controls or adjustments or performance of procedures
other than those specified herein may result in hazardous radiation

exposure.

• Do not power on the product if any external damage was

observed.

• Do not attempt to open any portion of this laser product. There
are no user serviceable parts.

• Invisible laser radiation when opened. Avoid direct exposure to
beam.

• There are no service/maintenance, modification, or disassembly
procedures for the stereo module and infrared projector. The

system integrator must either notify Intel or return modules
before any failure analysis is performed.

• Modification or service of the stereo module, specifically the
infrared projector, may cause the emissions to exceed Class 1.

• Do not try to update camera firmware that is not officially
released for specific camera module SKU and revision.

7.1.4 Embedded Laser Information

• Wavelength (0-50°C): 844-875nm

• Beam divergence (without collimation): (6x10) deg to (15-21) deg; parallel x

perpendicular

• Pulse duration and repetition rate:

• 1ns pulse duration

• 500 MHz repetition

• Rise/Fall time: 300ps

• Maximum power or energy output: 240mW

7.1.5 US FDA Accession Number

Table 7-1. U.S. FDA Accession Number

Component U.S. FDA accession numbers

Intel® RealSense™ LiDAR Camera L515 1820840

This accession number should be entered into Box B.1 of the Food and Drug

Administration (FDA) 2877 Declaration for Imported Electronic Products Subject to
Radiation Control Standards.

←↩

Regulatory Ecology Compliance

Rev 003 23

7.2 Regulatory Compliance

7.2.1 Manufacturer’s Information
Intel Corporation:

Attn: Corp. Quality

2200 Mission College Blvd,

Santa Clara, CA 95054-1549, USA

7.2.2 EU Single Place of Contact
Att. Corp Quality

Intel Deutschland GmbH

Am Campeon 10-12

Neubiberg, 85579 – Germany

7.3 Ecology Compliance

7.3.1 China RoHS Declaration

China RoHS Declaration

产品中有毒有害物质的名称及含量

Hazardous Substances Table

部件名称

Component Name

有毒有害物质或元素 Hazardous Substance

铅

Pb

汞

Hg

镉

Cd

六价铬

Cr (VI)

多溴联苯

PBB

多溴二苯醚

PBDE

相机

Camera
○ ○ ○ ○ ○ ○

印刷电路板组件

Printed Board Assemblies

X ○ ○ ○ ○ ○

三角架

Tripod
○ ○ ○ ○ ○ ○

电缆

Cable

○ ○ ○ ○ ○ ○

←↩

Regulatory Ecology Compliance

24 Rev 003

7.3.2 Waste Electrical and Electronic Equipment (WEEE)

 “In the EU, this symbol means that this product must not be disposed of

with household waste. It is your responsibility to bring it to a designated
collection point for the recycling of waste electrical and electronic equipment.
For more information, contact the local waste collection center or your point
of purchase of this product.”

§ §

○：表示该有毒有害物质在该部件所有均质材料中的含量均在GB/T 26572标准规定的限量要求以下。

○：Indicates that this hazardous substance contained in all homogeneous materials of such component is

within the limits specified in GB/T 26572.

×：表示该有毒有害物质至少在该部件的某一均质材料中的含量超出GB/T 26572标准规定的限量要求。

×： Indicates that the content of such hazardous substance in at least a homogeneous material of such

component exceeds the limits specified in GB/T 26572.

对销售之日的所售产品,本表显示我公司供应链的电子信息产品可能包含这些物质。注意：在所售产品中可能会也可

能不会含有所有所列的部件。

This table shows where these substances may be found in the supply chain of our electronic information

products, as of the date of sale of the enclosed product. Note that some of the component types listed

above may or may not be a part of the enclosed product.

除非另外特别的标注,此标志为针对所涉及产品的环保使用期限标志. 某些可更换的零部件可能会有一个不同的环保

使用期限(例如,电池单元模块).

此环保使用期限只适用于产品在产品手册中所规定的条件下工作.

The Environment-Friendly Use Period (EFUP) for all enclosed products and their

parts are per the symbol shown here, unless otherwise marked. Certain field-

replaceable parts may have a different EFUP (for example, battery modules)

number. The Environment-Friendly Use Period is valid only when the product is

operated under the conditions defined in the product manual.

←↩

Appendix A – L515 Product Box

Rev 003 25

8 Appendix A – L515 Product

Box

Inside Intel® RealSense™ LiDAR Camera L515 product box you will find the L515
camera, a tripod and a USB3 cable.

Figure 8-1. L515 Product Box

←↩

←↩

C Zivid One+ Large Datasheet

Appendix C

Zivid One+ Large Datasheet

xlv

←↩

←↩

←↩

←↩

←↩

←↩

←↩

←↩

σ

µ

σ

µ

µ

←↩

µ
µ

←↩

←↩

σ

µ

σ

µ

µ

←↩

µ
µ

←↩

←↩

σ

µ

σ

µ

µ

←↩

µ
µ

←↩

←↩

⎓

←↩

←↩

←↩

←↩

←↩

D Nanotec DC motor datasheet

Appendix D

Nanotec DC motor datasheet

lxvii

Ø
7
3

0

-
0

.
0

5

37
±0.5

L=300 ±20 mm

1.52 8.5

A

Ø
0
.
0
7
5

A

0
.
0
5

A

0.075 A

Ø
1
4

0

-
0

.
0

1
3

13.5
±1

Ø
6
.
3
5

0

-
0

.
0

1
3

 86
±0.5

140
±0.5

 69.6
±0.2

Ø19.05
±0.1

3
4

±
0

.
5

Ø

8

125
±0.5

2

-
M

2

.
5

4

4

4

-

Ø

6

.

5

+

0

.

5

0

7

Fr

Fa

Preload Spring
A-Shaft B-Shaft

Max. Axial Force N

Max. Radial Force N

Axial Play

Fa

Fr

Fa = mm

Radial Play Fr =

N

N mm

60

220

0.08

0.02

4.5

4.5

ax

(a2 = mm)20

GENERAL MOTOR SPECIFICATION

Ambient Temperature

Max. Temperature Rise (at standstill - 2 phases energized)

Max. Ambient Humidity (non condensing)

Insulation Class

Insulation Resistance

Dielectric Strength (for 1 min - coil to case)

°C

°C

%

MΩ

V AC

80

85

B

100

500

...-10 50

WIRING DIAGRAM

Ye

Rd

Bk

Rd

Bk

Bu

Motor

8 Pol.

Colour

Gn

Wh

Hall

24 Impl.

per

Rev.

U

V

W

+5V

GND

H1

Function

H3

H2

AWM3135

AWG16

Lead Gauge

UL1332

AWG22

1

2

1

MOTOR SPECIFICATION

Rated Voltage

Current - Rated / Peak

Resistance Line to Line

Inductance Line to Line (1kHz)

Speed - No Load / Rated

Torque - Rated / Peak

Rotor Inertia

V DC

A

Ω

mH

Nm

Nm/A

W

±15%

±20%

x10

-6

No. of Poles

Rated Power

Torque Constant

rpm

kg m²

17.95 53.85

0.3

2.1 6.3

0.117

660

4500 3000

240

48

0.097

8

±10%

/

/

/

3

5

5

5
6 6

6

REV Rev. Text Name Date

06 change induc./resist.

07

change diameter Schneid_A
14.04.2022

Released 07

03000132

ISO 1302 ISO 2768 cK Weight:ISO 8015

State: Rev:

Date

Drawn

Name

Reviewed

04.12.2017
Import

Released

DB87L01-S

~4.0ISO 13715 kg

Page 1

10.04.2018
Schneid_A

10.04.2018
Schneid_A

A4

CONFIDENTIAL

←↩

←↩

E Nanotec encoder Datasheet

Appendix E

Nanotec encoder Datasheet

lxix

←↩

←↩

F Nanotec N5 2-1 motor controller quick guide

Appendix F

Nanotec N5 2-1 motor controller
quick guide

lxxi

N5-1-1, N5-2-1

Short instructions Version 1.0.0

Original: de

Nanotec Electronic GmbH & Co. KG Phone: +49 (0)89-900 686-0

Kapellenstraße 6 Fax: +49 (0)89-900 686-50

85622 Feldkirchen, Germany info@nanotec.de

Introduction

The N5 is a controller for the open loop or closed loop operation of stepper
motors and the closed loop operation of BLDC motors.

This document describes the installation and commissioning of the
controller.You can find the detailed documentation for the product on the
Nanotec website us.nanotec.com. The short instructions do not replace the
technical manual oft he product.

Copyright, marking and contact

Copyright © 2013 – 2018 Nanotec® Electronic GmbH & Co. KG. All rights
reserved.

Intended use

The N5 controller is used to control stepper and BLDC motors and is designed
for use under the approved Environmental conditions.

Any other use is considered unintended use.

Note

Changes or modification to the controller are not permitted.

Warranty and disclaimer

Nanotec produces component parts that are used in a wide range of industrial
applications. The selection and use of Nanotec products is the responsibility of
the system engineer and end user. Nanotec accepts no responsibility for the
integration of the products in the end system.

Under no circumstances may a Nanotec product be integrated as a safety
controller in a product or construction. All products containing a component part
manufactured by Nanotec must, upon delivery to the end user, be provided with
corresponding warning notices and instructions for safe use and safe operation.
All warning notices provided by Nanotec must be passed on directly to the end
user.

Our general terms and conditions apply: en.nanotec.com/service/general-
terms-and-conditions/.

Specialist staff

Only specialists may install, program and commission the device:

• Persons who have appropriate training and experience in work with motors
and their control.

• Persons who are familiar with and understand the content of this technical
manual.

• Persons who know the applicable regulations.

EU directives for product safety

The following EU directives were observed:

• RoHS directive (2011/65/EU, 2015/863/EU)
• EMC directive (2014/30/EU)

Other applicable regulations

In addition to this technical manual, the following regulations are to be observed:

• Accident-prevention regulations
• Local regulations on occupational safety

Safety and warning notices

Note

• Damage to the controller.
• Changing the wiring during operation may damage the controller.
• Only change the wiring in a de-energized state. After switching

off, wait until the capacitors have discharged.

Note

• Fault of the controller due to excitation voltage of the motor.
• Voltage peaks during operation may damage the controller.
• Install suitable circuits (e.g., charging capacitor) that reduce

voltage peaks.

Note

• There is no polarity reversal protection.
• Polarity reversal results in a short-circuit between supply voltage

and GND (earth) via the power diode.
• Install a line protection device (fuse) in the supply line.

Note

• The device contains components that are sensitive to
electrostatic discharge.

• Improper handling can damage the device.
• Observe the basic principles of ESD protection when handling

the device.

Technical details and pin assignment

 

Environmental conditions

 

Environmental condition Value

Protection class IP20

Ambient temperature (operation) -10 … +40°C

Air humidity (non-condensing) 0 … 95 %

Altitude of site above sea level (without drop in
performance)

1500 m

Ambient temperature (storage) -25 … +85°C

 
 

Electrical properties and technical data

Property Description / value

Operating voltage • 12 V-5% …72 V +4% DC for low-current version
with designation N5-1-1

• 12 V - 48 V +/-5% DC for the high-current
version with designation N5-2-1 and up to
hardware version w007

• 12 V -5% …57.4 V DC for the high-current
version with designation N5-2-1 and from
hardware version w007b

Rated current N5-1-1 (low current): 10 Arms

N5-2-1 (high current): 18 Arms

Peak current N5-1-1 (low current): 10 Arms

N5-2-1 (high current): 40 Arms for 5 seconds

Commutation Stepper motor – open loop, stepper motor – closed
loop with encoder, BLDC motor – closed loop with
Hall sensor, and BLDC motor – closed loop with
encoder

Operating modes Profile Position Mode, Profile Velocity Mode,
Profile Torque Mode, Velocity Mode, Homing
Mode, Interpolated Position Mode, Cyclic Sync
Position Mode, Cyclic Sync Velocity Mode, Cyclic
Synchronous Torque Mode, Clock-Direction Mode

Set value setting /
programming

EtherCAT, Ethernet (REST with the NanoIP user
interface), clock-direction, analog, NanoJ program

Interfaces EtherCAT, Ethernet

Property Description / value

Inputs • 4 inputs, 5 V/24 V (inputs 1 to 4) individually
switchable by means of software, factory setting:
5 V

• 2 inputs, wide range 5-24 V (inputs 5 and 6);
• 2 analog inputs -10 to +10 V or 0–20 mA

(switchable by means of software)

Outputs 2 outputs, (open drain, 0 switching, max. 24 V and
500 mA)

Encoder input 5 V or 24 V signal, differential or single-ended
(switchable by means of software), max. resolution
65536 increments per revolution (16-bit)

Protection circuit Overvoltage and undervoltage protection

Overtemperature protection (> 75° Celsius on the
power board)

Polarity reversal protection: In the event of a
polarity reversal, a short-circuit will occur between
supply voltage and GND over a power diode; a line
protection device (fuse) is therefore necessary in the
supply line. The values of the fuse are dependent on
the application and must be dimensioned

• greater than the maximum current consumption
of the controller

• less than the maximum current of the voltage
supply.

If the fuse value is very close to the maximum current
consumption of the controller, a medium / slow
tripping characteristics should be used.

Dimensioned drawings

Overtemperature protection

Above a temperature of approx. 75°C on the power board (corresponds to 65–
72°C outside on the cover), the power part of the controller switches off and the
error bit is set . After cooling down and confirming the error , the controller again
functions normally.

LED signaling

Power LED

Normal operation

In normal operation, the green power LED L1 flashes briefly once per second.

Case of an error

If an error has occurred, the LED turns red and signals an error number.

The following table shows the meaning of the error numbers.

Flash
rate

Error

1 General

2 Voltage

Flash
rate

Error

3 Temperature

4 Overcurrent

5 Controller

6 Watchdog-Reset

Note

For each error that occurs, a more precise error code is stored in
object 1003h.

Pin assignment

Pin 1 is marked with an asterisk "*".

X7

X5X1 X2 X3 X4 X6

L1

X6

X8X9
L3L2

Connector Function Pin assignment / description

X1 Ethernet Configuration interface

X2 Encoder and Hall
sensor

5 V / 24 V DC signal

Max. 1 MHz

Switching
thresholds:

5 V (factory
setting): On: >3.8
 V; Off: <0.26 V
24 V: On: >14.42 V;
Off: <4.16 V

1. GND
2. Vcc: +5 V (factory setting) /24 V DC

output, switchable with object 2059h

3. A
4. B
5. A\
6. B\
7. I
8. I\
9. Hall 1
10. Hall 2
11. Hall 3
12. Shielding

X3 Inputs and outputs

Switching thresholds
for digital inputs 1
- 4:

5 V (factory
setting): On: >3.8
 V; Off: <0.26 V
24 V: On: >14.42 V;
Off: <4.16 V
Switching thresholds
for digital inputs 5
- 6:

On: >3.25 V; Off: <2
 V

1. GND
2. Digital input 1; 5 V / 24 V Signal,

switchable with object 3240h

3. Digital input 2; 5 V / 24 V Signal,
switchable with object 3240h

4. Digital input 3: 5 V / 24 V, switchable
with object 3240h, max. 1 MHz;
direction input in clock/direction mode

5. Digital input 4: 5 V / 24 V, switchable
with object 3240h, max. 1 MHz; clock
input in clock/direction mode

6. Digital input 5; 5…24 V signal, not
switchable

7. Digital input 6; 5…24 V signal, not
switchable

8. Analog input 1: 10 Bit, 0-10 V oder
0-20 mA, switchable with object
3221h

9. Analog input 1: 10 Bit, 0-10 V oder
0-20 mA, switchable with object
3221h

10. Digital output 1: Open drain, max 24
 V/500 mA

11. Digital output 2: Open drain, max 24
 V/500 mA

12. Shielding

X4 Brake

24V Brakes have
to be connected
using an appropriate
circuit if +UB>24 V!

1. Brake+: internally connected to +UB
2. Brake -: PWM-controlled open-drain

output, max 1.5 A

←↩

Connector Function Pin assignment / description

X5 Motor 1. Shielding
2. A (Stepper)

U (BLDC)
3. A\ (Stepper)

V (BLDC)
4. B (Stepper)

W (BLDC)
5. B\ (Stepper)
6. Shielding

X6 Voltage supply

Permissible
operating voltage:

See Electrical
properties and
technical data

1. Shielding
2. +UB
3. GND

X7 EtherCAT IN

X8 EtherCAT OUT

X9 Supply for Encoder/
Hall sensor, external
logic supply

To be connected if
24V encoder is used
or logic supply of the
controller desired.

1. +UB Logic / Encoder: +24 V
2. GND

Note

• EMC: For a DC power supply line longer than 30 m or when using
the motor on a DC bus, additional interference-suppression and
protection measures are necessary.

• An EMI filter is to be inserted in the DC supply line as close as
possible to the controller/motor.

• Long data or supply lines are to be routed through ferrites.

Commissioning

The Plug & Drive Studio software offers you an option for performing the
configuration and adapting the controller to the connected motor. You can
find further information in document Plug & Drive Studio: Quick Start Guide at
us.nanotec.com.

Observe the following note:

Note

• EMC: Current-carrying cables – particularly around supply and
motor cables – produce electromagnetic alternating fields.

• These can interfere with the motor and other devices. Nanotec
recommends the following measures:

• Use shielded cables and earth the cable shielding on both ends
over a short distance.

• Use cables with cores in twisted pairs.
• Keep power supply and motor cables as short as possible.
• Earth motor housing with large contact area over a short

distance.
• Lay supply, motor and control cables physically separate from

one another.

Configuration via Ethernet

Establishing connection with the controller

Setting the IP address

Each of the connected devices (controller and communication partners) in an
Ethernet network or with a point-to-point Ethernet connection requires a unique
IP address. This can either be obtained automatically (DHCP) or generated
(Auto-IP) or assigned statically. In the following, "communication partner" refers
to a PC or laptop.

You can integrate the controller in an existing Ethernet network. To do this, you
only need to establish the physical connection with a standard Ethernet cable.
Provided DHCP and UPnP are activated on the controller (factory setting), the
controller is also automatically detected on the network and can immediately be
operated via a PC located on the network.

Setting DHCP/Auto-IP

IP addresses can be obtained dynamically in a network from a DHCP server
or, for example, in the case of a PC direct connection, can be automatically
self-generated without DHCP by the two communication devices (e.g., PC
and controller). DHCP and UPnP are preset in the controller at the factory for
automatically obtaining an IP address from a DHPC server or for automatic IP
address generation. To establish the connection to the controller, it may only

be necessary to make a few settings on the communication partner (e.g., PC or
laptop). Settings using the Windows 7 operating system as an example:

1. Press the Windows Start button and select Control Panel.
2. Select Network and Sharing Center.
3. Select Change adapter settings.
4. A list of the available network adapters is displayed. Open the properties

on the adapter to which the controller is connected (e.g., click with the right
mouse button).

