
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Tony Paulsen
Petter Henriksen

Development of ROV for aquaculture
inspection platform

Bachelor’s thesis in Automation
May 2022

Ba
ch

el
or

’s
th

es
is

Tony Paulsen
Petter Henriksen

Development of ROV for aquaculture
inspection platform

Bachelor’s thesis in Automation
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

Development of ROV for aquaculture

inspection platform

Tony Paulsen

Petter Henriksen

May 2022

IELEA2920 / BACHELOR THESIS

Department of ICT and Natural Sciences

Norwegian University of Science and Technology

Supervisor 1: Ottar Laurits Osen

Supervisor 2: Lars Christian Gansel

i

Preface

This bachelor thesis is written by two students from automation engineering at NTNU Ålesund.

The students in the group have similar backgrounds within technology, however some variation

in subjects studied during the degree.

For this thesis, we wanted to create a new Remotely Operated Underwater Vehicle, ROV, for the

Aquaculture Inspection Platform, AIP. We wanted to expand upon previous groups projects, by

continuing solutions that worked well, such as the thrust-vector configuration and the general

architecture of electronics. We rewrote the entire software, by doing this we had better control

of all the subsystems of the ROV.

The main functionality that we added for our ROV was the higher depth rating, the ROV can dive

and work as intended at 60 meters+ below surface. The ROV is much lighter and mobile than

previous iterations. The ROV also has more measurement capabilities, that are highly relevant

for aquaculture inspection. A maneuvering assisting system was implemented, which prevents

the ROV from colliding with underwater structures, that in turn supports the operator of the

ROV in challenging underwater areas.

We recommend that the reader of this report has a basic understanding of mechanical, electrical

and software engineering to be able to fully understand the content of this bachelor thesis.

ii

Acknowledgement

We would like to thank everyone who helped us during the project and especially:

• Our mentors Ottar L. Osen and Lars Gansel for guidance throughout the project.

• Family and friends for supporting us throughout the project.

• Laboratory engineers Anders Sætermoen and Øyvind Andre Hanken for helping with or-

dering parts and supplying tools.

iii

Summary and Conclusions

This projects aims to create a new and improved prototype for a ROV that should later be inte-

grated into the aquaculture inspection platform. Our development used experiences and good

solutions from previous ROV projects, this included the general physical structure and electri-

cal architecture. The goals of the project was to create a brand new software system, that among

other things performs communication between the sub-systems in an efficient way. Addition-

ally, functionality as collision avoidance systems was integrated. For physical improvements,

the system should be lighter, more modular and able to dive to at least 60 meters depths.

The results suggests that the software was stable during operation of the ROV. By completing

gradually more demanding tests, first from under controlled environments and later with sea

trials, we adjusted the systems to work under variable conditions. Most of the implemented

functionalities worked as intended, however the video-streaming implementation did not de-

liver as originally hoped, however potential solutions to these problems were suggested. In sum-

mary, the developed ROV has good solutions for most of the new functionality. But still, there is

some key features that are not working as optimally as originally intended.

Contents

Preface . i

Acknowledgement . ii

Summary and Conclusions . iii

Acronyms . 2

1 Introductions 7

1.1 Background . 7

1.2 Problem formulation . 7

1.3 Objectives . 8

1.4 Structure of the Report . 9

2 Theoretical basis 10

2.1 Physics . 10

2.1.1 Buoyancy . 10

2.2 Communication protocols . 10

2.2.1 OSI model . 11

2.2.2 TCP . 11

2.2.3 UDP . 12

2.2.4 Serial . 12

2.2.5 I2C . 12

2.3 Camera . 13

2.3.1 Machine vision . 13

2.3.2 Resolution and FPS . 13

2.4 Aquaculture quality . 14

iv

CONTENTS v

2.4.1 Conductivity . 14

2.4.2 Salinity . 14

2.5 Sonar . 14

2.5.1 Passive sonar . 16

2.5.2 Active sonar . 16

2.6 Electrical . 17

2.6.1 EMI . 17

2.6.2 EMC . 17

2.6.3 Power transmission . 17

3 Material 19

3.1 Components . 19

3.2 Software . 23

3.2.1 Pycharm . 23

3.2.2 CLion . 23

3.2.3 Arduino IDE . 23

3.2.4 Fusion 360 . 24

3.2.5 PC Schematic . 24

3.2.6 Gantt . 24

3.2.7 Raspberry PI OS . 24

3.2.8 Cura . 24

4 Method 25

4.1 Project Organisation . 25

4.2 Function testing equipment . 26

4.2.1 Sonar . 26

4.2.2 Camera . 27

4.2.3 Combination sensor . 28

4.2.4 Thrusters, I2C sensors and safety sensors . 29

4.3 Collision avoidance system . 30

4.4 Graphical user interface . 31

CONTENTS vi

4.5 Communication . 32

4.5.1 Temperature & pressure sensors - Raspberry Pi 33

4.5.2 Arduino Uno - Raspberry Pi . 34

4.5.3 Scanning imaging sonar - Raspberry Pi . 38

4.5.4 Conductivity sensor - Raspberry Pi . 40

4.5.5 Raspberry Pi - Personal Computer (GUI) . 41

4.6 Design and modelling . 49

4.6.1 Concept . 49

4.6.2 Design and Manufacturing of ROV body . 49

4.6.3 Making of Internal Mounts . 51

4.6.4 External box . 52

4.6.5 Waterproofing . 52

4.7 Electrical . 53

4.7.1 External box . 53

4.7.2 Wiring . 53

5 Result 54

5.1 Software solutions . 54

5.1.1 Graphical User Interface . 54

5.1.2 Software performance . 55

5.1.3 Communication results . 55

5.2 Electrical . 56

5.3 Physical . 56

5.4 Test 1 . 59

5.5 Test 2 . 61

5.6 Test 3 . 65

6 Discussion 69

6.1 Technical results . 69

6.1.1 Design . 69

6.1.2 Electronics . 70

CONTENTS 1

6.1.3 Software . 72

6.2 Project accomplishments . 75

6.2.1 Distribution of work . 75

6.2.2 Unforeseen consequences . 76

7 Conclusions 77

Appendices 79

A Preproject report . 79

B Progress reports . 79

C Gantt diagram . 79

D Electrical drawings . 79

E User Manual . 79

F Arduino code . 79

G Raspberry Pi code . 79

H GUI code . 79

I Meeting invitations . 79

J Minutes of meeting . 79

Bibliography 80

CONTENTS 2

Terminology

PID Proportional integral derivative controller

GUI Graphical User Interface, makes it possible to interact with a computer

API Application Programming Interface, activates functions from a remote software

TCP Transmission Control Protocol, connection oriented transmission protocol of informa-

tion.

UDP User Datagram Protocol, non connection based transmission protocol of information.

IP Internet Protocol is a "best effort" delivery protocol

Notation

C Degrees Celsius

M Meters

V Volt

DC Direct current

AC Alternating current

A Ampere

F Farad

Kg Kilogram

ACK Acknowledgement message

GND Ground in electronic circuits

CONTENTS 3

Abbreviations

IEEE Institute of Electrical and Electronic Engineers

I2C Inter-Integrated Circuit

Gnd Ground in electronic circuits

DOF Degrees of Freedom, number of unique directions an object can move

GPIO General purpose input/output

RPi Raspberry Pi

SONAR Sound Navigation and Ranging

JSON Sound Navigation and Ranging

ESC Electronic speed controller

List of Figures

2.1 Angle of list. 11

2.2 Sonar paths illustrated when detecting an underwater object. 16

4.1 Initialization of serial communication with Aanderaa conductivity sensor

using HyperTerminal software. 28

4.2 Command line interface with Aanderaa conductivity sensor over serial using

HyperTerminal software. 29

4.3 Displaying communication between all devices for the ROV system. 32

4.4 Fusion 360 models of ROV body . 50

4.5 Fusion 360 Models of internal mounts . 51

5.1 Photos of the ROV . 57

5.2 Photos of the internals of the ROV . 58

5.3 Setup for test 1. 60

5.4 Photos of the external box during test 1 . 60

5.5 Photos of ROV before test 2 . 61

5.6 External box filled with epoxy. 62

5.7 Checking the ROV for leaks. 63

5.8 Ballast mounted to ROV . 64

5.9 ROV submerged in water during testing . 64

4

LIST OF FIGURES 5

5.10 . 66

5.11 Photos from Test 3 . 67

5.12 Screenshot of the GUI during the test 3. 68

List of Tables

4.1 RS232 serial connection settings for communication with conductivity sen-

sor from Aanderaa . 28

6

Chapter 1

Introduction

1.1 Background

This project aims to create a brand new prototype for a remotely operated underwater vehicle,

ROV, for the Aquaculture Inspection Platform, AIP. The ROV is made to be used as a part of a

larger system consisting of an unmanned surface vehicle and winch. The AIP will be remotely

controlled by a operator, where it will be directed to the area that needs inspection. When it

reaches its destination the winch lowers the ROV into the water. The ROV will provide the oper-

ator with a visual feed from a camera and a selection of data from multiple sensors mounted on

it.

1.2 Problem formulation

This project aims to develop a brand new prototype ROV. The goal is to create a improved version

of the existing prototype. The main focus will be on creating a ROV that is lighter, rated for

higher depths, easier to use, more modular and with more sensors than the previous design.

This prototype will also serve as a base for future development on AIP.

7

CHAPTER 1. INTRODUCTIONS 8

1.3 Objectives

The main requirement for this project was to make a functional prototype. The prototype needed

to carry a few different sensors, a camera and it needed to be able to dive 60 meters below sur-

face. Since the ROV needed to be built from the ground up a new software had to be created

from scratch,

1. Build new ROV body

2. Implement Aanderaa sensor and sonar

3. Create a brand new GUI with more functions

4. Implement new camera functions

5. Create and integrate a collision avoidance system

6. Test the ROV in the sea and try to dive to 60m

CHAPTER 1. INTRODUCTIONS 9

1.4 Structure of the Report

The rest of the report is structured as follows.

Chapter 2 - Theoretical basis: Chapter two gives an introduction to the theoretical background

for all aspects of the project.

Chapter 3 - Materials: Contains a description of the materials and software that were used in

the project.

Chapter 4 - Methodology: Goes over the methods and solutions used for the project.

Chapter 5 - Results: This chapter goes over the test results.

Chapter 6 - Discussion: Various discussions about the results and the groups thoughts on the

project.

Chapter 7 - Conclusions: This chapter present an overall conclusion for the project.

Chapter 2

Theoretical basis

This chapter goes over the theoretical background of the project.

2.1 Physics

2.1.1 Buoyancy

Buoyancy is a force that a liquid exerts on a object that it is immersed in. It is calculated with the

formula Fb =−pgV where Fb is the force of the buoyancy, p is the fluid density, g is acceleration

due to gravity and V is fluid volume. For objects floating, sunken and in gases as well as liquids

Archimedes principle can be stated as such: "Any object, wholly and partially immersed in a

fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object". If the

force is positive the object floats because it is lighter than the fluid it is displacing and if it is

negative the the object sinks due to it being heavier than the liquid that’s being displaced [43].

2.2 Communication protocols

Communication protocols are descriptions for how digital information should be formatted and

transported between devices [41]. These protocols are required to efficiently and reliably send

information in computer systems [51]. There is a multitude of unique protocols, all with ad-

vantages and disadvantages when compared to one another. The majority of the sections un-

10

CHAPTER 2. THEORETICAL BASIS 11

der will briefly explain the working principle and key advantages for common communications

protocols often used in industrial automation. However, firstly, a conceptual model for better

understanding of how the protocols are implemented, known as the OSI-model, is explained.

2.2.1 OSI model

The Open Systems Interconnection model is a conceptual and systematic way of structuring the

communication functions in computer systems [52]. Every layer in the model performs a func-

tion for the neighbouring layers. In total the model consists of 7 layers, as seen in Figure 2.2.

Figure 2.1: Angle of list.

The OSI model is a helpful tool for recognising what function specific protocols perform.

That said, many of the protocols can be in multiple layers simultaneously, for example ethernet

which is in both the physical and data link layer [53].

2.2.2 TCP

The transmission control protocol operates in the transport layer of the OSI-model. TCP is widely

known as a reliable method of exchanging information, as it is reliant upon verifying packets

[22]. In simple terms this is performed by sending ACK acknowledgment packets in response

to received packets. If the sender of the original data packets did not receive ACK -packets, new

packets are resent. This ensures that lost packets will be replaced, and no data is lost [22].

This protocol is widely used in many applications, and most programming languages and de-

vices has an easy integration of TCP. Additionally the protocol is easily scalable and open-source

CHAPTER 2. THEORETICAL BASIS 12

[29]. However, TCP has some drawbacks that is important to be aware of. As it is dependent

upon constantly checking packets, and responding with ACK messages, a lot of bandwidth is

used. Typically in applications that use a lot of data, this can be a bottleneck.

2.2.3 UDP

The User Datagram Protocol operates in the transport layer of the OSI-model. UDP is often

considered an alternative to TCP, in certain applications [31]. In contrast to TCP, which sends

packets and listens for responses. UDP sends datagrams and does not listen for acknowledge-

ment messages that informs if the data has arrived correctly. UDP therefore does not have any

guarantee that data arrives at the destination, this method is considered as best-effort commu-

nications [31].

For applications that require low usage of bandwidth and quick processing time, UDP is often

superior to TCP. As the datagrams in UDP uses less bytes in overhead, in opposition to packets

in TCP. This means that there is less information to process in relationship to relevant data. This

can be very important in systems that are comprised of controllers and regulation logic.

2.2.4 Serial

Serial communication is a type of communication protocols that sends data one bit at a time, in-

stead of sending data over multiple wires at the same time ??. Serial communication is a widely

used communication for small and simple components that do not require a lot of bandwidth.

Some of the common serial protocols are USB, I2C and two-wire ethernet connections ??.

2.2.5 I2C

The Inter-Integrated Circuit protocol is a type of serial communication and is commonly used

for short-distance communication in simple circuits [23]. The protocol uses four wires, two of

the wires are used for power supply, and the remaining for transmitting and receiving data. The

communication wires are called Serial data (SDA) and Serial clock (SCL). The SCL signal trans-

mits a clock signal that is used to synchronize and confirm the data bits sent by the SDA line [23].

CHAPTER 2. THEORETICAL BASIS 13

Advantages of the I2C protocol is that it is relatively simple to program and set up, cost-efficiency

and good error handling capabilities. However, main disadvantages is that speed is limited, as it

is a half-duplex protocol. In addition, the protocol can not handle EMI when cable lengths are

long.

2.3 Camera

2.3.1 Machine vision

Machine Vision is a term for all technology and methods used to extract information from a

image. The task is automated and it can be used to get all sorts of data. Machine Vision can

be applied to a single image, a set of images and videos since each frame of a video is a single

image. There are many use cases for this technology like for example on assembly lines to filter

out products that are not up to a set standard, it can also be used to for guidance systems in

robots and it can also be used for monitoring people as a part of a security system [49].

2.3.2 Resolution and FPS

There are many things to take into consideration when working with cameras two of the most

important are FPS and Resolution. FPS stands for frames per second and as the name suggests

it tells how many images the camera captures in 1 second [47]. Resolution is a term that tells us

how many pixels a image consists of. It is usually expressed as "width x height" so for example

a 4K image has a resolution of 3840x2160 pixels. A image with a higher resolution will be able to

display more details but the file will be bigger and therefore take up more data storage [44].

CHAPTER 2. THEORETICAL BASIS 14

2.4 Aquaculture quality

2.4.1 Conductivity

Conductivity is a measure for how good a substance is able to conduct electricity. For liquids

and electrolyte solutions, the SI unit siemens per meter is used [56]. This characteristic is highly

relevant for aquaculture conditions, as it used to calculate values such as salinity. Additionally it

can also used to find how much, and which types of dissolved elements the water contains [56].

2.4.2 Salinity

The amount of dissolved salt in a body of water, is known as salinity [57]. Salinity is either mea-

sured in gram/litre or gram/kg. Salinity in aquaculture applications is highly relevant as it an

important factor in determining water quality and gives an estimation of different substances

in water [57][30]. Specifically salinity can affect density of water, therefore water with salt con-

centrations will sink, and obstruct water flow, which could result in poor circulation of water in

areas with high numbers of fish or other marine life [30].

Calculation

When calculating salinity, the term practical salinity is used, and it is measured in the dimen-

sionless quantity g/kg. Practical salinity is an approximation of salt dissolved in water, however

it is not interchangeable with absolute salinity, which is the true salinity level [57]. The equation

for practical solution is dependant on temperature, pressure and conductivity.

2.5 Sonar

Sonar, Sound navigation and ranging, is a technique that uses sound propagation to measure

distance, navigate and detect objects [55]. Sonar can be used both in air and in water, however

usage in air is very limited as speed of sound is slow and gives inaccurate results, and since the

development of superior technology such as radar gives better results [59] it is rarely used on

land.

CHAPTER 2. THEORETICAL BASIS 15

The working principle of sonar is based on that if speed of sound in water is known and time

between outgoing generated sound signals and incoming reflected sound signals is controlled.

The distance can be calculated with equation 2.1. Where d is the distance from measured ob-

ject, si g T i meRec and si g T i meSent is the time when the sound signal was received and sent,

respectively. Finally, speedSound is the speed of sound under water.

d = (si g T i meRec − si g T i meSent) · speedSound

2
(2.1)

Another important parameter of sonar technology is the target-strength of objects. This

characteristic is used to determine the size, shape and type of objects [40][54]. The target strength

is evaluated with equation 2.2. T S is the value for how much signal is measured based on how

much signal was sent out, and is measured in decibels. δbs is the back-scattering cross-section.

Where back-scattering is a measure of how much signal is reflected back from its origin [54].

Which helps determine the type of objects, as for example seabed reflects sound energy differ-

ently in comparison to fish.

T S = 10 · log(
δbs

4π
) (2.2)

In addition to the applications mentioned above, back-scatter is also relevant when com-

pensating for false negatives and signal noise. Often sound signals will travel in many different

paths to- and from an object, as is illustrated in Figure 2.2. The figure shows three unique paths

for the signal to travel, although often there can be additional paths. One of these can arise if

there is a quick temperature change in seawater based on depth, the signal sound can bounce

off the warmer water level [55]. When signals take alternative paths, the time between sending

and receiving is artificially inflated, and will incorrectly indicate that measured objects are fur-

ther away than in reality. Back-scatter is used to combat this issue by comparing sound signals

strength and type, and determining which returns signal gives the most realistic value.

CHAPTER 2. THEORETICAL BASIS 16

Figure 2.2: Sonar paths illustrated when detecting an underwater object.

2.5.1 Passive sonar

Passive is one of two main categories of sonar types. This sonar type exclusively listens for am-

bient noise, and interprets the signals to find usable information. However passive sonars often

have clear limitations in term of performance. The sonar will often struggle with separating rel-

evant noise information, such as other ships, with its own vessel’s sound sources. This type of

sonar is often used when the vessel that is trying to locate objects, does not want to reveal its

own position, as in military applications. Or when the sonar signal can cause disturbances to

underwater life, as in aquaculture applications.

2.5.2 Active sonar

Active sonar has the added capability of transmitting sound pulses itself. This is the most typical

type of sonar, and is superior when locating objects quickly and often. This sonar often has a

rotational build, where it rotates around its z-axis and outputting and reading sound signals.

CHAPTER 2. THEORETICAL BASIS 17

2.6 Electrical

2.6.1 EMI

Electromagnetic interference is a disturbance on an electrical circuit by electromagnetic induc-

tion, electrostatic coupling or conduction [46]. Such disturbances can reduce the performance

of a circuit, or in worst case, completely shut down the functionality. Often communication

circuits are the most susceptible to such disturbances, as small changes in voltage levels can de-

cide the value of a signal. EMI can arise from natural sources, such as solar flares and lightning.

However, interference usually comes from other electrical components like frequency drives

and transformers [19].

2.6.2 EMC

Electromagnetic compatibility describes the ability of electrical equipment and systems to func-

tion in EMI environments [45]. EMC includes the generation, propagation and reception of elec-

tromagnetic interference. Most electrical systems utilise a combination of the before-mentioned

methods to function properly. A common technique to reduce generation and reception is to

use cables with shields that are grounded at one side [32]. The shield will work as a drain for

electric fields.

2.6.3 Power transmission

Transmission over long distances results in power loss. The main reason for this is that the

resistance in the cables increases the longer the cables are. If an application is using a constant

amount of current, but the length of cable is increased, the resistance will increase. And by

Ohm’s law, the voltage over the cable will increase, see equation 2.3.

Vcable = I ·Rcable (2.3)

As the voltage drop over the cable increases, the voltage over the application components

have to drop, as Kirchoff’s voltage law states, see equation 2.4.

CHAPTER 2. THEORETICAL BASIS 18

Vappli cati on =Vsour ce −Vcable (2.4)

Chapter 3

Materials

In this chapter you will get a overview of all the components and software that were used for this

project.

3.1 Components

Raspberry Pi 4

The Raspberry Pi is a small computer made by the Raspberry Pi Foundation and is often used in

robotics. Its around the size of a credit card and can run a lot of different Linux based operating

systems. The model we are using for this project has 8GB of RAM and a 1.5 GHz Quad core

processor. The I/O consists of 2 USB3 ports, 2 USB2 ports, 1 Gigabit ethernet port and 2 micro

HDMI ports. It also has 40 GPIO pins that can be used to control everything from motors to

LEDs [38].

Bar30 Depth/Pressure Sensor

The Bar30 is a waterproof pressure sensor made by BlueRobotics. The sensor itself is a Mea-

surement Specialities MS5837-30BA and it can measure up to 30 bar with 0.2 mbar resolution.

The sensor also measures temperature with a accuracy of +- 1 degree Celsius. It communicates

using I2C and the operating voltage ranges from 3,3V to 5,5V [7].

19

CHAPTER 3. MATERIAL 20

Celsius Fast-Response Temp Sensor

The Celsius Fast-Response is a waterproof temperature sensor made by BlueRobotics. The sen-

sor itself is a Measurement Specialities TSYS01 and it can measure temperature with 0,1◦C reso-

lution. The sensor communicates using I2C and the operating voltages ranges from 3,3V to 5,5V.

It also has a fast response time with 1 second with water flow and 2 seconds without [16].

SOS Leak Sensor

The SOS Leak Sensor is a sensor made by BlueRobotics which uses sponge tipped probes to

detect water leaks. The sensors operating voltage ranges from 3,3V to 5V [12].

T200 Thruster

The T200 is a underwater thruster made by BlueRobotics. It uses a brushless electric motor

housed in a body made of durable polycarbonate plastic. The motor is three phase and requires

a electronic speed controller to run it. The operating voltage ranges from 7 Volts to 20 Volts and

at full power it can produce 65.83 N of forward thrust and 49.37 N of reverse thrust. The thruster

is widely used in underwater robotics and can be run with a microcontroller like the Arudino

and the Raspberry Pi [15].

STC-MCA503USB

The STC-MCA503USB is a small USB 3.0 camera made by Omron Sentech. It has a 5 megapixel

sensor and a resolution of 2592 x 1944, it can record video at up to 14 fps. The camera uses

the C-mount standard for lenses, it gets its power from a USB 3.1 cable which it also uses for

communication. The camera has specific drivers made by Omron which are needed to make

the camera work [39].

CHAPTER 3. MATERIAL 21

Fathom-X Tether Board

The Fathom-X is a product made by BlueRobotics. It allows you to run a Ethernet connection on

only one pair in a standard CAT cable. It works by having one board on either end of the cable,

it can be powered by USB or a 7-28V input. It has a max practical bandwidth of 80Mbps and it

only consumes 5W of power. It is also fairly small which is advantageous when working in tight

spaces [10].

ICR18650 battery

The ICR18650 is a Lithium Ion battery sold by Biltema. The battery produces 3,7V and can out-

put up to 5,9A. It is rechargeable, and it has a max charging current of 4A and a max charging

voltage of 4,2V [6].

MEAN WELL RSDW60F-15 DC/DC converter 60W 15V 5A

The RSDW60F-15 is a small DC to DC converter made by MEAN WELL. It can output 15V and a

maximum of 4A. It can take a wide range of input voltages ranging from 9V to 36V. The output

voltage can also be adjusted up or down by 10 percent so it means the converter can output

voltages ranging from 13.5V to 16.5V. The converter has a max power output of 60W and can

operate in temperatures from -40 C to 85 C. It also has built in safety systems against short

circuits, overload, over voltage, over temperature and input under voltage lock out [21].

CHAPTER 3. MATERIAL 22

Murata UWE-12/6-Q48NB-C

The UWE-12/6-Q48NB-C is a a small isolated DC to DC converter made by Murata Power solu-

tions. It outputs 12V and up to 6A, it can take inputs ranging from 18V to 75V. The converter can

operate in temperatures from -40 C to +85 C [34].

Arduino UNO

The Arduino UNO is a microcontroller made by Arduino. It has a lot of different input and output

pins both analog and digital. Some of the digtial pins can also make a PMW signals. The Arduino

also has a power jack and a reset button. It has a recommended input voltage ranging from 7-

12V but it can run on 6-20V but this is not recommended [2].

Basic ESC

The Basic ESC(Electronic Speed Controller) is a motor controller made by BlueRobotics, it is

a improved version of a ESC made by BLHeli. The ESC allows you to control any three-phase

brushless motors. It runs on 7-26V and can consume up to 30A [9].

Ping 360 Sonar

The Ping 360 Sonar is a mechanical sonar made by BlueRobotics. It runs on 11-25V and con-

sumes at max 5W. The sonar is rated for depths of up to 300m and has a max range of 50m. It

communicates via USB, Ethernet or RS-485 [14].

Lumen Subsea Light

The Lumen Subsea Light is a LED light made by BlueRobotics. It has a waterproof housing which

is rated for depths of up to 500m. The LED has a peak brightness of 1500 lumen. It is dimmable

and can be controlled by using a micro controller by sending PWM signals. It runs on 7-48V and

has a peak current draw of Vin(Input Voltage)/15 [13].

CHAPTER 3. MATERIAL 23

Aanderaa Conductivity Sensor

The Aanderaa Conductivity Sensor 5819 is a small sensor made by Aanderaa. It measures tem-

perature, conductivity and depth to calculate a estimate of the salinity in water. The sensor

runs on 5-14V and consumes a maximum of 100mA. For communication it uses AiCaP, CANbus,

RS-232 and RS-422 [1].

BlueRobotics Watertight Enclosure

The enclosure is made by BlueRobotics and is rated for 100m depths. It consists of a acrylic tube

with two end caps that use double o-rings to ensure a water tight seal. For our configuration we

used one domed acrylic end and one aluminum end with 14 holes [11].

3.2 Software

3.2.1 Pycharm

PyCharm is a program made by JetBrains and it is used to write Python code. The program has

a lot of features which makes writing python code more intuitive [28].

3.2.2 CLion

CLion is a program made by JetBrains and it is used to write C and C++ code. The program has

a lot of features which makes writing C and C++ code more intuitive [27].

3.2.3 Arduino IDE

Arduino IDE is a software made for programming Arudino microcomputers. IDE uses C and C++

programming language with a few modifications, the software is available on Windows, macOS

and Linux [58].

CHAPTER 3. MATERIAL 24

3.2.4 Fusion 360

Fusion 360 is a 3D modeling CAD(Computer-aided design) software made by Autodesk, which

can be used for designing and engineering products. Fusion is a cloud based software [5].

3.2.5 PC Schematic

PC Schematic is a program made for drawing electrical schematic diagrams [37].

3.2.6 Gantt

A Gantt chart is a popular way of illustrating a project schedule, it makes it easier to get a

overview of what is actually being done in a project [48].

3.2.7 Raspberry PI OS

Raspberry PI OS is a GNU/Linux based operating system made by the Raspberry Pi Foundation.

It is specifically made for use on all Raspberry Pi computers [50].

3.2.8 Cura

Cura is a free software made by Ultimaker allowing you to 3D print your 3D models with a Ulti-

maker 3D printer [42].

Chapter 4

Methodology

4.1 Project Organisation

The group consists of two bachelor students with a similar background. Both students study

electrical engineering with a speciality of automation. However the students have taken some

different subjects leading up to the bachelor thesis, this gives a broader knowledge basis for the

project. Both members was assigned different positions within the group to ensure structure

and good cooperation. The positions were project leader and secretary.

The project leader’s responsibility was to ensure good time management and divide up the work

tasks in a reasonable way. To ensure this the project leader had to update the Gantt-diagram

regularly. In addition the project leader was tasked with organizing periodic meetings with the

control-group, producing progress-reports and meeting notices every two weeks.

The secretaries responsibility was to keep a structured overview of the general progress. Ad-

ditional tasks included reservation of eventual meeting location for the periodic meetings. And

writing and distributing minutes of meetings after meetings to ensure good documentation of

tasks and feedback.

25

CHAPTER 4. METHOD 26

4.2 Function testing equipment

To ensure that the components that were ordered were working properly and in a way that we

had planned, it was determined that we were going to prepare provisional connections and test-

ing scripts. These systems were simplified as much as possible, and further expanded with more

advanced functions that we needed for our purposes. The sub-chapters below describes in more

detail about how function testing for each respective components were performed.

4.2.1 Sonar

The initial test of the sonar was done by supplying the sonar with 12VDC externally, and con-

necting the USB-adapter into a computer. BlueRobotics the supplier of this sonar has created

a program, Ping-Viewer [18], to easily test parameters and sensor readings. This program was

downloaded and used. By watching the sonar circular and waterfall plots, we could see that the

sonar was apparently working as intended. We adjusted parameters as length and gradient step

length, to find first draft settings for the collision avoidance algorithm. Additionally the sonar

was lowered into a small tub of water to get more realistic sensor values, however even at the

shortest scan range, the sonar could not display any reasonable values. As the minimum scan

range is 0.75 [m], and the tub had dimensions of 0.5×0.4 [m].

After we had confirmation from previous tests that the sonar was functioning properly, imple-

mentation of the functionality in the RPi was the next step. The scanning imaging sonar has

open-source libraries that has the general functionality to operate the sonar and read raw data.

These libraries are available in multiple programming languages as Python, Arduino and C++.

For our purposes the functionality of the testing script will be implemented in a Python script,

as the finished main program will be run a Python system in our Raspberry Pi.

The before-mentioned libraries for Python was downloaded from the sonar suppliers official

GitHub page [35] to the Raspberry Pi from source using the built in Bash terminal in the RPi.

The commands were as follows:

$ git clone --single -branch --branch deployment

CHAPTER 4. METHOD 27

https :// github.com/bluerobotics/ping -python.git

$ cd ping -python

$ python3 setup.py install --pi

The performed commands downloads the required libraries in a path that the assigned python

interpreter can access. Specifically this is done in the final command by using python3 in place

of python. This is important as the solution we want to implement is dependant on using python

version 3.7 or newer as the RPi has python 2.7 as the standard interpreter.

With these libraries it easy to communicate with the sonar from the python script. The sonar

is initialized as an object, and writing new commands and reading values are done with class

methods already implemented in the libraries. In conjunction with the libraries, the first logic

was heavily inspired by another example found on GitHub by CentraleNantesRobotics [33]. This

example sends new angles periodically, and reads the sonar reflections by using OpenCV plots

and displays the readings in a circular plot. With this implementation we had sufficient work-

ing code examples to expand into the algorithms needed for our desired functionality in later

implementations.

4.2.2 Camera

The Omron Sentech camera was first tested with Omron specific software, StCamSWare. This

initial testing was simple, as it only required downloading of the camera driver, and the software

application. Using this software, parameters as light sensitivity could easily be adjusted.

After confirmation that the camera worked as specified, we began implementation of reading

the video feed in Python. Final system requirements requires us to open the camera in a Python

file running on our RPi. However, from downloading the camera drivers for the windows PC

previously, it was quicker to attempt using Python on the Windows computer. Launching the

camera and displaying images was done using the OpenCV Python library. In Python we exper-

imented with different compression techniques to reduce the image files from the camera, as

communication from the RPi to the surface computer running the GUI was limited to 80 MBps

[10].

CHAPTER 4. METHOD 28

4.2.3 Combination sensor

To get sufficient knowledge regarding interacting with the conductivity sensor, we used the start-

up guide provided in the sensors data-sheet. The guide instructed us to use a terminal-emulator

tool to be able to interact with the sensor over serial communication, we used a free tutorial

of HyperTerminal [24]. Furthermore the communication parameters were specified as seen in

table 4.1.

