
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Erik Dale
Håvard Østli Fjørkenstad
Yeshi Jampel Pursley

Image Content and Hand Writing
Analysis of the Dead Sea Scrolls

Bahelor's thesis in Computer Science

Bachelor’s thesis in Computer Science
Supervisor: Aditya Suneel Sole
Co-supervisor: Marius Pedersen
May 2022

Ba
ch

el
or

’s
th

es
is

Erik Dale
Håvard Østli Fjørkenstad
Yeshi Jampel Pursley

Image Content and Hand Writing
Analysis of the Dead Sea Scrolls

Bahelor's thesis in Computer Science

Bachelor’s thesis in Computer Science
Supervisor: Aditya Suneel Sole
Co-supervisor: Marius Pedersen
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

The Department of Information Security and Communication Technology (IIK) at
the Norwegian University of Science and Technology (NTNU) in Gjøvik wanted
a methodology that can help automatically extract and classify information, such
as letters, from the Dead Sea Scrolls (DSS), later for them to use this information
to identify authorship and date of the scrolls. This project investigates possible
methodologies and designs and implements a solution for letter extraction from
the DSS. Images of the DSS are first enhanced using various computer vision en-
hancement methods such as contrast improvement and noise removal. This is
done to increase the accuracy of the segmentation and classification of the letters
respectively. After enhancement, the letters in those images are segmented with
Pytesseract. Our solution contains a method for splitting segments, such as words
or a few connected letters in a word. A dataset of the 22 ancient Hebrew letters
has been generated to train and test a Convolutional Neural Network (CNN). This
model then classifies the segmented letters. In this thesis work we have shown that
the overall methodology we have designed and used on the dataset we have gen-
erated performs better than the results from literature. A user interface has also
been made to implement the image enhancement, the image segmentation, and
the deep network classification in sequence and allows other functionalities such
as opening, closing, cropping and saving of images.

iii

Sammendrag

Institutt for informasjonssikkerhet og kommunikasjonsteknologi (IIK) ved Norges
teknisk-naturvitenskapelige universitet (NTNU) i Gjøvik ønsket en måte å auto-
matisk ta ut informasjon, for eksempel bokstaver, fra Dødehavsrullene, for så
senere å bruke denne informasjonen for å identifisere forfatteren og perioden
til Dødehavsrullen. Dette prosjektet undersøker mulig metodikk og design for å
implementere en løsning som finner og tar ut bokstavene fra Dødehavsrullene.
Bilder av Dødehavsrullene blir først bildebehandlet ved hjelp av ulike maskinsyn
metoder som kontrastforbedring og støyfjerning. Dette gjøres for å øke nøyak-
tigheten av henholdsvis segmenteringen og klassifiseringen av bokstavene. Etter
forbedring blir bokstavene i disse bildene segmentert med Pytesseract. Vår løs-
ning inneholder en metode for å dele segmenter, som for eksempel ord eller sam-
menhengende bokstaver inne i et ord. Et datasett med de 22 gamle hebraiske
bokstavene er generert for å trene og teste et konvolusjonelt nevralt nettverk.
Denne modellen klassifiserer deretter de segmenterte bokstavene. I denne opp-
gaven har vi vist at den overordnede metodikken vi har designet og brukt på
datasettet vi har generert, gjør det bedre enn resultatene fra andres tidligere verk.
Et brukergrensesnitt har også blitt laget for å implementere bildeforbedringen,
bildesegmenteringen og den dype nettverksklassifiseringen i denne rekkefølgen.
Den tillater også andre funksjoner som åpning, lukking, beskjæring og lagring av
bilder.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . xi
Tables . xv
Code Listings . xvii
Acronyms . xix
Glossary . xxi
1 Introduction . 1

1.1 The Dead Sea Scrolls . 2
1.2 Project Objective . 3
1.3 Goals and Frames . 3

1.3.1 Frames . 3
1.3.2 Result Goals . 3
1.3.3 Effect Goals . 3
1.3.4 Problem Delimination . 4

1.4 Group Background . 4
1.5 Organization . 4

1.5.1 Roles and Responsibilities . 4
1.6 Structure of the Report . 6

2 Development Process . 7
2.1 Development Model . 7

2.1.1 How We Divided Our Work . 8
2.1.2 Gantt-Diagram . 9

2.2 Meetings . 9
2.2.1 Meetings With Employers . 9
2.2.2 Meetings With Supervisors . 10
2.2.3 Internal Meetings . 10
2.2.4 Meetings With Dead Sea Scroll Expert 10

3 Background . 11
3.1 Dead Sea Scrolls . 11

3.1.1 Scrolls and Columns . 11
3.1.2 Letters . 12

3.2 Theory . 12

vii

viii E. Dale Y. Pursley H. Fjørkenstad: 0.0

3.2.1 Computer Vision . 12
3.2.2 Image Enhancement . 12
3.2.3 Testing of Image Enhancement 15
3.2.4 Image Segmentation . 16
3.2.5 Testing of image segmentation 17
3.2.6 Machine Learning . 18

3.3 Technologies . 22
3.3.1 Python . 22
3.3.2 OpenCV . 23
3.3.3 LabelImg . 24
3.3.4 Tesseract . 25
3.3.5 QT Box Editor . 25
3.3.6 PyTorch . 26

3.4 State of The Art . 27
3.4.1 Image Enhancement . 27
3.4.2 Image Segmentation . 28
3.4.3 Machine Learning . 29
3.4.4 Summary . 29

4 Methodology . 31
4.1 Dataset . 31

4.1.1 The Size of the Dataset . 32
4.1.2 Acquiring the Dataset . 32
4.1.3 Variance in The Dataset . 32
4.1.4 Usage of the Dataset . 33

4.2 System Pipeline . 34
4.3 Image Enhancement . 34

4.3.1 Contrast Improvement . 34
4.3.2 Noise Removal . 36

4.4 Image Segmentation . 39
4.4.1 Binarization . 39
4.4.2 Using Pytesseract to Segment Letters 39
4.4.3 Word Splitter . 42
4.4.4 Custom TRAINEDDATA File . 44
4.4.5 Calculating the Intersection over Union Score 45

4.5 Machine Learning . 46
4.5.1 Model . 46
4.5.2 Model Improvements . 48

5 User Interface . 51
5.1 Functional Requirements . 51

5.1.1 User Patterns . 51
5.2 Sketch . 53
5.3 Method . 54

5.3.1 PyQt5 . 55

Contents ix

5.3.2 Implementation of Image Enhancement, Image Segmenta-
tion and Machine Learning . 56

5.3.3 Design . 56
5.4 Results and Discussion . 58

5.4.1 Flow Chart . 58
5.4.2 Final Solution . 60
5.4.3 Classification Times . 62
5.4.4 Future Improvements to the User Interface 62

6 Quality Assurance . 65
6.1 Code Quality . 65

6.1.1 Tools . 65
6.1.2 Documentation . 66

7 Results . 67
7.1 Image Enhancement . 67

7.1.1 Adaptive Histogram Equalization 67
7.1.2 Morphological Transformations 70
7.1.3 Blur and Denoising Methods . 71
7.1.4 Image Enhancement Process . 73

7.2 Image Segmentation . 74
7.2.1 Binarization Results . 74
7.2.2 Pytesseract Results . 76
7.2.3 Word Splitter Results . 77
7.2.4 Custom TRAINEDDATA Results 82
7.2.5 IoU Results . 83

7.3 Machine Learning . 84
7.3.1 Prediction Results . 87
7.3.2 Comparison between epochs . 90

8 Discussion . 91
8.1 Project Process . 91

8.1.1 Working Environment . 91
8.1.2 Planning of the Project . 91
8.1.3 Meetings . 92
8.1.4 Development Process . 92

8.2 Technical Results . 92
8.2.1 Modifiable and Expandable Code 92
8.2.2 Image Enhancement . 93
8.2.3 Image Segmentation . 93
8.2.4 Machine Learning . 95

9 Conclusion . 97
9.1 Goals Achieved . 97
9.2 Future Work . 97

Bibliography . 99
A Standard Agreement . 105
B Confidentiality Agreement . 117

x E. Dale Y. Pursley H. Fjørkenstad: 0.0

C Problem Statement . 121
D Project Plan . 123
E How We Created a Custom TRAINEDDATA File 153
F User Interface Repository Link and README 155

F.1 Link . 155
F.2 README . 155

G Repository Link and README . 159
G.1 Link . 159
G.2 README . 159

H YOLO to Images Code . 163
I Time Tracking . 165

Figures

1.1 Figure of a Dead Sea Scroll Image . 1
1.2 Figure of The Great Isaiah Scroll . 2

2.1 Our Kanban board on GitHub . 7
2.2 Our Gantt-Diagram . 9

3.1 Figure of the old Hebrew alphabet . 11
3.2 Figure of histograms before and after adaptive histogram equalization 13
3.3 Figure of a skeletonized image . 17
3.4 Figure that shows an example of a poor, good and excellent IoU

score. Source: [23]. 18
3.5 Figure of a neural network . 19
3.6 Figure of a neuron . 19
3.7 Visual example of a confusion matrix. Green are correctly labeled,

while red are incorrectly labeled. In this case the Dog precision
would be true positives divided by the dog column, while recall
would be the true positives divided by the dog row 20

3.8 Figure of a convolution process . 21
3.9 Example of how max pooling works. 21
3.10 Example of an Alef that has been eroded 22
3.11 Example of LabelImg’s user interface 24
3.12 Example of QT Box Editor’s user interface 26
3.13 Binarization with BiNet . 28
3.14 Skeletonized image and histogram of the vertical image pixels quant-

ity . 29
3.15 Jain’s Pipeline . 30

4.1 Figure of Our Overall System Pipeline. 34
4.2 Figure of The Great Isaiah Scroll with and without noise removal . 38
4.3 Describes the segmentation process. 39
4.4 A single larger letter and two narrow letters that are connected. . . 41
4.5 Image of scroll, gotten from [4], with rectangles around letters.

Includes also the ID of the letter, which does not come with the
cv2.rectangle method. 41

xi

xii E. Dale Y. Pursley H. Fjørkenstad: 0.0

4.6 Gives an overview of the word splitter’s process. 42
4.7 Image of the letters "Mem" and "He" connected. 42
4.8 Two letters connected to each other. Each letter begins with a straight

line, shown with a red line, when reading from right to left. 43
4.9 A letter from the DSS and the same letter from modern Hebrew. . . 45
4.10 Figure of the LeNet architecture . 46

5.1 Use Case Diagram . 52
5.2 Sketch of User Interface . 54
5.3 Example of PyQt5 window . 56
5.4 Error Messages and Loading Animation 57
5.5 Flowchart For Our User Interface . 59
5.6 Our User Interface . 60
5.7 Our User Interface When an Image is Displayed 60
5.8 Cropping in Our User Interface . 61
5.9 Cropped Image in Our User Interface 61
5.10 Classified Image in Our User Interface 62

7.1 Figure of Contrast Improvement Resultsl 67
7.2 Figure of The Great Isaiah Scroll Column 1 69
7.3 Figure of Morphology Results . 70
7.4 Figure of Opening Results . 70
7.5 Figure of Image Enhancement Resultsl 71
7.6 Flowchart of Image Enhancement Process 73
7.7 The segmenter with the word splitter performed on a paragraph

from the Great Isiah Scroll column 35 using our custom TRAINED-
DATA file. Blue rectangles are successful segments while the red
rectangles are segments that are either too large or too small. Only
the letters surrounded by blue rectangles are saved. 74

7.8 Binarization Results . 75
7.9 More Binarization Results . 76
7.10 The segmenter without the word splitter performed on a paragraph

from the Great Isiah Scroll column 35 using our custom TRAINED-
DATA file. Blue rectangles are successful segments while the red
rectangles are segments that are either too large or too small. 77

7.11 Examples of problems with the segmenter. 77
7.12 The letters "He" and "Mem", number 53 and 54, found in Figure

7.7, were successfully split. 78
7.13 The letters "He" and "Nun", number 68 and 69, found in Figure 7.7,

were successfully split. 78
7.14 The letters "Yod" and "Mem", number 142 and 143, found Figure

7.7, were successfully split. 78
7.15 These Figures show how the segment was split, and where the ini-

tial segmentation points were in the image. 79
7.16 Resulting images from splitting this image: 7.15a 80

Figures xiii

7.17 These Figures show how the segment was split, and where the ini-
tial segmentation points were in the image. 80

7.18 Resulting images from splitting this image: 7.17a 81
7.19 This segment contains three letters, but it did not get sent to the

word splitter. This can be found in Figure 7.7, by looking for seg-
ment number 132. 81

7.20 The letter "Shin" has been incorrectly split into two. This can be
found in Figure 7.7, by looking for the segments between number
101 and 104. 82

7.21 The results when we draw rectangles over the segmented letters.
Dark blue= successful segment and not overlapping any other seg-
ments, light blue = successful but overlapping, red means the seg-
ment was either too large or too small. 82

7.22 The letters we have manually segmented have a blue rectangle
around them. 83

7.23 The letters we have manually segmented have a dark green rect-
angle around them while the automatically segmented letters have
a blue rectangle around them. 83

7.24 Graph showing average loss (bottom graph) and accuracy (top graph)
for both training (orange) and validation (blue) through 40 epochs,
trained on the DSS dataset . 85

7.25 Graph showing average loss (bottom graph) and accuracy (top graph)
for both training (orange) and validation (blue) through 40 epochs,
trained on the Modified National Institute of Standards and Tech-
nology (MNIST) dataset . 85

7.26 Shows the confusion matrix for validation in this models last epoch.
Rows show the true label, while columns show the predicted label. 87

7.27 Shows the predictions with a confidence score of less than 80%,
with a bar graph of the other confidence values to visualize what
characters they might have been confused with. 88

7.28 Displays the two characters that the classifier didn’t classify cor-
rectly, with a bar graph of all other confidence values. 88

7.29 Shows all the predictions for characters with a confidence score
about 80% . 89

7.30 Comparison for loss and accuracy between different epoch lengths 90

8.1 A figure showing two letters. The green rectangles show how we
manually segmented the letters, and the blue rectangles show how
the segmenter segmented the letters. DSS image gotten from: [4] . 94

8.2 Figure of calligrapher . 95
8.3 Figure of lamed and alef . 95

I.1 Time tracking table. These numbers represent how many hours we
have worked. 165

xiv E. Dale Y. Pursley H. Fjørkenstad: 0.0

I.2 Time tracking graph. These numbers represent how many hours
we have worked. 166

Tables

4.1 Distribution of characters in our dataset 32

5.1 User Patterns . 52

7.1 Segmentation results on The Great Isaiah Scroll column 35 using
different types of noise removal methods. 72

7.2 Peak Signal-to-noise Ratio (PSNR) results on The Great Isaiah Scroll
column 35 using different types of noise removal methods. 72

7.3 Training results our dataset at the final epoch 84
7.4 Training results on the MNIST dataset at 21 epochs 84
7.5 Results as described in this paper [47] 84
7.6 Shows all the precision and recall metrics for all letters 86
7.7 Training results with transfer learning while using the model in

Table 7.4 as a base . 87

xv

Code Listings

3.1 Example of how to perform median blur. 14
3.2 Example of how to perform bilateral blur. 15
3.3 Example of how to perform non-local means denoising. 15
3.4 Example of Bilateral Blur using OpenCV. In this code example im-

port cv2 as cv has been used to import OpenCV 23
3.5 Example of how a crop is saved in a .txt file using the YOLO format 24
3.6 Example of use of Pytesseract. After reading an image, you can use

the Pytesseract method image_to_boxes that reads each letter and
saves its coordinates. You then iterate through each letter and draw
red rectangles over each of them. To preview the results, you can
save the image. 25

3.7 Example of use of PyTorch and the creation of a linear feed-forward
network. The initialization function defines the network layers, while
the forward function is used in the training algorithm. 26

4.1 How we use OpenCV to perform adaptive histogram equalization
on an image. 35

4.2 How we use OpenCV to perform closing on an image. 36
4.3 How we use non-local means denoising. 37
4.4 They way we iterate through the segments provided by the im-

age_to_boxes method, extract each segments coordinates, and crop
the image based on those coordinates. 40

4.5 A method for drawing rectangles on an image. 41
4.6 Saves the letters image. If the letter image was saved correctly, it

will print the ID of the image that was saved and "True". 42
4.7 Implementation of the feature extraction layers in PyTorch 46
4.8 Implementation of the classification layers in PyTorch 47
4.9 Implementation of the convolutional neural network structure in

PyTorch . 48
4.10 Method used for freezing weights in the fully connected layers for

our model . 49

5.1 Simple example of how to create a simple window with PyQt5 . . . 55

xvii

xviii E. Dale Y. Pursley H. Fjørkenstad: 0.0

7.1 Median blur. 71
7.2 Bilateral blur. 72
7.3 Non-local means denoising. 72

H.1 How we convert the labels and coordinates from the YOLO format
to images. 163

Acronyms

CNN Convolutional Neural Network. iii, 21, 29, 32, 95

DSS Dead Sea Scrolls. iii, xiii, 1–6, 8–11, 24, 27–29, 31, 34, 36–40, 44, 45, 51,
53, 56, 60–62, 67–71, 73, 74, 85, 93–95, 97, 98

IoU Intersection over Union. 17, 45, 46, 74, 83, 93, 97

MNIST Modified National Institute of Standards and Technology. xiii, xv, 48, 84,
85, 95

OCR Optical Character Recognition. 25, 27, 29, 39, 42, 96

PSNR Peak Signal-to-noise Ratio. xv, 3, 15, 28, 38, 72, 73, 97

RNN Recurrent Neural Network. 29, 96, 98

xix

Glossary

C++ A very popular high level, object oriented programming language. 55

PASCAL VOC Pascal VOC is an XML file. It is a normal format to use when dealing
with data for machine learning. 24

XML Stands for eXtensible Markup Language. It is a markup language for storing
and transporting data. 24

YOLO YOLO is a data format for storing labeled data. xvii, 24

xxi

Chapter 1

Introduction

The Department of Information Security and Communication Technology (IIK) 1

at NTNU Gjøvik are working on understanding the authorship and date\period of
Dead Sea Scrolls (DSS), within the scope of the Lying Pen project2 in cooperation
with University of Agder3. Ordinarily, researchers working with DSS manually ex-
tract letters and words from the DSS, a task that takes a lot of time. Therefore,
NTNU researchers and the rest of the Lying Pen of Scribes consortium are inter-
ested in finding out if image processing and machine learning techniques can help
extract and learn features from the DSS images. Machine learning techniques will
help to classify the letters. The use of pre-processing on the images might be re-
quired to make content visible. In this project, we will focus on using machine
learning to extract the different letters of the DSS, which later on can be used for
date and authorship identification. The DSS that we will be working on are the
ones written in Hebrew. Figure 1.1 shows an example of a DSS written in Hebrew.

Figure 1.1: The Figure shows an example of one of the DSS written in Hebrew,
This one is fragmented and a little bit damaged. Image gotten from: [1]

1https://www.ntnu.edu/iik, visited 03.03.2022
2https://lyingpen.uia.no/, visited 02.05.2022
3https://uia.no/, visited 03.03.2022

1

https://www.ntnu.edu/iik
https://lyingpen.uia.no/
https://uia.no/

2 E. Dale Y. Pursley H. Fjørkenstad: 1.2

1.1 The Dead Sea Scrolls

The DSS are massive collections of biblical and non-biblical manuscripts that were
first found in the Judean desert in 1947. These were mainly written on parch-
ment (made out of animal skin) and papyrus (made from the pith of the papyrus
plant). Hebrew, Aramaic, Greek and Latin are some of the languages used in the
DSS, while other languages remain unidentified. The DSS consist of nearly intact
scrolls and thousands of fragments.[2] The Qumran Cave Scrolls are the most
well-known texts among the DSS, but there have also been found other docu-
ments and letters, especially papyri that had been hidden in caves by refugees
from wars.[3] Figure 1.2 shows an example of The Great Isaiah Scroll column 35.

Figure 1.2: The Great Isaiah Scroll column 35. Image gotten from: [4]

Chapter 1: Introduction 3

1.2 Project Objective

Our task will be to build a system for recognizing handwritten text using machine
learning on intact DSS. Our task will be to first do image pre-processing (if that is
needed), then segment the letters in the images and finally use machine learning
to recognize the letters.[2]

1.3 Goals and Frames

1.3.1 Frames

Time frame

The time frame we have to complete this project is the 10th of January to the 20th
of May 2022. Our solution and report need to be finished by this deadline.

Technology frames

• Our code should be able to run on Windows 10 and Windows 11.
• The code we create should be easily modifiable and/or reusable by others.

1.3.2 Result Goals

• We are to create a solution for extracting and learning the features from the
DSS images, by classifying the different letters on the DSS images.
• The classification of the letters needs a high accuracy. It should on average

have an accuracy of over 0.9 (90%).
• When it comes to the letter segmentation we intend to have an average

"Intersection over Union" score of over 0.5 (IoU > 0.5).[5]
• We assume that the time it takes to segment and classify letters on a single

column of the DSS should not take more than a couple of minutes, prefer-
ably not more than 2 minutes. This number is based on early testing with
Pytesseract (see Section 3.3.4 for more information). The DSS image we
used to test Pytesseract was the Great Isaiah Scroll column 35, which has a
size of 1999x2760 pixels.
• When it comes to the pre-processing part we intend our denoising methods

to have a Peak Signal-to-noise Ratio (PSNR) score of over 30 dB.[6]
• The users should be able to extract the features on the DSS through an easy

and intuitive user interface.

1.3.3 Effect Goals

• Our employers are currently extracting letters manually. Our solution should
automatically segment the letters which would greatly reduce the time it
takes for our employers to extract letters from the DSS.

4 E. Dale Y. Pursley H. Fjørkenstad: 1.5

• Our work should help free up work capacity for our employers, by making
it easier for them to extract information from the DSS.
• Our solution should be modifiable and expandable by others outside our

group. Meaning that others outside our group should be able to expand
upon our solution.

1.3.4 Problem Delimination

We as developers are just responsible for working on the extraction of letters and
the classification of them, not responsible for actually understanding the meaning
of what is written there. The solution we provide is only going to be used by the
Department of Information Security and Communication Technology at NTNU
Gjøvik and/or other partners involved in the Lying Pen project.