5. Select Internet Protocol version 4 (TCP/IPv4) and press the Properties
button.

6. Select the Obtain an IP address automatically option.
7. Confirm acceptance of the entries with the OK button.

For the communication partner to automatically detect the controller in the
entire network or for a point-to-point connection (PC direct connection), network
discovery must be switched on and the UPnP service must be started on the
communication partner (e.g., PC or laptop). No further settings are necessary on
the controller. Settings using the Windows 7 operating system as an example:

1. Switching on network discovery:

a. Press the Windows Start button and select Control Panel.
b. Select Network and Sharing Center.
c. Select Change advanced sharing settings.
d. Open the Public section.
e. Under Network discovery, select the Turn on network discovery option.

2. Activating the UPnP service:

a. Press the Windows Start button and then right-click on Computer and
select Manage.

b. Open the Services and Applications node and select Services.
c. Double-click the UPnP device host service to open.
d. As Startup type, select Automatic and press the Start button.
e. Confirm acceptance of the entries with the OK button.

Configuration via EtherCAT

Software connection

Tip

The following description assumes that an EtherCAT master from
Beckhoff with the TwinCAT software is used.

1. Connect the EtherCAT master to the controller, see Technical details and
pin assignment.

2. Supply the controller with voltage.
3. Obtain the ESI file that corresponds exactly to the used firmware version

from the following sources:

a. Via the Nanotec homepage us.nanotec.com. The current version of
the firmware and the ESI file can be found in the Plug & Drive Studio
download folder.

b. From Nanotec support.
4. Close the TwinCAT system manager if it is open.
5. Then copy the ESI file to the TwinCAT subfolder:

• If you use TwinCAT version 2, use folder <TWINCAT INSTALL DIR>/
Io/EtherCAT

• If you use TwinCAT version 3, use folder <TWINCAT INSTALL
DIR>/3.1/Config/Io/EtherCAT

Example

Example: If TwinCAT 2 is installed on your computer under
path C:\TwinCAT\, copy the ESI file to path C:\TwinCAT\Io
\EtherCAT\.

6. Open the ESI file with an editor. Find the AddInfo parameter. Enter:

• the value "2" if you would like to integrate the controller as Box (factory
settings)

• the value "0" if you would like to integrate the controller as NC-Axis

Save and close the file.
7. Now restart the TwinCAT system manager. The ESI files are read in again

following a restart.

Note

The cycle time of the sync signal must always be set to 1 ms. You
can set the bus cycle time (and, consequently, the interpolation time
in 60C2h) to integer multiples of 1 ms.

Setting the motor data

Prior to commissioning, the motor controller requires a number of values from
the motor data sheet.

• Number of pole pairs: Object 2030h:00h (pole pair count) The number of
motor pole pairs is to be entered here. With a stepper motor, the number of
pole pairs is calculated using the step angle, e.g., 1.8° = 50 pole pairs, 0.9°
= 100 pole pairs (see step angle in motor data sheet). With BLDC motors,
the number of pole pairs is specified directly in the motor data sheet.

• Setting the motor current / motor type:

- Stepper motor only: Object 2031h:00h: Rated current (bipolar) in mA
(see motor data sheet)

‣ Object 2031h:00h: Rated current (bipolar) in mA (see motor data
sheet)

‣ Object 3202h:00h (Motor Drive Submode Select): Defines motor
type stepper motor, activates current reduction on motor standstill:
0000008h.

‣ Object 2037h (Open Loop Current Reduction Value/factor): the
root mean square is specified to which the rated current is to be
reduced if current reduction is activated in Open Loop.

- BLDC motor only:

‣ Object 2031h:00h Peak current in mA (see motor data sheet)

‣ Object 203Bh:01h Rated current in mA (see motor data sheet)

‣ Object 203Bh:02h Maximum duration of the peak current in ms
(for initial commissioning, a value of 100 ms is recommended; this
value is to be adapted later to the specific application).

‣ Object 3202h:00h (Motor Drive Submode Select): Defines motor
type BLDC: 00000041h

• Motor with encoder: Object 20592059h:00h (Encoder Configuration):
Depending on the encoder version, one of the following values is to be
entered (see motor data sheet):

- Supply voltage 5V, differential: 00000000h
- Supply voltage 24V, differential: 00000001h
- Supply voltage 5V, single-ended: 00000002h
- Supply voltage 24V, single-ended: 00000003h

• Motor with brake: Object 3202h:00h (Motor Drive Submode Select): The
brake control is activated for the initial commissioning. Depending on the
specific application, this configuration can be deactivated later if necessary.
One of the following values is to be entered depending on the motor type:

- Stepper motor, brake control (and current reduction while at
standstill) activated: 0000000Ch

- BLDC motor, brake control activated: 00000044h

Auto setup

To determine a number of parameters related to the motor and the connected
sensors (encoders/Hall sensors), an auto setup is performed. Closed Loop
operation requires a successfully completed auto setup.

Note

• Note the following prerequisites for performing the auto setup:
• The motor must be load-free.
• The motor must not be touched.
• The motor must be able to turn freely in any direction.
• No NanoJ programs may be running (object 2300h:00h bit 0 = "0",

see 2300h NanoJ Control).

Tip

As long as the motor connected to the controller or the sensors for
feedback (encoders/Hall sensors) are not changed, auto setup is only
to be performed once during initial commissioning.

Execution

1. To preselect the auto setup operating mode, enter the value "-2" (="FEh") in
object 6060h:00h.
The power state machine must now switch to the Operation enabled state.

2. Start auto setup by setting bit 4 OMS in object 6040h:00h (controlword).
While the auto setup is running, the following tests and measurements are
performed in succession:

To determine the values, the direction of the measurement method is
reversed and edge detection re-evaluated.

Value 1 in bit 12 OMS in object 6041h:00h (statusword) indicates that the
auto setup was completely executed and ended. In addition, bit 10 TARG
in object 6041h:00h can be used to query whether (= "1") or not (= "0") an
encoder index was found.

Master/Software Motion Controller

write 6060h:00h = FEh

read 6061h:00h (= FEh?)

write 6040h:00h = 0006h

read 6040h:00h (Bit 9, 5 und 0 = 1?)

write 6040h:00h = 0007h

read 6041h:00h (Bit 9, 5, 4, 1, 0 = 1?)

write 6040h:00h = 000Fh

read 6041h:00h (Bit 9, 5, 4, 2, 1, 0 = 1?)

write 6040h:00h = 001Fh

Wait for auto-setup
to finish.

read 6041h:00h (Bit 12, 9, 5, 4, 2, 1, 0 =
1?)

write 6040h:00h = 0000h

CAUTION

!
• After executing auto setup mode, the internal coordinate

system is no longer valid.
• Homing alone does not suffice! If the controller is not

restarted, unexpected reactions may result.
• Restart the device after an auto setup!

Test run

As an example, the Velocity operating mode is used.

The values are transferred from your EtherCAT master or to the controller. After
every transfer, the master should use the status objects of the controller to
ensure successful parameterization.

1. Select the Velocity mode by setting object 6060h (Modes Of Operation) to
the value "2".

2. Write the desired speed in 6042h.

3. Switch the power state machine to the Operation enabled state.

The following sequence starts Velocity mode; the motor turns at 200 rpm.

 Master Controller

write 6060h:00h = 02h

read 6061h:00h (= 02h?)

write 6040h:00h = 0006h

read 6041h:00h (Bit 9, 5 und 0 = 1?)

write 6040h:00h = 0007h

read 6041h:00h (Bit 9, 5, 4, 1, 0 = 1?)

write 6040h:00h = 000Fh

read 6041h:00h (Bit 9, 5, 4, 2, 1, 0 = 1?)

The controller is now running
in „Velocity“ mode.

read 6040h:00h = 0000h

write 6042h:00h = 00C8h

4. To stop the motor, set controlword (6040h) to "0".

←↩

←↩

G Source code, field of view software

Appendix G

Source code, field of view soft-
ware

lxxiv

←↩

G Source code, field of view software

� �
1 """

2 README

3

4 This project is developed to be used for proof-of-concept in my bachelor’s thesis.

5 A pallet is represented by an array of 3D points.

6 A camera is represented by a single point in space facing a specified direction along ←↩
with a specified field of view.

7 The resulting 3D-plot shows green and red points. Green means seen, red means unseen.

8 In fov check-mode the resulting plot will show points within the camera’s FOV as blue, ←↩
regardless if it can actually

9 be seen or not. This mode is used to verify camera placements where the objective is to←↩
see as much of the points as

10 possible.

11 """

12

13 import time

14 import numpy as np

15 import matplotlib . pyplot as plt

16 import multiprocessing

17

18

19 class Queue :
20 def __init__ (self) :
21 self . queue = []
22

23 # Check to see whether or not queue is empty

24 def isEmpty (self) −> bool :
25 return True if len (self . queue) == 0 else False

26

27 # Return the first element of the queue

28 def front (self) :
29 return self . queue [0]
30

31 # Return the last element of the queue

32 def rear (self) :
33 return self . queue [−1]
34

35 # Return the value of and remove the element passed to the method

36 def pop (self , value) :
37 return self . queue . remove (value)
38

39 # Return length of queue

40 def length (self) −> int :
41 return len (self . queue)
42

43 # Return a copy of the queue

44 def copy (self) :
45 return self . queue
46

47 # Class includes all specification for camera and methods used for FOV calculations

48 class Camera :
49 def __init__ (self , x , y , z , fov , focus , range) :
50 self . x = x

51 self . y = y

52 self . z = z

53 self . fov = fov

54 self . focus = focus

55 self . min_range = range [0]
56 self . max_range = range [1]
57 self . checked_points = []
58

59 # Return list of points not seen by the camera

60 def check_fov (self , point , possible_obstructions , planar_equations , step , tC , tP) :
61 x , y , z = self . calculate_coordinates (point , step)
62 confirmed_obstructions = self . check_for_obstructions (planar_equations , ←↩

possible_obstructions , x , y , z , point , step , tC , tP)
63

64 return confirmed_obstructions

65

66 # Return array of coordinates for the ray between camera and point

67 def calculate_coordinates (self , point , step) :
68 x = np . linspace (self . x , point [0] , step , endpoint=False)
69 y = np . linspace (self . y , point [1] , step , endpoint=False)

lxxv

←↩

G Source code, field of view software

70 z = np . linspace (self . z , point [2] , step , endpoint=False)
71

72 return x , y , z

73

74 # Checks if ray passes through any surface

75 @staticmethod

76 def check_for_obstructions (equations , surfaces , x , y , z , point ,
77 step , threshold_crossing , threshold_point) :
78 for j in range (step) :
79 for k , l in enumerate (equations) :
80 planar_result = l [0] * (x [j] − l [1]) + l [2] * (y [j] − l [3]) + l [4] * (z←↩

[j] − l [5])
81 crossing_plane = abs (planar_result) < threshold_crossing

82 if crossing_plane :
83 # Calculates coordinates of margin-box around surface

84 corners_x = (np . min ([surfaces [k] [0] [0] , surfaces [k] [1] [0] ,
85 surfaces [k] [2] [0] , surfaces [k] [3] [0]]) ,
86 np . max ([surfaces [k] [0] [0] , surfaces [k] [1] [0] ,
87 surfaces [k] [2] [0] , surfaces [k] [3] [0]]))
88 corners_y = (np . min ([surfaces [k] [0] [1] , surfaces [k] [1] [1] ,
89 surfaces [k] [2] [1] , surfaces [k] [3] [1]]) ,
90 np . max ([surfaces [k] [0] [1] , surfaces [k] [1] [1] ,
91 surfaces [k] [2] [1] , surfaces [k] [3] [1]]))
92 corners_z = (np . min ([surfaces [k] [0] [2] , surfaces [k] [1] [2] ,
93 surfaces [k] [2] [2] , surfaces [k] [3] [2]]) ,
94 np . max ([surfaces [k] [0] [2] , surfaces [k] [1] [2] ,
95 surfaces [k] [2] [2] , surfaces [k] [3] [2]]))
96 # Checks whether or not ray passes through surface and that the ←↩

surface is not part of the same one

97 # as the point itself

98 confirmed_obstruction = (corners_x [0] − threshold_point) <= x [j] <=←↩
(corners_x [1] + threshold_point) and \

99 (corners_y [0] − threshold_point) <= y [j] <= (corners_y [1] ←↩
+ threshold_point) and \

100 (corners_z [0] − threshold_point) <= z [j] <= (corners_z [1] ←↩
+ threshold_point) and \

101 not (point [0] − threshold_point <= x [j] <= point [0] + ←↩
threshold_point and

102 point [1] − threshold_point <= y [j] <= point [1] + ←↩
threshold_point and

103 point [2] − threshold_point <= z [j] <= point [2] + ←↩
threshold_point)

104

105 if confirmed_obstruction :
106 return True

107

108 return False

109

110 # Calculates field of view vectors and determines which points are within the field←↩
of view

111 def check_points_in_fov (self , points) :
112 focus_vector = self . get_focus_vector ()
113 focus_axis_1 = self . get_focus_axis_1 (focus_vector)
114 focus_axis_2 = get_focus_axis_2 (focus_vector , focus_axis_1)
115 fov_vectors = get_fov_vectors (focus_axis_1 , focus_axis_2 , focus_vector , self .←↩

fov)
116 unit_vectors = []
117 for i in range (len (fov_vectors) −1) :
118 normal_vector = np . cross (fov_vectors [i] , fov_vectors [i+ 1])
119 unit_vector = normal_vector / (normal_vector **2) . sum () ** 0 .5
120 unit_vectors . append (unit_vector)
121 normal_vector = np . cross (fov_vectors [− 1] , fov_vectors [0])
122 unit_vector = normal_vector / (normal_vector ** 2) . sum () ** 0 . 5
123 unit_vectors . append (unit_vector)
124

125 points_outside_fov = []
126 for i in points :
127 dist = np . sqrt ((i [0] − self . x) ** 2 + (i [1] − self . y) **2 + (i [2] − self . z) ←↩

** 2)
128 if self . min_range <= dist <= self . max_range :
129 for j in unit_vectors :
130 planar_result = np . dot (np . array ([i [0] , i [1] , i [2]]) − np . array ([←↩

self . x , self . y , self . z]) , j)
131 if planar_result > 0 :

lxxvi

←↩

G Source code, field of view software

132 points_outside_fov . append (i)
133 break

134 else :
135 pass

136 else :
137 points_outside_fov . append (i)
138

139 possible_points = []
140 for i in points :
141 if i not in points_outside_fov :
142 # Points that are not outside of field of view are within

143 possible_points . append (i)
144

145 return possible_points , points_outside_fov , unit_vectors

146

147 # Return vector between camera and focus point

148 def get_focus_vector (self) :
149 vector = np . array ([self . focus [0] − self . x , self . focus [1] − self . y , self . focus [2] −←↩

self . z])
150 unit_vector = vector / np . linalg . norm (vector)
151

152 return unit_vector

153

154 # Return vector perpendicular to the focus vector, along the XY-plane

155 @staticmethod

156 def get_focus_axis_1 (focus_vector) :
157 spread_radians = np . pi
158 rotational_matrix = [
159 [np . cos (spread_radians / 2) , −np . sin (spread_radians / 2) , 0] ,
160 [np . sin (spread_radians / 2) , np . cos (spread_radians / 2) , 0] ,
161 [0 , 0 , 0]
162]
163

164 vector = np . matmul (rotational_matrix , focus_vector)
165

166 if (vector **2) . sum () ** 0 .5 == 0 and focus_vector [2] == 1 :
167 return np . array ([− 1 , 0 , 0])
168

169 elif (vector **2) . sum () ** 0 .5 == 0 and focus_vector [2] == −1:
170 return np . array ([1 , 0 , 0])
171

172 else :
173 return vector / (vector **2) . sum () ** 0 .5
174

175

176 # Class used to represent pallets as objects

177 class Pallet :
178 def __init__ (self , faces) :
179 self . faces = faces

180 self . equations = get_planar_equations (faces)
181

182

183 # Shows points as seen or not seen in 3D-plot

184 def show_plots (seen_points , obstructed_points , cameras , unit_vectors=None , color=None) :
185 X_seen , Y_seen , Z_seen = [] , [] , []
186 for j in seen_points :
187 X_seen . append (j [0])
188 Y_seen . append (j [1])
189 Z_seen . append (j [2])
190

191 X_obs , Y_obs , Z_obs = [] , [] , []
192 for j in obstructed_points :
193 X_obs . append (j [0])
194 Y_obs . append (j [1])
195 Z_obs . append (j [2])
196

197 plt . figure ()
198 ax = plt . axes (projection=’3d’)
199 plt . xlim (−40 , 100)
200 plt . ylim (−40 , 100)
201 ax . set_zlim (−50 , 50)
202 ax . set_xlabel ("x")
203 ax . set_ylabel ("y")
204 ax . set_zlabel ("z")

lxxvii

←↩

G Source code, field of view software

205 # Add points to plot

206 if color is None :
207 ax . scatter (X_seen , Y_seen , Z_seen , color="green" , marker=".")
208 else :
209 ax . scatter (X_seen , Y_seen , Z_seen , color=color , marker=".")
210 ax . scatter (X_obs , Y_obs , Z_obs , color="red" , marker=".")
211 # Add field of view vectors to the plot

212 for i in cameras :
213 ax . scatter (i . x , i . y , i . z , color="black")
214 fov_vectors = get_camera_fov (i)
215 ax . plot ([i . x , i . x + fov_vectors [0] [0] * 7 5] , [i . y , i . y + fov_vectors [0] [1] * ←↩

7 5] ,
216 [i . z , i . z + fov_vectors [0] [2] * 7 5] , color="blue")
217 ax . plot ([i . x , i . x + fov_vectors [1] [0] * 7 5] , [i . y , i . y + fov_vectors [1] [1] * ←↩

7 5] ,
218 [i . z , i . z + fov_vectors [1] [2] * 7 5] , color="blue")
219 ax . plot ([i . x , i . x + fov_vectors [2] [0] * 7 5] , [i . y , i . y + fov_vectors [2] [1] * ←↩

7 5] ,
220 [i . z , i . z + fov_vectors [2] [2] * 7 5] , color="blue")
221 ax . plot ([i . x , i . x + fov_vectors [3] [0] * 7 5] , [i . y , i . y + fov_vectors [3] [1] * ←↩

7 5] ,
222 [i . z , i . z + fov_vectors [3] [2] * 7 5] , color="blue")
223 if unit_vectors is not None :
224 for j in unit_vectors :
225 ax . plot ([i . x , i . x + j [0] * 1 0] , [i . y , i . y + j [1] * 1 0] ,
226 [i . z , i . z + j [2] * 1 0] , color="orange")
227