Parameter Value
Bits per second 9600
Data bits 8
Parity None
Stop bits 1
Flow control Xon/Xoff
ASCII sending Active

Table 4.1: RS232 serial connection settings for communication with conductivity sensor from
Aanderaa

When launching HyperTerminal an initial prompt from the software is given as seen in Figure

4.1a, here we select an instance name that is used for saving the adjusted settings. Next the serial

settings are specified for the communication, see Figure 4.1b and Figure 4.1c, which is done

according to Table 4.1.

(a) Configuration: sensor type and name (b) General serial settings (c) ASCII settings

Figure 4.1: Initialization of serial communication with Aanderaa conductivity sensor using Hy-
perTerminal software.

After the initial set-up is completed, the user interface menu is is displayed, as seen in Figure

4.2a. We can then send commands to the sensor by writing in ASCII. The possible commands

CHAPTER 4. METHOD 29

are listed in the data sheet []. From activating different modes and sensor data gathering, a good

understanding of how the conductivity sensor works was obtained. Figure 4.2b shows some

responses from the sensor resulting from commands sent. From experimenting with multiple

commands and reading resulting commands, we gained knowledge of how to structure the main

program in Python at a later point.

(a) Initial serial communication interface (b) User interface showing inputs and outputs from user
and sensor, respectively

Figure 4.2: Command line interface with Aanderaa conductivity sensor over serial using Hyper-
Terminal software.

4.2.4 Thrusters, I2C sensors and safety sensors

The thrusters and ESCs were first tested one by one on land to ensure that all the components

were functioning as they should. After that the thrusters were tested in a water to measure and

confirm the current draw at different engine speeds. During this testing we also found the lim-

itations at which we could run them during the different stages of ROV operation. Furthermore

from this testing, we tuned how long the Arduino should attempt to initialize the ESC, before

running other functions like serial communications.

The sensors that communicate with I2C, the pressure sensor and the temperature sensor, were

tested in a separate C++ script with the Arduino extension. This script was found on the BlueR-

obotics Github page [26][25]. As both sensors measures different values, we did not have to

change the I2C address of either sensor. Finally the moisture detection sensor was simply tested

by connecting the input to a digital pin, initializing the pin as input, and checking if the sensor

CHAPTER 4. METHOD 30

gave the correct value when water was detected.

4.3 Collision avoidance system

An integral part of the maneuverability control of the ROV is the usage of sonar data to create a

system that actively prohibits the ROV to run into obstacles. As real life conditions can be un-

predictable, the system was designed with focus on simplifying operations for the user, but still

be easy to deactivate if not working as intended.

The collision avoidance system was coded as an object, initialized from class InterlockingSystem

which is located within python file Interlocking.py. In listing 4.1 it shown how the initialization

of the system is performed. For the explanation under the code within the class InterlockingSys-

tem will not be discussed as it is consisting of many code lines, but can be seen in detail within

Appendix G.

if __name__ == "__main__":

ils = InterlockingSystem ()

Listing 4.1: Python Raspberry Pi: Initializing object for controlling collision avoidance system.

The main logic for using the interlocking system is referred to using the main.py script by

using object methods, this creates abstraction where the main logic is hidden away, making the

code easy to read and troubleshoot. In the continuously running while loop within main.py it is

first checked if operator is requesting reset of all interlocked zones, see listing 4.2.

while 1:

if config.forceReset:

print("Operator is forcing reset of all interlocked zones")

ils.resetAllZones ()

Listing 4.2: Python Raspberry Pi: If user requests reset of interlocked zones

Next, within the while loop referred to in 4.2, a check is performed to see if any objects in

the scanned angle is located. If the object is detected, the currently scanned zone is interlocked

by calling a class method, this logic is shown within listing 4.3. Additionally this is shown in the

GUI by highlighting run zones as red.

CHAPTER 4. METHOD 31

if ils.findObject(config.data_lst):

ils.setInterlockZone(ils.findZone(config.angle), config.angle)

Listing 4.3: Python Raspberry Pi: Checking if object is detected an interlocks zones accordingly.

As the ROV will under normal operations be able to rotate freely even if there is interlock-

ing for linear movements, and objects could move away from ROV, logic to automatically reset

interlocked zones were implemented. The general logic for this is shown in listing 4.4. If the

sonar has rotated an entire and reads a previous interlocked value as no-object, this interlocking

is removed.

if ils.checkIfResetPermitted(config.angle):

ils.resetInterlockZone(ils.findZone(config.angle))

Listing 4.4: Python Raspberry Pi: Checking if a previously locked zones should be reset.

4.4 Graphical user interface

The user interface is the only way for the operator can interface with the ROV during normal

operation. The GUI was implemented with simplicity in mind, where a minimalist approach

was taken to ensure that little training was needed to operate the ROV safely.

To design the general layout of buttons, sensor values and other components Qt designer [20]

was used. This software enabled us to easily decide the position, size and types of objects for our

GUI. When all the objects are placed correctly, the software enables us to export the graphical

design file, into a Python file. This Python file contains a class which contains all the previously

designed objects. From the code within the class, graphical parameters can be adjusted, as for

example color and position if the initial design was not satisfactory.

However, for our purposes we mostly needed access to the class methods that changes if but-

tons the GUI are manipulated. In this way the logic needed for the system could be designed. To

create a tidy program for the surface PC, it was decided to split the GUI functionality into three

files. config.py contains the global variables, interfacing.py contains the generated class from

the designer software. Finally, main.py handles the logic between the communication and GUI.

CHAPTER 4. METHOD 32

4.5 Communication

For the system to work as intended, the components have to be able to share information as

sensor data and commands, efficiently. The total system consists of three main components

that handles computation and running algorithms. These components are the Raspberry Pi,

Arduino Uno and a personal computer running the graphical user interface at surface level. Ad-

ditionally, the more advanced sensors, like the sonar and conductance sensor also requires more

sophisticated communication, as opposed to more straightforward analog or discrete sensors.

In Figure 4.3 an overview of the total system communication is visualized. In the following sub-

chapters the methodology of implementing communication between the different devices are

explained.

Figure 4.3: Displaying communication between all devices for the ROV system.

CHAPTER 4. METHOD 33

4.5.1 Temperature & pressure sensors - Raspberry Pi

Both the temperature and pressure sensors communicate over I2C protocol. I2C communica-

tion is implemented by supplying 3.3VDC to both sensors, and connecting two additional wires

in parallel that carry the data. The data wires consists of an SDA and SCL signal connected to pin

A4 and A5 on the Arduino Uno, respectively [3]. To use I2C communication on Arduino we need

to import functionality from the Wire library and specific libraries for each sensor, see listing

4.5.

#include <Wire.h>

#include "MS5837.h"

#include "TSYS01.h"

Listing 4.5: C++ Arduino Uno: Importing I2C communiction functionality from Wire library.

In the Arduino setup function, the I2C bus is activated, and both I2C sensor objects are cre-

ated, see listing 4.6 for an excerpt of the Arduino code.

void setup() {

Wire.begin ();

pressSensor.init();

tempSensor.init();

}

Listing 4.6: C++ Arduino Uno: Setup phase of Arduino initializing I2C and sensor objects.

Finally to read the ambient pressure and temperature, built-in class methods are executed

on the objects. These values are saved to variables on the Arduino, that can later be communi-

cated or performed actions on, see listing 4.7.

void loop() {

tempSensor.read();

pressSensor.read();

temp = tempSensor.temperature ();

depth = pressSensor.depth();

}

Listing 4.7: C++ Arduino Uno: Reading and storing data over I2C communication.

CHAPTER 4. METHOD 34

4.5.2 Arduino Uno - Raspberry Pi

The Arduino and RPi sends and receives data using serial communication. The communication

is implemented in a way that data is only sent when necessary, which in turn reduces bandwidth

and computing power usage. The Arduino Uno sends data continuously with a set interval, as

new sensor values from temperature and pressure is needed in the GUI. But the RPi only sends

data to the Arduino when new commands or control parameters have been set.

On the Arduino side, the serial communication is initially started with defining one parameter,

baud-rate, see listing 4.8. The baud-rate has to correspond to settings in the RPi. No additional

configuration has to be done, as the default is eight data bits, no parity and one stop bit [4].

These settings are favorable for our transmission requirements, and are easily replicated on the

corresponding RPi end.

void setup() {

Serial.begin (9600);

}

Listing 4.8: C++ Arduino Uno: Initializing communication.

The Arduino software consists of multiple files to organize functionality. The serial com-

munication functions are located in the communications.cpp file, and has two functions, send-

ToRaspberry and receiveFromRaspberry, which is shown in listing 4.10 and 4.12, respectively.

Data sent from Arduino consists of sensor values temperature, depth and a boolean value of if

there is detected any leaks. These are sent every 30th iteration of the Arduino loop function, as

can be seen in listing 4.9. This was decided as the Arduino executes code quickly in relation to

the Python script in the RPi, and the measured values are slow processes.

void loop() {

// Every 30 program iteration the Arduino sends data to Raspberry

if (i > 30) {

sendToRaspberry(temp , depth , leakStatus);

i = 0;

}

CHAPTER 4. METHOD 35

i++;

Listing 4.9: C++ Arduino Uno: Logic in main.cpp that determines how often data is transmitted

to RPi.

The data is passed to a function that parses the data into a JSON object, which makes it easy

to access when received in the RPi. The JSON object is then serialized to a bytes object and sent

to the RPi, see listing 4.10.

void sendToRaspberry(float arg1 , float arg2 , bool arg3) {

outDoc["Temp"] = roundNum(arg1 , 1);

outDoc["Depth"] = arg2;

outDoc["Leak"] = arg3;

// Format the data to serial

serializeJson(outDoc , Serial);

// Sending to Raspberry Pi

Serial.println ();

}

Listing 4.10: C++ Arduino Uno: Function in communications.cpp that takes in arguments to be

sent over Serial to RPi.

For every loop in the main Arduino program, the program checks if there is data in the serial

input buffer. As the communication continuously sends data when the programs are active, a

loss of communication can be coded. If the loop is iterated four times and no data is found, all

motors are commanded to stop. This is to prevent the ROV from running if the communication

is broken, as new commands would not be detected, see listing 4.11 for an excerpt of the Arduino

main function. Otherwise if data is available, the data is unpacked in reveiveFromRaspberry

function shown in listing 4.12.

void loop() {

if (Serial.available ()) {

receiveFromRaspberry ();

missedPackets = 0;

} else {

missedPackets ++;

CHAPTER 4. METHOD 36

if (missedPackets > 3) {

fullStop ();

}

}

}

Listing 4.11: C++ Arduino Uno: Initializing communication.

The function shown in listing 4.12 deserializes the data received from the RPi, and calls the

appropriate control functions with the new data. Initially, data is read into a string variable until

it reaches the end of a command, which is registered when a newline character is detected. The

input data is then stored in a JSON document, for easy accessibility. Finally all the received

values are used as arguments for functions that control the movement and light strength.

void receiveFromRaspberry () {

bool z1lock; bool z2lock; bool z3lock; bool z4lock;

bool z5lock; bool z6lock; bool z7lock; bool z8lock;

String payload;

payload = Serial.readStringUntil(’\n’);

StaticJsonDocument <512> doc;

deserializeJson(doc , payload);

setLights(doc["light"]);

z1lock = doc["locked"][0];

...

z8lock = doc["locked"][7];

setMotorSpeeds(doc["runZone"], z1lock , z2lock , z3lock ,

z4lock , z5lock , z6lock , z7lock , z8lock);

}

Listing 4.12: C++ Arduino Uno: Initializing communication.

For the RPi side of the serial communication with Arduino, the communication is executed

in a separate thread from the main program, see listing 4.13. This is done partly to make the

main system program, which is the Python scripts in the RPi, to be able to perform other actions

CHAPTER 4. METHOD 37

when communication is not active, or from other causes. Additionally, to increase program

execution speed.

SerialThread = threading.Thread(target=serialCom)

SerialThread.start()

Listing 4.13: C++ Arduino Uno: Initializing communication.

The serial communication is executed in a function in the GUI_communications.py file. A

code snippet of this function is shown in listing 4.14. Here the connection is initialised by se-

lecting which port the RPi has the Arduino connected, and other parameters as baudrate and

number of stopbits are set to correspond with the settings set in the Arduino in listing 4.8.

def serialCom ():

ardSer = serial.Serial(’/dev/ttyACM0 ’, 9600, timeout=1,

parity=serial.PARITY_NONE , bytesize=serial.EIGHTBITS , stopbits=serial.

STOPBITS_ONE)

Listing 4.14: C++ Arduino Uno: Initializing communication.

The main logic for the serial communication is located within a while loop that continuously

iterates. The logic within this loop is separated as two if statements. The first one is shown in the

beginning of listing 4.15, this checks if any new commands from the GUI has been received or

internal logic in the RPi has been updated. If new actions are to be executed, a JSON structure

will be formed and serialized, and lastly sent to the Arduino Uno.

The other if statement in listing 4.15 checks if the serial input buffer reserved for Arduino com-

munication has received any bytes, if new bytes are found, the data is unserialized and saved to

global variables, that can be easily accessed for the functionality that relies on those data values.

while 1:

if config.newArduinoCommands:

ArdDataOut = {}

ArdDataOut["light"] = config.light

ArdDataOut["runZone"] = config.runZone

ArdDataOut["locked"] = config.interlockedZones

ArdDataOut = json.dumps(ArdDataOut)

ardSer.write(ArdDataOut.encode ())

CHAPTER 4. METHOD 38

if ardSer.in_waiting > 0:

ArdDataIn = json.loads(ardSer.readline ())

config.temp = ArdDataIn["Temp"]

config.depth = ArdDataIn["Depth"]

config.leak = ArdDataIn["Leak"]

Listing 4.15: C++ Arduino Uno: Initializing communication.

4.5.3 Scanning imaging sonar - Raspberry Pi

The communication between the RPi and the sonar was implemented with serial connection

over USB. To share information the data was sent using the Ping protocol [36], which is a purpose

built protocol developed by the manufacturer of the sonar, BlueRobotics [17]. For our purposes

the in depth working principle of the protocol is not crucial to understand, as the functionality

is implemented in classes imported from the Ping360 libraries. In listing 4.16 the initialization

of the connection is established by creating an object p that is used to command and read values

from the sonar. Then a serial communication is initialized by using a class method with device

path and baud-rate set by the command line interface using the Python argparse module.

p = Ping360 ()

p.connect_serial(args.device , args.baudrate)

Listing 4.16: C++ Arduino Uno: Initializing communication.

To read sensor values and send actuator commands, class methods on the previously ini-

tialized object is called. An example of this is shown in listing 4.17, here an excerpt of the main

while logic is shown with a command that sends the new angle the sonar should rotate to.

while 1:

p.transmitAngle(config.angle)

Listing 4.17: C++ Arduino Uno: Initializing communication.

This class method is located within the Ping360 class, which is a child class of the PingDevice

class. Listing 4.18 shows the class method called in the previous listing, 4.17. In this method

a new function control_transducer is called, with the updated angle command and additional

parameters that are required to control the sonar.

CHAPTER 4. METHOD 39

def transmitAngle(self , angle):

self.control_transducer(

0,

self._gain_setting ,

angle ,

self._transmit_duration ,

self._sample_period ,

self._transmit_frequency ,

self._number_of_samples ,

1,

0

)

return self.wait_message ([definitions.PING360_DEVICE_DATA , definitions

.COMMON_NACK], 0.5)

Listing 4.18: C++ Arduino Uno: Initializing communication.

The class method control_transducer is shown in listing 4.19. Here a new object m is initial-

ized from class PingMessage. Furthermore parameters are set to the new object, and finally the

object is serialized and sent over USB connection.

def control_transducer(self , mode , gain_setting , angle , transmit_duration ,

sample_period , transmit_frequency , number_of_samples , transmit ,

reserved):

m = pingmessage.PingMessage(definitions.PING360_TRANSDUCER)

m.mode = mode

m.gain_setting = gain_setting

m.angle = angle

m.transmit_duration = transmit_duration

m.sample_period = sample_period

m.transmit_frequency = transmit_frequency

m.number_of_samples = number_of_samples

m.transmit = transmit

m.reserved = reserved

m.pack_msg_data ()

self.write(m.msg_data)

Listing 4.19: C++ Arduino Uno: Initializing communication.

CHAPTER 4. METHOD 40

4.5.4 Conductivity sensor - Raspberry Pi

The communication between RPi and the Aanderaa sensor is implemented as serial commu-

nication. Like the Arduino Uno and Sonar, the Aandera sensor program executes in a separate

thread using multithreading, as initialized in listing 4.13. At the start of an iteration in the while

loop, a command is sent to the Aanderaa that tells the sensor to perform a new sample, see

listing 4.20. Furthermore commands for each parameters are sent, and then the returning in-

formation is stored in global variables. The program does this for salinity, speed of sound in the

water, water density and conductivity.

def serialCom ():

condSer = serial.Serial(’/dev/ttyUSB1 ’, 9600)

while 1:

condSer.write("do_sample\n".encode ()) # Commands conductivity

sensor to conduct sample of parameters

config.salinity = getAanderaaData(condSer , "get_salinity\n")

soundSpeedReading = getAanderaaData(condSer , "get_soundspeed\n")

config.density = getAanderaaData(condSer , "get_density\n")

config.conductivity = getAanderaaData(condSer , "get_conductivity\n

")

Listing 4.20: C++ Arduino Uno: Initializing communication.

To send and receive the requested data, a function getAanderaaData is called, see listing

4.21. This function starts of by reading the input buffer, in a way that clears the buffer from

unwanted characters that the sensor periodically sends out. Next, the command is sent out,

and the returning data is decoded and saved in global variables. The input data goes through

several checks for unwanted characters before finally saving the data.

def getAanderaaData(condSer , request_str):

condIn = b’’

condIn = condSer.readline ()

condSer.write(request_str.encode ())

condIn = condSer.readline ().decode ()

data = condIn.split(’\t’)

CHAPTER 4. METHOD 41

data = data[-1]

data = data.replace(’\r\n’, ’’)

return float(data)

Listing 4.21: C++ Arduino Uno: Initializing communication.

4.5.5 Raspberry Pi - Personal Computer (GUI)

As seen in the communication overview in Figure 4.3, the communication between the RPi and

the GUI application consists of two protocols. The camera data is sent from the RPi to the GUI

using UDP transmission. And all other data, including the commands from the GUI, and other

sensor data, is communicated with a TCP connection. Both of these protocols runs in separate

threads in the RPi and on the GUI side. This was implemented by creating unique functions for

each of the protocols, and calling them using the multithreading Python library. If for example

the camera functionality fails, the system can still take commands and read crucial sensor values

such as the leak sensor. The below sections explains how the UDP and TCP connections where

programmed for the RPi and GUI.

UDP

The UDP connection between the RPi and GUI was set up with the UDP server in the GUI, and

the respective client socket in the RPi. This was done purposely, as by design the client socket

should be able to disconnect and reconnect without any user interaction. As for the picture tak-

ing functionality, the camera feed will pause to be able to adjust quality of frames captured, and

automatically resume connection when picture is taken. In addition, if for some unexpected

reason the camera feed stops, it will be able to reconnect again automatically given the problem

fixes itself.

The initial setup for the UDP server is shown in listing 4.22. In the code snippet only an ex-

cerpt of the main logic of the GUI application is shown, here an instance of threading is started

on the function UDPCom. This thread is started without any exit functionality, as the thread is

designed to run continuously during the entire program execution.

CHAPTER 4. METHOD 42

if __name__ =="__main__":

cam_communication = threading.Thread(target=UDPCom)

cam_communication.start ()

Listing 4.22: Python in GUI application: Initializing communication with UDP protocol for

camera feed in a seperate thread.

A part of the function UDPCom is shown in listing 4.23. Here the initial preparations for the

connection is performed. First the size of each data packet, datagram, is defined to be the maxi-

mum allowable size, 65536 bytes. Further, a function to empty the input buffer is implemented.

def UDPCom ():

MAX_DGRAM = 2**16

def dump_buffer(s):

while True:

seg , addr = s.recvfrom(MAX_DGRAM)

print(seg [0])

if struct.unpack(’B’, seg [0:1]) [0] == 1:

print("finish emptying buffer")

break

Listing 4.23: Python in GUI application: Start of function that is executed in separate thread

Still within the UDP communication function, UDPCom, the UDP client is initialized and

the static IP address for the users computer is bound with a free port, example configuration is

shown in listing 4.24.

s = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

s.bind((’169.254.226.73 ’, 20001))

Listing 4.24: Python in GUI application: Setup of connection with UDP client within UDPCom

function.

Next in the UDP logic, a continuous running while loop is entered, see listing 4.25. This loop

checks for the next UDP datagrams. For every datagram it receives it checks if the information

should be added to a larger data variable, dat, that contains one image and if the datagram is

the final information needed for one image. If sufficient data for one image has been received,

CHAPTER 4. METHOD 43

the image is decoded and stored to an image variable. Later this image variable is displayed on

the GUI for the user to see.

while 1:

seg , _ = s.recvfrom(MAX_DGRAM)

if struct.unpack("B", seg [0:1]) [0] > 1:

dat += seg [1:]

else:

dat += seg [1:]

img = cv2.imdecode(np.frombuffer(dat , dtype=np.uint8), 1)

Listing 4.25: Python in GUI application: Functionality that unpacks datagrams into an image

datatype.

For the RPi side of the UDP connection, an UDP client has to be initialized. The UDP com-

munication is created within its own separate thread, in a similar way the UDP server was ini-

tialized in the GUI. The initialization for the UDP client is seen in listing 4.26.

if __name__ == "__main__":

UDPThread = threading.Thread(target=UDP)

UDPThread.start ()

Listing 4.26: Excerpt of main functionality in Python main.py script. Initialises the UDP client

in a separate thread.

In listing 4.27 a code snippet of the function that handles UDP for the RPi is shown. The

first lines connects to the server in the GUI. Then the camera data is continuously sent over

UDP using the class FrameSegment. If the operator of the GUI selects to take a picture, the UDP

connection will be closed during this process, and restarted when the picture is taken and saved

locally on the RPi.

def UDP():

s = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

port = 20001

fs = FrameSegment(s, port)

while not config.takeHighResPhoto:

CHAPTER 4. METHOD 44

fs.udp_frame(frame)

Listing 4.27: Connects to the GUI using UDP and initializes object that holds image frame.

As mentioned previously, a class FrameSegment, has a key role in sending data over UDP.

A snippet of the most relevant functionality of this class is shown in listing 4.28. The sending

of picture frames is handled by class method udp_frame, which takes the image taken by the

OpenCV functionality, and divides it into optimal sized UDP datagrams.

class FrameSegment(object):

def udp_frame(self , img):

compress_img = cv2.imencode(".jpg", img)[1]

dat = compress_img.tostring ()

size = len(dat)

num_of_segments = math.ceil(size/(self.MAX_IMAGE_DGRAM))

array_pos_start = 0

while num_of_segments:

array_pos_end = min(size , array_pos_start + self.

MAX_IMAGE_DGRAM)

self.s.sendto(

struct.pack("B", num_of_segments) +

dat[array_pos_start:array_pos_end],

(self.addr , self.port)

)

array_pos_start = array_pos_end

num_of_segments -= 1

Listing 4.28: Python in RPi: Excerpt of class with a method that divides up image frames to UDP

datagrams and sends to GUI.

CHAPTER 4. METHOD 45

TCP

For all other communication between the RPi and the GUI, except for the camera feed, a TCP

connection is used. The TCP connection is used in a way that only client or server sends data if

needed, this was done to save bandwidth, as the camera data needs a large part of communi-

cation bandwidth. As sensor data is continuously needed in the GUI, the RPi sends data with a

fixed interval. This data includes temperature, depth, sonar and other miscellaneous informa-

tion. Data from the GUI to the RPI only consists of user commands selected in the GUI.

The TCP server was decided to be implemented in the RPi, as the RPi Python script should be

running continuously during ROV operation. The TCP connection was created within a separate

thread, which was initialized from the main.py scipt, as seen in listing 4.29.

if __name__ =="__main__":

other_communication = threading.Thread(target=TCPCom)

other_communication.start()

Listing 4.29: Python in GUI application: TCP connection is initialized in a separate thread.

In listing 4.30 a snippet of the TCPCom function is shown. Here the initial commands for

starting the TCP client is performed. The IP address and reserved port of the RPi TCP server is

saved to local variables, and called in connection initializion functions from the socket library.

def TCPCom ():

SERVER = "169.254.226.72"

PORT = 1422

HEADERSIZE = 10

s = socket.socket(socket.AF_INET , socket.SOCK_STREAM)

s.connect ((SERVER , PORT))

Listing 4.30: Python in GUI application: Excerpt of function that handles TCP communication

with RPi. Shows initial set-up of connection as client side.

Next within the TCPCom function a continuously running while loop is entered, see list-

ing 4.31. For the first incoming data after the full_msg variable has been reset to no data, the

message length is found and stored to variable msglen. This variable is used to check if the

CHAPTER 4. METHOD 46

partitioned data received is the final data to assemble one input message. Otherwise it can be

extrapolated that additional TCP packets are needed to be added to the message.

while 1:

msg = s.recv (8192)

if new_msg:

msglen = int(msg[: HEADERSIZE])

new_msg = False

full_msg += msg

Listing 4.31: Python in GUI application: Continuously checks for TCP data sent from RPI.

Next, within function TCPCom, if statements are used to check if assembled data is a finished

message, see listing 4.32. If it is, the data is deserialized and saved to variable RaspDataIn. If

at this point, new commands have been selected on the GUI, a global boolean flag has been

activated, called config.newCommands, the TCP will respond with a message to the RPi. The

sending functionality consists of simply saving global variables to a dictionary, and serializing

this with the library pickles.

if len(full_msg)-HEADERSIZE == msglen:

RaspDataIn = pickle.loads(full_msg[HEADERSIZE :])

if config.newCommands:

print("[ATTENTION] New commands sent to Raspberry")

config.newCommands = False

RaspDataOut = {

"light": config.light ,

...

"takeVideo": config.takeVideo

}

Listing 4.32: Python in GUI application: Logic that checks if message has been parsed to

appropriate size

On the RPi side of the TCP connection, a TCP server has to be initialized. This is done within

the main while loop of the main.py program, as seen in listing 4.33. If the GUI client has not

CHAPTER 4. METHOD 47

connected, the code will try to initialize a new thread with the logic that handles incoming TCP

data. This thread will always be started as the GUI has no option to connect before the RPi

program has started.

while 1:

if config.address == "":

TCPThread = threading.Thread(target=TCPIn)

TCPThread.start ()

TCPOut(s, HOST , PORT , HEADERSIZE)

Listing 4.33: Excerpt of main while loop in main.py

In listing 4.34 the function that handles TCP communication to the RPi is shown. First the

size of the header of the TCP is chosen, corresponding with selected in the GUI application.

Next, the function continues to a series of while loops that checks for incoming data. If data is

registered, the message is deserialized and reassembled to a dictionary. Finally, global variables

are updated with the received information.

def TCPIn ():

HEADERSIZE = 10

while 1:

receiving = True

full_msg = b’’

new_msg = True

incoming_message = config.clientsocket.recv (8192)

while receiving:

if new_msg:

msglen = int(incoming_message [: HEADERSIZE])

new_msg = False

full_msg += incoming_message

if len(full_msg)-HEADERSIZE == msglen:

GuiDataIn = pickle.loads(full_msg[HEADERSIZE :])

CHAPTER 4. METHOD 48

config.light = GuiDataIn["light"]

...

config.takeVideo = GuiDataIn["takeVideo"]

config.newArduinoCommands = True

receiving = False

new_msg = True

full_msg = b’’

Listing 4.34: TCP functionality that handles TCP data sent from the GUI.

To send data to the GUI over TCP, an additional function TCPOut is needed, see listing 4.35.

This function is called every program iteration, at the point new values from the sensors have

been registered. If no TCP client is registered, the RPi tries to connect, otherwise data is format-

ted into a dictionary, serialized and sent.

def TCPOut(s, HOST , PORT , HEADERSIZE):

communicating = True

startReceive = True

while communicating:

receiving = True

if not config.address:

config.clientsocket , config.address = s.accept ()

print(f"Connection from {config.address} has been established.

")

GuiDataOut = {

"temp": config.temp ,

...

"density": config.density

}

msg = pickle.dumps(GuiDataOut)

CHAPTER 4. METHOD 49

msg = bytes(f"{len(msg):<{ HEADERSIZE }}", ’utf -8’) + msg

config.clientsocket.send(msg)

communicating = False

Listing 4.35: Python in RPi: TCP functionality that handles data so be sent to GUI.

4.6 Design and modelling

This section goes over how the group came up with the design of the ROV and the methods used

to build the prototype.

4.6.1 Concept

For the design it was decided early on that it should be a simple one due to the group having

no previous design experience and this being an automation thesis. The group had a few ideas

in mind when starting the project, but after selecting and ordering sensors, thrusters and the

waterproof enclosure a specific one was decided.

4.6.2 Design and Manufacturing of ROV body

For the final design a circle shape was chosen due to it allowing easy mounting of thrusters. For

the thruster positioning we decided to mount them at 120 degree intervals, this allows the ROV

to move in all directions. This thruster placement was taken from an earlier ROV made by an-

other group. The shape also gives a lot of surface area for mounting sensors, lights and other

components. The circles are made out of acrylic, the material was chosen due to its light weight

and high strength. Working with acrylic was made simple due to NTNUs laser cutter. The laser

cutter allowed the group to make designs in Fusion 360 and then cut them out with high preci-

sion and speed, making prototyping new mounts and parts a lot easier.

To hold the two circles together three aluminum extrusions were used, they are fastened with

nuts and bolts. These extrusions are also used as mounting points for the thrusters. To hold the

CHAPTER 4. METHOD 50

(a) Acrylic Frame (Side View)
(b) Acrylic Frame (Front View)

(c) Acrylic Frame (No top plate)

Figure 4.4: Fusion 360 models of ROV body

BlueRobotics 4 inch waterproof enclosure in place, a bracket made out of acrylic was designed

in Fusion 360, see Figure 4.4. The bracket was cut out with the laser cutter and then glued in

place with epoxy. The reason for not permanently mounting the enclosure in place was to make

maintenance easier and allowing for reuse of the enclosure, seeing as the current design was

made to be a prototype this was deemed optimal.

CHAPTER 4. METHOD 51

(a) Mount for Arduino and RaspberryPi

(b) Mount for ESC speed controllers

(c) Battery holder

(d) Battery holder end cap

Figure 4.5: Fusion 360 Models of internal mounts

4.6.3 Making of Internal Mounts

Due to the small amount space in the enclosure and the quantity of components, custom hard-

ware mounts were needed to be able to fit everything inside. It is also important to keep EMI

emitting components away from sensitive components, as the RPi. To make these, Fusion 360

was used for designing, and then they were produced with the schools Ultimaker2+ 3D printers,

see Figure 4.5.

CHAPTER 4. METHOD 52

(a) Photo of cable entry points
(b) Figure showing how the cable penetrators work,
from [8]

4.6.4 External box

When working on putting everything together it quickly became apparent that space inside the

enclosure would be a issue. It was quickly decided that adding an external box to house com-

ponents that produce electrical noise and heat would be a good solution. The box is IP66 rated

and is filled with clear casting epoxy so that it does not buckle under the pressure at the depths

the ROV will operate in.

4.6.5 Waterproofing

The BlueRobotics enclosure is sealed by a set of double o-rings on both of the end caps. For

the cable entry points BlueRobotics cable penetrators are used as seen in Figure 4.6a. These

are threaded and screwed in place. They use a combination of an o-ring and epoxy to seal the

cable entry point, see Figure 4.6b. A few of the cables came sealed from the factory. For the

other external sensors and the thrusters we had to seal them ourselves with the use of an epoxy

made by 3M called "Scotch-Weld Urethane Adhesive 620NS". This epoxy was recommended

by the JMRobotics, which is the official retailer of BlueRobotics products in Norway. For the

external box, the epoxy seals all the components in a way that even if water entered the box, the

components would be safe.

