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Abstract

The goal of this project is to find a combination of sensors and filters to find out how few sen-

sors are needed for dead reckoning of an ackerman based autonomous load handling vehicle. In

this project, tests were performed on a simulated mobile robot model to see how wheel odom-

etry and IMU performed in a dead-reckoning scenario. The sensors were individually evalu-

ated based on when, and how fast the estimated position drifted away from the true position.

Furthermore, applications of sensor fusion, and different state estimation filters were also eval-

uated. It was shown that both wheel odometry, and IMU performed relatively poorly on their

own, and were sensitive to errors in initialization. The combination of wheel odometry, and a

directional gyroscope provided the best performing localization, but still has room for improve-

ment. Wheel odometry and IMU was also attempted, but showed little to no improvements over

wheel odometry and directional gyroscope.
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Chapter 1

Introduction

The need for Global Navigation Satellite Systems (GNSS) in most navigation systems, is the in-

herent reason why GNSS plays a vital role in todays society. GNSS receivers allow us to find the

approximate position of an agent anywhere on earth, but there are many sources of error present

in a GNSS receiver. For example, when there is no direct line of sight between the satellites and

the receiver, or when signals are reflected off of buildings which causes multipath[3]. In absense

of GNSS, or other Position fixing systems, dead reckoning is often used. Dead-reckoning is the

method of calculating position from a known previous position, and incorporating estimates of

speed and heading over elapsed time.

Redrock.AI, an organization that designs autonomous load handling vehicles, wants to imple-

ment dead-reckoning on some of the clients’ autonomous vehicles. Their requirements can be

easily met with costly localization methods, but they want to know how small of an investment is

enough to satisfy their dead-reckoning needs. This is to say, how few sensors and how inaccurate

sensors can be used but still be accurate enough. The accuracy of a particular dead-reckoning

system can be a result of operational factors in the environment, the quality of the inertial sen-

sors and the implemented localization algorithm. Therefore, one of the primary focuses of this

thesis is to find a good localization algorithm. There are many things that can improve the per-

formance of a localization algorithm. This could for example be using different filters, or taking

into account inherent properties of the robot, like motion constraints, robot dynamics, or even

the steering input of the robot. Using all the information we have at our disposal, could allow

for the use of fewer sensors, and therefore reducing the overall cost.

5



CHAPTER 1. INTRODUCTION 6

1.1 Background

Redrock AI. is a firm that designs autonomous load handling solutions for their clients. This

project tries to answer to one of several proposed bachelor or masters thesis that were given

by Redrock AI. The proposed thesis is shown in Appendix B. The proposed thesis outlines a

literary review of state-of-the-art localization models, and the testing of odometry, gyroscopes,

and accelerometers on a simulated mobile robot.

1.2 Problem Formulation

The aim of this thesis is to evaluate the performance of localization that uses different sensors

and filters on an Ackerman based vehicle. When the term "performance" is used, It is meant

to signify to which degree some localization is accurate and precise to its true value. Another

aim is to evaluate the performance of sensor fused dead-reckoning. The purpose of this, is to

create a localization that is satisfactory, but still using the fewest amount of sensors possible. In

this thesis, the term "satisfactory" is not strictly defined, but logical conclusions will be drawn

to what is satisfactory(see chapter 2.9.1).

1.3 Literature Survey

Many papers have claimed that fusing absolute position measurements with odometry data

provide more accurate and more reliable position estimation[8][13][18][7], and most researchers

agree that odometry is an important part of mobile robot navigation systems[7]. Odometry data

still has inherent drawbacks as stated by Everett B. Borenstein:

"Improvements in odometry techniques will not change their incremental nature, i.e., even

for improved odometry, periodic absolute position updates are necessary."[7]

Some papers on the use of accelerometers have been written aswell[7][4][17]. A study investi-

gated the suitability of accelerometers for mobile robot positioning at the University of Michi-

gan, and it was found that there is a very poor signal-to-noise ratio in low speed turns[7]. Bar-

shan and Durrant-Whyte[4] implemented a tilt compensated accelerometer that resulted in po-

sition drift between 1 to 8cm/s, which was deemed as unacceptable error for most mobile robot
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applications. A newer study has claimed possible improvements to high-order noise accelerom-

eters by coupling them with an Artificial Neural Network[17].

Many papers has also been written on the EKF and UKF[6][24][20][21]. Vadim Bistrov and

Ansis Kluga[6] has analyzed a UKF-based navigation algorithm with low cost GPS and INS sen-

sors, concluding that a UKF based algorithm has less velocity error than its EKF counterpart.

Other papers have also discussed the differences in EKF and UKF based Navigation algorithms

[24][20]. Ridolfi, B. Allotta[24] claims the superiority of the UKF, especially when there are few

available sensors. Sabet, Mohammad Taghi El al.[21] utilized an EKF with low cost microelec-

tromechanical inertial sensors.

1.4 Objectives

To evaluate the dead reckoning performance of a localization we first need to evaluate the capa-

bilities of each specific sensor combination. In this thesis, the following research questions will

be answered for the use of wheel odometry, IMU, as well as fused wheel odometry and IMU.

• When does the position start to drift?

• How much and how fast does the position drift?

The answers to these questions could help guide the further design of the localization, and an-

swer the following research questions.

• How does dead-reckoning affect localization in absence of GNSS?

• Which sensors must be used to maintain acceptable performance?

• How few sensors are needed to maintain satisfactory performance?

1.5 Limitations

The scope of this project is primarily to simulate the localization, and although the noise models

of the simulation are accurate to some degree, there is a limitation to how realistic the models
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are. An example of this is how it is very hard to replicate a IMU(Inertial Measurement Unit) mea-

surements, where IMUs in real life can exhibit complex high-order time varying noise. Further

work could examinate the validity of the results in the real world.

1.6 Contributions

This project will have as its goal to give insight into different possibilities of dead-reckoning. The

results of wheel odometry is also especially useful as it shows the specific results for the vehicle

model being used. This is useful because different vehicles have different slippage properties,

depending on different dimensions of the vehicle and weight.

1.7 Structure of the Report

The rest of the report is structured as follows.

Chapter 2 - Theoretical basis: Chapter two first introduces the mathematical background to

the Ackerman based vehicle. Furthermore, A literary review is done on different localization

models, which includes types of navigation technologies, sensors, and filters. Lastly, a quick ex-

ploration on different ways to evaluate the results.

Chapter 3 - Method: Chapter three begins with the basics behind the software. Moreover, It

is shown how the software can be used to simulate a vehicle. Then, it is shown how Gazebo

models and plugins were implemented. Next, it is shown how the odometry of the simulated

vehicle is filtered through different types of filters, and how the parameters of these filters were

tuned.

Chapter 4 - Result: Chapter four contains the localization results of four different combina-

tion of sensors. Additionaly, the results of changing different parameters and filters types are

shown. Lastly, a overview of the challenges met during the project.
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Chapter 5 - Discussion: In this chapter, the results are reviewed and compared to published

literature that were mentioned in the litterary review and theory chapters of the paper. Eventual

sources of error are drafted and discussed.

Chapter 6 - Conclusions: This chapter presents a conclusion, where the research questions in

the introduction are addressed, and possible further work.



Chapter 2

Theoretical basis

This chapter will cover the basis for localization technologies used today. State estimation fil-

ters, as well as eventual techniques that can be used to improve the overall performance of lo-

calization are drafted. Lastly, a brief overview of the mathematics that are needed later will be

introduced, and then techniques for simulating and evaluating the mobile vehicle.

2.1 Navigation Technologies

2.1.1 Position fixing

Position fixing is a type of positioning that determines the absolute position of some agent.

There are five different types of position-fixing technologies. Proximity, ranging, angular po-

sitioning, pattern matching, and doppler positioning [10]. GNSS receivers are considered prox-

imity type position fixing devices.

2.1.2 Dead Reckoning

Dead-reckoning (derived from "deduced reckoning"[10]) uses measurements of change in po-

sition, or with integrated velocity, and uses the measurements to determine the position with

respect to a known previous position.

When dead-reckoning, change in position is often in reference to the body-aligned axis of

the agent being localized, and therefore needs a separate solution to produce position in rela-

10
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tionship to the map or world frame. This makes sense, because inertial sensors will give mea-

surements in respect to the body frame(see figure 2.7).

Some properties of dead-reckoning solutions are that they often have low short-term noise,

continuous operation and fast update rates compared to traditional position fixing methods.

The main drawbacks are that an initial position is needed, and that errors in measurements

accumulate over time which gives large errors over large periods of time. Position fixing system

are often integrated with dead-reckoning systems and are used to correct and calibrate dead-

reckoning errors(more in chapter 2.3).

2.1.3 INS

A INS(Inertial Navigation System) is a type of dead-reckoning system that consists of inertial

sensors, gyroscope sensors, and a integrated circuit that handles the sensor data. Inertial sen-

sors are coupled with a gravity model to compensate for the effect gravity has on measurements.

Figure 3.2.4 shows an example of an INS.

Figure 2.1: Example of an Inertial Navigation System(INS)

The most common applications of INS use strapdown INS. This is when the INS measurements

are relative to some rigid body frame, as opposed to a map or odometry frame.
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2.1.4 Inertial sensors

Accelerometers, and gyroscopes are two types of inertial sensors that measure linear and an-

gular acceleration respectively. The accuracy of inertial sensors can vary on the scope of sev-

eral orders of magnitude. There exists cheap inertial sensors that are often used in consumer

devices, medium accuracy inertial sensors that can be used for navigation, and lastly, Military-

grade inertial sensors that can have total position error drift that is less than 1500m in the span

of an hour[10].

A subcategory of sensors that are very often used are called MEMS(Microelectromechanical

systems)[25]. These sensors are often very inexpensive and are built up of components that are

between 1 and 100 micrometers in size [9]. Although these sensors are relatively inexpensive,

they can exhibit high levels of noise. MEMS type IMUs can exhibit errors that are of high-order

complexity, and that have slow time-varying properties. Rate-ramp, random walk, and bias in-

stability are among other things errors that can also arise in MEMS inertial sensors.

A possible solution to these errors are to model them with a ANN(Artificial neural network)[17].

Improvements to position accuracy have been demonstrated when integrating ANN/Kalman fil-

ters in the presence of MEMS IMUs[2]. Errors can also be analysed by applying Gauss-Markov,

auto-regressive, Power Spectral Density methods[1]. Inertial sensors that have unknown noise

can also be filtered with an adaptive Kalman filter[12]. Lastly, MEMS type inertial sensors are

constantly developing, therefore, one should take care to use the newest technology available.

2.1.5 Wheel Odometry

Wheel odometry is claimed to be an important part of all mobile robot navigation systems[7].

Wheel odometry is the use of inexpensive incremental wheel encoders to produce estimates of

velocity. An assumption that is made, is that rotational movement in the wheels, directly corre-

late with the velocity of the vehicle. Often, wheel odometry will produce false measurements of

velocity when they slip. Driving wheels are especially susceptible to slippage as they are often

wide, and support the weight of the vehicle. Wheel slip is an example of a Non-Systematic Error,

which is one of the two types of odometry errors: systematic and non-systematic errors.
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Non-Systematic Errors

As mentioned, wheel slippage is a type of non-systematic error. This is because these types of

error are unpredictable and are dependent on the environment. Other types of non-systematic

error includes travel over uneven surfaces, and over unexpected objects.