1.4 Group Background

The group consists of three students from the Computer Science programme at
the Norwegian University of Technology and Science (NTNU) in Gjøvik4. All the
students in the group have taken the same mandatory courses in the study plan.
The most relevant of all of these is the Computer Vision (IDATG2206) 5 course,
where we among other things went through image processing and machine learn-
ing techniques. Another relevant course is Introduction to User-Centered Design
(IDG1262)6, where we learnt how to design a user friendly interface. The only
difference in our competence comes from the different optional courses we have
taken.

1.5 Organization

The organizing of roles was a part of our project planning. In the project plan, we
specified roles and main responsibility areas. For more information about that see
Appendix D.

1.5.1 Roles and Responsibilities

Our Roles

A. Leadership – Project leader (Erik Dale)

Responsibilities: Responsible for making sure that group members follow the rules
and that each member is occupied with a task. The leader is the chairman in meet-
ings. If all the group members disagree, the leader has the final word.

4https://www.ntnu.no/gjovik, visited 03.03.2022
5https://www.ntnu.edu/studies/courses/IDATG2206#tab=omEmnet, visited: 09.03.2022
6https://www.ntnu.edu/studies/courses/IDG1362#tab=omEmnet

https://www.ntnu.no/gjovik
https://www.ntnu.edu/studies/courses/IDATG2206#tab=omEmnet
https://www.ntnu.edu/studies/courses/IDG1362#tab=omEmnet

Chapter 1: Introduction 5

B. Communication responsible (Yeshi Jampel Pursley)

Responsibilities: Responsible for communication in and outside of the group such
as scheduling meetings with our supervisors and employers.

C. Archive/ Document responsible (Håvard Fjørkenstad)

Responsibilities: Responsible for making sure that the meetings are documented.
He has a general overview of all of our documentation.

Main Responsibilities

A. Image Pre-Processing (Erik Dale)

Responsible for coding the necessary image enhancement techniques to ensure
a more effective image segmentation.

B. Image Segmentation (Yeshi Jampel Pursley)

Responsible for the code and techniques for segmenting the DSS images into let-
ters to be used as input for the neural network.

C. Machine Learning (Håvard Fjørkenstad)

Responsible for the code behind the neural network model and training, which
are to be used for classifying letters.

Other Roles

A. Employers

Our employers are Sule Yildirim Yayilgan and Tabita Anggraini Meilita Lumban
Tobing who works for the Department of Information Security and Communica-
tion Technology (IIK)7 at NTNU in Gjøvik. Their job is to state the requirements
of the project and also to help and give us guidance when it is needed.

B. Supervisors

Our supervisors are Marius Pedersen and Aditya Suneel Sole whom both work
at the Department of Computer Science8 at NTNU in Gjøvik. Their job is to give
us counseling throughout our work on the project.

7https://www.ntnu.edu/iik, visited 03.03.2022
8https://www.ntnu.edu/idi, visited 10.05.2022

https://www.ntnu.edu/iik
https://www.ntnu.edu/idi

6 E. Dale Y. Pursley H. Fjørkenstad: 1.6

1.6 Structure of the Report

The report is divided into 9 chapters. They should be read sequentially from
chapter to chapter. Following is a short description of the content in each chapter.

Chapter 1 - Introduction
Includes an introduction of the project and the project statement. Also presents
the group’s goals, organization and background.

Chapter 2 - Development Process
Walkthrough of development plan and how that plan was followed by the group
throughout the project.

Chapter 3 - Background
Breakdown of the DSS, theories and technologies this project is based upon. Con-
tains descriptions of DSS theories and technologies written about in the methodo-
logy chapter. It also contains state of the art mostly within the field of handwriting
recognition that is relevant for our project.

Chapter 4 - Methodology
This chapter explains the methods we used in our research and development and
why we chose those methods.

Chapter 5 - User Interface
In this chapter, we go through how the user interface was planned and made. We
also show the final solution and discuss possible future improvements to it.

Chapter 6 - Quality Assurance
Walkthrough of the different tools used to take care of code quality, and how the
group used those tools.

Chapter 7 - Results
Breakdown of all results gotten from our methods described in the methodology
chapter.

Chapter 8 - Discussion
Discussion of the results of our research, development and project process.

Chapter 9 - Conclusion
Concludes if we through our research and development have reached our stated
goals.

Chapter 2

Development Process

In the project plan (see Appendix D) we went through what kind of software
development model we will use in this project. This chapter further builds upon
this plan and explains how it was followed throughout the project process.

2.1 Development Model

The software development model we chose was Agile. Within the agile frame-
work, we chose to use Kanban. You can find our arguments for why we chose this
development model in our project plan in Appendix D. A Kanban board visually
depicts tasks at different stages in the development process. Each card contains a
description of the task. Each card must be placed in a column that describes the
status of the task. On GitHub, we created cards that are connected to their own
GitHub Issue where more detailed information can be found. The Issue on GitHub
is a tracking feature where we can track our work, bugs, and ideas. This is done
by commenting in the Issues.

Figure 2.1: Our Kanban board on GitHub.

7

8 E. Dale Y. Pursley H. Fjørkenstad: 2.1

2.1.1 How We Divided Our Work

The project is divided into five phases. The deadline for each phase can be viewed
on our Gantt-diagram (see Figure 2.2). The phases cover tasks that are obligatory
to our bachelor thesis and the tasks the employers want us to work on. The phases
provided us and our employers a simple overview of our goals for the project.

• First phase
The goal of our first phase was to finish the project plan, confidentiality
agreement, standard agreement and collaboration agreement.
• Second Phase

The goal of our second phase was to finish writing the code for image en-
hancement and image segmentation, develop a classifier, and write code
that is able to classify test case letters. These tasks would provide the core
functionality that we would need to work on the DSS. To develop our classi-
fier we helped Tabita Tobing prepare a dataset. We worked more on Image
Enhancement and Image Segmentation later to improve results, but when
we finished this phase those functionalities would provide good enough res-
ults for the next phase.
• Third Phase

In our third phase, we expanded on our work from the previous phase.
Our goals were to write code that can classify letters provided by our im-
age segmentation and to write code that works for DSS that need image
enhancement.
• Fourth Phase

In our fourth phase, we started working on the GUI. We also tried imple-
menting transfer learning and experimented with augmentation to expand
our dataset.
• Fifth Phase

In our last phase, we finished the report. We worked on the report during
the entire project, but after we finished our development our main focus
was on the report to get it finished before the deadline 20th of May.

Chapter 2: Development Process 9

2.1.2 Gantt-Diagram

Figure 2.2: Our Gantt-Diagram

2.2 Meetings

We had different types of meetings throughout the project. These are internal
meetings within the group, meetings with the supervisors, the employers, and
with experts in the DSS. This ensured that everyone in the group was on the same
page and that the supervisors and the employers could keep track of the status of
our work and development. They could also give us feedback on our work. Our
internal meetings were held on Discord1, while the other meetings were arranged
on Teams2.

2.2.1 Meetings With Employers

Every Thursday at 12:00 we had a meeting with our employers Sule Yildirim Yay-
ilgan and Tabita Anggraini Meilita Lumban Tobing. In these meetings we would
describe our progress, the issues we were facing that our employers could help
with, and ask questions related to the DSS.

1https://discord.com/, visited 22.04.2022
2https://www.microsoft.com/nb-no/microsoft-teams/log-in, visited 22.04.2022

https://discord.com/
https://www.microsoft.com/nb-no/microsoft-teams/log-in

10 E. Dale Y. Pursley H. Fjørkenstad: 2.2

2.2.2 Meetings With Supervisors

Every Thursday at 14:00 we had a meeting with our supervisors Marius Pedersen
and Aditya Suneel Sole. We would describe our progress, talk about the issues
we were facing that our supervisors could help with, and ask questions related to
Computer Engineering. We would often ask questions about Computer Vision and
our bachelor thesis report.

2.2.3 Internal Meetings

Every Thursday at 11:00 we had an internal group meeting where we went through
the questions we were going to ask the employers and supervisors in our meetings
with them. After every meeting with them, we would have an internal meeting
where we would discuss the takeaways and what we needed to work on.
Every Monday at 12:00 our group would have an internal meeting. We would
discuss our progress since the last meeting with our employers and supervisors.
We would also discuss what we could have ready for the next meeting on Thursday
with our employers.

2.2.4 Meetings With Dead Sea Scroll Expert

We had the opportunity to have several meetings with Torleif Elgvin who is an
expert on the DSS. In these meetings, we learned about the history of the DSS,
the letters and how they are written differently in various DSS.

Chapter 3

Background

Figure 3.1: The Figure
shows all the modern
Hebrew letters in the first
column (from the left), the
equivalent Hebrew letters
from the DSS period in the
second column and the
romanization in the third
[2]

This chapter is divided into four sections. The first Sec-
tion (Section 3.1) is about how the DSS are structured.
After that, there is a theory Section (Section 3.2) that
we have written to give a theoretical background for
readers to understand our methodology used through-
out the project. The theory Section contains definitions
of key terms related to what we have done. The third
section of the chapter (Section 3.3) called technolo-
gies, goes through the key technologies we have used
throughout the project work. State of the art (Section
3.4) is the last section of the chapter where we go
through similar work done before by various research
groups.

3.1 Dead Sea Scrolls

In this section we will go through the structure of the
DSS, especially the Great Isaiah Scroll. Section 3.1.1
contains information about the structure of the DSS
and Section 3.1.2 goes through the letters used in the
DSS. See Section 1.1 for more on the history of the DSS,
and see Figure 1.2 for an example of a column from the
Great Isaiah Scroll.

3.1.1 Scrolls and Columns

A DSS is divided into multiple columns. 1QIsaa, also
called The Great Isaiah Scroll, contains 54 columns.
There exists images of each column in the scroll. [4]
The columns are read from right to left. 1QIsaa is
written by two different scribes. The first scribe wrote

11

12 E. Dale Y. Pursley H. Fjørkenstad: 3.2

columns 1-27 and the second scribe wrote columns 28-
54. You can read more about scribes here: [7].

3.1.2 Letters

The Hebrew alphabet has 22 letters. Five of these letters have two different forms.
When they are at the end of a word they are written differently compared to when
they are at the beginning or in the middle of a word. When these five letters are
at the end of a word they are called final letters, while they are called non-final
letters when appearing at the beginning or in the middle of a word. The letters
with two different forms are "Mem", "Nun, "Tsadi", "Pe" and "Kaf". Ligatures are
two letters that are bound together, called bases and companions. Bases are on
the right side of the ligature and companions are on the left side. In Hebrew, there
are five letters that can be bases and six that can be companions.[2]

3.2 Theory

3.2.1 Computer Vision

Computer vision is a field where the goal is to emulate human vision in computers.
This includes learning and being able to make inferences and take actions based on
visual inputs.[8] Computer vision can be used for a lot of different tasks. It is used
in newer cars where it has an important role when it comes to improving the safety
system of a car. It can assist drivers by recognizing dangerous situations and act to
prevent them from such situations. Another example where computer vision can
be used is in industry to find faulty products in an assembly line.[9] Using digital
images or videos and sometimes deep learning models, computers can accurately
identify and classify objects. Common methods to achieve computer vision are
image enhancement, image segmentation and machine learning, which all are
subjects we will cover later in this chapter of the report in Sections 3.2.2, 3.2.4
and 3.2.6 respectively.

3.2.2 Image Enhancement

Image enhancement is one of the methods that help achieve computer vision. It is
about improving the quality and the information content of images before further
processing.[10] Often it includes methods that improve contrast, remove noise,
restore blurred images, etc. It can also be used to solve problems dealing with
machine perception and is among other things used to help computers extract
features from images. Other areas where computer vision is used can be automatic
character recognition, automatic processing of fingerprints, screening of X-rays
and blood samples etc.[8]

Chapter 3: Background 13

Contrast Improvement

A very common method when it comes to image enhancement, as mentioned
above, is contrast improvement. One method that deals with this is adaptive his-
togram equalization. To understand adaptive histogram equalization we need to
understand histogram equalization. Some images have their pixel values confined
to some specific range of values. A dark image will for example have a lot of low
pixel values. The goal of histogram equalization is to spread the pixels as equally
as possible across all the different values. By doing this, it improves the contrast
of the image. Adaptive histogram equalization works almost the same way, but
the image is divided into small blocks. In each of these small blocks, often called
"tiles", histogram equalization is performed, hereby the name "adaptive". The his-
togram equalization adapts to the different "tiles" of the image. [11]

Figure 3.2: Histogram of original image (left) and histogram of that same image
after adaptive histogram equalization.

Noise Removal

Noise is very common in images and can occur when the image is captured, during
transmission, when the image goes through other image processing methods such
as binarization, etc. Noise can be caused by reasons such as insufficient light levels,
interference in the transmission channel and imaging sensors being affected by
environmental conditions.[12] There are also different kinds of noise that can ap-
pear in an image. Some of the different kinds of noise include Gaussian noise, Salt-
and-pepper noise and exponential noise. One of the most common ways to remove
noise from images is to use filters. Different filters are good at removing different
types of noise. The Gaussian filter works well on Gaussian noise for example. If
the noise in the image changes throughout it, an adaptive filter like the Wiener
filter can be used. This filter adapts to the local image variance.[12] The next four
sections describe four different ways of removing noise, Section 3.2.2(Morpholo-
gical transformations), Section 3.2.2(Median blur), Section 3.2.2(Bilateral blur)
and Section 3.2.2(Non-local means denoising) respectively.

14 E. Dale Y. Pursley H. Fjørkenstad: 3.2

Morphological Transformations

Morphological transformations are different kinds of simple operations normally
performed on binary images. The method takes as input a structuring element or
kernel which decides the nature of the operation. [13] Four of these morphological
transformations will be explained further here.

1. Erosion
Erosion shrinks the boundaries of foreground objects of binary images.

g = f ⊖ s (3.1)

As it can be seen from Formula 3.1, a new binary image g is produced by
using kernel s on input image f. Ones will be put in all locations (x,y) of the
kernel’s origin at which s fits the input image f. This means that g(x,y)=1 if
s hits f and 0 otherwise.[14]

2. Dilation
Dilation is the opposite of erosion. It thickens foreground objects in a binary
image. The extent of the thickening is determined by the kernel s.

g = f ⊕ s (3.2)

A new binary image g is formed by the dilation where g(x,y)=1 if s hits f
and 0 otherwise.[14]

3. Closing
Closing is when dilation followed by erosion is performed on an image. It
is useful for closing small holes inside the foreground objects.[14]

f • s = (f ⊕ s)⊖ s (3.3)

4. Opening
Opening is when erosion of an image is followed by dilation. This transform-
ation tends to open up a gap between objects connected by a thin bridge of
pixels. It can also be used to remove noise in the background of the im-
age.[14]

f ◦ s = (f ⊖ s)⊕ s (3.4)

Median Blur

Median blur is not a very complicated method. It takes as parameters the image
and the kernel size. Using for example cv.medianBlur(img, 5), as seen in Code
listing 3.1, the kernel size will be 5x5 pixels. The kernel size needs to be an odd
number as the kernel needs to have a single central pixel. The method takes the
median of all the pixels under the kernel and replaces the central element with
this median value. Median blur is highly effective against Salt-and-pepper noise
[15].

1 median = cv.medianBlur(img,5)

Code listing 3.1: Example of how to perform median blur.

Chapter 3: Background 15

Bilateral Blur

Not only does bilateral blur remove noise, but it also keeps the edges sharp. The
operation is slower compared to other filters like median blur. Bilateral filtering
takes a Gaussian filter in image space and one more Gaussian filter which is a
function of pixel intensity difference between the central pixel and the surround-
ing ones. The job of the first Gaussian filter is to make sure that only nearby pixels
are considered for blurring. The second one is responsible for making sure that
only those pixels with similar intensities to the central pixel are considered for
blurring.[15] Code listing 3.2 shows an example of how to perform bilateral blur
using OpenCV.

1 bilateral_blur = cv.bilateralFilter(img,9,150,150)

Code listing 3.2: Example of how to perform bilateral blur.

Non-local Means Denoising

What non-local means denoising does is that it replaces the color of a pixel with
an average of the colors of similar pixels. It is not certain that the most similar
pixels are close at all, so the method scans a vast portion of the image and tries to
find all the pixels that resemble the pixel you want to denoise.[16] OpenCV has a
method called fastNlMeansDenoising as shown in Code listing 3.3.

1 means_denoised = cv.fastNlMeansDenoising(src=img,h=60.0, templateWindowSize=7,
searchWindowSize=21)

Code listing 3.3: Example of how to perform non-local means denoising.

3.2.3 Testing of Image Enhancement

Pixel to Noise Ratio (PSNR)

How well image enhancement methods work can often be subjective. One person
might state that median blur is best at removing noise from an image, while an-
other might state that bilateral blur is best. PSNR makes it possible to establish
quantitative measures to compare different image enhancement methods. PSNR
expresses the ratio between the maximum power (maximum possible value) of a
signal and the power of distorting noise that affects the quality of its represent-
ation. This ratio is often used as a measurement of quality between the original
image and the output image of an image enhancement method.

PSNR= 20 ∗ log10

� MAX f
p

MSE

�

(3.5)

MSE =
1

mn

m−1
∑

0

n−1
∑

0

∥ f (i, j)− g(i, j)∥2 (3.6)

16 E. Dale Y. Pursley H. Fjørkenstad: 3.2

Equation 3.5 represents the peak signal-to-noise equation and equation 3.6 rep-
resents the mean squared error equation [6] where MAX represents maximum
power, MSE represents minimum square error and m and n are the image row
and column sizes respectively.

3.2.4 Image Segmentation

According to this source, [17], "Image segmentation is a commonly used technique
in digital image processing and analysis to partition an image into multiple parts or
regions, often based on the characteristics of the pixels, such as pixel values. Image
segmentation could involve separating foreground from background, or clustering
regions of pixels based on similarities in color or shape." Different image segmenta-
tion algorithms and techniques have been developed like clustering, semantic seg-
mentation, and thresholding. These can be used for application areas like medical
imaging, automated driving, video surveillance, and computer vision. [17]

Thresholding

Thresholding is a method of segmenting objects based on a threshold value. Global
thresholding is when the same threshold value is used on the entire image. If the
threshold value changes during the thresholding of an image it’s called adaptive
thresholding. More information about adaptive thresholding can be read here [8].
With thresholding, you can convert an image into a binary image where the fore-
ground is one value and the background is another value. This process is called
binarization.
Otsu’s method automatically calculates the threshold value. The method can be
summarized by the equation 3.7. The purpose of the Otsu method is to separate
the image into two clusters with a threshold, which is found by minimizing the
weighted variance of the two classes.

σ2(t) =ω0(t)σ
2
0(t) +ω1(t)σ

2
1(t) (3.7)

where w0(t) and w1(t) are the probabilities of the two classes which is divided
by the threshold t. [18]

OpenCV has a method for adaptive thresholding:

1 adaptiveThreshold(src, dst, maxValue, adaptiveMethod, thresholdType, blockSize, C)

The adaptiveMethod parameter can either be ADAPTIVE_THRESH_MEAN_C,
which, according to this source [19], means the "threshold value is the mean of
neighborhood area", or ADAPTIVE_THRESH_GAUSSIAN_C, which means the
"threshold value is the weighted sum of neighborhood values where weights are
a Gaussian window." [19]

Chapter 3: Background 17

Skeletonization

According to this source, [20], "Skeletonization is a process for reducing foreground
regions in a binary image to a skeletal remnant that largely preserves the extent and
connectivity of the original region while throwing away most of the original fore-
ground pixels." This process uses the morphological process "thinning" to remove
certain foreground pixels to create a line that is one pixel wide or high. The Figure
3.3 shows an example of a skeletonized image.

Figure 3.3: An example of a skeletonized image.

Canny edge detector

Canny edge detection is an edge detection algorithm. It starts off by removing
noise, finding the intensity gradient of the image, applying a non-maximum sup-
pression which results in a binary image with "thin edges", and lastly applying
hysteresis thresholding which returns only the strong edges in the image. [21]

3.2.5 Testing of image segmentation

Intersection Over Union

According to this source, [22], Intersection over Union (IoU) "is a term used to
describe the extent of overlap of two boxes. The greater the region of overlap, the
greater the IOU.". IoU is used in image segmentation to for example compare a box
that represents the ground truth and another box which represents a prediction
of where the box should be. The prediction should be as close to the ground truth
as possible which means we are aiming for the highest IoU score.

18 E. Dale Y. Pursley H. Fjørkenstad: 3.2

Figure 3.4: Figure that shows an example of a poor, good and excellent IoU score.
Source: [23].

3.2.6 Machine Learning

Machine learning is a branch within Computer Science and Artificial Intelligence
(AI) that focuses on imitating how humans learn by using data and algorithms.
[24] Neural networks are based on the structure of the human brain and mimic
how biological neurons signal each other, which allows the computer to recognize
features and patterns. [25]

Neural Networks

A neural network is a set of machine learning algorithms that takes an input,
passes it along multiple layers of neurons and outputs a prediction based on the
final sum. It is composed of multiple layers of neurons, which in its most basic form
consists of an input layer, one or more hidden layers, then an output layer, as seen
in Figure 3.5. The neurons in each layer are composed of a group of weighted
inputs into those neurons, a bias and an activation function to introduce non-
linearity into the network. [25]

Chapter 3: Background 19

Figure 3.5: Visual example of a neural network structure. Here, each circular
node represents an artificial neuron and the lines represent a connection from
the output of one artificial neuron to the input of another.

The output of a neuron, like the one in Figure 3.6, can be formulated as

ŷ = σ(x ·w+ bias) (3.8)

where x is an array of the node inputs x=[x1,x2,x3,...] and w is an array of the
node weights w=[w1,w2,w3,...]. σ is the activation function 3.9, and therefore
the node output varies based on which activation function is used. For instance,
Rectified Linear Units (ReLU) is a popular activation function used in the hidden
layers because of its good performance. For classification problems, Sigmoid or
Softmax activation functions must be used in the final layer.