CHAPTER 4. METHOD 53

4.7 Electrical

To power the ROV, 48VDC is sent through three pairs of wires that go down to the ROV. A DC

to DC converter steps down the voltage to 12VDC. This converter is connected to a 5V Linear

Voltage Regulator and another DC to DC converter that outputs 16.5V. The Voltage regulator is

required to power the RPi. The 16.5V DC to DC converter is connected in parallel to a battery

made up of 4 3,7V Lithium ion batteries. This setup is in place to stop voltage drops from turning

off the RPi. There is also a 12V Voltage regulator which is needed to power the Aanderaa con-

ductivity sensor and Arduino. For the voltage regulators capacitors are used to ensure stability,

see Appendix D. The 5V regulator is connected to 12V DC to DC converter to limit the amount

of heat the regulator produces.

The 5V and 12V supplies both have one fuse each and on the 16,5V supply there are three fuses.

One for the thrusters, one for the lights and one for the sonar and Fathom-X Tether. There is also

a fuse between the battery and the 16.5V DC-DC converter. It is in place to ensure safety of the

batteries and the DC to DC converter itself.

4.7.1 External box

The components located inside the external box are the voltage regulators and the DC to DC

converters. These components produce a significant amount of heat as well as electrical noise

which could cause problems if they were located inside the main enclosure.

4.7.2 Wiring

As mentioned space was a issue so most of the cables are soldered or clamped to conserve space,

these connections were covered with heat shrink tubing. For the poles of the batteries/power

supply WAGO terminal blocks are used so its possible to disconnect the power without cutting

any wires. This also allows the user to charge the battery.

Chapter 5

Result

The final results of the implementation of our proposed solutions described in methodology are

presented in the chapter. The first chapters describes the results for the software and communi-

cation solutions, and finally more physical results as the electrical and structure are described.

5.1 Software solutions

In the following sub-chapters the results from the software solutions are described. The results

are describing the most relevant results for the separate solutions, and finally how the solutions

worked together.

5.1.1 Graphical User Interface

The final GUI satisfied most of our requirements. We wanted a simplistic and clean overview of

the most relevant systems. The video stream and sonar plot occupied most of the space, as these

are types of information that is advantageous to have in larger formats. The resulting space was

used for sensory data that was numerical, as the salinity, depth and other values. The control

mechanisms were placed close to the video plot, to make movements as intuitive as possible.

54

CHAPTER 5. RESULT 55

5.1.2 Software performance

The Arduino Uno executes code very quickly in relation to the Python program running in the

RPi. It was therefore decided to only execute the Arduino serial communication sending func-

tion every 30th iteration of the Arduino while loop. As the measured sensor values have a slow

rate of change, this was more than sufficient in terms of performance. During older versions

of the program, the Arduino continuously sent data every iteration, and this used a lot of the

processing power within the RPi, which reduces other functionality, as the collision avoidance

system.

The Python RPi program consisted of multiple files. The distribution of the logic into multiple

files was advantageous as finished functionality could be abstracted away and simply reused for

other functionality by calling functions or object methods. Using multithreading for the RPi pro-

gram was essential to achieve the desired functionality and required response times. As some

communication configurations only sent data when certain conditions are met, and other con-

tinuously sends data every iteration of a program, an RPi system without multithreading would

greatly delay response times.

5.1.3 Communication results

The system contains of multiple communication configurations. All were tested separately ini-

tially to be able to localize and find errors and bugs, and fix them early in the integration process.

Later when integrating all the systems together, this was relatively problem free, as the different

communication configurations had been hidden using programming abstraction.

The simplest communication configuration between devices, as the I2C and serial communi-

cations worked very reliably when connection was established. As communication libraries are

already very refined, and relatively flexible with integration. However, the serial communication

between the RPi and Arduino would sometimes crash upon initialization. When this happened,

it was solved by restarting the RPi programs, and it would always work on the second attempt.

CHAPTER 5. RESULT 56

For the ethernet based communication protocols, TCP and UDP, the integration was more de-

manding. Initially, we planned to only use TCP for all of the communication between the GUI

and RPi. However, it was concluded fairly early on that we would struggle with bandwidth, as

especially the camera feed is very demanding. Still, by using UDP the communication was strug-

gling to send the picture frames as quickly as we had intended, during the final sea tests we had

between 2-4 fps on the GUI.

5.2 Electrical

Most of the electrical system worked well during testing. All the of the components were pow-

ered and could perform their function as intended. It should be mentioned that the thrusters

maximum output is limited artificially in order to keep the power draw within a reasonable level.

The output is still enough to allow the ROV to do all of its movements and functions. The value

of the implemented battery system is questionable, where it at times seems to have a positive

effect, but often not. The current battery solution is described more in detail under the test

chapters.

5.3 Physical

The final version of the ROV and the internals can be seen in Figure 5.1 and 5.2. We were mostly

satisfied with how the ROV performed. It worked well in the sea and it held up well during

testing with it only experiencing a few problems. The design is also very modular allowing for

quick changes when needed.

CHAPTER 5. RESULT 57

(a) ROV rear (b) ROV rear(alternative angle)

(c) ROV top (d) ROV bottom

(e) ROV front

Figure 5.1: Photos of the ROV

CHAPTER 5. RESULT 58

(a) Internals of the ROV bottom (b) Internals of the ROV front

(c) Internals of the ROV top

Figure 5.2: Photos of the internals of the ROV

CHAPTER 5. RESULT 59

5.4 Test 1

Test 1 is defined as the first test of the complete system, however multiple subtests between the

different systems had been completed prior to this test. Test 1 was completed in the lab in a con-

trolled environment, and not underwater at any point, see Figure 5.3. There was a multitude of

uncertainties that had to be checked before filling the box containing the Linear Voltage Regu-

lators and DC to DC converters with epoxy, see Figure 5.4. During the test it was discovered that

some of the cables had bad connections and needed to be redone properly, especially the supply

for the Arduino would sometimes fall out. This was done quickly so the rest of the testing could

go ahead with small delays. When testing the system it seemed like the local battery inside the

enclosure did not work as required. When using the ROV at high power, for example with lights

at high power, and then starting the motors, the voltage over the RPi would drop significantly,

and therefore reboot.

The job of the local batteries is to deliver power when a peak current is needed to run starting of

the motors. As if there is high current, the voltage drop in the tether would be significant, and

therefore the voltage within the ROV would drop below required levels. When the drop occurs,

the batteries should take over supplying. But we suspect that the batteries never starts supply-

ing, as the supply voltage after a multitude of voltage regulator is kept too high at the charging

circuit of the batteries. However, no conclusion regarding the battery situation was reached.

We increased the constraints of usable light power to a level that even when ran at maximum,

and starting the thrusters, the current would not be high enough to induce a voltage drop high

enough to disconnect the RPi.

CHAPTER 5. RESULT 60

Figure 5.3: Setup for test 1.

(a) (b)

Figure 5.4: Photos of the external box during test 1

CHAPTER 5. RESULT 61

(a) (b)

Figure 5.5: Photos of ROV before test 2

5.5 Test 2

Test 2 was the first test of the full system in water. The test was done in a water tank located at

NTNU Aalesund. The water tank has windows and its shallow enough to allow retrieval without

any problems. This was the ideal location for the first water test. During this test as with test 1

a power supply was used to power the ROV. For this test the external box was filled with epoxy

in order to waterproof it, see Figure 5.6. The Omron Sentech camera was also swapped out due

to a suspected driver issue. The new camera was a standard 1080p webcam that required no

drivers, and were therefore easy to integrate into the system. See Figure 5.5 to see how the ROV

looked during test 2.

Before submerging the ROV it was checked for leaks. This was done by using a vacuum hand

pump which allows you to suck air out of the ROV, see Figure 5.7. If it holds this negative pres-

sure it means the seal is good and that the ROV is ready to be submerged. When the ROV was first

submerged everything looked good and all systems performed as intended. There was however

a problem with the balance as the rear was heavier leading to the front tilting upwards. To fix

this problem two pieces of metal were screwed in place at the front of the ROV. This fixed the

problem and the ROV became stable, see Figure 5.8. Another problem was the position of the

camera, this was fixed after the test as it did not interfere with testing of the system as a whole.

CHAPTER 5. RESULT 62

Figure 5.6: External box filled with epoxy.

CHAPTER 5. RESULT 63

Figure 5.7: Checking the ROV for leaks.

CHAPTER 5. RESULT 64

Figure 5.8: Ballast mounted to ROV

Figure 5.9: ROV submerged in water during testing

CHAPTER 5. RESULT 65

5.6 Test 3

The ROV is primarily designed to be used to observe and inspect aquaculture conditions at sea,

therefore it was essential to test the ROV in that environment. This testing allowed for testing

of components that could not properly be tested in a simulation tank, like reading of salinity

values, sonar data acquisition and depth and pressure testing of the overall structure.

This test took place in Storfjorden right outside of Glomset. At this location NTNU has a small

boat with an outboard motor available to use, see Figure 5.10a. This allowed us to get to water

where the depths reached up to about 100m, in addition to have underwater structures avail-

able to inspect. There was also several fish farming facilities, however we were not permitted to

use the ROV in close proximity to those.

As we used a small Pioneer 13 boat, we did not have access to a high voltage output which

would allow us to run power supplies to energize the ROV. Like we had done at previous testing

in controlled environments at the modelation tank at NTNU. We therefore used four 12V - 75Ah

batteries connected in series, to produce 48V, see Figure 5.10d. Whilst simultaneously taking out

12V from one of the batteries to power the communication card. By connecting an ethernet ca-

ble with RJ45 plugs to the communication interfacing box and to the topside computer, we were

able to control the ROV from the GUI. See Figure 5.10b, 5.10c and 5.11 to see the equipment and

the ROV from test 3.

During the test several dives were completed starting at a couple of meters and then gradu-

ally increasing the depths as the test went on. During the tests everything worked as intended

and all of the sensors were showing good and realistic data. The camera feed was stable, how-

ever as expected the FPS was a bit low to get a seamless user experience.

The testing ended during a gradual pressure increase during a dive at 70+ meters, where some

of the components lost power. Many critical components lost power, including the communi-

cation board, which instantly made it possible to get any data or control the ROV further. We

instantly turned off power, to prevent as much damage as possible if there was a leak. After

CHAPTER 5. RESULT 66

(a) The boat used for the test. (b) The equipment used for test 3.

(c) ROV ready for test 3. (d) Battery setup used for test 3.

Figure 5.10

hoisting the ROV up to the boat again, we began troubleshooting the ROV. We could not regain

control of the ROV at this point and decided to end test 3.

Further troubleshooting took place back at the lab at NTNU. During the troubleshooting all the

components inside the enclosure were checked and none of them were broken. The problem

was traced to the external box and specifically to the 16.5V converter. But, since all the com-

ponents inside were encased in epoxy it was not feasible to find and fix the exact problem, and

recast the external box with epoxy. The problem seems to be with either the converter itself or

the cables going from the converter to the ROV. It seems that the pressure at the 70+ meters may

have caused this, but without digging the components out of the epoxy its hard to conclude ex-

actly.

When testing in water and operating the ROV using the GUI, we got good experience of how

the user experience was, see Figure 5.12 for snapshot of testing. The numerical sensor values

updates quickly enough for most purposes and is placed in a intuitive location. But, most no-

ticeably, the camera feed has a static delay at around 1 second, in addition to only operating at a

CHAPTER 5. RESULT 67

(a) Tether cable in the sea

(b) ROV equipment rigged up and ready for test

Figure 5.11: Photos from Test 3

few fps. This combined with strong underwater currents, the control of the ROV could be chal-

lenging at times. However, after operating the ROV for extended amount of times, experience of

how the ROV reacts to commands is gained, and controlling is easier.

CHAPTER 5. RESULT 68

Figure 5.12: Screenshot of the GUI during the test 3.

Chapter 6

Discussion

6.1 Technical results

This chapter will go over the technical results and discuss how the solutions performed, and

what could have been done better.

6.1.1 Design

While working with the project it became clear that there was a lot of things that could have

been done different when designing the ROV. The biggest thing that could have been done dif-

ferent is designing it with an additional external compartment in mind. For the current solution

it was added midway due to space issues. It also helped with reducing electrical noise and heat

inside the enclosure. If the batteries and motor controllers were also moved to a external box

it would further reduce the heat and electrical noise. During sea testing an issue occurred with

something inside the external box. However, due to to it being filled with epoxy, troubleshoot-

ing and fixing this problem would require us to remove the epoxy, which is quite a challenge. To

prevent such an issue the external box could be replaced by a enclosure from BlueRobotics. This

would allow easier access to the components inside, therefore making maintenance a lot easier.

It would also make upgrading or changing out parts easier.

The overall size of the ROV could also have been reduced, as not all of the available surface area

69

CHAPTER 6. DISCUSSION 70

was used. But having this additional space is not necessarily bad, as it allows the implementa-

tion of additional sensors with relative ease and only minor modifications. When it comes to

assembly the main thing that should have been done different is gluing the acrylic with acrylic

glue. Instead of the current solution, which is using epoxy, as the acrylic glue would have en-

sured an even stronger hold. But based on the results from testing the epoxy worked fine and

did not give any signs of loosening.

With the current design the rear aluminium extrusion has to be removed in order to access the

BlueRobotics enclosure. To remove it four screws and bolts have to be taken out. This is fairly

easy but somewhat time consuming. A solution that could simplify this could be to implement

a quick disconnect system. This would be especially helpful when it comes to servicing the ROV.

Another area that can be improved is the length of the cables. Currently the cables are very

long to make service easier, which was helpful during testing. However, the length also causes

the cables to take up more space and is harder to manage. While the space is hard to do some-

thing with unless you want to compromise on the serviceability, the cable management could

be improved with the use of cable clips that can be opened and closed. It should also be men-

tioned that the conductivity sensor’s cable was kept extra long, due to it being expensive and the

plugs were precast from factory.

6.1.2 Electronics

The original plan for supplying power was to exclusively use a DC-DC converter that could sup-

ply enough power to the system. However, after discussions with supervisors it was mentioned

that the thrusters have a large current spike when starting and that could result in the RPi to

reboot. When several thrusters are started they will attempt to pull high amounts of current for

a short time. This will result in a high voltage drop over the tether cables, which in supplies less

voltage over internal components in the ROV. Sensitive equipment, as the RPi, can not handle

low voltages and will therefore shut down. Because of this it was decided that we should add

batteries that could take over when such a large current surge occurs.

CHAPTER 6. DISCUSSION 71

This decision came quite late and therefore the implementation could have been done better.

From testing it seems to be working, but its unclear whether or not the batteries are actually

taking over properly. Due to lack of time for testing we could not reach a conclusion on this.

If we had planned on using batteries from the start, a battery management system could have

been used. This would manage the batteries by keeping them in a safe operating area and pre-

venting them from over-current, over-voltage, under-voltage and over-temperature. Currently

there is no way to monitor the status of the batteries without opening the ROV, therefore this

is a feature that should be added. This would give the operator better insight into the status of

the ROV. A battery management system could also potentially eliminate the need for the DC to

DC converters in the current setup. This is only possible if the management system allows high

voltage inputs.

The voltage regulators in the current system should also be looked at. A voltage regulator low-

ers the voltage by converting the excess input voltage to heat. In the current system the 12V

regulator works fine and doesn’t produce much heat as the step down in voltage is low. The 5V

regulator however produces a lot of heat and requires a big heat sink to stop it from overheating.

A possible solution to this is to use a 5V DC to DC converter instead of a voltage regulator. The

converter would take up more space but since it wont need a heat sink it should take up approx-

imately the same amount of space.

The safety solutions that were implemented worked as intended. It is hard to say whether or

not the leak sensors would detect a leak fast enough to allow us to save any components. This

is because during testing we did not experience any leaks. The fuses worked well and none of

the components inside the enclosure were destroyed. Currently blade style fuses are used, the

same type of fuses used in cars. They worked great but could be replaced with smaller style fuses.

The wiring works as intended but as this is a prototype the cable management could have been

done a lot better. By cutting the cables exactly to length and planning the cable routing bet-

ter the space taken by cables could be reduced by a lot. Doing this would also make servicing

the ROV easier. Another thing that should be added is a magnetometer this would allow us to

CHAPTER 6. DISCUSSION 72

integrate a compass in the GUI and therefore helping the to stay orientated in deep water.

6.1.3 Software

Below the implemented software solutions for the ROV system is discussed. Additionally, the

feasibility of any potential improvements of the systems are considered.

Collision avoidance

The collision avoidance system was implemented to assist the operator with maneuvering in

tight areas without crashing and damaging the ROV. We have determined that it was a good de-

cision to implement the logic as an object, as difficult logic was abstracted into class methods.

When using the functionality in the Python main script implementation was intuitive, and trou-

bleshooting was simple. When testing the collision avoidance under a controlled environment,

as the tank at the school, the functionality worked as intended. If an object was detected within

a zone, movement towards that zone was prohibited. And this could be reset either automati-

cally when the zone was cleared in the next scan cycle, or manually from user input in the GUI.

When testing the ROV under more demanding conditions, as the sea test, the collision avoid-

ance system was harder to use properly. This comes from delay in the camera feed, coupled

with low frame-rate, made it hard to maneuver properly. Additionally, underwater currents in-

duced rotations of the ROV, which meant that interlocked zones was quickly not relevant. As

the interlocked zone would quickly rotate in a way that the zone on the GUI did not correspond

to the actual underwater obstruction. And an open zone, actually should instead have been in-

terlocked. Another challenge with the collision avoidance system, was the rotation speed of the

scanning. The ROV was operating quicker than the sonar was able to get updated information.

We partly solved this by increasing the step size for each scan, but this would negatively affect

the resolution and the quality of the sonar scan.

CHAPTER 6. DISCUSSION 73

Communication

The serial communication was implemented in a fairly standard way, that worked in a stable way

during the testing when connection had been established between the different devices. How-

ever as previously mentioned, the connection between the RPi and Arduino Uno would some-

times fail during the initialization of the connection. And an error indicating that the buffer

array had overflown was given in the Python console. To fix this issue, a function that checks for

incoming data, and clears the input buffer accordingly if the RPi is not yet ready to receive data,

should be implemented. Alternatively, the order of initialization of the different communication

between devices should be changed in a way that the Python serial connection happens at the

same time as the Arduino is trying to initialize the connection.

The I2C and other serial connections worked as intended, and is implemented in a way that

facilitates for future additions of sensors. Especially for more Aanderaa type sensors, that mea-

sures parameters such as oxygen and turbidity could easily be added to the Python program.

But a USB hub, would have to be installed as all the USB ports on the RPi is currently in use.

The communication between RPi and the topside computer (GUI) is working as intended. To

separate critical data, commands and camera feed to TCP and UDP, respectively, was a good de-

cision. Three way handshake functionality guarantees with high certainty that no data packets

are lost. And the UDP connection is optimal to save bandwidth when sending video frames, lost

frames are no point in re-sending anyways, as those are in the past and irrelevant for the user.

Camera and light control

We had originally planned to use a Sentech machine vision camera suited for low visibility con-

ditions. We performed multiple isolated tests with this camera, and a constant problem that

occurred was that the frame size was very large, and not suitable for our tether communica-

tion. We had to compromise by reducing the quality and compressing the frames before sending

them. This resulted with the quality of the images shown on the GUI was not as great as orig-

inally planned. By reducing the quality enough to get a usable frame rate, the camera quality

CHAPTER 6. DISCUSSION 74

was comparably the same as a normal 1080p web-camera. However, it could still be beneficial

to use this camera, as when using the picture taking functionality, the Python scripts re-adjusts

to not compress the frame, and a high quality image is saved to the RPi.

As previously mentioned in results, we had problems with the driver for the Sentech camera

during the later stages of the project. It was therefore decided to switch to a 1080p USB camera,

that required no drivers. This camera is not ideal for low light conditions, and we experienced

that it was difficult to see contrasts when the ROV was tested at high depths. Even when the

lights were set to maximum, underwater particles reflected the light and prohibited the camera

to see at distance. A potential solution for this could be to place the subsea lights further apart

and angle the lights in a way that both lights are focused on a single point, directly in front of

the camera. For more advanced solutions, a control mechanism for the lights could be imple-

mented, granting the user functionality to adjust the angle with the GUI.

Databases and historical information

Several functions were implemented to save relevant data for offline analysis after testing was

completed. In the GUI a function was added allowing the user to take photos and videos of

the camera feed during operation of the ROV. This data was saved locally on the RPi, and had

to be transferred to the user computer after finished testing using either SCP from the termi-

nal, or other programs as WinSCP. This could be improved by instead sending the photos using

the same UDP communication, and instead saving the photos on the computer used to run the

GUI. The video functionality could be done in a similar way, in addition to displaying the video

frames on the GUI, the frames could be written to a video file, in a similar way this is done in the

RPi. By implementing this logic, the user experience of accessing relevant data would be easier

and consist of fewer steps.

The ROV does not have a function for saving sensor values currently. This could have been

added by simply writing the received values in the GUI TCP connection to a csv file. By using

the Python library csv, this could have been integrated to the system with a few lines. In addi-

tion to writing the value, information about which time that sample was taken should be written

CHAPTER 6. DISCUSSION 75

simultaneously for easier inspection later.

Graphical User Interface

The GUI was implemented with the functionality to operate the ROV under basic conditions.

Using PyQt as the GUI software made it easy to design and use the functions we needed for the

project, as the RPi on the other end of the communication is also designed in Python. The GUI

had a very simplistic approach, containing all of the information and buttons needed for the

project.

However, if as previously discussed, sensor values was stored in a database updated during op-

eration. Historical plots could be visualized, constantly updating when new sensor values are

read. These sensor plots could be visualized on multiple pages in the GUI, giving the operator

an option to toggle what values are shown. In addition to this, logic could be implemented that

gives further information or alerts about if values has a high rate of change, which could be im-

portant for values as salinity. As sometimes it could be difficult to notice areas in the water with

different values.

6.2 Project accomplishments

This section goes over what the group learned and the unforeseen problems that were faced.

6.2.1 Distribution of work

The group had different preferences and experience when it came to working with software and

hardware before the project started. One group member preferred working with hardware while

the other preferred software. Due to this distributing the work was made easier. The work was

split so that one group member worked on hardware while the other worked on software. There

was of course some overlap and both group members learned a lot from each other while also

gaining more knowledge on their assigned task. The group overall were satisfied with how the

work distribution worked out.

CHAPTER 6. DISCUSSION 76

6.2.2 Unforeseen consequences

During the project there were several unforeseen consequences, the one that caused the most

problems was the amount time it took to order new parts and get them delivered. Another

unforeseen issue was the implementation of the battery system. There was a lot of work on

trying to get it work and while during testing all systems looked good the group is still unsure on

whether or not it actually worked.

Chapter 7

Conclusions

The purpose for our project was to create a new prototype of a ROV for aquaculture inspection.

ROVs for this purpose have been developed by other students at NTNU prior to our project, and

through these developments, new desired functionality has been defined. Therefore, we got

tasked with creating a ROV that was more lightweight, easier to work with and rated for deeper

depths. Additionally, the ROV had to be fitted with sensors that measures aquaculture relevant

parameters. With the functionality that we added, future groups can easily expand on our pro-

totype and create the other systems that is required for the Aquaculture inspection platform, as

the winch and platform itself.

From our proposed and defined goals set in the preliminary report, and from our results and

discussion we can conclude that we created solutions that answered the thesis’s main focus

areas. The ROV can be easily controlled by other groups by using the same source code, and

following the instructions defined in the user manual.

However, one of the planned improvements was not completed as originally planned. High

quality live video streaming was not implemented as described in the pre-project report. As we

had substantial problems with the driver for the camera, and we did not find time to solve the

issues. Additionally, if the drivers are fixed, the communication would still struggle with sending

high quality frames at a quick enough frame-rate for the user experience to be seamless.

77

CHAPTER 7. CONCLUSIONS 78

Further work on the ROV and surrounding systems should be feasible. All parts, from the phys-

ical to software, was designed with usability and options to expand in mind. By addressing the

challenges and limitations of our solution, the ROV could be implemented with the complete

system and perform the required actions with high performance.

All things considered, the group believes the final ROV was a solid product, that addressed most

of the system requirements. The project has given the group experience in terms of planning,

cooperating and working through challenges. The ROV constantly evolved as new challenges

appeared, however, through working systematically and with a solution-oriented focus, these

challenges were solved and valuable experience and abilities were gained.

Appendices

A Preproject report

B Progress reports

C Gantt diagram

D Electrical drawings

E User Manual

F Arduino code

G Raspberry Pi code

H GUI code

I Meeting invitations

J Minutes of meeting

79

Bibliography

[1] Aanderaa. Conductivity sensor 5819. URL https://www.aanderaa.com/media/pdfs/

d425_conductivity_sensor_5819.pdf.

[2] Arduino. Arduino uno rev3, . URL https://store.arduino.cc/products/

arduino-uno-rev3?selectedStore=eu.

[3] Arduino. Wire library, . URL https://www.arduino.cc/en/reference/wire.

[4] Arduino. Serial.begin(), . URL https://www.arduino.cc/reference/en/language/

functions/communication/serial/begin/.

[5] Autodesk. Fusion 360.

[6] Biltema. Rechargeable icr18650 battery, 2950 mah.

[7] BlueRobotics. Bar30 high-resolution 300m depth/pressure sensor, . URL https://

bluerobotics.com/store/sensors-sonars-cameras/sensors/bar30-sensor-r1/.

[8] BlueRobotics. Potted cable penetrator, . URL https://bluerobotics.com/store/

cables-connectors/penetrators/penetrator-vp/.

[9] BlueRobotics. Basic esc, . URL https://bluerobotics.com/store/thrusters/

speed-controllers/besc30-r3/.

[10] BlueRobotics. Fathom-x tether interface board, .

[11] BlueRobotics. Watertight enclosure for rov/auv 4inch series, . URL https://

bluerobotics.com/store/watertight-enclosures/4-series/wte4-asm-r1/.

80

https://www.aanderaa.com/media/pdfs/d425_conductivity_sensor_5819.pdf
https://www.aanderaa.com/media/pdfs/d425_conductivity_sensor_5819.pdf
https://store.arduino.cc/products/arduino-uno-rev3?selectedStore=eu
https://store.arduino.cc/products/arduino-uno-rev3?selectedStore=eu
https://www.arduino.cc/en/reference/wire
https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/
https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/
https://bluerobotics.com/store/sensors-sonars-cameras/sensors/bar30-sensor-r1/
https://bluerobotics.com/store/sensors-sonars-cameras/sensors/bar30-sensor-r1/
https://bluerobotics.com/store/cables-connectors/penetrators/penetrator-vp/
https://bluerobotics.com/store/cables-connectors/penetrators/penetrator-vp/
https://bluerobotics.com/store/thrusters/speed-controllers/besc30-r3/
https://bluerobotics.com/store/thrusters/speed-controllers/besc30-r3/
https://bluerobotics.com/store/watertight-enclosures/4-series/wte4-asm-r1/
https://bluerobotics.com/store/watertight-enclosures/4-series/wte4-asm-r1/

BIBLIOGRAPHY 81

[12] BlueRobotics. Sos leak sensor, . URL https://bluerobotics.com/store/

sensors-sonars-cameras/leak-sensor/sos-leak-sensor/.

[13] BlueRobotics. Lumen subsea light, . URL https://bluerobotics.com/store/

thrusters/lights/lumen-r2-rp/.

[14] BlueRobotics. Ping 360 scanning imaging sonar, . URL https://bluerobotics.com/

store/sensors-sonars-cameras/sonar/ping360-sonar-r1-rp/.

[15] BlueRobotics. T200 thruster, . URL https://bluerobotics.com/store/thrusters/

t100-t200-thrusters/t200-thruster-r2-rp/.

[16] BlueRobotics. Celsius fast-response, ±0.1°c temperature sensor (i2c), . URL

https://bluerobotics.com/store/sensors-sonars-cameras/sensors/

celsius-sensor-r1/.

[17] BlueRobotics. Bluerobotics, . URL https://bluerobotics.com/.

[18] BlueRobotics. Ping viewer documentation, . URL https://docs.bluerobotics.com/

ping-viewer/#installing-and-running-the-application.

[19] Anthony A. DiBiase. Electromagnetic interference sources and their

most significant effects. URL https://interferencetechnology.com/

electromagnetic-interference-sources-and-their-most-significant-effects/.

[20] doc.qt.io. Qt designer manual. URL https://doc.qt.io/qt-5/qtdesigner-manual.

html.

[21] ELFA. Rsdw60f-15 - dc/dc-omformer 9 ... 36v 15v 4a 60w, mean well. URL https://www.

elfadistrelec.no/no/dc-dc-omformer-36v-15v-4a-60w-mean-well-rsdw60f-15/

p/30230089?trackQuery=cat-DNAV_PL_10010202&pos=3&origPos=465&

origPageSize=50&filterapplied=filter_Utgangsspenning+1~~V%3d15%26filter_

Utgangsstr%c3%b8m+1~~A%3d4&track=true.

[22] Pamela Fox. Transmission control protocol (tcp). URL https:

//www.khanacademy.org/computing/computers-and-internet/

https://bluerobotics.com/store/sensors-sonars-cameras/leak-sensor/sos-leak-sensor/
https://bluerobotics.com/store/sensors-sonars-cameras/leak-sensor/sos-leak-sensor/
https://bluerobotics.com/store/thrusters/lights/lumen-r2-rp/
https://bluerobotics.com/store/thrusters/lights/lumen-r2-rp/
https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping360-sonar-r1-rp/
https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping360-sonar-r1-rp/
https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/
https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/
https://bluerobotics.com/store/sensors-sonars-cameras/sensors/celsius-sensor-r1/
https://bluerobotics.com/store/sensors-sonars-cameras/sensors/celsius-sensor-r1/
https://bluerobotics.com/
https://docs.bluerobotics.com/ping-viewer/#installing-and-running-the-application
https://docs.bluerobotics.com/ping-viewer/#installing-and-running-the-application
https://interferencetechnology.com/electromagnetic-interference-sources-and-their-most-significant-effects/
https://interferencetechnology.com/electromagnetic-interference-sources-and-their-most-significant-effects/
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
https://www.elfadistrelec.no/no/dc-dc-omformer-36v-15v-4a-60w-mean-well-rsdw60f-15/p/30230089?trackQuery=cat-DNAV_PL_10010202&pos=3&origPos=465&origPageSize=50&filterapplied=filter_Utgangsspenning+1~~V%3d15%26filter_Utgangsstr%c3%b8m+1~~A%3d4&track=true
https://www.elfadistrelec.no/no/dc-dc-omformer-36v-15v-4a-60w-mean-well-rsdw60f-15/p/30230089?trackQuery=cat-DNAV_PL_10010202&pos=3&origPos=465&origPageSize=50&filterapplied=filter_Utgangsspenning+1~~V%3d15%26filter_Utgangsstr%c3%b8m+1~~A%3d4&track=true
https://www.elfadistrelec.no/no/dc-dc-omformer-36v-15v-4a-60w-mean-well-rsdw60f-15/p/30230089?trackQuery=cat-DNAV_PL_10010202&pos=3&origPos=465&origPageSize=50&filterapplied=filter_Utgangsspenning+1~~V%3d15%26filter_Utgangsstr%c3%b8m+1~~A%3d4&track=true
https://www.elfadistrelec.no/no/dc-dc-omformer-36v-15v-4a-60w-mean-well-rsdw60f-15/p/30230089?trackQuery=cat-DNAV_PL_10010202&pos=3&origPos=465&origPageSize=50&filterapplied=filter_Utgangsspenning+1~~V%3d15%26filter_Utgangsstr%c3%b8m+1~~A%3d4&track=true
https://www.elfadistrelec.no/no/dc-dc-omformer-36v-15v-4a-60w-mean-well-rsdw60f-15/p/30230089?trackQuery=cat-DNAV_PL_10010202&pos=3&origPos=465&origPageSize=50&filterapplied=filter_Utgangsspenning+1~~V%3d15%26filter_Utgangsstr%c3%b8m+1~~A%3d4&track=true
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.

BIBLIOGRAPHY 82

xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/

transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%

20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.

[23] GeeksforGeeks. I2c communication protocol. URL https://www.geeksforgeeks.

org/i2c-communication-protocol/#:~:text=I2C%20stands%20for%20Inter%

2DIntegrated,protocol%20for%20short%2Ddistance%20communication.

[24] HILGRAEVE. Hyperterminal trial.

[25] Rustom Jehangir. Bluerobotics ms5837 library, . URL https://github.com/

bluerobotics/BlueRobotics_MS5837_Library.

[26] Rustom Jehangir. Bluerobotics tsys01 temperature sensor library, . URL https://github.

com/bluerobotics/BlueRobotics_TSYS01_Library.