228 ax . view_init (3 0 , 220)
229 plt . show ()
230

231

232 # Calculate planar equations for each of the surfaces of the pallet

233 def get_planar_equations (surfaces) :
234 equations = []
235 for j in surfaces :
236 vector_1 = [j [1] [0] − j [0] [0] , j [1] [1] − j [0] [1] , j [1] [2] − j [0] [2]]
237 vector_2 = [j [2] [0] − j [0] [0] , j [2] [1] − j [0] [1] , j [2] [2] − j [0] [2]]
238 normal = np . cross (vector_1 , vector_2)
239 normal_hat = normal / (normal ** 2) . sum () ** 0 . 5
240 equations . append (get_plane (j [0] , normal_hat))
241

242 return equations

243

244

245 # Return the vectors representing the field of view of the camera

246 def get_camera_fov (camera) :
247 focus_vector = camera . get_focus_vector ()
248 focus_axis_1 = camera . get_focus_axis_1 (focus_vector)
249 focus_axis_2 = get_focus_axis_2 (focus_vector , focus_axis_1)
250 fov_vectors = get_fov_vectors (focus_axis_1 , focus_axis_2 , focus_vector , camera . fov)
251

252 return fov_vectors

253

254 # Return components of planar equation as individual elements

255 def get_plane (point , normal) :
256 return normal [0] , point [0] , normal [1] , point [1] , normal [2] , point [2]
257

258

259 # Return second focus axis perpendicular to the first and the focus vector

260 def get_focus_axis_2 (focus_vector , focus_axis) :
261 return np . cross (focus_vector , focus_axis)
262

263

264 # Return field of view vectors for each camera as a list

265 def get_fov_vectors (vector_1 , vector_2 , focus_vector , fov) :
266 left_turn_radians = fov [0] * np . pi / 180 / 2
267 top_turn_radians = fov [1] * np . pi / 180 / 2
268

269 leftwards = np . tan (left_turn_radians)
270 rightwards = −leftwards
271 upwards = np . tan (top_turn_radians)
272 downwards = −upwards
273

274 vector_top_left = leftwards * vector_1 + upwards * vector_2 + focus_vector

lxxviii

←↩

G Source code, field of view software

275 vector_bottom_left = leftwards * vector_1 + downwards * vector_2 + focus_vector

276 vector_bottom_right = rightwards * vector_1 + downwards * vector_2 + focus_vector

277 vector_top_right = rightwards * vector_1 + upwards * vector_2 + focus_vector

278

279 return [vector_top_left , vector_bottom_left , vector_bottom_right , vector_top_right]
280

281

282

283 # Return list of seen points based on camera specifications and pallet surfaces

284 def check_fov (camera , current_camera , pallet , remaining_points , steps , threshold_point ,←↩
threshold_surface , seen_points = [] , queue = [] , multi_processing=False) :

285 # If the setup specifies not using multi processing

286 if not multi_processing :
287 camera_progress = 0
288 for j in remaining_points :
289 point_obstructed = camera . check_fov (j , pallet . faces , pallet . equations , ←↩

steps , threshold_surface , threshold_point)
290 if point_obstructed :
291 pass

292 else :
293 seen_points . append (j)
294 camera_progress += 1
295 print ("Camera " + str (current_camera) + " " + str (
296 round (camera_progress / len (remaining_points) * 100 , 2)) + "% done")
297

298 return seen_points

299 # If setup specifies using multi processing

300 else :
301 while len (queue) > 0 :
302 if queue [0] not in camera . checked_points :
303 current_point = queue . pop (0)
304 camera . checked_points . append (current_point)
305 elif len (queue) > 1 :
306 queue_copy = queue

307 pos = 1
308 rounds = 0
309 checked = True

310 while checked :
311 if pos < len (queue_copy) :
312 if queue_copy [pos] not in camera . checked_points :
313 current_point = queue_copy [pos]
314 try :
315 queue . remove (current_point)
316 except ValueError :
317 pass

318 else :
319 camera . checked_points . append (current_point)
320 checked = False

321 else :
322 pos += 1
323 # When three passes of the remaining points do not return any ←↩

unchecked points

324 elif rounds == 3 :
325 print (f"Camera {current_camera} finished")
326 return

327

328 else :
329 pos = 1
330 rounds += 1
331 print (f"Camera {current_camera} finished {rounds} rounds ←↩

without new points")
332 time . sleep (2)
333 # If no points remain unseen

334 else :
335 print (f"Camera {current_camera} finished")
336 return

337 # Print remaining number of unseen points

338 print (len (queue))
339 point_obstructed = camera . check_fov (current_point , pallet . faces , pallet .←↩

equations , steps , threshold_surface , threshold_point)
340

341 if point_obstructed :
342 queue . append (current_point)
343 else :

lxxix

←↩

G Source code, field of view software

344 seen_points . append (current_point)
345

346

347 # Import .txt-file and return surfaces and points as arrays

348 def read_file (file , additional_points) :
349 with open (file) as palletFile :
350 pallet_surface_text = palletFile . read ()
351 pallet_surface_text = pallet_surface_text . replace ("[" , "")
352 pallet_surface_text = pallet_surface_text . replace ("]" , "")
353 pallet_surface_text = pallet_surface_text . replace (" " , "")
354 pallet_surface_text = pallet_surface_text . split (",")
355 pallet_surface_num = []
356 initial_points = []
357 for i in range (int (len (pallet_surface_text) / 1 2 . 0)) :
358 pallet_surface_temp = []
359 # Every four points represent a surface

360 for j in range (4) :
361 initial_points . append ([float (pallet_surface_text [i * 12 + j * 3]) ,
362 float (pallet_surface_text [i * 12 + 1 + j * 3]) ,
363 float (pallet_surface_text [i * 12 + 2 + j * 3])←↩

])
364 pallet_surface_temp . append ([float (pallet_surface_text [i * 12 + j * 3]) ,
365 float (pallet_surface_text [i * 12 + 1 + j * ←↩

3]) ,
366 float (pallet_surface_text [i * 12 + 2 + j * ←↩

3])])
367 pallet_surface_num . append (pallet_surface_temp)
368 # Removes duplications of points

369 for j in initial_points :
370 if initial_points . count (j) > 1 :
371 initial_points . remove (j)
372 # Add specified amount of points along sides of surfaces

373 for j in pallet_surface_num :
374 if j [0] [0] != j [1] [0] :
375 for k in np . linspace (j [0] [0] , j [1] [0] , additional_points , endpoint=←↩

False) :
376 initial_points . append ([k , j [0] [1] , j [0] [2]])
377 for k in np . linspace (j [2] [0] , j [3] [0] , additional_points , endpoint=←↩

False) :
378 initial_points . append ([k , j [2] [1] , j [2] [2]])
379

380 if j [1] [1] != j [2] [1] :
381 for k in np . linspace (j [1] [1] , j [2] [1] , additional_points , endpoint=←↩

False) :
382 initial_points . append ([j [1] [0] , k , j [1] [2]])
383 for k in np . linspace (j [3] [1] , j [0] [1] , additional_points , endpoint=←↩

False) :
384 initial_points . append ([j [3] [0] , k , j [3] [2]])
385

386 if j [1] [2] != j [2] [2] :
387 for k in np . linspace (j [1] [2] , j [2] [2] , additional_points , endpoint=←↩

False) :
388 initial_points . append ([j [1] [0] , j [1] [1] , k])
389 for k in np . linspace (j [3] [2] , j [0] [2] , additional_points , endpoint=←↩

False) :
390 initial_points . append ([j [3] [0] , j [3] [1] , k])
391

392 if j [0] [1] != j [1] [1] :
393 for k in np . linspace (j [0] [1] , j [1] [1] , additional_points , endpoint=←↩

False) :
394 initial_points . append ([j [0] [0] , k , j [0] [2]])
395 for k in np . linspace (j [2] [1] , j [3] [1] , additional_points , endpoint=←↩

False) :
396 initial_points . append ([j [3] [0] , k , j [2] [2]])
397

398 if j [1] [0] != j [2] [0] :
399 for k in np . linspace (j [1] [0] , j [2] [0] , additional_points , endpoint=←↩

False) :
400 initial_points . append ([k , j [1] [1] , j [1] [2]])
401 for k in np . linspace (j [3] [0] , j [0] [0] , additional_points , endpoint=←↩

False) :
402 initial_points . append ([k , j [3] [1] , j [3] [2]])
403

404 if j [1] [2] != j [2] [2] :

lxxx

←↩

G Source code, field of view software

405 for k in np . linspace (j [1] [2] , j [2] [2] , additional_points , endpoint=←↩
False) :

406 initial_points . append ([j [1] [0] , j [1] [1] , k])
407 for k in np . linspace (j [3] [2] , j [0] [2] , additional_points , endpoint=←↩

False) :
408 initial_points . append ([j [3] [0] , j [3] [1] , k])
409

410 if j [0] [2] != j [1] [2] :
411 for k in np . linspace (j [0] [2] , j [1] [2] , additional_points , endpoint=←↩

False) :
412 initial_points . append ([j [0] [0] , j [0] [1] , k])
413 for k in np . linspace (j [2] [0] , j [3] [0] , additional_points , endpoint=←↩

False) :
414 initial_points . append ([[j [2] [0]] , j [2] [1] , k])
415

416 if j [1] [0] != j [2] [0] :
417 for k in np . linspace (j [1] [0] , j [2] [0] , additional_points , endpoint=←↩

False) :
418 initial_points . append ([k , j [1] [1] , j [1] [2]])
419 for k in np . linspace (j [3] [0] , j [0] [0] , additional_points , endpoint=←↩

False) :
420 initial_points . append ([k , j [3] [1] , j [3] [2]])
421

422 if j [1] [1] != j [2] [1] :
423 for k in np . linspace (j [1] [1] , j [2] [1] , additional_points , endpoint=←↩

False) :
424 initial_points . append ([j [1] [0] , k , j [1] [2]])
425 for k in np . linspace (j [3] [1] , j [0] [1] , additional_points , endpoint=←↩

False) :
426 initial_points . append ([j [3] [0] , k , j [3] [2]])
427

428 for j in initial_points :
429 if initial_points . count (j) > 1 :
430 initial_points . remove (j)
431

432 return pallet_surface_num , initial_points

433

434

435 # Setup and main program

436 def main () :
437 debug = False # Debug mode

438 fov_check = True # FOV check mode

439 use_multi_processing = False # Multi processing mode

440 steps = 5000 # Number of discretization points between camera and point

441 additional_points = 20 # Additional points along each surface

442 threshold_surface = 1 / steps*20 # Margins of the planar equations

443 threshold_point = 0 . 0 2 # Margin for deciding whether point is part of a crossed ←↩
surface

444 start_time = time . time ()
445 pallet_surface_num , initial_points = read_file ("euro.txt" , additional_points)
446 cameras = []
447 # Mode used to check if camera FOV is correct

448 if debug :
449 cameras . append (Camera (−10 , −10 , 0 , (1 , 1) , (0 , 0 , 100) , (0 , 150)))
450 p1 = Pallet (pallet_surface_num)
451

452 points_in_fov , not_possible_points , unit_vectors = cameras [0] .←↩
check_points_in_fov (initial_points)

453 seen_points_camera = check_fov (cameras [0] , 1 , p1 , points_in_fov , steps , ←↩
threshold_point , threshold_surface)

454

455 obstructed_points = []
456 for i in initial_points :
457 if i not in seen_points_camera :
458 obstructed_points . append (i)
459 show_plots (points_in_fov , not_possible_points , cameras , unit_vectors)
460 # Mode used to check which points are within field of view. Does not check for ←↩

obstructions

461 elif fov_check :
462 cameras . append (Camera (−80 , −60 , 0 , (3 3 , 25) , (4 0 , 60 , 10) , (5 0 , 200)))
463 points_in_fov , not_possible_points , unit_vectors = cameras [0] .←↩

check_points_in_fov (initial_points)
464 show_plots (points_in_fov , not_possible_points , cameras , unit_vectors , color="←↩

blue")

lxxxi

←↩

G Source code, field of view software

465 # Checks all point to see whether or not they are seen by any of the cameras

466 else :
467 cameras . append (Camera (−142 , −122 , −104 , (3 9 , 25) , (4 0 , 40 , 5) , (1 2 0 , 300)))
468 cameras . append (Camera (−142 , −122 , 238 , (3 9 , 25) , (4 0 , 40 , 5) , (1 2 0 , 300)))
469 cameras . append (Camera (2 2 2 , 242 , −104 , (3 9 , 25) , (4 0 , 40 , 5) , (1 2 0 , 300)))
470

471 p1 = Pallet (pallet_surface_num)
472 # Checks seen points using multi processing

473 if use_multi_processing :
474 manager = multiprocessing . Manager ()
475 seen_points = manager . list ()
476 queue = manager . list ()
477

478 for i in initial_points :
479 queue . append (i)
480 process_pool = []
481 for i , c in enumerate (cameras) :
482 remaining_points , obstructed_points , unit_vectors = c .←↩

check_points_in_fov (initial_points)
483 process_pool . append (multiprocessing . Process (target=check_fov , args=(c , ←↩

i+1 , p1 , remaining_points , steps , threshold_point , threshold_surface , seen_points ,←↩
queue , True)))

484 process_pool [i] . start ()
485 for process in process_pool :
486 process . join ()
487 # Checks seen points one camera at a time

488 else :
489 seen_points = []
490 remaining_points = initial_points

491 for i , c in enumerate (cameras) :
492 points_in_fov , _ , _ = c . check_points_in_fov (remaining_points)
493 seen_points_camera = check_fov (c , i+1 , p1 , points_in_fov , steps , ←↩

threshold_point , threshold_surface)
494 remaining_points = []
495 for j in seen_points_camera :
496 seen_points . append (j)
497 for j in initial_points :
498 if j not in seen_points :
499 remaining_points . append (j)
500

501 obstructed_points = []
502 # All unseen points is added to seperate list

503 for i in initial_points :
504 if i not in seen_points :
505 obstructed_points . append (i)
506

507 print ("Total time used:" , time . time () − start_time)
508 # Displays results in 3D-plot

509 try :
510 show_plots (seen_points , obstructed_points , cameras)
511 except KeyboardInterrupt :
512 pass

513

514

515 if __name__ == "__main__" :
516 main ()� �

lxxxii

←↩

H Source code, Webots simulator

Appendix H

Source code, Webots simulator

lxxxiii

←↩

H Source code, Webots simulator

Source code, Point cloud acquisition� �
1 """

2 README

3

4 This simulation script was written to be used for moving a camera between two positions

5 using a linear axis, during the prototyping in the bachelor thesis. This program

6 i written using a python in the simulation software Weebots.

7 """

8 """camera controller."""

9

10 from controller import Robot , Camera , RangeFinder

11 import math

12 import numpy as np

13

14 #lagger en klasse som brukes for alle robotene, navnet på child komponentene må vere ←↩
likt

15 class platform (Robot) :
16 timestep = 32
17 def __init__ (self) :
18 super (platform , self) . __init__ ()
19 #setter opp kamera

20 self . camera = self . getDevice (’camera’)
21 self . camera . enable (4* self . timestep)
22 #setter opp rangefinderen

23 self . rangeFinder = self . getDevice (’3d’)
24 self . rangeFinder . enable (4* self . timestep)
25 #setter opp keyboard detection

26 self . keyboard . enable (self . timestep)
27 self . keyboard = self . getKeyboard ()
28 #lar deg gjøre forskjellige ting med hver robot

29 self . ID = self . getName ()
30 if self . ID == ’framework1’ :
31 print (’robot1 identified’)
32 self . filename = [’cam1_dist.txt’ , ’cam1_rgb.txt’]
33 image_width = self . rangeFinder . getWidth ()
34 image_height = self . rangeFinder . getHeight ()
35 focal_length = 0 . 5 * image_width * (1 / math . tan (0 . 5 * self . rangeFinder .←↩

getFov ()))
36 k_matrix = np . array ([
37 [focal_length , 0 , image_width / 2] ,
38 [0 , focal_length , image_height / 2] ,
39 [0 , 0 , 0]
40])
41 file = open (’k_matrix.txt’ , "w+")
42 for row in k_matrix :
43 np . savetxt (file , row)
44 file . close ()
45 elif self . ID == ’framework2’ :
46 print (’robot2 identified’)
47 self . filename = [’cam2_dist.txt’ , ’cam2_rgb.txt’]
48 elif self . ID == ’framework3’ :
49 print (’robot3 identified’)
50 self . filename = [’cam3_dist.txt’ , ’cam3_rgb.txt’]
51

52 def run (self) :
53 while True :
54 #2d array med alle dybder

55 self . depth = self . rangeFinder . getRangeImageArray ()
56 #array med RGB info for siste bilde

57 #formen er array[x][y][n] hvor n = 0 er rød, 1 er grøn og 2 er blå

58 self . image = self . camera . getImageArray ()
59

60 k = self . keyboard . getKey ()
61

62 if k == ord (’Q’) :
63 file = open (self . filename [0] , "w+")
64 for row in self . depth :
65 np . savetxt (file , row)
66 file . close ()
67 file = open (self . filename [1] , "w+")
68 for row in self . image :
69 np . savetxt (file , row)
70 file . close ()

lxxxiv

←↩

H Source code, Webots simulator

71

72

73 if self . step (self . timestep) == −1:
74 break

75

76 controller = platform ()
77 controller . run ()
78

79 """linear axis controller."""

80 from controller import Robot , Motor , Camera , RangeFinder

81 from math import pi , sin

82

83 class platform (Robot) :
84 timestep = 32
85

86 def __init__ (self) :
87 super (platform , self) . __init__ ()
88

89 self . motorAngle = self . getDevice ("motor")
90 self . motorAngle . setPosition (float (’inf’))
91 self . motorAngle . setVelocity (0 . 0)
92

93 self . pSensor = self . getDevice ("ps")
94 self . pSensor . enable (self . timestep)
95

96 self . vSensor = self . getDevice ("vs")
97 self . vSensor . enable (self . timestep)
98

99 self . motor = self . getDevice ("linear")
100 #setter opp kamera

101 self . camera = self . getDevice (’camera1’)
102 self . camera . enable (4* self . timestep)
103 #setter opp rangefinderen

104 self . rangeFinder = self . getDevice (’3d1’)
105 self . rangeFinder . enable (4* self . timestep)
106 #setter opp keyboard detection

107 self . keyboard . enable (self . timestep)
108 self . keyboard = self . getKeyboard ()
109 #lar deg gjøre forskjellige ting med hver robot

110 self . ID = self . getName ()
111 if self . ID == ’metal_pole’ :
112 print (’The linear axis identified’)
113 self . filename = [’cam1_dist.txt’ , ’cam1_rgb.txt’]
114

115 def run (self) :
116 while True :
117 #2d array med alle dybder

118 self . depth = self . rangeFinder . getRangeImageArray ()
119 #array med RGB info for siste bilde

120 #formen er array[x][y][n] hvor n = 0 er rød, 1 er grøn og 2 er blå

121 self . image = self . camera . getImageArray ()
122

123 k = self . keyboard . getKey ()
124

125

126 if k == ord (’Q’) :
127 file = open (self . filename [0] , "w+")
128 content = str (self . depth)
129 file . write (content)
130 file . close ()
131 file = open (self . filename [1] , "w+")
132 content = str (self . image)
133 file . write (content)
134 file . close ()
135 if self . step (self . timestep) == −1:
136 break

137 def camera_movement (self) :
138

139

140 speed=1
141 vertical_value = 0
142 horizontal_value = 0
143 position = 0 . 0
144 constant = 1

lxxxv

←↩

H Source code, Webots simulator

145 while self . step (self . timestep) != −1:
146

147 n = self . keyboard . getKey ()
148

149 # Verical controle

150 self . motor . setPosition (position)
151 vertical_value = self . vSensor . getValue ()
152 print ("Vertical position" , vertical_value)
153

154 # Angle controle

155 self . motorAngle . setVelocity (speed)
156 horizontal_value = self . pSensor . getValue ()
157 print ("Horizontal angle" , horizontal_value)
158

159 if n == ord (’S’) :
160 print ("Going down")
161 position −= constant

162 speed −= 1
163

164

165

166 if n == ord (’W’) :
167 print ("Going up")
168 position += constant

169 speed += 1
170

171

172 pass

173

174

175 controller = platform ()
176 controller . camera_movement ()� �

Source code, LiDAR testing simulator� �
1 """

2 README

3

4 This simulation script was written to be used for testing several methods

5 of obtaining 3D data. This program is written using a python in the simulation software←↩
Weebots.