Solutions like following encoders[7] have been implemented with non load carrying, narrow

aluminium wheels that have shown to produce more accurate odometry measurements as they

reduce slippage. Slippage can also be attempted to be detected with integrity monitoring[10].

Systematic Errors

Systematic errors are types of error that make error accumulate constantly[7]. These errors con-

sists of unequal or wrong wheel radii, wrong wheelbase, misaligned wheels, or encoder resolu-

tion and sampling rate. These are errors that are important to correct because they cause rapidly

accumulated errors[7].

2.2 State Estimation

There are many estimation algorithms that can be used for the purpose of navigation, although

the Kalman filter is the most widely used[10]. The Kalman Filter can provide a statistically opti-

mal estimate of the states of a plant when the measurements have uncertainty.

The Kalman filter is a recursive Bayesian estimation(Bayes filter) filter[10]. The Bayes filter

algorithm is used to predict the most likely position, along with the probability distribution of

that prediction. When the distribution of the bayes filter states are normally distributed, the

filter then becomes equivalent to a standard Kalman filter.

2.2.1 Standard Kalman Filter

As mentioned in chapter 2.2, the Kalman filter is a type of bayesian filter. In practice, this means

that the filter is separated into two stages, the prediction and innovation stage(see figure 2.2).
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Figure 2.2: Kalman filter stages

The first stage of the filter is the prediction stage. Equations 2.1 and 2.2 are the equations

used to calculate the predicted states(2.1) and their uncertainties(2.2).

x̂−
k = Ax̂k−1 +Buk−1 (2.1)

P−
k = APk−1 AT +Q (2.2)

In equation 2.1, the states of the plant(x̂−
k ) are predicted based on previous state estimates(x̂k−1)

and the model of the plant(A), aswell as plant input1. In the second equation 2.2, The er-

ror covariance estimate(P−
k ) is derived from the model of the plant(A) and the process noise

covariance(Q).

The next stage of the filter is the innovation stage. This is the "Correction" stage of the filter,

where the predicted states and uncertainties are corrected with updated sensor measurements.

Kalman Gain(Kk )(calculated in equation 2.3) as it is often referred to is a matrix of weights that

decides how much to weight new measurements, and how much to weight predictions.

Kk = P−
k H T (

HP−
k H T +R

)−1
(2.3)

Equation 2.4 updates the state estimates with measurements, previous estimates, and kalman

gain. Equation 2.5 updates the error covariances with the Kalman gain. This concludes the

equations that are used for the standard Kalman filter.

1the uk−1 is the input of the prediction and often contains acceleration terms
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x̂k = x̂−
k +Kk

(
zk −H x̂−

k

)
(2.4)

Pk = (I −Kk H)P−
k (2.5)

2.2.2 Extended Kalman Filter

The Extended Kalman Filter is an extension of the standard Kalman Filter described in section

2.2.1. In the standard Kalman Filter, the system model of the plant(A) is assumed to be linear.

When the model of the plant is not linear, an Extended Kalman Filter may be used instead.

The Filter equations are similar to standard kalman filter equations, the main difference be-

ing that the state transition matrix, and observation matrix has to be linearized(equation 2.7 and

2.9) for each iteration.

x̂k|k−1 = f
(
x̂k−1|k−1,uk

)
(2.6)

Fk = ∂ f

∂x

∣∣∣∣
x̂k−1|k−1,uk

(2.7)

ỹk = zk −h
(
x̂k|k−1

)
(2.8)

Hk = ∂h

∂x

∣∣∣∣
x̂k|k−1

(2.9)

Unlike the standard or linear kalman filter, the extended Kalman Filter is not an optimal

estimator. If the initial state estimates are wrong, the filter can quickly diverge. The estimated

covariance matrix often underestimates the true values of the covariance matrix, but can be

improved[14]. Despite this, the extended Kalman Filter is the de facto standard for navigation

given its reasonable performance[10].
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2.2.3 Unscented Kalman Filter

Fredrik. G. and Gustaf H.(2012)[11] says that the UKF has become a popular alternative to the

EKF during the last decade.

It is shown that when the state transition and observation models are highly non-linear, that the

extended Kalman Filter can give poor performance. In comparison, certain systems using UKF

result in more accurate estimates of the true mean and covariance[15][11].

Julier Uhlmann[16] claims that "The extended Kalman filter (EKF) is probably the most

widely used estimation algorithm for nonlinear systems. However, more than 35 years of

experience in the estimation community has shown that is difficult to implement, diffi-

cult to tune, and only reliable for systems that are almost linear on the time scale of the

updates. Many of these difficulties arise from its use of linearization."

The Unscented Kalman Filter(UKF) is another type of Kalman Filter used for nonlinear systems.

In This filter, The probability density is determined by a sampling of points which represents

the mean and covariance of the GRV(Gaussian Random Variable), and propagated through a

true non-linear model[23].

This is unlike the Extended Kalman filter where a linearized model is used. Several Papers

have explored the differences of the EKF and the UKF for navigation[6][24][20]. Vadim Bistrov

and Ansis Kluga[6] implemented a GNSS/INS integrated navigation system, and concluded that

the UKF had lower velocity estimation error in comparison to the EKF. Furthermore, Alessandro

Ridolfi, B. Allotta[24] claims the superiority of UKF, especially when there is a reduced set of

available sensors.

As mentioned, the probability distribution in the UKF is represented by a sample of points.

These are called sigma points[10].

The parameters α, κ, and β are used to tune the UKF. α and κ are used to control the spread

of sigma points, and β is used to define the distribution of the state vector.

Lastly, although the UKF is proved to be more accurate in many situations, the EKF can be

simpler, and less computationally expensive. Some papers also claim the contrary, claiming that
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the computational complexity of a third order UKF is the same as of a first order EKF[23].

2.3 Position-Fixing and Dead-Reckoning integration

There are many ways to integrate position-fixing and dead-reckoning systems into a combined

system. The most common way is to implement what is called "Loosely coupled" integration.

A Loosely Coupled GNSS-INS is where position-fixing and dead-reckoning have two separate

filters and two separate estimates. These are then combined to form a joint estimate of the

position and uncertainty.

This thesis will only implement the dead-reckoning portion of this integration. The use of

position-fixing is beyond the scope of this thesis, but the results of this thesis could in theory be

combined with position-fixing measurements in a Loosely coupled integration model.

2.4 Improvement Techniques

2.4.1 Dynamic Process Noise Covariance

As mentioned in chapter 2.1.2, an dead-reckoning system will have deteriorating accuracy as

time passes. In a Kalman filter, the covariance of the states also increases the longer the filter

has been dead-reckoning as shown in figure 2.3.

Figure 2.3: Error ellipse increase over time

An edge-case is when the vehicle is not in motion, where increasing the covariance of the po-
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sition isn’t expedient. It would be better to stop the increasing covariance when the vehicle is

standing still.

2.4.2 Steering Input

Steering input can be used to predict the likely changes in position. Usually, the final velocity in

the prediction state of the Kalman filter is a weighted average of the old and the new velocity. If

control is also used, it can be converted to an acceleration term during the prediction. This can

be useful if the vehicle is often accelerating or decelerating.

2.4.3 Motion Constraints

All vehicles have constraints, or common movement patterns that can be used to predict un-

likely changes in position. A vehicle naturally has some limits to acceleration or speed, which

can be used to lessen the uncertainty of the position. For vehicles that do not slip, velocity per-

pendicular to the vehicle can be interpreted as external sensor noise. Motion constraints go

hand in hand with steering input(chapter 2.4.2) because steering inputs don’t always directly

correspond with vehicle movement. An example is when full throttle is given, but the predicted

acceleration cannot be larger than the inherent maximum acceleration of the vehicle. This can

also be affected by the weight of the vehicle, which will often change for a load handling vehicle.

2.4.4 Systematic Calibration

Everett B. Borenstein[7] mentions the use of systemic calibration. Systematic calibration is

said to be the careful calibration of physical parameters to compensate for systematic errors in

odometry(chapter 2.1.5). This is especially important for real life applications where wear can

occur. It is also said to be a difficult to do since even minute deviations can cause substancial

errors.
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2.5 Ackerman Vehicle

An Ackerman vehicle has geometric arrengement of linkages to compensate for the need of in-

side and outside wheels of a vehicle to turn in circles with different radii. The intention of this is

to avoid tire slippage in turns. An example of an Ackerman vehicle is shown in figure 2.5.

Figure 2.4: An Ackerman vehicle. The center of turning are the same for each front wheel. The
turning angle for each wheel are different.

In comparison, a non-Ackerman vehicle is shown in figure 2.5.
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Figure 2.5: A non-Ackerman vehicle example. The center of turning are different for each front
wheel, and the turning angles of each wheel is the same.

2.6 Ackerman Vechicle Kinematics

To calculate the odometry of an ackerman vehicle, we need to know the kinematics between

the rotational movement of the wheels and the linear velocities of the vehicle. Firstly, the arc

lengths(∆dr , ∆dl ) for wheels have to be calculated using encoder measurements(∆cr , ∆cl )(Er es

is the resolution of the encoder) and the radii of the wheels(W Rr , W Rl )(2.10)[5].

∆dr = 2π (W Rr∆cr )

Er es

∆dl =
2π (W Rl∆cl )

Er es

(2.10)

When simulating a vehicle access to discrete encoder signals from the wheels might not be avail-

iable. In order to use the rotation of the wheel directly, modification to equations 2.10 to use the

change in radians(∆θr , ∆θl ) as shown in equation 2.11 can be done instead.

∆dr = 2π(W Rr∆θr )

∆dl = 2π(W Rl∆θl )
(2.11)
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Given the Arc lengths, further calculation of the turning radius using equations 2.12[5] is done.

Take note that since the timesteps are very small, a constant turning radius for each iteration

can be calculated.

Rcenter = Wdis

2
∗ ∆dr +∆dl

∆dr −∆dl
(2.12)

The change in linear position can be extracted from the turning radius as shown in equation

2.13.

∆Ψ = ∆dr −∆dl

Wdi s

∆x = Rcenter (cos(Ψ)sin(∆Ψ)− sin(Ψ)(1−cos(∆Ψ)))

∆y = Rcenter (sin(Ψ)sin(∆Ψ)−cos(Ψ)(1−cos(∆Ψ)))

(2.13)

From here, it is only a matter of diving by the timestep to find the linear and angular veloci-

ties(see equations 2.14)

Ẋ = ∆x

∆t

Ẏ = ∆y

∆t

Ψ̇= ∆Ψ
∆t

(2.14)

2.7 Quaternions

The quaternion is a mathematical notation for representing the rotation and orientation of a

rigid body in three dimensions. It was a notation that was discovered by Sir William Rowan

Hamilton in 1843[19]. This notation is represented by a fixed axis(also known as Euler’s axis)

along which the rigid body is pointing, and the rotation around Euler’s axis.

In practice, the quaternion is given as a combination of four values. In some cases, the notation

(x, y, z, w) is used, this is also the notation that will be used in this project. In the case of this

notation, the first values (x, y, z) define Euler’s axis, and the last value (w) represents the rotation

around this axis.
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2.8 Simulation

2.8.1 Gazebo

Gazebo is a simulation software with complex physics models to realistically simulate the real-

world environment. Gazebo also has ROS2 compatibility.