[27] JetBrains. Clion, . URL https://www.jetbrains.com/clion/

promo/?source=google&medium=cpc&campaign=11959979214&gclid=

Cj0KCQiApL2QBhC8ARIsAGMm-KHSiCNnF4caJnbNrukvx3cgGSq7WLpLVcG7AMjo3X0yRbdtQuLvZWYaAiItEALw_

wcB.

[28] JetBrains. Pycharm, . URL https://www.jetbrains.com/pycharm/.

[29] Fendadis John. Advantages and disadvantages of the tcp/ip model. URL https://www.

tutorialspoint.com/Advantages-and-Disadvantages-of-the-TCP-IP-Model.

[30] Jennifer Kennedy. Salinity: Definition and importance to marine life. URL

https://www.thoughtco.com/salinity-definition-2291679#:~:text=Salinity%

20can%20affect%20the%20density,regulate%20its%20intake%20of%20saltwater.

[31] LawtonChuck Moozakis Linda Rosencrance, George. User datagram protocol

(udp). URL https://www.techtarget.com/searchnetworking/definition/

UDP-User-Datagram-Protocol#:~:text=User%20Datagram%20Protocol%20(UDP)

%20is,provided%20by%20the%20receiving%20party.

https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f4a7ff015e7d:transporting-packets/a/transmission-control-protocol--tcp#:~:text=The%20Transmission%20Control%20Protocol%20(TCP,duplicate%20packets%2C%20and%20corrupted%20packets.
https://www.geeksforgeeks.org/i2c-communication-protocol/#:~:text=I2C%20stands%20for%20Inter%2DIntegrated,protocol%20for%20short%2Ddistance%20communication.
https://www.geeksforgeeks.org/i2c-communication-protocol/#:~:text=I2C%20stands%20for%20Inter%2DIntegrated,protocol%20for%20short%2Ddistance%20communication.
https://www.geeksforgeeks.org/i2c-communication-protocol/#:~:text=I2C%20stands%20for%20Inter%2DIntegrated,protocol%20for%20short%2Ddistance%20communication.
https://github.com/bluerobotics/BlueRobotics_MS5837_Library
https://github.com/bluerobotics/BlueRobotics_MS5837_Library
https://github.com/bluerobotics/BlueRobotics_TSYS01_Library
https://github.com/bluerobotics/BlueRobotics_TSYS01_Library
https://www.jetbrains.com/clion/promo/?source=google&medium=cpc&campaign=11959979214&gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KHSiCNnF4caJnbNrukvx3cgGSq7WLpLVcG7AMjo3X0yRbdtQuLvZWYaAiItEALw_wcB
https://www.jetbrains.com/clion/promo/?source=google&medium=cpc&campaign=11959979214&gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KHSiCNnF4caJnbNrukvx3cgGSq7WLpLVcG7AMjo3X0yRbdtQuLvZWYaAiItEALw_wcB
https://www.jetbrains.com/clion/promo/?source=google&medium=cpc&campaign=11959979214&gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KHSiCNnF4caJnbNrukvx3cgGSq7WLpLVcG7AMjo3X0yRbdtQuLvZWYaAiItEALw_wcB
https://www.jetbrains.com/clion/promo/?source=google&medium=cpc&campaign=11959979214&gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KHSiCNnF4caJnbNrukvx3cgGSq7WLpLVcG7AMjo3X0yRbdtQuLvZWYaAiItEALw_wcB
https://www.jetbrains.com/pycharm/
https://www.tutorialspoint.com/Advantages-and-Disadvantages-of-the-TCP-IP-Model
https://www.tutorialspoint.com/Advantages-and-Disadvantages-of-the-TCP-IP-Model
https://www.thoughtco.com/salinity-definition-2291679#:~:text=Salinity%20can%20affect%20the%20density,regulate%20its%20intake%20of%20saltwater.
https://www.thoughtco.com/salinity-definition-2291679#:~:text=Salinity%20can%20affect%20the%20density,regulate%20its%20intake%20of%20saltwater.
https://www.techtarget.com/searchnetworking/definition/UDP-User-Datagram-Protocol#:~:text=User%20Datagram%20Protocol%20(UDP)%20is,provided%20by%20the%20receiving%20party.
https://www.techtarget.com/searchnetworking/definition/UDP-User-Datagram-Protocol#:~:text=User%20Datagram%20Protocol%20(UDP)%20is,provided%20by%20the%20receiving%20party.
https://www.techtarget.com/searchnetworking/definition/UDP-User-Datagram-Protocol#:~:text=User%20Datagram%20Protocol%20(UDP)%20is,provided%20by%20the%20receiving%20party.

BIBLIOGRAPHY 83

[32] EMC Bayswater Pty Ltd. A guide to electromagnetic com-

patibility (emc) testing methods. URL https://www.

emcbayswater.com.au/blog/emc-testing/commercial-emc-testing/

guide-electromagnetic-compatibility-emc-testing-methods/.

[33] Anas Mazouni. ping360sonar.U RL.

Mouser. Uwe-12/6-q48nb-c. URL https://no.mouser.com/ProductDetail/Murata-Power-Solutions/

UWE-12-6-Q48NB-C?qs=ElE%2F8fqQeYgYGfPEPkQx2A%3D%3D.

NickNothom, jaxxzer, patrickelectric, Williangalvani, ES-Alexander, and rjehangir. ping-python,

. URL https://github.com/bluerobotics/ping-python.

NickNothom, jaxxzer, patrickelectric, Williangalvani, ES-Alexander, and rjehangir. ping-protocol,

. URL https://github.com/bluerobotics/ping-protocol.

PCSCHEMATIC. Pcschematic. URL https://www.pcschematic.com/en/.

Raspberry Pi. Raspberry pi 4 tech specs. URL https://www.raspberrypi.com/products/

raspberry-pi-4-model-b/specifications/.

Omron Sentech. Stc-mca503usb. URL https://automation.omron.com/en/mx/products/

family/STUSB3/STC-MCA503USB.

Sonar-info. Target strength. URL http://www.sonar-info.info/p278/TS.pdf.

techopedia. Communication protocol. URL https://www.techopedia.com/definition/

25705/communication-protocol.

Ultimaker. Ultimaker cura. URL https://ultimaker.com/software/ultimaker-cura.

Wikipedia. Buoyancy, . URL https://en.wikipedia.org/wiki/Buoyancy.

Wikipedia. Display resolution, . URL https://en.wikipedia.org/wiki/Display_resolution.

Wikipedia. Electromagnetic compatibility, . URL https://en.wikipedia.org/wiki/Electromagnetic_

compatibility.

Wikipedia. Electromagnetic interference, . URL https://en.wikipedia.org/wiki/Electromagnetic_

interference.

Wikipedia. Frame rate, . URL https://en.wikipedia.org/wiki/Frame_rate.

https://www.emcbayswater.com.au/blog/emc-testing/commercial-emc-testing/guide-electromagnetic-compatibility-emc-testing-methods/
https://www.emcbayswater.com.au/blog/emc-testing/commercial-emc-testing/guide-electromagnetic-compatibility-emc-testing-methods/
https://www.emcbayswater.com.au/blog/emc-testing/commercial-emc-testing/guide-electromagnetic-compatibility-emc-testing-methods/
https://github.com/CentraleNantesRobotics/ping360_sonar
https://no.mouser.com/ProductDetail/Murata-Power-Solutions/UWE-12-6-Q48NB-C?qs=ElE%2F8fqQeYgYGfPEPkQx2A%3D%3D
https://no.mouser.com/ProductDetail/Murata-Power-Solutions/UWE-12-6-Q48NB-C?qs=ElE%2F8fqQeYgYGfPEPkQx2A%3D%3D
https://github.com/bluerobotics/ping-python
https://github.com/bluerobotics/ping-protocol
https://www.pcschematic.com/en/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://automation.omron.com/en/mx/products/family/STUSB3/STC-MCA503USB
https://automation.omron.com/en/mx/products/family/STUSB3/STC-MCA503USB
http://www.sonar-info.info/p278/TS.pdf
https://www.techopedia.com/definition/25705/communication-protocol
https://www.techopedia.com/definition/25705/communication-protocol
https://ultimaker.com/software/ultimaker-cura
https://en.wikipedia.org/wiki/Buoyancy
https://en.wikipedia.org/wiki/Display_resolution
https://en.wikipedia.org/wiki/Electromagnetic_compatibility
https://en.wikipedia.org/wiki/Electromagnetic_compatibility
https://en.wikipedia.org/wiki/Electromagnetic_interference
https://en.wikipedia.org/wiki/Electromagnetic_interference
https://en.wikipedia.org/wiki/Frame_rate

BIBLIOGRAPHY 84

Wikipedia. Gantt chart, .

Wikipedia. Machine vision, . URL https://en.wikipedia.org/wiki/Machine_vision.

Wikipedia. Raspberry pi os, .

Wikipedia. Communication protocol, . URL https://en.wikipedia.org/wiki/Communication_

protocol#:~:text=A%20communication%20protocol%20is%20a,and%20possible%20error%

20recovery%20methods.

Wikipedia. Osi model, . URL https://en.wikipedia.org/wiki/OSI_model.

Wikipedia. List of network protocols (osi model), . URL https://en.wikipedia.org/wiki/

List_of_network_protocols_(OSI_model).

Wikipedia. Target strength, . URL https://en.wikipedia.org/wiki/Target_strength#:~:

text=The%20target%20strength%20or%20acoustic,as%20a%20number%20of%20decibels.

&text=Target%20strength%20(TS)%20is%20equal,cross%20section%20is%204%CF%80%CF%

83bs.

Wikipedia. Sonar, . URL https://en.wikipedia.org/wiki/Sonar#Passive_sonar.

Wikipedia. Conductivity (electrolytic), . URL https://en.wikipedia.org/wiki/Conductivity_

(electrolytic).

Wikipedia. Salinity, . URL https://en.wikipedia.org/wiki/Salinity).

Wikiwand. Arduino. URL https://www.wikiwand.com/en/Arduino.

RF Wireless World. Sonar vs radar | difference between sonar and radar. URL https://www.

rfwireless-world.com/Terminology/SONAR-vs-RADAR.html#:~:text=SONAR%20stands%20for%

20SOund%20Navigation,above%20the%20land%20or%20sea.

https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Communication_protocol#:~:text=A%20communication%20protocol%20is%20a,and%20possible%20error%20recovery%20methods.
https://en.wikipedia.org/wiki/Communication_protocol#:~:text=A%20communication%20protocol%20is%20a,and%20possible%20error%20recovery%20methods.
https://en.wikipedia.org/wiki/Communication_protocol#:~:text=A%20communication%20protocol%20is%20a,and%20possible%20error%20recovery%20methods.
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model)
https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model)
https://en.wikipedia.org/wiki/Target_strength#:~:text=The%20target%20strength%20or%20acoustic,as%20a%20number%20of%20decibels.&text=Target%20strength%20(TS)%20is%20equal,cross%20section%20is%204%CF%80%CF%83bs.
https://en.wikipedia.org/wiki/Target_strength#:~:text=The%20target%20strength%20or%20acoustic,as%20a%20number%20of%20decibels.&text=Target%20strength%20(TS)%20is%20equal,cross%20section%20is%204%CF%80%CF%83bs.
https://en.wikipedia.org/wiki/Target_strength#:~:text=The%20target%20strength%20or%20acoustic,as%20a%20number%20of%20decibels.&text=Target%20strength%20(TS)%20is%20equal,cross%20section%20is%204%CF%80%CF%83bs.
https://en.wikipedia.org/wiki/Target_strength#:~:text=The%20target%20strength%20or%20acoustic,as%20a%20number%20of%20decibels.&text=Target%20strength%20(TS)%20is%20equal,cross%20section%20is%204%CF%80%CF%83bs.
https://en.wikipedia.org/wiki/Sonar#Passive_sonar
https://en.wikipedia.org/wiki/Conductivity_(electrolytic)
https://en.wikipedia.org/wiki/Conductivity_(electrolytic)
https://en.wikipedia.org/wiki/Salinity)
https://www.wikiwand.com/en/Arduino
https://www.rfwireless-world.com/Terminology/SONAR-vs-RADAR.html#:~:text=SONAR%20stands%20for%20SOund%20Navigation,above%20the%20land%20or%20sea.
https://www.rfwireless-world.com/Terminology/SONAR-vs-RADAR.html#:~:text=SONAR%20stands%20for%20SOund%20Navigation,above%20the%20land%20or%20sea.
https://www.rfwireless-world.com/Terminology/SONAR-vs-RADAR.html#:~:text=SONAR%20stands%20for%20SOund%20Navigation,above%20the%20land%20or%20sea.

Appendix A

Preproject report

FORPROSJEKT - RAPPORT
FOR BACHELOROPPGAVE

Postadresse Besøksadresse Telefon Telefax Bankkonto
Høgskolen i Ålesund Larsgårdsvegen 2 70 16 12 00 70 16 13 00 7694 05 00636
N-6025 Ålesund Internett Epostadresse Foretaksregisteret
Norway www.hials.no postmottak@hials.no NO 971 572 140

TITTEL:

Forprosjekt rapport for ROV- Remotely Operated Underwater Vehicle

KANDIDATNUMMER(E):

Tony Paulsen

Petter Henriksen

DATO: EMNEKODE: EMNE: DOKUMENT TILGANG:

19.01.2022 IELEA2920 Bacheloroppgave - Åpen

STUDIUM: ANT SIDER/VEDLEGG: BIBL. NR:

ELEKTROINGENIØR-AUTOMATISERING OG ROBOTIKK 10/4 - Ikke i bruk -

OPPDRAGSGIVER(E)/VEILEDER(E):

NTNU i Ålesund v/Lars Christian Gansel, Ottar L. Osen

OPPGAVE/SAMMENDRAG:

NTNU i Ålesund ønsker å videreutvikle en USV plattform, et ubemannet overflatefartøy som

skal bære en ROV og vinsj for å kunne observere undervanns akvakulturer. ROVen skal ha

kamera, sensorer for måling av diverse verdier og thrustere for bevegelse. Produksjon av en

prototype av denne ROVen er gitt som bachelor oppgave til studenter som studerer

Automatisering og Robotikk. Denne forprosjektrapporten er en prosjektbeskrivelse av denne

bacheloroppgaven.

Bacheloroppgaven skal utrede et konsept for en slik ROV med fokus på integrering av kamera,

sensorer og en brukervennlig GUI. Viktige designkriterier vil være vekt, kostnad og brukbarhet

av bilde og sensorverdier for forskning på akvakulturer. Oppgaven skal også utføres på en

måte som gjør det lett for fremtidige grupper å videreutvikle ROVen videre.

Prototypen skal testes i vann på NTNU test lokaler og ute på lokasjon for å kunne demonstrere

at design og implementasjon av nye funksjoner fungerer som angitt.

Denne oppgaven er en eksamensbesvarelse utført av student(er) ved NTNU i Ålesund.

mailto:postmottak@hials.no

NTNU I ÅLESUND SIDE 2
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

INNHOLD

INNHOLD ... 2

1 INNLEDNING .. 3

2 BEGREPER .. 3

3 PROSJEKTORGANISASJON .. 3

 PROSJEKTGRUPPE .. 3
3.1.1 Oppgaver for prosjektgruppen – organisering ... 3
3.1.2 Oppgaver for prosjektleder ... 3
3.1.3 Oppgaver for sekretær .. 3

 STYRINGSGRUPPE (VEILEDER OG KONTAKTPERSON OPPDRAGSGIVER) .. 4

4 AVTALER ... 4

 AVTALE MED OPPDRAGSGIVER .. 4
 ARBEIDSSTED OG RESSURSER .. 4
 GRUPPENORMER – SAMARBEIDSREGLER – HOLDNINGER ... 4

5 PROSJEKTBESKRIVELSE ... 4

 PROBLEMSTILLING - MÅLSETTING - HENSIKT ... 4
 KRAV TIL LØSNING ELLER PROSJEKTRESULTAT – SPESIFIKASJON .. 5

5.2.1 Forbedre kamera .. 5
5.2.2 Sonar ... 5
5.2.3 Kombinasjonssensor ... 5

 PLANLAGT FRAMGANGSMÅTE(R) FOR UTVIKLINGSARBEIDET – METODE(R) .. 5
 INFORMASJONSINNSAMLING – UTFØRT OG PLANLAGT ... 6
 VURDERING – ANALYSE AV RISIKO .. 6
 HOVEDAKTIVITETER I VIDERE ARBEID ... 6
 FRAMDRIFTSPLAN – STYRING AV PROSJEKTET ... 6

5.7.1 Hovedplan ... 6
5.7.2 Styringshjelpemidler ... 7
5.7.3 Utviklingshjelpemidler .. 7
5.7.4 Intern kontroll – evaluering .. 7

 BESLUTNINGER – BESLUTNINGSPROSESS ... 7

6 DOKUMENTASJON ... 7

 RAPPORTER OG TEKNISKE DOKUMENTER ... 7

7 PLANLAGTE MØTER OG RAPPORTER ... 8

 MØTER .. 8
7.1.1 Møter med styringsgruppen .. 8
7.1.2 Prosjektmøter .. 8

 PERIODISKE RAPPORTER .. 8
7.2.1 Framdriftsrapporter (inkl. milepæl) ... 8

8 PLANLAGT AVVIKSBEHANDLING .. 8

9 UTSTYRSBEHOV/FORUTSETNINGER FOR GJENNOMFØRING ... 9

VEDLEGG .. 10

NTNU I ÅLESUND SIDE 3
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

1 INNLEDNING

I Norge og spesielt på Vestlandet er fiske oppdrett en viktig del av økonomien, men oppdretts bedrifter har

møtt på problemer i form av bakterier og lus. For å løse dette problemet trenger marine biologer redskap for

å kunne observere fisken og miljøet rundt dem. For å hjelpe med dette skal vi videreutvikle en ROV

prototype. ROVen skal ha et kamera og diverse sensorer for å kunne samle data, den skal også ha thrustere

for bevegelse slik at man kan flytte kameraet der man ønsker. ROV skal i tillegg ha en GUI som gjør den

brukervennlig, og viser relevante data på en oversiktlig måte. ROVen er en del av et større system som i

består av en vinsj og en flytende plattform.

2 BEGREPER

- ROV (Remotely Operated Underwater Vehicle), betegnelse for fjernstyrt undervanns kjøretøy.

- GUI (Graphical User Interface), grafisk brukergrensesnitt, ett brukergrensesnitt for dataprogram som lar

brukeren benytte utstyr som tastatur og datamus for å lese data og sende kommandoer.

3 PROSJEKTORGANISASJON

 Prosjektgruppe

Studentnummer(e)

517297 – Tony Paulsen – Prosjektleder

510317 – Petter Henriksen – Sekretær

Tabell: Studentnummer(e) for alle i gruppen som leverer oppgaven for bedømmelse i faget IELEA2920

3.1.1 Oppgaver for prosjektgruppen – organisering

Alle gruppemedlemmene har samme ansvar for gjennomføring av prosjektet, både dokumentasjon og

arbeid på prosjektet. Gruppemedlemmene skal til alle tider holde hverandre oppdatert om fremdrift og

eventuelle avvik.

3.1.2 Oppgaver for prosjektleder

• Oppdatere Gantt-diagram

• Møteinnkalling med agenda

• Lede møter med styringsgruppen

3.1.3 Oppgaver for sekretær

NTNU I ÅLESUND SIDE 4
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

• Reservasjon av eventuelt møterom for styringsgruppe-møter

• Skrive og distribuere møtereferat

• Skrive framdriftsrapport

 Styringsgruppe (veileder og kontaktperson oppdragsgiver)

Styringsgruppen består av Ottar Osen og Lars Christian Gansel fra NTNU i Ålesund.

4 AVTALER

 Avtale med oppdragsgiver

Oppgaven går ut på å videreutvikle og forbedre en ROV, arbeidet bygger på tidligere studentprosjekter

som har blitt utført ved NTNU i Ålesund. Tidligere oppgaver rundt ROVen har hatt tverrfaglige grupper,

der arbeidsoppgaver som produktdesign og kontrollsystemer ble utført av egnede personer. Gruppen vår

består av kun automatiseringselever, og derfor blir design/ valg av materiell og lignende forenklet slik at

gruppen har mulighet til å fokusere på mer relevante arbeidsoppgaver. Fra møte med styringsgruppen ble

det avtalt at arbeidsoppgavene var veldig åpne, og at vi får stor valgfrihet til å velge ønskelige

forbedringer på ROVen.

 Arbeidssted og ressurser

Prosjektet skal utføres ved NTNU i Ålesund. Her jobber begge veilederne fra styringsgruppen, som er

gunstig for tilgang til hjelp på kort varsel. Veilederne har uttrykt mulighet for testing ved lokasjon om

dette er ønskelig. Møte med veilederne skal ta stede enten digitalt eller på avtalt lokasjon annenhver

tirsdag.

 Gruppenormer – samarbeidsregler – holdninger

Gruppen har avtalt å innføre en kjernetid mellom 09:00 til 14:00 hver ukedag. Dette er for å sikre god

fremgang på prosjektet og å være tilgjengelige for hverandre ved spørsmål og diskusjoner. Likevel

settes det som mål at gruppemedlemmene skal jobbe minimalt 37.5 timer hver uke, ekskludert pauser. I

tillegg er det utarbeidet en samarbeidsavtale for å sette hverandre ansvarlige for gode holdninger innen

gruppen, se vedlagt.

Gruppemedlemmene skal behandle hverandres meninger og synspunkt med respekt. Alle

gruppemedlemmene skal arbeide nøyaktig, ærlig og være punktlig iht. avtaler og møter.

5 PROSJEKTBESKRIVELSE

 Problemstilling - målsetting - hensikt

Prosjektet tar basis i tidligere prototyper av ROVer utarbeidet av studenter ved NTNU. Ettersom

gruppemedlemmene ikke har mye erfaring innen design av fartøy, avgrenses oppgaven til å lage en

veldig simpel prototype for ett ROV fartøy, som ønskelige sensorer kan monteres på og videre brukes/

testes.

Etter møte med styringsgruppen fikk vi informert om mulige utvidelser av ROV som var ønskelig. Fra

møtet og etter intern diskusjon innen gruppen bestemte vi oss for å dele opp prosjektet i tre

hovedtemaer, kamera, sonar og kombinasjonssensor.

NTNU I ÅLESUND SIDE 5
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

 Krav til løsning eller prosjektresultat – spesifikasjon

Avsnittene under beskriver i mer detalj kravene og målene som settes for hver enkelt av de tre

hovedtemaene som prosjektet består av. Først forklares kravene til oppgradering av kamera, deretter

beskrives kravene for sonar og kombinasjonssensor. I tillegg til sonar sensor og kombinasjonssensor

montering og avlesning av data, -beskrives det at ytterligere logikk som skal implementeres. Men en

presis formulering av løsning er ikke spesifisert, dette er fordi det kreves mye forsking og utreding som

skal utføres etter forprosjektrapporten for å finne realistiske og gode logikk implementasjoner.

5.2.1 Forbedre kamera

Fra tidligere iterasjoner av prosjektet er det nå montert et vanlig Webkamera. Vi ønsker å dimensjonere,

montere og integrere ett kamera som er bedre egnet for dårlige lysforhold og som har mulighet for å

skille mellom kontraster effektivt. En del av prosjektet blir å finne et slikt kamera som oppfyller

kravene. Målet er også å finne et kamera som er bedre eller like bra som GoPro kameraene som blir

brukt på andre ROVer som allerede er i bruk av biologi avdelingen. Men GoPro kameraene har egne

program som er spesial-tilpasset for dem. Ved valg av nytt kamera som er bedre egnet for egenskapene

som vi behøver, vil sending av informasjon til GUI en utfordring.

5.2.2 Sonar

Montere og integrere en sonar sensor på undersiden av ROV. Første steg blir å avlese dataen fra

sonaren på en måte som er intuitivt på GUI, som i hovedsak vil gi lokasjon på fisk. Videre skal det

utvikles kollisjons-beskyttelse for å sikre ROV mot skade under operasjon. Der vi ønsker å gi alarm på

GUI, og utvikler logikk som aktiverer variabler som kan brukes til forrigling under kjøring av thrustere i

retningen det oppdages objekt(er).

Ett alternativ for sonar er Ping360 fra BlueRobotics.

5.2.3 Kombinasjonssensor

Montere og integrere en kombinasjonssensor som måler flere viktige parameter som er essensielle for

akvakultur. Målevariabler som saltholdighet, pH, vann-hardhet og vann-konduktivitet er relevante for

ROVen. Andre variabler som oksygen og temperatur er allerede utredet og integrert på en god måte, og

behøves ikke endres. Dataen fra denne sensoren skal behandles og det skal være mulighet for å vise

infoen i GUIen. Videre skal det utvikles logikk som består av moving-average avlesninger av kritiske

verdier for akvakultur, dersom endringene er store over kort tid, eller det oppstår verdier som er

benevnet som kritiske, skal dette vises med alarmer og visuelle hjelpemiddel på GUI.

Ett alternativ for en kombinasjonssensor er Model 5819 fra Aanderaa.

 Planlagt framgangsmåte(r) for utviklingsarbeidet – metode(r)

Gruppearbeidet vil utføres opp mot mål som er satt i Gantt diagrammet. Der aktivitetene som er oppført

først skal prioriteres høyest. Gruppemedlemmet som er ansvarlig for en spesifikk aktivitet har fullt ansvar

for å fullføre denne aktiviteten innen tiden, ellers gi beskjed om fristen ikke kan holdes.

Ettersom gruppen består av to medlemmer vil begge medlemmer jobbe med alle arbeidsoppgavene, der

det byttes på hvilket medlem som har ansvar. Det er antatt at noen aktiviteter vil gå over fristen, eller

NTNU I ÅLESUND SIDE 6
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

aktiveten mangler informasjon eller komponenter, i slike situasjoner skal arbeidet justeres dynamisk slik

at det blir alltid jobbet med relevante arbeidsoppgaver.

 Informasjonsinnsamling – utført og planlagt

I løpet av forprosjekt rapport arbeidet har gruppemedlemmene studert relevant litteratur for prosjektet.

Medlemmene har lest tidligere rapporter og dokumentasjon utarbeidd fra både studenter og faglærere ved

NTNU, i tillegg har medlemmene studert informasjon fra tilsvarende internasjonale prosjekter.

Informasjonsinnsamlingen er svært viktig for å bygge ett godt kunnskaps fundament slik at beslutninger

som valg av arbeidsoppgaver blir gjort slik at ROVen blir forbedret, samtidig som at løsningen som blir

startet er overkommelig for to studenter som en bachelor oppgave.

Denne informasjonsinnsamlingen skal utføres kontinuerlig gjennom prosjektets gang. Medlemmene skal

begynne fra starten av med å tilføre viktige og relevant informasjon under teoretisk bakgrunn på

rapporten.

 Vurdering – analyse av risiko

Ettersom gruppen består av to medlemmer vil begge medlemmer jobbe med alle arbeidsoppgavene, der

det byttes på hvilket medlem som har ansvar. Det er antatt at noen aktiviteter vil gå over fristen, eller

aktiveten mangler informasjon eller komponenter, i slike situasjoner skal arbeidet justeres dynamisk slik

at det blir alltid jobbet med relevant arbeidsoppgaver.

Vi har utviklet en risikomatrise som viser risikoen for ulike aspekt av prosjektet, der en høy risiko betyr at

det er stor sannsynlighet for at situasjonen som oppstår skaper høy tidsforsinkelse i prosjektet.

Risikomatrisen skal utvikles videre gjennom prosjektet når nye situasjoner må tas i vurdering.

 Hovedaktiviteter i videre arbeid
A. Hovedaktivitet: Utredning av ROV konsept

B. Hovedaktivitet: Utstyrsanskaffelse

C. Hovedaktivitet: Bygge prototype

D. Hovedaktivitet: Programvare utvikling

E. Hovedaktivitet: Integrasjon av alle del-systemer

F. Hovedaktivitet: Testing av protype

G. Hovedaktivitet: Fullføre rapport og endelig innlevering

En mer detaljert versjon av dette som inneholder tidsrammer og ansvars person vil være i Gantt-diagrammet

 Framdriftsplan – styring av prosjektet

5.7.1 Hovedplan

Hovedplanen for prosjektet blir satt i form av Gantt-diagrammet. I dette diagrammet settes start -og stopp

dato for hver enkelt aktivitet. Diagrammet viser også hvilket medlem som står med ansvar for hver enkelt

aktivitet. Gantt-diagrammet skal utredes med en hierarkisk struktur, der store aktiviteter skal deles ned i

mindre og mindre aktiviteter. Dette resulterer i god kontroll over prosjektet, i tillegg til at aktivitetene

ikke virker uoverkommelige.

NTNU I ÅLESUND SIDE 7
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

5.7.2 Styringshjelpemidler

For rapportskriving i LaTeX benytter vi Overleaf for å kunne enkelt arbeide samtidig, samtidig ha

tilgang til hjelpemiddel som versjonskontroll og kommentering av tekst.

Til Gantt diagram brukes nettsiden teamgantt.com.

5.7.3 Utviklingshjelpemidler

For utvikling og simulering av data fra sonar sensor vil gruppen ha behov for Matlab.

For programmering av sensorer som er tilkoblet Arduino benyttes Arduino IDE og jetbrains Clion.

For kjøring av GUI benyttes NetBeans IDE.

5.7.4 Intern kontroll – evaluering

Prosjektleder har ansvar for utvikling og oppdatering av Gantt skjema minst en gang i uken.

Sekretær har ansvar for skriving av framdriftsrapporter.

Samtaler mellom gruppemedlemmene skal utføres daglig.

 Beslutninger – beslutningsprosess

Konkrete rammevilkår for prosjektet bestemmes i møte mellom prosjektgruppen og

styringsguppen.

Skal signifikante endringer utføres fra ønske av prosjekt -eller styringsguppen skal dette bli tatt opp

i ett formelt møte.

6 DOKUMENTASJON

 Rapporter og tekniske dokumenter
• Gantt-diagram

• Møteinnkallinger

• Møtereferater

• Framdriftsrapporter (m/ referat av møter)

• Underveispresentasjon

• Videopresentasjon av ferdig prosjekt

• Risikoanalyse

Alle dokumentert blir lastet opp i teams slik at de er sikkerhetskopiert

NTNU I ÅLESUND SIDE 8
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

7 PLANLAGTE MØTER OG RAPPORTER

 Møter

7.1.1 Møter med styringsgruppen

• Oppstarts møte 13.01.2022 klokken 13:00 med prosjekt gruppe, Ottar L. Osen og Lars Christian Gansel

• Planlagt møte annenhver tirsdag fra og med 01.02.22. Disse møtene gjør at prosjekt gruppen kan

informere styringsgruppen om framdriften i prosjektet og be om veiledning fra styringsgruppen

• Sekretær sender møtereferat på mail så for som mulig til alle deltagere etter møte

7.1.2 Prosjektmøter
Prosjekt gruppen består bare av 2 personer og gruppen vil jobbe tett sammen gjennom det meste av prosjektet

derfor er ikke det nødvendig med slike møter.

Dersom det oppstår problem i samarbeidet, kan det bli aktuelt med slike møter

 Periodiske rapporter

7.2.1 Framdriftsrapporter (inkl. milepæl)
Før møter vil det bli laget en framdriftsrapport som viser arbeidet som skulle vært utført og det som faktisk ble

gjort. Rapporten vil inneholde eventuelle endringer og avvik fra plan. I tillegg vil også arbeidet som skal jobbes

med til neste møte bli presentert. Denne rapporten vil bli sendt til styringsgruppen dagen før møtet. Oppdatert

Gantt-diagram vil bli sendt sammen med møte innkalling. Møtereferat blir sendt ut til alle deltakere etter hvert

møte.

7.2.2 Møtereferater

Referatene vil inneholde:

• Navn på deltakere

• Framgang fra forrige møte

• Eventuelle avvik og endringer i prosjektet

• Mål til neste møte

8 PLANLAGT AVVIKSBEHANDLING

Dersom det oppstår avvik, vil gruppen stille disse spørsmålene i en intern diskusjon.

• Kan avviket fikses med mer ressurser?

• Kan avviket unngås?

• Kan avviket løses med ekstern hjelp?

• Kan arbeidsoppgaven bli byttet ut slik at man unngår avviket?