6

7 lidar_test_controller controller.

8 """

9

10 from controller import Robot

11

12 def run_robot (robot) :
13 timestep = 32
14 max_speed = 6 . 2 8
15

16 left_motor = robot . getDevice (’motor_1’)
17 right_motor = robot . getDevice (’motor_2’)
18

19 left_motor . setPosition (float (’inf’))
20 right_motor . setPosition (float (’inf’))
21

22 left_motor . setVelocity (0 . 0)
23 right_motor . setVelocity (0 . 0)
24

25 lidar = robot . getLidar (’lidar’)
26 lidar . enable (timestep)
27 lidar . enablePointCloud ()
28

29

30 # Main loop:

31

32 while robot . step (timestep) != −1:
33

34 range_image = lidar . getRangeImage ()
35 print (’{}’ . format (range_image))
36

37 left_motor . setVelocity (max_speed * 0 . 2 5)
38 right_motor . setVelocity (max_speed * 0 . 2 5)

lxxxvi

←↩

H Source code, Webots simulator

39

40

41 if __name__== "__main__" :
42

43 my_robot = Robot ()
44 run_robot (my_robot)� �

lxxxvii

←↩

I Source code, point cloud generator

Appendix I

Source code, point cloud gen-
erator

lxxxviii

←↩

I Source code, point cloud generator

� �
1 """

2 README

3

4 This python script takes the depth and color data from the webots simulator and ←↩
converts it into ply files by utilizing the intrinsic camera parameters from the ←↩
camera. This file is set up for the zivid one+ large camera.

5 """

6

7 import numpy as np

8 import open3d as o3d

9

10

11 def get_calibration_matrix () :
12 file_data = np . loadtxt (’zivid_test/k_matrix.txt’) . reshape (3 , 3)
13 return file_data

14

15

16 # Uses the depth array and k matrix to create a point cloud,

17 # the axis are rotated to correspond to the orientation in webots

18 def get_point_cloud (depth_image , k_matrix) :
19 inv_fx = 1 . 0 / k_matrix [0 , 0]
20 inv_fy = 1 . 0 / k_matrix [1 , 1]
21 ox = k_matrix [0 , 2]
22 oy = k_matrix [1 , 2]
23 image_height , image_width = depth_image . shape
24 points = np . zeros ((image_width * image_height , 3) , dtype=np . float32)
25 counter = 0
26 for y in range (image_height) :
27 for x in range (image_width) :
28 dist = depth_image [y , x]
29 points [counter , 2] = −np . float32 ((x − ox) * dist * inv_fx)
30 points [counter , 1] = −np . float32 ((y − oy) * dist * inv_fy)
31 points [counter , 0] = np . float32 (dist)
32 counter += 1
33 return points [: counter] . astype (np . float32)
34

35

36 # Reads array written from webots, needs the file name and shape of array

37 def read_array (file_name , x_px , y_px , z) :
38 if z == 0 :
39 file_data = np . loadtxt (file_name) . reshape (x_px , y_px)
40 else :
41 file_data = np . loadtxt (file_name) . reshape (x_px , y_px , z)
42 return file_data

43

44

45 def save_point_cloud (name , pcd) :
46 o3d . io . write_point_cloud (name , pcd)
47

48

49 # Creates coordinate frames for the origin and cameras and scales them down, so they ←↩
don’t dominate the view

50 def create_cameras () :
51 camera1 = o3d . geometry . TriangleMesh . create_coordinate_frame ()
52 camera2 = o3d . geometry . TriangleMesh . create_coordinate_frame ()
53 camera3 = o3d . geometry . TriangleMesh . create_coordinate_frame ()
54 origin_frame = o3d . geometry . TriangleMesh . create_coordinate_frame ()
55 origin_frame . scale (0 . 3 , center=origin_frame . get_center ())
56 camera1 . scale (0 . 3 , center=camera1 . get_center ())
57 camera2 . scale (0 . 3 , center=camera2 . get_center ())
58 camera3 . scale (0 . 3 , center=camera3 . get_center ())
59 return origin_frame , camera1 , camera2 , camera3

60

61

62 def create_transformation (geometry , quat , translation) :
63 T = np . eye (4)
64 T [: 3 , : 3] = geometry . get_rotation_matrix_from_quaternion (quat)
65 T [0 , 3] = translation [0]
66 T [1 , 3] = translation [1]
67 T [2 , 3] = translation [2]
68 return T

69

70

lxxxix

←↩

I Source code, point cloud generator

71 def filter_point_cloud (pointcloud , radius) :
72 points = np . asarray (pointcloud . points)
73 colours = np . asarray (pointcloud . colors)
74 center = np . array ([0 , 0 , 0])
75 distances = np . linalg . norm (points − center , axis=1)
76 pointcloud . points = o3d . utility . Vector3dVector (points [distances <= radius])
77 pointcloud . colors = o3d . utility . Vector3dVector (colours [distances <= radius])
78 return pointcloud

79

80

81 # camera resolution

82 width = 1920
83 height = 1200
84

85 # collects the images from text files

86

87 k_matrix = get_calibration_matrix ()
88 dist_image_2 = read_array (’zivid_test/cam2_dist.txt’ , width , height , 0)
89 point_cloud_2 = get_point_cloud (dist_image_2 , k_matrix)
90 colour_img_2 = read_array (’zivid_test/cam2_rgb.txt’ , width , height , 3)
91 colour_2 = colour_img_2 . reshape (height*width , 3)
92 dist_image_1 = read_array (’zivid_test/cam1_dist.txt’ , width , height , 0)
93 point_cloud_1 = get_point_cloud (dist_image_1 , k_matrix)
94 colour_img_1 = read_array (’zivid_test/cam1_rgb.txt’ , width , height , 3)
95 colour_1 = colour_img_1 . reshape (height*width , 3)
96 dist_image_3 = read_array (’zivid_test/cam3_dist.txt’ , width , height , 0)
97 point_cloud_3 = get_point_cloud (dist_image_3 , k_matrix)
98 colour_img_3 = read_array (’zivid_test/cam3_rgb.txt’ , width , height , 3)
99 colour_3 = colour_img_3 . reshape (height*width , 3)

100

101 # creates the geometries and displays them

102 pcd1 = o3d . geometry . PointCloud ()
103 pcd2 = o3d . geometry . PointCloud ()
104 pcd3 = o3d . geometry . PointCloud ()
105 pcd1 . points = o3d . utility . Vector3dVector (point_cloud_1)
106 pcd1 . colors = o3d . utility . Vector3dVector (colour_1 / 2 5 5)
107 pcd2 . points = o3d . utility . Vector3dVector (point_cloud_2)
108 pcd2 . colors = o3d . utility . Vector3dVector (colour_2 / 2 5 5)
109 pcd3 . points = o3d . utility . Vector3dVector (point_cloud_3)
110 pcd3 . colors = o3d . utility . Vector3dVector (colour_3 / 2 5 5)
111

112 origin , cam1 , cam2 , cam3 = create_cameras ()
113

114 pcd1 = filter_point_cloud (pcd1 , 3 . 4 9)
115 pcd2 = filter_point_cloud (pcd2 , 3 . 4 9)
116 pcd3 = filter_point_cloud (pcd3 , 3 . 4 9)
117 save_point_cloud (’zivid_top_view.ply’ , pcd1)
118 save_point_cloud (’zivid_bot_view_1.ply’ , pcd2)
119 save_point_cloud (’zivid_bot_view_2.ply’ , pcd3)
120

121 T1 = create_transformation (pcd1 , [0 . 8 7 , 0 . 1 3 , 0 . 3 6 , − 0 . 3 1] , [− 0 . 6 3 6 , 2 . 6 , 3 . 4 3])
122 cam1 . transform (T1)
123 pcd1 . transform (T1)
124 T2 = create_transformation (pcd2 , [0 . 8 7 , −0 .17 , −0 .34 , − 0 . 3 0] , [− 0 . 5 8 8 , 2 . 5 1 , − 0 . 2 0 2])
125 cam2 . transform (T2)
126 pcd2 . transform (T2)
127 T3 = create_transformation (pcd3 , [0 . 2 5 , 0 . 2 5 , −0 .03 , 0 . 9 3] , [2 . 7 4 , 0 . 4 7 6 , 0 . 4 1 7])
128 pcd3 . transform (T3)
129 cam3 . transform (T3)
130

131 o3d . visualization . draw_geometries ([pcd1 , pcd2 , pcd3 , cam1 , cam2 , cam3 , origin])
132

133 combined_pcd = o3d . geometry . PointCloud ()
134 combined_pcd = pcd1 + pcd2 + pcd3

135

136 o3d . io . write_point_cloud ("Zivid_combined.ply" , combined_pcd)� �� �
1 """

2 README

3

4 This python script takes the generated point clouds and tries to fit them together. ←↩
Based on the example code from open3D found here: http://www.open3d.org/docs/←↩
latest/tutorial/Advanced/multiway_registration.html

xc

←↩

I Source code, point cloud generator

5 """

6

7 import open3d as o3d

8 import numpy as np

9

10

11 # Creates a transformation matrix from axis angles

12 def create_transformation (geometry , angles , translation) :
13 T = np . eye (4)
14 T [: 3 , : 3] = geometry . get_rotation_matrix_from_xyz (angles)
15 T [0 , 3] = translation [0]
16 T [1 , 3] = translation [1]
17 T [2 , 3] = translation [2]
18 return T

19

20

21 # Creates coordinate frames for the origin and cameras and scales them down, so they ←↩
don’t dominate the view

22 def create_cameras () :
23 camera1 = o3d . geometry . TriangleMesh . create_coordinate_frame ()
24 camera2 = o3d . geometry . TriangleMesh . create_coordinate_frame ()
25 origin_frame = o3d . geometry . TriangleMesh . create_coordinate_frame ()
26 origin_frame . scale (0 . 3 , center=origin_frame . get_center ())
27 camera1 . scale (0 . 3 , center=camera1 . get_center ())
28 camera2 . scale (0 . 3 , center=camera2 . get_center ())
29 cameras = [origin_frame , camera1 , camera2]
30 return cameras

31

32

33 # Reads a sequence of point clouds

34 def load_point_clouds (voxel_size = 0 . 0) :
35 pcds = []
36 for i in range (2) :
37 j = i + 1
38 pcd = o3d . io . read_point_cloud ("zivid_bot_view_%d.ply" %
39 j)
40 pcd_down = pcd . voxel_down_sample (voxel_size=voxel_size)
41 pcd_down . estimate_normals ()
42 pcds . append (pcd_down)
43 pcd = o3d . io . read_point_cloud ("zivid_top_view.ply")
44 pcd_down = pcd . voxel_down_sample (voxel_size=voxel_size)
45 pcd_down . estimate_normals ()
46 pcds . append (pcd_down)
47 return pcds

48

49

50 def load_full_point_clouds () :
51 pcds = []
52 for i in range (2) :
53 j = i + 1
54 pcd = o3d . io . read_point_cloud ("zivid_bot_view_%d.ply" %
55 j)
56 pcds . append (pcd)
57 pcd = o3d . io . read_point_cloud ("zivid_top_view.ply")
58 pcds . append (pcd)
59 return pcds

60

61

62 def pairwise_registration (source , target) :
63 print ("Apply point-to-plane ICP")
64 icp_coarse = o3d . pipelines . registration . registration_icp (
65 source , target , max_correspondence_distance_coarse , np . identity (4) ,
66 o3d . pipelines . registration . TransformationEstimationPointToPlane ())
67 icp_fine = o3d . pipelines . registration . registration_icp (
68 source , target , max_correspondence_distance_fine ,
69 icp_coarse . transformation ,
70 o3d . pipelines . registration . TransformationEstimationPointToPlane ())
71 transformation_icp = icp_fine . transformation
72 information_icp = o3d . pipelines . registration .←↩

get_information_matrix_from_point_clouds (
73 source , target , max_correspondence_distance_fine ,
74 icp_fine . transformation)
75 return transformation_icp , information_icp

76

xci

←↩

I Source code, point cloud generator

77

78 def full_registration (pcds , max_correspondence_distance_coarse ,
79 max_correspondence_distance_fine) :
80 pose_graph = o3d . pipelines . registration . PoseGraph ()
81 odometry = np . identity (4)
82 pose_graph . nodes . append (o3d . pipelines . registration . PoseGraphNode (odometry))
83 n_pcds = len (pcds)
84 for source_id in range (n_pcds) :
85 for target_id in range (source_id + 1 , n_pcds) :
86 transformation_icp , information_icp = pairwise_registration (
87 pcds [source_id] , pcds [target_id])
88 print ("Build o3d.pipelines.registration.PoseGraph")
89 if target_id == source_id + 1 : # odometry case

90 odometry = np . dot (transformation_icp , odometry)
91 pose_graph . nodes . append (
92 o3d . pipelines . registration . PoseGraphNode (
93 np . linalg . inv (odometry)))
94 pose_graph . edges . append (
95 o3d . pipelines . registration . PoseGraphEdge (source_id ,
96 target_id ,
97 transformation_icp ,
98 information_icp ,
99 uncertain=False))

100 else : # loop closure case

101 pose_graph . edges . append (
102 o3d . pipelines . registration . PoseGraphEdge (source_id ,
103 target_id ,
104 transformation_icp ,
105 information_icp ,
106 uncertain=True))
107 return pose_graph

108

109

110 voxel_size = 0 . 0 4
111 pcds_down = load_point_clouds (voxel_size)
112

113 o3d . visualization . draw_geometries (pcds_down)
114 print ("Full registration ...")
115 max_correspondence_distance_coarse = voxel_size * 15
116 max_correspondence_distance_fine = voxel_size * 1 . 5
117 with o3d . utility . VerbosityContextManager (
118 o3d . utility . VerbosityLevel . Debug) as cm :
119 pose_graph = full_registration (pcds_down ,
120 max_correspondence_distance_coarse ,
121 max_correspondence_distance_fine)
122

123 print ("Optimizing PoseGraph ...")
124 option = o3d . pipelines . registration . GlobalOptimizationOption (
125 max_correspondence_distance=max_correspondence_distance_fine ,
126 edge_prune_threshold = 0 . 2 5 ,
127 reference_node=0)
128 with o3d . utility . VerbosityContextManager (
129 o3d . utility . VerbosityLevel . Debug) as cm :
130 o3d . pipelines . registration . global_optimization (
131 pose_graph ,
132 o3d . pipelines . registration . GlobalOptimizationLevenbergMarquardt () ,
133 o3d . pipelines . registration . GlobalOptimizationConvergenceCriteria () ,
134 option)
135

136 print ("Transform points and display")
137 # Prints out the transformations found by the optimiser

138 for point_id in range (len (pcds_down)) :
139 print (pose_graph . nodes [point_id] . pose)
140

141 pcds = load_full_point_clouds ()
142 pcd_combined = o3d . geometry . PointCloud ()
143 for point_id in range (len (pcds)) :
144 pcds [point_id] . transform (pose_graph . nodes [point_id] . pose)
145 pcd_combined += pcds [point_id]
146 pcd_combined_down = pcd_combined . voxel_down_sample (voxel_size=voxel_size)
147 o3d . io . write_point_cloud ("combined_views.ply" , pcd_combined)
148 o3d . visualization . draw_geometries ([pcd_combined])� �

xcii

←↩

J Source code, PLC program

Appendix J

Source code, PLC program

xciii

←↩

1 PLC program

1 PLC program

1.1 POV

1.1.1 MAIN (PRG)� �
1 """""

2 README

3

4 This project was developed to be used for moving a camera between two positions

5 using a linear axis , during the protyping in my bachelor ’s thesis. This program

6 i written using a ESI -file from the specific motor used , and therefore used the

7 Tc2_MC2 library from backhoff to link the motor to an axis.

8

9 """

10

11 PROGRAM MAIN

12 VAR

13 Machine : FB_Machine ;
14 END_VAR� �� �
1 "" Machine () ;� �

1.1.2 FB Machine (FB)� �
1 ""FUNCTION_BLOCK FB_Machine

2 VAR

3 Tower : FB_Tower ;
4 END_VAR� �� �
1 "" Tower () ;� �

1.1.3 FB Tower (FB)� �
1 ""FUNCTION_BLOCK FB_Tower

2 VAR_INPUT

3 resetButton : BOOL ;
4 startButton : BOOL ;
5 stopButton : BOOL ;
6 forwardButton : BOOL ;
7 backwardButton : BOOL ;
8 fManualVelocity : LREAL ;
9

10 // velocity constant for HIGH and LOW value .
11 fManualLowSpeed : LREAL := 0 . 0 5 ;
12 fManualHighSpeed : LREAL := 0 . 1 ;
13 END_VAR

14 VAR_OUTPUT

15 END_VAR

16 VAR

17 // Libraries used

18 stAxis : AXIS_REF ;
19 MCJog : MC_Jog ;
20 McPower : MC_Power ;
21 McReset : MC_Reset ;
22 stErrorData : ST_ErrorData ;
23

24 // Real axis data feedback

25 Enabled : BOOL ;
26 ActualVel : LREAL ;
27 ActualPos : LREAL ;
28

29 // ActualTorque : LREAL ;
30 bPositiveDirection : BOOL ;

1

←↩

←↩

1.1 POV 1 PLC program

31 bNegativeDirection : BOOL ;
32 AxisMovement : BOOL ;
33 bMinSoftLimit : BOOL ;
34 bMaxSoftLimit : BOOL ;
35

36 // Error id

37 mc_errorID : UDINT := 1 ;
38 mc_error_string : STRING ;
39 error_header_string : STRING ;
40

41 // For blinking lamp

42 light_pulse : BOOL ;
43 light_constant : BOOL ;
44 tBlink : TON ;
45 blink1000 : BOOL ;
46

47 // Adjusting speed on axis

48 SpeedSetting : E_Speed ;
49

50 // TO_STRING for velocity

51

52 ESpeed : E_Speed ;
53 nCurrentValue : INT ;
54 sCurrentValue : STRING ;
55 wsCurrentValue : WSTRING ;
56 sComponent : STRING ;
57 wsComponent : WSTRING ;
58

59 // TO_STRING for states

60 EMachineState : E_MachineState ;
61 nCurrentState : INT ;
62 sCurrentState : STRING ;
63 wsCurrentState : WSTRING ;
64 sComponentState : STRING ;
65 wsComponentState : WSTRING ;
66

67 {IF defined (Emulation) }
68 StateTower1 AT %I∗ : UINT := 8 ;
69 {ELSE}
70 StateTower1 AT %I∗ : UINT ;
71 {END_IF}
72 END_VAR� �� �
1 ""MCJog (Axis := stAxis , Velocity := fManualVelocity , Mode := ←↩

MC_JOGMODE_CONTINOUS) ;
2 McPower (Axis := stAxis) ;
3 McReset (Axis := stAxis) ;
4 ActUpdateAxisData () ;
5 ActUpdateManVelocity () ;
6 ActBlinkingTimer () ;
7 ActToStringSpeedAndState () ;
8 CASE GVL . eMachineState OF

9

10 // The machine starts up in Error state

11 E_MachineState . Error :
12

13 light_constant := FALSE ;
14 EnableAxis (FALSE) ;
15 mc_error_string := F_NcErrorMessage (mc_errorID) ;
16 error_header_string := F_HeaderErrorMessage (mc_errorID) ;
17

18 IF resetButton THEN

19 SetState (E_MachineState . Ready) ;
20 END_IF

21

22 // Ready state is for enabling the axis

23 E_MachineState . Ready :
24 light_constant := FALSE ;
25 McResetAxis () ;
26

27 IF startButton THEN

28 light_constant := TRUE ;
29 EnableAxis (TRUE) ;

2

←↩

←↩

1.1 POV 1 PLC program

30 SetState (E_MachineState . Running) ;
31 END_IF

32

33 // Running state is for driving the axis in both postive and negative Y ←↩
direction .