2.8.2 Robot Operating Software (ROS2)

ROS2 is a middleware otherwise known as a DDS(Data Distribution Service For Real-Time Sys-

tems) and a framework for robot programming. ROS2 creates a foundation of functionality, so

that users don’t have to "reinvent the wheel" for each robotics project. ROS2 networks contain

nodes and topics. Nodes are modules that can generate data or process data. A node can pub-

lish and subscribe to any number of topics. Topics enable data exchange between nodes. An

example of a node publishing to one topic and subscribing to two other is shown in figure 2.6.

Figure 2.6: Example of a node publishing and subscribing to some topics. Square boxes are
topics, and ellipses are nodes.

Nodes are language agnostic, which means that they can be coded in the users preffered

coding language. This could for example be C++ or Python.
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2.8.3 robot_localization package

The robot localization package2 is a package for ROS2. The contains a collection of state estima-

tion tools, each of which are nonlinear state estimator for moving robots. It features EKF, UKF

type localization filters, which are implemented as nodes in the ROS2 architecture. There are

also completed navigation implementations where parameters can be adjusted. As standard,

the states used in the package are shown in 2.15.

The filter can handle an arbitrary amount of inputs of different data types(nav_msgs/Odometry,

geometry_msgs/PoseWithCovarianceStamped, geometry_msgs/TwistWithCovarianceStamped,

sensor_msgs/Imu).

(X ,Y , Z , roll , pitch , yaw , Ẋ , Ẏ , Ż , ˙r ol l , ˙pi tch, ˙y aw , Ẍ , Ÿ , Z̈ ) (2.15)

2.8.4 Standard units of measure and Coordinate Conventions

REP 1033 and REP 1054 define the units, coordinate conventions, and coordinate frames that

robot_localization uses.

REP 103 defines the units as SI units5, aswell as SI derived units such as radians as angles.

ENU(East North Up) is the preferred coordinate convention, where the standard relation to

a body is as follows. x is forward, y is left, and z is up (see figure 2.7). Rotation is also centered

on the x-axis(East), therefore the heading is 0 when heading Eastbound.

2http://docs.ros.org/en/noetic/api/robot_localization/html/index.html
3https://www.ros.org/reps/rep-0103.html [accessed online 07.04.2022]
4https://www.ros.org/reps/rep-0105.html [accessed online 08.04.2022]
5Bureau International des Poids et Mesures (http://www.bipm.org/en/home/)

http://docs.ros.org/en/noetic/api/robot_localization/html/index.html
https://www.ros.org/reps/rep-0103.html
https://www.ros.org/reps/rep-0105.html
http://www.bipm.org/en/home/
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Figure 2.7: ENU convention. In this example, The outermost axes represent the map frame, and
the innermost represent the odometry frame.

Rotations can be represented in several ways. REP 103 defines a prioritized order of representa-

tions respectively: Quaternions, rotation matrix, fixed axis roll, and euler angles.

REP 105 defines a hierarchy for coordinate frames for mobile platforms. The earth frame is the

outermost frame, whilst the map is the second outermost and the odom is the last frame. Figure

2.8 shows an example of frame hierarchy without an earth frame.
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Figure 2.8: Map frame

2.9 Evaluation

To test performance of dead-reckoning in practice, it is often done by doing a trial over a closed-

loop circuit and measuring the difference between the starting and end point. The results of

such a trial can also be misleading by the fact that Initialization errors and biases have an impact

on the performance, but don’t impact the position of the end point (see figure 2.9).
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Figure 2.9: Example of dead-reckoning localization with bias in heading on a closed-loop circuit

Since this project will only simulate the localization, the true position will be easily availiable.

Therefore the true and estimated position can be compared for each timestep.

2.9.1 Satisfactory performance

It is difficult to set fixed requirements for the performance of a localization. The requirements

are different according to the scale at which the vehicle is operating, how fast the vehicle is

traveling and how often absolute position updates arrive.

The vehicle model provided by Redrock AI is of a relatively slow moving industrial load han-

dling vehicle, although Redrock AI may wish an algorithm that can be used on several types of

vehicles. The results in chapter 4 will be representative for the vehicle provided, and things like

wheel odometry will be affected by the characteristics of the wide and load carrying wheels that

are on the vehicle, therefore there can be no guarantee for the applicability to other vehicles.

There are two scenarios where dead-reckoning is used. The first scenario is in between ab-

solute position-fixing measurements with relatively low frequencies. A typical consumer grade

GNSS receiver only updates once a second but more advanced GNSS receivers are often between
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5 or 20hz6. Dead-reckoning between the measurements can enable faster navigation. The other

scenario is when absolute position-fixing measurements are lost. This could be when a vehicle

has entered a tunnel or building. It is difficult to know how long absolute measurements are lost,

but an estimate could be around 5s to 1minutes before the vehicle has done enough driving to

exit the building or past the obstacle. If a vehicle is driving inside buildings or behind obstacles

for an extended amount of time, another position fixing method than GNSS should be used.

6https://learn.sparkfun.com/tutorials/gps-basics/all



Chapter 3

Materials and methods

In this chapter the methods for simulating the vehicle, implementing sensors, sensor fusing,

filtering sensor values, testing, and evaluating the localization will be shown.

3.1 Software

This first section will go over the software that was used.

sofware version comments
Oracle vm virtualbox version 6.1 https://www.virtualbox.org/
Ubuntu desktop 20.04.03 LTS Linux based operating system
Robot Operating System 2 (ROS2) Galactic Geochelone https://docs.ros.org
Virtual Studio Code (VSC) version 1.63.2 IDE
C/C++ extension VSC v1.7.1 Language support for C/C++
CMake extension VSC v0.0.17 Language support for CMake
Python extension VSC v2021.12.1559732655 Language support for Python
Python version 3.8 Programming language
pip3 version 20.0.2 package manager for Python
colcon-core version 0.7.1 ROS2 package compiler
CMake version 3.16.3 C++ depandancy manager
GNU Make version 4.2.1 C++ compiler
git version 2.25.1 github downloader

Table 3.1: Software versions

This section of the thesis will go over software installation, and why all the specific software’s

are being used. The majority of this section will be brief, as there are many other resources

28



CHAPTER 3. METHOD 29

available.

3.1.1 Operating System

Ubuntu version 20.04 was used in this project for its compatibility with the ROS2 arcitecture and

it’s Tier 1 support1.

3.1.2 Robot Operating Software 2

ROS2 was installed using Debian packages. This is the fastest way to install ROS2 using only a

few command lines. When installing ROS2, you also have the option to choose between the base

version or the desktop version. For this application the desktop version was used as it includes

demos and graphical tools for troubleshooting.

setting up environment

To use the ROS2 commands in the terminal, the ROS2 setup.bash file has to be sourced. The

following command will write the source command at the bottom of the ".bashrc" file, so that it

is run each time a terminal is opened.

\$ echo "source /opt/ros/galactic/setup.bash" > ~/.bashrc

creating a workspace

Before we start downloading packages, we have to create a directory to put them in. It is com-

mon practice to create a directory named "/ros2_ws/src/" in the root directory:

\$ mkdir ~/ros2\_ws/src/

robot_localization package

Next is the installation of the robot_localization package shown in the following command:

\$ sudo apt-get ros-galactic-robot-localization
1https://docs.ros.org/en/galactic/Installation/Ubuntu-Development-Setup.html

https://docs.ros.org/en/galactic/Installation/Ubuntu-Development-Setup.html
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colcon compilation

To compile the packages, and to build them, the colcon compiler is needed. The following line

of code install colcon on the system.

\$ sudo apt install python3-colcon-common-extensions

3.1.3 Gazebo

Installation of Gazebo is quite simple as only one line is needed2

curl -sSL http://get.gazebosim.org | sh

3.2 Simulation

In this chapter, the method for simulating the ackerman vehicle in Gazebo(chapter 2.5) is shown.

This entails, among other things, existing plugins, the plugins that were used, the ones that had

to be created, and the vehicle models.

3.2.1 Gazebo Plugins

There exists a variety of different open-source plugins for ros2 integration with gazebo. These

plugins can be used to publish sensor output and subscribe to motor inputs on ROS topics[].

Gazebo plugins can also be easily created to fit unmet requirements. Some of the following

subchapters describe the plugins that were used in this project.

3.2.2 Ackerman Vehicle

For this thesis, an ackerman vehicle model from RedRock AI by agreement of a non-disclosure

document was provided. Although pictures can be shown of the model as shown in figure 3.1,

the code behind the model is restricted. The main concept of creating a vehicle is defining the

links and rotational joints of the vehicle.

2https://classic.gazebosim.org/tutorials?tut=install_ubuntu#Defaultinstallation:
one-liner

https://classic.gazebosim.org/tutorials?tut=install_ubuntu#Defaultinstallation:one-liner
https://classic.gazebosim.org/tutorials?tut=install_ubuntu#Defaultinstallation:one-liner
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Figure 3.1: Gazebo truck model

3.2.3 Ackerman Steering

Having a model for the ackerman vehicle, the gazebo_ros_ackermann_drive plugin3 was ap-

plied to be able to drive the vehicle. To use this plugin, the ackerman vehicle joints were used as

paramaters, as well as update rate. Once the simulation has started, the steering can be applied

by publishing to the cmd_vel ros topic, with the geometry_msgs/msg/twist datatype.

3.2.4 Ackerman Wheel Odometry

The gazebo_ros_ackermann_drive plugin(chapter 3.2.3) that was used in chapter 3.2.3 has a pa-

rameter that enables the plugin to publish odometry data. This could have been suitable, but

the published odometry is just the actual position and velocities of the vehicle, which are not

fetched from the wheels of the vehicle. This makes them unrealistically accurate. Therefore, in

absence of any other plugins, a gazebo plugin had to be created. This plugin would need to use

the rotation of the wheels to publish wheel odometry.

To create the gazebo plugins a c++ class called "AckermanOdom" was created. Gazebo plu-

gin classes can have a "Load()" function, and a "OnUpdate()" function. In practice, these are

both callback functions that are given to the Gazebo runtime. The Load() function is passed the

3https://github.com/ros-simulation/gazebo_ros_pkgs/blob/galactic/gazebo_plugins/
include/gazebo_plugins/gazebo_ros_ackermann_drive.hpp

https://github.com/ros-simulation/gazebo_ros_pkgs/blob/galactic/gazebo_plugins/include/gazebo_plugins/gazebo_ros_ackermann_drive.hpp
https://github.com/ros-simulation/gazebo_ros_pkgs/blob/galactic/gazebo_plugins/include/gazebo_plugins/gazebo_ros_ackermann_drive.hpp
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model pointer4 and sdf from gazebo runs on startup. The OnUpdate is a standard notation for

the function that runs for every gazebo simulation iteration. This function needs no parameters

as we can easily bind it to the gazebo runtime in the Load() function.

void Load(physics::ModelPtr _model, sdf::ElementPtr _sdf) override;

void OnUpdate();

When implementing the plugin, the parameters of the model can be defined in the .urdf gazebo

file(appendix C). An example of how we define the arbitrary parameter "wheel_radius" is shown

in the following snippet of code.