Eventuelle endringer som gruppen kommer fram til vil bli sendt til styringsgruppen slik at det kan komme

eventuelle innspill før en endelig avgjørelse

NTNU I ÅLESUND SIDE 9
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

9 UTSTYRSBEHOV/FORUTSETNINGER FOR
GJENNOMFØRING

• Utstyr / programvare eller andre spesielle ressurser som en vanligvis ikke har tilgang til og som er

nødvendig for å gjennomføre prosjektet

• Eventuelt spesialutstyr / programvare som det søkes om innkjøp av- begrunnes
(Vanligvis vil det være oppdragsgivers ansvar å stille slikt utstyr og programvare til disposisjon for

prosjektgruppen)

Gruppen må finne og kjøpe inn alle deler som trengs for ROVen dette inkluderer sensorer, sonar og kamera.

Utstyret trenger en trygg oppbevarings lokasjon under prosjektet. Det trengs også en plass for testing av ROVen,

der vi behøver en vanntank for tidlige tester, og reise til en lokasjon for full skala test. Utstyr som blir essensielt

som vi ikke har tilgjengelig og som vi antar må bestilles er

• 360 Sonar

• Aanderaa Sensor

• Nytt kamera

NTNU I ÅLESUND SIDE 10
FORPROSJEKTRAPPORT – BACHELOROPPGAVE

VEDLEGG

Vedlegg 1 Gantt-diagram

Vedlegg 2 Risikomatrise

Vedlegg 3 Samarbeidsavtale

Vedlegg 4 Møtereferat, første møte med styringsgruppe 13.01.22

Vedlegg 1

Gantt-diagram

11 17 24 31 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16 23
1/22 2/22 3/22 4/22 5/22

IELEA2920_ROV start end 0h 0%

 Forprosjektrapport 01/12/22 01/21/22 0h 0%
 Definere problemstillinger 01/12 01/21 0 0%
 Lage risikomatrise 01/20 01/21 0 0%
 Lage Gantt-diagram 01/19 01/21 0 0%
 Kombinere alle dokument 01/20 01/21 0 0%

 Utredning av ROV konsept 01/24/22 02/04/22 0h 0%
 Bestemme sonar type 01/24 01/28 0 0%
 Bestemme komb. sensor type 01/24 01/28 0 0%
 Bestemme kamera 01/24 01/28 0 0%
 Bestemme utforming av prototype sk... 01/31 02/03 0 0%
 Vurdere plassering av sensorer 02/01 02/04 0 0%

 Utstyrsanskaffelse 01/31/22 02/03/22 0h 0%
 Bestille sensorer 01/31 02/03 0 0%
 Bestille annet utstyr 01/31 02/03 0 0%

 Bygge prototype 02/07/22 03/04/22 0h 0%
 Demontere gammel ROV 02/07 02/09 0 0%
 Montere gammelt utstyr - - 0 0%
 Tilpasse prototype for sensorer 02/10/22 02/25/22 0h 0%
 Lage montasje for sonar 02/10 02/16 0 0%
 Lage montasje for komb. sensor 02/10 02/16 0 0%
 Lage montasje for kamera m/ vann... 02/17 02/25 0 0%
 Montere nye sensorer 02/28/22 03/04/22 0h 0%
 Montere sonar 02/28 03/04 0 0%
 Montere komb. sensor 02/28 03/04 0 0%
 Montere kamera 02/28 03/04 0 0%

 Programvare utvikling 03/07/22 03/28/22 0h 0%
 Kombinasjons sensor 03/07/22 03/11/22 0h 0%
 Program for avlesning data 03/07 03/11 0 0%
 Program til system 03/07 03/11 0 0%
 Sonar 03/09/22 03/16/22 0h 0%
 Program for avlesning data 03/09 03/16 0 0%
 Program til system 03/09 03/16 0 0%
 Kamera 03/14/22 03/28/22 0h 0%
 Vise kamera i GUI 03/14 03/18 0 0%
 Tilpasse kode for system 03/21 03/28 0 0%

 Integrasjon av alle del-systemer 03/28/22 04/08/22 0h 0%
 Integrasjon av komb. sensor 03/28/22 04/08/22 0h 0%
 Vise sensor verdier 03/28 04/08 0 0%
 Gi beskjed om ending av snittverdi... 04/05 04/08 0 0%
 Integrasjon av sonar data 03/28/22 04/08/22 0h 0%
 Vise data som bilde 03/28 04/08 0 0%
 Gi beskjed om kollisjonsfare 04/05 04/08 0 0%
 Integrasjon av kamera 03/28/22 04/08/22 0h 0%
 Vise kamera i GUI 03/28 04/08 0 0%

Tony Vikene Paulsen
Tony Vikene Paulsen
Petter Henriksen

Petter Henriksen
Tony Vikene Paulsen

Tony Vikene Paulsen
Petter Henriksen

Petter Henriksen

Petter Henriksen
Tony Vikene Paulsen

Petter Henriksen

Petter Henriksen
Tony Vikene Paulsen
Petter Henriksen

Tony Vikene Paulsen
Tony Vikene Paulsen

Tony Vikene Paulsen
Tony Vikene Paulsen

Petter Henriksen

Petter Henriksen
Petter Henriksen

Tony Vikene Paulsen
Tony Vikene Paulsen

Petter Henriksen

11 17 24 31 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16 23
1/22 2/22 3/22 4/22 5/22

 Testing av prototype 04/11/22 04/29/22 0h 0%
 Testing av alle sensorer på GUI 04/11 04/15 0 0%
 Testing av implementert logikk 04/18 04/22 0 0%
 Full skala test på lokasjon 04/25 04/29 0 0%

 Fullføre rapport 02/07/22 05/20/22 0h 0%
 Fullføre rapport i LaTeX 02/07 05/19 0 0%
 Kombinere LaTeX m/ alle vedlegg 05/19 05/20 0 0%

Petter Henriksen
Tony Vikene Paulsen

Petter Henriksen, Tony Vikene Paulsen

Petter Henriksen, Tony Vikene Paulsen
Petter Henriksen, Tony Vikene Paulsen

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Vedlegg 2

Risikomatrise

Innvirkning Risiko-tabell
Neglisjerbart Liten Moderat Betydelig Alvorlig Nr. Identifiserte risikoer Dato for risiko oppdagelse

Svært sannysnlig 1 Sykdom i gruppen (COVID-19) 17.01.2022

Sannsynlig 1 4 2 Nedstenging av arbeidslokale 17.01.2022

Sannsynlighet Mulig 3 5,7 3 Problemer med sensor kalibrering 17.01.2022

Usanssynlig 2 6 4 Mangel på tid pga lang leverings tid på deler 19.01.2022

Svært usannsynlig 8 5 Feil med vanntetting av elektronikk 19.01.2022

6 Mangel på monterings-verktøy 19.01.2022

Sannsynlighet beskriver hvor ofte en slik feil typisk vil oppstå. 7 Mangel på nødvendige deler som feks kamera sensorer 19.01.2022

Innvirkning beskriver hvor mye ekstra tid som vil medføre ved en feil. 8 Ødeleggelse av sensorer (feil polaritet) 23.01.2022

Fargen gir ett overslag over hvor utfordrende denne feil typen er. 9

10

11

12

Vedlegg 3

Samarbeidsavtale

Samarbeidsavtale

Leveranse
1. Alle møter til avtalt tid. Om du er forsinket, gi beskjed så raskt som mulig. Viss samme person er

forsinket to eller flere ganger, skal dette noterast og gis grunn for i rapport.
2. Begge deler ansvaret likt for at utviklingsprosessen og rapporten er av tilfreds kvalitet for en høy

karakter.

Tilfredshet
3. Vi ønsker at det er givende og gøy å jobbe med prosjektet. Det skal være en god atmosfære og

om en av oss mener den andre er urettferdig eller negativ, skal dette bli tatt opp og diskutert.

4. Viss en av oss ikke har en god dag, eller er i dårlig humør, ønsker vi å ta det opp slik at

samarbeidet blir tilpasset.

5. Vi tar opp og setter innleveringsfrister til hverandre underveis, slik at arbeidet ikke hoper seg

opp mot slutten. Det er viktig at vi overholder disse fristene så godt som mulig.

Læring
6. Begge skal være åpne mot hverandre med å gi regelmessig konstruktiv kritikk for å gi oss størst

mulig sjanse for ett vellykket prosjekt. Mottakeren av kritikken skal ta rådene seriøst og ikke ta

dette personlig.

7. Vi skal utfordre oss selv med å ta deloppgaver som vi ikke har mestret enda, for å lære mer

underveis.

8. Om noen er usikker eller sitter fast, skal det være enkelt å kontakte medarbeider for bistand.

Tony Paulsen Petter Henriksen

Vedlegg 4

Møtereferat 13.01.22

Møte referat

Møte mellom prosjekt -og styringsgruppen, bachelor ROV

Varighet: 60 min Dato: 13.01.22 Start tidspunkt: 13:00

Møte lokasjon: Zoom

Møte innkalt av: Tony Paulsen

Møte type: Fremdriftsmøte med styringsgruppe

Møtet styrt av: Tony Paulsen

Sekretær: Petter Henriksen

Tids ansvarlig: Petter Henriksen

Deltakere: Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel

Agenda nummer Agenda Diskutert

1 Lars presenterer hva han ønsker
seg

Ble informert at vi kunne tolke oppgaven
veldig åpent.
Interesse for sonar og ulike
kombinasjonssensorer.
Interesse for ett nytt kamera som er
bedre egnet for lokasjon av fisk i
vanskelige lysforhold.
Viste eksempel på sonar og
kombinasjonssensor.

2 Ottar sier litt om hva vi ønsker å
prioritere

Ga tips om hvordan vi kan utvikle
prototypen for ROV på en måte som er
tilstrekkelig for vår testing.
Informerte prosjektgruppe om at det må
undersøkes hvilke sensorer som skal
bestilles raskt som mulig.

3 Studentene reflekterer over
informasjon

Uttrykte at vi ville fokusere på
programmering og kryss implementasjon
av sensorene på en måte som gir en
tydelig forbedring av tidligere ROVer.

Appendix B

Progress reports

IELEA2920

Hovedprosjekt
Project
AIP-ROV

Number of meeting this period 1).
0 planned

Firma - Oppdragsgiver
NTNU i Aalesund

Side
1 av 2

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 50

Prosjektgruppe (navn)
ROV

Dato
08.03.22

Main goal/purpose for this periods work

- Test all sensors (temperature, depth, conductance, sonar etc)

- Test all actuators (lights, thrusters)

- Make ROV-platform
Planned activities this period

- Write test scripts in Arduino IDE for I2C sensors, integrating all I2C sensors on same bus

- Setting up Raspberry PI with Python scripts for testing serial communication sensor

- Make mounts for sensors

- Mount Camera

- Mount Sensors to ROV

Actually conducted activites this period

- Finished testing all I2C sensors that will be connected to Arduino, with single scripts

reading all devices on I2C bus

- Tested all actuators with test scripts in Arduino

- Set up Raspberry PI, but did not compete testing script for communicating over serial bus

with conductance sensor

- Made ROV-platform and mounted lights(2), thrusters(3), Aanderaa conductivity sensor and

Ping 360 Sonar

Description of/ justification for potential deviation between planned and real activities

- Completed most of the testing tasks

- Serial communication with conductance sensor and sonar was not completed as planned,

this has resulted from lack of time used on task. It is not a result of a single troubleshooting

problem. Reduced time spent on project was because of sickness during some days, so time

was directed towards other subjects.

- Camera wasn’t mounted due to it not having arrived yet.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

- Serial communication has to be fixed early during next two week period. It should not be a

difficult task as there are many example scripts and well documented sources for this.

Main experience from this period

- The testing of sensors and actuators was relatively easy, as the progress was steady and

there were only small fixable problems that was easy to solve. Raspberry PI was very

simple to set up initially. However due to not enough spent on task not everything planned

was completed.

- Learning how to use Fusion 360 to make 3D models and use the schools 1200W laser

cutter to make parts was relatively easy to get the hang of and it.

Main purpose/focus next period

- Creating programs that are adjusted and unique for the system functions that we want to

implement for the ROV.

- Finding solution and completing communication from the ROV to surface through thether

cable.

IELEA2920

Hovedprosjekt
Project
AIP-ROV

Number of meeting this period 1).
0 planned

Firma - Oppdragsgiver
NTNU i Aalesund

Side
2 av 2

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 50

Prosjektgruppe (navn)
ROV

Dato
08.03.22

- Mount and use camera

Planned activities next period

- Complete the now postponed activities that is creating testing scripts in Python for serial

communication with sonar and conductance sensors.

- Create system programs for motor controls, lights, temperature, sonar, conductance.

- Test communication and see if the use of an Arduino can be bypassed

Other
Wish/need for counceling

- Discuss order of cable(s) that are watertight for the conductance, turbidity and oxygen

sensors.

Approval/signature group leader

Tony Paulsen

Signature other group participants

Petter Henriksen

IELEA2920

Hovedprosjekt
Project
AIP-ROV

Number of meeting this period 1).
0 planned

Firma - Oppdragsgiver
NTNU i Aalesund

Side
1 av 2

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 70

Prosjektgruppe (navn)

Dato
22.03.22

Main goal/purpose for this periods work

- Creating programs that are adjusted and unique for the system functions that we want to

implement for the ROV.

- Finding solutions and completing communication from the ROV to the surface through

thether cable.

Planned activities this period

- Complete the now postponed activities that is creating scripts in Python for serial

communication with sonar and conductance sensors.

- Create system programs for motor controls, lights, temperature, sonar, conductance.

- Test communication and see if the use of an Arduino can be bypassed.

Actually conducted activites this period

- Completed most of the sonar program for system, implemented functions that can change

the scanning range (different modes for collision avoidance and general inspection).

Collision avoidance algorithm needs resetting of interlocked zones logic to be completed.

- Sonar communication has not been initialized, and program has not been started.

- The removal of Arduino idea was scraped, as it was seen as a benefit to have it there and

communication seems to work great using serial communication
Description of/ justification for potential deviation between planned and real activities

- Sonar program progress was steady throughout the period, final completion of the program

has not been completed due to testing various solutions for resetting of interlocked zones.

- Conductance sensor serial communication was worked on, but after researching connection

diagrams, it was discovered that we did not have the appropriate testing cable for RS232

serial communication.

- Camera has not progressed much due to delivery issues, we have acquired a temporary

substitute but we decided to focus on the problems that were guaranteed to be on the final

product.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

- Sonar program has a tendency to increase in complexity due to when researching libraries

and functionality, new ideas of how we want the sonar to perform is gained. Important to

keep in mind that we need all aspects of project to work, and from that point maybe add

additional functionality.

- When we get required parts for conductance sensor, we have to focus on getting that part of

the project finished. New cable was ordered. Plugs for the sensor has been found and is

ready to be ordered.

- When looking at previous solutions we found that one group had used a product from

BlueRobotics that allowed them to use 3 out 4 pairs on the tether for power and only 1 for

communication while still maintaining usable data speeds. Whether or not this will be used

needs to be discussed with project supervisors.

Main experience from this period

- Sonar functionality and improvement can always be improved, important to get basic

IELEA2920

Hovedprosjekt
Project
AIP-ROV

Number of meeting this period 1).
0 planned

Firma - Oppdragsgiver
NTNU i Aalesund

Side
2 av 2

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 70

Prosjektgruppe (navn)

Dato
22.03.22

functionality working, and focusing on fully completing all aspects of project first.

- Should have checked that we had all needed parts for initializing communicating with all

sensors earlier in the project, to avoid having to wait for parts.

Main purpose/focus next period

- Complete communication from Raspberry Pi and conductance sensor.

- Complete conductance sensor programs and functionality in Raspberry Pi.

- Research and implement format for sending data over serial.

- Research and implement format for sending data from Raspberry Pi and surface GUI.
- Try to get camera up in Python

Planned activities next period

- When conductance sensor final parts arrive, finish communication and programs in

Raspberry PI that handles the data.

- Find format of transmitting data between components that use serial (Raspberry PI and

Arduino UNO), and format for transmitting data from Raspberry PI and surface GUI.

Should be formatted in a way that is easy to expand and logical.

- Try to get substitute camera to work

- Decide and order parts for power delivery (step down converter)
Other
Wish/need for counceling

- Power delivery and comunication

- Camera solution

Approval/signature group leader

Tony Paulsen

Signature other group participants

Petter Henriksen

IELEA2920

Bachelor Project

Project
A Flexible and Common Control

Architecture for Rolls-Royce Marine

Cranes and Robotic Arms

Number of meeting this period 1).
0 planned

Firma - Oppdragsgiver
NTNU i Ålesund

Side
1 av 2

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 70

Prosjektgruppe (navn)
AIP-ROV

Dato
07.04.22

Main goal/purpose for this periods work

- Complete communication from Raspberry Pi and conductance sensor.

- Complete conductance sensor programs and functionality in Raspberry Pi.

- Research and implement format for sending data over serial.

- Research and implement format for sending data from Raspberry Pi and surface GUI.

- Try to get camera up in Python

Planned activities this period

- When conductance sensor final parts arrive, finish communication and programs in

Raspberry PI that handles the data.

- Find format of transmitting data between components that use serial (Raspberry PI and

Arduino UNO), and format for transmitting data from Raspberry PI and surface GUI.

should be formatted in a way that is easy to expand and logical.

- Try to get substitute camera to work

- Decide and order parts for power delivery (step down converter)

Actually conducted activites this period

- Finished researching and completed serial communication using UART for transmission

between Arduino Uno and Raspberry Pi.

- Ordered communication solution for tether communication (Raspberry Pi to PC GUI).

Decided communication protocol and borrowed similar components from a similar project

to test our solution. Found easy and efficient libraries to use for serializing data and

initializing communication.

- Added extra functionality for the sonar collision avoidance programs, added extra control

options (inspection-mode and collision-avoidance-mode).

- Got Camera to work with OpenCV in Python

- Started work on GUI using Python and the library PyQt5

- Ordered parts for power delivery.
Description of/ justification for potential deviation between planned and real activities

- Conductance sensor plug arrived last day of this working period, work on this part of the

project has not been performed. However some research in data-sheets to prepare for easy

integration.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

- A substantial part of the work planned for this period revolved around the conductance

sensor integration, as this was not possible, those work hours were redirected towards

working on thether communication.

Main experience from this period

- Learned about advantages and disadvantages with threading and multiprocessing in

Python.

- Increased knowledge about advantages and disadvantages with TCP and UDP transmission

protocols.

IELEA2920

Bachelor Project

Project
A Flexible and Common Control

Architecture for Rolls-Royce Marine

Cranes and Robotic Arms

Number of meeting this period 1).
0 planned

Firma - Oppdragsgiver
NTNU i Ålesund

Side
2 av 2

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 70

Prosjektgruppe (navn)
AIP-ROV

Dato
07.04.22

- Increased knowledge about serialization of data techniques (JSON, Pickle) in Python. And

how to properly set up communication between different programming languages

efficiently.

- Learned how to make a GUI in Python and learned about object orientated programming
Main purpose/focus next period

- Finishing the GUI so that it is ready for implementation of communication

- Conductance sensor integration

- Make the ROV ready for testing in water.

Planned activities next period

- Finish GUI functions and visuals

- Integrate conductance sensor with the system.

- Finish making mounts for hardware inside the ROV.

- Determine if power delivery solution is sufficient.

- Wire up all components inside the ROV and start full scale-testing.

- Finishing most of theoretical basis/ methods and results in report.

-
Other
Wish/need for counceling

- Increasing communication bandwidth measures recommendations (multi- threading and

processing).

- Discussing current achieved framerate of camera.

Approval/signature group leader

Tony Paulsen

Signature other group participants

Petter Henriksen

IELEA2920
Bachelor Project

Project
AIP-ROV

Number of meeting this period 1).
0 planned

Firma - Oppdragsgiver
NTNU i Ålesind

Side
1 av 2

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 70

Projectgroup (name)
Tony Paulsen

Petter Henriksen

Dato
22.04.22

Main goal/purpose for this periods work

- Finishing the GUI so that it is ready for implementation of communication

- Conductance sensor integration

- Make the ROV ready for testing in water.

Planned activities this period

- Finish GUI functions and visuals

- Integrate conductance sensor with the system

- Finish making mounts for hardware inside the ROV

- Determine if power delivery solution is sufficient

- Wire up all components inside the ROV and start full scale-testing

- Finishing most of theoretical basis/ methods and results in report

Actually conducted activites this period

- GUI was completed (sonar plots properly and all relevant data is displayed)

- Conductance sensor has been integrated with RPi using serial communication and reads

and samples data as desired

- The mounts for components are done

- Most of the components are wired up but not all
Description of/ justification for potential deviation between planned and real activities

− Waiting for components has prevented the wiring of all components from being completed

but most of it is done

− Testing of power delivery has also not been done due to waiting for components

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

Main experience from this period

- Learned more about GUI implementation using PyQt5

- Learned how to integrate conductance sensor, writing commands and reading parameters

- Learned about implementing multiple communication protocols simultaneously (UDP and

TCP) for different types of data

- The enclosure is tight so working with that requires a lot of space and cable -management

Main purpose/focus next period

- Testing of ROV

- Work on report

- Tune system
Planned activities next period

- Finish the unfinished task from this period

- Complete multiple tests

- Find weaknesses from tests and improve solutions

- Finish all main parts of report
Other

IELEA2920
Bachelor Project

Project
AIP-ROV

Number of meeting this period 1).
0 planned

Firma - Oppdragsgiver
NTNU i Ålesind

Side
2 av 2

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 70

Projectgroup (name)
Tony Paulsen

Petter Henriksen

Dato
22.04.22

Wish/need for counceling

- Placement of Voltage Regulators and DC/DC Converter

- Setup of the power system

- Supplying voltage during tests

Approval/signature group leader

Tony Paulsen

Signature other group participants

Petter Henriksen

ID301702
Hovedprosjekt

Project
A Flexible and Common Control

Architecture for Rolls-Royce Marine

Cranes and Robotic Arms

Number of meeting this period 1).
0 planned

Firma - Oppdragsgiver
NTNU Aalesund

Side
1 av 2

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 70

Prosjektgruppe (navn)

Dato
06.05.22

Main goal/purpose for this periods work

- Testing of ROV

- Work on report

- Tune system

Planned activities this period

- Finish the unfinished tasks from this period

- Complete multiple tests

- Find weaknesses from tests and improve solutions

- Finish all main parts of report

Actually conducted activites this period

- Finished most of the methodology in the report

- Only integration tests over water was completed

- Some changes in software has been completed to improve full system functionality
Description of/ justification for potential deviation between planned and real activities

− During the integration test the group found some issues and bugs that had to be sorted out

so the focus went towards fixing these issues but that meant that we couldn’t do as many

test as hoped. One of the biggest issues had to do with the battery solution which did not

work as intended and a lot of changes had to be made. More testing is required to verify if

the fixes worked.

Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report

Main experience from this period

− Testing took more time than expected and the results can cause delays

Main purpose/focus next period

- Get a water test completed in the coming weekend

- Finishing report

Planned activities next period

- Finish test to get good data to describe in report

- Creating a directions of use for starting and using the ROV

- Focusing on discussion in report
Other
Wish/need for counceling

- General progress

- Priorities in final weeks

- Battery system fixes

Approval/signature group leader

Tony Paulsen

Signature other group participants

Petter Henriksen

ID301702
Hovedprosjekt

Project
A Flexible and Common Control

Architecture for Rolls-Royce Marine

Cranes and Robotic Arms

Number of meeting this period 1).
0 planned

Firma - Oppdragsgiver
NTNU Aalesund

Side
2 av 2

Progress report Period/week(s)
2

Number of hours this period. (from

log) Approx. 70

Prosjektgruppe (navn)

Dato
06.05.22

Appendix C

Gantt diagram

11 17 24 31 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16
1/22 2/22 3/22 4/22 5/22

IELEA2920_ROV start end 0h 100%

 Forprosjektrapport 01/12/22 01/21/22 0h 100%
 Definere problemstillinger 01/12 01/21 0 100%
 Lage risikomatrise 01/20 01/21 0 100%
 Lage Gantt-diagram 01/19 01/21 0 100%
 Kombinere alle dokument 01/20 01/21 0 100%

 Utredning av ROV konsept 01/24/22 02/09/22 0h 100%
 Bestemme sonar type 01/24 01/28 0 100%
 Bestemme komb. sensor type 01/24 01/28 0 100%
 Bestemme kamera 01/24 01/28 0 100%
 Bestemme utforming av prototype sk... 01/31 02/09 0 100%
 Vurdere plassering av sensorer 02/01 02/09 0 100%

 Utstyrsanskaffelse 01/31/22 02/09/22 0h 100%
 Bestille sensorer 01/31 02/09 0 100%
 Bestille annet utstyr 01/31 02/09 0 100%

 Bygge prototype 02/10/22 03/04/22 0h 100%
 Tilpasse prototype for sensorer 02/10/22 02/25/22 0h 100%
 Lage montasje for sonar 02/23 02/25 0 100%
 Lage montasje for komb. sensor 02/18 02/25 0 100%
 Lage montasje for kamera m/ vann... 02/10 02/17 0 100%
 Montere nye sensorer 02/28/22 03/04/22 0h 100%
 Montere sonar 02/28 03/04 0 100%
 Montere komb. sensor 02/28 03/04 0 100%
 Montere kamera 02/28 03/04 0 100%

 Funksjonstest utstyr 02/14/22 02/18/22 0h 100%
 Teste thrustere 02/14 02/18 0 100%
 Teste lys 02/14 02/18 0 100%
 Teste temperatur sensor 02/14 02/18 0 100%
 Teste trykk sensor 02/14 02/18 0 100%
 Teste fuktighets sensor 02/14 02/18 0 100%

 Programvare utvikling 02/21/22 04/14/22 0h 100%
 Kombinasjons sensor 04/07/22 04/14/22 0h 100%
 Program for avlesning data 04/07 04/13 0 100%
 Program til system 04/11 04/14 0 100%
 Sonar 02/21/22 03/11/22 0h 100%
 Program direkte til PC 02/21 02/25 0 100%
 Program for avlesning data 02/28 03/04 0 100%
 Program til system 03/07 03/11 0 100%
 Kamera 03/24/22 04/08/22 0h 100%
 Åpne Kamera i Python 03/24 04/08 0 100%
 Åpne Kamera på Raspberry Pi 03/28 04/08 0 100%

 Integrasjon av alle del-systemer 03/28/22 04/15/22 0h 100%
 Kommunikasjon 03/28/22 04/08/22 0h 100%
 Seriell (arduino-raspberry) 03/28 04/01 0 100%
 TCP (raspberry-GUI) 04/04 04/08 0 100%

Tony Vikene Paulsen
Tony Vikene Paulsen
Petter Henriksen

Petter Henriksen
Tony Vikene Paulsen

Tony Vikene Paulsen
Petter Henriksen

Petter Henriksen
Petter Henriksen

Petter Henriksen

Petter Henriksen
Petter Henriksen
Petter Henriksen

Petter Henriksen
Petter Henriksen
Tony Vikene Paulsen
Tony Vikene Paulsen
Tony Vikene Paulsen

Tony Vikene Paulsen
Tony Vikene Paulsen

Tony Vikene Paulsen
Tony Vikene Paulsen

Tony Vikene Paulsen

Petter Henriksen
Petter Henriksen

Tony Vikene Paulsen
Tony Vikene Paulsen

11 17 24 31 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16
1/22 2/22 3/22 4/22 5/22

 Integrasjon av komb. sensor 04/13/22 04/15/22 0h 100%
 Vise sensor verdier 04/13 04/15 0 100%
 Integrasjon av sonar data 03/28/22 04/08/22 0h 100%
 Vise data som bilde 03/28 04/08 0 100%
 Gi beskjed om kollisjonsfare 04/05 04/08 0 100%
 Integrasjon av kamera 03/28/22 04/15/22 0h 100%
 Vise kamera i GUI 03/28 04/08 0 100%
 Vise bilde fra Raspberry 04/05 04/15 0 100%

 Bygge prototype 04/11/22 05/06/22 0h 100%
 Gjøre ROV klar for testing 04/11 05/06 0 100%

 Testing av prototype 04/25/22 05/16/22 0h 100%
 Testing av alle sensorer på GUI 04/25 05/06 0 100%
 Testing av implementert logikk 04/25 05/06 0 100%
 Tank test ved skulen 04/25 05/06 0 100%
 Full skala test på lokasjon 05/09 05/16 0 100%

 Fullføre rapport 02/07/22 05/19/22 0h 100%
 Fullføre rapport i LaTeX 02/07 05/17 0 100%
 Kombinere LaTeX m/ alle vedlegg 05/18 05/19 0 100%

Tony Vikene Paulsen

Tony Vikene Paulsen
Tony Vikene Paulsen

Petter Henriksen
Tony Vikene Paulsen

Petter Henriksen

Petter Henriksen
Tony Vikene Paulsen
Tony Vikene Paulsen

Petter Henriksen, Tony Vikene Paulsen

Petter Henriksen, Tony Vikene Paulsen
Petter Henriksen, Tony Vikene Paulsen

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Appendix D

Electrical drawings

Page

Previous page:

Next page:
Total no. of pages:

Last print:
Last edit:

Page rev.:

Project rev.:

Appr. (date/init):
Eng. (proj/page):

Dwg. no.:

Project no.:Project title:

Customer:
Page title:

File name:
Page ref.:

DCC: Scale:

Electrical schematic - ROV 2022 - Bachelor 1

919.05.2022

NTNU Ålesund
Front page

PCSCHEMATIC Automation

Prosjekt (1) 19.05.2022 2Tony Paulsen

1:1

S
ko

le
ve

rs
io

n

Electrical schematic - ROV
2022 - Bachelor

E
le

ct
ri

ca
l s

ch
em

at
ic

 -
 R

O
V

 2
02

2
-

B
ac

h
el

o
r

Page remarks

Graphical plans

Lists

Layout

Diagrams 1

2

3

4

5

6

7

8

9

10

Page 4

Page 11

Page 14

Page 20

Page 23

- 10

- 12

- 19

- 22

- 23

11

12

13

14

15

16

17

18

19

20

S
ko

le
ve

rs
io

n

Page

Previous page:

Next page:
Total no. of pages:

Last print:
Last edit:

Page rev.:

Project rev.:

Appr. (date/init):
Eng. (proj/page):

Dwg. no.:

Project no.:Project title:

Customer:
Page title:

File name:
Page ref.:

DCC: Scale:

Electrical schematic - ROV 2022 - Bachelor 3

917.02.2022

NTNU Ålesund
Table of Contents

PCSCHEMATIC Automation

Prosjekt (1) 19.05.2022

2

4Tony Paulsen

1:1

S
ko

le
ve

rs
io

n
Revision PageTitle Last edit Revision PageTitle Last edit

1

2

3

4

5

6

7

8

9

10

11

Front page

Index - horizontal

Table of Contents

Diagrams

Diagram

Diagram

Diagram

Control circuit diagram

Control circuit diagram

Diagram

Diagram

Layout

Arrangement - A4 - 1:4 - CompList

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:45:10

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:42:44

13

14

15

16

17

Arrangement - A4 - 1:4 - CompList

Lists

Parts list

Components list

Terminal list - External connections

Cable plan

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:42:44

18

19

20

21

22

PLC list

Net list

Graphical plans

Terminal plan

Cable plan

Connection plan

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:42:44

17.02.2022 13:42:44

Page remarks

23Page remarks 17.02.2022 13:42:44

Diagrams
Page 4 - 8

S
ko

le
ve

rs
io

n

Page

Previous page:

Next page:
Total no. of pages:

Last print:
Last edit:

Page rev.:

Project rev.:

Appr. (date/init):
Eng. (proj/page):

Dwg. no.:

Project no.:Project title:

Customer:
Page title:

File name:
Page ref.:

DCC: Scale:

Electrical schematic - ROV 2022 - Bachelor 4

919.05.2022

NTNU Ålesund
Diagram

PCSCHEMATIC Automation

Prosjekt (1) 19.05.2022

3

5Tony Paulsen

1:1

S
ko

le
ve

rs
io

n
1 2 3 4 5 6 7 8

A

B

C

D

E

F

16.5VDC /5.1
0VDC /5.1

4
8

V
D

C
1

2
V

D
C

0
V

D
C

0
V

D
C

4
8

V
D

C
1

2
V

D
C

0
V

D
C

0
V

D
C

-T
1

88 6677 55

-X0

44 33

8 7 6 5 4 38 7 6 5 4 3

TETHER 100 [M]