σ(x) =

�

z z > 0
1 z <= 0

�

σ(x) =
1

1+ e−z
(3.9)

w1
w2
w3

X1

X2

X3

b

output

Figure 3.6: Visual example of how a neuron in a network is structured. X are the
outputs from previous neurons, while w are the weights. b represents the bias that
gets added to the weighted sum of inputs, and sigma is the activation function
before the neuron outputs a result.

Neural Networks learn and improve their performance by adjusting these weights
using back-propagation, where an error is calculated based on the difference

20 E. Dale Y. Pursley H. Fjørkenstad: 3.2

between what the models predict and the inputs’ ground truth with the help of a
loss (also known as cost) function. [26] The neural network model is trained over
a set number of epochs, where the entire dataset is passed over each iteration.

Machine Learning Metrics

To evaluate a machine learning model, a set of different metrics can be used to
get an indication of how well the model is doing. These can be divided into two
groups. Group one includes accuracy and loss, while group two includes preci-
sion and recall. A neural network’s accuracy is the number of correct predictions
over the batch size, while the loss value depends on the loss function used, but is
generally an indication of how bad a single prediction was. Precision and recall is
a measure of quality and quantity, where precision is how many of the predicted
characters are relevant and recall is how many relevant characters are predicted.
Related to these metrics is the confusion matrix as seen in Figure 3.7, which in
a multi-label classification problem is a table between true and predicted classes,
with the prediction distributed in the correct rows and columns.

10 7 4

651

5 3 9

Dog Cat Horse

D
og

C
at

H
or

se

Predicted

Tr
u

e

Figure 3.7: Visual example of a confusion matrix. Green are correctly labeled,
while red are incorrectly labeled. In this case the Dog precision would be true
positives divided by the dog column, while recall would be the true positives
divided by the dog row

Convolution

Convolution is an operation that uses a kernel to transform the input image into
a set of feature maps, depending on what type of kernels are used. The feature
maps are representations of what the kernel has learned about the image. The

Chapter 3: Background 21

operation involves sliding a kernel across the image, where the sum of the kernel
at each position is a pixel in the resulting feature map. An example of this can be
seen in Figure 3.8. Without padding on the image, the feature map will be smaller
than the original, because the kernel cannot perform its operation outside valid
elements e.g. pixel values. [27]

Figure 3.8: Visual example of how a convolution operation works.

Pooling

Pooling is an operation used to compress each feature map, where every patch
of the pooling size is reduced to one pixel, as seen in Figure 3.9. The value of
this pixel is determined by the type of pooling used. Average Pooling will take the
average value within the patch, while Max Pooling will take the maximum value.
[27]

Figure 3.9: Visual example of how a max pooling operation works.

Convolutional Neural Networks

Convolutional Neural Network (CNN) combine the traditional neural network
structure with the convolution and pooling layers, in addition to the fully-connected

22 E. Dale Y. Pursley H. Fjørkenstad: 3.3

layer. The first layer in this model is a convolution layer, which extracts simple fea-
tures and is followed by either additional convolutional layers or a pooling layer.
These two-layer types can also be stringed together. The final layer in this model is
the fully-connected layer, which performs the classification task. As you get deeper
into the convolutional layers, the complexity of the model increases and the layers
extract more complex features. [28]

Augmentation

Image augmentation is a way of increasing the size of your dataset through various
operations which modify the image in some way, such as rotation, zooming, blur-
ring, shearing, etc. It is a way of not only getting a bigger dataset but also a more
diverse one. When it comes to images of handwriting operations such as rotation
and morphological methods like erosion and dilation are common. This makes a
lot of sense as handwriting often is a bit skewed and the letters can sometimes
be of different thicknesses. In Figure 3.10 we can see an example of alef being
eroded.

Figure 3.10: The left image is the original Alef while the right one has gone
through erosion.

3.3 Technologies

3.3.1 Python

Python is an open-source, object-oriented, interactive and interpreted program-
ming language. It was created by Guido van Rossum in 1989 and is today managed

Chapter 3: Background 23

by The Python Software Foundation1.[9] Python offers the use of exceptions, mod-
ules, dynamic typing, classes and very high-level dynamic data types. Python can
be run on almost all operating systems and it is a universal language found in a
variety of different applications. Python also includes a lot of third-party modules
that are available in the Python Package Index (PyPI)[29]

3.3.2 OpenCV

OpenCV2 is an open-source, highly optimized library with focus on real-time ap-
plications. It has cross-platform support and its C++, Python and Java interfaces
support Linux, MacOS, Windows, iOS, and Android.[30] OpenCV is a tool for
performing computer vision tasks and for image processing. It can be used for
purposes such as noise removal and image segmentation. Code listing 3.4 shows
an example of how OpenCV can be used in Python.

1 import imageio as img
2 from PIL import Image
3 import cv2 as cv
4

5 # Read the image using imageio
6 img = img.imread("./image.jpg")
7

8 # Converts the image to gray scale if it isn’t already
9 if len(img.shape) == 3:

10 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
11 else:
12 gray_img = img
13

14 # Adaptive binarization of the image using openCV (cv2) module
15 binarize_img = cv.adaptiveThreshold(src=gray_img, maxValue=255,
16 adaptiveMethod=cv.ADAPTIVE_THRESH_GAUSSIAN_C, thresholdType=cv.THRESH_BINARY,
17 blockSize=39, C=15)
18

19 # Using bilateral blur, which is highly effective at noise removal while
20 # preserving edges.
21 bilateral_blur = cv.bilateralFilter(binarize_img,9,150,150)
22

23 # Saving the biniarized and blured image
24 im = Image.fromarray(bilateral_blur)
25 im.save("/blured_image.jpg")

Code listing 3.4: Example of Bilateral Blur using OpenCV. In this code example
import cv2 as cv has been used to import OpenCV

1https://www.python.org/psf/, visited 15.02.2022
2https://opencv.org/, visited 15.02.2022

https://www.python.org/psf/
https://opencv.org/

24 E. Dale Y. Pursley H. Fjørkenstad: 3.3

3.3.3 LabelImg

LabelImg3 is an open-source graphical image annotation tool and it is used for
labeling object bounding boxes in images.[31] In LabelImg you can load a folder
of images, crop areas of the images and then label those images. An example of
LabelImg’s user interface can be viewed in Figure 3.11. If you are using LabelImg
for making a data set for machine learning, those labels would be your classes. The
crops are saved as XML files in PASCAL VOC format, YOLO or CreateML formats.
In the YOLO format, the crops are saved in a .txt file where each line represents
one crop.

1 2 0.568159 0.126410 0.013581 0.009822

Code listing 3.5: Example of how a crop is saved in a .txt file using the YOLO
format

Listing 3.5 is an example of how the class and coordinates of the crops are stored
using YOLO format. The first number in the line indicates the label (class) of the
crop. The number corresponds to the line number in a list of classes. The next four
numbers indicate the positioning and width and height of the cropped out part
of the image. Using code that can be found in Appendix H, we can crop out the
images and from the DSS image we used LabelImg on.

Figure 3.11: Example of LabelImg’s user interface.[31]

3https://github.com/tzutalin/labelImg, visited 17.02.2022

https://github.com/tzutalin/labelImg

Chapter 3: Background 25

3.3.4 Tesseract

Tesseract is an open source Optical Character Recognition (OCR) engine. It can
be used via a command line or via API.[32] Pytesseract, Python-tesseract, is an
OCR tool for python. Pytesseract is a wrapper for Google’s Tesseract-OCR Engine.
4 This software can be used to read and recognize text on images. Code listing 3.6
shows an example of Pytesseract being used in Python.

1 import pytesseract
2

3 import cv2
4

5 pytesseract.pytesseract.tesseract_cmd = r’C:\Program Files\Tesseract-OCR\tesseract.
exe’

6

7 img = cv2.imread(’example.png’)
8

9 # Detects characters and draws red rectangles over them
10 h_img, w_img = img.shape
11 boxes = pytesseract.image_to_boxes(img, lang="heb")
12 for b in boxes.splitlines():
13 b = b.split(’ ’)
14 x, y, w, h = int(b[1]), int(b[2]), int(b[3]), int(b[4])
15 cv2.rectangle(img, (x, h_img - y), (w, h_img - h), (0, 0, 255), 1)
16

17 print("Saving the img with segments was successful:", cv2.imwrite(’img_seg.png’,
img))

Code listing 3.6: Example of use of Pytesseract. After reading an image, you can
use the Pytesseract method image_to_boxes that reads each letter and saves its
coordinates. You then iterate through each letter and draw red rectangles over
each of them. To preview the results, you can save the image.

3.3.5 QT Box Editor

As defined in [33], QT Box Editor5 is a multi-platform visual editor for tesseract-ocr
box files (used for OCR training) based on QT4 library. QT Box Editor is used to
manually edit box files. A box file is a text file that contains information about
each character and the coordinates of its bounding box in an image used for OCR
training. The QT Box Editor user interface can be viewed in Figure 3.12.

4https://pypi.org/project/pytesseract/, visited 04.03.2022
5https://zdenop.github.io/qt-box-editor/, visited 29.03.2022

https://pypi.org/project/pytesseract/
https://zdenop.github.io/qt-box-editor/

26 E. Dale Y. Pursley H. Fjørkenstad: 3.4

Figure 3.12: Example of QT Box Editor’s user interface.

3.3.6 PyTorch

PyTorch6 is an open-source deep learning framework, mainly developed by the
Meta Platforms (Facebook) AI Research team [34]. It is an optimized tensor lib-
rary, built to utilize the GPU for quicker training. The framework is deeply integ-
rated into python, making it fast and easy to both read and write [35].

1 import torch.nn as nn
2 import torch.nn.functional as F
3

4 class Linear(nn.Module):
5 def __init__(self):
6 super(Linear, self).__init__()
7 self.flatten = nn.Flatten()
8 self.fc1 = nn.Linear(28*28, 256)
9 self.fc2 = nn.Linear(256, 128)

10 self.fc3 = nn.Linear(128, 10)
11

12 def forward(self, x):
13 x = self.flatten(x)
14 x = F.relu(self.fc1(x))
15 x = F.relu(self.fc2(x))
16 x = self.fc3(x)
17 return x

Code listing 3.7: Example of use of PyTorch and the creation of a linear feed-
forward network. The initialization function defines the network layers, while the
forward function is used in the training algorithm.

6https://pytorch.org/, visited 15.02.2022

https://pytorch.org/

Chapter 3: Background 27

3.4 State of The Art

What we go through in this section is the state of the art of image enhancement,
image segmentation and machine learning mostly within the field of handwriting
or digital text recognition. While what we have gone through at the beginning of
this chapter is more general theories and technologies within the field of computer
vision, this Section contains more concrete and recent research made by computer
vision researchers.

3.4.1 Image Enhancement

When it comes to OCR there are a lot of different image pre-processing techniques
that can be used to improve its accuracy. Techniques that are used depend on a
lot of different factors. They can depend on what kind of text you are going to
recognize, whether it is computer-generated or handwritten. They can also de-
pend on the kind of background the text has. Is the background clean and white
or does it have smudges and cracks? Another big factor is how the image of the
text has been taken. Has it been taken with a phone camera with low resolution at
a slanted angle or has it been taken with a high-resolution camera straight from
above? In [14], the authors had to use skewing and sharpening tools to deskew
images and get a better OCR accuracy. This is not something we have to worry
about as all the DSS images are taken at a straight angle with a high-resolution
camera. In [14], the authors also used the morphological transformation opening
as they found out that their binarization methods were sometimes turning the
characters into blobs. In [36], the authors use a local brightness and contrast ad-
justment method to handle lighting variations, and they use the Un-sharp Masking
method to sharpen the images so they are able to easier extract the text in them.

In [37], Dhali et al. used BiNet, which is a deep-learning-based method designed
to binarize the DSS images. This method seems to create very little Salt-and-
pepper noise in the background as seen in Figure 3.13, so they do not need to
use any image enhancement methods. In [38], Reynolds et al. use dilation where
only the outlines of letters may remain after binarization.

28 E. Dale Y. Pursley H. Fjørkenstad: 3.4

Figure 3.13: Results of binarization using BiNet.[39]

In [40] Nayef et al. they use non-local means denoising together with sparse rep-
resentations for deblurring digital text. PSNR is also used as an objective measure
to compare the deblurred image with the ground truth image. In [41] Sukassini
and Velmurugan use median blur to image enhance mammogram images. They
also use PSNR to evaluate their results.

3.4.2 Image Segmentation

When working on the DSS, state of the art image segmentation is used for extract-
ing and processing different features like scroll fragments [42] and handwriting
styles for historical manuscript dating [39]. We focused instead on segmenting the
letters in a scroll. Each letter can then be sent to our classifier which tells the user
what letter the classifier thinks it is. The segmented letters can also be saved if the
user would like to create or expand a data set. Some letters are also connected
so one of our goals is to segment an image with connected letters into individual
letters.

In [43], the authors describe how they segmented cursive handwriting. They first
correct the images that are slanted and have slopes by using affine 2D transform-
ation. Then they create a skeleton of the image and a histogram of the vertical
image pixels quantity. View Figure 3.14 to see an example of a skeletonized im-
age and a histogram of the vertical image pixels quantity. Then they find the seg-
mentation points in the image based on the histogram and a predetermined ideal
distance. This method can be used for splitting words with connected letters in
the DSS.

Chapter 3: Background 29

Figure 3.14: Skeletonized image and histogram of the vertical image pixels
quantity. Image source: [43]

3.4.3 Machine Learning

State of the art machine learning techniques and methods are used when classi-
fying the DSS characters. The leading solution for character recognition problems
involves using OCR, which is a conversion of either handwritten or printed text,
to a digital format. In most cases, OCR uses CNN models as the basis of their
artificial intelligence, and sometimes OCR is combined with Recurrent Neural
Network (RNN). A relevant paper on "Feature-extraction methods for historical
manuscript dating based on writing style development" [44] mentions using this
CNN approach for another, but relevant dataset. Papers with code7 is a website
with a collection of state of the art machine learning methods. Here we can see
that VAN [45] and StackMix [46] are the best-performing solutions on the "Hand-
written Text Recognition" task, and they both utilize CNNs. We have chosen to
use convolutional methods for classifying DSS characters because of this power-
ful performance and ease of implementation.

3.4.4 Summary

In [47] Sudhakaran Jain had a similar approach to what we are going to do in our
project. His pipeline can be seen in Figure 3.15. He had a DSS image, did some pre-
processing on it, segmented the lines and words and then used a CNN classifier to
classify the letters. His pre-processing methods did not include any noise removal
or contrast improvement, however, which we are going to implement. Jain uses
Otsu binarization, something that we are going to use as well. A lot of work has
been done when it comes to using image enhancement to improve OCR accuracy.
We wanted to do the same thing just for the DSS. In [47] Jain uses histograms to
segment the lines and words in the DSS images. We are going to be using a OCR
tool called Pytesseract to directly segment the letters. This makes it so that we do
not have to worry about curved lines in the DSS. The kind of line segmentation
Jain used struggled to segment curved lines. Jain’s classifier uses a sliding window
to classify the letters on his segmented words. This is something we do not have to
use as our segmentation segments each letter on the DSS images. The only thing

7https://paperswithcode.com/, visited 23.05.2022

https://paperswithcode.com/

30 E. Dale Y. Pursley H. Fjørkenstad: 3.4

we have to worry about is if our segmentation segments words instead of letters,
which is when we will use a word splitter to split the words into letters.

Figure 3.15: Pipeline of Jain’s handwriting recognition system.[47]

Chapter 4

Methodology

In this chapter we go through the approaches we used in our project work and
explain what choices we made to improve our results when necessary. It contains
a walkthrough of methods used in our core topics, namely, dataset (4.1), image
enhancement (4.3), image segmentation (4.4) and machine learning (4.5). The
link to our GitHub repository and its README can be found in Appendix G.

4.1 Dataset

The dataset contains a set of all the letters in the old Hebrew alphabet that was
extracted from the DSS. These were manually cropped by our kind and lovely
employer Tabita Tobing, with some help from us. We cropped the letters using a
tool called LabelImg (See Section 3.3.3 for more information). The letters were
cropped from the DSS and then labeled. The scroll we cropped from was The Great
Isaiah Scroll.[4]. The advantage of using LabelImg is that it saves the cropped
images in txt-files in the form of coordinates in reference to the DSS image it was
cropped from (See Section 3.3.3). One might ask why the tool does not just save
the cropped images in the form of images (pixel values) right away instead of
coordinates, such that one does not have to convert these coordinates to images
later. There is an advantage to doing it this way, however. By only saving the
coordinates, we can use those to generate other types of datasets from different
variants of the DSS images. For example, we can generate a gray-scale dataset,
a binarized one or one that is generated after image enhancement. This way, we
can test different dataset formats. Between these methods, we chose to use an
Otsu binarized dataset. Tabita Tobing used Otsu binarization when creating her
dataset. We wanted all the images in the dataset to be binarized with the same
method to ensure that all the images are in the same format.

31

32 E. Dale Y. Pursley H. Fjørkenstad: 4.1

4.1.1 The Size of the Dataset

Character Dataset

ALEF 395
BET 198

GIMEL 222
DALET 197

HE 474
VAV 268

ZAYIN 318
HET 260
TET 195
YOD 337
KAF 195

LAMED 364
MEM 239
NUN 191

SAMEKH 165
AYIN 307
PE 195

TSADI 316
QOF 235
RESH 307
SHIN 304
TAV 266

Table 4.1: Distribution of
characters in our dataset

’How big a dataset should be?’ can be a hard question
to answer. In the article called PHOCNet: A Deep Convo-
lutional Neural Network for Word Spotting in Handwrit-
ten Documents [48] written by Sebastian Sudholt and
Gernot A. Fink, the authors found out that when you
use a CNN, you do not always need massive amounts of
training data while training from scratch. In the article,
they state that by using a training set of 3645 images,
the authors were able to outperform other methods.
They achieved outperforming results by using simple
data augmentation and common regularization tech-
niques. [48] Considering this, we figured out that the
size of our training set should be somewhere between
3000 and 7000 images. This may also be increased by
using different types of augmentation more thoroughly
explained in Section 4.5.2. Our dataset, shown in Table
4.1, does not include characters in final form, which are
used to represent the letters "Mem", "Nun, "Tsadi", "Pe"
and "Kaf" when they appear at the end of a word.

4.1.2 Acquiring the Dataset

As mentioned in the paragraph above, Tabita, with help
from us, made the dataset we have used in this pro-
ject. The dataset was extracted from the Great Isaiah
Scroll.[4] Tabita cropped from five different columns
in the scroll, and we choose a few columns each to
crop from. Tabita cropped about 2500 letters, while our
group cropped about 1500. This left us with a dataset of
about 4000 letters, which should be more than enough.
The only problem was that the dataset ranged from 40
of one letter to 594 of another. Therefore, we decided to focus on the letters with
the fewest crops and divided those within our group. Tabita also helped us with
this. When we were done with that Tabita had cropped about 3107 letters, while
we had cropped about 2841. This left us with a final dataset size of about 5948
letters.

4.1.3 Variance in The Dataset

The dataset contains a lot of characters with different amounts of noise and de-
fects both inside the letters and in the background. There are also some segmented
letters with parts of other letters attached to them, because of the writing style of
the author and "typeface anatomy". This type of variance can be good because the

Chapter 4: Methodology 33

classifier might be able to detect letters with noise and defects. It can also be bad
because letters with defects might look like different letters. An important char-
acteristic of the letter "Vav" is that the top of the letter has a bend at the top that
goes towards the left, and if that letter has a defect where that bend disappears,
it can look like the letter "Zayin" (See Figure 3.1). There is also variance between
the Hebrew letters themselves which is important to take into consideration. Let-
ters such as "Vav" and "Yod", "Dalet" and "Resh", "Samekh" and "Tav", as seen at
3.1, can be especially hard to differentiate from each other depending on how
they are written and how the scribe’s writing style is. What information is lost or
added during the denoising and binarization steps can also affect this.

4.1.4 Usage of the Dataset

Without any kind of processing, the raw dataset can not be used to train the ma-
chine learning model, because neural networks always expect the same input size
for each input. Since the images in the dataset vary in size, we need a method
to make all the images uniform without losing too much information, so simply
resizing and stretching the images is not an option. To do this, we have chosen a
method that adds white padding to the images, which makes them all 100x100
pixels in size. The added white space ensures that the letters are centered and
maintain their proportions and sizes relative to each other. The pixel size of 100
was chosen to make sure that the new images were always bigger than the pre-
processed images, otherwise, the algorithm would break. Before feeding the im-
ages to the machine learning model, the pixel values need to be normalized so
their value is between 1 and 0.

34 E. Dale Y. Pursley H. Fjørkenstad: 4.3

4.2 System Pipeline

Figure 4.1 shows the process to obtain classified letters from a DSS image.

Figure 4.1: This figure gives an overview of the overall process of classifying the
letters on a DSS image.

4.3 Image Enhancement

The DSS are very old and fragile. Most of them were written from about 200
B.C. to about 70 A.D.[49] While some of the scrolls are in very good shape, like
the Great Isaiah Scroll[4], others are not so well preserved. A lot of them are
damaged and have different kinds of stains and cracks. Some of them consist of
a lot of fragments as well (See Figure 1.1). That is where image enhancement
comes in. If we are to segment the letters on the scrolls, so that they later can be
classified, we will have to remove as much of these damages as possible.

4.3.1 Contrast Improvement

We tested different kinds of contrast improvement on The Great Isaiah Scroll.
The first approach we tried when it comes to contrast improvement was to use
OpenCV’s equalizeHist method.[11] This improved the contrast between the let-
ters and the background, but it also made the stains in the background in a lot
of the DSS images darker and bigger. Because of this we tried OpenCV’s create-
CLAHE method, as seen in Code listing 4.1, which utilizes adaptive histogram
equalization.[11] This improved the contrast between the letters and the back-
ground without making any dark stains in the background darker or bigger.

Chapter 4: Methodology 35

1 import cv2
2 import imageio as img
3 from PIL import Image
4

5 # Read the image using imageio
6 img = img.imread("./img.jpg")
7

8 # Converts the image to gray scale if it isn’t already
9 if len(img.shape) == 3:

10 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
11 else:
12 gray_img = img
13

14 # Performing adaptive histogram equalization on the image
15 clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(80, 80))
16 equalized = clahe.apply(gray_img)
17

18 # Saving the equalized image
19 im = Image.fromarray(equalized)
20 im.save("./equalized_img.jpg")

Code listing 4.1: How we use OpenCV to perform adaptive histogram
equalization on an image.