<gazebo>

<plugin name="ackerman_odom_plugin" filename="libackerman_odom.so">

<wheels_radius>0.2615475</wheels_radius>

</plugin>

</gazebo>

These parameters are them passed on to the plugin through the _sdf parameter in the Load()

function. To extract the parameters we can use the following code inside the Load() function.

float wheels_radius_ = _sdf->GetElement("wheel_radius")->Get<float>();

Defining the rest of the parameters(3.2) in the same manner(appendix D), allowed us to start

implementing the kinematics of the ackerman vehicle.

Parameter Value

Wheel radius 0.2615475

Wheel seperation 1.990400

rotation joint left rot_left

rotation joint right rot_right

Table 3.2: Ackerman odometry parameters

4http://osrf-distributions.s3.amazonaws.com/gazebo/api/2.2.1/classgazebo_1_1physics_1_
1Model.html [accessed online 01.05.2022]

http://osrf-distributions.s3.amazonaws.com/gazebo/api/2.2.1/classgazebo_1_1physics_1_1Model.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/2.2.1/classgazebo_1_1physics_1_1Model.html
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The heading from an IMU is used to calculate the linear velocities of wheel odometry. This is

because the calculated heading from the odometry quickly diverges as any error in the angu-

lar velocity is integrated into the heading. Therefore, a subscription was created in the Acker-

man odometry plugin to subscribe to the heading of the IMU. The IMU heading was given as

a Quaternion, but the heading is needed as a Euler angle in order to calculate odometry. In

order to convert the quaternion to a Euler angle, a callback function for the IMU heading was

created(see following code snippet).

void AckermanOdom::Callback(sensor_msgs::msg::Imu imu){

auto q = imu.orientation;

double siny_cosp = 2 * (q.w * q.z + q.x * q.y);

double cosy_cosp = 1 - 2 * (q.y * q.y + q.z * q.z);

theta = std::atan2(siny_cosp, cosy_cosp);

}

An example of the resulting Euler angle while driving an arbitrary route is shown in figure 3.2.

The figure shows that the Euler angle jumps from -180 to 180 degrees(This is one of the reasons

that the Quaternion are more stable as mentioned in chapter 2.7).

Figure 3.2: Quaternion after being converted to Euler angle
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To use this odometry with a Kalman filter, the covariances of the states also need to be defined.

Only the velocities of the vehicle are being used in the kalman filter(chapter 3.3.1), the covari-

ances can be defined as constants as the velocity uncertainty doesn’t vary with time.

One way to find starting points for covariances is to find them empirically. For this applica-

tion, they will be used as tuning parameters later. The following covariance matrix is an example

of how it is defined in the Gazebo plugin. The order of states is Ẋ , Ẏ , Ż , φ̇, θ̇,ψ̇5.

odom_.twist.covariance = {0.06, 0, 0, 0, 0, 0,

0, 0.07, 0, 0, 0, 0,

0, 0, 0.02, 0, 0, 0,

0, 0, 0, 0.011, 0, 0,

0, 0, 0, 0, 0.012, 0,

0, 0, 0, 0, 0, 0.05};

3.2.5 Inertial Measurement Unit

GazeboRosImuSensor6 is used for simulating a IMU sensor. This plugin permits changes in up-

date rate, and gaussian noise. To apply this plugin, it has to be attached to a link7 as shown in Ap-

pendix C. The plugin will publish to a topic with the sensor_msgs/Imu8 datatype. This datatype

contains orientation, linear acceleration, and angular acceleration respectively as well as their

covariance matrices.

3.2.6 Ground Truth

To evaluate a localization, it’s needed to know what the true position and velocities of the vehicle

are. The P3D(3D Position Interface for Ground Truth)9 plugin is used to do this. This plugin

5http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/TwistWithCovariance.html [ac-
cessed online 02.05.2022]

6https://classic.gazebosim.org/tutorials?tut=ros_gzplugins#IMU(GazeboRosImu)
7links are the building blocks of gazebo models
8http://docs.ros.org/en/diamondback/api/sensor_msgs/html/msg/Imu.html
9https://classic.gazebosim.org/tutorials?tut=ros_gzplugins#P3D%20(3D%20Position%

20Interface%20for%20Ground%20Truth)

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/TwistWithCovariance.html
https://classic.gazebosim.org/tutorials?tut=ros_gzplugins##IMU(GazeboRosImu)
http://docs.ros.org/en/diamondback/api/sensor_msgs/html/msg/Imu.html
https://classic.gazebosim.org/tutorials?tut=ros_gzplugins##P3D%20(3D%20Position%20Interface%20for%20Ground%20Truth)
https://classic.gazebosim.org/tutorials?tut=ros_gzplugins##P3D%20(3D%20Position%20Interface%20for%20Ground%20Truth)
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publishes the true odometry of a vehicle with the nav_msgs/Odometry10 datatype.

3.2.7 Architecture

Figure 3.3 shows the simulation architecture.

Figure 3.3: Simulation Architecture

In some cases, the same driving pattern was used for different Kalman filters, and it was de-

sirable to apply the same data to each filter. Therefore, all the topics were recorded to a Ros-

bag(figure 3.4) and then played back to different kalman filters(figure 3.5).

10http://docs.ros.org/en/noetic/api/nav_msgs/html/msg/Odometry.html [accessed online
05.05.2022]

http://docs.ros.org/en/noetic/api/nav_msgs/html/msg/Odometry.html
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Figure 3.4: Recording gazebo topics

Figure 3.5: Playback and recording of rosbag data with arbitrary Kalman filter.
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3.3 State Estimation

This chapter mainly covers the use of the robot_localization package, and how different filters

and parameters are configured.

3.3.1 Sensor fusion

This sub-chapter covers the configuration of different combinations of sensors for state estima-

tion. To apply state estimation, the robot_localization package is used. This package enables

the use of EKF and UKF aswell as an arbitrary combination of sensors.

Wheel odometry and IMU

The first fusion that is applied is Wheel odometry and IMU. Starting with the wheel odometry,

we can conclude that the information we need to extract is the linear velocities, and the hori-

zontal angular velocity as the angular velocity, together with the imu can create a better joint

value. We therefore write the wheel odometry parameters as follows11:

odom0_config: [false, false, false,

false, false, false,

true, true, false,

false, false, true,

false, false, false]

In this case, the position is not important because it is just the integrated velocities we are

already integrating. The following shows the enables states from the IMU sensor.

imu0_config: [false, false, false,

true, true, true,

false, false, false,

true, true, true,

true, false, false]
11the order of states is shown in figure 2.15
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Note that only the linear acceleration in the X direction is being used. This is because the

accelerometer sensor outputs acceleration in respect to the rigid vehicle body as a reference

frame. Therefore only the X direction is being used as this is is the axis which points in the

direction of travel. Also, roll, pitch and yaw are all being used as they are all needed to negate

gravitational acceleration in the linear acceleration term, like the example shown in figure 3.6.

The resulting system is shown in figure 3.6.

Figure 3.6: Kalman Filter input and output states flow chart

Measurements for the innovation stage(equation 2.4) are shown in equation 3.1.

zk =
[
φ θ ψ Ẋ Ẏ φ̇ θ̇ ψ̇ Ẍbod y_ f r ame

]T
(3.1)

Wheel odometry and directional gyroscope(heading)

This fusion setup is shown in figure 3.7.

Figure 3.7: Sensor fusion with directional gyroscope heading fed into wheel odometry algorithm

For this sensor fusion model, only the wheel odometry states are being fed into the Kalman filter.
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odom0_config: [false, false, false,

false, false, false,

true, true, false,

false, false, true,

false, false, false]

To implement the heading into the wheel odometry plugin, simple logic was created to replace

the heading that was estimated by the plugin itself(chapter 3.2.4).

IMU(Directional gyroscope and Accelerometers)

This sensor fusion model only includes the measurements from the IMU module. Therefore,

the following states are used: heading and angular velocity from a directional gyroscope, and

linear acceleration from an accelerometer(See figure 3.8).

imu0_config: [false, false, false,

true, true, true,

false, false, false,

true, true, true,

true, false, false]

Figure 3.8: IMU application flowchart
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Wheel Odometry

Lastly, the lone states of the wheel odometry module are used. Figure 3.9 shows the resulting

data flow, and then the enabled states are shown.

Figure 3.9: Kalman filtering of wheel odometry

odom0_config: [false, false, false,

false, false, false,

true, true, false,

false, false, true,

false, false, false]

3.3.2 Tuning

The process noise covariance matrix, commonly denoted Q, represents the uncertainty of the

estimated states in a system. This parameter can also be interpreted as the uncertainties that

aren’t modeled in the state transfer matrix. This parameter is important for tuning kalman fil-

ters, because they decide how much to weight measurements, and how much to weight state

estimates.

3.4 Testing

Rosbag, a tool used to record ROS topics, was used to record the odometry of the vehicle. Figure

3.10 shows the command used to record all the topics(see figure 3.3.
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Figure 3.10: Using ros2 bag to record all topics

After a recording was started, the vehicle was driven arbitrarily. A

"rqt_bag" is used to playback the recorded data simultaneously as the filter is started, and a new

recording is begun. Figure 3.12 shows the resulting bag data when the bag data in 3.11 is filtered

with a kalman filter.

Figure 3.11: Bag data

Figure 3.12: Bag data with filtered odometry(with "/odometry/filtered")
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With this method, the same sensor readings can be used for different filters. This makes them

easier to compare, as it becomes an apples to apples comparison.

3.5 Evaluation

Figure 3.13: Custom timeseries in plotjuggler

Plotjuggler was used, as it was seeminly one of the few plotting softwares that could plot ros2

bag data natively. Its real-time plotting capabilities are also helpful when testing and diagnosing

problems. Its inability to modify axis labels, and titles, among other things are some of the

reasons that it is was difficult to use. In the results section of the thesis, the axis labels had to be

added manually with a graphical tool. Custom functions can also be created and used to edit

timeseries in plotjuggler(figure 3.13). Functions can be written in the programming language

lua12. A function implementing the pytagoream theorem(figure 3.14) was created to plot the

error in position.

12https://www.lua.org/about.html [accessed online 06.05.2022]
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Figure 3.14: Function for calculating the difference in position
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Result

This chapter contains the results from this project. Firstly, the raw output of the wheel odometry

and the IMU measurements(chapter 4.1 and 4.2) are shown for an arbitrary driving pattern. This

helps get a grasp of the performance that can be expected. Then they are both fed into a state

estimation filter in chapter 4.3 and the resulting localization is shown. Furthermore, some the

localization results from several combinations are shown, and then other improvements that

were attempted.

4.1 Wheel Odometry

The states that are calculated in the ackerman wheel odometry plugin are Ẋ , Ẏ , ψ̇. Comparisons

between the calculated wheel odometry and the true odometry is shown in figure 4.1, 4.2, and

4.3

44
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Figure 4.1: Linear velocity in x(north) direction. The true velocity is shown in green, and the
estimated ackerman wheel odometry velocity is shown in red.

Figure 4.2: Linear velocity in y(east) direction. The true velocity is shown in green, and the
estimated ackerman wheel odometry velocity is shown in red.
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Figure 4.3: Angular velocity(ψ̇). The true angular velocity is shown in green, and the estimated
ackerman wheel odometry angular velocity is shown in red.