1
2

V
D

C
1

6
.5

V
D

C

0
V

D
C

0
V

D
C

1
2

V
D

C
1

6
.5

V
D

C

0
V

D
C

0
V

D
C

-T
2

-R
1

Vin Vout GNDVin Vout GND
-5V REGULATOR

Vout GND VinVout GND Vin
-12V REGULATOR

-C1 -C2

-C3 -C4

V
in

G
N

D

V
in

G
N

D

-F
A

T
H

O
M

-X
 T

E
T

H
E

R
 1

1122

-G1 -G2 -G3 -G4
-F6 4A

00-+48V

00-0V

TRIM

1
0

K
 O

h
m

5VDC2
2

µ
F

3
3

µ
F

0VDC

0
.3

3
µ

F

0
.1

µ
F

12VDC

12

SURFACE ELECRONICS

SURFACE PC

COM-

COM+

BATTERIES

Page

Previous page:

Next page:
Total no. of pages:

Last print:
Last edit:

Page rev.:

Project rev.:

Appr. (date/init):
Eng. (proj/page):

Dwg. no.:

Project no.:Project title:

Customer:
Page title:

File name:
Page ref.:

DCC: Scale:

Electrical schematic - ROV 2022 - Bachelor 5

919.05.2022

NTNU Ålesund
Diagram

PCSCHEMATIC Automation

Prosjekt (1) 19.05.2022

4

6Tony Paulsen

1:1

S
ko

le
ve

rs
io

n
1 2 3 4 5 6 7 8

A

B

C

D

E

F

16.5VDC/4.8 16.5VDC
0VDC/4.8 0VDC /6.1

U V WU V W

-M1

Thruster 1

U V WU V W

-M2

Thruster 2

U V WU V W

-M3

Thruster 3

+
1

6
.5

V
U

0
V

V
P

W
M

W
0

V

+
1

6
.5

V
U

0
V

V
P

W
M

W
0

V

-ESC1 +
1

6
.5

V
U

0
V

V
P

W
M

W
0

V

+
1

6
.5

V
U

0
V

V
P

W
M

W
0

V
-ESC2 +

1
6

.5
V

U
0

V
V

P
W

M
W

0
V

+
1

6
.5

V
U

0
V

V
P

W
M

W
0

V

-ESC3

0
V

0
V

-LED1
S

IG
S

IG

+
1

6
.5

V
+

1
6

.5
V

0
V

0
V

-LED2

S
IG

S
IG

+
1

6
.5

V
+

1
6

.5
V

D11D11

-U1

D9~D9~

-U1

D10~D10~

-U1

D5~D5~

-U1

D6~D6~

-U1

W
H

IT
E

G
R

E
E

N
B

L
U

E

W
H

IT
E

G
R

E
E

N
B

L
U

E

-W5.3

W
H

IT
E

G
R

E
E

N
B

L
U

E

W
H

IT
E

G
R

E
E

N
B

L
U

E

-W5.2

W
H

IT
E

G
R

E
E

N
B

L
U

E

W
H

IT
E

G
R

E
E

N
B

L
U

E

-W5.1

R
E

D

Y
E

L
L

O
W

B
L

A
C

K

R
E

D

Y
E

L
L

O
W

B
L

A
C

K

-W5.4

R
E

D

Y
E

L
L

O
W

B
L

A
C

K

R
E

D

Y
E

L
L

O
W

B
L

A
C

K

-W5.5

-F1_3A

-F2_3A

V
in

G
N

D

V
in

G
N

D

-P
IN

G
3

6
0

-F3_3A

V
in

G
N

D

V
in

G
N

D

F
A

T
H

O
M

-X
 T

E
T

H
E

R
 2

00
00

/7.1

COM+

COM-

USB to Raspberry Pi
Ethernet to Raspberry Pi

Page

Previous page:

Next page:
Total no. of pages:

Last print:
Last edit:

Page rev.:

Project rev.:

Appr. (date/init):
Eng. (proj/page):

Dwg. no.:

Project no.:Project title:

Customer:
Page title:

File name:
Page ref.:

DCC: Scale:

Electrical schematic - ROV 2022 - Bachelor 6

918.05.2022

NTNU Ålesund
Diagram

PCSCHEMATIC Automation

Prosjekt (1) 19.05.2022

5

7Tony Paulsen

1:1

S
ko

le
ve

rs
io

n
1 2 3 4 5 6 7 8

A

B

C

D

E

F

5VDC 5VDC
0VDC/5.8 0VDC /7.1

L
E

A
K

0
V

+
5

V

L
E

A
K

0
V

+
5

V

P
R

O
B

E
2

P
R

O
B

E
1

P
R

O
B

E
3

P
R

O
B

E
4

D3D3

-U1

0
V

+
5

V
S

D
A

S
C

L
S

C
L

S
D

A
+

5
V

0
V

0
V

+
5

V
S

D
A

S
C

L
S

C
L

S
D

A
+

5
V

0
V

0
V

+
5

V
S

D
A

S
C

L
S

C
L

S
D

A

+
5

V
0

V

0
V

+
5

V
S

D
A

S
C

L
S

C
L

S
D

A

+
5

V
0

V

R
E

D
G

R
E

E
N

W
H

IT
E

B
L

A
C

K

R
E

D
G

R
E

E
N

W
H

IT
E

B
L

A
C

K
-W6.3

R
E

D
G

R
E

E
N

W
H

IT
E

B
L

A
C

K

R
E

D
G

R
E

E
N

W
H

IT
E

B
L

A
C

K

-W6.4

A4A4

-U1

A5A5

LEAK HOST BOARD

I2C LEVEL CONVERTER I2C LEVEL CONVERTER

Pressure sensor Temperature sensor

I2C Bus

From Arduino

Page

Previous page:

Next page:
Total no. of pages:

Last print:
Last edit:

Page rev.:

Project rev.:

Appr. (date/init):
Eng. (proj/page):

Dwg. no.:

Project no.:Project title:

Customer:
Page title:

File name:
Page ref.:

DCC: Scale:

Electrical schematic - ROV 2022 - Bachelor 7

919.05.2022

NTNU Ålesund
Control circuit diagram

PCSCHEMATIC Automation

Prosjekt (1) 19.05.2022

6

8Tony Paulsen

1:1

S
ko

le
ve

rs
io

n
1 2 3 4 5 6 7 8

A

B

C

D

E

F

12VDC 12VDC

/6.8

G
N

D

V
in

G
N

D

V
in

-C
O

N
D

U
C

T
IV

IT
Y

 S
E

N
S

O
R

G
N

D

V
in

G
N

D

V
in

-A
R

D
U

IN
O

-F4 3A
U1: ARDUINO

Konduktvitetssensor
Model 4319B
Aanderaa

USB to Raspberry Pi
USB to Raspberry Pi

Page

Previous page:

Next page:
Total no. of pages:

Last print:
Last edit:

Page rev.:

Project rev.:

Appr. (date/init):
Eng. (proj/page):

Dwg. no.:

Project no.:Project title:

Customer:
Page title:

File name:
Page ref.:

DCC: Scale:

Electrical schematic - ROV 2022 - Bachelor 8

919.05.2022

NTNU Ålesund
Control circuit diagram

PCSCHEMATIC Automation

Prosjekt (1) 19.05.2022

7

Tony Paulsen

1:1

S
ko

le
ve

rs
io

n
1 2 3 4 5 6 7 8

A

B

C

D

E

F

5VDC(REG) 5VDC(REG)

G
N

D

V
in

G
N

D

V
in

-R
A

S
P

B
E

R
R

Y
 P

I

-F5 5A

0VDC (5V REG)0VDC (5V REG)

USB from Aanderaa sensor USB from Arduino

USB from Sonar

Ethernet from Fathom-X Tether 2

Appendix E

User Manual

AIP-ROP User Manual

Describes the preparations and procedures needed to use the ROV under defined

environment conditions. Additionally, shows how to connect and start the pro grams to

be able to control the ROV using the GUI.

Step 1:

Connect 48V, 12V and 0V to terminals
as shown in picture. Both positive
supplies has to have common ground,
otherwise communication might not
work as intended.
Connect an ethernet cable with RJ45
plug into box with the other end to the
computer running the GUI.

Step 2:

Connect the tether cable coming from
the communication interface box
shown in previous step to the tether
spool to complete the circuit to the
ROV.
If power is activated for interface box
the ROV should be energized. Arduino
Uno lights should blink, and electronic
speed controllers should make
initialization sounds.

Step 3:

Inside the ROV enclosure, the local
battery pack must be connected to the
circuit. This is done by connecting the
red wire to the Wago quick connector.

Step 4:

Slide the electronics tray into the
acrylic cylinder. Be careful for wires
that may get stuck and unplugged. The
tray is slid all the way in to seal
properly.

Step 5:

Mount the aft thruster to the acrylic
ROV foundation using four M5 bolts as
shown in figure.

Checkpoint

After the above instructions the ROV
should be mounted as seen in the
figure. It is important that the thruster
is mounted in the orientation as shown
in the figure.

Step 6:

Attach the vacuum pump hose to the
vent plug at the backplate of the ROV.
Pump until the pressure on the
manometer shows 15 inHg.
Wait for 15 minutes, and check if the
pressure is still above 14.5 inHg.
If it is not return to step 4 and check for
broken seals or other leak indicators.
If pressure is above the limit defined,
the ROV is ready to be used in water.

Step 8:

Remove the hose plug from the
vacuum pump, and screw in the plug
indicated with <OK>.
It is extra important that this plug is
properly greased and tightened, as it
was not tested in the previous vacuum
test.

Step 9:

Next open a terminal on the computer
that will run the GUI.
Set the ethernet adapter on the
computer to: 169.254.226.73
Connect to the ROV using SSH and
command:
>>ssh pi@169.254.226.72

Step 10:

If tether and power is properly
connected, the terminal will prompt for
the RPi password.
Enter password:
>>rov2022

Step 11:

You know have access to the RPi
computer. Check for previously saved
photos and videos and transfer them to
external device. Media is located at
relative path from login within
pi/Programs/Photos
pi/Programs/Videos

Step 12:

For running the GUI, navigate into
Programs folder.
To run the Python ROV program use
command as seen in figure.

Step 13:

 When the RPi program has been
started, the terminal will display a
message indicating that the operator
has to launch GUI script.
Navigate to where the Python GUI
scripts are located, and run the files
with command as shown in figure.

Step 14:

You have now launched all systems for
the ROV and should see the sensor
values update on the GUI regularly.
Control of the motors are done with
the arrows, and brightness of lights can
be adjusted with slider.

Appendix F

Arduino code

5/20/22, 2:15 AM main.cpp

localhost:4649/?mode=clike 1/3

/**
 * PROGRAM THAT CONTROLS AN ARDUINO FOR A REMOTE OPERATING VEHICLE (ROV).
 * ROV IS DESIGNED FOR AQUACULTURE INSPECTION. THE PROGRAM CONTROLS
 * MOVEMENT WITH THREE THRUSTERS AND VISION WITH TWO SUBSEA LIGHTS.
 * ADDITIONALLY THE PROGRAM READS TEMPERATURE AND PRESSURE FROM THE
 * ENVIRONMENT THROUGH I2C COMMUNICATION. THE ARDUINO COMMUNICATES
 * WITH RASPBERRY PI THROUGH SERIAL COMMUNICATION.
 ***/

#include <Arduino.h>
#include <Servo.h>
#include <Wire.h>
#include "MS5837.h"
#include "TSYS01.h"
#include <ArduinoJson.h>
#include "Communication.h"
#include "Functions.h"

// Initialize I2C OBJECTS
MS5837 pressSensor;
TSYS01 tempSensor;

// Initialize actuator objects for motors and lights
Servo motor_1;
Servo motor_2;
Servo motor_3;
Servo starboard_light;
Servo port_light;

// Initializes run commands from the globals
int runZone = -1; // Initial run state is set to offf
bool z1lock;
bool z2lock;
bool z3lock;
bool z4lock;
bool z5lock;
bool z6lock;
bool z7lock;
bool z8lock;

// Input and output pins are selected based on PWM capabilities
byte pinM1 = 9;
byte pinM2 = 10;
byte pinM3 = 11;
byte l1 = 5;
byte l2 = 6;

// Local variables used for logic and communication
int val;
int leakPin = 3; // Leak Signal Pin //pin must be 3 not 1 or 2
int leak = 0; // 0 = Dry , 1 = Leak
float temp;
float depth;
bool leakStatus;
int missedPackets;
int i;

// Json document used to hold and format data to be sent to RPi

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

5/20/22, 2:15 AM main.cpp

localhost:4649/?mode=clike 2/3

StaticJsonDocument<48> outDoc;

void setup() {
 // Initialize serial communication with RPi
 Serial.begin(9600);

 // Initialize I2C bus sensors
 Wire.begin();
 pressSensor.init();
 tempSensor.init();

 // Declaring properties to pressure sensor object
 pressSensor.setModel(MS5837::MS5837_30BA);
 pressSensor.setFluidDensity(997);

 // Declaring PWM pins for motors and lights
 port_light.attach(l1);
 starboard_light.attach(l2);
 motor_1.attach(pinM1);
 motor_2.attach(pinM2);
 motor_3.attach(pinM3);

 // Declaring leak sensor as input
 pinMode(leakPin, INPUT);

 // Motors need to receive zero thrust signal for 7
 // seconds to properly initialize
 fullStop();
 setLights(0); // Lights are set to off for inital operation
 delay(7000);
}

void loop() {
 // Read I2C sensor values
 tempSensor.read();
 pressSensor.read();

 // Gets the required sensor values and place in variables
 temp = tempSensor.temperature();
 depth = pressSensor.depth();
 leakStatus = digitalRead(leakPin);

 // Every 30 program iteration the Arduino sends data to Raspberry
 if (i > 30) {
 sendToRaspberry(temp, depth, leakStatus);
 i = 0;
 }
 i++;

 // If data is found within serial buffer, handle data
 if (Serial.available()) {
 receiveFromRaspberry();
 missedPackets = 0;
 } else { // Otherwise connection is broken and motors are stopped
 missedPackets++;
 if (missedPackets > 3) {
 fullStop();
 }
 }

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

5/20/22, 2:15 AM main.cpp

localhost:4649/?mode=clike 3/3

 // Control motor speed and directions based on commanded zone
 // and information from collision avoidance system
 setMotorSpeeds(runZone, z1lock, z2lock, z3lock,
 z4lock, z5lock, z6lock, z7lock, z8lock);
}

120
121
122
123
124
125
126

5/20/22, 2:20 AM Functions.cpp

localhost:4649/?mode=clike 1/3

/**
 * SUBPROGRAM OF THE ARDUINO UNO CODE FOR CONTROLLING ROV. FILE CONTAINS
 * THE FUNCTIONS NEEDED TO CONTROL THE MOTORS AND LIGHTS.
 ***/
#include <Arduino.h>
#include "Functions.h"

/**
 * Function that controls the direction the ROV is moving in. Takes in
 * a zone that operator wants the ROV to be moving towards, and given that
 * zone is not prohibited from the interlocking system, the function sends out
 * the appropiate PWM signals to the motor drivers. In addition to linear
 * movements, the ROV can rotate both clockwise -and counterclockwise, these
 * directions are never prohibited by the interlocing system.
 * @param zone Requsted propulsion in this zone direction
 * @param z1lock Propulsion in zone 1 direction prohibited variable
 * @param z2lock Propulsion in zone 2 direction prohibited variable
 * @param z3lock Propulsion in zone 3 direction prohibited variable
 * @param z4lock Propulsion in zone 4 direction prohibited variable
 * @param z5lock Propulsion in zone 5 direction prohibited variable
 * @param z6lock Propulsion in zone 6 direction prohibited variable
 * @param z7lock Propulsion in zone 7 direction prohibited variable
 * @param z8lock Propulsion in zone 8 direction prohibited variable
 */

void setMotorSpeeds(int zone, bool z1lock, bool z2lock, bool z3lock,
bool z4lock, bool z5lock, bool z6lock, bool z7lock, bool z8lock) {
 switch (zone) {
 case 0: // Forward
 if (z1lock) {
 fullStop();
 } else {
 controlMovement(1550, 1550, 1500);
 }
 break;
 case 1: // Forward-right
 if (z2lock) {
 fullStop();
 } else {
 controlMovement(1550, 1500, 1550);
 }
 break;
 case 2: // Right
 if (z3lock) {
 fullStop();
 } else {
 controlMovement(1530, 1470, 1550);
 }
 break;
 case 3: // Reverse-right
 if (z4lock) {
 fullStop();
 } else {
 controlMovement(1500, 1450, 1550);
 }
 break;
 case 4: // Reverse
 if (z5lock) {
 fullStop();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

5/20/22, 2:20 AM Functions.cpp

localhost:4649/?mode=clike 2/3

 } else {
 controlMovement(1450, 1450, 1500);
 }
 break;
 case 5: // Reverse-left
 if (z6lock) {
 fullStop();
 } else {
 controlMovement(1450, 1500, 1450);
 }
 break;
 case 6: // Left
 if (z7lock) {
 fullStop();
 } else {
 controlMovement(1470, 1530, 1450);
 }
 break;
 case 7: // Forward-left
 if (z8lock) {
 fullStop();
 } else {
 controlMovement(1500, 1550, 1450);
 }
 break;
 case 8: // Counterclock-wise
 controlMovement(1470, 1530, 1530);
 break;
 case 9: // Clock-wise
 controlMovement(1530, 1470, 1470);
 break;
 case -1: // Stand still
 fullStop();
 break;
 }
}

/**
 * Sets subsea lights power output, both lights have the exact same value. Takes
 * in an integer that ranges from 0-255 and translates that to 0-100% light power.
 * Sets light with PWM setting.
 * @param pwr Integer that ranges from 0-255 for 0-100% power
 */
void setLights(int pwr) {
 int val;
 val = map(pwr, 0, 255, 1100, 1500); // 1900 draws 2.5A current
 port_light.writeMicroseconds(val);
 starboard_light.writeMicroseconds(val);
}

/**
 * Function that sets all motors to neutral output. Zero propulsion in any
 * direction for all three motors.
 */
void fullStop() {
 motor_1.write(1500);
 motor_2.write(1500);
 motor_3.write(1500);
}

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

5/20/22, 2:20 AM Functions.cpp

localhost:4649/?mode=clike 3/3

/**
 * Function that sets all the motor power and direction outputs. Takes in three
 * arguments with PWM settings that controls each respective motor.
 * @param m1pwr PWM setting for motor 1
 * @param m2pwr PWM setting for motor 2
 * @param m3pwr PWM setting for motor 3
 */
void controlMovement(int m1pwr, int m2pwr, int m3pwr) {
 motor_1.writeMicroseconds(m1pwr);
 motor_2.writeMicroseconds(m2pwr);
 motor_3.writeMicroseconds(m3pwr);
}

/**
 * Function that rounds an input float number to a new float number with reduced
 * number of decimals.
 * @param value input argument for number to reduce decimals
 * @param prec number of decimals to be returned
 * @return returns a float number rounded as specificed
 */
float roundNum(float value, unsigned char prec) {
 float pow_10 = pow(10.0f, (float)prec);
 return round(value * pow_10) / pow_10;
}

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

5/20/22, 2:22 AM Communication.cpp

localhost:4649/?mode=clike 1/2

/**
 * SUBPROGRAM OF THE ARDUINO UNO CODE FOR COMMUNICATION BETWEEN THE
 * ARDUINO AND THE RASPBERRY PI
 ***/
#include <Arduino.h>
#include <ArduinoJson.h>
#include "Communication.h"
#include "Functions.h" // Remove after testing

/**
 * Function that handles communication Raspberry Pi. Takes in three arguments
 * with predefined types, and structures the data to JSON format. The JSON strings
 * are serialized and sent to Raspberry Pi.
 * @param arg1 Environment temperature value
 * @param arg2 Environment pressure value
 * @param arg3 Value that indicates if there is leak inside ROV
 */
void sendToRaspberry(float arg1, float arg2, bool arg3) {
 outDoc["Temp"] = roundNum(arg1, 1);
 outDoc["Depth"] = arg2;
 outDoc["Leak"] = arg3;

 // Format the data to serial
 serializeJson(outDoc, Serial);

 // Sending to Raspberry Pi
 Serial.println();
}

/**
 * Function that handles serial data communicated from the Raspberry Pi. First
 * eight function specific bool variables are declared. Those values stores
 * information about which control zones are interlocked. The data is stored to
 * a string variable which is in turn deserialized and loaded into a JSON
 * document. The JSON document data is accessed using keys and stores the values in
 * variables that are then used in function calls for movement and light control.
 */
void receiveFromRaspberry() {
 bool z1lock; bool z2lock; bool z3lock; bool z4lock;
 bool z5lock; bool z6lock; bool z7lock; bool z8lock;

 String payload;
 payload = Serial.readStringUntil('\n');
 StaticJsonDocument<512> doc;
 deserializeJson(doc, payload);

 // If new values where communicated from Raspberry, update outputs
 setLights(doc["light"]);

 runZone = doc["runZone"];
 z1lock = doc["locked"][0];
 z2lock = doc["locked"][1];
 z3lock = doc["locked"][2];
 z4lock = doc["locked"][3];
 z5lock = doc["locked"][4];
 z6lock = doc["locked"][5];
 z7lock = doc["locked"][6];
 z8lock = doc["locked"][7];

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

5/20/22, 2:22 AM Communication.cpp

localhost:4649/?mode=clike 2/2

}60
61
62

5/20/22, 2:25 AM Functions.h

localhost:4649/?mode=clike 1/1

#define Functions.h
#include "Servo.h"

// Declaring global servo objects
extern Servo motor_1;
extern Servo motor_2;
extern Servo motor_3;
extern Servo starboard_light;
extern Servo port_light;

// Declaring global variables
extern int runZone;
extern bool z1lock;
extern bool z2lock;
extern bool z3lock;
extern bool z4lock;
extern bool z5lock;
extern bool z6lock;
extern bool z7lock;
extern bool z8lock;

// Functions declaration
void setMotorSpeeds(int zone, bool z1lock, bool z2lock, bool z3lock,
bool z4lock, bool z5lock, bool z6lock, bool z7lock, bool z8lock);
void setLights(int pwr);
void fullStop();
void controlMovement(int m1pwr, int m2pwr, int m3pwr);
float roundNum(float value, unsigned char prec);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

5/20/22, 2:25 AM Communication.h

localhost:4649/?mode=clike 1/1

#define Communication.h
#include "ArduinoJson.h"

// Defining global JSON documents
extern StaticJsonDocument<512> inDoc;
extern StaticJsonDocument<48> outDoc;

// Functions declaration
void sendToRaspberry(float arg1, float arg2, bool arg3);
void receiveFromRaspberry();

1
2
3
4
5
6
7
8
9
10
11

Appendix G

Raspberry Pi code

5/20/22, 3:12 AM Main.py

localhost:4649/?mode=python 1/3

#!/usr/bin/env python3
"""
RASPBERRY PI MAIN PROGRAM FOR ROV OPERATION. PROGRAM USES MULTIPLE
PYTHON SUB SCRIPTS FOR COMMUNICATION, COLLISION AVOIDANCE AND GENERAL
SENSOR READINGS.
"""

import numpy as np
import threading
from math import *
import socket
import argparse

Custom libraries imports for specific functionality
from sonarFunctionality.BlueRoboticsSonar import Ping360
from sonarFunctionality.Interlocking import InterlockingSystem
from COM.communication import TCPIn
from COM.communication import TCPOut
from COM.communication import UDP
from COM.communication import serialCom
import config

if __name__ == "__main__":
 # Terminal connection alternatives for sonar connection
 parser = argparse.ArgumentParser(description="Ping python library example.")
 parser.add_argument('--device', action="store", required=True, type=str,
help="Ping device port.")
 parser.add_argument('--baudrate', action="store", type=int, default=2000000,
help="Ping device baudrate.")
 args = parser.parse_args()

 # Establishes connection to Ping 360 sonar
 p = Ping360()
 p.connect_serial(args.device, args.baudrate)

 # Defining sonar parameters
 print("Initialized: %s" % p.initialize())
 p.set_transmit_frequency(1000)
 p.set_sample_period(50)
 p.set_number_of_samples(1200)
 p.set_range(50)

 # Initial zone control command to stand-still thrusters
 prevMode = -1

 # Initalize interlocking system for motor driving zones
 ils = InterlockingSystem()

 # Variables for internal logic
 objectData = []
 operatorForceReset = False

 # TCP communication variables
 HOST = "169.254.226.72" # The IP address of the RASPBERRY Pi assigns to this
communication
 PORT = 1422 # Port to listen on (non-privileged ports are > 1023)
 HEADERSIZE = 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56

5/20/22, 3:12 AM Main.py

localhost:4649/?mode=python 2/3

 # Establishes a reliable data delivery TCP connection
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.bind((HOST, PORT)) # Binds <eth0> port to requested IP and Port
 s.listen(2) # Specifies number of unaccepted connection before
refusing new

 # Initialize serial communication with seperate thread
 SerialThread = threading.Thread(target=serialCom)
 SerialThread.start()

 # Initialize UDP communication with seperate thread
 UDPThread = threading.Thread(target=UDP)
 UDPThread.start()

 # Continuously running while loop handling communication and various commands
 while 1:

 # Sets new angle for sonar to scan
 p.transmitAngle(config.angle)

 # Reads sonar echo strengths into array for one angle
 data = bytearray(getattr(p,'_data'))

 # Empties sonar data from previous iteration from array
 config.data_lst = []

 # Stores echo strengths in global variable
 for k in data :
 config.data_lst.append(k)

 # If no TCP connection already established, attempt to establish
 if config.address == "":
 print("[ATTENTION] Start computer script to initialize TCP communication
with ROV!")
 TCPOut(s, HOST, PORT, HEADERSIZE)
 TCPThread = threading.Thread(target=TCPIn)
 TCPThread.start()

 # Updating system variables for communication with GUI
 config.step = p.get_step()
 config.interlockedZones = ils.lockedZones

 # Sends sensor and system data to GUI
 TCPOut(s, HOST, PORT, HEADERSIZE)

 # If new command for mode control is received, perform changes
 if config.mode != prevMode:
 print("A new mode has been activated")
 p.changeOperatingMode(config.mode)
 prevMode = config.mode

 # Checks for operator induced forced reset of interlocked zones
 if config.forceReset:
 print("Operator is forcing reset of all interlocked zones")
 ils.resetAllZones()

 # If object is found, interlock the current zone
 if ils.findObject(config.data_lst):
 ils.setInterlockZone(ils.findZone(config.angle), config.angle)

57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

5/20/22, 3:12 AM Main.py

localhost:4649/?mode=python 3/3

 # Incrementing for next sonar-scan
 config.angle = (config.angle + p.get_step()) % 400

 # If the current angle is equal to any of the angles that were used to lock
a zone
 if ils.checkIfResetPermitted(config.angle):
 # Reset that zone as the sonar has scanned that zone again, and no
object is detect
 ils.resetInterlockZone(ils.findZone(config.angle))

115
116
117
118

119
120

121
122

5/20/22, 3:15 AM config.py

localhost:4649/?mode=python 1/1

"""
RASPBERRY PI SUB PROGRAM CONTAINING GLOBAL VARIABLES USED BETWEEN
THE OTHER PYTHON SCRIPTS.
"""

Global variables being received from GUI
light= 0
motorSpeed = 0
runZone = -1
mode = 1
forceReset = False
takeHighResPhoto = False
takeVideo = False

Global variables being sent to GUI
temp = 0
depth = 0
leak = False
angle = 0
data_lst = []
step = 0
interlockedZones = [False] * 8
salinity = 0
conductivity = 150
density = 1000

General functionality not used by communication
address = ""
clientsocket = ""
newArduinoCommands = False

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

5/20/22, 3:23 AM BlueRoboticsSonar.py

localhost:4649/?mode=python 1/6

"""
RASPBERRY PI SUB PROGRAM CONTAINING A PING 360 CLASS USED
FOR CONTROLLING AND READING FROM THE SCANNING IMAGING SONAR

MOST OF THIS CLASS, AND ALL OF THE <brping> MODULES IMPORTED
BELOW, ARE DEVELOPED BY THE MANUFACTORER OF THE SCANNING IMAGING
SONAR, BLUEROBOTICS.
"""

from brping import definitions
from brping import PingDevice
from brping import pingmessage

class Ping360(PingDevice):
 def initialize(self):
 if not PingDevice.initialize(self):
 return False
 if (self.readDeviceInformation() is None):
 return False
 self._speed_of_sound = 1500
 self._step = 2
 return True

 ##
 # @brief Get a device_data message from the device\n
 # Message description:\n
 # This message is used to communicate the current sonar state. If the data field
is populated, the other fields indicate the sonar state when the data was captured.
The time taken before the response to the command is sent depends on the difference
between the last angle scanned and the new angle in the parameters as well as the
number of samples and sample interval (range). To allow for the worst case reponse
time the command timeout should be set to 4000 msec.
 #
 # @return None if there is no reply from the device, otherwise a dictionary with
the following keys:\n
 # mode: Operating mode (1 for Ping360)\n
 # gain_setting: Analog gain setting (0 = low, 1 = normal, 2 = high)\n
 # angle: Units: gradian Head angle\n
 # transmit_duration: Units: microsecond Acoustic transmission duration (1~1000
microseconds)\n
 # sample_period: Time interval between individual signal intensity samples in
25nsec increments (80 to 40000 == 2 microseconds to 1000 microseconds)\n
 # transmit_frequency: Units: kHz Acoustic operating frequency. Frequency range
is 500kHz to 1000kHz, however it is only practical to use say 650kHz to 850kHz due
to the narrow bandwidth of the acoustic receiver.\n
 # number_of_samples: Number of samples per reflected signal\n
 # data: 8 bit binary data array representing sonar echo strength\n
 def get_device_data(self):
 if self.request(definitions.PING360_DEVICE_DATA, 4) is None:
 print("empty request")
 return None
 data = ({
 "mode": self._mode, # Operating mode (1 for Ping360)
 "gain_setting": self._gain_setting, # Analog gain setting (0 = low, 1 =
normal, 2 = high)
 "angle": self._angle, # Units: gradian Head angle
 "transmit_duration": self._transmit_duration, # Units: microsecond
Acoustic transmission duration (1~1000 microseconds)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29

30
31
32
33

34

35

36
37
38
39
40
41
42
43
44

45
46

5/20/22, 3:23 AM BlueRoboticsSonar.py

localhost:4649/?mode=python 2/6

 "sample_period": self._sample_period, # Time interval between
individual signal intensity samples in 25nsec increments (80 to 40000 == 2
microseconds to 1000 microseconds)
 "transmit_frequency": self._transmit_frequency, # Units: kHz Acoustic
operating frequency. Frequency range is 500kHz to 1000kHz, however it is only
practical to use say 650kHz to 850kHz due to the narrow bandwidth of the acoustic
receiver.
 "number_of_samples": self._number_of_samples, # Number of samples per
reflected signal
 "data": self._data, # 8 bit binary data array representing sonar echo
strength
 })
 return data

 ##
 # @brief Send a device_id message to the device\n
 # Message description:\n
 # Change the device id\n
 # Send the message to write the device parameters, then read the values back
from the device\n
 #
 # @param id - Device ID (1-254). 0 and 255 are reserved.
 # @param reserved - reserved
 #
 # @return If verify is False, True on successful communication with the device.
If verify is False, True if the new device parameters are verified to have been
written correctly. False otherwise (failure to read values back or on verification
failure)
 def device_id(self, id, reserved, verify=True):
 m = pingmessage.PingMessage(definitions.PING360_DEVICE_ID)
 m.id = id
 m.reserved = reserved
 m.pack_msg_data()
 self.write(m.msg_data)
 if self.request(definitions.PING360_DEVICE_ID) is None:
 return False
 # Read back the data and check that changes have been applied
 if (verify
 and (self._id != id or self._reserved != reserved)):
 return False
 return True # success m.id = id
 m.reserved = reserved
 m.pack_msg_data()
 self.write(m.msg_data)

 def control_reset(self, bootloader, reserved):
 m = pingmessage.PingMessage(definitions.PING360_RESET)
 m.bootloader = bootloader
 m.reserved = reserved
 m.pack_msg_data()
 self.write(m.msg_data)

 def control_transducer(self, mode, gain_setting, angle, transmit_duration,
sample_period, transmit_frequency, number_of_samples, transmit, reserved):
 m = pingmessage.PingMessage(definitions.PING360_TRANSDUCER)
 m.mode = mode
 m.gain_setting = gain_setting
 m.angle = angle
 m.transmit_duration = transmit_duration
 m.sample_period = sample_period