36 E. Dale Y. Pursley H. Fjørkenstad: 4.3

4.3.2 Noise Removal

Morphological Transformations

Using morphological transformations such as opening and closing, we have worked
on removing Salt-and-pepper noise both in the background and inside the letters
we are to segment. The noise in the background of the letters appears as black
cracks and dots, while the noise inside the letters are white cracks and dots.

1 import imageio as img
2 from PIL import Image
3 import cv2 as cv
4

5 # Read the image using imageio
6 img = img.imread("./img.jpg")
7

8 # Converts the image to gray scale if it isn’t already
9 if len(img.shape) == 3:

10 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
11 else:
12 gray_img = img
13

14 # Inverting the image
15 inverted_img = cv.bitwise_not(gray_img)
16

17 # Creates an elliptical kernel
18 kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3,3))
19

20 # Performs closing on the image
21 closed_img = cv.morphologyEx(inverted_img, cv.MORPH_CLOSE, kernel)
22

23 # Inverts the image back
24 inverted_back = cv.bitwise_not(closed_img)
25

26 # Saving the image that has gone through closing
27 im = Image.fromarray(inverted_back)
28 im.save("./closed_img.jpg")

Code listing 4.2: How we use OpenCV to perform closing on an image.

As you can see from Code listing 4.2, we have to first invert the image using
OpenCV’s bitwise_not(img) method before we perform closing on the image. This
is because OpenCV counts the white pixels in a binary image as the foreground
and the black pixels as the background. After we have inverted the image we cre-
ated an elliptical kernel. Closing removes noise inside of the letters and most of
that noise is dots, so using an elliptical kernel is the best choice. When the ker-
nel is made we do closing on the image and invert it back again to its original
colors. When we perform opening we just switch out morphologyEx(invertedImg,
cv.MORPH_CLOSE, kernel) with morphologyEx(invertedImg, cv.MORPH_OPEN, ker-
nel) and opening is performed instead of closing. We use an elliptical kernel for
opening as well as a lot of the noise in the background of the DSS images is dots.

Chapter 4: Methodology 37

Blur and Denoising Methods

Using OpenCV we have tried different methods for removing noise after binariza-
tion on The Great Isaiah Scroll. Binarization is when you make a gray-scale image
into a black and white image, which means that all pixel values in the image are
either 0 or 255 (0 or 1 if the pixels are normalized to be between 0 and 1). In our
case, that means that the text is black and the background is white. How much
noise an image will have after binarization varies from image to image and from
method to method used for binarization. That is why it is important to choose the
correct method for a DSS image. You can read more about this in Section 4.4.1.
The different kinds of denoising methods we have tried on these binarized images
are median blur, bilateral blur and non-local means denoising methods.

The first method we tried was median blur, by using OpenCV’s medianBlur method
as described in Section 3.2.2. We then tested the method by using methods de-
scribed in Section 4.3.2. The same trials and testing were also done with OpenCV’s
bilateral blur and non-local means denoising methods.

1 import imageio as img
2 from PIL import Image
3 import cv2 as cv
4

5 # Read the image using imageio
6 img = img.imread("./img.jpg")
7

8 # Converts the image to gray scale if it isn’t already
9 if len(img.shape) == 3:

10 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
11 else:
12 gray_img = img
13

14 # Adaptive binarization of the image using openCV (cv2) module
15 binarized_img = cv.adaptiveThreshold(src=gray_img, maxValue=255,
16 adaptiveMethod=cv.ADAPTIVE_THRESH_GAUSSIAN_C,
17 thresholdType=cv.THRESH_BINARY, blockSize=39, C=15)
18

19 # Doing the non-local means denoising function from the opencv library h
20 # should be 30.0 if the src is a gray image, and 60.0 if the image is binarized
21 denoised_img = cv.fastNlMeansDenoising(src=binarized_img, h=60.0,

templateWindowSize=7, searchWindowSize=21)
22

23 # Saving the biniarized and blured image
24 im = Image.fromarray(denoised_img)
25 im.save("./denoised_img.jpg")

Code listing 4.3: How we use non-local means denoising.

The first thing this Code listing 4.3 does is to binarize a gray-scale image using
OpenCV’s adaptiveThreshold method. You can read more of this in Section 4.4.1.
After that, it uses non-local means denoising to remove noise. The parameter h
regulates filter strength. Big h value perfectly removes noise but also removes

38 E. Dale Y. Pursley H. Fjørkenstad: 4.4

image details, smaller h value preserves details but also preserves some noise.
The parameter templateWindowSize is the size in pixels of the template patch that
is used to compute weights, and searchWindowSize is the size in pixels of the
window that is used to compute the weighted average for a given pixel.[50] In
Figure 4.2 we show a Section of a DSS before and after it has been denoised with
non-local means denoising.

Figure 4.2: A section of The Great Isaiah Scroll column 35 without noise removal
(left) and with noise removal (right). The noise removal method used here is non-
local means denoising. Image from [4]

Testing the Different Noise Removal Methods

The easiest way to test noise removal methods is by just looking at the results and
compare the original image with the processed one. We would say this method
of testing is quite effective as it visually is very easy to see if the method removes
a lot of noise or not. Another way we have tested the noise removal methods is
by testing how well the segmentation works on the image-enhanced images. We
can, by doing that, check how many letters our segmentation method can detect
and segment on the different image enhanced DSS images. The more letters that
it can detect and segment, the better the noise removal method has performed on
an image. Checking the PSNR values of images generated by different methods is
another way for us to investigate how well these methods perform.

When using PSNR to check how good a noise removal method is, it is necessary
to compare the output image to an ideal clean image with the maximum possible
power.[6] So what we did was that we cropped a section of a DSS image that had
gone through Otsu thresholding and contained some noise. We manually removed
all the noise from that section using Microsoft Paint1 to create an ideally clean im-
age. This image would be our ground truth image. After that, we performed our
noise removal methods on that same section (with noise) from the DSS image,
and compared the results with the ideally clean image using PSNR.

1https://en.wikipedia.org/wiki/Microsoft_Paint, visited 04.04.2022

https://en.wikipedia.org/wiki/Microsoft_Paint

Chapter 4: Methodology 39

4.4 Image Segmentation

4.4.1 Binarization

Binarization is important for segmenting the letters in the DSS. We binarized the
images because we are only concerned with the foreground which is the letters,
and do not need their color or gradient. We used two different binarization meth-
ods depending on the background. If the background is clear and white we use
Otsu’s method. Otsu’s method works well in those scenarios. If the background
contains darker areas we use adaptive thresholding. Otsu does not perform well
when the difference between the background and foreground is not large enough.
An adaptive thresholding method performs better in these scenarios.

4.4.2 Using Pytesseract to Segment Letters

Figure 4.3 gives an overview of the segmentation process.

Image of
scroll

Binarized
image of

scroll
Pre-processing image_to_boxes Letters/words

Is the
segment too
large or too

small?

Segment is
removed

Is the image
wider than a single

narrow letter?

Cropped
Letters

Is the
confidence value

higher than
90%?

Word_splitter

Yes

Returns the letters in the word

No

Yes

NoYes

No

Figure 4.3: Describes the segmentation process.

To extract the letters from the scroll we used the OCR tool Pytesseract. Once we
have pre-processed the image we run the method, image_to_boxes, by specifying
the image we wish to run the method on and our desired language, which in our
case is Hebrew.

1 boxes = pytesseract.image_to_boxes(image, lang="heb")

The method, as seen in the Code listing above, returns a list of all the letters’
coordinates and a prediction of what the OCR thinks the letters are. To run the
method in Hebrew we download a Hebrew TRAINEDDATA file2, which is a model
for the OCR. A problem we had with this file was that it was made to recognize

2https://tesseract-ocr.github.io/tessdoc/Data-Files#data-files-for-version-400-november-29-
2016, visited 26.04.2022

https://tesseract-ocr.github.io/tessdoc/Data-Files#data-files-for-version-400-november-29-2016
https://tesseract-ocr.github.io/tessdoc/Data-Files#data-files-for-version-400-november-29-2016

40 E. Dale Y. Pursley H. Fjørkenstad: 4.4

modern Hebrew letters and not the letters in the DSS. To view the difference see
Figure 3.1. We decided to create our own custom TRAINEDDATA file. For more
details please see Section 4.4.4.
We then have to iterate through the list of all the segments and crop the letters
based on the coordinates provided by the image_to_boxes method as seen in Code
listing 4.4.

1 # For each box
2 for b in boxes.splitlines():
3 # Splits the values of the box into an array
4 b = b.split(’ ’)
5 # Save the coordinates of the box:
6 # x = Distance between the left side of the box to the left frame
7 # y = Distance between the top of the box to the bottom frame
8 # w = Distance between the right side of the box to the left frame
9 # h = Distance between the bottom of the box to the bottom frame

10 x, y, w, h = int(b[1]), int(b[2]), int(b[3]), int(b[4])
11

12 # Crop the image so that we only get the letter/word
13 # Structure image[rows, col]
14 crop = image[(h_img - h):(h_img - y), x:w]

Code listing 4.4: They way we iterate through the segments provided by the
image_to_boxes method, extract each segments coordinates, and crop the image
based on those coordinates.

The method will occasionally segment noise, and sometimes also multiple letters
into a single segment. This happens because some letters are connected, making
Pytesseract interpret it as a single letter. Noise, such as cracks and stains, will
also sometimes be incorrectly recognized as a letter. We must therefore filter the
results from the image_to_boxes to remove segments that are too large and too
small. What happens to the segmented image, after the filter has been performed,
can be divided into three procedures:

1. The segment gets removed because the segment was too large or too small,
or

2. the segment gets passed to the Word splitter, or
3. the segment does not need extra processing, meaning it is a successfully

segmented letter.

The code checks if the segment should be passed to the word_splitter function.
This is done by checking the width of the segment. Some letters can be large and
can cause the code to think it is a word with connected letters. Figure 4.4 shows
two images with a similar width, where one of the images contains a single wider
letter and the other image contains two thin connected letters.
The code, therefore, sends the segmented image to the classifier. If the classifier
returns a high confidence value, above 90 percent, the code assumes that it is a
single letter. If the confidence value is below the 90 percent threshold, the segment
gets passed to the word_splitter. The classifier is trained on recognizing letters, not
words. Therefore if a word becomes an input into the classifier, it should return a

Chapter 4: Methodology 41

(a) Shin (b) Vav and Yod connected

Figure 4.4: A single larger letter and two narrow letters that are connected.

low confidence value.

The letter image is then stored into a Letter object that contains the image, the
coordinates, the classification, and the confidence value. The letter is now ready
to be sent to the classifier to be classified. This is done by appending the Letter
object into an array. The classifier can then iterate through the array and append
the letter’s classification and confidence value to its Letter object.

The user can also draw rectangles on an image around the letters to visually see
the results of the segmenter, like in Figure 4.5 using the rectangle method shown
in Code listing 4.5.

1 cv2.rectangle(image, start_point, end_point, color, thickness)

Code listing 4.5: A method for drawing rectangles on an image.

Figure 4.5: Image of scroll, gotten from [4], with rectangles around letters.
Includes also the ID of the letter, which does not come with the cv2.rectangle
method.

42 E. Dale Y. Pursley H. Fjørkenstad: 4.4

One can also save the letters into a folder such as in the Code listing 4.6.

1 print(("Saving image number:" + str(id)), cv2.imwrite(str(ID) + ’unique_file_name.
png’, image_of_letter))

Code listing 4.6: Saves the letters image. If the letter image was saved correctly,
it will print the ID of the image that was saved and "True".

4.4.3 Word Splitter

Figure 4.6 gives an overview of the Word splitter’s process.

Image with
multiple letters

Image with
straight
letters

image_straighten

Skeletonize
the image

Array with sum of vertical pixels
[6, 2, 1, 0, 0, 1, 2, 7, 4, 2, 1, 3, 2, 2, 1, 3, 3,

3, 7, 4, 2, 2, 3, 2, 3, 1, 1, 2, 1, 1, 1, 2, 0, 12]

count the sum of vertical pixels in image

Calculate the
segmentation
points in the

image

Split the word into
letters based on
the segmentation

points

Array with
the

individual
letters

Figure 4.6: Gives an overview of the word splitter’s process.

Pytesseract will occasionally segment connected letters because the OCR thinks
it is a single letter. Our classifier is made to classify one letter at a time. If one
wants to use Pytesseract to expand a dataset, they will need to manually split
these words which can be time-consuming. These are the reasons why we worked
on a method for splitting words into letters.

We used parts of this article’s approach, [43], to segment cursive handwriting
to create our word splitter function. From this approach we use these compon-
ents: straightening the letters, creating a skeleton, and creating a histogram of
the vertical pixels in the image. Our word splitter method takes an image with
multiple letters as input. This is an example 4.7.

Figure 4.7: Image of the letters "Mem" and "He" connected.

We used a module called image_straighten.py from here [51]. What this mod-
ule does and why we used it will be stated later in this paragraph. After we
straightened the letters we created a skeleton of the image. We used this source,
[52], to skeletonize our images. We then count the sum of the vertical pixels of
the skeletonized image and store it in the array amount_vert_pixels. This array
contains information about where the straight lines are in the image. If the array

Chapter 4: Methodology 43

contains an element with a high value, it means there are a lot of pixels in that
column of the image, which indicates to us that there is a straight vertical line
there. Some lines in certain letters can appear straight to us, but when skelet-
onized those lines can be slanted. In this scenario, when counting the sum of the
vertical pixels, it will be harder for us to tell from the array where the vertical lines
are, since the values of the elements in that array will be more evenly distributed.
The image_straighten module straightens the letters in an image, which prevents
this issue.

We looked at a lot of words that had connected letters and we found out that
a lot of the letters began with a straight line. We could then use that information
to segment the words into letters by detecting the straight vertical lines in the
image. An example of this can be seen in this Figure: 4.8.

Figure 4.8: Two letters connected to each other. Each letter begins with a straight
line, shown with a red line, when reading from right to left.

The segmentation_point_finder method uses the amount_vert_pixels array to find
the segmentation points, which are points that represent where the word should
be split into multiple letters. A minimum_letter_width needs to be set. A letter
might have two vertical lines close to each other. The minimum_letter_width con-
stant will be used to prevent segmentation points from being too close by check-
ing if the distance between the previous segmentation point and the potential
new segmentation point is shorter than the minimum_letter_width. We defined
that constant to be 12 by looking at the thinnest letters, "Vav" and "Zayin", and
checked how many pixels in width they were. Our theory is that we should not
create a segment that is narrower than the thinnest letter.

The segmentation_point_finder iterates through the amount_vert_pixels array and
appends a segmentation point to the array seg_points if it finds a vertical line.
This indicates the right side of a letter. If the method finds two columns with no
pixels, it will also append a segmentation point to indicate the left side of a letter.
If the method was run on the word in this Figure 4.8, the array [18, 0] would be
returned. The letter on the right is between x_value 18 and the far right side of
the image. The letter on the left starts from the far left side of the image to the
x_value 18.

The code will now split the image using the segmentation points array, seg_points.
When iterating through that array, it checks if the letter it is segmenting is all the
way to the right, in the middle, or on the far left side of a word. This is done

44 E. Dale Y. Pursley H. Fjørkenstad: 4.4

because the code uses the classifier to check if the segmentation of the letter was
successful or not. If the segmentation contains only part of a letter, the classifier
will return a low confidence value. If this happens the code will extend the width
of the image, which should fix the issue of only containing part of a letter. If the
letter is all the way to the left of the segment, we do not want to extend the image
further to the left. If the letter is all the way to the right of the segment, we would
only want to extend the image to the left. Therefore we need to check where the
letter is in the segment, to know how we are going to extend the segmented letters.

Once we know if the letter is all the way to the right, left or middle of the word,
we segment the letter from the image of the word. The code checks the confidence
value of the segmentation of the letter. If the confidence value is above a certain
threshold, it will create a Letter object for the image and append the object to the
array segmented_letters_in_word. If the confidence value is below the threshold, it
will extend the image by two pixels. Then we check the confidence value again
and check if it is above the threshold or not. If it is not above the threshold, it
compares the previous confidence value with the new one. The best confidence
value and the amount the image has to get extended to achieve that confidence
value gets saved as best_extend_image. This is done to know how much the image
needs to be extended to get the best confidence value when segmenting the let-
ter. If extending the image of the letter goes out of the bounds of its outer image
(such as words or a couple of letters close to each other) with the multiple letters,
or if the code extends the image by more than half of the minimum_letter_width
distance, the code will extend the image with the best_extend_image value to en-
sure we get the best segment possible. The best segment is a segment that only
contains the entire letter we wish to segment. After the letter has been cropped
it will create a new Letter object of the image with its corresponding coordinates
and append it to the segmented_letters_in_word array.

Once all the letters are cropped and have been appended to the array we re-
verse the array so that the letters are in the correct order. Pytesseract segments
the letters by starting on the top left of the image, and then works from left to
right, line by line. The word splitter segments the letters from right to left, be-
cause Hebrew is read from right to left, and our theory is that most letters start
with a straight line. The word splitter function will then return the array with all
the Letter objects.

4.4.4 Custom TRAINEDDATA File

Pytesseract does not have a TRAINEDDATA file for the Hebrew used in the DSS.
This is a problem because when Pytesseract tries to recognize the letters it is look-
ing for modern Hebrew characters, which look different from the ones in the DSS.
An example of the difference can be viewed in Figure 4.9. This has caused errors
in our segmentation such as overlapping segments and segments that are very

Chapter 4: Methodology 45

large and span over multiple words and lines.

(a) The letter "mem" found in the first para-
graph in column 35 in 1QIsaa.

(b) The letter "mem" in modern Hebrew. Im-
age found in Figure 3.1.

Figure 4.9: A letter from the DSS and the same letter from modern Hebrew.

We decided to create our own custom TRAINEDDATA file with our own dataset.
We followed all of the steps listed here: [53]. We used the article [54] to get a
better understanding of the steps in the previous source. To do this we needed to
create a font with the letters from the DSS. We used the website Calligraphr3 to
create our own font. Finally, we created our custom TRAINEDDATA file with the
steps found in Appendix E.

4.4.5 Calculating the Intersection over Union Score

We tested most of our image segmentation methods by reviewing our results visu-
ally. We did this by creating rectangles around each segment and drawing them
onto the original image. At the beginning of the project, this worked well since
the problems we were experiencing were easily spotted on the image with the
rectangles. Longer into the project it became harder and harder to evaluate if the
new methods we were working on were improving the results. This is when IoU is
helpful. We can use the IoU score to determine how well the segmenter segmented
the letter and calculate the average IoU score of all the letters.
We started by manually creating a ground truth using LabelImg, see Section 3.3.3
for more information. The ground truth is saved in the YOLO format in a text
document. We then used those coordinates to crop each letter. We created a Letter
object for the cropped image which also includes the letter’s coordinates. Then
we put each Letter object into an array. To get the predicted segmentation of the
letters we ran the segmenter on the same image which returns an array of all the
letters.
To calculate the IoU score we needed to compare the right letters. To do this we
used the method in this article [55], which takes two rectangles and checks if
they overlap each other. If they don’t overlap it returns False, otherwise it returns
True. We took a letter from the ground truth array and checked if a letter from the
segmenter overlaps it. If it does, we calculate the IoU score using the method in
the article [22] and append that score to an array that contains all the IoU scores.

3https://www.calligraphr.com/en/, visited 03.05.2022

https://www.calligraphr.com/en/

46 E. Dale Y. Pursley H. Fjørkenstad: 4.5

After iterating through all the ground truth letters and calculating the IoU score to
its overlapping segment from the segmenter, we calculated the average IoU score.

4.5 Machine Learning

4.5.1 Model

Figure 4.10: Figure detailing the architecture of the LeNet model [56]

We based our neural network as seen in Code listing 4.9 on the convolutional
architecture LeNet [56] as proposed by Yann LeCun, which can be seen in Figure
4.10. It was chosen because it was easy to understand, but also of its solid structure
and good performance, which suited our needs. Our network is divided into two
parts, one for feature extraction and the second for classification.

1 self.convolutional = nn.Sequential(
2 nn.Conv2d(1, 6, 5),
3 nn.ReLU(),
4 nn.MaxPool2d(2,2),
5 nn.Conv2d(6, 16, 5),
6 nn.ReLU(),
7 nn.MaxPool2d(2,2)
8)

Code listing 4.7: Implementation of the feature extraction layers in PyTorch

The first part takes a 100x100x1 image as input and feeds it through two sets of
convolutional pooling layers feeding into each other, for efficient feature extrac-
tion. An example of this structure can be seen in Code listing 4.7. The convolu-
tional layers use a 5x5 kernel with a stride of one, without applying any padding
to the image. Before the feature maps are sent to the 2x2 max pooling layers,
we used a ReLU activation function to add non-linearity. The output of the fea-
ture extraction part is a 22x22x16 feature map, compromised of different image
features.

Chapter 4: Methodology 47

1 size = int((size/4) - 3)
2 self.fullyconnected = nn.Sequential(
3 nn.Linear(16 * size * size, 256),
4 nn.ReLU(),
5 nn.Linear(256, 128),
6 nn.Sigmoid(),
7 nn.Linear(128, 22)
8)

Code listing 4.8: Implementation of the classification layers in PyTorch

This map is fed into the classification portion, which consists of a fully connected
layer with an output of 22 classes as seen in Code listing 4.8. The fully connected
layer is made of one input, hidden and output layer, going from 256, 128 and
22 nodes. In PyTorch, we have used the neural network modules Linear4 meth-
ods, which are equivalent to Dense in TensorFlow. For the last activation func-
tion before the output layer, we have used a Sigmoid function instead of ReLU,
as to properly display the confidence values as percentages. For this model, we
chose to use Cross-Entropy Loss for our loss function, and Adam for our optim-
izer. Cross-Entropy Loss is a good function to use for multi-label classification
problems, where the function output is a probability between 0 and 1.