4.2 IMU

The IMU measuremends that are used are φ, θ, ψ, ψ̇ and Ẍ . Their comparisons to their true

counterparts are shown in the following figures respectively.
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Figure 4.4: Yaw(ψ). True yaw is in green, and IMU yaw is in red. Gaussian noise of 1

Figure 4.4 shows that the IMU heading is very accurate, and very often within +- 1 degree of

rotation. This is why the true value for heading is not visible.

Figure 4.5: Angular velocity(ψ̇). True angular velocity is green, and IMU angular velocity is in
red. Gaussian noise of 1
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Figure 4.6: Linear acceleration. True linear acceleration is in green, and IMU linear acceleration
is in red. Gaussian noise of 1

4.3 State estimation

This subchapter covers the results of Kalman filters applied to the Ackerman Odometry and IMU

states in different combinations, and with different tuning parameters.

4.3.1 Wheel Odometry

This subchapter contains the result of running an extended kalman filter with only the states

from the wheel odometry(Ẋ , Ẏ , ψ̇).
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Figure 4.7: Wheel odometry only state estimation.

Figure 4.7 shows the filtered position and true position, while figure 4.1 and 4.2 shows the

corresponding velocities.

4.3.2 IMU

Figure 4.8 shows the linear velocity in the x direction of a IMU only application. The estimated

velocity is very accurate to begin with, with only a 0.025m/s drift after 5 seconds. After this point,

the estimated velocity diverges. Figure 4.9 shows a very similar situation for the linear velocity

in the y direction.
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Figure 4.8: Linear velocity in x direction with only IMU states as input to kalman filter. Estimated
velocity is red, true velocity is green.

Figure 4.9: Linear velocity in y direction with only IMU states as input to kalman filter. Estimated
velocity is red, true velocity is green.

The resulting localization is shown in figure 4.10. Localization drifts 0.1563 meters after 5 sec-

onds, 13.4m after 30 seconds, and 95 meters after 60 seconds.
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Figure 4.10: Localization with IMU states. Estimated position is red, true position is green.

4.3.3 Sensor Fusion

wheel odometry and directional gyroscope

For this first localization example, the wheel odometry fetched the heading from the IMU plu-

gin. In other words, Ẋ , Ẏ , ψ̇ were the wheel odometry inputs to the kalman filter, while ψ was

the IMUs input to the odometry plugin(see figure 3.7). The resulting localization is shown in

figure 4.13. The velocities are shown in figure 4.11 and 4.12
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Figure 4.11: Wheel Odometry fused with IMU heading. Estimated velocity is red, true velocity is
green.

Figure 4.12: Wheel Odometry fused with IMU heading. Estimated velocity is red, true velocity is
green.
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Figure 4.13: Wheel Odometry fused with IMU heading

wheel odometry, gyroscope and accelerometer

EKF and UKF

A EKF and a UKF was a applied to the same driving scenario. Figure 4.14 compares their esti-

mated paths.
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Figure 4.14: Driving scenario 3, with true position in green, ekf estimated position in red, and
ukf estimated position in blue

4.3.4 Improvements

Tweaking Physical Parameters

When linear velocities are correct, but angular velocities are not, tweaking the radii of the wheels

is an easy way to compensate for slip. Also, if odometry is good when driving in a straight line,

but not as good when turning, adjusting the wheel base length is also an easy way to increase or

decrease the angular velocities.

Figure 4.7 shows that state estimation with only wheel odometry results in understeering. To

compensate for this, decreasing the wheelbase slightly was done to compensate for any slippage

that was occuring. The resulting localization is shown in figure 4.15.
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Figure 4.15: Wheel odometry only state estimation after adjusting wheelbase. Estimated posi-
tion is red, true position is green.

further decreasing the wheelbase length resulted in localization shown in figure 4.16
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Figure 4.16: Wheel odometry only state estimation after adjusting wheelbase further. Estimated
position is red, true position is green.

Process noise covariance

Figure 4.13 shows that the estimated position has what is suspected to be a bias in its heading.

It is shown in figure 4.4 that the heading is very accurate, and therefore should not be the cause

of the offset. Further investigation concludes that the source of error is a delay that is caused by

the kalman filter not weighting wheel odometry measurements enough. This is shown in figure

4.17.
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Figure 4.17: Linear velocity in x(East) direction. Kalman estimate is red, Wheel odometry mea-
surement is blue. Before adjusting process noise covariance.

To make the kalman filter emphasize the contribution that the linear velocities that the wheel

odometry plugin is contributing, the covariances for Ẋ and Ẏ were adjusted to be larger. This

new process covariance matrix had the effect that the filter followed the wheel odometry more

closely as shown in figure 4.18.
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Figure 4.18: Linear velocity in x(East) direction. Kalman estimate is red, Wheel odometry mea-
surement is blue. After adjusting process noise covariance.

This updated process noise covariance also gave the localization better performance as shown

in figure 4.19.

Figure 4.19: Localization with larger process noise covariance
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Carefully tuning the process noise covariance further resulted in figure 4.20.

Figure 4.20: tuned process covariance, Kalman filtered estimate is red, true position is green.

The estimate error is shown in figure 4.21.

Figure 4.21: Tuned process covariance estimation error
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Steering Input

Figure 4.22 shows the localization of the vehicle without using control as an acceleration term.

Figure 4.23 shows the same localization with steering input.

Figure 4.22: Localization without steering input
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Figure 4.23: Localization with steering input

Dynamic process noise covariance

Figure 4.24 depicts the estimated covariance of the filtered position. In this figure it is growing

constantly. When enabling dynamic proccess noise covariance, the result can be seen in figure

4.25.
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Figure 4.24: Position covariance without dynamic process noise covariance enabled

Figure 4.25: Position covariance without dynamic process noise covariance enabled
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4.4 Performance

This section will attempt to convey the results of the different applications of localization in a

clear way. Figure 4.1 shows all the combinations of sensors that were used, with the best per-

forming filter chosen.

Wheel odometry

Figure 4.26 shows the localization of only wheel odometry localization. The resulting error in

position is shown in figure 4.27.

Figure 4.26: Localization with Wheel odometry. Estimated position is red, true position is green.
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Figure 4.27: Error in position for localization with wheel odometry.

This localization is done with an UKF with default distribution values. The process noise

covariance matrix can be seen in Appendix E, and the measurement noise covariance is shown

in Appendix D.
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IMU

Figure 4.28: localization with IMU
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Figure 4.29: Error in estimated position with IMU.
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Wheel Odometry and Gyroscope

Figure 4.30: Localization with Wheel odometry and IMU

Figure 4.31: Localization error with wheel odometry and IMU
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Wheel Odometry and IMU

Figure 4.32 shows the localization of combined wheel odometry and IMU. This localization

shows little to performance benefits over Wheel odometry and gyroscope on their own, although

there is a slight increase in accuracy over the short term(see table 4.1).

Figure 4.32: Localization with Wheel odometry and IMU. Estimated position is red, and true
position is green.

Summary

Figure 4.1 shows the drift for the different combinations of filters at different time points.
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Application drift after 5 seconds 30 seconds 60 seconds

Wheel odometry 0.13m 4.8m 7.657m

Wheel odometry, Gyroscope 0.31m 0.35m 0.14m

Wheel odometry, Gyroscope, Accelerometer 0.29m 0.36m 0.14m

Accelerometer, Gyroscope 0.09m 13.7m 89.1m

Table 4.1: Performance of localization

4.5 Challenges

4.5.1 Update Rate Errors

An error occurred with the ekf_node where it was stated that the filter failed to meet the update

rate as shown in figure 4.33.

Figure 4.33: Robot_localization package update rate error
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Figure 4.34: ROS2 "/diagnostic" topic output

By looking at the robot_localization diagnostic topic I could see that the filter rejected any

filter update rate under 25hz and over 35hz (figure 4.34). In comparison, an update time of

0.1 seconds as shown in figure 4.33 corresponds to an update rate of 10hz. Suspecting that

something was slowing down the filter, It turned out that debug mode being enabled caused

the delay.

4.5.2 Qos (Quality of service) parameter mismatch

When subscribing to the imu topic from the ackerman odometry plugin, the follow error oc-

curred when running the launch file.

Figure 4.35: Qos parameter error

Figure 4.36 shows how the "imu_plugin" publishes to the "/imu" topic with the Qos reliability

parameter "BEST EFFORT". On the contrary, the "ackerman_odometry_plugin" subscribes to
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the "/imu" topic with the Qos reliability parameter "RELIABLE". No topic data is being send to

the subscriber either when this error message occured.

Figure 4.36: Qos parameter mismatch debugging

Referring to the Ros2 Galactic Wiki, the compatibility table(figure 4.37) shows that this combi-

nation of parameters isn’t compatible. This makes sense according to the wiki[].

Figure 4.37: Compatibility of reliability QoS policies[]

For sensor data, it’s important to receive readings as they are registered rather than making

sure every reading is received. This is why the QoS reliability parameter "BEST_EFFORT" is best

suited for sensor data as it prioritizes the timely arrival of readings[].

Luckily, Ros2 already has QoS parameter profiles for use with sensor data[].

To use this profile, the QoS profile has to be declared when creating the subscription. The

documentation for the "create_subscription" function declaration, shows that the function ar-

gument "qos" can be defined as shown in figure 4.39.
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Figure 4.38: Using standard qos profile

Figure 4.39: Using "sensor data" qos profile

After compiling and running the program again, there were no errors. Using the "ros2 topic

info" command in the terminal shows that both the publisher and subscriber of the topic has

the reliability parameter of "BEST_EFFORT".

Figure 4.40: Qos parameter debugging
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Discussion

This chapter contains discussion regarding comparisons and what claims are supported in the

literary survey in chapter 1.3 and otherwise in the theory section(chapter 2). The validity of

the findings are discussed, possible interpretations, possible shortcomings of the methods that

were used, and what could have been done differently.

5.1 Sensors

5.1.1 Wheel Odometry

Wheel odometry can be seen to be sensitive to errors in initialization, and systematic calibration[7]

was attempted to compensate for errors in position. This was difficult, although further careful

tuning can possibly be done.

5.1.2 Inertial Measurement Unit

The use of accelerometers, especially in low velocity driving has been implemented before[7][4],

which resulted in relatively poor performance. It is shown in figure 4.10 that position estimates

with only IMU sensor measurements diverges relatively quickly, however, the IMU is the most

accurate in the first seconds as shown in table 4.1.

73
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5.1.3 Sensor Fusion

Wheel odometry and directional gyroscope

The combination of wheel odometry and a directional gyroscope(heading) proved to be much

more accurate than either of them alone. Everett B. Borenstein[7] achieved a drift of about 8

inches(20cm) over the span of with a following encoder. This hints towards the fact that slip

is a big contributing factor for error in wheel odometry. It makes sense that the Ackerman

model(figure 3.1) has some slip because of the fact that the wheels are wide, and load bear-

ing(as discussed in chapter 2.1.5). This is anyways a representation of expected wheel odometry

performance without slip detection for the specific vehicle model that Redrock supplied.