34 E_MachineState . Running :
35

36 MCJog . JogForward := forwardButton ;
37 MCJog . JogBackwards := backwardButton ;
38

39 IF stopButton THEN

40 EnableAxis (FALSE) ;
41 SetState (E_MachineState . Ready) ;
42 END_IF

43 END_CASE� �
FB Tower: ActBlinkingTimer (Action)� �

1 ""tBlink (IN := NOT tblink . Q , PT := T#1S);

2 blink1000 := tBlink . ET > T#0.5S;

3

4 light_pulse := light_constant OR blink1000 ;� �
FB Tower: ActToStringSpeedAndState (Action)� �

1 ""nCurrentValue := ESpeed ;
2

3 sCurrentValue := TO_STRING (ESpeed) ;
4 wsCurrentValue := TO_WSTRING (ESpeed) ;
5

6 sComponent := TO_STRING (E_Speed . High) ;
7 wsComponent := TO_WSTRING (E_Speed . Low) ;
8

9 nCurrentState := EMachineState ;
10

11 sCurrentState := TO_STRING (EMachineState) ;
12 wsCurrentState := TO_WSTRING (EMachineState) ;
13

14 sComponentState := TO_STRING (E_MachineState . Ready) ;
15 wsComponentState := TO_WSTRING (E_MachineState . Running) ;� �

FB Tower: ActUpdateAxisData (Action)� �
1 ""// Data from NC interface

2 stAxis . ReadStatus () ;
3 Enabled := McPower . Status ;
4 ActualPos := stAxis . NcToPlc . ActPos ;
5 ActualVel := stAxis . NcToPlc . ActVelo ;
6

7 // ActualTorque := ActualTorqueNm ;
8 bPositiveDirection := stAxis . Status . PositiveDirection ;
9 bNegativeDirection := stAxis . Status . NegativeDirection ;

10 AxisMovement := stAxis . Status . Moving ;
11 bMinSoftLimit := stAxis . Status . SoftLimitMinExceeded ;
12 bMaxSoftLimit := stAxis . Status . SoftLimitMaxExceeded ;� �

FB Tower: ActUpdateManVelocity (Action)� �
1 ""CASE SpeedSetting OF

2

3 E_Speed . Low :
4

5 IF GVL . UI_EnableHighSpeed THEN

6 fManualVelocity := fManualHighSpeed ;
7 SpeedSetting := E_Speed . High ;
8

9 ELSE

10 fManualVelocity := fManualLowSpeed ;
11 END_IF

12

13 E_Speed . High :
14

15 IF NOT GVL . UI_EnableHighSpeed THEN

3

←↩

←↩

1.1 POV 1 PLC program

16 fManualVelocity := fManualLowSpeed ;
17 SpeedSetting := E_Speed . Low ;
18 ELSE

19 fManualVelocity := fManualHighSpeed ;
20 END_IF

21

22 END_CASE� �
FB Tower: EnableAxis (Method)� �

1 ""METHOD EnableAxis : BOOL

2 VAR_INPUT

3 axisBoolStatus : BOOL ;
4 END_VAR� �� �
1 ""McPower . Enable := axisBoolStatus ;
2 McPower . Enable_Positive := axisBoolStatus ;
3 McPower . Enable_Negative := axisBoolStatus ;� �

FB Tower: ErrorUpdate (Method)� �
1 ""METHOD ErrorUpdate

2 VAR_INPUT

3 eState : E_Axis ;
4 nErrorId : UDINT ;
5 sErrorMessageBody : STRING [3 0 0] ;
6 END_VAR

7 VAR

8 sErrorMessageHeader : STRING [3 0 0] ;
9 END_VAR� �� �
1 ""stErrorData . eLastState := eState ;
2 stErrorData . nErrorID := nErrorId ;
3 stErrorData . sErrorMessageBody := sErrorMessageBody ;
4 stErrorData . sErrorMessageHeader := F_HeaderErrorMessage (nErrorId) ;� �

FB Tower: McResetAxis (Method)� �
1 ""METHOD McResetAxis : BOOL

2 VAR_INPUT

3 END_VAR� �� �
1 ""McReset . Execute := TRUE ;
2

3 IF McReset . Done THEN

4 McReset . Execute := FALSE ;
5 END_IF� �

FB Tower: SetState (Method)� �
1 ""METHOD SetState

2 VAR_INPUT

3 eState : E_MachineState ;
4 END_VAR� �� �
1 ""GVL . eMachineState := eState ;� �

1.1.4 F NcErrorMessage (FUN)� �
1 ""FUNCTION F_NcErrorMessage : STRING [2 0 4 8]
2 VAR_INPUT

3 Error : UDINT ;
4 END_VAR� �

4

←↩

←↩

1.1 POV 1 PLC program

� �
1 ""CASE Error OF

2 0 : F_NcErrorMessage := ’None’←↩
;

3

4 (∗ −−> User defined errors for entire machine <−−∗)
5 1 : F_NcErrorMessage := ’The ←↩

machine is in error at startup - please reset. ’ ;
6

7 ELSE

8 IF 36844 < Error AND Error < 36857 THEN

9 F_NcErrorMessage :=’NC3_Internal_Unexpected ←↩
INTERNAL Error ’ ;

10 ELSE

11 F_NcErrorMessage :=’Msg Unknown ’ ;
12 END_IF

13 END_CASE� �
1.1.5 F HeaderErrorMessage (FUN)� �

1 ""FUNCTION F_HeaderErrorMessage : STRING

2 VAR_INPUT

3 ErrorID : UDINT ;
4 END_VAR� �� �
1 ""IF ErrorID = 0 THEN

2 F_HeaderErrorMessage := ’None’ ;
3 ELSIF ErrorID = 1 THEN

4 F_HeaderErrorMessage := ’Startup safety ’ ;
5 END_IF� �

5

←↩

←↩

1.2 GLV 1 PLC program

1.2 GLV� �
1 ""VAR_GLOBAL

2 eMachineState : E_MachineState ;
3 UI_EnableHighSpeed : BOOL ;
4 END_VAR� �
1.3 DUTs

1.3.1 E axis(ENUM)� �
1 ""TYPE E_Axis :
2 (
3 Disabled ,
4 Enabled ,
5 Idle ,
6 MoveAbs ,
7 Stop ,
8 Error ,
9 Reset ,

10 ManualMode

11) ;
12 END_TYPE� �

1.3.2 E MachineState� �
1 ""TYPE E_MachineState :
2 (
3 Error ,
4 Ready ,
5 Running

6) ;
7 END_TYPE� �

1.3.3 E Speed� �
1 ""TYPE E_Speed :
2 (
3 Low ,
4 High

5) ;
6 END_TYPE� �

1.3.4 ST ErrorData� �
1 ""TYPE ST_ErrorData :
2 STRUCT

3 nErrorID : UDINT ;
4 sTimeStamp : STRING ;
5 sErrorMessageBody : STRING [3 0 0] ;
6 sErrorMessageHeader : STRING [3 0 0] ;
7 eLastState : E_Axis ;
8 END_STRUCT

9 END_TYPE� �

6

←↩

←↩

K Bachelor poster

Appendix K

Bachelor poster

c

←↩

←↩

L Cooperation agreement

Appendix L

Cooperation agreement

cii

 -

Currence Robotics

IELEA2920 - bachelor thesis

COOPERATION AGREEMENT

Odd Arne Tynes, Pål-André Furnes,

Marius Høyer Melaas

A document including all rules and agreements between group members

during bachelor period.

January 2022

←↩

 -

1 Members of the agreement

• Marius Høyer Melaas

• P̊al-André Furnes

• Odd Arne Tynes

2 Cooperation agreement

2.1 Duration of agreement

The agreement duration is from the 10th of January 2022 until 20th of May 2022,
when the thesis is to be delivered.

2.2 Purpose of the agreement

The group is writing it’s bachelor thesis with Currence Robotics. This agreement
is formalized to achieve accountability for each group member to follow set rules in
chapter 2.3.

2.3 Rules

• Each group member must write a daily log describing the work they have done,
in relation to the bachelor thesis.

• Each group member must dedicate two hours each week to write the project
thesis.

• If a group member is unable to meet up with the group at the agreed upon
time and location, the member shall notify as soon as possible.

• Each group member shall work an average of four workdays each week. To-
taling 32 hours each week, including lunch breaks.

• Each group member shall attend sprint planning every other week. These
meetings specify what each member should be working on the coming weeks.

2.4 Responsibilities of each group member

• Daily log - Marius

• Weekly writing of thesis - Odd Arne

• Updating Gantt diagram - P̊al-André

1

←↩

 -

3 Projects roles

Project roles within the bachelor group
Marius Høyer Melaas Project leader
P̊al-André Furnes Secretary
Odd Arne Tynes Archivist

Table 1: Students and their corresponding roles

3.1 Responsibilities and tasks for the project leader

• Internal communication between the bachelor group and Currence Robotics.

• Ordering or buying parts needed.

3.2 Responsibilities and tasks for the secretary

• Send out meeting invitations, update Gantt diagram, and agenda.

• Book rooms for meetings.

• Write meeting reports.

3.3 Responsibilities and tasks for the archivist

• To upload Gantt diagram before every meeting

• Write sprint review and sprint planning.

—————————————————
Marius Høyer Melaas

—————————————————
Odd Arne Skjeret Tynes

—————————————————
P̊al-André Furnes

2

Marius HøyerMetaas

oddDues Tynes
patronerRunes

←↩

←↩

M Final Gantt diagram & daily logs

Appendix M

Final Gantt diagram & daily logs

cvi

←↩

←↩

←↩

←↩

←↩

N Original Gantt diagram

Appendix N

Original Gantt diagram

cxi

Full schedule

Write bachelor application 21.11.21 21.11.21

Make Gantt diagram 10.01.22 10.01.22

Write cooperation
agreement

 10.01.22 10.01.22

Write daily log template 10.01.22 10.01.22

Write meeting template 13.01.22 13.01.22

Write sprint review and -
planning template

 17.01.22 17.01.22

Write backlog of all tasks 17.01.22 17.01.22

Experimenting with current
camera, assembly

 10.01.22 14.01.22

Research Webots, install
software

 10.01.22 14.01.22

Write template for bachelor
thesis

 17.01.22 21.01.22

Write project preliminary
report

 11.01.22 21.01.22

Oral pitch of project 28.01.22 28.01.22

Document current system's
design, statistics

 17.01.22 28.01.22

Document current system's
design, resulting pointcloud

 17.01.22 28.01.22

Document current system's
design, pros and cons

 17.01.22 28.01.22

Document current system's
design, image acquisition

 17.01.22 28.01.22

Document current system's
design, economy

 17.01.22 28.01.22

Research current camera,
software

 17.01.22 28.01.22

Research current camera,
specs

 17.01.22 28.01.22

Research new camera,
software

 31.01.22 11.02.22

Research new camera,
specs

 24.01.22 28.01.22

Research, compare
current and new cameras

 14.02.22 25.02.22

Research point cloud,
combining point clouds

 17.01.22 28.01.22

Sketch new solutions 17.01.22 11.02.22

CAD, frame 14.02.22 11.03.22
←↩

CAD, example pallet 14.02.22 11.03.22

CAD, camera setup 14.02.22 11.03.22

CAD, conveyor 14.02.22 11.03.22

CAD, stack platform 14.02.22 11.03.22

CAD, grabber 14.02.22 11.03.22

CAD, camera 14.02.22 11.03.22

Simulator, do tutorials in
Webots

 14.03.22 17.03.22

Simulator, LIDAR tutorial 18.03.22 18.03.22

Simulator, program
camera

 21.03.22 22.04.22

Simulator, program
movement feeding

 21.03.22 22.04.22

Simulator, program
grabber movement

 21.03.22 22.04.22

Simulator, program pallet
in-feed

 21.03.22 22.04.22

Simulator, program color
detection

 21.03.22 22.04.22

Simulator, program
defect detection

 21.03.22 22.04.22

Simulator, moving pallets
to specified location

 21.03.22 22.04.22

Simulator, document
results

 20.04.22 22.04.22

Thesis, describing current
system

 21.01.22 21.01.22

Thesis, describing point
clouds

 28.01.22 28.01.22

Thesis, describing current
image acquisition

 28.01.22 28.01.22

Thesis, describing current
economy of system

 04.02.22 04.02.22

Thesis, describing potential
cost of system

 11.02.22 11.02.22

Thesis, describing new
concepts

 11.02.22 11.02.22

Thesis, describing how to
test designs

 18.02.22 18.02.22

Thesis, results of each
design

 22.04.22 22.04.22

Thesis, describing software
developed by group

 22.04.22 22.04.22

Thesis, conclusion of all
simulators

 22.04.22 22.04.22

←↩

Thesis, recommendation for
which design to pursue

 22.04.22 22.04.22

Prototype, assembly 18.04.22 13.05.22

Prototype, mount camera 18.04.22 13.05.22

Fysisk modell, testing 18.04.22 13.05.22

Thesis, polishing 16.05.22 20.05.22

Posterpresentation 20.05.22 20.05.22

Oral presentation of result 20.05.22 20.05.22

←↩

←↩

O Hours worked

Appendix O

Hours worked

cxv

 Pål-André Marius Odd Arne

Week 2 10.01.2022 5,00 7 3,5

 11.01.2022 6,25 7,25 5,75

 12.01.2022 1,00 6,5 1

 13.01.2022 7,50 6,75 8

 14.01.2022 6,25 7 7

Week 3 17.01.2022 7,58 7,83 6,25

 18.01.2022 7,75 7,75 8

 19.01.2022 3,25 7,5 2,75

 20.01.2022 7,75 0 8

 21.01.2022 6,67 7,25 5,25

 22.01.2022 0,00 0,75 0

Week 4 24.01.2022 7,00 4 6

 25.01.2022 3,25 3,75 0,75

 26.01.2022 0,75 4 1

 27.01.2022 5,75 0 7,75

 28.01.2022 6,00 5,75 6,75

Week 5 31.01.2022 4,00 0 2

 01.02.2022 4,50 4,5 2

 02.02.2022 0,00 7 0

 03.02.2022 7,75 0 6

 04.02.2022 6,00 5,75 6

 05.02.2022 1,50 0 0

 06.02.2022 2,00 0 0

Week 6 07.02.2022 1,50 3 1

 08.02.2022 3,00 2 2

 09.02.2022 4,00 2 2

 10.02.2022 5,75 0 8

 11.02.2022 6,50 7 6,5

Week 7 14.02.2022 2,50 3,25 3,5

 15.02.2022 5,00 0 1,5

 17.02.2022 7,75 0 8

 18.02.2022 4,75 0 6

Week 8 21.02.2022 0,00 0 0

 22.02.2022 0,00 4,25 0

 23.02.2022 0,00 7,75 0

 24.02.2022 7,75 6 8

 25.02.2022 6,50 7,25 8

←↩

Week 9 28.02.2022 0,75 1,5 0

 01.03.2022 0,00 5,5 0

 02.03.2022 0,00 5 0

 03.03.2022 7,75 2 0

 04.03.2022 7,75 7,25 0

Week
10

10.03.2022 7,75
7,5 7,75

 11.03.2022 7,75 4,5 0

Week
11

14.03.2022 0,00
0 0

Week
12

23.03.2022 0,00
7,5 0

 24.03.2022 7,75 0 0

 25.03.2022 7,75 6 0

Week
13

28.03.2022
7,25 7 11,25

 29.03.2022 5,75 6 5,75

 30.03.2022 0,00 6,5 0

 31.03.2022 7,75 2 7,75

 01.04.2022 6,00 6 6

Week
14

04.04.2022
6,75 4,75 6

 05.04.2022 7,75 2 7,75

 06.04.2022 0,00 7,75 0

 07.04.2022 7,75 7,75 7,75

 08.04.2022 7,25 7,25 7,25

Week
15

11.04.2022 7,75
7,75 7,75

 12.04.2022 7,25 7,25 3,75

 13.04.2022 7,75 7,75 3,75

 14.04.2022 3,75 3,75 7,75

 15.04.2022 7,75 7,75 7,75

Week
16

18.04.2022 7,75
7 7,75

 19.04.2022 7,75 3,75 7,75

 21.04.2022 4,00 1,5 4

 22.04.2022 5,50 6,75 2

Week
17

25.04.2022 6,00
6 6

 26.04.2022 7,50 0,75 7,5

 27.04.2022 7,50 1 7,5

 28.04.2022 0,00 7,75 0

←↩

 29.04.2022 7,50 6,75 7,5

Week
18

02.05.2022 7,00
0 7

 03.05.2022 5,25 3,5 5,25

 04.05.2022 0,00 2,5 0

 05.05.2022 7,75 7,5 7,75

 06.05.2022 5,25 7,5 6,75

 07.05.2022 0,00 7,5 0

Week
19

09.05.2022 7,00
9 7

 10.05.2022 7,75 7 7,75

 11.05.2022 9,75 7,75 7,75

 12.05.2022 7,75 7,75 9,75

 13.05.2022 6,00 9,75 5,5

 14.04.2022 5,00 7 0

 15.04.2022 3,00 6 7

Week
20

16.05.2022 7,00
7 7

 17.05.2022 6,00 8,25 9

 18.05.2022 7,75 7,75 11

 19.05.2022 14 9,5 12,5

 Total hours: 460 437,33 407,25

←↩

←↩

P Sprint review & planning

Appendix P

Sprint review & planning

cxix

←↩

Solwr

IELEA2920 - bachelor thesis

SPRINT
REVIEW & PLANNING

Odd Arne Tynes, Pål-André Furnes,
Marius Høyer Melaas

A document including all sprint reviews and planning during the

bachelor thesis.