4https://pytorch.org/docs/stable/generated/torch.nn.Linear.html, visited 03.04.2022

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

48 E. Dale Y. Pursley H. Fjørkenstad: 4.5

The main difference between the LeNet architecture and the architecture pro-
posed in our model is the image input size, and the use of ReLU activation func-
tions between the dense layers, instead of Sigmoid. These changes were made
while tweaking the model early, and seemed to give better results in our case.

1 class Convolutional(nn.Module):
2 def __init__(self, size):
3 super(Convolutional, self).__init__()
4 self.convolutional = nn.Sequential(
5 nn.Conv2d(1, 6, 5),
6 nn.ReLU(),
7 nn.MaxPool2d(2,2),
8 nn.Conv2d(6, 16, 5),
9 nn.ReLU(),

10 nn.MaxPool2d(2,2)
11)
12

13 size = int((size/4) - 3)
14 self.fullyconnected = nn.Sequential(
15 nn.Linear(16 * size * size, 256),
16 nn.ReLU(),
17 nn.Linear(256, 128),
18 nn.Sigmoid(),
19 nn.Linear(128, 22)
20)
21

22 def forward(self, x):
23 x = self.convolutional(x)
24 x = torch.flatten(x, 1)
25 x = self.fullyconnected(x)
26 return x

Code listing 4.9: Implementation of the convolutional neural network structure
in PyTorch

4.5.2 Model Improvements

To combat the issues resulting from using a small dataset for machine learning, the
group has tried several methods to increase the models’ performance, including
different machine learning techniques and augmentation.

Transfer Learning

In an attempt to use transfer learning to increase model performance, we tried
training our machine learning model with the Modified National Institute of Stand-
ards and Technology (MNIST) dataset [57] 5, by switching out the output layer
for a layer with 10 nodes instead of 22. With this MNIST dataset trained model, we
froze all the weights in the fully connected layer with the method shown in Code
listing 4.10, and then exchanged the last layer with a new dense layer with 22

5http://yann.lecun.com/exdb/mnist/, visited 08.05.2022

http://yann.lecun.com/exdb/mnist/

Chapter 4: Methodology 49

nodes. This would "reset" the weights and unfreeze them. When we then trained
the model with our dataset, it would only affect the weights in the last layer.
We did not try other pre-trained models because of difficulties with either getting
those to work with our dataset format and size and difficulties with changing their
layer structure.

1 model_conv = model.Convolutional()
2

3 # Freeze the weights
4 for param in model_conv.parameters():
5 param.requires_grad = False

Code listing 4.10: Method used for freezing weights in the fully connected layers
for our model

Augmentation

In an article called A Digital Palaeographic Approach towards Writer Identification
in the Dead Sea Scrolls by Maruf A. Dhali et al., they propose using augmentation
if you need a bigger and more diverse dataset [58]. Throughout the process of
acquiring our dataset, we have tried various types of augmentation to increase the
dataset size. All have given various kinds of results. The first type of augmentation
we tried was random distortions. The changes in result from these were very small,
so we quickly moved on to more common handwritten augmentation methods like
rotation, dilation and erosion. We first tried doing the same augmentations for
every letter, this did not provide any improvements to the model so we switched
over to doing some random augmentations to randomly selected images.

Chapter 5

User Interface

In Chapter 4 we went through how we used image enhancement and image seg-
mentation to improve the accuracy of our machine learning model. What we
wanted from this user interface was to put those three parts together into one
program so that both our group and the user can see how they worked together.
The user interface also makes it easier for us to test our segmentation and ma-
chine learning, and it makes it easier to showcase it and explain it to others. This
chapter goes through how the user interface was planned and made.

5.1 Functional Requirements

In Section 1.3 we stated that the user should be able to extract features from
the DSS through the use of an easy and simple user interface. The user interface
should also be able to run on Windows 10 and Windows 11.

5.1.1 User Patterns

Our employer has not given us any functional requirements when it comes to the
user interface, other than that it should be able to help them extract features from
the DSS easier and faster than how they do it today. Since they did not specify
any requirements, we did that ourselves. Figure 5.1 shows the use case diagram
for our user interface.

51

52 E. Dale Y. Pursley H. Fjørkenstad: 5.1

Figure 5.1: Use case diagram

Table 5.1: User patterns

User Pattern: Open an image.
Goal: Open a new image and display it in the user interface.
Description: The user can open an image by opening the file explorer and dropping the
image in the "Drop here zone", or press the "Open Image" button and the file explorer will
be opened so the user can select an image. The image and its path then gets displayed.

Chapter 5: User Interface 53

User Pattern: Remove an image.
Goal: Remove the displayed image from the user interface.
Description: The user removes the displayed image and its path.

User Pattern: Crop an image.
Goal: Crop the displayed image on the user interface.
Description: Crops the image and keeps the crop at the same position on screen.

User Pattern: Uncrop an image.
Goal: Get the original image to be displayed again.
Description: Displays the original image that was cropped.

User Pattern: Saves an image.
Goal: Save the displayed image to the pc.
Description: Opens the file explorer and lets the user decide file name, file format and
file location.

User Pattern: Classify the Hebrew letters in an image.
Goal: Classify the Hebrew letters in the image.
Description: The user interface will classify the letters in the image and labeled boxes
will appear over them. The labels on the boxes correlates to what the machine learning
classifies the letter as.

User Pattern: Save cropped letters in image.
Goal: Save the cropped letters in image in a folder.
Description: After the image has been classified the user interface will let the user safe
the cropped letters in a folder on their computer.

5.2 Sketch

At the beginning of the project, we sketched out how we wanted our user interface
to look based on what functionality we specified. The final product turned out to
be very similar to our sketch. The sketch shows a drag-and-drop area where the
user can drag and drop DSS images. When the user has dropped or opened an
image, the filename will appear above the displayed image. Under the drag-and-
drop area, you can see the buttons with most of the functionality described in
Section 5.1.1.

54 E. Dale Y. Pursley H. Fjørkenstad: 5.3

Figure 5.2: Simple sketch of our user interface.

5.3 Method

For coding the user interface we decided to stick with Python as we had used that
for all the other coding done in the project so far. This also made it easier for us
to put the image enhancement, image segmentation and the machine learning
code together to create the user interface. It will also make it easier for others to
modify and expand upon our solution, which was one of our goals. To code the
user interface we decided to use PyQt51.

1https://www.riverbankcomputing.com/static/Docs/PyQt5/, visited 18.03.2022

https://www.riverbankcomputing.com/static/Docs/PyQt5/

Chapter 5: User Interface 55

5.3.1 PyQt5

PyQt5 is a Python binding of the graphical user interface toolkit Qt version 5. Qt is
a set of C++ cross-platform libraries that among other things include traditional
user interface development. PyQt5 is implemented as more than 35 extension
modules and is made by Riverbank Computing Limited2.[59]

1 import sys
2

3 from PyQt5.QtCore import QSize, Qt
4 from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton
5

6

7 # Class that represents the main window of the application
8 class MainWindow(QMainWindow):
9 def __init__(self):

10 super().__init__()
11 # Sets the window title
12 self.setWindowTitle("My App")
13

14 # Creates a button
15 button = QPushButton("Press Me!")
16

17 # Sets the size of the window
18 self.setFixedSize(QSize(400, 300))
19

20 # Set the button as the central widget of the Window.
21 self.setCentralWidget(button)
22

23

24 app = QApplication(sys.argv)
25

26 window = MainWindow()
27 window.show()
28

29 app.exec()

Code listing 5.1: Simple example of how to create a simple window with PyQt5

2https://www.riverbankcomputing.com/, visited 18.03.2022

https://www.riverbankcomputing.com/

56 E. Dale Y. Pursley H. Fjørkenstad: 5.3

Figure 5.3: This is what Code listing 5.1 produces.

5.3.2 Implementation of Image Enhancement, Image Segmentation
and Machine Learning

Our user interface consists of two python files. One of them uses PyQt5 to create
the actual user interface and the other uses our image enhancement, image seg-
mentation and machine learning to classify the image that the user has provided.
The latter file will take the DSS image, image enhance it, segment the letters and
then send those segmented letters to the machine learning to be classified by the
model. The machine learning will then send back the segmented letters with a la-
bel containing the name of the predicted letter, and a confidence value saying how
confident the model is that the letter was predicted correctly. Rectangles will then
be drawn over the letters labeled with the prediction and the confidence value.

When a user opens an image, radio buttons will appear asking the user if the
background of the image is varied or not. This is because we have implemented
two types of image enhancement processes. One is to be used if the DSS image
has a varied background and the other is to be used if the DSS image has a clear
and white background. You can read more about this in Section 7.1.4.

5.3.3 Design

In our goals, we stated that we wanted to make a simple and intuitive user in-
terface for our employers. That also means that the design should be simple and
intuitive. In making the user interface we tried following the fundamentals of in-
teraction design. [60] The third one of these principles concerns signifiers. This
means that we signify to the users what actions are possible in a good way. There

Chapter 5: User Interface 57

are not a lot of actions possible in our user interface, but all of them are signified
to the user in a good way, either through buttons or labels. The buttons are ar-
ranged in a sort of chronological order of how a user would typically use the user
interface, starting from the upper left "Open Image" button to the "Save Image"
button in the lower-left corner.

The fourth concept from the fundamentals of interaction design is feedback. The
user should get feedback in the form of error messages, confirmations and task
statuses, as seen in Figure 5.4. The user will get an error message if they try to
remove an image when no image is displayed or if they try to un-crop an image
that has not yet been cropped. The user will also get a confirmation message when
an image has been classified, telling them that the classification is complete. The
error messages work as constraints for the user, which touches upon the sixth
concept from the fundamentals of interaction design. These constraints are there
as guiding rails to guide the user to do certain tasks in a particular order. Another
form of feedback is task status in the form of loading animations. When an image
is being classified a loading animation will appear telling the user that something
is being processed. During classification, the buttons will be disabled, so that the
user cannot click the buttons and crash the program. Another form of task status
the user will get is in the form of a zoom level label, which will tell the user how
far zoomed in or zoomed out they are. These kinds of constraints and feedback to
the user also follow the seventh concept concerning consistency. The user will be
provided with the same response from the system for the same actions.

Figure 5.4: These are the kind of error messages and loading animations that
will give feedback to the user.

58 E. Dale Y. Pursley H. Fjørkenstad: 5.4

5.4 Results and Discussion

5.4.1 Flow Chart

Figure 5.5 shows the complete flow of our user interface. It starts with the user
opening the user interface and ends with the user either getting and saving the
results or not getting any results.

Chapter 5: User Interface 59

Figure 5.5: Flowchart for user interface.

60 E. Dale Y. Pursley H. Fjørkenstad: 5.4

5.4.2 Final Solution

A link to the user interface’s GitHub repository and its README can be found in
Appendix F:

Figure 5.6 shows what the user is met with when they open the user interface.
Here they can press help if they need help with getting started with the user inter-
face, or they can upload an image to the user interface either by using the "Open
Images" button or by dropping an image in the "Drop image here" zone. If the
user chose the wrong image or if they want to change the image they can press
the "Remove Image" button. Figure 5.7 shows what the user interface looks like
when an image has been uploaded. A zoom label will appear letting the user know
how far in or out they have zoomed and radio buttons will appear that are needed
for the classification part of the user interface.

Figure 5.6: This is what our user interface looks like.

Figure 5.7: This is what our user interface looks like when an image has been
uploaded. DSS image gotten from: [4]

When the user has uploaded an image they can choose to crop it if there are

Chapter 5: User Interface 61

only certain areas of the image that they want to classify. Figure 5.8 shows what
happens when the user clicks the "Crop Image" button and Figure 5.9 shows what
the result of the cropping looks like. When an image has been cropped the user
can un-crop the image using the "Uncrop Image" button.

Figure 5.8: Cropping in our user interface. DSS image gotten from: [4]

Figure 5.9: What a cropped image looks like in our user interface. DSS image
gotten from: [4]

62 E. Dale Y. Pursley H. Fjørkenstad: 5.4

Once an image has been uploaded to the user interface radio buttons will appear
asking the user if the DSS image has a varying background. The user will then
have to choose "Yes" or "No" here accordingly. After that, the user can proceed to
classify the image using the "Classify Image" button. Figure 5.10 shows what the
image looks like when it has been classified. Once the image has been classified
the user can choose to download the classified image with the "Save Image" button
and/or save the segmented letters with the "Save Letters" button. The letters will
then be downloaded in a folder called "letters" in the user interface folder.

Figure 5.10: What a classified image looks like in our user interface. DSS image
gotten from: [4]

5.4.3 Classification Times

We used the Great Isaiah Scroll column 35 when we tested the user interface,
which has a size of 1999x2760 pixels. We tested the classification time by pressing
the timer when we hit the "Classify Image" button and stopping it when the DSS
image was classified. Using the Great Isaiah Scroll column 35 we got classification
times of around 1 minute on average.

5.4.4 Future Improvements to the User Interface

In Section 1.3 we stated that the user should be able to extract features from the
DSS through the use of an easy and simple user interface. Since the user interface
is easy and simple and made mostly to tie together the image enhancement, image

Chapter 5: User Interface 63

segmentation and machine learning, there are a lot of possible improvements that
could be made. Here is a list of improvements we feel could be done in the future:

• It would be great if the rectangles around the letters were clickable. If
clicked they could show the top five confidence values for example.
• It would also be nice if the user could alter the classification results i.e. the

labels under/over the letters if the user notices that the model has classified
wrongly. The model could then also learn from the correction of the user.
• The same could also be done about the letter segmentation. If the user no-

tices that a letter has been segmented wrongly he can alter the rectangle
around it.
• When an image has been uploaded it would be nice if the user could manu-

ally remove noise with some sort of paintbrush or eraser tool. This could
improve the precision of the classifier.
• It would be nice if the user could cancel the classification process when that

has been started.
• Right now in our user interface we use our own model, but it would be nice

to give the user an option to use their own model if wanted.
• Since the labels added to the rectangles drawn over the letters are so small

the text can sometimes be a bit hard to read. A thing we could have done is
made the text more readable.

Chapter 6

Quality Assurance

Our group has used different tools and methods to both aid in keeping an organ-
ized workflow, and to ensure the code quality is maintained.

6.1 Code Quality

The group decided to adhere to the "pythonic" way of writing code, as a way to
both leverage Python and make the different code parts more cohesive. This means
that the group tried to follow the PEP 8 1 guidelines as much as possible, as a way
to increase readability. This means using the naming conventions snake_case for
variables and PascalCase for class names. Some external packages do not follow
the exact same naming convention, so some methods in our code will be camel-
Case as well.

6.1.1 Tools

To help keep the project’s dependencies organized, our group has used a combina-
tion of a virtual environment and pythons standard package management system,
pip, to install all the required python packages. This approach keeps the project
packages separate from other packages on the system, and makes it easy and quick
to delete or reinstall packages.

Linting is a process that analyses how the code runs and highlights syntactical
and stylistic problems in the code, which makes it easier to avoid errors or bad
practices while writing code.

IntelliSense is a tool that makes writing code easier and less prone to errors. It
is a general term for a bunch of useful features which include code completion,
content assist and code hinting.

1https://peps.python.org/pep-0008/,visited18.05.2022

65

https://peps.python.org/pep-0008/, visited 18.05.2022

66 E. Dale Y. Pursley H. Fjørkenstad: 6.1

The group is split between working on PyCharm and Visual Studio Code (VSC),
which means there is some difference between the development environment
tools. PyCharm has built-in tools for Linting, IntelliSense and debugging, while
VSC requires external extensions. The group has decided to use Microsofts Py-
thon and Pylance extensions to enable this functionality because they are the most
widely used and offer an all-in-one solution.

We also utilized the development platform GitHub for various reasons, with the
main one being a hosting platform with version control, which would make col-
laborating easier. We also used GitHub as a tool to track and plan progress through
development, through the use of GitHub issues and a Kanban board.

6.1.2 Documentation

While not spending time creating diagrams or documents specifically for docu-
menting the code, the group would thoroughly utilize code comments as a means
to document the functionality and variables of the code. This would make it easier
for fellow group members to know what the code does, and make it easier to edit
later. We also made READMEs for both our user interface repository and main
repository, to explain how to run our code.

Chapter 7

Results

In this chapter we go through the results gotten from our methods described in
Chapter 4 (Methodology). It contains a walk through of results obtained in our
core topics image enhancement (7.1), image segmentation (7.2) and machine
learning (7.3).

7.1 Image Enhancement

7.1.1 Adaptive Histogram Equalization

Figure 7.1: Adaptive histogram equalization results of a section of The Great
Isaiah Scroll column 35. Above the red line: grayscale, Otsu binarization, Pytesser-
act segmentation. Below the red line: grayscale that has been adaptive histogram
equalized, Otsu binarization, Pytesseract segmentation. DSS images gotten from:
[4]

67

68 E. Dale Y. Pursley H. Fjørkenstad: 7.1

From Figure 7.1 we can see the difference adaptive histogram equalization has
on Otsu binarization and Pytesseract1 segmentation. Without adaptive histogram
equalization, some letters disappear when Otsu thresholding is performed. This
in turn makes it impossible for Pytesseract to segment those letters. With adaptive
histogram equalization, however, Pytesseract can segment almost all of the letters
correctly.

There are some of the columns in The Great Isaiah Scroll that have some darker
regions in the background. When doing adaptive histogram equalization on those
columns, the darker regions get darker, and Otsu thresholding performs poorly.
Adaptive histogram equalization should not be used on those kinds of DSS im-
ages. An example of such a DSS image can be seen below in Figure 7.2. Here we
can see (from the lower image) that the background, especially in the middle of
the column is very dark, and Otsu thresholding will perform poorly in this region.

1https://github.com/tesseract-ocr/tesseract, visited 04.04.2022

https://github.com/tesseract-ocr/tesseract

Chapter 7: Results 69

Figure 7.2: The upper left is an image of The Great Isaiah Scroll column 1, which
is an example of a DSS image with dark regions in the background. Here it is
especially visible in the middle of the image. The upper right is the same image
after adaptive histogram equalization and the lower is an image of the equalized
image gone through Otsu thresholding. DSS image gotten from: [4]

70 E. Dale Y. Pursley H. Fjørkenstad: 7.1

7.1.2 Morphological Transformations

When it comes to morphological transformations we have found opening and clos-
ing the most useful, when it comes to improving the image segmentation and the
machine learning accuracy. We found that closing with an elliptical kernel of size
3x3, removes noise in the letters efficiently, as can be seen in Figure 7.3. See Code
listing 4.2 for information on how we do that.

Figure 7.3: Example of closing performed on a DSS image. The first line is without
closing and the last line has been closed with and elliptical kernel size 3x3. DSS
image gotten from: [4]

We found that opening was a technique we could use after adaptive binariz-
ation to remove noise. It can also be used after Otsu thresholding, but it will
then remove some of the letters, as seen in Figure 7.4. Some of the letters may
also be lost when opening is used after adaptive thresholding, but opening is
needed here since there often is a lot of noise. We perform opening almost the
same way as we do closing in Code listing 4.2. The only difference is that we
switch out morphologyEx(invertedImg, cv.MORPH_CLOSE, kernel) with morpho-
logyEx(invertedImg, cv.MORPH_OPEN, kernel).

Figure 7.4: An example of when opening with an elliptical kernel size 3x3 is
performed on a DSS image that has undergone Otsu thresholding. Some of the
letters are almost completely removed. DSS image gotten from: [4]

Chapter 7: Results 71

7.1.3 Blur and Denoising Methods

Visual Results

Testing if noise removal methods work or not is not that hard. It is often very easy
to visually spot the difference between a good and badly denoised image.

Figure 7.5: Image enhancement results of a section of The Great Isaiah Scroll
column 35. From the top: the original Otsu binarized image, the Otsu image gone
through median blur, the Otsu image gone through bilateral blur, the Otsu image
gone through non-local means denoising. DSS images gotten from: [4]

As we can see from Figure 7.5 the denoising method that visually looks best is
non-local means denoising. The denoising methods seem to gradually become
better as we move downwards, median blur being the worst, and non-local means
denoising being the best. These were the OpenCV methods we used to blur the
three last images in Figure 7.5:

1 median = cv.medianBlur(imGray, 3)

Code listing 7.1: Median blur.

72 E. Dale Y. Pursley H. Fjørkenstad: 7.1

1 bilateral_blur = cv.bilateralFilter(img,9,150,150)

Code listing 7.2: Bilateral blur.

1 means_denoised = cv.fastNlMeansDenoising(src=img,h=60.0, templateWindowSize=7,
searchWindowSize=21)

Code listing 7.3: Non-local means denoising.

Segmentation Results

We tested the noise removal methods by trying to segment the denoised images
using Pytesseract. We could then count how many letters Pytesseract was able to
segment on the differently denoised images. The more letters Pytesseract was able
to segment, the better the noise removal method. For testing, we used The Great
Isaiah Scroll column 35 which had undergone Otsu thresholding. These are the
results we got.

Noise removal method Amount of letters segmented
No noise removal 1382 letters

Median blur 1431 letters
Bilateral blur 1514 letters

Non-local means denoising 1538 letters

Table 7.1: Segmentation results on The Great Isaiah Scroll column 35 using dif-
ferent types of noise removal methods.

Pixel to Noise Ratio (PSNR) Results

When using PSNR to test the different noise removal methods we used a cropped
out section of The Great Isaiah Scroll column 35. The same section that can be
seen in Figure 7.5. The section had undergone Otsu thresholding.

Noise removal method PSNR score
Median blur 33.5 dB
Bilateral blur 33.9 dB

Non-local means denoising 34.5 dB

Table 7.2: PSNR results on The Great Isaiah Scroll column 35 using different
types of noise removal methods.

The higher the PSNR score the better the noise removal method. The one that gives
the highest score is non-local means denoising, which also matches the results
from Section 7.1.3. When it comes to the non-local means denoising score it is
higher than the one they obtained in [40], which was 25.45 when using non-local

Chapter 7: Results 73

means denoising together with sparse representations. This might be because they
had Gaussian noise in their image while we have Salt-and-pepper noise. In [41]
they got a PSNR score between 30.5 and 34.6 using the median blur method.
These results are very similar to our own.