Wheel odometry and IMU

Wheel odometry, and IMU fusion showed no significant improvements over the combination of

wheel odometry and directional gyroscope. This could be because of the fact that the vehicle

is inherently slow moving, and as a result accelerometers cant contribute as much as they are

better for rapidly moving agents. Possible improvements that could be made is increasing the

kalman filter frequency rate. The filter only ran at about 30hz, which was the highest that was

achievable on the hardware that was used.

5.2 Unscented Kalman Filter

Figure 4.14 shows that the ukf provides a better estimate of position in comparison to the ekf fil-

ter. Therefore, the Unscented Kalman Filter also has less linear velocity error. This supports the

claim from Vadim Bistrov and Ansis Kluga[6] stating that the UKF has lower velocity estimation

error in comparison to the EKF, although this claim is only supported by a small sample.

5.3 Process Noise Covariance

Tuning the process noise covariance matrix was extremely important, as vast improvements

were made when it was tuned. This was true for all of the localizations, as every localization was
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significantly worse, when this matrix was not tuned. An example of the improvements made is

shown in chapter 4.3.4, where the kalman filter was shown to highly disregard wheel odometry

readings when it was wrongly configured.

5.4 Steering Input

The use of steering input did not provide any significant advantages, but it seemed that the

constraints were very difficult to tune. It is also possible that the method of steering the vehicle

isn’t representative of the steering input that would be used in the real world, as the steering

input that was applied was highly discrete, whereas in a real use case the steering input would

most likely be more continuous.

5.5 Dynamic Process Noise Covariance

Dynamic process noise covariance was shown in figure 4.24 and 4.25. This improvement has no

impact of the localization performance, but increases the accuracy of the covariance, especially

when the localization is later combined with position fixing measurements.

5.6 Shortcomings

Although tuning the state estimation filters for the same driving route was possible, while chang-

ing the physical parameters, the vehicle had to be recorded once again. This makes it harder to

compare localization with changes in physical parameters for the same driving. If it is desirable

to be able to compare changes in physical, possible changes could be made to implement wheel

odometry in a ROS node instead of a Gazebo plugin, although this would certainly also cause

some delay in odometry output.

Another shortcoming is the lack of samples. If further samples were recorded for different driv-

ing patterns(such as standstill, straight line, and multiple arbitrary driving patterns), the robust-

ness and performance metrics of each localization would have more credibility.
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5.7 Objectives

To answer the first research question in chapter 1.4, when does the position drift, and how fast

does it drift? For wheel odometry, position primarily starts to drift when the vehicle is turning.

In the arbitrary driving pattern that was used, the vehicle drifted on the order of a meter per sec-

ond of turning, although this was dependant on the sharpness of the turn. For IMU localization,

the position started to drift after a few seconds, and then drifted rapidly. The combination of

Wheel odometry and gyroscope also drifted primarily while turning, but less than wheel odom-

etry on its own. This application drifted on the order of a decimeter per second of turning, also

being dependant on the sharpness of the turn. Wheel odometry and IMU together performed

similarly or worse than wheel odometry and gyroscope depending on the tuning parameters of

the estimation filter. The other research questions were, how does dead-reckoning affect local-

ization in absence of GNSS, how few, and which, sensors are needed to maintain satisfactory

performance. To answer the first question, dead-reckoning was shown to always cause a drift in

position, where periodic absolute position measurements are necessary. This is also supported

by existing literature [7]. The only thing that changes is the required frequency of absolute po-

sition measurements. As for how few and which sensors are needed, it is suggested that wheel

odometry is important for mobile robot navigation which also supports existing literature on

odometry[7](chapter 1.3), and that a heading measurement greatly improves localization ac-

curacy. Therefore, wheel odometry and heading measurement are suggested to be the fewest

possible for some applications, and the most needed.
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Conclusions and further work

The goal of this report was to evaluate the performance characteristics of different sensors on an

ackerman based vehicle model, as well as finding out how few could be used, and which needed

to be used to give satisfactory localization performance during dead-reckoning. This was with-

out knowing exactly what "satisfactory" entailed. Using the context for the use cases that Re-

dRock AI has, certain requirements were discussed. The results of the simulations show that

wheel odometry is overwhelmingly necessary for accurate localization, and combined wheel

odometry and heading measurements improve localization further. This was contrary to the

performance of an IMU which quickly diverges, although it was discussed that this may be a

result of the slow nature of the simulated vehicle or the slow frequency of the kalman filter that

was used. Therefore, the combination of wheel odometry and a directional gyroscope was pro-

posed as the best possible solution, while still giving relatively good performance, although the

localization was not as good as what was desired. This is because centimeter level precision was

desired, but decimeter level precision was achieved.

Further work could include some of the following. The wheel odometry in this project is imple-

mented as if the radius of the wheels are constant. In the real world, this is often not true. Over

the lifespan of a rubber wheel, the radius can decrease as much as 3%[10]. This error in radius

will make the odometry diverge more quickly, as small errors in the odometry are integrated. A

Possible solution to this is to implement what is called an error-state Kalman Filter[10]. This is

a type of filter that models the errors of the state, instead of the actual states of the system. This

77
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type of implementation can often be better, as the dynamics of the errors of a system can more

accurately be modeled. The errors in a system are also more often than not, simpler than the

actual states. Further systematic calibration can also be done with the method described[7].

The wheels of any vehicle can naturally also slip. Implementing a detection algorithm for slip,

could improve the performance of wheel odometry. Seyr, Martin and Jakubek, Stefan[22], and

Paul D. Groves[10] shows examples of slip detection. Another alternative is to implement en-

coders on the rear wheels of the vehicle[7]. This implementation would in theory be as easy as

implementing the kinematics of the rear wheels, and then comparing their encoder values with

the front wheels.
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1 INNLEDNING
Denne rapporten er skrevet av en bachelor student som går 3. året på Elektroingeniør med hovedretning 
Automasjon på NTNU i Ålesund. Oppdragsgiveren til oppgaven er RedRock.AI, ett firma i Kristiansand 
som jobber med autonom lasthåndtering med mål om å minke driftskostnadene til kundene. Oppgaven er å 
utforme ideer for, og teste forskjellige metoder for lokalisering av en UGV med minst antall sensorer. 
Hensikten er å skape økonomisk verdi for evt. Produkt eller tjeneste. Oppgaven skal til slutt vise til ett eller 
flere løsninger som oppfyller hensikten. 

2 BEGREPER
GNSS – Global Navigation Satellite Systems

INS – Inertial Navigation System

Dead Reckoning – Klassisk navigasjonmetode for beregning av posisjon ut ifra en kjent posisjon i fortiden 
[7]

Gazebo – Robot simulator [6]

ROS2 – Robot Operating System 2 []

3 PROSJEKTORGANISASJON

3.1 Prosjektgruppe

Navn: Simen Bjerkestrand
Tlf: 90095184
Mail: Simenkbj@stud.ntnu.no
Studentnummer: 522470

3.1.1 Oppgaver for prosjektgruppen - organisering

Prosjektet gjøres av en enkeltperson, dermed har den person ansvar for alle 
arbeidsoppgaver og organisering av arbeidet.

3.2 Styringsgruppe (veileder og kontaktperson oppdragsgiver)

Veiledere
Navn: Erlend Coates 
Mail: erlend.coates@ntnu.no

Navn: Eirik Fagerhaug
Mail: eirik.fagerhaug@ntnu.no

 
Kontaktperson(er) oppdragsgiver
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Navn: Nikolai Persen 
Mail: nikolai.persen@redrock.no

Navn: Andreas Fjetland
Mail: andreas.fjetland@redrock.no

4 AVTALER

4.1 Avtale med oppdragsgiver
Avtaler er vedlagt

4.2 Arbeidssted og ressurser
Arbeidsplass på L167 er tildelt studenter for å gjennomføre bacheloroppgave, i tillegg har studenten 
tilgang til Manulab og AGV 60/90 robot ved avtale. Det kreves ingen spesiell tilgang til arbeidssted 
eller ressurser utover dette.

4.3 Gruppenormer – samarbeidsregler – holdninger

Studenten skal være motivert og villig til å jobbe strukturert og jevnt for å oppnå det ønskede målet. En 
skal også ha ett åpent sinn, en positiv holdning og optimisme når en møter på problemstillinger. Å holde
en tanke på etiske utfordringer og ta forsvarlige beslutninger basert på dette er også svært viktig,

5 PROSJEKTBESKRIVELSE

5.1 Problemstilling - målsetting – hensikt

Effektmål
RedRock.AI begynte hovedsakelig med å jobbe med kraner. Prinsippet var da å hjelpe kundene sine 
oppnå mindre kostnader med kranføring ved hjelp av automatisering. RedRock.AI har også begynt å 
jobbe mere med løsninger på kai, og trenger automatiseringsløsninger som skaper økonomisk verdi. 
Denne oppgaven handler om lokalisering av en UGV som også håndterer tap av GNSS signal ved bruk 
av «Dead Reckoning». Lokaliseringen kan brukes videre i kombinasjon med andre lokaliseringsmetoder
for å løse problemet om styring av UGV roboten. Ved å minimere kostnader ved Lokaliseringen, kan da
den komplette løsningen bidra til lønnsomhet ved produktet eller tjenesten. Effektmålet er da å komme 
med en eller flere aktuelle løsninger som både utfyller kravene og som er økonomisk.

Resultatmål
Resultatmålet er å komme frem til et resultat som er realistisk, på både teoretisk og praktisk vis. Ved å 
sammenligne resultatene må rapporten synliggjøre ett resultat som består kravene som er satt og som 
oppnår den ønskede hensikten. Rapporten skal inneholde godt faglig grunnlag, med en god struktur som
gjør det enkelt å forstå innholdet.

Prosessmål
Forfatteren skal være flink til å planlegge og dokumentere framdrift, og dermed raskt oppdage avvik i 
opprinnelig plan. God kommunikasjonsteknikk med veiledere og oppdragsgiver er også viktig.

5.2 Krav til løsning eller prosjektresultat – spesifikasjon
En del av oppgaven er å oppfylle visse krav til ytelsen til lokaliseringen, detaljene rundt disse er enda 
ikke bestemt av oppdragsgiver. Disse vil komme frem til en senere tid.
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5.3 Planlagt framgangsmåte(r) for utviklingsarbeidet – metode(r)

Siden denne oppgaven skal gjøres av ett enkeltindivid er det spesielt viktig å ha en god definert 
fremgangsmetode. Den planlagte prosjektstyringsmetoden er hovedsakelig basert på «kritisk bane» 
metoden [1]. Med denne metoden er den kronologiske sekvenseringen av oppgaver og den estimerte 
varigheten for hver oppgave svært viktig. Her er det lov å prioritere oppgaver slik at de oppgavene som 
er viktigst for oppgavens gjennomføring gjøres først. 

Hovedtrekkene til fremgangsmåten består av problemanalyse, Kravarbeid, Utforming, Implementasjon 
og Utprøving. Det er viktig å ikke utsette viktige oppgaver som problemanalyse og kravarbeid da disse 
skaper grunnlaget for hele oppgaven.