May 2022

←↩

←↩

Contents

Contents

1 Sprint 1, start 17.01.22, week 3 5

2 Sprint 2, start 31.01.22, week 5 9

3 Sprint 3, start 14.02.22, week 7 12

4 Sprint 4, start 28.02.22, week 9 15

5 Sprint 5, start 14.03.22, week 11 17

6 Sprint 6, start 28.03.22, week 13 19

7 Sprint 7, start 11.04.22, week 15 21

8 Sprint 8 start 25.04.22, week 17 23

9 Sprint 9 start 09.05.22, week 19 25

1

←↩

←↩

Contents

Startup sprint, start 10.01.22, week 2

Main goal / purpose for this sprint

Having a project preliminary report that is almost done and ready to be
evaluated by teachers.

Planned activities this sprint

• Downloading needed software

• Experimenting with software

• Experimenting with current LIDAR cameras

• Writing templates for documents.

– Bachelor thesis

– Meeting reports

– Sprint reviews

• Writing a project preliminary report

Actually conducted activities this sprint

• Downloading needed software

• Experimenting with software

• Experimenting with current LIDAR cameras

• Writing templates for documents.

– Meeting reports.

• Writing a project preliminary report

Description of / justification for deviation between

planned and real activities

The sprint review template was made the first day of the next sprint. The
main thesis template will be done by the end of week 3 when we are going to
start writing the final product.

2

←↩

←↩

Contents

Description of / justification for changes that is

desired in the projects content or in the further

plan of action – or progress report

No desired changes.

Main experience from this period

The group has gained some fundamental knowledge about point clouds and
how they are made. The group used Intel RealSense SDK to view the camera
output. It has also started building 3D-structures in Webots, the simulator
software that is going to be used going forward.

Main focus next period

• Sketching possible solutions for new camera setups

• Understanding the current camera setup

• Project preliminary report

Planned activities next period

• Finish project preliminary report.

• Deliver the project preliminary report to mentors for evaluation.

• Review mentors comments on the project preliminary report.

• Contact Solwr for possible resources in form of simulators and CAD files,
that the group can utilize.

• Make a template for the bachelor thesis.

• Start writing in the bachelor thesis.

• Document the functionality of the current camera systems, on Sorttm.

• Document a rough estimate of the current cost and maintenance for the
current camera system, on Sorttm.

• Brainstorm on concepts for the new camera setup.

• Sketch ideas for new camera setups.

3

←↩

←↩

Contents

Other

Nothing to note.

Wish / need for counseling

Nothing in particular.

4

←↩

←↩

1. Sprint 1, start 17.01.22, week 3

1 Sprint 1, start 17.01.22, week 3

Main goal / purpose for this sprint

Produce sketches of ideas to be presented to mentors and employer, and doc-
ument current solution.

Planned activities this sprint

• Finish project preliminary report.

• Deliver the project preliminary report to mentors for evaluation.

• Review mentors comments on the project preliminary report.

• Contact Solwr for possible resources in form of simulators and CAD files,
that the group can utilize.

• Make a template for the bachelor thesis.

• Start writing in the bachelor thesis.

• Document the functionality of the current camera systems, on Sort™.

• Document a rough estimate of the current cost and maintenance for the
current camera system, on Sort™.

• Brainstorm on concepts for the new camera setup.

• Sketch ideas for new camera setups.

5

←↩

←↩

1. Sprint 1, start 17.01.22, week 3

Actually conducted activities this sprint

Completed: ✓, In progress: ✗, Postponed: crossed out, Added: Bold text

• Finish project preliminary report. ✓

• Deliver the project preliminary report to mentors for evaluation. ✓

• Review mentors comments on the project preliminary report. ✓

• Contact Solwr for possible resources in form of simulators and CAD files,
that the group can utilize. ✓

• Make a template for the bachelor thesis. ✓

• Start writing in the bachelor thesis. ✓

• Document the functionality of the current camera systems, on Sort™. ✗

• Document a rough estimate of the current cost and maintenance for the
current camera system, on Sort™.

• Brainstorm on concepts for the new camera setup. ✓

• Sketch ideas for new camera setups. ✓

• 3D-model sketches in Onshape. ✓

Description of / justification for potential deviation

between planned and real activities

Not enough data about the current system has been gathered to write about
the total costs of the system.

Not enough time to 100% document the current system functionality. To
fulfill the required quality in the thesis, this was more work then anticipated.
However, the task is approximate 50% completed.

In order to better present the ideas, it was decided that 3D-modelling sooner
would be better.

6

←↩

←↩

1. Sprint 1, start 17.01.22, week 3

Description of / justification for changes that is

desired in the projects content or in the further

plan of action – or progress report

3D-modelling moved up one week because it was better to present 3D-models
than just sketches in the meeting.

To add documentation of current solution in next sprint.

Main experience from this period

Good progress in regards to learning Onshape. The selected 3D-modeling
software for this project.

Good communication with the employer, and valuable feedback on the
project preliminary report from mentors.

Main purpose / focus next period

• touching up on the previous ideas and improving the 3D-models

• new brainstorm session for new ideas

• documenting the current solution

• documenting new cameras

7

←↩

←↩

1. Sprint 1, start 17.01.22, week 3

Planned activities next period

• research new camera

• sketching new solutions

• 3D-modelling ideas

• finish writing about the current system: hardware

• writing about the current camera: software

• documenting the current system: economy

• documenting the current system: image acquisition

• documenting the current system: statistics

• documenting new cameras

Other

Nothing to note.

Wish / need for counseling

The group wishes to get a better insight into the economics of the current
system in order to document the changes in cost of a new system.

The group wishes to get a better insight into the software, coding and algo-
rithm behind the current system. This is to better understand liming factors
when designing new solutions.

8

←↩

←↩

2. Sprint 2, start 31.01.22, week 5

2 Sprint 2, start 31.01.22, week 5

Main goal / purpose for this sprint

• touching up on the previous ideas and improving the 3D-models

• new brainstorm session for new ideas

• documenting the current solution

• documenting new cameras

Planned activities this sprint

• Finish documenting image acquisition of the current system

• Document the current system’s economy

• Document the current system’s statistics

• Sketch and CAD possible solutions

• Research and document new camera specs

• Document new solutions in the thesis

Actually conducted activities this sprint

Completed: ✓, In progress: ✗, Skipped: crossed out, Added: Bold text

• Finish documenting image acquisition of the current system✓

• Document the current system’s economy✗

• Document the current system’s statistics✓

• Sketch and CAD possible solutions✓

• Research and document new camera specs✓

• Document new solutions in the thesis✓

• Document how many images are needed to see all required
surfaces✓

9

←↩

←↩

2. Sprint 2, start 31.01.22, week 5

Description of / justification for potential deviation

between planned and real activities

The current system’s economy need to be supplied by Solwr, and the group
time for this task was used on a added task for the sprint. The added task
was that Solwr specifically asked for us to complete our analysis of how many
cameras would be needed, at minimum.

Description of / justification for changes that is

desired in the projects content or in the further

plan of action – or progress report

Because of our digression regarding the documentation of the current system’s
economy, we will need to postpone this to next sprint. We will be more
focused on a specific solution. This frees up more time to obtain the necessary
documentation.

Main experience from this period

We’ve had more talks with Solwr, they’ve clarified their expectations for this
project and what immediate tasks we should focus on.

10

←↩

←↩

2. Sprint 2, start 31.01.22, week 5

Main purpose / focus next period

• 3D model our most promising solution in Onshape.

• Establish new meeting routines

• Investigate if Zivid two is a viable option.

Planned activities next period

• CAD, camera portal

• CAD, cameras

• CAD, conveyor

• CAD, stacking platform

• CAD, grabber

• finish FOV checker in Python

Other

Going forward, the meetings associated with each sprint will be held on Tues-
days the following week. This is due to schedules not lining up.

Wish / need for counseling

11

←↩

←↩

3. Sprint 3, start 14.02.22, week 7

3 Sprint 3, start 14.02.22, week 7

Main goal / purpose for this sprint

• 3D model our most promising solution in Onshape.

• Establish new meeting routines

• Investigate if Zivid two is a viable option.

Planned activities this sprint

• CAD, camera portal

• CAD, cameras

• CAD, conveyor

• CAD, stacking platform

• CAD, grabber

• finish FOV checker in Python

Actually conducted activities this sprint

Completed: ✓, In progress: ✗, Postponed: crossed out, Added: Bold text

• CAD, camera portal ✓

• CAD, cameras ✓

• CAD, conveyor ✓

• CAD, stacking platform ✓

• CAD, grabber ✗

• finish FOV checker in Python ✗

12

←↩

←↩

3. Sprint 3, start 14.02.22, week 7

Description of / justification for potential deviation

between planned and real activities

We found out that we did not need all models in order to progress in regards
to the simulation. We will be able to test a basic version with the models
we completed and from that we will know how detailed we need to make the
other ones.

The FOV script also proved more time intensive than first imagined. Due
to another course running parallel to the bachelor thesis, we had to deprior-
itize the script. It currently functions as a proof-of-concept. The only thing
missing is to make the script handle the field-of-view of cameras and not
360°/360°coverage.

Description of / justification for changes that is

desired in the projects content or in the further

plan of action – or progress report

We will be moving up the work with the simulator. This is because we have
gotten feedback that this is a very time consuming activity and we do not see
3D-modelling in great detail to serve our goal.

Main experience from this period

The group has gained experience in simulating and 3D-modelling.

Main purpose / focus next period

Get an understanding of how to simulate our solution in Webots. The group
will also finish importing the needed components to Webots.

Planned activities next period

• Do tutorials in Webots

• Program camera in Webots

• Import 3D-models to Webots

• Program movement of pallets in Webots

13

←↩

←↩

3. Sprint 3, start 14.02.22, week 7

Other

None

Wish / need for counseling

None

14

←↩

←↩

4. Sprint 4, start 28.02.22, week 9

4 Sprint 4, start 28.02.22, week 9

Main goal / purpose for this sprint

Get an understanding of how to simulate our solution in Webots. The group
will also finish importing the needed components to Webots.

Planned activities this sprint

• Do tutorials in Webots

• Program camera in Webots

• Import 3D-models to Webots

• Program movement of pallets in Webots

Actually conducted activities this sprint

Completed: ✓, In progress: ✗, Postponed: crossed out, Added: Bold text

• Do tutorials in Webots ✓

• Program camera in Webots

• Import 3D-models to Webots ✓

• Program movement of pallets in Webots

Description of / justification for potential deviation

between planned and real activities

The group has an intensive course running alongside the bachelor thesis. It
was decided that in order to get good grades in that subject, the group would
have to change their focus. Not a lot of progress has been made to the thesis
this sprint.

15

←↩

←↩

4. Sprint 4, start 28.02.22, week 9

Description of / justification for changes that is

desired in the projects content or in the further

plan of action – or progress report

Shift the Gantt diagram back a few weeks while the other subject concludes

Main experience from this period

Making a simulator will be time intensive. The group finds it likely that this
will occupy their time all the way up to the delivery deadline of the thesis.

Main purpose / focus next period

Give status to Solwr regarding the group’s progress

Planned activities next period

• Meeting with Solwr

• Continue working on FOV-script

Other

None

Wish / need for counseling

None

16

←↩

←↩

5. Sprint 5, start 14.03.22, week 11

5 Sprint 5, start 14.03.22, week 11

Main goal / purpose for this sprint

Give status to Solwr regarding the group’s progress

Planned activities this sprint

• Meeting with Solwr

• Continue working on FOV-script

Actually conducted activities this sprint

Completed: ✓, In progress: ✗, Postponed: crossed out, Added: Bold text

• ✓Meeting with Solwr

• ✓Continue working on FOV-script

Description of / justification for potential deviation

between planned and real activities

None

Description of / justification for changes that is

desired in the projects content or in the further

plan of action – or progress report

None other than previously mentioned. The Gantt diagram will be shifted a
few weeks back in order for the group to focus on another subject.

Main experience from this period

Solwr has provided some additional manufacturers they wanted the group to
look into.

17

←↩

←↩

5. Sprint 5, start 14.03.22, week 11

Main purpose / focus next period

Begin programming the simulator

Planned activities next period

• Finish FOV-script

• Finish simulator tutorials

• Simulate movement of 3D-objects in Webots

• Research different cameras

• Finish documenting current system’s statistics

• Obtain a point cloud from a Webots object

Other

None

Wish / need for counseling

None

18

←↩

←↩

6. Sprint 6, start 28.03.22, week 13

6 Sprint 6, start 28.03.22, week 13

Main goal / purpose for this sprint

Program a simulator

Planned activities this sprint

• Finish FOV-script

• Finish simulator tutorials

• Simulate movement of 3D-objects in Webots

• Research different cameras

• Finish documenting current system’s statistics

• Obtain a point cloud from a Webots object

Actually conducted activities this sprint

Completed: ✓, In progress: ✗, Postponed: crossed out, Added: Bold text

• Finish FOV-script ✓

• Finish simulator tutorials ✓

• Simulate movement of 3D-objects in Webots ✓

• Research different cameras ✓

• Finish documenting current system’s statistics ✓

• Obtain a point cloud from a Webots object ✓

Description of / justification for potential deviation

between planned and real activities

None

19

←↩

←↩

6. Sprint 6, start 28.03.22, week 13

Description of/ justification for changes that is de-

sired in the projects content or in the further plan

of action – or progress report

None

Main experience from this period

The group has made a lot of progress regarding the simulator. The main
experience from this sprint is about generating and exporting data from a
simulator.

Main purpose / focus next period

Finish simulation

Planned activities next period

• Complete simulation

• Document current progress

Other

None

Wish / need for counseling

None

20

←↩

←↩

7. Sprint 7, start 11.04.22, week 15

7 Sprint 7, start 11.04.22, week 15

Main goal / purpose for this sprint

Finish simulator

Planned activities this sprint

• Complete simulation

• Document current progress

Actually conducted activities this sprint

Completed: ✓, In progress: ✗, Postponed: crossed out, Added: Bold text

• Complete simulation ✗

• Document current progress ✗

Description of / justification for potential deviation

between planned and real activities

None

Description of / justification for changes that is

desired in the projects content or in the further

plan of action – or progress report

None

Main experience from this period

A lot of progress has been made in regards to the simulation. The group has
been focusing on different methods of gathering distance and color data in
Webots.

21

←↩

←↩

7. Sprint 7, start 11.04.22, week 15

Main purpose / focus next period

Complete the simulator

Planned activities next period

• Finish simulator

• Continue documenting progress in the report

Other

None

Wish / need for counseling

None

22

←↩

←↩

8. Sprint 8 start 25.04.22, week 17

8 Sprint 8 start 25.04.22, week 17

Main goal / purpose for this sprint

Complete the simulator

Planned activities this sprint

• Finish simulator

• Continue documenting progress in the report

Actually conducted activities this sprint

Completed: ✓, In progress: ✗, Postponed: crossed out, Added: Bold text

• Finish simulator ✓

• Continue documenting progress in the report ✓

Description of / justification for potential deviation

between planned and real activities

None

Description of / justification for changes that is

desired in the projects content or in the further

plan of action – or progress report

None

Main experience from this period

The prototype was a big learning experience. Connecting the theoretical to
the practical.

23

←↩

←↩

8. Sprint 8 start 25.04.22, week 17

Main purpose / focus next period

Completing the thesis

Planned activities next period

• Finish the thesis

• Make a poster

• Make a video presentation

Other

None

Wish / need for counseling

None

24

←↩

←↩

9. Sprint 9 start 09.05.22, week 19

9 Sprint 9 start 09.05.22, week 19

Main goal / purpose for this sprint

Completing the thesis

Planned activities this sprint

• Finish the thesis

• Make a poster

• Make a video presentation

Actually conducted activities this sprint

Completed: ✓, In progress: ✗, Postponed: crossed out, Added: Bold text

• Finish the thesis ✓

• Make a poster ✓

• Make a video presentation ✓

Description of / justification for potential deviation

between planned and real activities

None

Description of / justification for changes that is

desired in the projects content or in the further

plan of action – or progress report

None

25

←↩

←↩

9. Sprint 9 start 09.05.22, week 19

Main experience from this period

Writing a bachelor is a time-consuming process. The final weeks included a
lot of hours outside of the prospected working hours. The group should have
written more as they progressed.

Other

None

Wish / need for counseling

None

26

←↩

←↩

Q Bachelor meetings report

Appendix Q

Bachelor meetings report

cxlvii

←↩

Solwr

IELEA2920 - bachelor thesis

MEETING REPORTS

Odd Arne Tynes, Pål-André Furnes,
Marius Høyer Melaas

A report including all official meetings regarding the bachelor thesis.

May 2022

←↩

←↩

Contents Contents

Contents

1 Sprint meeting 14.01.2022, Week 2 2
1.1 Main topic: Startup meeting with all involving partners 2

2 Sprint meeting 28.01.22, Week 4 4
2.1 Main topic: Showing off possible new solutions 4

3 Progress meeting 04.02.22, Week 5 6
3.1 Main topic: Discussing possible solutions with employer 6

4 Sprint meeting 15.02.22, Week 7 7
4.1 Main topic: General progress . 7

5 Sprint meeting 01.03.22, Week 9 8
5.1 Main topic: General progress . 8

6 Progress meeting 10.03.22, Week 5 9
6.1 Main topic: Discussing progress with employer 9

7 Sprint meeting 29.03.22, Week 13 10
7.1 Main topic: Discussing progress and focus going forward 10

8 Progress meeting 05.04.22, Week 14 11
8.1 Main topic: Discussing possible cameras 11

9 Meeting 12.04.22, Week 15 12
9.1 Main topic: Discussing the plan for the final two sprints 12

10 Meeting 26.04.22, Week 17 13
10.1 Main topic: Prototyping . 13

11 Meeting 10.05.22, Week 19 14
11.1 Main topic: The final period . 14

1

←↩

←↩

1. Sprint meeting 14.01.2022, Week 2 Contents

1 Sprint meeting 14.01.2022, Week 2

1.1 Main topic: Startup meeting with all involving partners

Invited parties: Marius H.M, Odd Arne T., P̊al-André F., Olivier R.D.,
Ottar L.O., Erlend Magnus L.C., Lars Ivar H.