7.1.4 Image Enhancement Process

When it comes to the different image enhancement methods we can use on a DSS
image, there seem to be two different main scenarios. The first scenario is if the
image has a clear and mostly white background. If that is the case the best ap-
proach seems to be to first do adaptive histogram equalization, Otsu binarization,
then closing before finally doing noise removal. If the DSS image has a background
with dark areas, like stains, another approach should be taken. Adaptive binariz-
ation should then be used on the image, before doing opening then closing and
finally noise removal. These two different approaches are illustrated in Figure 7.6.

Figure 7.6: Flowchart of image enhancement process.

74 E. Dale Y. Pursley H. Fjørkenstad: 7.2

7.2 Image Segmentation

The figure below shows the resulting image when we draw rectangles over all the
segmented letters while using the word splitter and our custom TRAINEDDATA
file. The DSS images used in this section are from [4].

Figure 7.7: The segmenter with the word splitter performed on a paragraph from
the Great Isiah Scroll column 35 using our custom TRAINEDDATA file. Blue rect-
angles are successful segments while the red rectangles are segments that are
either too large or too small. Only the letters surrounded by blue rectangles are
saved.

In the sections below we show the results of our binarization methods, our results
from Pytesseract with and without our word splitter, our results from Pytesseract
with and without our custom TRAINEDDATA file, and our average IoU score.

7.2.1 Binarization Results

We have found out that two different types of binarization should be used for two
different types of DSS images. If the DSS image has a mostly white background
Otsu binarization seems to be the best method. When the DSS image has varying
background adaptive binarization should be used. The varying background is typ-
ically when the background is not totally white but has darker areas. The adaptive
binarization will create a considerable amount of noise, but it will still perform
better on these columns with darker areas than Otsu binarization.

Chapter 7: Results 75

Figure 7.8: This is a paragraph from the Great Isaiah Scroll column 1, which
has a lot of darker areas in the background. The upper image is gray-scale, the
middle image is the gray-scale image gone through adaptive binarization, while
the lower one has gone through Otsu binarization.

As we can see from Figure 7.8, Otsu binarization makes the letters in the para-
graph unreadable. Adaptive binarization does create a lot of noise, but some of
this can be removed as described in Section 7.1.2 and Section 7.1.3. It gives much
better results than the Otsu binarization.

76 E. Dale Y. Pursley H. Fjørkenstad: 7.2

Figure 7.9: This is a paragraph from the Great Isaiah Scroll column 35, which
has a clean white background. The upper image is gray-scale, the middle image
is the gray-scale image gone through adaptive binarization, while the lower one
has gone through Otsu binarization.

Figure 7.9 shows binarization results from a column with a cleaner and whiter
background. We can here see that Otsu binarization is the superior method as it
does not create as much noise as adaptive binarization.

7.2.2 Pytesseract Results

In Figure 7.10, we can see the results of the segmenter without the word split-
ter. In this example, almost all of the letters are either individually segmented
or segmented into smaller groups. The segmenter struggles segmenting the letter

Chapter 7: Results 77

"Lamed", see Figure 7.11a. In the top row, where we can see a few red rectangles,
we can see the segmenter struggle, as seen in Figure 7.11b. The largest problem
is that a lot of the letters are grouped into smaller segments, which is why we
worked on the word splitter.

Figure 7.10: The segmenter without the word splitter performed on a paragraph
from the Great Isiah Scroll column 35 using our custom TRAINEDDATA file. Blue
rectangles are successful segments while the red rectangles are segments that are
either too large or too small.

(a) An example of the letter "Lamed" not be-
ing segmented.

(b) Example of the segmenter not segment-
ing the letters properly.

Figure 7.11: Examples of problems with the segmenter.

7.2.3 Word Splitter Results

The segmenter checks if a wide segment is just a large letter or two thin letters
connected. The Figure 4.4 provides an example of why this needs to be checked,
and more can be read in Section 4.4.2. The segmenter uses the classifier to check
if the segment should be sent to the word splitter. The results of this process and
the word splitter can be divided into four groups:

• The word was split successfully.
• The word splitter failed to split the word correctly.
• The classifier returned a high confidence value when classifying an image

with multiple letters, causing the code to think that it is a single letter. The
word was then not passed to the word splitter.
• The classifier returned a low confidence value when classifying an image

78 E. Dale Y. Pursley H. Fjørkenstad: 7.2

with a single letter, causing the code to believing that it is not a single letter.
The image was passed to the word splitter.

Examples of segments that were split correctly

Figure 7.12: The letters "He" and "Mem", number 53 and 54, found in Figure 7.7,
were successfully split.

Figure 7.13: The letters "He" and "Nun", number 68 and 69, found in Figure 7.7,
were successfully split.

Figure 7.14: The letters "Yod" and "Mem", number 142 and 143, found Figure
7.7, were successfully split.

Chapter 7: Results 79

Examples of segments that were split incorrectly

(a) The letters between 18 and 21, found in
Figure 7.7, were unsuccessfully segmented.

(b) The red lines show the initial segmenta-
tion points for this segment.

Figure 7.15: These Figures show how the segment was split, and where the initial
segmentation points were in the image.

In this example, 7.15a, the word splitter failed to split this segment properly. The
initial segmentation points (pixel value points) were: [57, 40, 23, 0], which can be
viewed in Figure: 7.15b. The letter all the way to the right, 7.16d, has segmented
the columns correctly, but the image contains a lot of white space at the bottom.
This has happened because there are a few black pixels at the bottom of the image.
When running cv2.findNonZero in the image_cropper function the few black pixels
will be found by the OpenCV method and will treat those pixels as if they are
part of the letter above it, which leads to the letter not being cropped correctly.
The third letter, 7.16c, had good initial segmentation points, which can be seen in
Figure 7.15b, and was close to being segmented correctly, but the classifier never
returned a confidence value above 60 percent. The word_cropper tried to extend
the image to check if it could create a segment that would return a confidence
value above 60. The resulting extended image of the letter, which includes some
of the letters around it, had a higher confidence value than narrower images of
it. The first and second images, 7.16a and 7.16b, contain the single letter "final
mem", which means the word splitter has split a single letter into two images.

80 E. Dale Y. Pursley H. Fjørkenstad: 7.2

(a) First image.
(b) Second im-
age.

(c) Third image. (d) Fourth image.

Figure 7.16: Resulting images from splitting this image: 7.15a

(a) The letters between number 15 and 17,
found in this Figure 7.7, were unsuccessfully
segmented.

(b) The red lines show the segmentation
points for this segment.

Figure 7.17: These Figures show how the segment was split, and where the initial
segmentation points were in the image.

In this example, 7.17a, only one of the letters was successfully segmented. The
initial segmentation points (pixel value points) were [33, 12, 0], which can be
viewed in Figure: 7.17b. Figure 7.18 shows the resulting images when splitting
this segment. The word splitter incorrectly split the first letter, "Tav" into two im-
ages, 7.18a and 7.18b. The third letter "Alef", 7.18c, has been correctly segmen-

Chapter 7: Results 81

ted. As you can see in Figure 7.17b with the initial segmentation points, the initial
segmentation point is in the middle of the letter "Alef". The word_cropper method
returned a low confidence value when trying to crop that letter with that seg-
mentation point. It, therefore, extended the image to the left until the classifier
believed the image was an "Alef" with a roughly 80 percent confidence value. This
is an example of the classifier helping the word splitter segment letters.

(a) First image. (b) Second image.

(c) Third image.

Figure 7.18: Resulting images from splitting this image: 7.17a

Example of a segment that was incorrectly not sent to the word splitter

In this example, 7.19, the segment with multiple letters does not get sent to the
word splitter. This happened because the classifier believed the segment was a
"He" with a confidence value of ca. 98 percent, making the segmenter believe that
the segment is a single letter.

Figure 7.19: This segment contains three letters, but it did not get sent to the
word splitter. This can be found in Figure 7.7, by looking for segment number
132.

Example of a segment that was incorrectly sent to the word splitter

Here is an example of a letter being incorrectly sent to the word splitter:

82 E. Dale Y. Pursley H. Fjørkenstad: 7.2

Figure 7.20: The letter "Shin" has been incorrectly split into two. This can be
found in Figure 7.7, by looking for the segments between number 101 and 104.

In this example, 7.20, the letter "shin" is split even though it is a single letter. It is a
wide letter which means the segmenter needs to check if it is a large letter or two
thin connected letters. The classifier returned a confidence value of ca. 66 percent
when classifying this segment, which is below our threshold of 90 percent.

7.2.4 Custom TRAINEDDATA Results

(a) Using the modern Hebrew TRAINED-
DATA file.

(b) Using our custom TRAINEDDATA file.

Figure 7.21: The results when we draw rectangles over the segmented letters.
Dark blue = successful segment and not overlapping any other segments, light
blue = successful but overlapping, red means the segment was either too large
or too small.

In Figure 7.21, you can see that the custom TRAINEDDATA file removes the un-
wanted overlapping segments. The unwanted overlapping segments can be found
in the second and third lines. Some of these letters have multiple rectangles over
them that cover only parts of a letter. Not all overlapping segments are unwanted.
The rectangles around the three letters in the top left of the Figures are overlap-
ping, but each rectangle covers each letter entirely only once.

Chapter 7: Results 83

7.2.5 IoU Results

We calculated the average IoU score of the letters we have segmented manually.
An image of the letters we have segmented manually can be seen in Figure 7.22.
We then took each letter we have segmented manually and calculate the IoU score
to a letter that overlaps it from the segmenter. A figure of the letters we have
manually segmented with the letters from the segmenter can be viewed in Figure
7.23. The letters from the segmenter can be viewed in Figure 7.7. After calculating
the IoU scores we got an average IoU score of ca. 0.464.

Figure 7.22: The letters we have manually segmented have a blue rectangle
around them.

Figure 7.23: The letters we have manually segmented have a dark green rect-
angle around them while the automatically segmented letters have a blue rect-
angle around them.

84 E. Dale Y. Pursley H. Fjørkenstad: 7.3

7.3 Machine Learning

Accuracy Loss Epochs

Training 99.9% 0.0026 40
Validation 96.7% 0.1183 40

Table 7.3: Training results our dataset at the final epoch

As seen in Table 7.3, when training our neural network model for 40 epochs, we
get an average loss of 0.0026 and an average accuracy of 99.9% over the last
epoch. The average validation accuracy is a little lower at 96.7%, but the loss has
increased to 0.1183.

Accuracy Loss Epochs

Training 100% 0.0001 21
Validation 98.0% 0.0567 21

Table 7.4: Training results on the MNIST dataset at 21 epochs

Looking at Table 7.4 for comparison, we have the same model trained on the
MNIST dataset, which peaked at epoch 21 and achieved at its best an average
validation loss of 0.0567 and a validation accuracy of 98.0%. The average training
loss and accuracy at this point were 0.0001 and 100%. Looking at the last epoch
for this trained model, the average validation loss increased to 0.0843, and the
training loss decreased to 0, presumably because it is below the displayed range.

Accuracy Epochs

w/o augmentation 92.5% 100
w/ augmentation 93% 100

Table 7.5: Results as described in this paper [47]

We can also compare this to the paper by Sudhakaran Jain [47] mentioned in
Section 3.4.4. They achieved results seen in Table 7.5.

Figure 7.24 and 7.25 show the evolution of the average loss and accuracy across
the epochs for the models trained on our and the MNIST dataset respectively.

Chapter 7: Results 85

Figure 7.24: Graph showing average loss (bottom graph) and accuracy (top
graph) for both training (orange) and validation (blue) through 40 epochs,
trained on the DSS dataset

Figure 7.25: Graph showing average loss (bottom graph) and accuracy (top
graph) for both training (orange) and validation (blue) through 40 epochs,
trained on the MNIST dataset

86 E. Dale Y. Pursley H. Fjørkenstad: 7.3

classes precision recall

alef 1 0.97
bet 0.97 0.97

gimel 0.92 1
dalet 0.95 0.9

he 0.98 0.98
vav 0.91 0.93

zayin 0.95 0.94
het 1 0.9
tet 0.97 0.97
yod 0.99 0.97
kaf 1 0.95

lamed 1 1
mem 0.94 0.96
nun 0.93 0.95

samekh 1 0.94
ayin 1 0.98
pe 0.9 0.9

tsadi 0.97 0.98
qof 0.98 0.98
resh 0.9 0.98
shin 1 0.98
tav 0.95 1

Table 7.6: Shows all the precision and recall metrics for all letters

Chapter 7: Results 87

Figure 7.26: Shows the confusion matrix for validation in this models last epoch.
Rows show the true label, while columns show the predicted label.

Accuracy Loss Epochs

Training 91.0% 0.3932 40
Validation 84.3% 0.5245 40

Table 7.7: Training results with transfer learning while using the model in Table
7.4 as a base

7.3.1 Prediction Results

To test how our model would perform in a real-world scenario, we extracted a
set of images for each character in the alphabet from the column 35 [4]. We then
chose one image of reasonable quality for each letter and ran them through the
model. It classified 20 out of 22 correctly as seen in 7.29, but as seen in 7.27 4 of

88 E. Dale Y. Pursley H. Fjørkenstad: 7.3

these predictions were under 80% confidence, and should therefore be categor-
ized as unsure.

Figure 7.27: Shows the predictions with a confidence score of less than 80%,
with a bar graph of the other confidence values to visualize what characters they
might have been confused with.

Figure 7.28: Displays the two characters that the classifier didn’t classify correctly,
with a bar graph of all other confidence values.

Chapter 7: Results 89

(a) Predicted
ayin with 83.1%
confidence

(b) Predicted bet
with 97.4% con-
fidence

(c) Predicted het
with 98.7% con-
fidence

(d) Predicted he
with 97.5% con-
fidence

(e) Predicted
lamed with
99.7% confid-
ence

(f) Predicted
mem with 90.1%
confidence

(g) Predicted pe
with 99.7% con-
fidence

(h) Predicted qof
with 98.2% con-
fidence

(i) Predicted resh
with 91.8% con-
fidence

(j) Predicted
samekh with
99.6% confid-
ence

(k) Predicted
tsadi with 99.6%
confidence

(l) Predicted vav
with 99.5% con-
fidence

(m) Predicted
yod with 99.1%
confidence

Figure 7.29: Shows all the predictions for characters with a confidence score
about 80%

We included Figure 7.30 to show differences between training metrics for different
epoch lengths as a basis for why we chose to train our model with 40 epochs.

90 E. Dale Y. Pursley H. Fjørkenstad: 7.3

7.3.2 Comparison between epochs

Figure 7.30: Comparison for loss and accuracy between different epoch lengths

Chapter 8

Discussion

This chapter contains a discussion of how well we feel our project process has gone
and a discussion regarding the results we have achieved throughout the process.
Section 8.1 is about our project process and Section 8.2 is about our technical
results.

8.1 Project Process

8.1.1 Working Environment

Most of our communication within the group and with our employers and super-
visors has happened online. This was somewhat due to COVID-19 restrictions at
the beginning of the project period, and also due to the fact that not all of our
group members were present in Gjøvik throughout the whole project period. An-
other reason is that it was the most convenient for us and we liked this way of
working. We were at home able to use our home desktop PCs with extra screens.
Although we liked this way of working, it would have been good to possibly meet
physically at least once a week, just to change the working environment and pos-
sibly increase motivation for the project.

8.1.2 Planning of the Project

We did a good job at the beginning of the project when it comes to making a
good project plan. There are certain things however that we feel like we could
have agreed upon before we started the project. We should have planned better
different standards we were going to use. An example is that we should have
agreed upon a standard for naming things like files, folders, variables and meth-
ods. Do we use camelCase naming (imageEnhanced.jpg) or maybe snake_case (im-
age_enhanced.jpg)? We were a long way into the project work before we agreed
upon what we wanted to use. For more information on this see Section 6.1. We also
struggled with creating a Gantt-diagram we could follow throughout the entire
project. In the fourth phase of our project, we diverged from our Gantt-diagram

91

92 E. Dale Y. Pursley H. Fjørkenstad: 8.2

quite a lot. This happened because certain tasks took longer than predicted, so
we did not have time to "classify letters in fragmented scrolls" or "classify author-
ship and time period". What we did in each phase of our project can be viewed in
Section 2.1.1.

8.1.3 Meetings

The meetings with our employers and the meetings with our supervisors were
both held on the same day. We first got to have a discussion with our employers
showing them what we had done since the last meeting, and then agreeing upon
what to do until the next one. Both Sule and Tabita were very good at giving us
constructive feedback about our work and at guiding us in the right direction. After
that meeting, we got to have a meeting with our supervisors, where we could ask
questions about every technical part of the project. At the beginning of the project
process, we mostly asked questions about computer vision and machine learning,
then later one more about the structure and contents of our report. Marius and
Aditya both had a lot of knowledge and experience with computer vision, ma-
chine learning and how to write a bachelor thesis. At the beginning of the project
process, we had weekly meetings with our employers and supervisors, but later in
the project process, we sometimes canceled meetings as we did not feel the need
to have them as often.

8.1.4 Development Process

We found the use of agile development and Kanban very useful for this type of
project. The Kanban board we used on GitHub gave us a very good overview of
the project process. It made it very clear what tasks needed to be done, what tasks
were under work and what tasks were done.

8.2 Technical Results

8.2.1 Modifiable and Expandable Code

One of our effect goals, as seen in Section 1.3.3, was that "our solution should be
modifiable and expandable by others outside our group". An argument to back up
this is that our solution is written only in Python. This makes it easier for others
to modify or expand our solution as they only have to deal with one programming
language. Our code is also heavily documented in the form of comments in code,
this report and two README files. The external packages we have used are also
well documented by their creators and community. This makes it much easier
for others to understand our code. Furthermore, we could say that our code is
modular, where code that deals with one specific functionality is separated from
another.

Chapter 8: Discussion 93

8.2.2 Image Enhancement

In Section 3.4.1 we mention that Dhali et al. in [37] used BiNet to binarize DSS
images. Binarization using BiNet creates very little noise, making noise removal
methods unnecessary. The reason we did not use BiNet is that we wanted a more
simple binarization solution. We also thought it might slow down the process of
extracting features from the DSS since it utilizes deep learning, which sometimes
can be a time-consuming and heavy process. One of our result goals is after all that
"we assume that the time it takes to segment and classify letters on a single image
of the DSS should not take more than a couple of minutes, preferably not more
than 2 minutes" (Section 1.3.2). If we had utilized BiNet it could have improved
our segmentation and classification results by removing a lot of noise from our
binarized DSS images.

8.2.3 Image Segmentation

Intersection over Union Results

In Section 7.2.5 we wrote that we got an average IoU score of ca. 0.464. Figure
3.4 shows that a score of 0.4 is a poor score. There are multiple potential reasons
why we got such a low score. One of the reasons can be that when we cropped the
letters manually, we did not crop as close to the letter as possible. This means that
in the manually cropped letters there is a white gap between the letter and the
border of the image. The letters returned from the segmenter do not have this gap.

Another potential reason for why we get a low IoU score is the way the code se-
lects the letters we should calculate the IoU score on. The code takes a manually
segmented letter and checks if any of the automatically segmented letters overlap
it. The letters can be very close to each other, and when we check the overlap
between manually and automatically segmented letters, we can potentially calcu-
late the IoU score for the incorrect letters. In Figure 8.1 we can see that the green
rectangle around the letter number 14, which is a "Mem", has two blue rectangles
overlapping it. The green rectangles show the manually segmented letters, and the
blue rectangles show how the segmenter segmented the letters. Since the manu-
ally segmented letter has two segments overlapping it, it will calculate the IoU
score two times, one for each of the segments from the segmenter.

94 E. Dale Y. Pursley H. Fjørkenstad: 8.2

Figure 8.1: A figure showing two letters. The green rectangles show how we
manually segmented the letters, and the blue rectangles show how the segmenter
segmented the letters. DSS image gotten from: [4]

Word Splitter

In Section 7.2.3 we showed examples of the word splitter succeeding and failing.
To the best of our knowledge, there is no work in literature that reports segmenta-
tion performance for letters in DSS. When splitting an image containing multiple
letters, one of the split images might initially have parts of another letter. Assum-
ing the classifier returns a low confidence value, which it should since the letter
contains parts of another letter, the code will only try to extend the width of the
image of the letter. This happens because the code does not take into account that
the initial split image can be too large. How we implemented our word splitter
can be read in Section 4.4.3. An example of this issue can be found in Section
7.2.3 by reading about what happened to the third image, 7.16c, in the results
chapter. Future work, when it comes to this issue, is stated in Section 9.2.

Custom TRAINEDDATA File

In Section 7.2.2 we showed the results of Pytesseract with our custom TRAINED-
DATA file without the word splitter. In that section we came up with an example
of a letter that Pytesseract was struggling to segment, see Figure 7.11a. A reason
for this can be our custom TRAINEDDATA file. When we created a font, which
was used to create our TRAINEDDATA file, we did not spend enough time making
sure that all of the letters in the font had the correct size relative to each other. As
seen in Figure 8.2, the letter "Lamed" is only a little taller than the letter "Alef". In
Figure 8.3 we can see that the "Lamed" is much taller than the "Alef". The height is
one of the characteristics of the lamed and that characteristic might get lost when
creating a font without thinking about this issue.

Chapter 8: Discussion 95

Figure 8.2: A figure showing the letters in our custom font made with letters from
the DSS.

Figure 8.3: A figure showing the letter "lamed", which is between number 55 and
56, and the letter "alef" which is number 12. DSS image gotten from: [4]

8.2.4 Machine Learning

We chose to end our training at 40 epochs because after this point we started to
see diminishing returns, as seen in Figure 7.30. Training loss values keep going
dramatically down, but validation loss is barely changing. Additionally, the time
it takes to train further increases, as well as the strain on our hardware.

The performance at epoch 40, as seen in Table 7.3, is however rather good, and
could probably be increased by expanding the dataset further. We can see this
by comparing our results to our model trained on the MNIST dataset 7.4, which
consists of 70 000 images in total. It is to be assumed that the complexity of our
problem is greater with 22 classes instead of 10, which means that our dataset
should ideally be quite large. We can also compare our results to the results as
described in the paper by Sudhakaran Jain[47], which can also be seen in Table
7.5. Both approaches use a similar CNN approach, but they have an additional
5 classes. This difference in training results could be because of these additional
letters, or because our dataset was potentially bigger.