5.4 Informasjonsinnsamling – utført og planlagt

Planlagt informasjonsinnsamling

- ROS2 for beginners [3]

- Principles of GNSS, Inertial, and Multisensor Integrated Navigation systems [2]

- Robot Localization package ROS2 [4]

- Gazebo Tutorials [5]

5.5 Vurdering – analyse av risiko

Muligheten for å realisere ett tilfredsstillende resultat er ikke usannsynlig. Uansett så kan det komme 
utfordringer ved fremgang, som gjør det vanskelig å vise til ett resultat. Dette er bla. noe av det som 
avgjorde prosjektstyringsmetoden som ble brukt. Det kan sies at det er en viss risiko knyttet den 
praktiske implementasjonen, hvor utfordringer knyttet dette kan påvirke resultatet i stor grad.
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5.6 Hovedaktiviteter i videre arbeid

5.7 Framdriftsplan – styring av prosjektet

5.7.1 Hovedplan
- Implementasjon skal gjøres i C++ med ROS2. Testing/Simulering skal i utgangspunktet gjøres ved 

simulasjon, ved bruk av Gazebo.
- Implementasjonen skal begynnes tidlig (31. jan – 7. feb).
- Om noe skal gjennomføres i praksis/virkeligheten, skal dette avgjøres underveis. Dette skal også 

bestemmes relativt tidlig (14.feb) slik at eventuelle ressurser kan skaffes tidsnok.

5.7.2 Styringshjelpemidler

Både Framdriftsrapportene og Gantt diagrammet er viktige hjelpemidler for å styre prosjektet, og 
Planlegge videre arbeid.

5.7.3 Utviklingshjelpemidler
Det er så langt ikke noen planlagte utviklingshjelpemidler.

5.7.4 Intern kontroll – evaluering

Ethvert mål og delmål skal ha ett dokumentert resultat før sin frist. Om kriteriene til resultatene er 
oppnådd skal vurderes i framdriftsrapporten.

5.8 Beslutninger – beslutningsprosess
Beslutninger skal hovedsakelig handle om avgrensninger i prosjektet. Dersom viktige beslutninger tas 
skal de dokumenteres i framdriftsrapporten.
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6 DOKUMENTASJON

6.1 Rapporter og tekniske dokumenter

Framdriftsrapport, Bachelorrapport, og Forprosjektrapport skal gjøres som en del av bacheloroppgaven.
Planlagte rutiner skal sørge for at disse gjennomføres tidsnok og med god kvalitet. Det skal også 
utarbeides avtaler med oppdragsgiver.

7 PLANLAGTE MØTER OG RAPPORTER

7.1 Møter

7.1.1 Møter med veiledere
Møte med veiledere gjennomføres hver 14. dag fom. 17.01.2022. Datoene og tidspunktene kan endres 
underveis. Oppdragsgiver inviteres også til eventuelle møter. Hensikten er å vise fremgang og plan 
fremover vha. framdriftsrapport.

7.2 Periodiske rapporter

7.2.1 Framdriftsrapporter (inkl. milepæl)

Framdriftsrapporter skrives hver 14 dag og fullføres før møtene.

8 PLANLAGT AVVIKSBEHANDLING
Dersom prosjektet ikke går som planlagt mtp. framdrift eller resultater leveres oppgaven som den er. 
Grundig drøfting og dokumentasjon av evt feilkilder må da inkluderes i oppgaven.

9 UTSTYRSBEHOV/FORUTSETNINGER FOR 
GJENNOMFØRING

- Prosjektet har ingen spesielle krav til utstyr 

10 REFERANSER
[1] Nybegynner tips for prosjektstyring, 
https://www.microsoft.com/nb-no/microsoft-365/business-insights-ideas/resources/guide-
for-project-management, [17.01.2022]
[2] Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 
https://www.amazon.com/Principles-Multisensor-Integrated-Navigation-Applications/dp/
1608070050
[3] ROS2 for beginners, https://www.udemy.com/course/ros2-for-beginners/ [19.01.2022]
[4] Robot_localization wiki, 
http://docs.ros.org/en/melodic/api/robot_localization/html/index.html [19.01.2022]
[5] Gazebo Tutorials, https://gazebosim.org/tutorials [19.01.2022]
[6] Gazebo, http://gazebosim.org/ [23.01.2022]
[7] Dead Reckoning, https://snl.no/dead_reckoning [23.01.2022]
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B Robot Localization proposed bachelor or master thesis



Robot localization
Bachelor or Master Thesis

Short description
An important aspect within autonomy is
localization. Localization deals with
finding the position of an agent (e.g.,
mobile robot) within the environment it is
in.

There exists a large number of sensors
that can be used to improve the overall
performance of localization. However, a
common issue with localization is
temporary or permanent loss of
sensor(s), for example in tunnels. In such
cases, the position can drift over time.
Dead Reckoning (DR) is a popular tool for
compensating loss of sensors such as GNSS to estimate the position. This approach can
use sensors such as gyroscopes, accelerometers and wheel encoders to estimate
position.

Keywords
● Cybernetics
● Mechatronics
● ROS (ROS2 preferred)
● Odometry
● Sensor Fusion
● Programming (C++, Python)
● Simulation
● State estimation
● Localization
● Robotics



Project Description
The aim of this thesis is to evaluate the performance of localization using different
sensors on an acherman based vehicle. The student(s) shall:

Perform a literary review of the state-of-the-art localization models. This includes
different sensors and filters that are used to estimate position and orientation.

Perform tests on a simulated mobile robot and demonstrate its localization capabilities.
This includes adding individual sensors to the robot, and evaluating the performance of
that specific sensor. When does the position start to drift? How much and how fast does
the position drift? Evaluate how sensor fusion affects the overall performance. Which
sensors must be used to maintain acceptable performance?

Evaluate how dead reckoning affects localization in the absence of GNSS.  How many
sensors (e.g., gyroscope, accelerator, encoder) are needed to maintain satisfactory
performance during DR? Using the most amount of sensors to achieve the most robust
and accurate localization model is not the focus in this thesis. It is more interesting to
know how few sensors are needed, while still maintaining acceptable performance. It is
recommended that the students use ROS2 on Ubuntu 20.04.

The use of any visual based localization is beyond the scope of this thesis.

RedRock.AI is built on more than ten years of expertise in lifting & handling by Red Rock
and is now a part of the Ocean Infinity Group, a world-leading marine robotics company.

We are driven by creating an impact on the future of autonomous solutions, our mission is
building autonomous environments that enable any equipment, regardless of brand and
function to cooperate seamlessly. In RedRock.AI we are working on state-of-the-art
control algorithms, sensor processing, object detection, navigation and advanced
simulations for autonomous vehicles. We are a group of devoted R&D engineers working
closely together to solve the most challenging task related to autonomy. We care about
the sustainability of our projects and we carry our production out with the lowest
environmental impact.

Company Contact Information

Full name E-mail address Phone number

Andreas K Fjetland andreas.fjetland@redrock.no 934 25 966

Nikolai Olav Persen nikolai.persen@redrock.no 915 95 171
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C Gazebo URDF

<robot name=placeholder >

. . .

<!−− This part of the code i s protected by non−disclorure agreement

−−!>

<!−− attach the imu_link to a ackerman based vehicle with a j o i n t −−!>

. . .

< l i n k name="$ ( arg link_namespace ) imu_link">

<visual >

<geometry>

<box s i z e ="0.1 0.1 0.1"/ >

</geometry>

</ visual >

</ link >

<!−− This plugin drives the ackerman vehicle with the commands

from cmd_vel topic −−>

<gazebo>

<plugin name="gazebo_ros_ackermann_drive" filename="

libgazebo_ros_ackermann_drive . so">

<ros >

<namespace>simulation </namespace>

<remapping>cmd_vel := cmd_vel</remapping>

<remapping>distance := distance </remapping>

</ros >

<update_rate >100.0 </ update_rate >

<!−− wheels −−>
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< f r o n t _ l e f t _ j o i n t >$ ( arg link_namespace ) f r o n t _ l e f t _ j o i n t </

f r o n t _ l e f t _ j o i n t >

< f r o n t _ r i g h t _ j o i n t >$ ( arg link_namespace ) f r o n t _ r i g h t _ j o i n t </

f r o n t _ r i g h t _ j o i n t >

< r e a r _ l e f t _ j o i n t >$ ( arg link_namespace ) r e a r _ l e f t _ j o i n t </

r e a r _ l e f t _ j o i n t >

< r e a r _ r i g h t _ j o i n t >$ ( arg link_namespace ) r e a r _ r i g h t _ j o i n t </

r e a r _ r i g h t _ j o i n t >

< l e f t _ s t e e r i n g _ j o i n t >$ ( arg link_namespace ) s t e e r _ l e f t _ j o i n t </

l e f t _ s t e e r i n g _ j o i n t >

< r i g h t _ s t e e r i n g _ j o i n t >$ ( arg link_namespace ) s t e e r _ r i g h t _ j o i n t </

r i g h t _ s t e e r i n g _ j o i n t >

<steering_wheel_joint >$ ( arg link_namespace ) ste er ing_j o int </

steering_wheel_joint >

<!−− steer and steering angle are in rad −−>

<max_steer >0.785398 </max_steer>

<max_steering_angle >7.854 </ max_steering_angle >

<!−− speed i s in m/ s −−>

<max_speed>17.8816 </max_speed>

<!−− Feel fr ee to tune these values −−>

<left_steering_pid_gain >955000 65 5</ left_steering_pid_gain >

< l e f t _ s t e e r i n g _ i _ r a n g e >0 0</ l e f t _ s t e e r i n g _ i _ r a n g e >

<right_steering_pid_gain >955000 65 5</ right_steering_pid_gain >

<right_steering_i_range >0 0</ right_steering_i_range >

<linear_velocity_pid_gain >5000 45 3</ l inear_velocity_pid_gain >

<l inear_velocity_i_range >0 0</ l inear_velocity_i_range >

<!−− output −−>

<publish_odom> f a l s e </publish_odom> <!−− t h i s i s the odometry

that i s too accurate −−!>
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<publish_odom_tf> f a l s e </publish_odom_tf>

<publish_wheel_tf > f a l s e </ publish_wheel_tf >

<publish_distance > f a l s e </ publish_distance >

<odometry_frame>$ ( arg link_namespace )odom</odometry_frame>

<robot_base_frame>simulation_base_link </robot_base_frame>

</plugin >

</gazebo>

<!−− This plugin publishes wheel odometry −−>

<gazebo>

<plugin name="ackerman_odometry_plugin" filename="libackerman_odom

. so">

<ros >

<remapping>odom:=/ odometry/wheel</remapping>

</ros >

<left_joint_name >$ ( arg link_namespace ) r e a r _ l e f t _ j o i n t </

left_joint_name >

<right_joint_name >$ ( arg link_namespace ) f r o n t _ r i g h t _ j o i n t </

right_joint_name >

<use_imu_heading>true </use_imu_heading>

<wheels_radius >0.2615475</ wheels_radius >

<wheels_separation >1.990400 </ wheels_separation >

</plugin >

</gazebo>

<!−− This plugin publishes i n e r t i a l odometry −−>

<gazebo reference ="$ ( arg link_namespace ) imu_link">

<gravity >true </ gravity >

<sensor name="imu_sensor" type="imu">
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<always_on>true </always_on>