Attended parties: Marius H.M, Odd Arne T., P̊al-André F., Olivier R.D.,
Ottar L.O., Erlend Magnus L.C., Lars Ivar H.

Preliminary questions/answers:

• Do Currence Robotics require a written agreement regarding the bachelor
thesis?

– No.

• What cameras should the group base their simulation and model on?

– The group will use Intel’s cameras. They produce results similar enough
to Zivid’s.

• Will the group have access to any desk or office space at Driw?

– No answer at this time. Driw is currently quite full and closed due to
corona restrictions, but we will come back to this after corona restrictions
are lifted.

• Should the group have a local contact person at Currence?

– We should try using Slack as the main communication medium. Use it
often. If we know someone has a lot of knowledge on a certain subject,
we can direct questions to them specifically.

• Do we have a budget for ordering parts we may need?

– Currence Robotics has a lot of equipment already, try using that first.
Ordering new equipment is also possible after dialog with company rep-
resentative.

• Do Currence already have a finished simulator in Webots?

– Yes, a model is ready. Direct questions about Webots to Harald. Alter-
natively Trondheim.

• How should the group distribute Gantt diagram, agenda and progress report?

– When inviting to a meeting, the group will upload the relevant documents
to that meeting’s files.

2

←↩

←↩

1.1 Main topic: Startup meeting with all involving partners Contents

Meeting agenda:

• General introduction

• Deciding boundaries for the thesis

• Establishing routine for meetings

• Starts first sprint (sprint planning this Monday)

Meeting summary:

• We should be using Intel’s cameras, the old ones. The field of view is similar
enough to be used as a replacement and will give a good enough proof-of-
concept.

• The group is advised to produce many different concepts, no matter how
stupid, and present them to Currence Robotics so that they can decide which
ones to pursue.

• The group should take care to clearly define the scope of the project. This can
be modifies as time passes, but the initial scope needs to be clear to everyone
involved.

• Meetings will be held every other Friday. The project group will handle invi-
tations and meeting agenda.

3

←↩

←↩

2. Sprint meeting 28.01.22, Week 4 Contents

2 Sprint meeting 28.01.22, Week 4

2.1 Main topic: Showing off possible new solutions

Invited parties: Marius H.M, Odd Arne T., P̊al-André F., Olivier R.D.,
Ottar L.O., Erlend Magnus L.C., Lars Ivar H.

Attended parties: Marius H.M, Odd Arne T., P̊al-André F., Ottar L.O.,
Lars Ivar H.

Preliminary questions/answers:

• What should we call ”Styringsgruppa” in English?

– Reference group.

• How to include the preliminary report in appendix?

– Include it in the final thesis. Not in a seperate file.

• What is your opinion on the group’s way of writing references, and should
they offer additional info?

– Some examples have been put into the thesis. We should include date
accessed.

• Should we include a separate chapter in the final thesis for Sort, or should we
write it in ”Theory”?

– Put it in Material and method. Use a design process where looking at
previous designs is part of it. This gives a natural transition into results.

• When should the group distribute the Gantt diagram and progress report?

– It should be available by lunch time the day before.

• Can we push the meeting start by half an hour going forward 09:30 - 10:30?

– Schedule with everyone by e-mail. The weekday is likely to change. Meet-
ings should be shorter, about 30 minutes, going forward.

• How should the group handle copying text from the project preliminary report?

– Refer to appendix, and text in cursive.

Meeting agenda:

• progress report

• general questions

• showing a sample of sketches and 3D-models

• feedback on said models

4

←↩

←↩

2.1 Main topic: Showing off possible new solutions Contents

Meeting summary:

• Got a tip about using draw.io for flowcharts.

• The group showed some sketches, and discussed some additional ideas to be
sketched up in the coming sprint.

• The group notified the reference group that the sprint is ambitious, and this
is intentional to reach for high results.

• The meeting schedule should be changed. Looking at possibility of having it
on Wednesdays.

• We shoould present ideas to Currence Robotics as they come, by Slack, and
not wait for a scheduled meeting.

• We should use a design process to document the progress we make, and how
we make it. This gives the reader of the final thesis a sense of timeline of when
and how we reached our final result.

• We should look into Simplygon. A simple 3D-modelling software to easily
present possible solutions

• New ideas shared by reference group:

– Using a belt with camera attached to move it into multiple locations.

– Using ball joints on the frame sketched in design 1 and 5. This gives an
alternative to having the camera move up and down.

– Use the gripper to move pallet into position. This is in order to reduce
having to move the camera(s).

– Using a rotating surface with camera attached that moves the camera in
a circular pattern.

– Using rope control to move camera. (I.e: BR Automation’s CableEndy)

5

←↩

←↩

3. Progress meeting 04.02.22, Week 5 Contents

3 Progress meeting 04.02.22, Week 5

3.1 Main topic: Discussing possible solutions with employer

Invited parties: Marius H.M, Odd Arne T., P̊al-André F., Olivier R.D.

Attended parties: Marius H.M, Odd Arne T., P̊al-André F., Olivier R.D.

Preliminary questions/answers:

• Will it be possible for the group to use Driw as a workplace?

– The group was asked to send mail to Andrea to check if there were any
available space at Driw.

• Ask employer to elaborate on the point cloud from Sigmund.

– They explained why there was missing pices in the point cloud.

• Will sprint planning meeting at Wednesday 13:00 work for the employer?

– Should send mail to all participants in order to see what time is best for
everyone.

• What solution is most promising, and the group should pursue?

– The group should verify what can be seen using two cameras first. Based
on this the design will either have two, four or more cameras.

Meeting agenda:

• Discuss adding a new arm/grabber

• Discuss rotating while lifting

• Discussing if a much higher pallet count should be a motivation for our designs

• Show Gantt diagram and plans forward.

Meeting summary:

• The group discussed some of the solutions

• The employer wanted the group to create a 3D CAD of FOV on Onshape

• Andrea will look in to workspace on Driw.

• The group created a Doodle sheet to find a new time for the biweekly sprint
meeting.

6

←↩

←↩

4. Sprint meeting 15.02.22, Week 7 Contents

4 Sprint meeting 15.02.22, Week 7

4.1 Main topic: General progress

Invited parties: Marius H.M, Odd Arne T., P̊al-André F., Ottar L.O.,
Erlend Magnus L.C., Lars Ivar H., Olivier R.D.

Attended parties: Marius H.M, Odd Arne T., P̊al-André F., Lars Ivar H.

Preliminary questions/answers:

• Should we go deep into the theory of point clouds or keep it more surface level?

– Explain it in enough details so that any reader understands what we are
presenting.

• Since the Zivid camera has a higher resolution, will this result in a longer
computation time?

– Not answered

Meeting agenda:

• Discuss progress the group has made

• Discuss possible solutions and CADs

Meeting summary:

The group showed the progress they had made. In regards to the thesis, program-
ming, and the most promising camera setup.

7

←↩

←↩

5. Sprint meeting 01.03.22, Week 9 Contents

5 Sprint meeting 01.03.22, Week 9

5.1 Main topic: General progress

Invited parties: Marius H.M, Odd Arne T., P̊al-André F., Ottar L.O.,
Erlend Magnus L.C., Lars Ivar H.

Attended parties: Marius H.M, Odd Arne T., P̊al-André F., Lars Ivar H.

Preliminary questions/answers:

• None

Meeting agenda:

• Discuss progress since last meeting

• Discuss the plan moving forward

• Discuss feedback from Currence

Meeting summary:

• The group has not made the progress they envisioned. This is due to the
wrapping up of a different subject. This should be better once the subject is
concludes.

• The group was reminded on how big of a task simulating a physical system is.
They should keep this in mind when allocating time to this.

• If the group for some reason does not have enough time to finish a simulator,
they should look into implementing a ray tracing script in Unity.

8

←↩

←↩

6. Progress meeting 10.03.22, Week 5 Contents

6 Progress meeting 10.03.22, Week 5

6.1 Main topic: Discussing progress with employer

Invited parties: Marius H.M, Odd Arne T., P̊al-André F., Olivier R.D.

Attended parties: Marius H.M, Odd Arne T., P̊al-André F., Olivier R.D.,
Solwr team

Preliminary questions/answers:

Meeting agenda:

• Discuss most promising solution

• Receive feedback on the solution

• Plan the next step of the project

Meeting summary:

• The most promising design seems to be viable. No major flaws can be found.

• One of the cameras would need to be moved, but this is unproblematic. It has
to be moved due to collisions with the wall behind Sort™.

• The group should start looking for different manufacturers in order to make
the new design cheaper or better.

9

←↩

←↩

7. Sprint meeting 29.03.22, Week 13 Contents

7 Sprint meeting 29.03.22, Week 13

7.1 Main topic: Discussing progress and focus going for-
ward

Invited parties: Marius H.M, Odd Arne T., P̊al-André F., Erlend Mag-
nus L.C., Lars Ivar H.

Attended parties: Marius H.M, Odd Arne T., P̊al-André F., Lars Ivar H.

Preliminary questions/answers:

• None

Meeting agenda:

• Discussing progress

• Discussing meeting with Solwr

• Discussing focus going forward

Meeting summary:

• The group gave an update on their progress. Good progress regarding FOV
script.

• The group has just finished it’s second subject. They are just now getting
started with the bachelor again.

• The group will focus on comparing different cameras and deciding which one
is the most suited for their purpose, for the time being.

10

←↩

←↩

8. Progress meeting 05.04.22, Week 14 Contents

8 Progress meeting 05.04.22, Week 14

8.1 Main topic: Discussing possible cameras

Invited parties: Marius H.M, Odd Arne T., P̊al-André F., Olivier R.D.,
Thomas S.M., Rodrigo U.

Attended parties: Marius H.M, Odd Arne T., P̊al-André F., Thomas
S.M., Rodrigo U.

Preliminary questions/answers:

• Software used for point-clouds in today’s system.

– Solwr has developed their own software, and website to display all point-
clouds from cameras at Sort™.

Meeting agenda:

• Debating alternative cameras other then Zivid

• Check status for Zivid camera order

• Discuss placement number of cameras max pricing

• Discuss today’s solution of displaying point-clouds

Meeting summary:

• Solwr was happy with the groups research. Together we concluded to reach
out to the companies with viable solutions.

• The group presented the plan going forward:

– Display multiple LIDAR point-clouds

– Mimic a real camera spec

– Make simulation with 3 cameras

– Test various camera setups for best point-cloud

– Documentation of all work in thesis

– Play around with the Intel camera, so we are ready when the Zivid arrives

– Testing Zivid cameras when they arrive

– Display a 3D LIDAR point-cloud

11

←↩

←↩

9. Meeting 12.04.22, Week 15 Contents

9 Meeting 12.04.22, Week 15

9.1 Main topic: Discussing the plan for the final two sprints

Invited parties: Marius H.M, Odd Arne T., P̊al-André F., Ottar L.O.,
Erlend Magnus L.C., Lars Ivar H.

Attended parties: Marius H.M, Odd Arne T., P̊al-André F., Erlend Mag-
nus L.C., Lars Ivar H.

Preliminary questions/answers:

• How do we turn in the code for the software we have made?

– The reference group will come back to this.

Meeting agenda:

• Discussing the group’s progress

• Deciding whether or not to build a prototype

Meeting summary:

• The group has made a lot of progress

• The simulator is showing promising results

12

←↩

←↩

10. Meeting 26.04.22, Week 17 Contents

10 Meeting 26.04.22, Week 17

10.1 Main topic: Prototyping

Invited parties: Marius H.M, Odd Arne T., P̊al-André F., Olivier R.D.,
Ottar L.O., Erlend Magnus L.C., Lars Ivar H.

Attended parties: Marius H.M, Odd Arne T., P̊al-André F., Erlend Mag-
nus L.C., Lars Ivar H.

Preliminary questions/answers:

• Should the group spend time building a prototype?

– Yes, a physical prototype would benefit the thesis greatly.

Meeting agenda:

• Discussing the group’s progress

• Deciding whether or not the group should build a prototype

Meeting summary:

• The group has made a lot of progress in regards to the simulator.

• The group should build a prototype.

13

←↩

←↩

11. Meeting 10.05.22, Week 19 Contents

11 Meeting 10.05.22, Week 19

11.1 Main topic: The final period

Invited parties: Marius H.M, Odd Arne T., P̊al-André F., Erlend Mag-
nus L.C., Lars Ivar H.

Attended parties:

Preliminary questions/answers:

• How should the group turn in the software they have produced?

– We should add the source code to the appendix. Given that it is less
than 15 pages.

• When should we have the poster ready?

– The deadline will be announced.

• Is the current way of writing okay?

– We should try to make it less sections, combining the current sections
that are within the same area.

Meeting agenda:

• Discussing the group’s progress

• Discussing the prototype

Meeting summary:

• The current setup is too divided. Making it fewer, but bigger, sections would
be more appropriate.

• Overall, the group has made good progress. They should now focus on getting
all the data into the thesis.

14

←↩

←↩

R Project preliminary report

Appendix R

Project preliminary report

clxiii

←↩

Currence Robotics

IELEA2920 - bachelor thesis

PROJECT PRELIMINARY
REPORT

Odd Arne Tynes, Pål-André Furnes,
Marius Høyer Melaas

January 2022

←↩

←↩

Contents

List of Figures 2

List of Tables 2

1 Introduction 3

2 Project organization 4
2.1 Project group & mentors . 4
2.2 The group . 4

2.2.1 Marius Høyer Melaas . 4
2.2.2 P̊al-André Furnes . 5
2.2.3 Odd Arne Tynes . 5

2.3 Employer . 5
2.4 Projects roles . 6

2.4.1 Responsibilities and tasks for the project leader 6
2.4.2 Responsibilities and tasks for the secretary 6
2.4.3 Responsibilities and tasks for the archivist 6

3 Arrangements and agreements 7
3.1 Bachelor’s contract with Currence Robotics 7
3.2 Workplace and resources . 7
3.3 Cooperation agreement . 8

3.3.1 Duration of agreement . 8
3.3.2 Purpose of the agreement . 8
3.3.3 Rules . 8
3.3.4 Responsibilities of each group member 8

4 Project description 9
4.1 Goals and purpose . 9
4.2 Project requirements . 10
4.3 Project development . 11
4.4 Crucial factors . 11
4.5 Main activities . 11
4.6 Project schedule . 12

4.6.1 Description of milestones . 12
4.6.2 Progress tracking . 12
4.6.3 Evaluation . 12
4.6.4 Decision making . 12

5 Documentation 13
5.1 Reports, routines and technical documents 13

5.1.1 Documentation of finished project: 13
5.1.2 Routines: . 13
5.1.3 Storage . 13

6 Planned meetings and reports 14

1

←↩

←↩

7 Planned non-conformance handling 15
7.1 Covid-19 . 16
7.2 Absence . 16
7.3 Slow deliveries and missing components 16
7.4 Data loss . 16

8 Equipment & implementation needs 17
8.1 Tools and hardware . 17
8.2 Software and license . 17

References 18

9 Appendix 19

List of Figures

1 Mockup of Sort . 9
2 Sort™ in action . 10
3 Non-conformance events, probability and consequence. 15
4 LIDAR cameras . 17

List of Tables

1 Student names and their student ID 4
2 Key personnel and their role in the project 4
3 Students and their corresponding roles 6

2

←↩

←↩

1 Introduction

The project is to develop, test and evaluate enhancements to a pallet sorting ma-
chine produced for logistics centers across Norway by Currence Robotics.

The group will primarily work with designing a new image acquisition solution. This
is due to the current cameras being discontinued by the manufacturer. The current
setup uses 6 cameras to map each pallet from multiple angles. The camera that is
considered to be the replacement is too expensive for this setup, due to competing
systems’ pricing. The group will therefore attempt to minimize the amount of cam-
eras needed, without compromising the system’s accuracy.

This will involve testing different setups. E.g. 4 stationary cameras, 2 cameras with
actuators or 2D-cameras with AI image recognition. In addition to this, the group
needs to be wary of lighting conditions in different warehouses. The group must
decide whether or not to mount lighting on the new setup to get consistent data
from the cameras.

The new concept will be tested using the current cameras. If successful, it will be
implemented in the next design of the pallet sorter.

If there is enough time, the group will also look into adding functionality to the
existing robot. E.g. adding sensors for weight and RFID. This is to sort out water-
logged pallets and aid error detection.

Currence Robotics has a working algorithm for recognition of pallets, but the group
might write an algorithm of their own. This is for educational purposes, but also to
investigate alternate ways to detect pallet defects.

Another assignment the group is considering adding is assembling and setup of a
new conveyor system. This will include mechanical work, programming of PLCs,
and electrical wiring. Each modification of the original goal will be discussed with
the group’s mentors and representatives from Currence Robotics in advance.

3

←↩

←↩

2 Project organization

2.1 Project group & mentors

Project group’s student ID
Marius Høyer Melaas ID: 498780
P̊al-André Furnes ID: 510340
Odd Arne Tynes ID: 522481

Table 1: Student names and their student ID

Mentors & business representative
Mentor Lars Ivar Hatledal NTNU
Mentor Erlend Magnus Lervik Coates NTNU
Senior advisor Ottar Laurits Osen NTNU
Employer (CTO) Olivier Roulet-Dubonnet Currence Robotics

Table 2: Key personnel and their role in the project

2.2 The group

The group consists of three members on their last semester of an automation bachelor
program, at NTNU Ålesund. The members have quite different backgrounds, which
the group sees as a strength. Earlier, the group has done several projects together,
with good communication and results.

2.2.1 Marius Høyer Melaas

Marius is 26-years-old from Molde, which is 1,5 hour away from Ålesund. He fin-
ished high-school with a certificate of apprenticeship in automation, and afterwards
moved to Oslo to finish his second certificate of apprenticeship in electro. There-
after he got drafted for the navy, and was responsible for electrical and mechanical
maintenance aboard a minesweeper named Hinnøy.

After his service in the navy he started ”Forkurs for ingeniørfag”-course at NTNU
during summer, and therefore could start directly on the automation bachelor pro-
gram in august 2019.

4

←↩

←↩

2.2.2 P̊al-André Furnes

P̊al-André is a 24-year-old raised on Vigra, close to Ålesund. He decided to be an
engineer when he was 10 years old, and has now almost reached that goal. He spends
his days either working out or working a part-time job.