Lastly, we can see in Table 7.7 that our attempt to leverage pre-trained models
with the use of transfer learning did not work, as this method performed worse
than our standard method without any transfer learning. This could potentially
be a result of a number of factors, including a poor setup of the model and an
insufficient number of epochs. Most likely, this poor performance is the result of
the model learning irrelevant features from the MNST dataset, or not learning
enough relevant features from our dataset.

While the use of binarization to create binary images results in cleaner images,
with a distinct letter shape, it might not be the best solution for the problem. In

96 E. Dale Y. Pursley H. Fjørkenstad: 8.2

the process of binarization and thresholding, some details and features may get
lost, so it could be beneficial to use grayscale images instead. These would retain
much more information about the character shape, while also making it less likely
to clip out details through the thresholding. The problem with this approach is the
way we resize the images to be the same size, as the original background would
remain, while the ’new’ background around the letter would be pure white. There
is a potential solution to this problem, that we did not have time to try, but in-
cludes removing the background from the letter image, but retaining the whole
letter in a grayscale format.

Another improvement we could have done is the inclusion of a RNN structure,
which has been used by some other OCR based approaches and is often used in
language translation tasks. This method essentially gives the neural network some
memory, and we believe this could potentially be used to more efficiently classify
a word by feeding them into the model as a series of characters.

It is worth quickly mentioning two approaches that we tried, but did not end
up including because of how little they affected our performance. The first ap-
proach was an attempt to improve the model by splitting it into multiple models,
where each model was trained on different subsets of the dataset, in addition to
one model trained on the aggregate of the dataset. The idea was that each of
these models could specialize in characters that looked similar. This resulted in
some of the models doing exceedingly well, while the others did terribly; ergo, it
was on average as good as the previous approach. The second approach was an
attempt to expand the dataset by using Generative Adversarial Networks (GAN)
to generate new samples we could use to train our model. Such networks require
a much larger dataset than normal models, so in our case, this would not and did
not work.

Chapter 9

Conclusion

Our ultimate project goal was to build a system for recognizing handwritten text
using machine learning on intact DSS. We would firstly do image pre-processing (if
that was needed), then segment the letters in the images and finally use machine
learning to recognize the letters.[2] In this chapter we go through our project
goals and possible future work.

9.1 Goals Achieved

We have created a solution for extracting and learning the features from the DSS
images, by classifying the different letters on the DSS images. This fulfills our
first result goal made for our solution mention in Section 1.3.2. Furthermore, as
seen in the Table 7.3 in Section 7.3 our average training and validation accuracy
is 99.9% and 96.7%, which is well over our goal of over 90%. If we go by our
classification tests in this Section 7.3.1, we would get an accuracy of 90.91%,
which is also slightly above our goal. Our average IoU score is 0.464, as shown in
Section 7.2.5, which is below our goal of having a score over 0.5. Our next goal
considered running times when it comes to our segmentation and classification
on a single column of the DSS. As seen in Section 5.4.3 our running times were on
average around 1 minute, which is way below our goal of fewer than 2 minutes.
We wanted our PSNR value to be over 30 dB for our noise removal methods, as
seen in Section 1.3.2. As seen in Section 7.1.3, this was achieved by all of our
methods. We were also able to make an easy and intuitive user interface that can
be read more about in Section 5.4.2.

9.2 Future Work

One of the things our group would like to work more on is to structure our code-
base a bit better. There is some code that could have been cleaner and better
structured. Another thing is how the code is run. We could have made it easier
for users to run certain parts of our code in the command line. Furthermore, we

97

98 E. Dale Y. Pursley H. Fjørkenstad: 9.2

could have expanded our dataset to both include more of the letters already in it
and also add final letters as additional classes. We could also use augmentation to
expand our dataset so that our machine learning model would be able to classify
letters that are skewed, upside down, or sideways. When it comes to the image
enhancement part, we would like to work more on damaged and/or fragmented
DSS as we mostly worked on whole DSS in good shape. We also could have used
morphological transformations for removing parts of other letters in our letter
segments, to further increase the accuracy of our model. For future work on the
user interface see Section 5.4.4.

When it comes to the image segmentation, we would like to improve our cus-
tom TRAINEDDATA file for Pytesseract, by training more images and including
the final letters. This can potentially improve the number of successful segments
and reduce the number of segments that include multiple letters. We would also
like to create a way to automatically set the minimum letter width distance con-
stant. The size of the letter might be different in other images, which leads to a
tedious process of manually checking the width of the thinnest letter for each im-
age to set that constant.

Another thing we would like to spend more time on is the word splitter. In Section
8.2.3 under "Word Splitter" we discussed how the code will only try to extend the
width of a badly segmented letter, not shrink the width. The word splitter will
also only extend the cropped letter equally both ways if the letter is in the middle
of a word, even though we might only want to extend/shrink the image in one
direction. In future work, it would be important for the word splitter to be able
to either expand/shrink the image in one or more directions to ensure an optimal
segmentation.

As mentioned in Section 8.2.4, we would like to try using grayscale images in-
stead of binary images, as a way to improve the model. Additionally, we would
like to see if implementing a RNN structure could improve the model, as well as
testing with deeper network structures.

Our employer is expecting to use our results to further help them in their work
for date and authorship identification of the DSS.

Bibliography

[1] J. The Isreali Museum. ‘Browsing manuscripts.’ (), [Online]. Available: https:
//www.deadseascrolls.org.il/explore- the- archive/search#q=
script_language_parent_en:’Hebrew’ (visited on 25/03/2022).

[2] T. Tobing, ‘Handwritten text recognition on the dead sea scrolls,’ 2022.

[3] J. The Isreali Museum. ‘Learn about the scrolls.’ (), [Online]. Available:
https://www.deadseascrolls.org.il/learn- about- the- scrolls/
introduction (visited on 18/02/2022).

[4] J. C. T. F. M. C. D. N. F. J. A. Sanders, Scrolls from Qumrân cave I. Jerusalem,
Albright Institute of Archaeological Research and the Shrine of Book 1974,
1974. [Online]. Available: https://archive.org/details/qumran.

[5] J. Jordan. ‘Evaluating image segmentation models.’ (), [Online]. Available:
https://www.jeremyjordan.me/evaluating- image- segmentation-
models/ (visited on 23/01/2022).

[6] A. Saha. ‘Python | peak signal-to-noise ratio (psnr).’ (), [Online]. Available:
https://www.geeksforgeeks.org/python- peak- signal- to- noise-
ratio-psnr/ (visited on 21/01/2022).

[7] E. Tov, Scribal Practices and Approaches Reflected in the Texts Found in the
Judean Desert. Brill, 2004.

[8] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Pearson Educa-
tion, 2008.

[9] B. J. Nordølum, E. O. Lavik, K. A. D. Haugen and T.-R. T. Kvalvaag. ‘Arts-
gjenkjenning av fisk.’ (), [Online]. Available: https://ntnuopen.ntnu.no/
ntnu-xmlui/handle/11250/2777966 (visited on 15/02/2022).

[10] S. Haldar, ‘Chapter 6 - photogeology, remote sensing and geographic in-
formation system in mineral exploration,’ in Mineral Exploration, S. Hal-
dar, Ed., Boston: Elsevier, 2013, pp. 95–115, ISBN: 978-0-12-416005-7.
DOI: https://doi.org/10.1016/B978-0-12-416005-7.00006-4. [On-
line]. Available: https://www.sciencedirect.com/topics/earth-and-
planetary-sciences/image-enhancement.

[11] OpenCV. ‘Histograms - 2: Histogram equalization.’ (), [Online]. Available:
https://docs.opencv.org/3.4/d2/d74/tutorial_js_histogram_
equalization.html (visited on 29/03/2022).

99

https://www.deadseascrolls.org.il/explore-the-archive/search#q=script_language_parent_en:'Hebrew'
https://www.deadseascrolls.org.il/explore-the-archive/search#q=script_language_parent_en:'Hebrew'
https://www.deadseascrolls.org.il/explore-the-archive/search#q=script_language_parent_en:'Hebrew'
https://www.deadseascrolls.org.il/learn-about-the-scrolls/introduction
https://www.deadseascrolls.org.il/learn-about-the-scrolls/introduction
https://archive.org/details/qumran
https://www.jeremyjordan.me/evaluating-image-segmentation-models/
https://www.jeremyjordan.me/evaluating-image-segmentation-models/
https://www.geeksforgeeks.org/python-peak-signal-to-noise-ratio-psnr/
https://www.geeksforgeeks.org/python-peak-signal-to-noise-ratio-psnr/
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2777966
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2777966
https://doi.org/https://doi.org/10.1016/B978-0-12-416005-7.00006-4
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/image-enhancement
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/image-enhancement
https://docs.opencv.org/3.4/d2/d74/tutorial_js_histogram_equalization.html
https://docs.opencv.org/3.4/d2/d74/tutorial_js_histogram_equalization.html

100 E. Dale Y. Pursley H. Fjørkenstad: 9.2

[12] A. M. Hambal, D. Z. Pei and F. L. Ishabailu. ‘Image noise reduction and filter-
ing techniques.’ (), [Online]. Available: https://www.ijsr.net/archive/
v6i3/25031706.pdf (visited on 16/02/2022).

[13] OpenCV. ‘Morphological transformations.’ (), [Online]. Available: https:
//docs.opencv.org/3.4/d9/d61/tutorial_py_morphological_ops.
html (visited on 29/03/2022).

[14] S. S. Rawat, A. Sharma and R. Gusain, ‘Analysis of image preprocessing
techniques to improve ocr of garhwali text obtained using the hindi tesser-
act model,’

[15] OpenCV. ‘Smoothing images.’ (), [Online]. Available: https://docs.opencv.
org/3.4/d4/d13/tutorial_py_filtering.html (visited on 19/02/2022).

[16] A. Buades, B. Coll and J.-M. Morel, ‘Non-Local Means Denoising,’ Image
Processing On Line, vol. 1, pp. 208–212, 2011, https://doi.org/10.
5201/ipol.2011.bcm_nlm.

[17] MathWorks. ‘What is image segmentation?’ (), [Online]. Available: https:
//se.mathworks.com/discovery/image-segmentation.html (visited on
16/03/2022).

[18] Muthukrishnan. ‘Otsu’s method for image thresholding explained and im-
plemented.’ (), [Online]. Available: https://muthu.co/otsus-method-
for - image - thresholding - explained - and- implemented/ (visited on
28/03/2022).

[19] tutorialspoint. ‘Opencv - adaptive threshold.’ (), [Online]. Available: https:
//www.tutorialspoint.com/opencv/opencv_adaptive_threshold.htm
(visited on 22/04/2022).

[20] M. .-. S. by thinning of image. ‘Otsu’s method for image thresholding ex-
plained and implemented.’ (), [Online]. Available: https://www.geeksforgeeks.
org/mahotas- skeletonization- by- thinning- of- image/ (visited on
29/03/2022).

[21] OpenCV. ‘Canny edge detection.’ (), [Online]. Available: https://docs.
opencv.org/3.4/da/d22/tutorial_py_canny.html (visited on 20/04/2022).

[22] V. S. Subramanyam. ‘Iou (intersection over union).’ (), [Online]. Available:
https://medium.com/analytics- vidhya/iou- intersection- over-
union-705a39e7acef (visited on 07/05/2022).

[23] A. Rosebrock. ‘File:intersection over union - poor, good and excellent score.png.’
(), [Online]. Available: https://commons.wikimedia.org/wiki/File:
Intersection_over_Union_-_poor,_good_and_excellent_score.png
(visited on 09/05/2022).

[24] I. C. Education. ‘Machine learning.’ (), [Online]. Available: https://www.
ibm.com/cloud/learn/machine-learning (visited on 22/04/2022).

[25] I. C. Education. ‘Neural networks.’ (), [Online]. Available: https://www.
ibm.com/cloud/learn/neural-networks (visited on 14/04/2022).

https://www.ijsr.net/archive/v6i3/25031706.pdf
https://www.ijsr.net/archive/v6i3/25031706.pdf
https://docs.opencv.org/3.4/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/3.4/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/3.4/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/3.4/d4/d13/tutorial_py_filtering.html
https://docs.opencv.org/3.4/d4/d13/tutorial_py_filtering.html
https://doi.org/10.5201/ipol.2011.bcm_nlm
https://doi.org/10.5201/ipol.2011.bcm_nlm
https://se.mathworks.com/discovery/image-segmentation.html
https://se.mathworks.com/discovery/image-segmentation.html
https://muthu.co/otsus-method-for-image-thresholding-explained-and-implemented/
https://muthu.co/otsus-method-for-image-thresholding-explained-and-implemented/
https://www.tutorialspoint.com/opencv/opencv_adaptive_threshold.htm
https://www.tutorialspoint.com/opencv/opencv_adaptive_threshold.htm
https://www.geeksforgeeks.org/mahotas-skeletonization-by-thinning-of-image/
https://www.geeksforgeeks.org/mahotas-skeletonization-by-thinning-of-image/
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.4/da/d22/tutorial_py_canny.html
https://medium.com/analytics-vidhya/iou-intersection-over-union-705a39e7acef
https://medium.com/analytics-vidhya/iou-intersection-over-union-705a39e7acef
https://commons.wikimedia.org/wiki/File:Intersection_over_Union_-_poor,_good_and_excellent_score.png
https://commons.wikimedia.org/wiki/File:Intersection_over_Union_-_poor,_good_and_excellent_score.png
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks

Bibliography 101

[26] bfortuner (git). ‘Neural networks concepts.’ (), [Online]. Available: https:
//ml-cheatsheet.readthedocs.io/en/latest/nn_concepts.html (vis-
ited on 14/04/2022).

[27] R. Atienza, Advanced Deep Learning with Keras. Packt Publishing Ltd., 2018.

[28] I. C. Education. ‘Convolutional neural networks.’ (), [Online]. Available:
https://www.ibm.com/cloud/learn/convolutional-neural-networks
(visited on 21/04/2022).

[29] OpenSource. ‘What is python?’ (), [Online]. Available: https://opensource.
com/resources/python (visited on 15/02/2022).

[30] OpenCV. ‘Opencv.’ (), [Online]. Available: https://opencv.org/ (visited
on 15/02/2022).

[31] LabelImg. ‘Labelimg.’ (), [Online]. Available: https://github.com/tzutalin/
labelImg (visited on 17/02/2022).

[32] Google et al. ‘Tesseract user manual.’ (), [Online]. Available: https://
tesseract-ocr.github.io/tessdoc/Home.html (visited on 29/03/2022).

[33] zdenop. ‘Qt-box-editor.’ (), [Online]. Available: https://zdenop.github.
io/qt-box-editor/ (visited on 29/03/2022).

[34] S. Chintala. ‘Deep learning with pytorch: A 60 minute blitz.’ (), [Online].
Available: https://pytorch.org/tutorials/beginner/deep_learning_
60min_blitz.html (visited on 20/02/2022).

[35] T. Contributors. ‘Pytorch documentation.’ (), [Online]. Available: https:
//pytorch.org/docs/stable/index.html#pytorch-documentation (vis-
ited on 15/02/2022).

[36] A. E. Harraj and N. Raissouni, ‘Ocr accuracy improvement on document im-
ages through a novel pre-processing approach,’ arXiv preprint arXiv:1509.03456,
2015.

[37] M. A. Dhali, J. W. de Wit and L. Schomaker, ‘Binet: Degraded-manuscript
binarization in diverse document textures and layouts using deep encoder-
decoder networks,’ arXiv preprint arXiv:1911.07930, 2019.

[38] T. Reynolds, M. A. Dhali and L. Schomaker, ‘Image-based material analysis
of ancient historical documents,’ arXiv preprint arXiv:2203.01042, 2022.

[39] M. A. Dhali, C. N. Jansen, J. W. De Wit and L. Schomaker, ‘Feature-extraction
methods for historical manuscript dating based on writing style develop-
ment,’ Pattern Recognition Letters, vol. 131, pp. 413–420, 2020.

[40] N. Nayef, P. Gomez-Krämer and J.-M. Ogier, ‘Deblurring of document im-
ages based on sparse representations enhanced by non-local means,’ in
2014 22nd International Conference on Pattern Recognition, IEEE, 2014,
pp. 4441–4446.

https://ml-cheatsheet.readthedocs.io/en/latest/nn_concepts.html
https://ml-cheatsheet.readthedocs.io/en/latest/nn_concepts.html
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://opensource.com/resources/python
https://opensource.com/resources/python
https://opencv.org/
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://tesseract-ocr.github.io/tessdoc/Home.html
https://tesseract-ocr.github.io/tessdoc/Home.html
https://zdenop.github.io/qt-box-editor/
https://zdenop.github.io/qt-box-editor/
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/docs/stable/index.html#pytorch-documentation
https://pytorch.org/docs/stable/index.html#pytorch-documentation

102 E. Dale Y. Pursley H. Fjørkenstad: 9.2

[41] M. Sukassini and T. Velmurugan, ‘Noise removal using morphology and
median filter methods in mammogram images,’ in The 3rd International
Conference on Small and Medium Business, 2016, pp. 413–419.

[42] G. Levi, P. Nisnevich, A. Ben-Shalom, N. Dershowitz and L. Wolf. ‘A method
for segmentation, matching and alignment of dead sea scrolls.’ (), [Online].
Available: https://courses.cs.tau.ac.il/~wolf/papers/dsscrolls.
pdf (visited on 22/04/2022).

[43] F. ., S. Madenda, E. Ernastuti, R. Widodo and R. Rodiah, ‘Cursive hand-
writing segmentation using ideal distance approach,’ International Journal
of Electrical and Computer Engineering (IJECE), vol. 7, p. 2863, Oct. 2017.
DOI: 10.11591/ijece.v7i5.pp2863-2872.

[44] M. A. Dhali, C. N. Jansen, J. W. de Wit and L. Schomaker, ‘Feature-extraction
methods for historical manuscript dating based on writing style develop-
ment,’ Pattern Recognition Letters, vol. 131, pp. 413–420, 2020, ISSN: 0167-
8655. DOI: https://doi.org/10.1016/j.patrec.2020.01.027. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0167865520300386.

[45] D. Coquenet, C. Chatelain and T. Paquet, ‘End-to-end handwritten para-
graph text recognition using a vertical attention network,’ IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2022. DOI: 10.
1109/tpami.2022.3144899. [Online]. Available: https://doi.org/10.
1109%2Ftpami.2022.3144899.

[46] A. Shonenkov, D. Karachev, M. Novopoltsev, M. Potanin and D. Dimitrov,
Stackmix and blot augmentations for handwritten text recognition, 2021.
DOI: 10.48550/ARXIV.2108.11667. [Online]. Available: https://arxiv.
org/abs/2108.11667.

[47] S. Jain, ‘A handwriting recognition system for dead sea scrolls,’ 2020.

[48] S. Sudholt and G. A. Fink, ‘Phocnet: A deep convolutional neural network
for word spotting in handwritten documents,’ in 2016 15th International
Conference on Frontiers in Handwriting Recognition (ICFHR), 2016, pp. 277–
282. DOI: 10.1109/ICFHR.2016.0060.

[49] A. Lawler. ‘Who wrote the dead sea scrolls?’ (), [Online]. Available: https:
/ / www . smithsonianmag . com / history / who - wrote - the - dead - sea -
scrolls-11781900/ (visited on 14/02/2022).

[50] OpenCV. ‘Denoising.’ (), [Online]. Available: https://docs.opencv.org/
4.x/d1/d79/group__photo__denoise.html#ga4c6b0031f56ea3f98f768881279ffe93
(visited on 16/02/2022).

[51] RiteshKH. ‘Cursivehandwri t ingr ecogni t ion.’ (), [Online]. Available: https:
//github.com/RiteshKH/Cursive_handwriting_recognition (visited on
01/05/2022).

https://courses.cs.tau.ac.il/~wolf/papers/dsscrolls.pdf
https://courses.cs.tau.ac.il/~wolf/papers/dsscrolls.pdf
https://doi.org/10.11591/ijece.v7i5.pp2863-2872
https://doi.org/https://doi.org/10.1016/j.patrec.2020.01.027
https://www.sciencedirect.com/science/article/pii/S0167865520300386
https://www.sciencedirect.com/science/article/pii/S0167865520300386
https://doi.org/10.1109/tpami.2022.3144899
https://doi.org/10.1109/tpami.2022.3144899
https://doi.org/10.1109%2Ftpami.2022.3144899
https://doi.org/10.1109%2Ftpami.2022.3144899
https://doi.org/10.48550/ARXIV.2108.11667
https://arxiv.org/abs/2108.11667
https://arxiv.org/abs/2108.11667
https://doi.org/10.1109/ICFHR.2016.0060
https://www.smithsonianmag.com/history/who-wrote-the-dead-sea-scrolls-11781900/
https://www.smithsonianmag.com/history/who-wrote-the-dead-sea-scrolls-11781900/
https://www.smithsonianmag.com/history/who-wrote-the-dead-sea-scrolls-11781900/
https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html#ga4c6b0031f56ea3f98f768881279ffe93
https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html#ga4c6b0031f56ea3f98f768881279ffe93
https://github.com/RiteshKH/Cursive_handwriting_recognition
https://github.com/RiteshKH/Cursive_handwriting_recognition

Chapter : Conclusion 103

[52] N. Reddy. ‘Skeletonization in python using opencv.’ (), [Online]. Available:
https://medium.com/analytics-vidhya/skeletonization-in-python-
using-opencv-b7fa16867331 (visited on 07/05/2022).

[53] S. Manoj and L. Mhd. ‘How to create traineddata file for tesseract 4.1.0.’ (),
[Online]. Available: https://stackoverflow.com/questions/55036633/
how-to-create-traineddata-file-for-tesseract-4-1-0 (visited on
03/05/2022).

[54] B. Zaręba. ‘How to prepare training files for tesseract ocr and improve char-
acters recognition?’ (), [Online]. Available: https://pretius.com/blog/
ocr-tesseract-training-data/ (visited on 03/05/2022).