47

48

49

50

51
52
53
54
55
56
57
58

59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94

5/20/22, 3:23 AM BlueRoboticsSonar.py

localhost:4649/?mode=python 3/6

 m.transmit_frequency = transmit_frequency
 m.number_of_samples = number_of_samples
 m.transmit = transmit
 m.reserved = reserved
 m.pack_msg_data()
 self.write(m.msg_data)

 def set_mode(self, mode):
 self.control_transducer(
 mode,
 self._gain_setting,
 self._angle,
 self._transmit_duration,
 self._sample_period,
 self._transmit_frequency,
 self._number_of_samples,
 0,
 0
)
 return self.wait_message([definitions.PING360_DEVICE_DATA,
definitions.COMMON_NACK], 4.0)

 def set_gain_setting(self, gain_setting):
 self.control_transducer(
 self._mode,
 gain_setting,
 self._angle,
 self._transmit_duration,
 self._sample_period,
 self._transmit_frequency,
 self._number_of_samples,
 0,
 0
)
 return self.wait_message([definitions.PING360_DEVICE_DATA,
definitions.COMMON_NACK], 4.0)

 def set_angle(self, angle):
 self.control_transducer(
 self._mode,
 self._gain_setting,
 angle,
 self._transmit_duration,
 self._sample_period,
 self._transmit_frequency,
 self._number_of_samples,
 0,
 0
)
 return self.wait_message([definitions.PING360_DEVICE_DATA,
definitions.COMMON_NACK], 4.0)

 def set_transmit_duration(self, transmit_duration):
 self.control_transducer(
 self._mode,
 self._gain_setting,
 self._angle,
 transmit_duration,
 self._sample_period,

95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151

5/20/22, 3:23 AM BlueRoboticsSonar.py

localhost:4649/?mode=python 4/6

 self._transmit_frequency,
 self._number_of_samples,
 0,
 0
)
 return self.wait_message([definitions.PING360_DEVICE_DATA,
definitions.COMMON_NACK], 4.0)

 def set_sample_period(self, sample_period):
 self.control_transducer(
 self._mode,
 self._gain_setting,
 self._angle,
 self._transmit_duration,
 sample_period,
 self._transmit_frequency,
 self._number_of_samples,
 0,
 0
)
 return self.wait_message([definitions.PING360_DEVICE_DATA,
definitions.COMMON_NACK], 4.0)

 def set_transmit_frequency(self, transmit_frequency):
 self.control_transducer(
 self._mode,
 self._gain_setting,
 self._angle,
 self._transmit_duration,
 self._sample_period,
 transmit_frequency,
 self._number_of_samples,
 0,
 0
)
 return self.wait_message([definitions.PING360_DEVICE_DATA,
definitions.COMMON_NACK], 4.0)

 def set_number_of_samples(self, number_of_samples):
 self.control_transducer(
 self._mode,
 self._gain_setting,
 self._angle,
 self._transmit_duration,
 self._sample_period,
 self._transmit_frequency,
 number_of_samples,
 0,
 0
)
 return self.wait_message([definitions.PING360_DEVICE_DATA,
definitions.COMMON_NACK], 4.0)

 def readDeviceInformation(self):
 return self.request(definitions.PING360_DEVICE_DATA)

 def transmitAngle(self, angle):
 self.control_transducer(
 0, # reserved

152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199

200
201
202
203
204
205
206
207

5/20/22, 3:23 AM BlueRoboticsSonar.py

localhost:4649/?mode=python 5/6

 self._gain_setting,
 angle,
 self._transmit_duration,
 self._sample_period,
 self._transmit_frequency,
 self._number_of_samples,
 1,
 0
)
 return self.wait_message([definitions.PING360_DEVICE_DATA,
definitions.COMMON_NACK], 0.5)

 def transmit(self):
 return self.transmitAngle(self._angle)

 """
 Below functions are created specifically for the ROV project, functions over are
developed
 by the manufactor of the sonar, BlueRovotics.
 """

 # Function that returns the currently set speed of sound
 def get_speed_of_sound(self):
 return self._speed_of_sound

 # Function that changes the speed of sound
 def set_speed_of_sound(self, newSpeed):
 if (newSpeed == self.get_speed_of_sound()):
 print("Requested speed of sound is already set")
 return
 else:
 self._speed_of_sound = newSpeed

 # Function that returns the sample period set for the sonar
 def samplePeriod(self):
 # Multiply with samplePeriodTickDuration which is 25 nanoseconds
 return self._sample_period * 25E-9

 # Returns the currently set scanning range
 def get_range(self):
 return self.samplePeriod() * self._number_of_samples *
self.get_speed_of_sound() / 2

 # Sets new sonar scan range
 def set_range(self, newRange):
 # Checks if new argument is different from set range
 if (newRange == self.get_range()):
 return
 else:
 # Calculate the new sample period to achieve requested distance
 self._sample_period = int(newRange/(self._number_of_samples*25E-9*750))

 # Sets new step size, that indicates how many angles the sonar jumps for every
iteration
 def set_step(self, newStep):
 self._step = newStep

 # Returns the current step
 def get_step(self):

208
209
210
211
212
213
214
215
216
217

218
219
220
221
222
223
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256
257
258

259
260
261
262
263

5/20/22, 3:23 AM BlueRoboticsSonar.py

localhost:4649/?mode=python 6/6

 return self._step

 # Function that changes settings needed for the sonar to scan in a new mode
 def changeOperatingMode(self, newMode):
 # Checks if input is different from last iteration
 if newMode == 0:
 self.set_range(20) # Short range collision avoidance mode
 self.set_step(4)
 self.set_gain_setting(0)
 elif newMode == 1:
 self.set_range(50) # Medium range collision avoidance mode
 self.set_step(2)
 self.set_gain_setting(1)
 elif newMode == 2:
 self.set_range(2) # Aquaculture inspection mode
 self.set_step(10)
 self.set_gain_setting(0)
 elif newMode == 3:
 self.set_range(4) # Aquaculture inspection mode
 self.set_step(8)
 self.set_gain_setting(0)
 else:
 print("Did not recognize mode command")
 print("Corrupt or invalid data given")
 return

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

5/20/22, 3:50 AM communication.py

localhost:4649/?mode=python 1/5

"""
RASPBERRY PI SUB PROGRAM CONTAINING THE LOGIC TO HANDLE
THE COMMUNICATION BETWEEN ALL DEVICES CONNECTED TO THE RPI.
INCLUDES SERIAL COMMUNICATION, TCP AND UDP.
"""

import socket
import pickle
import numpy as np
import config
import threading
import struct
import math
from imutils.video import VideoStream
import serial
import json
import time

class FrameSegment(object):

 # Initialization of functionality that handles dividing picture frames to
correctly sized UDP datagrams
 def __init__(self, sock, port, addr="169.254.226.73"):
 self.s = sock
 self.port = port
 self.addr = addr
 self.MAX_DGRAM = 2**16
 self.MAX_IMAGE_DGRAM = self.MAX_DGRAM - 64

 # Function that takes in a frame, compresses it, divides it into UDP datagrams
and
 # sends it over UDP to the GUI
 def udp_frame(self, img):
 # Compress image to .jpg format
 compress_img = cv2.imencode(".jpg", img)[1]
 dat = compress_img.tostring()
 size = len(dat)
 # Finds number of datagrams needed to be sent for this frame
 num_of_segments = math.ceil(size/(self.MAX_IMAGE_DGRAM))
 array_pos_start = 0

 # Sends out all the datagrams needed for the frame
 while num_of_segments:
 array_pos_end = min(size, array_pos_start + self.MAX_IMAGE_DGRAM)
 self.s.sendto(
 struct.pack("B", num_of_segments) +
 dat[array_pos_start:array_pos_end],
 (self.addr, self.port)
)
 array_pos_start = array_pos_end
 num_of_segments -= 1

Function that handles the TCP data coming from the GUI
def TCPIn():

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

5/20/22, 3:50 AM communication.py

localhost:4649/?mode=python 2/5

 HEADERSIZE = 10

 # Constantly checking for new messages
 while 1:
 receiving = True
 full_msg = b''
 new_msg = True
 incoming_message = config.clientsocket.recv(8192)

 while receiving:

 if new_msg:
 msglen = int(incoming_message[:HEADERSIZE])
 new_msg = False

 full_msg += incoming_message

 # If full message received, update global variables
 if len(full_msg)-HEADERSIZE == msglen:
 GuiDataIn = pickle.loads(full_msg[HEADERSIZE:])
 print("[ATTENTION] New data has been applied to global variables
from GUI commands")
 config.light = GuiDataIn["light"]
 config.motorSpeed = GuiDataIn["motorSpeed"]
 config.runZone = GuiDataIn["runZone"]
 config.forceReset = GuiDataIn["forceReset"]
 config.mode = GuiDataIn["mode"]
 config.takeHighResPhoto = GuiDataIn["takePhoto"]
 config.takeVideo = GuiDataIn["takeVideo"]
 config.newArduinoCommands = True

 # Resetting variables for next iteration
 receiving = False
 new_msg = True
 full_msg = b''

Function that handles the TCP data to be sent to the GUI
def TCPOut(s, HOST, PORT, HEADERSIZE):
 communicating = True
 startReceive = True

 while communicating:
 receiving = True

 # If no connection is established, try to find one
 if not config.address:
 config.clientsocket, config.address = s.accept()
 print(f"Connection from {config.address} has been established.")

 # Finalizing dicitionary with all values to be sent to GUI
 GuiDataOut = {
 "image": "",
 "temp": config.temp,
 "depth": config.depth,
 "leak": config.leak,
 "angle": config.angle,
 "step": config.step,
 "lockedZones": config.interlockedZones,
 "dataArray": config.data_lst,

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

5/20/22, 3:50 AM communication.py

localhost:4649/?mode=python 3/5

 "salinity": config.salinity,
 "conductivity": config.conductivity,
 "density": config.density

 }

 # Serializing the dicitionary and sending
 msg = pickle.dumps(GuiDataOut)
 msg = bytes(f"{len(msg):<{HEADERSIZE}}", 'utf-8') + msg
 config.clientsocket.send(msg)

 communicating = False

Function that handles the UDP communication with GUI
def UDP():
 # Establish connection with server
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 port = 20001

 # Declare object for handling image frames
 fs = FrameSegment(s, port)

 # Variables for naming photo and video files
 photoNum = 0
 videoNum = 0

 # Opens camera port and defines video format
 cap = VideoStream(src=0).start()
 size = (640, 480)

 while 1:
 # If commanded from GUI, take photo and save to determined path
 if config.takeHighResPhoto:

 photoNum += 1
 photo = cap.read()

 status = cv2.imwrite(f'/home/pi/Programs/Photos/photo_{photoNum}.png',
photo)
 print(f'Image written to file system status: {status}')
 time.sleep(1) # Sleeps for 1 second before resuming UDP video stream
 config.takeHighResPhoto = False

 # If no commands to take picture, resume video stream over UDP to GUI
 while not config.takeHighResPhoto:
 frame = cap.read()

 # If user commands to save video, store video to file
 if config.takeVideo:
 if not vidConfigured:
 videoNum += 1
 result =
cv2.VideoWriter(f'/home/pi/Programs/Videos/Video{videoNum}.avi',
 cv2.VideoWriter_fourcc(*'mp4v'), 12, size)
 vidConfigured = True

 result.write(frame) # Writing to disk as a video
 else:
 vidConfigured = False

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163
164
165
166
167
168

169
170
171
172
173
174

5/20/22, 3:50 AM communication.py

localhost:4649/?mode=python 4/5

 fs.udp_frame(frame) # Sending to GUI using UDP communication

 cap.release()
 cv2.destroyAllWindows()
 s.close()

Function that handles serial communication with Arduino Uno and combination sensor
def serialCom():

 # Initialize serial communication with Arduino UNO
 ardSer = serial.Serial('/dev/ttyACM0', 9600, timeout=1,
 parity=serial.PARITY_NONE, bytesize=serial.EIGHTBITS,
stopbits=serial.STOPBITS_ONE)
 print(f'Arduino serial communication status: {ardSer.isOpen()}')

 # Initialize serial communication with conductivity/combination sensor
 condSer = serial.Serial('/dev/ttyUSB1', 9600)
 print(f'Conductivity sensor communication status: {condSer.isOpen()}')

 time.sleep(2)

 # Continuously send and receive over serial connection
 while 1:

 # Commands conductivity sensor to conduct sample of values
 condSer.write("do_sample\n".encode())

 # Commands for values, and reads response to global variables
 config.salinity = getAanderaaData(condSer, "get_salinity\n")
 soundSpeedReading = getAanderaaData(condSer, "get_soundspeed\n")
 config.density = getAanderaaData(condSer, "get_density\n")
 config.conductivity = getAanderaaData(condSer, "get_conductivity\n")

 # If new commands has been updated for Arduino Uno, structure data from
global variable, serialize and send
 if config.newArduinoCommands:
 ArdDataOut = {}
 ArdDataOut["light"] = config.light
 ArdDataOut["runZone"] = config.runZone
 ArdDataOut["locked"] = config.interlockedZones
 ArdDataOut = json.dumps(ArdDataOut)
 ardSer.write(ArdDataOut.encode())
 config.newArduinoCommands = False

 # If the serial input buffer reserved for Arduino traffic has data,
unserialize and store in global variables
 if ardSer.in_waiting > 0:
 ArdDataIn = json.loads(ardSer.readline()) # Deserializes input from
Arduino
 config.temp = ArdDataIn["Temp"]
 config.depth = ArdDataIn["Depth"]
 config.leak = ArdDataIn["Leak"]

 # Have to read and purge input buffer for combination sensor, as old data
can ruin future readings
 condIn = condSer.readline()

175
176
177
178
179
180
181
182
183
184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

210
211
212
213
214
215
216
217
218
219

220
221

222
223
224
225
226

227
228
229

5/20/22, 3:50 AM communication.py

localhost:4649/?mode=python 5/5

Function that compresses frame read from camera
def commpressImage(img, k):
 width = int((img.shape[1])/k)
 height = int((img.shape[0])/k)
 return cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)

Function that sends commands and reads response. Reads value
based on given parameter
def getAanderaaData(condSer, request_str):
 condIn = b''
 condIn = condSer.readline() # Have to read the buffer to stop future splitting
issues
 condSer.write(request_str.encode())
 condIn = condSer.readline().decode()
 data = condIn.split('\t')
 data = data[-1]
 data = data.replace('\r\n', '')
 return float(data)

230
231
232
233
234
235
236
237
238
239
240

241
242
243
244
245
246

5/20/22, 3:30 AM Interlocking.py

localhost:4649/?mode=python 1/3

"""
RASPBERRY PI SUB PROGRAM CONTAINING THE INTERLOCKING LOGIC
NEEDED FOR ASSISTING THE OPERATOR OF THE ROV TO CONTROL THE
ROV IN TIGHT SPACES.
"""

class InterlockingSystem:
 def __init__(self):
 print("Interlocking system initalized")
 self.lockedZones = [False] * 8
 self.zoneLockedAngles = [None] * 8

 # Resets all interloked zones
 def resetAllZones(self):
 print("Operator-forced reset of all interlocked zones")
 self.lockedZones = [False] * 8

 # By taking in the currently scanned angle, finds which zone the angle
 # is a part of, and return this zone
 def findZone (self, angle):
 if 175 < angle <= 225:
 return 0
 elif 125 < angle <= 175:
 return 1
 elif 75 < angle <= 125:
 return 2
 elif 25 < angle <= 75:
 return 3
 elif 325 < angle <= 375:
 return 5
 elif 275 < angle <= 325:
 return 6
 elif 225 < angle <= 275:
 return 7
 else:
 return 4

 # Function taking in the echo strengths from sonar, and finds if these
 # values within close proximity is above a certain treshold, and determines
 # if an object was located
 def findObject (self, dataPoints):

 # Constants for object detection, can be adjusted for range and sensitivity
 numOfValues = 100
 thresholdObjDetect = 40

 # Slicing list to appropiate values, changing this means changing what range
are scanned for objects
 objectData = dataPoints[numOfValues:2*numOfValues]
 avrObj = sum(objectData)/numOfValues
 # print("Average echo strength (0-255): ", avrObj)

 # If average of datapoints is above threshold return true (object is
detected)
 if avrObj > thresholdObjDetect:
 return True
 else:
 return False

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52

53
54
55
56
57

5/20/22, 3:30 AM Interlocking.py

localhost:4649/?mode=python 2/3

 # Takes in zone and angle and interlocks that zone for no movement in that
direction
 # Additionally the angle which the object was located at is saved, for later
resetting
 # of zone during normal operation
 def setInterlockZone (self, zone, angle):
 if zone == 0:
 self.lockedZones[0] = True
 self.zoneLockedAngles[0] = angle
 elif zone == 1:
 self.lockedZones[1] = True
 self.zoneLockedAngles[1] = angle
 elif zone == 2:
 self.lockedZones[2] = True
 self.zoneLockedAngles[2] = angle
 elif zone == 3:
 self.lockedZones[3] = True
 self.zoneLockedAngles[3] = angle
 elif zone == 4:
 self.lockedZones[4] = True
 self.zoneLockedAngles[4] = angle
 elif zone == 5:
 self.lockedZones[5] = True
 self.zoneLockedAngles[5] = angle
 elif zone == 6:
 self.lockedZones[6] = True
 self.zoneLockedAngles[6] = angle
 elif zone == 7:
 self.lockedZones[7] = True
 self.zoneLockedAngles[7] = angle
 else:
 print("Invalid set zone given")

 # Checks if the scanned angle has been interlocked last revolution
 # and if no object was found this reviolution, reset the zone
 def checkIfResetPermitted (self, angle):
 for i in range(len(self.zoneLockedAngles)):
 if (self.zoneLockedAngles[i] == angle):
 self.resetInterlockZone(self.findZone(angle))

 # Takes in an angle, and resets the zone containing that angle
 def resetInterlockZone (self, zone):
 if zone == 0:
 self.lockedZones[0] = False
 elif zone == 1:
 self.lockedZones[1] = False
 elif zone == 2:
 self.lockedZones[2] = False
 elif zone == 3:
 self.lockedZones[3] = False
 elif zone == 4:
 self.lockedZones[4] = False
 elif zone == 5:
 self.lockedZones[5] = False
 elif zone == 6:
 self.lockedZones[6] = False
 elif zone == 7:
 self.lockedZones[7] = False
 else:
 print("Invalid reset zone given")

58

59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

5/20/22, 3:30 AM Interlocking.py

localhost:4649/?mode=python 3/3

Appendix H

GUI code

5/20/22, 2:47 AM main.py

localhost:4649/?mode=python 1/4

"""
MAIN PROGRAM FOR GUI APPLICATION. HANDLES THE COMMUNICATION WITH THE
RASPBERRY PI INSIDE THE ROV ENCLOSURE. THIS PROGRAM CONTAINS A TCP
CLIENT AND A UDP SERVER. PROGRAM IS DEPENDANT ON CONFIG.PY FOR GLOBAL
VARIABLES, AND INTERFACING.PY FOR GUI APPLICATION FUNCTIONALITY.
"""

from xmlrpc.client import Server
import socket
import pickle
import cv2
import time
import numpy as np
from PyQt5.QtWidgets import QWidget, QApplication, QLabel, QVBoxLayout
import sys
import cv2
from math import *
import threading
import config
from interfacing import VideoThread, App
import struct

Sonar constants needed for plotting visualization
MAX_RANGE = 80*200*1450/2
LENGTH = 640
CENTER = (LENGTH/2,LENGTH/2)
image = np.zeros((LENGTH, LENGTH, 1), np.uint8)

"""
Function that creates a circular plot of the sonar readings. Takes
in the angle scanned, step size for next angle and a list of echo
strengths.
"""
def plotSonarInput(angle, step, data_lst):

 linear_factor = len(data_lst)/CENTER[0]
 for i in range(int(CENTER[0])):
 if(i < CENTER[0]*MAX_RANGE/MAX_RANGE):
 try:
 pointColor = data_lst[int(i*linear_factor-1)]
 except IndexError:
 pointColor = 0
 else:
 pointColor = 0
 for k in np.linspace(0,step,8*step):
 image[int(CENTER[0]+i*cos(2*pi*(angle+k)/400)),
int(CENTER[1]+i*sin(2*pi*(angle+k)/400)), 0] = pointColor

 # Updates GUI animation with new sonar plot
 a.update_sonar(cv2.applyColorMap(image, cv2.COLORMAP_JET))

"""
Function that handles the TCP Communication between the GUI and the
Raspberry Pi.
"""
def TCPCom():
 # Define connection parameters of RPi server
 SERVER = "169.254.226.72"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58

5/20/22, 2:47 AM main.py

localhost:4649/?mode=python 2/4

 PORT = 1422
 HEADERSIZE = 10

 # Using socket library, initialize a communication object
 # and initialize TCP connection.
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.connect((SERVER, PORT))

 print(f"[NEW CONNECTION] With {SERVER} established")

 full_msg = b''
 new_msg = True
 while 1:
 # Receives TCP packets and stores in variable
 msg = s.recv(8192) # 8192

 # If the start of a data message is sent, find length of expected
information
 if new_msg:
 msglen = int(msg[:HEADERSIZE])
 new_msg = False

 # Sum all packets to a full message
 full_msg += msg

 # If length of message is as previously decided, unpack data and call
functions
 if len(full_msg)-HEADERSIZE == msglen:

 RaspDataIn = pickle.loads(full_msg[HEADERSIZE:])

 a.setDisplayValues(RaspDataIn["temp"], RaspDataIn["depth"],
RaspDataIn["leak"],
 RaspDataIn["lockedZones"], RaspDataIn["salinity"],
RaspDataIn["conductivity"],
 RaspDataIn["density"])
 plotSonarInput(RaspDataIn["angle"], RaspDataIn["step"],
RaspDataIn["dataArray"])

 # Resets for next message
 new_msg = True
 full_msg = b""

 # If TCP packet was not succesfully unpacked last message
 # reset the input buffer
 if len(full_msg) > 2500:
 new_msg = True
 full_msg = b""

 # If user has performed actions on GUI, sends commands over TCP to RPi
 if config.newCommands:
 print("[ATTENTION] New commands sent to Raspberry")
 config.newCommands = False

 RaspDataOut = {
 "light": config.light,
 "motorSpeed": config.motorSpeed,
 "runZone": config.runZone,

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77
78
79
80
81
82
83
84

85
86
87
88
89

90

91
92

93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113

5/20/22, 2:47 AM main.py

localhost:4649/?mode=python 3/4

 "forceReset": config.forceReset,
 "mode": config.mode,
 "takePhoto": config.takePhoto,
 "takeVideo": config.takeVideo
 }

 RaspDataOut = pickle.dumps(RaspDataOut)
 RaspDataOut = bytes(f'{len(RaspDataOut):<{HEADERSIZE}}', 'utf-8') +
RaspDataOut
 s.send(RaspDataOut)

"""
Function that handles the UDP communication between the GUI and the
Raspberry Pi.
"""
def UDPCom():
 # Datagram set to maximum allowable size
 MAX_DGRAM = 2**16
 dat = b''

 """
 Function that dumps the UDP buffer.
 """
 def dump_buffer(s):
 while True:
 seg, addr = s.recvfrom(MAX_DGRAM)
 print(seg[0])
 if struct.unpack('B', seg[0:1])[0] == 1:
 print("UDP input buffer emptied")
 break

 # Using socket library, initialize a communication object
 # and initialize UDP connection.
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 s.bind(('169.254.226.73', 20001))

 # Dumps buffer, so that completely new data will be read at this point
 dump_buffer(s)

 # Continuously checking for UDP datagrams and unpacks if an entire message
 # has been received, else summing up datagrams until this is true
 while 1:
 seg, _ = s.recvfrom(MAX_DGRAM)
 if struct.unpack("B", seg[0:1])[0] > 1:
 dat += seg[1:]
 else:
 dat += seg[1:]
 img = cv2.imdecode(np.frombuffer(dat, dtype=np.uint8), 1)
 try:
 config.rovCamera = img
 except:
 print("error (-215:Assertion failed)")
 if cv2.waitKey(20) & 0xFF == ord('q'):
 break
 dat = b''

 cv2.destroyAllWindows()
 s.close()

114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

5/20/22, 2:47 AM main.py

localhost:4649/?mode=python 4/4

if __name__=="__main__":

 # Initializing GUI objects
 app = QApplication(sys.argv)
 a = App()

 # Opening an UDP server in GUI application
 cam_communication = threading.Thread(target=UDPCom)
 cam_communication.start()

 # Opening a TCP client in GUI application
 other_communication = threading.Thread(target=TCPCom)
 other_communication.start()

 # Opens GUI as a seperate window
 a.show()
 sys.exit(app.exec_())

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

5/20/22, 2:51 AM config.py

localhost:4649/?mode=python 1/1

"""
PYTHON SCRIPT FOR GUI APPLICATION FOR ROV. CONTAINS THE GLOBAL VARIABLES
THAT ARE SHARED BETWEEN MAIN.PY AND INTERFACING.PY, RESPECTIVELY COMMUNICATION
AND MAIN GUI SCRIPTS.
"""
import numpy as np

Holds the frame communicated from Raspberry Pi
rovCamera = np.array([])

Commands from GUI to raspberry with initial values
light = 0
motorSpeed = 0
runZone = -1
forceReset = False
mode = 1
takePhoto = False
takeVideo = False

Sensor information from Raspberry with inital values
temp = 0
pressure = 0
leak = 0
angle = 0
interlockedZones = [True] * 8

Boolean flag that indicates if new actions have been
performed on GUI
newCommands = False

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

5/20/22, 2:56 AM interfacing.py

localhost:4649/?mode=python 1/10

"""
PYTHON SCRIPT FOR GUI APPLICATION FOR ROV. CONTAINS AUTOGENERATED
GUI OBJECTS FROM QT DESIGNER AND FUNCTIONS NEEDED FOR GUI AND
COMMUNICATION THE WORK TOGETHER.
"""
from PyQt5 import QtGui
from PyQt5 import QtWidgets
from PyQt5 import QtCore
from PyQt5.QtGui import QFont
from PyQt5.QtWidgets import QWidget, QApplication, QLabel, QVBoxLayout
from PyQt5.QtGui import QPixmap
from PyQt5.QtCore import pyqtSignal, pyqtSlot, Qt, QThread,QTime,QTimer
import cv2
import numpy as np
import config

class VideoThread(QThread):
 change_pixmap_signal = pyqtSignal(np.ndarray)

 def __init__(self):
 super().__init__()
 self._run_flag = True

 def run(self):
 while self._run_flag:
 try:
 if (len(config.rovCamera) > 10):
 self.change_pixmap_signal.emit(config.rovCamera)
 config.rovCamera = np.array([])
 except:
 continue

 def stop(self):
 self._run_flag = False
 self.wait()

class App(QWidget):
 def __init__(self):
 super().__init__()
 self.setWindowTitle("ROV-AIP USER INTERFACE")
 self.setGeometry(0,0,2560,1440)
 self.setStyleSheet("background-color: rgb(93, 93, 93);")
 self.g = 9.81 # [m/s^2]
 self.density = 1000 # [kg/m^3]
 self.prevLockedZones = [True] * 8

 self.image_label = QLabel(self)
 self.image_label.setGeometry(690, 0, 1221, 671)
 self.image_label.setFrameShape(QtWidgets.QFrame.Panel)

 self.sonar=QLabel(self)
 self.sonar.setText("Sonar_Placeholder")
 self.sonar.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.sonar.setGeometry(15, 15, 640, 640)
 self.sonar.setFrameShape(QtWidgets.QFrame.Panel)

 self.Forward = QtWidgets.QToolButton(self)
 self.Forward.setGeometry(QtCore.QRect(1280, 770, 51, 41))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

5/20/22, 2:56 AM interfacing.py

localhost:4649/?mode=python 2/10

 self.Forward.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.Forward.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_forward.png'))
 self.Forward.setIconSize(QtCore.QSize(32, 32))
 self.Forward.setPopupMode(QtWidgets.QToolButton.InstantPopup)
 self.Forward.setArrowType(QtCore.Qt.NoArrow)
 self.Forward.setObjectName("Forward")
 self.Forward.pressed.connect(lambda: self.activateZone(0))
 self.Forward.released.connect(self.release)

 self.Reverse = QtWidgets.QToolButton(self)
 self.Reverse.setGeometry(QtCore.QRect(1280, 870, 51, 41))
 self.Reverse.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.Reverse.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_reverse.png'))
 self.Reverse.setIconSize(QtCore.QSize(32, 32))
 self.Reverse.setPopupMode(QtWidgets.QToolButton.InstantPopup)
 self.Reverse.setArrowType(QtCore.Qt.NoArrow)
 self.Reverse.setObjectName("Reverse")
 self.Reverse.pressed.connect(lambda: self.activateZone(4))
 self.Reverse.released.connect(self.release)

 self.Left = QtWidgets.QToolButton(self)
 self.Left.setGeometry(QtCore.QRect(1210, 820, 51, 41))
 self.Left.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.Left.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_left.png'))
 self.Left.setIconSize(QtCore.QSize(32, 32))
 self.Left.setPopupMode(QtWidgets.QToolButton.InstantPopup)
 self.Left.setArrowType(QtCore.Qt.NoArrow)
 self.Left.setObjectName("Left")
 self.Left.pressed.connect(lambda: self.activateZone(6))
 self.Left.released.connect(self.release)

 self.Right = QtWidgets.QToolButton(self)
 self.Right.setGeometry(QtCore.QRect(1350, 820, 51, 41))
 self.Right.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.Right.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_right.png'))
 self.Right.setIconSize(QtCore.QSize(32, 32))
 self.Right.setPopupMode(QtWidgets.QToolButton.InstantPopup)
 self.Right.setArrowType(QtCore.Qt.NoArrow)
 self.Right.setObjectName("Right")
 self.Right.pressed.connect(lambda: self.activateZone(2))
 self.Right.released.connect(self.release)

 self.ForwardRight = QtWidgets.QToolButton(self)
 self.ForwardRight.setGeometry(QtCore.QRect(1350, 770, 51, 41))
 self.ForwardRight.setStyleSheet("background-color: rgb(134, 134, 134);")

 self.ForwardRight.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_forward_right.png')
)
 self.ForwardRight.setIconSize(QtCore.QSize(32, 32))
 self.ForwardRight.setPopupMode(QtWidgets.QToolButton.InstantPopup)
 self.ForwardRight.setObjectName("ForwardRight")
 self.ForwardRight.pressed.connect(lambda: self.activateZone(1))
 self.ForwardRight.released.connect(self.release)

 self.ForwardLeft = QtWidgets.QToolButton(self)
 self.ForwardLeft.setGeometry(QtCore.QRect(1210, 770, 51, 41))
 self.ForwardLeft.setStyleSheet("background-color: rgb(134, 134, 134);")

 self.ForwardLeft.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_forward_left.png'))
 self.ForwardLeft.setIconSize(QtCore.QSize(32, 32))