<update_rate >100</update_rate >

< v i su a l i z e >true </ v i s u a l iz e >

<topic >__default_topic__ </ topic >

<plugin filename="libgazebo_ros_imu_sensor . so" name="

imu_plugin">

<ros >

<remapping>~/out :=imu</remapping>

</ros >

<topicName>imu</topicName>

<bodyName>$ ( arg link_namespace ) imu_link </bodyName>

<updateRateHZ>100</updateRateHZ>

<gaussianNoise >0.01 </ gaussianNoise >

<xyzOffset >0 0 0</ xyzOffset >

<rpyOffset >0 0 0</ rpyOffset >

<frameName>$ ( arg link_namespace ) base_link </frameName>

< i n i t i a l _ o r i e n t a t i o n _ a s _ r e f e r e n c e > f a l s e </

i n i t i a l _ o r i e n t a t i o n _ a s _ r e f e r e n c e >

</plugin >

<pose>0 0 0 0 0 0</pose>

</sensor >

</gazebo>

<!−− This plugin publishes true world position −−>

<gazebo>

<plugin name="gazebo_ros_p3d" filename="libgazebo_ros_p3d . so">

<ros >

<namespace>simulation </namespace>

<remapping>odom:=p3d</remapping>

</ros >
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<body_name>$ ( arg link_namespace ) base_footprint </body_name>

<frame_name>world </frame_name>

<update_rate >60</update_rate >

<xyz_offset >0 0 0</ xyz_offset >

<rpy_offset >0 0 0</ rpy_offset >

<gaussian_noise >0.0 </ gaussian_noise >

</plugin >

</gazebo>

</robot>
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D Ackerman Odometry Plugin Source Code

#include "ackerman_odom . h"

#include <math . h>

#include <gazebo_ros / conversions / b u i l t i n _ i n t e r f a c e s . hpp>

#include <gazebo/common/Time . hh>

#include <rclcpp / qos_overriding_options . hpp>

#include <rmw/ types . h>

#define tau 6.28318530718

void AckermanOdom : : Load ( gazebo : : physics : : ModelPtr _model , sdf : : ElementPtr

_sdf )

{

// Here I e x t r a c t the wheel j o i n t names , and other parameters that I

received from urdf f i l e

std : : s t r i n g left_joint_name = _sdf −>GetElement ( " left_joint_name " ) −>Get<

std : : str ing > ( ) ;

std : : s t r i n g right_joint_name = _sdf −>GetElement ( " right_joint_name " ) −>Get

<std : : str ing > ( ) ;

use_imu_heading = _sdf −>GetElement ( " use_imu_heading " ) −>Get<bool > ( ) ;

wheels_separation = _sdf −>GetElement ( " wheels_separation " ) −>Get<double > ( )

;

wheels_radius = _sdf −>GetElement ( " wheels_radius " ) −>Get<double >( ) ;

// Here , I get the l i n k defined as "link_name" from the actual robot

model

l e f t _ j o i n t _ = _model−>GetJoint ( left_joint_name ) ;

r i g h t _ j o i n t _ = _model−>GetJoint ( right_joint_name ) ;
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// I n i t i a l i z e values

time = _model−>GetWorld ( ) −>SimTime ( ) ;

model_ = _model ;

x = 0 . 0 ;

y = 0 . 0 ;

dx = 0 . 0 ;

dy = 0 . 0 ;

theta = 0 . 0 ;

dtheta = 0 . 0 ;

theta_prev = 0 ;

odom_. t w i s t . covariance = { 0 . 0 1 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 .01 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 .01 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 .01 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 .01 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 . 0 5 } ;

// Here , I w i l l get a l l the ros related s t u f f from the urdf f i l e that i s

within the tags <ros > such as namespace and remapping of topic name

node_ = gazebo_ros : : Node : : Get ( _sdf ) ;

i f ( use_imu_heading )

{

// since the imu topic has non−matching QoS sett ings , we have to

change them manually

auto qos_profi le = rclcpp : : QoS( rclcpp : : KeepLast (10) ,

rmw_qos_profile_sensor_data ) ;

// Here a subscriber i s created to be used to fetch imu heading
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heading_sub_ = node_−>create_subscription <sensor_msgs : : msg : : Imu>("imu

" , qos_profile ,

std : :

bind

(&

AckermanOdom

: :

Callback

,

this

,

std

: :

placeholders

: :

_1

) )

;

}

e lse

{

use_imu_heading = f a l s e ;

}

// Sett ing up the publisher with default topic name "odom"

odom_pub_ = node_−>create_publisher <nav_msgs : : msg : : Odometry>("odom" , 10)

;

// Bind the OnUpdate function to be cal led on every gazebo simulation

i t e r a t i o n
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update_connection_ = gazebo : : event : : Events : : ConnectWorldUpdateBegin ( std

: : bind(&AckermanOdom : : OnUpdate ,

t h i s

)

)

;

}

// This w i l l run for every simulation i t e r a t i o n

void AckermanOdom : : OnUpdate ( )

{

std : : lock_guard <std : : mutex> scoped_lock ( lock_ ) ;

// I get the x−position of the l i n k here

l e f t _ v e l = l e f t _ j o i n t _ −>GetVelocity ( 1 ) ;

r i g h t _ v e l = r i g h t _ j o i n t _ −>GetVelocity ( 1 ) ;

// OBS! kanskje gazbo t i d f o r r s a k e r hopp i s i g n a l e t

time = model_−>GetWorld ( ) −>SimTime ( ) ;

dt = time . Double ( ) − prev_time . Double ( ) ;

prev_time = model_−>GetWorld ( ) −>SimTime ( ) ;

// Calculate the arc lengths of the l e f t and r i g h t hand side

r e s p e c t i v e l y

arc_length_right = 2 * wheels_radius * r i g h t _ v e l * dt ; // 2* pi * r *

rotat ions r i g h t

a r c _ l e n g t h _ l e f t = 2 * wheels_radius * l e f t _ v e l * dt ; // 2* pi * r *

rotat ions l e f t
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// Calculate the radius of the curvature from the center of the vehicle .

This can be seen as constant each frame as the timestep i s quite

small .

curvature_radius = wheels_separation / 2 * ( arc_length_right +

a r c _ l e n g t h _ l e f t ) / ( arc_length_right − a r c _ l e n g t h _ l e f t ) ;

// calculate the change in position of the vehicle

dtheta = ( arc_length_right − a r c _ l e n g t h _ l e f t ) / 1.990400;

dx = curvature_radius * ( cosf ( theta ) * s i n f ( dtheta ) − ( s i n f ( theta ) * (1

− cosf ( dtheta ) ) ) ) ;

dy = curvature_radius * ( s i n f ( theta ) * s i n f ( dtheta ) − ( cosf ( theta ) * (1

− cosf ( dtheta ) ) ) ) ;

// integrate the change to find the t o t a l change in position

i f ( ! use_imu_heading )

{

theta = theta + dtheta ;

}

position . x = position . x + dx ;

position . y = position . y + dy ;

// calculate the l i n e a r and angular v e l o c i t i e s needed

l i n e a r _ v e l o c i t y . x = dx / dt ;

l i n e a r _ v e l o c i t y . y = dy / dt ;

angular_velocity . z = dtheta / dt ;

// reassign to odom container

odom_. t w i s t . t w i s t . l i n e a r = l i n e a r _ v e l o c i t y ;

odom_. t w i s t . t w i s t . angular = angular_velocity ;

odom_. header . stamp = gazebo_ros : : Convert< b u i l t i n _ i n t e r f a c e s : : msg : : Time>(
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time ) ;

odom_. header . frame_id = "odom" ;

odom_. child_frame_id = " simulation_base_footprint " ;

// Publish the data to the " position " topic

odom_pub_−>publish (odom_) ;

}

void AckermanOdom : : Callback ( sensor_msgs : : msg : : Imu imu)

{

// calculate and save the heading from imu quaternion

auto q = imu . orientation ;

double siny_cosp = 2 * (q .w * q . z + q . x * q . y ) ;

double cosy_cosp = 1 − 2 * (q . y * q . y + q . z * q . z ) ;

theta = 0.5* std : : atan2 ( siny_cosp , cosy_cosp ) ;

odom_. pose . pose . orientation . z = q . z ;

odom_. pose . pose . orientation .w = q .w;

odom_. pose . pose . orientation . x = q . x ;

odom_. pose . pose . orientation . y = q . y ;

}

// Remember to add t h i s macro at the end of your plugins , and use the

c l a s s name as input ! Otherwise i t w i l l crash

GZ_REGISTER_MODEL_PLUGIN(AckermanOdom)



BIBLIOGRAPHY 104

E Kalman Filter Parameter File(YAML)

### ekf config f i l e ###

e k f _ f i l te r _ no d e :

ros__parameters :

frequency : 30.0

two_d_mode : f a l s e

permit_corrected_publication : f a l s e

publish_acceleration : f a l s e

reset_on_time_jump : true

dynamic_process_noise_covariance : true

map_frame : map # Defaults to "map" i f unspecified

odom_frame : odom # Defaults to "odom" i f unspecified

base_link_frame : simulation_base_footprint # Defaults to "

base_link " i f unspecified

world_frame : odom # Defaults to the value of odom_frame

i f unspecified

odom0: /odometry/wheel

odom0_config : [ f a l s e , f a l s e , f a l s e ,

f a l s e , f a l s e , true ,

true , true , true ,

f a l s e , f a l s e , f a l s e ,
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f a l s e , f a l s e , f a l s e ]

odom0_queue_size : 1

odom0_nodelay : f a l s e

odom0_differential : f a l s e

odom0_relative : true

imu0 : /imu

imu0_config : [ f a l s e , f a l s e , f a l s e ,

true , true , true ,

f a l s e , f a l s e , f a l s e ,

f a l s e , f a l s e , f a l s e ,

f a l s e , f a l s e , f a l s e ]

imu0_nodelay : f a l s e

imu0_dif ferential : f a l s e

imu0_relative : f a l s e

imu0_queue_size : 5

imu0_remove_gravitational_acceleration : true

use_control : f a l s e

stamped_control : f a l s e

control_timeout : 0.2

control_config : [ true , f a l s e , f a l s e , f a l s e , f a l s e , true ]

a c c e l e r a t i o n _ l i m i t s : [ 2 . 5 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 3 . 4 ]

decelerat ion_l imits : [ 2 . 5 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 4 . 5 ]
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acceleration_gains : [ 0 . 8 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 9 ]

deceleration_gains : [ 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ]

process_noise_covariance : [ 0 . 0 5 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 ,

0 . 0 , 0 .05 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 ,

0 . 0 , 0 . 0 , 0 .06 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 .03 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 .03 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 .06 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0.005 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
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0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0.005 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 .04 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 .01 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 .01 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0.005 , 0 . 0 ,

0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 .01 ,

0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 .01 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,
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0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0.015]

init ia l_est imate_covariance : [1 e−9 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 1e−9 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 1e−9 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 1e−9 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1e

−9 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

1e−9 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 1e−9 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,
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0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 1e−9 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 1e−9 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

1e−9 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 1e−9 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 1e−9 , 0 . 0 ,

0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 1e

−9 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 1e−9 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,



BIBLIOGRAPHY 110

0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 1e −9]

i n i t i a l _ s t a t e : [138.76 , −171.48 , −0.14 ,

0 . 0 , 0 . 0 , 0 .03 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ,

0 . 0 , 0 . 0 , 0 . 0 ]
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