He finished high-school with a certificate of apprenticeship in Automation. After
high-school he got drafted for military service where he spent his days maintaining
the weapons systems of a coast guard vessel in the northern parts of Norway, utilizing
his previous experiences in automation. Before his bachelor’s degree he spent one
year taking the ”Forkurs for ingeniørfag”-course at NTNU.

2.2.3 Odd Arne Tynes

Odd Arne is 27 years old and grew up in Sykkylven, one of Ålesund’s neighbors.
He finished high-school with a stud-spes diploma. After this he went on to study
physics at the university of Bergen.

After finishing a bachelor degree in physics He decided he wanted to focus on a
different field and landed on automation engineer. While studying he has been
working part time at various places.

2.3 Employer

Currence Robotics is a Norwegian tech company that develops and manufactures
robots for the warehouse industry. They have offices both in Ålesund and Trond-
heim. In Ålesund, they share office space with Driw AS, at a building named
”Driw-huset”.

Currence Robotics is a well-established company with a range of strong industrial
partners, suppliers and professional investors. Including a wide spread expertise
with a team of mathematicians, engineers, scientists, full stack developers, machine
learners and logistic experts. In addition, they well supported by Innovation Norway
and the Norwegian Research Council [1].

5

←↩

←↩

2.4 Projects roles

Project roles within the bachelor group
Marius Høyer Melaas Project leader
P̊al-André Furnes Secretary
Odd Arne Tynes Archivist

Table 3: Students and their corresponding roles

2.4.1 Responsibilities and tasks for the project leader

• Internal communication between the bachelor group and Currence Robotics.

• Ordering or buying parts needed.

2.4.2 Responsibilities and tasks for the secretary

• Send out meeting invitations, update Gantt diagram, and agenda.

• Book rooms for meetings.

• Write meeting reports.

2.4.3 Responsibilities and tasks for the archivist

• To upload Gantt diagram before every meeting

• Write sprint review and sprint planning.

6

←↩

←↩

3 Arrangements and agreements

3.1 Bachelor’s contract with Currence Robotics

Currence Robotics did not consider it necessary to write a contract. If proprietary
information is shared, a Non-Disclosure-Agreement can be considered.

3.2 Workplace and resources

Due to Covid restrictions, the employees at Currence Robotics works remotely.
Therefore, it was not possible for the group to have their own assigned workspace
at Driw at project start. When the restrictions are lifted, the employer will make a
new evaluation.

The project group can, with permission, use the equipment already at Currence
Robotics’ storage area. Currence Robotics can order new components as the group
needs them, if the components are necessary for the project.

The group is welcome to contact Currence Robotics employees directly or ask ques-
tions on a common server on Slack, a communications platform.

7

←↩

←↩

3.3 Cooperation agreement

3.3.1 Duration of agreement

The agreement duration is from the 10th of January 2022 until 20th of May 2022,
when the thesis is to be delivered.

3.3.2 Purpose of the agreement

The group is writing it’s bachelor thesis with Currence Robotics. This agreement
is formalized to achieve accountability for each group member to follow set rules in
chapter 3.3.3.

3.3.3 Rules

• Each group member must write a daily log describing the work they have done,
in relation to the bachelor thesis.

• Each group member must dedicate two hours each week to write the project
thesis.

• If a group member is unable to meet up with the others at the agreed upon
time and location, they must say so as soon as possible.

• Each group member must work an average of four workdays each week. To-
taling 32 hours each week, including lunch breaks.

• Each group member must attend sprint planning every other week. These
meetings specify what each member should be working on the coming weeks.

3.3.4 Responsibilities of each group member

• Daily log - Marius

• Weekly writing of thesis - Odd Arne

• Updating Gantt diagram - P̊al-André

8

←↩

←↩

4 Project description

4.1 Goals and purpose

The group’s main goal for this project is to develop a new image acquisition solution.
If successful, the solution is to be implemented in Currence Robotics’ pallet sorter,
named Sort™.

The group will be working with the version of Sort™ located at H.I. Giørtz, illus-
trated in figure 1. It was built in 2019 and continuously updated with improvements.
This instance of Sort was originally built as a prototype, but has since been devel-
oped into a commercial product.

The purpose of Sort™ is to sort pallets based on their characteristics into separate
stacks as seen in figure 1. In addition to this, Sort™ also determines whether or not
a pallet is defective, either due to damage or dirt.

Figure 1: Mockup of Sort

The reason for implementing a new image acquisition solution is that the current
camera is discontinued by the manufacturer. Another reason is restrictions using
the USB protocol. There are issues with both cable length and data handling from
multiple cameras. A third reason is the current camera is not an industrial camera,
and therefore is lacking industrial standards in lifespan and robustness.

9

←↩

←↩

Figure 2: Sort™ in action

The camera that is most likely to replace the current ones are too expensive to use
with the current solution, because of competitive pricing. Because of this, the goal
of this project is to achieve the same system accuracy with fewer cameras. The price
for the current camera is 520 euros [2], while the potential new camera, Zivid One+,
is between 6.500 and 11.850 euros [3], respectively. The Zivid camera pricing may
vary, due to negotiations between Zivid and Currence Robotics.

During the project period, the group has set out to achieve several milestones.

Milestones:

• reconstruct a 3D-structure from multiple images

• simulate possible solutions

• building prototypes based on simulations

4.2 Project requirements

• low latency

• high computational speed

• high accuracy

• must not be overly expensive

• reduce the number of cameras, without compromising the system’s accuracy

10

←↩

←↩

4.3 Project development

The project group will brainstorm and make several sketches of different solutions.
Thereafter, the sketches will be modeled in a browser-based 3D-modelling software,
named Onshape. Based on the mentors’ and employer’s feedback, one or several
solutions will be simulated for further research. The simulation will be built in
Webots. Webots supports user defined robots and several different programming
languages. Thereafter, a prototype will be built based on the most promising solu-
tion. Depending on the remaining time of the project, the prototype will be built
either by the project group or Currence Robotics.

In order to share software between group members and the employer, the group will
be using GitHub. This is a development- and version control tool. Using GitHub
will also make data loss highly unlikely due to it all being stored online and in
consecutive versions.

4.4 Crucial factors

One crucial factor for the project success is a good information- and feedback pro-
cess, with the team at Currence Robotics and the group mentors. This is due to
their experience and different fields of expertise.

In addition to this, all group members must fully commit to the project and it’s
agreement. Following the agreement signed on the first day of the project. If any
member does not contribute as expected, the workload may increase beyond the
group’s capacity.

4.5 Main activities

Main activities during the project period:

• researching the current camera setup

• researching point clouds generated by LIDAR-cameras

• researching viable new cameras

• produce new image acquisition solutions

• simulate in Webots

• simulate error detection

• prototyping

The planned timeline for these activities can be seen in the attached Gantt diagram
in chapter 9. The tasks within the Gantt diagram will be assigned at the start of
each sprint.

11

←↩

←↩

4.6 Project schedule

4.6.1 Description of milestones

Reconstructing a 3D-structure from multiple images:
In order to sort each pallet correctly, the software needs images from multiple angles
to make a 3D point cloud. A 3D point cloud is a collection of points that creates a
3D structure. With today’s point cloud accuracy it’s possible to determine type of
pallet, material, cracks, cleanliness and other defects. All of these parameters will
decide the pallet placement, and if the pallet should be discarded.

Simulate possible solutions:
The simulators accuracy and ability to recreate a real-life scenario, is critical for
prototyping. The simulator will be built in Webots, and will be the testing platform
for possible solutions. Therefore, the simulated environment should match real-life
conditions as closely as possible. The group has chosen Webots as their simula-
tor software and Onshape as their 3D-modelling software because that is the same
software as their employer. This allows the group to benefit from the employer’s
experience and file repository.

Building a prototype:
If a simulator meets the system requirements, the project group will start creating
a physical model as a proof-of-concept. Thereafter, Currence Robotics can improve
and implement the concept into their design.

4.6.2 Progress tracking

To monitor and document the group’s progress, the group will continuously update
the Gantt diagram and write daily logs. This enables the group to be structured
towards a common goal, easily document methods that did not meet the require-
ments, and make it easier for each group member to see how the team is progressing.
This also enables the group to hold each other accountable, and see where help is
needed to reach set goals.

4.6.3 Evaluation

The project group will have a running dialogue with both their mentors at NTNU
and Currence Robotics. All ideas the group presents are discussed and considered.
The ones that are deemed unnecessary complex or too expensive will not be pursued
further.

4.6.4 Decision making

All significant decisions will be decided by consulting the group mentors and Cur-
rence Robotics. Thereafter, the group will apply a democratic practice.

12

←↩

←↩

5 Documentation

5.1 Reports, routines and technical documents

5.1.1 Documentation of finished project:

• bachelor application

• project preliminary report

• bachelor meeting reports

• progress reports

• Gantt diagram

• daily logs

• bachelor thesis

5.1.2 Routines:

• Progress meetings with mentors at the end of every 2-week sprint.

• Each member will write a daily log.

• Each group member must dedicate two hours each week to writing the bachelor
thesis.

• The secretary will write reports and send out invites for every meeting.

• The Archivist will make sure the Gantt diagram is up to date, and write
agenda for every meeting. In addition, take charge on writing sprint review
and sprint planning in a progress report.

5.1.3 Storage

The group will use a shared locker at campus for small items, and keep expensive
components at Driw or H.I. Giørtz.

13

←↩

←↩

6 Planned meetings and reports

The group will be using 2-week sprints. Sprints are a method of producing a set
amount of work within a set amount of time. Each sprint has specified tasks and
people delegated to each of them. Each sprint will be concluded with a meeting
with mentors and a representative from Currence Robotics.

The project group is responsible for arranging meetings and sending out the invites
to all relevant participants. Before every meeting, all participants will have the op-
portunity to view the group’s current progress in the form of a Gantt Diagram. It
will also detail the progress during the current sprint and the goal for the next.

Each sprint will end on even-numbered weeks. After the scheduled meeting, the
group will write a report of what was discussed, and distribute it to all participants.

Meeting schedule:

• Meeting 1, week 2, 14th of January 09:00-10:00

• Meeting 2, week 4, 28th of January 09:00-10:00

• Meeting 3, week 6, 11th of February 09:00-10:00

• Meeting 4, week 8, 25th of February 09:00-10:00

• Meeting 5, week 10, 11th of March 09:00-10:00

• Meeting 6, week 12, 25th of March 09:00-10:00

• Meeting 7, week 14, 8th of April 09:00-10:00

• Meeting 8, week 16, 22nd of April 09:00-10:00

• Meeting 9, week 18, 6th of May 09:00-10:00

14

←↩

←↩

7 Planned non-conformance handling

There remains a degree of unpredictability in the Covid pandemic, that most likely
will last throughout the project period. Therefore, it’s necessary to have procedures
in place, in case of another national or local lockdown. One obstacle might be a
lockdown that will limit the group’s workspace, and will force the group to work
remotely. This might limit the group’s ability to prototype. Another obstacle will
be if one or several group members becomes absent due to quarantine or illness. In
addition there is a constant evaluation of parts needed, considering the high chance
of a long delivery-time.

Figure 3: Non-conformance events, probability and consequence.

15

←↩

←↩

7.1 Covid-19

The group has several procedures to prepare and prevent damage on the project
progress. One procedure is a well-established file-sharing platform for files and daily
video meetings. Another procedure is the groups scheduling in a Gantt diagram and
daily logs to keep all members updated on the progress, and when tasks are meant
to be completed. Should one of the members feel too ill to work, the tasks are easily
re-distributed to a another member.

The project files are shared over Microsoft Teams, Overleaf, while all software are
hosted in GitHub. With an Overleaf subscription the group gets access to version
control on all shared documents. GitHub also offers version control, for the software.

Each member has received the booster dose against Covid-19, to lessen the chance
of infection and serious illness.

7.2 Absence

If one of the group members is absent for an extended period of time or indefinitely,
the workload for the remaining members will be shifted. This might reduce the
amount of total work produced by the group. Meaning that some of the initial goals
are not met. In addition, having one less group member will mean that ideas are
not as heavily discussed, possibly resulting in a lesser result.

To minimize the impact of this event, the group is using a Gantt diagram. All
remaining tasks are listed in the order of which they need to be completed, and
a preliminary timeline for each of them. The remaining group members can easily
view and claim the uncompleted tasks. In addition, proper log keeping will allow for
easier transfer of tasks, as there is a paper trail of what exactly has been completed.

7.3 Slow deliveries and missing components

In case parts are hard to obtain or get delayed the project might be held back, and
can create challenges with prototyping. Therefore it’s important to plan in detail,
and constantly evaluate and identify which parts to order. To prevent set backs, the
group will utilize parts that either are already accessible, or can be obtained locally.
Another solution would be to buy alternative parts, and perform mechanical adjust-
ments manually. Without a prototype, the group will lose out on data confirming
function, or highlighting flaws in the design.

7.4 Data loss

If files or other data were to be lost, the group risks having to redo several weeks of
progress. The CAD-files and simulators are all time consuming to produce.
In order to avoid loss of progress due to losing key files, the group will be using
cloud storage with version control wherever possible. This includes using Overleaf
for the group’s PDFs, GitHub for software, Onshape for 3D-modeling and Microsoft
Teams for all remaining files.

16

←↩

←↩

8 Equipment & implementation needs

8.1 Tools and hardware

• Currence Robotics will provide the group with needed tools and equipment
if it’s already in their storage. If the group requires further equipment, the
employer will evaluate the price and importance. Based on this decision the
employer will make the order.

• The group will utilize Intel RealSense™ 515 for this bachelor thesis, and it’s
the camera which is currently used on the Sort™ robot located on H.I.G. New
cameras will not be ordered due to it’s high price, and similarity. If the concept
is proven used the Intel cameras, it will be easily implemented with alternative
new cameras such as Zivid One+.

(a) Intel RealSense™ L515 (b) Zivid One+

Figure 4: LIDAR cameras

8.2 Software and license

• Currence Robotics will provide the group with necessary CAD files of Sort™.

• The employer wishes the group to update their progress on Slack, and this
might require a license. Currently the group uses a 90 day free trial on the
Slack application.

• For the project simulator the group will be using Webots which is an open
source platform. Webots supports several programming languages, and the
group will be using Python.

17

←↩

←↩

References

[1] C. Robotics, “Who we are.”

[2] Intel, “Intel realsense l515.”

[3] Zivid, “Zivid one+.”

18

←↩

←↩

9 Appendix

Project zip folder:

• Documents

– Gantt chart with daily logs

19

←↩

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
D

ep
ar

tm
en

t o
f I

CT
 a

nd
 N

at
ur

al
 S

ci
en

ce
s

Tynes, Odd Arne Skjeret
Furnes, Pål-André
Melaas, Marius Høyer

Redesigning the Point Cloud
Acquisition for Sort™

Bachelor’s thesis in Electrical Engineering
Supervisor: Hatledal, Lars Ivar
Co-supervisor: Coates, Erlend Magnus Lervik
May 2022

Ba
ch

el
or

’s
th

es
is

	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Scope
	Contributions
	Thesis outline
	Related work
	Applications of High-Precision Optical Imaging Systems for Small Unmanned Aerial Systems in Maritime Environments
	Image space coverage model for deployment of multi-camera networks

	Preliminaries
	Terminology
	Theory
	Point clouds
	Ray casting
	Asynchronous programming
	Formulas and mathematical methods
	3D cameras
	Pixel coordinates to world coordinates
	3D Transformations

	Software, protocols and technology
	PLC OPEN
	EtherCAT
	Encoder

	Research, software & simulation
	Current solution
	Introduction current Sort™ solution
	Work flow
	Conveyor system
	Camera portal
	Robot gripper
	Movable axes
	Out-feed
	Current camera solution
	Point cloud
	Economy
	Statistics

	Self-developed FOV software
	Object representation
	Checking field of view
	Checking seen points

	Possible designs
	Using CAD as inspiration and visualization
	Imported Zivid FOV
	Obstacle handling
	Design one, four & five
	Design two & three
	Design six
	Design seven
	Design eight
	Chosen design

	Possible cameras
	Zivid - One+ Medium
	Zivid - One+ Large
	Zivid - Two
	Nerian - Scarlet 3D depth camera
	Mech-mind - Mech-Eye laser L
	Cognex - 3D-A5120, extended working volume
	Chosen camera

	The Webots simulator

	Physical prototyping
	The first prototype
	The second prototype
	Camera mounting on the linear axis

	Camera placement
	Using the Zivid One+ Large in the prototype
	Prototype hardware and software
	Electrical wiring - Motor, Drive, Encoder, and Power supply
	Static IPv4 controller and PC
	Motor setup using Ethernet in Plug&Drive Studio 1

	Beckhoff and TwinCAT 3 PLCs
	Adding and installing the drive's ESI-file to TwinCAT
	Linking motor controller and axis in TwinCAT 3
	Building the HMI
	Axis parameter settings

	Motor controller tuning using Plug&Drive Studio 1
	Processing the prototype data

	Results
	Design
	Camera
	Self-developed FOV software
	Simulation
	Webots simulation of two solutions
	Zivid One+ Large simulated pallet point cloud

	Prototype
	Camera setup
	Mechanical setup
	Comparison of detected points in the point cloud
	Distance between points
	Speed of the prototype
	HMI

	Economy for the chosen solution

	Discussion
	Self-developed FOV software
	Step count
	Importing 3D-models
	Adding points of angled surfaces
	Expected results proved to be trustworthy

	Camera
	Cognex
	USB vs. Ethernet
	How the discontinuation of the Intel® RealSense™ L515 might impact the industry
	Reduction of cameras and its challenges
	Distance between points in the point cloud

	Simulator
	Prototype
	Prototyping using the Intel® RealSense™ L515 camera
	The height of the linear axis
	Incremental encoder
	Adding a light source
	Uncertainty in the new solution
	Added cost with the new solution
	Speed of the new solution
	Data from the prototype

	Workflow

	Conclusion and future work
	Conclusion
	Future work

	References
	Appendix
	The group's how-to-guide for programming drives, PLC and HMI
	Setting static IPv4 for motor controller
	Setting static IPv4 for a computer
	Motor setup though Ethernet in PlugDrive Studio 1
	Linking motor controller and axis in TwinCAT
	Connecting and linking a drive to an axis in TwinCAT
	Axis parameter settings

	Intel RealSense L515 Datasheet
	Zivid One+ Large Datasheet
	Nanotec DC motor datasheet
	Nanotec encoder Datasheet
	Nanotec N5 2-1 motor controller quick guide
	Source code, field of view software
	Source code, Webots simulator
	Source code, point cloud generator
	Source code, PLC program
	Bachelor poster
	Cooperation agreement
	Final Gantt diagram & daily logs
	Original Gantt diagram
	Hours worked
	Sprint review & planning
	Bachelor meetings report
	Project preliminary report