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105

106
107
108
109
110
111
112
113
114
115

116

5/20/22, 2:56 AM interfacing.py

localhost:4649/?mode=python 3/10

 self.ForwardLeft.setPopupMode(QtWidgets.QToolButton.InstantPopup)
 self.ForwardLeft.setObjectName("ForwardLeft")
 self.ForwardLeft.pressed.connect(lambda: self.activateZone(7))
 self.ForwardLeft.released.connect(self.release)

 self.ReverseLeft = QtWidgets.QToolButton(self)
 self.ReverseLeft.setGeometry(QtCore.QRect(1210, 870, 51, 41))
 self.ReverseLeft.setStyleSheet("background-color: rgb(134, 134, 134);")

 self.ReverseLeft.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_reverse_left.png'))
 self.ReverseLeft.setIconSize(QtCore.QSize(32, 32))
 self.ReverseLeft.setPopupMode(QtWidgets.QToolButton.InstantPopup)
 self.ReverseLeft.setObjectName("ReverseLeft")
 self.ReverseLeft.pressed.connect(lambda: self.activateZone(5))
 self.ReverseLeft.released.connect(self.release)

 self.ReverseRight = QtWidgets.QToolButton(self)
 self.ReverseRight.setGeometry(QtCore.QRect(1350, 870, 51, 41))
 self.ReverseRight.setStyleSheet("background-color: rgb(134, 134, 134);")

 self.ReverseRight.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_reverse_right.png')
)
 self.ReverseRight.setIconSize(QtCore.QSize(32, 32))
 self.ReverseRight.setPopupMode(QtWidgets.QToolButton.InstantPopup)
 self.ReverseRight.setObjectName("ReverseRight")
 self.ReverseRight.pressed.connect(lambda: self.activateZone(3))
 self.ReverseRight.released.connect(self.release)

 self.CounterClockwise = QtWidgets.QToolButton(self)
 self.CounterClockwise.setGeometry(QtCore.QRect(1210, 710, 51, 41))
 self.CounterClockwise.setStyleSheet("background-color: rgb(134, 134, 134);")

 self.CounterClockwise.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_rotate_left.png
'))
 self.CounterClockwise.setIconSize(QtCore.QSize(32, 32))
 self.CounterClockwise.setPopupMode(QtWidgets.QToolButton.InstantPopup)
 self.CounterClockwise.setObjectName("CounterClockwise")
 self.CounterClockwise.pressed.connect(lambda: self.activateZone(8))
 self.CounterClockwise.released.connect(self.release)

 self.Clockwise = QtWidgets.QToolButton(self)
 self.Clockwise.setGeometry(QtCore.QRect(1350, 710, 51, 41))
 self.Clockwise.setStyleSheet("background-color: rgb(134, 134, 134);")

 self.Clockwise.setIcon(QtGui.QIcon('GUI_interface\Icons\icon_rotate_right.png'))
 self.Clockwise.setIconSize(QtCore.QSize(32, 32))
 self.Clockwise.setPopupMode(QtWidgets.QToolButton.InstantPopup)
 self.Clockwise.setObjectName("Clockwise")
 self.Clockwise.pressed.connect(lambda: self.activateZone(9))
 self.Clockwise.released.connect(self.release)

 self.Temp = QtWidgets.QLCDNumber(self)
 self.Temp.setGeometry(QtCore.QRect(30, 710, 141, 31))
 self.Temp.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.Temp.setFrameShadow(QtWidgets.QFrame.Plain)
 self.Temp.setSmallDecimalPoint(True)
 self.Temp.setDigitCount(8)
 self.Temp.setSegmentStyle(QtWidgets.QLCDNumber.Flat)
 self.Temp.setProperty("value", 0.0)
 self.Temp.setObjectName("Temp")

117
118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

5/20/22, 2:56 AM interfacing.py

localhost:4649/?mode=python 4/10

 self.Temp.display(999)

 self.Depth = QtWidgets.QLCDNumber(self)
 self.Depth.setGeometry(QtCore.QRect(30, 790, 141, 31))
 self.Depth.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.Depth.setFrameShadow(QtWidgets.QFrame.Plain)
 self.Depth.setSmallDecimalPoint(True)
 self.Depth.setDigitCount(8)
 self.Depth.setSegmentStyle(QtWidgets.QLCDNumber.Flat)
 self.Depth.setObjectName("Depth")
 self.Depth.display(999)

 self.Salinity = QtWidgets.QLCDNumber(self)
 self.Salinity.setGeometry(QtCore.QRect(30, 870, 141, 31))
 self.Salinity.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.Salinity.setFrameShadow(QtWidgets.QFrame.Plain)
 self.Salinity.setSmallDecimalPoint(True)
 self.Salinity.setDigitCount(8)
 self.Salinity.setSegmentStyle(QtWidgets.QLCDNumber.Flat)
 self.Salinity.setObjectName("Salinity")
 self.Salinity.display(999)

 self.Conductivity = QtWidgets.QLCDNumber(self)
 self.Conductivity.setGeometry(QtCore.QRect(30, 950, 141, 31))
 self.Conductivity.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.Conductivity.setFrameShadow(QtWidgets.QFrame.Plain)
 self.Conductivity.setSmallDecimalPoint(True)
 self.Conductivity.setDigitCount(8)
 self.Conductivity.setSegmentStyle(QtWidgets.QLCDNumber.Flat)
 self.Conductivity.setObjectName("Conductivity")
 self.Conductivity.display(999)

 self.Density = QtWidgets.QLCDNumber(self)
 self.Density.setGeometry(QtCore.QRect(30, 1030, 141, 31))
 self.Density.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.Density.setFrameShadow(QtWidgets.QFrame.Plain)
 self.Density.setSmallDecimalPoint(True)
 self.Density.setDigitCount(8)
 self.Density.setSegmentStyle(QtWidgets.QLCDNumber.Flat)
 self.Density.setObjectName("Density")
 self.Density.display(999)

 self.Light_Value_Slider = QtWidgets.QSlider(self)
 self.Light_Value_Slider.setGeometry(QtCore.QRect(920, 710, 61, 201))
 self.Light_Value_Slider.setStyleSheet("background-color: rgb(134, 134,
134);")
 self.Light_Value_Slider.setOrientation(QtCore.Qt.Vertical)
 self.Light_Value_Slider.setTickPosition(QtWidgets.QSlider.TicksBelow)
 self.Light_Value_Slider.setObjectName("Light_Value_Slider")
 self.Light_Value_Slider.setMaximum(255)
 self.Light_Value_Slider.setMinimum(0)
 self.Light_Value_Slider.valueChanged.connect(self.userInteractLights)

 self.ResetButton = QtWidgets.QPushButton(self)
 self.ResetButton.setGeometry(QtCore.QRect(1080, 710, 100, 100))
 self.ResetButton.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.ResetButton.setObjectName("ResetButton")
 self.ResetButton.setText("Reset\ninterlocked\nzones")
 self.ResetButton.pressed.connect(self.setReset)
 self.ResetButton.released.connect(self.releaseReset)

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

216
217
218
219
220
221
222
223
224
225
226
227
228
229

5/20/22, 2:56 AM interfacing.py

localhost:4649/?mode=python 5/10

 self.TakePhoto = QtWidgets.QPushButton(self)
 self.TakePhoto.setGeometry(QtCore.QRect(1740, 710, 171, 61))
 self.TakePhoto.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.TakePhoto.setObjectName("TakePhoto")
 self.TakePhoto.setText("Take HD photo")
 self.TakePhoto.pressed.connect(self.takePhoto)
 self.TakePhoto.released.connect(self.streamVideo)

 self.StartVideo = QtWidgets.QPushButton("toggle", self)
 self.StartVideo.setGeometry(QtCore.QRect(1740, 810, 171, 61))
 self.StartVideo.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.StartVideo.setObjectName("StartVideo")
 self.StartVideo.setText("Start video capture")
 self.StartVideo.setCheckable(True)
 self.StartVideo.clicked.connect(self.takeVideo)

 self.ScanMode20m = QtWidgets.QPushButton(self)
 self.ScanMode20m.setGeometry(QtCore.QRect(450, 710, 200, 71))
 self.ScanMode20m.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.ScanMode20m.setObjectName("ScanMode20m")
 self.ScanMode20m.setText("Scanning [20m]")
 self.ScanMode20m.clicked.connect(lambda: self.userInteractModeSonar(0))

 self.ScanMode50m = QtWidgets.QPushButton(self)
 self.ScanMode50m.setGeometry(QtCore.QRect(450, 790, 200, 71))
 self.ScanMode50m.setStyleSheet("background-color: rgb(50, 205, 50);")
 self.ScanMode50m.setObjectName("ScanMode50m")
 self.ScanMode50m.setText("Scanning [50m]")
 self.ScanMode50m.clicked.connect(lambda: self.userInteractModeSonar(1))

 self.CollisionAvoid2m = QtWidgets.QPushButton(self)
 self.CollisionAvoid2m.setGeometry(QtCore.QRect(450, 870, 200, 71))
 self.CollisionAvoid2m.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.CollisionAvoid2m.setObjectName("CollisionAvoid2m")
 self.CollisionAvoid2m.setText("Collision Prevention [2m]")
 self.CollisionAvoid2m.clicked.connect(lambda: self.userInteractModeSonar(2))

 self.CollisionAvoid4m = QtWidgets.QPushButton(self)
 self.CollisionAvoid4m.setGeometry(QtCore.QRect(450, 950, 200, 71))
 self.CollisionAvoid4m.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.CollisionAvoid4m.setObjectName("CollisionAvoid4m")
 self.CollisionAvoid4m.setText("Collision Prevention [4m]")
 self.CollisionAvoid4m.clicked.connect(lambda: self.userInteractModeSonar(3))

 self.lblTemperature = QtWidgets.QLabel(self)
 self.lblTemperature.setGeometry(QtCore.QRect(30, 680, 141, 21))
 self.lblTemperature.setStyleSheet("\n""background-color: rgb(134, 134,
134);")
 self.lblTemperature.setFrameShape(QtWidgets.QFrame.Panel)
 self.lblTemperature.setObjectName("lblTemperature")
 self.lblTemperature.setText("Temperature [°C]:")

 self.lblDepth = QtWidgets.QLabel(self)
 self.lblDepth.setGeometry(QtCore.QRect(30, 760, 141, 21))
 self.lblDepth.setStyleSheet("\n""background-color: rgb(134, 134, 134);")
 self.lblDepth.setFrameShape(QtWidgets.QFrame.Panel)
 self.lblDepth.setObjectName("lblDepth")
 self.lblDepth.setText("Depth [m]:")

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

278
279
280
281
282
283
284
285
286
287
288

5/20/22, 2:56 AM interfacing.py

localhost:4649/?mode=python 6/10

 self.lblSalinity = QtWidgets.QLabel(self)
 self.lblSalinity.setGeometry(QtCore.QRect(30, 840, 141, 21))
 self.lblSalinity.setStyleSheet("\n""background-color: rgb(134, 134, 134);")
 self.lblSalinity.setFrameShape(QtWidgets.QFrame.Panel)
 self.lblSalinity.setObjectName("lblSalinity")
 self.lblSalinity.setText("Salinity [g/kg] PSU:")

 self.lblConductivity = QtWidgets.QLabel(self)
 self.lblConductivity.setGeometry(QtCore.QRect(30, 920, 141, 21))
 self.lblConductivity.setStyleSheet("\n""background-color: rgb(134, 134,
134);")
 self.lblConductivity.setFrameShape(QtWidgets.QFrame.Panel)
 self.lblConductivity.setObjectName("lblConductivity")
 self.lblConductivity.setText("Conductivity [mS/cm]:")

 self.lblDensity = QtWidgets.QLabel(self)
 self.lblDensity.setGeometry(QtCore.QRect(30, 1000, 141, 21))
 self.lblDensity.setStyleSheet("\n""background-color: rgb(134, 134, 134);")
 self.lblDensity.setFrameShape(QtWidgets.QFrame.Panel)
 self.lblDensity.setObjectName("lblDensity")
 self.lblDensity.setText("Water density [kg/m^3]:")

 self.lblLightIntensity = QtWidgets.QLabel(self)
 self.lblLightIntensity.setGeometry(QtCore.QRect(900, 680, 101, 21))
 self.lblLightIntensity.setStyleSheet("background-color: rgb(134, 134,
134);")
 self.lblLightIntensity.setFrameShape(QtWidgets.QFrame.Box)
 self.lblLightIntensity.setFrameShadow(QtWidgets.QFrame.Plain)
 self.lblLightIntensity.setObjectName("lblLightIntensity")
 self.lblLightIntensity.setText("Light intensity")

 self.lblControls = QtWidgets.QLabel(self)
 self.lblControls.setGeometry(QtCore.QRect(1255, 675, 100, 30))
 self.lblControls.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.lblControls.setFrameShape(QtWidgets.QFrame.Box)
 self.lblControls.setObjectName("lblControls")
 self.lblControls.setFont(QFont('Arial', 14))
 self.lblControls.setText("Controls")

 self.lblAlarms = QtWidgets.QLabel(self)
 self.lblAlarms.setGeometry(QtCore.QRect(1500, 675, 100, 30))
 self.lblAlarms.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.lblAlarms.setFrameShape(QtWidgets.QFrame.Box)
 self.lblAlarms.setObjectName("lblAlarms")
 self.lblAlarms.setFont(QFont('Arial', 14))
 self.lblAlarms.setText("Alarms")

 self.lblLeaks = QtWidgets.QLabel(self)
 self.lblLeaks.setGeometry(QtCore.QRect(1500, 730, 100, 60))
 self.lblLeaks.setStyleSheet("background-color: rgb(60, 179, 113);")
 self.lblLeaks.setObjectName("lblLeaks")
 self.lblLeaks.setText(" No detected\n leaks")

 self.SonarMode = QtWidgets.QLabel(self)
 self.SonarMode.setGeometry(QtCore.QRect(440, 680, 211, 21))
 self.SonarMode.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.SonarMode.setFrameShape(QtWidgets.QFrame.Box)
 self.SonarMode.setObjectName("SonarMode")
 self.SonarMode.setText("Current Sonar Mode: ")

289
290
291
292
293
294
295
296
297
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

5/20/22, 2:56 AM interfacing.py

localhost:4649/?mode=python 7/10

 # Create new thread that handles video stream
 self.thread = VideoThread()
 # Connect thread to function that updates image
 self.thread.change_pixmap_signal.connect(self.update_image)
 # Start thread
 self.thread.start()

 def closeEvent(self, event):
 self.thread.stop()
 event.accept()

 def update_image(self, cv_img):
 qt_img = self.convert_video_qt(cv_img)
 self.image_label.setPixmap(qt_img)

 def update_sonar(self, cv_img):
 qt_img = self.convert_sonar_qt(cv_img)
 self.sonar.setPixmap(qt_img)

 def convert_video_qt(self, cv_img):
 rgb_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)
 h, w, ch = rgb_image.shape
 bytes_per_line = ch * w
 convert_to_Qt_format = QtGui.QImage(rgb_image.data, w, h, bytes_per_line,
QtGui.QImage.Format_RGB888)
 p = convert_to_Qt_format.scaled(1920,960, Qt.KeepAspectRatio)
 return QPixmap.fromImage(p)

 def convert_sonar_qt(self, cv_img):
 rgb_image = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)
 h, w, ch = rgb_image.shape
 bytes_per_line = ch * w
 convert_to_Qt_format = QtGui.QImage(rgb_image.data, w, h, bytes_per_line,
QtGui.QImage.Format_RGB888)
 return QPixmap.fromImage(convert_to_Qt_format)

 def setDisplayValues(self, temp, depth, leak, lockedZones,
 salinity, conductivity, density):
 self.Temp.display(temp)
 self.Depth.display(depth)
 self.Salinity.display(salinity)
 self.Conductivity.display(conductivity)
 self.displayLeakStatus(leak)
 self.density = density
 self.Density.display(self.density)
 self.configureZonesDisplay(lockedZones)

 def displayLeakStatus(self, leak):
 if leak:
 self.lblLeaks.setStyleSheet("background-color: rgb(255, 0, 0);")
 self.lblLeaks.setText(" DETECTED\n LEAKS")

 def configureZonesDisplay(self, lockedZones):
 if lockedZones == self.prevLockedZones:
 return
 else:
 print("Changes in locked zones array discovered")
 for idx, zoneState in enumerate(lockedZones):

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

373
374
375
376
377
378
379
380

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

5/20/22, 2:56 AM interfacing.py

localhost:4649/?mode=python 8/10

 if lockedZones[idx] != self.prevLockedZones[idx]:
 if zoneState:
 self.setLockedStatus(idx)
 else:
 self.resetLockedStatus(idx)
 break
 self.prevLockedZones = lockedZones

 def setLockedStatus(self, zone):
 if zone == 0:
 self.Forward.setStyleSheet("background-color: rgb(200, 134, 134);")
 elif zone == 1:
 self.ForwardRight.setStyleSheet("background-color: rgb(200, 134, 134);")
 elif zone == 2:
 self.Right.setStyleSheet("background-color: rgb(200, 134, 134);")
 elif zone == 3:
 self.ReverseRight.setStyleSheet("background-color: rgb(200, 134, 134);")
 elif zone == 4:
 self.Reverse.setStyleSheet("background-color: rgb(200, 134, 134);")
 elif zone == 5:
 self.ReverseLeft.setStyleSheet("background-color: rgb(200, 134, 134);")
 elif zone == 6:
 self.Left.setStyleSheet("background-color: rgb(200, 134, 134);")
 elif zone == 7:
 self.ForwardLeft.setStyleSheet("background-color: rgb(200, 134, 134);")

 def resetLockedStatus(self, zone):
 if zone == 0:
 self.Forward.setStyleSheet("background-color: rgb(134, 134, 134);")
 elif zone == 1:
 self.ForwardRight.setStyleSheet("background-color: rgb(134, 134, 134);")
 elif zone == 2:
 self.Right.setStyleSheet("background-color: rgb(134, 134, 134);")
 elif zone == 3:
 self.ReverseRight.setStyleSheet("background-color: rgb(134, 134, 134);")
 elif zone == 4:
 self.Reverse.setStyleSheet("background-color: rgb(134, 134, 134);")
 elif zone == 5:
 self.ReverseLeft.setStyleSheet("background-color: rgb(134, 134, 134);")
 elif zone == 6:
 self.Left.setStyleSheet("background-color: rgb(134, 134, 134);")
 elif zone == 7:
 self.ForwardLeft.setStyleSheet("background-color: rgb(134, 134, 134);")

 def resetAllLockedStatus(self):
 self.prevLockedZones = [False] * 8
 self.Forward.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.ForwardRight.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.Right.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.ReverseRight.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.Reverse.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.ReverseLeft.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.Left.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.ForwardLeft.setStyleSheet("background-color: rgb(134, 134, 134);")

 def release(self):
 config.runZone = -1
 config.newCommands = True

 def activateZone(self, zone):

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

5/20/22, 2:56 AM interfacing.py

localhost:4649/?mode=python 9/10

 config.runZone = zone
 config.newCommands = True

 def userInteractModeSonar(self, mode):
 display_string = ""
 if mode == 0:
 display_string = "Scanning [20m]"
 self.ScanMode50m.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.ScanMode20m.setStyleSheet("background-color: rgb(50, 205, 50);")
 self.CollisionAvoid2m.setStyleSheet("background-color: rgb(134, 134,
134);")
 self.CollisionAvoid4m.setStyleSheet("background-color: rgb(134, 134,
134);")
 elif mode == 1:
 display_string = "Scanning [50m]"
 self.ScanMode50m.setStyleSheet("background-color: rgb(50, 205, 50);")
 self.ScanMode20m.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.CollisionAvoid2m.setStyleSheet("background-color: rgb(134, 134,
134);")
 self.CollisionAvoid4m.setStyleSheet("background-color: rgb(134, 134,
134);")
 elif mode == 2:
 display_string = "Collision [2m]"
 self.ScanMode50m.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.ScanMode20m.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.CollisionAvoid2m.setStyleSheet("background-color: rgb(50, 205,
50);")
 self.CollisionAvoid4m.setStyleSheet("background-color: rgb(134, 134,
134);")
 elif mode == 3:
 display_string = "Collision [4m]"
 self.ScanMode50m.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.ScanMode20m.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.CollisionAvoid2m.setStyleSheet("background-color: rgb(134, 134,
134);")
 self.CollisionAvoid4m.setStyleSheet("background-color: rgb(50, 205,
50);")

 self.SonarMode.setText(f"Sonar Mode: {display_string}")
 config.mode = mode
 config.newCommands = True

 def userInteractSpeeds(self):
 config.motorSpeed = self.Motor_Speed_Slider.value()
 config.newCommands = True

 def userInteractLights(self):
 config.light = self.Light_Value_Slider.value()
 config.newCommands = True

 def setReset(self):
 self.resetAllLockedStatus()
 config.forceReset = True
 config.newCommands = True

 def releaseReset(self):
 config.forceReset = False
 config.newCommands = True

 def takePhoto(self):

465
466
467
468
469
470
471
472
473
474

475

476
477
478
479
480

481

482
483
484
485
486

487

488
489
490
491
492

493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

5/20/22, 2:56 AM interfacing.py

localhost:4649/?mode=python 10/10

 self.TakePhoto.setStyleSheet("background-color: rgb(50, 205, 50);")
 config.takePhoto = True
 config.newCommands = True

 def takeVideo(self):
 if config.takeVideo == False:
 self.StartVideo.setStyleSheet("background-color: rgb(50, 205, 50);")
 self.StartVideo.setText("Capturing video...")
 config.takeVideo = True
 else:
 self.StartVideo.setStyleSheet("background-color: rgb(134, 134, 134);")
 self.StartVideo.setText("Start video capture")
 config.takeVideo = False

 config.newCommands = True

 def streamVideo(self):
 self.TakePhoto.setStyleSheet("background-color: rgb(134, 134, 134);")
 config.takePhoto = False
 config.newCommands = True

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

Appendix I

Meeting invitations

Agenda

Periodic meeting between project and control group

Date: 25.01.2022

Time:

09:15 – 09:45

Place: Teams

Participants: Tony Paulsen
Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 Is the equipment list as listed in the pre-project report approved?

Item 2 Discuss project-groups proposed solution as defined in pre-project report.
- Anything missing?
- Part-tasks listed that is not relevant?
- Any extra functionality the control group wants?

Agenda

Periodic meeting between project and control group

Date: 08.02.2022

Time:

09:15 – 10:00

Place: Teams

Participants: Tony Paulsen
Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 Access to software from ROV 2017

Item 2 Discuss solution on communication/ power supply in tether cable

Item 3 Proposed camera solution discussion

Item 4 Conductivity sensor solution discusion

Agenda

Periodic meeting between project and control group

Date: 23.02.2022

Time:

11:00 – 11:30

Place: Teams

Participants: Tony Paulsen
Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 General progress report discussion

Item 2 Cables for Aanderaa sensor(s)

Item 3 Camera order update

Item 4 Lazercutting / fusion360 tips/course discussion

Agenda

Periodic meeting between project and control group

Date: 08.03.2022

Time:

09:15 – 10:00

Place: Zoom

Participants: Tony Paulsen
Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 General progress

Item 2 Discuss ordering waterproof cable(s) for conductance, turbidity, and oxygen
sensors.

Item 3 Communication from ROV to surface GUI in tether

Agenda

Periodic meeting between project and control group

Date: 22.03.2022

Time:

15:25-16:00

Place: Teams

Participants: Tony Paulsen
Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 General progress, discuss progress report

Item 2 Camera
- Currently using school camera for testing

Item 3 Conductance sensor progress

Item 4 Tether communication and power supply
- Using BlueRobotics fathom tether X
- Power converter DC-DC, 48V-12V

Agenda

Periodic meeting between project and control group

Date: 07.04.2022

Time:

13:00 – 13:30

Place: Teams

Participants: Tony Paulsen
Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 General progress discussion

Item 2 Important contents for report

Item 3 Framerate camera

Item 4 Increasing program execution measures

Agenda

Periodic meeting between project and control group

Date: 22.04.2022

Time:

13:00 – 13:30

Place: Teams

Participants: Tony Paulsen
Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 General progress update

Item 2 Electrical connections
- Converter solution
- Placement of Regulators and Converter
- Setup of the power delivery

Agenda

Periodic meeting between project and control group

Date: 06.05.2022

Time:

12:00 – 12:30

Place: Tunglab

Participants: Tony Paulsen
Petter Henriksen
Ottar L. Osen
Lars Christian Gansel

Item 1 General progress update

Item 2 Priorites forward

Item 3 Battery solution limitations

Appendix J

Minutes of meeting

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 30min Date: 25.01.2022 Start time: 09:15

Meeting location: Zoom

Meeting called by: Tony Paulsen

Meeting type: Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary: Petter Henriksen

Time responsibility: Petter Henriksen

Participants: Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel

Agenda

number

Agenda Discussed

1 Discussion around materials
list from pre-project report

Aanderaa sensor, camera og combination sensor
was discussed. It was also mentioned that the ROV
is going to be built with all new parts. The group
also need research and select an umbilical cable.
Special parts need to be ordered as fast as possible
so that it doesn’t cause delays.

2 Discuss the proposed
solutions that were defined
in the pre-project report

The examples around implementation of logic were

approved. They were considered as relevant

functions for the system. For now, the group is

planning to use the sonar for collision avoidance.

The alarm for big changes in measured values can

be done with python. If alternative solutions are

found, they will be considered and compared to the

current solutions.

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 35min Date: 08.02.2022 Start time: 09:15

Meeting location: Teams

Meeting called by: Tony Paulsen

Meeting type: Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary: Petter Henriksen

Time responsibility: Petter Henriksen

Participants: Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel

Agenda number Agenda Discussed

1 Access to programs from
earlier projects

The group asked if earlier work
on the previous ROV was
available specifically code for
the propulsion system. Ottar is
going to check but the project
finished a long time ago so its
highly likely it won't be found.
From the reports we have a lot
of info.

2 Discuss communication/power
delivery

It was decided that the main
plan for the tether is to use 2
pairs for communication and 2
pairs for power delivery. A few
other solutions were
mentioned like sending the
communication on top of the
power. The group is also going
to look at previous work on
the Towed ROV who have had
to overcome similar problems
when it comes to
communication and power
delivery.

3 Camera solution It was decided that the camera
from FLIR ticked all the boxes.
The lenses were also agreed

on. Something the group must
take into consideration is
reflection inside the acrylic
dome.

4 Conductivity sensor The sensor from Aanderaa was
deemed too expensive so the
group will borrow one instead.
If it's necessary ordering a new
one can be considered. The
supervisors also wanted the
group to make swapping
sensors easy so that the ROV is
more modular.

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 30min Date: 23.02.2022 Start time: 11:00

Meeting location: Teams

Meeting called by: Tony Paulsen

Meeting type: Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary: Petter Henriksen

Time responsibility: Petter Henriksen

Participants: Tony Paulsen, Petter Henriksen, Ottar L. Osen

Agenda number Agenda Discussed

1 General Progress The group were told to make progress reports and to
update the Gantt diagram more frequently.

2 Aanderaa cable There was some discussion regarding cables from
Aanderaa since they are quite expensive. No decision
was made but it was concluded that the work could
continue and that a decision could wait until the next
meeting.

3 Camera update Waiting on order confirmation from supplier.

4 Laser cutting Ottar gave tips on how to make and design mounts
and gave suggestions on gluing the acrylic together.

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 45min Date: 08.03.2022 Start time: 09:15

Meeting location: Zoom

Meeting called by: Tony Paulsen

Meeting type: Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary: Petter Henriksen

Time responsibility: Petter Henriksen

Participants: Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel

Agenda number Agenda Discussed

1 General progress The group informed the
supervisors on the progress
made during the previous
period.

2 Discuss ordering waterproof
cable(s) for conductance,
turbidity and oxygen sensors.

The group were told to get
more information from
Aanderaa before a decision is
made.

3 Communication from ROV to

surface GUI in tether

Tips for establishing
communication between GUI
and ROV were given. The
group was also told to look at
other similar projects for more
solutions.

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 52min Date: 22.03.22 Start time: 15:25

Meeting location: Teams

Meeting called by: Tony Paulsen

Meeting type: Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary: Petter Henriksen

Time responsibility: Petter Henriksen

Participants: Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel

Agenda number Agenda Discussed

1 Camera situation Due to long shipping time the group has
gotten to borrow an unused camera from
another project. It was decided that due to
the time constraint that this borrowed
camera will be used instead so that the group
will be able to finish the project within the
given time frame.

2 Power and communication Based on recommendations from Ottar the
group checked out the report from “Slepe
ROV” and found out how they were able to
power it and have communication. This was
done by using a product from BlueRobotics
called “Fathom-X Tether”. This product allows
use of a single pair in the CAT5 cable for data
transfers up to 80mb/s. This frees up the 3
other pairs to be used for power delivery. It
was decided that this would be used on this
project.

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 35min Date: 07.04.22 Start time: 15:00

Meeting location: Teams

Meeting called by: Tony Paulsen

Meeting type: Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary: Petter Henriksen

Time responsibility: Petter Henriksen

Participants: Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel

Agenda number Agenda Discussed

1 General Progress The group gave a quick summary of the
progress on the project and what had been
done this period.

Areas where the group could test the ROV in
the ocean were given. Two areas were
mentioned either take a boat to the fish farms
or the floating jetty at Sunnmøre Museum.

2 Framerate camera The camera feed from the raspberry was
shown to supervisors and a discussion
regarding how the group could improve the
framerate and resolution. A couple of
different methods were mentioned like
sending the feed as a video with
Keyframes(eframes) instead of sending every
frame as a photo. Another method that was
mentioned was sending the camera data
separately from everything else and with a
different protocol and speeds.
Something else that was mentioned regarding
the camera was implementing features
allowing the user to select the fps and
resolution. Another feature was a record
button and a picture button that would take a
full resolution picture and save it when
clicked.

3 Program execution measures The group asked about tips regarding how to
make the program run better and what data
should be prioritised.
A few things were mentioned like splitting all
the processes into individual threads and to
then setup these with different levels of
importance. Another thing that was
mentioned was to not send commands all the
time and to setup one server with multiple
clients

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 45min Date: 22.04.22 Start time: 13:00

Meeting location: L044

Meeting called by: Tony Paulsen

Meeting type: Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary: Petter Henriksen

Time responsibility: Petter Henriksen

Participants: Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel

Agenda number Agenda Discussed

1 General Progress The group gave a quick summary of the
progress on the project and what had been
done this period.

The group showed off how the ROV looked,
and the supervisors suggested changing the
position of the lights to improve the
performance of the lights. The supervisors
also mentioned that adding a compass would
be beneficial.

2 Electrical connections The planned circuit diagram for the power
delivery system was shown to the advisors
and feedback was given. This system includes
voltage regulators and the DC-to-DC
converter. It was also decided that these
components will be in their own box that will
be filled with epoxy.

Minutes of meeting

Meeting between Project group and Supervisors bachelor ROV

Length: 30min Date: 06.05.22 Start time: 12:00

Meeting location: L044

Meeting called by: Tony Paulsen

Meeting type: Progress report with Supervisors

Meeting led by: Tony Paulsen

Secretary: Petter Henriksen

Time responsibility: Petter Henriksen

Participants: Tony Paulsen, Petter Henriksen, Ottar L. Osen, Lars Christian Gansel

Agenda number Agenda Discussed

1 General Progress The group gave a quick summary of the
progress on the project and what had been
done this period.

The group showed of how the the current
state of the ROV and updated the supervisors
on the results of the first test of the whole
system.

2 Priorities going forward The groups plan for the final weeks of the
project were discussed. This plan includes
getting at least one test in the water tank with
as many systems as possible in working order.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Tony Paulsen
Petter Henriksen

Development of ROV for aquaculture
inspection platform

Bachelor’s thesis in Automation
May 2022

Ba
ch

el
or

’s
th

es
is

	Preface
	Acknowledgement
	Summary and Conclusions
	Acronyms
	Introductions
	Background
	Problem formulation
	Objectives
	Structure of the Report

	Theoretical basis
	Physics
	Buoyancy

	Communication protocols
	OSI model
	TCP
	UDP
	Serial
	I2C

	Camera
	Machine vision
	Resolution and FPS

	Aquaculture quality
	Conductivity
	Salinity

	Sonar
	Passive sonar
	Active sonar

	Electrical
	EMI
	EMC
	Power transmission

	Material
	Components
	Software
	Pycharm
	CLion
	Arduino IDE
	Fusion 360
	PC Schematic
	Gantt
	Raspberry PI OS
	Cura

	Method
	Project Organisation
	Function testing equipment
	Sonar
	Camera
	Combination sensor
	Thrusters, I2C sensors and safety sensors

	Collision avoidance system
	Graphical user interface
	Communication
	Temperature & pressure sensors - Raspberry Pi
	Arduino Uno - Raspberry Pi
	Scanning imaging sonar - Raspberry Pi
	Conductivity sensor - Raspberry Pi
	Raspberry Pi - Personal Computer (GUI)

	Design and modelling
	Concept
	Design and Manufacturing of ROV body
	Making of Internal Mounts
	External box
	Waterproofing

	Electrical
	External box
	Wiring

	Result
	Software solutions
	Graphical User Interface
	Software performance
	Communication results

	Electrical
	Physical
	Test 1
	Test 2
	Test 3

	Discussion
	Technical results
	Design
	Electronics
	Software

	Project accomplishments
	Distribution of work
	Unforeseen consequences

	Conclusions
	Appendices
	Preproject report
	Progress reports
	Gantt diagram
	Electrical drawings
	User Manual
	Arduino code
	Raspberry Pi code
	GUI code
	Meeting invitations
	Minutes of meeting

	Bibliography
	1: Front page
	2: Index - horizontal
	3: Table of Contents
	Diagrams: Diagrams
	4: Diagram
	5: Diagram
	6: Diagram
	7: Control circuit diagram
	8: Control circuit diagram