[55] S. Srivastava. ‘Check if two rectangles overlap in java.’ (), [Online]. Avail-
able: https://www.baeldung.com/java-check-if-two-rectangles-
overlap (visited on 09/05/2022).

[56] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, ‘Gradient-based learning ap-
plied to document recognition,’ 1988.

[57] ‘Gradient-based learning applied to document recognition,’ Proceedings of
the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[58] M. A. Dhali., S. He., M. Popović., E. Tigchelaar. and L. Schomaker., ‘A di-
gital palaeographic approach towards writer identification in the dead sea
scrolls,’ in Proceedings of the 6th International Conference on Pattern Re-
cognition Applications and Methods - ICPRAM,, INSTICC, SciTePress, 2017,
pp. 693–702, ISBN: 978-989-758-222-6. DOI: 10.5220/0006249706930702.

[59] PyPI. ‘Pyqt5 5.15.6.’ (), [Online]. Available: https://pypi.org/project/
PyQt5/ (visited on 18/03/2022).

[60] A. J. Parmar. ‘Lecture 8: Fundamentals of interaction design and user in-
terface.’ ().

https://medium.com/analytics-vidhya/skeletonization-in-python-using-opencv-b7fa16867331
https://medium.com/analytics-vidhya/skeletonization-in-python-using-opencv-b7fa16867331
https://stackoverflow.com/questions/55036633/how-to-create-traineddata-file-for-tesseract-4-1-0
https://stackoverflow.com/questions/55036633/how-to-create-traineddata-file-for-tesseract-4-1-0
https://pretius.com/blog/ocr-tesseract-training-data/
https://pretius.com/blog/ocr-tesseract-training-data/
https://www.baeldung.com/java-check-if-two-rectangles-overlap
https://www.baeldung.com/java-check-if-two-rectangles-overlap
https://doi.org/10.5220/0006249706930702
https://pypi.org/project/PyQt5/
https://pypi.org/project/PyQt5/

Appendix A

Standard Agreement

105

STANDARD AGREEMENT

on student works carried out in cooperation with an external organization

The agreement is mandatory for student works such as master’s thesis, bachelor’s thesis or project

assignment (hereinafter referred to as works) at NTNU that are carried out in cooperation with an

external organization.

Explanation of terms

Copyright

Is the right of the creator of a literary, scientific or artistic work to produce copies of the work and

make it available to the public. A student thesis or paper is such a work.

Ownership of results

Means that whoever owns the results decides on these. The basic principle is that the student owns

the results from their own student work. Students can also transfer their ownership to the external

organization.

Right to use results

The owner of the results can give others a right to use the results – for example, the student gives

NTNU and the external organization the right to use the results from the student work in their

activities.

Project background

What the parties to the agreement bring with them into the project, that is what each party already

owns or has rights to and which is used in the further development of the student’s work. This may

also be material to which third parties (who are not parties to the agreement) have rights.

Delayed publication (embargo)

Means that a work will not be available to the public until a certain period has passed; for example,

publication will be delayed for three years. In this case, only the supervisor at NTNU, the examiners

and the external organization will have access to the student work for the first three years after the

student work has been submitted.

1. Contracting parties

The Norwegian University of Science and Technology (NTNU)

Department:

Institutt for datateknologi og informatikk

Supervisor at NTNU:

Aditya Suneel Sole

Marius Pedersen

email / telephone:

aditya.sole@ntnu.no / 94165542

marius.pedersen@ntnu.no / 93634385

External organization:

Contact person, email address and telephone number of the external organization:

Sule Yildirim Yayilgan, sule.yildirim@ntnu.no, 46623172

Tabita Anggraini Meilita, tabita.tobing@ntnu.no, +62 852 176 976 52

Students:

Erik Dale

Yeshi Jampel Pursley

Håvard Østli Fjørkenstad

Date of birth:

06.01.2000 (Yeshi)

07.01.2000 (Erik)

01.02.2000 (Håvard)

The parties are responsible for clearing any intellectual property rights that the student, NTNU, the

external organization or third party (which is not a party to the agreement) has to project background

before use in connection with completion of the work. Ownership of project background must be set

out in a separate annex to the agreement where this may be significant for the completion of the

student work.

2. Execution of the work

The student is to complete: (Place an X)

A master’s thesis

A bachelor’s thesis X

A project assignment

Another student work

Start date: 01.01.2022

Completion date: 20.05.2022

The working title of the work is:

Image Content\Hand Writing Analysis of the Dead Sea Scrolls for Provenance

The responsible supervisor at NTNU has the overarching academic responsibility for the design and

approval of the project description and the student’s learning.

3. Duties of the external organization

The external organization must provide a contact person who has the necessary expertise to provide

the student with adequate guidance in collaboration with the supervisor at NTNU. The external contact

person is specified in Section 1.

The purpose of the work is to carry out a student assignment. The work is performed as part of the

programme of study. The student must not receive a salary or similar remuneration from the external

organization for the student work. Expenses related to carrying out the work must be covered by the

external organization. Examples of relevant expenses include travel, materials for building prototypes,

purchasing of samples, tests in a laboratory, chemicals. The student must obtain clearance for coverage

of expenses with the external organization in advance.

The external organization must cover the following expenses for carrying out the work:

No

Coverage of expenses for purposes other than those listed here is to be decided by the external

organization during the work process.

4. The student’s rights

Students hold the copyright to their works [2]. All results of the work, created by the student alone

through their own efforts, is owned by the student with the limitations that follow from sections 5, 6

and 7 below. The right of ownership to the results is to be transferred to the external organization if

Section 5 b is checked or in cases as specified in Section 6 (transfer in connection with patentable

inventions).

In accordance with the Copyright Act, students always retain the moral rights to their own literary,

scientific or artistic work, that is, the right to claim authorship (the right of attribution) and the right to

object to any distortion or modification of a work (the right of integrity).

A student has the right to enter into a separate agreement with NTNU on publication of their work in

NTNU’s institutional repository on the Internet (NTNU Open). The student also has the right to publish

the work or parts of it in other connections if no restrictions on the right to publish have been agreed

on in this agreement; see Section 8.

5. Rights of the external organization

Where the work is based on or further develops materials and/or methods (project background)

owned by the external organization, the project background is still owned by the external organization.

If the student is to use results that include the external organization’s project background, a

prerequisite for this is that a separate agreement on this has been entered into between the student

and the external organization.

Alternative a) (Place an X) General rule

The external organization is to have the right to use the results of the work

This means that the external organization must have the right to use the results of the work in its own

activities. The right is non-exclusive.

Alternative B) (Place an X) Exception

X The external organization is to have the right of ownership to the results of the

task and the student’s contribution to the external organization’s project

Justification of the external organization’s need to have ownership of the results transferred to

it:

Because this work is carried out within the scope of the lying pen of scribes project founded

by the research council of Norway.

6. Remuneration for patentable inventions

If the student, in connection with carrying out the work, has achieved a patentable invention, either

alone or together with others, the external organization can claim transfer of the right to the invention

to itself. A prerequisite for this is that exploitation of the invention falls within the external

organization’s sphere of activity. If so, the student is entitled to reasonable remuneration. The

remuneration is to be determined in accordance with Section 7 of the Employees’ Inventions Act. The

provisions on deadlines in Section 7 apply correspondingly.

7. NTNU’s rights

The submitted files of the work, together with appendices, which are necessary for assessment and

archival at NTNU belong to NTNU. NTNU receives a right, free of charge, to use the results of the work,

including appendices to this, and can use them for teaching and research purposes with any

restrictions as set out in Section 8.

8. Delayed publication (embargo)

The general rule is that student works must be available to the public.

Place an X

X The work is to be available to the

public.

In special cases, the parties may agree that all or part of the work will be subject to delayed publication

for a maximum of three years. If the work is exempted from publication, it will only be available to the

student, external organization and supervisor during this period. The assessment committee will have

access to the work in connection with assessment. The student, supervisor and examiners have a duty

of confidentiality regarding content that is exempt from publication.

The work is to be subject to delayed publication for (place an X if this applies):

Place an X Specify date

one year

two years

three years

The need for delayed publication is justified on the following basis:

If, after the work is complete, the parties agree that delayed publication is not necessary, this can be

changed. If so, this must be agreed in writing.

Appendices to the student work can be exempted for more than three years at the request of the

external organization. NTNU (through the department) and the student must accept this if the external

organization has objective grounds for requesting that one or more appendices be exempted. The

external organization must send the request before the work is delivered.

The parts of the work that are not subject to delayed publication can be published in NTNU’s

institutional repository – see the last paragraph of Section 4. Even if the work is subject to delayed

publication, the external organization must establish a basis for the student to use all or part of the

work in connection with job applications as well as continuation in a master’s or doctoral thesis.

9. General provisions

This agreement takes precedence over any other agreement(s) that have been or will be entered into

by two of the parties mentioned above. If the student and the external organization are to enter into a

confidentiality agreement regarding information of which the student becomes aware through the

external organization, NTNU’s standard template for confidentiality agreements can be used.

The external organization’s own confidentiality agreement, or any confidentiality agreement that the

external party has entered into in collaborative projects, can also be used provided that it does not

include points in conflict with this agreement (on rights, publication, etc). However, if it emerges that

there is a conflict, NTNU’s standard contract on carrying out a student work must take precedence.

Any agreement on confidentiality must be attached to this agreement.

Should there be any dispute relating to this agreement, efforts must be made to resolve this by

negotiations. If this does not lead to a solution, the parties agree to resolution of the dispute by

arbitration in accordance with Norwegian law. Any such dispute is to be decided by the chief judge

(sorenskriver) at the Sør-Trøndelag District Court or whoever he/she appoints.

This agreement is signed in four copies, where each party to this agreement is to keep one copy. The

agreement comes into effect when it has been signed by NTNU, represented by the Head of

Department.

Signatures:

Head of Department: Marius Pedersen

Date:31/01/22

Supervisor at NTNU: Aditya Sole

Date: 31-01-2022

External organization (Employer at NTNU): Sule Yildirim Yayilgan

Date: 19.01.2022

Student:

___________ _________________ ________________

Erik Dale Yeshi Jampel Pursley Håvard Østli Fjørkenstad

Date: 26.01.2022

[1] If several students co-author a work, they can all be listed here. The students then have
joint rights to the work. If an external organization instead wants a separate agreement to be
concluded with each student, this is done.

[2] See Section 1 of the Norwegian Copyright Act of 15 June 2018 [Lov om opphavsrett til
åndsverk]

Appendix B

Confidentiality Agreement

117

Approved by the Pro-Rector for Education 10 December 2020

STANDARD template between a student and an external organization for student work such as

master’s thesis or another student work in cooperation with an external organization, cf. Clause 9 in

the standard agreement on student work carried out in cooperation with an external organization.

Student at NTNU:

Erik Dale

Yeshi Jampel Pursley

Håvard Østli Fjørkenstad

Date of birth:

07.01.2000 - Erik Dale

06.01.2000 - Yeshi Jampel Pursley

01.02.2000 - Håvard Østli Fjørkenstad

External organization:

NTNU

1. The student is to carry out work in cooperation with an external organization that is part of his/her

course of study at NTNU.

2. The student undertakes to maintain secrecy regarding what he/she learns about technical

equipment, procedures as well as operational and business matters that for competitive reasons

have importance for the external organization. It is the responsibility of the external organization to

make it absolutely clear what this information includes.

3. The student is obliged to maintain secrecy about this for 5 years from the date he/she completed

work at the organization.

4. The confidentiality requirement does not apply to information that:

a) was in the public domain when it was received

b) was lawfully received from a third party without any agreement concerning secrecy

c) was developed by the student independently of information received

d) the parties are obliged to provide in accordance with law or regulations or by order of a public

authority.

Signatures

Student:

___________ _________________ ________________

Erik Dale Yeshi Jampel Pursley Håvard Østli Fjørkenstad

Date:

19.01.2022

External organization: Sule Yildirim Yayilgan, NTNU

(Need signatures from employers or something here)

Date: 19.01.2022

Appendix C

Problem Statement

121

TITLE: image content\hand writing analysis of the Dead Sea Scrolls for
provenance

Contact: sule.yildirim@ntnu.no, Tabita.tobing@ntnu.no

Currently we are working on understanding the authorship and date\period of Dead
Sea Scrolls within the scope of the Lying Pen project in cooperation with
University of Agder. Our particular focus on using image processing and machine
learning techniques to help extract and learn the features from the Scroll
images. Hence, the machine learning will be able to classify among the
authorship and period. The interested student or the student group will be
working on image processing techniques to identify the relevant features from
the scroll text in the images. Some pre-processing of the images in order to
make the content visible may be required as well. There is no need of pre
knowledge on image processing techniques to do work. The student(s) will be
provided the required material to learn during the project period. If the
student(is) further interested in the machine learning aspect, we also have the
possibility to provide the possibility to make some initial experiments with the
extracted features to learn the date and authorship of the scrolls using machine
learning. '

Appendix D

Project Plan

123

IDATG2900 - Bachelor Thesis

Project Plan

Authors:
Erik Dale, Yeshi Jampel Pursley, H̊avard Østli Fjørkenstad

January, 2022

Table of Contents

1 Goals and Frames 1

1.1 Background . 1

1.2 Project Goals . 1

1.2.1 Result Goals . 1

1.2.2 Effect Goals . 2

1.3 Frames . 2

1.4 Resource Needs . 2

2 Scope 2

2.1 Problem Area . 2

2.2 Problem Delimitation . 2

2.3 Problem Statement . 3

3 Project Organizing 3

3.1 Responsibilities and Roles . 3

3.2 Routines and Group Rules . 4

4 Planning, Follow Up and Reporting 5

4.1 Main Division of the Project . 5

4.1.1 Choice of Software Development Model/Process Framework with Argument 5

4.1.2 Description of how the group will follow the model 5

4.2 Plan for status meetings and decision moments in the period 6

4.3 Plan if some our main goals are not met . 6

4.4 Plan if resource needs are not met . 6

5 Organizing of Quality Assurance 6

5.1 Documentation, Standards and Configuration . 6

5.1.1 Tools . 7

5.2 Plan for Inspections and Testing . 7

5.2.1 Testing Image Segmentation Results . 7

5.2.2 Testing Machine Learning Results . 7

5.2.3 Testing Image Denoising . 7

5.3 Risk Analysis . 8

5.3.1 Risk Assessment . 8

5.3.2 Measures . 8

i

6 Plan for implementation 9

6.1 Gantt-diagram . 9

6.2 Activities, Milestones and Decision Moments . 9

Bibliography 11

Appendix 12

A Standard Agreement . 13

B Confidentiality Agreement . 24

ii

1. Goals and Frames E. Dale Y. Pursley H. Fjørkenstad

1 Goals and Frames

1.1 Background

The Bachelor thesis is the final evaluation we as computer engineering students at NTNU Gjøvik
go through as bachelor students. We get a real issue from an employer, which is usually a local
company, or in our case the university. It is a very good way for us to prepare for our working life
after graduation.

The Department of Information Security and Communication Technology (IIK) at NTNU Gjøvik
are working on understanding the authorship and date\period of Dead Sea Scrolls within the
scope of the Lying Pen project in cooperation with University of Agder. They manually extract
the different letters and words from the scrolls, something that takes a lot of time. Therefore they
are interested in finding out if image processing and machine learning techniques can help extract
and learn the features from the Scroll images. The machine learning will be able to classify the
letters and words. Some pre-processing of the images in order to make the content visible may be
required as well. In this project we will focus on using machine learning to extract the different
letters and words of the scrolls, which later on can be used to determine data and authorship of
them.

Figure 1: The figure shows an example of a scroll, This one is fragmented and a little bit damaged.
Reference: https://www.deadseascrolls.org.il/explore-the-archive/image/B-508181 [1]

1.2 Project Goals

1.2.1 Result Goals

• We are to create a solution for extracting and learning the features from the Scroll images,
by classifying the different letters on the scroll images.

• The detection of the letters needs a high precision. It should on average have a precision of
over 0.9 (90%).

• When it comes to the letter segmentation we would like to have an average ”Intersection over
Union” score of over 0.5 (IoU > 0.5).[2]

1

1.3 Frames E. Dale Y. Pursley H. Fjørkenstad

• The time it takes to scan and classify letters on each image of the scrolls should be quite low.
The biggest images we have worked on are about 2000x2700 pixels and letters on images like
that should not take longer than 20 seconds to classify.

• When it comes to the pre-processing part we want our denoising methods to have a PSNR
score of over 30 dB.[3]

• The users should be able to extract the features on the scrolls through an easy and intuitive
user interface.

1.2.2 Effect Goals

• Our solution should greatly reduces the time it takes for our employers to extract information
from the Scrolls.

• Our work should help free up work capacity for our employers, by making it easier for them
to extract information from the scrolls.

• Our solution should be modifiable and expendable by others outside our group. Meaning
that others outside our group should be able to expand upon our solution.

1.3 Frames

The time frame we have to complete this project in is 10th of January to 20th of May 2022. Our
solution and report need to be finished by then.

Technology frames:

• Our code should be able to run on Windows.

• The code we create should be easily modifiable and/or reusable by others.

1.4 Resource Needs

For our machine learning we will need at least 120 crop images of all the 22 letters in the old
hebrew alphabet. Our employer will provide us with those. They may need some help from us to
crop out the images as this is a long and tedious process.

2 Scope

2.1 Problem Area

The Dead Sea Scrolls are massive collections of biblical and non-biblical texts and manuscripts.
They were discovered in the Judean desert in 1947. The Scrolls consist of nearly intact scrolls
and thousands of fragments. The scrolls we will be working on are written in old Hebrew.[4] The
Department of Information Security and Communication Technology at NTNU Gjøvik is working
on improving the way computer vision is used in the analyzing of the Dead Sea Scrolls, especially
when it comes to the many Scroll fragments where it can be hard to extract letters and words. Up
until this point they have manually extracted the letters from the Scrolls.

2.2 Problem Delimitation

We as developers are just responsible for working on the extraction of information from the Scrolls,
not responsible for actually understanding what is written there. The solution we provide is only

2

2.3 Problem Statement E. Dale Y. Pursley H. Fjørkenstad

going to be used by the Department of Information Security and Communication Technology at
NTNU Gjøvik and/or other partners involved in the Lying Pen project.

2.3 Problem Statement

Our task will be to build a system of handwritten text recognition using machine learning on
intact scrolls then apply the algorithm to other fragments. Our task will be to first do some image
pre-processing (if that is needed), then segment the images and finally extracting the words and
letters using machine learning.[4].

Figure 2: The figure shows the process a Dead Sea Scrolls image has to go through in order for us
to classify the words and letters on it.

3 Project Organizing

3.1 Responsibilities and Roles

Roles:

A. Leadership – Project leader (Erik)

Responsibilities: If we disagree, the leader has the final word and during a voting-process he will
have two votes. Make sure everyone follows the rules and that everyone has something to do. The
leader is the chairman in meetings.

B. Communication responsible (Yeshi)

Responsibilities: Responsible for communication in and out of the group. Meaning things like
scheduling meetings with our supervisors and clients.

C. Archive/ Document responsible (H̊avard)

Responsibilities: Make sure that the meetings are documented. Has a general overview of all of

3

3.2 Routines and Group Rules E. Dale Y. Pursley H. Fjørkenstad

our documentation.

Main Work Responsibilities:

A. Image Pre-Processing (Erik)

Responsible for coding the necessary image enhancement techniques to ensure an easier segment-
ation.

B. Image Segmentation (Yeshi)

Responsible for the code and techniques for segmenting the larger images into lines, words and
characters for use in the neural network.

C. Machine Learning (H̊avard)

Responsible for the code behind the neural network model and training, which are to be used for
classifying the input data.

3.2 Routines and Group Rules

Routines:

With the exception of weekly meetings within the group, with project advisors and with the client,
the group does not have any specified routines. Work and other intermittent meetings are done as
the group sees necessary.

Group Rules and Procedures:

A. Meetings

Yeshi sends out summons. Two-three times a week, from ca. 10am to 6pm, and of course not
when we have other lectures. Yeshi notifies us on Discord.

B. Notification in case of absence or other incidents

You need a reason for absence. You need to notify the group as early as possible if you cannot
attend a meeting.

C. Documents

Discord/Github/Google Docs/Google Sheet will be used to share documents, Github and git will
be used as versioning.

D. Distribution of tasks

We distribute tasks evenly amongst ourselves so that the amount of work is as equal as possible
between us. We also give everyone the opportunity to contribute to what task they want.

E. Policy for monitoring tasks

Kanban-board, this is mostly the leader’s task.

F. Submission of team work

We uphold deadlines within the group.

G. Timesheet

After all work we do we note down when we worked and what work we did in a timesheet table in
excel.

H. Attendance and preparation

Accepted meeting time: 10am - 6pm, and not during other lectures. Every group-member should

4

4. Planning, Follow Up and Reporting E. Dale Y. Pursley H. Fjørkenstad

come prepared to each meeting.

I. Presence and commitment

We will try to avoid distractions as much as possible, but if too many occur, the leader will
intervene. We will put in scheduled breaks in our schedule to avoid them as well.

J. How to support each other

Be honest to each other. Give constructive criticism not destructive.

K. Disagreement, breach of contract

If breach of contract occurs:

1. A discussion in the group will be held to try and fix the problem.

2. Written warning if the work contract has been breached several times if the majority of the
group agrees.

3. Conversation with supervisor - after two written warnings.

4. Exclusion from group after majority vote by majority group members and supervisor, after
several conversations with supervisor.

L. Failure to complete a task

If the person is not able to complete a task, the person must explain why he was not able to complete
the task by describing what he has tried and what went wrong. If the reason is inadequate we
move into point D.

4 Planning, Follow Up and Reporting

4.1 Main Division of the Project

4.1.1 Choice of Software Development Model/Process Framework with Argument

For the software development model we’ve chosen Agile, mainly because of the ”agile” nature of
the framework. Being able to adapt to change will be very important if the project scope grows,
in case we accomplish the initial tasks. This is why we favor agile over something like Waterfall,
so that we don’t have to design everything from the start and to keep ourselves open for deviation.
Agile will also the group deliver faster, keep the clients in the loop and our project on course with
their feedback. It will also help eliminate the risk of wasting time due to delays or setbacks.[5]

Within the agile framework, we’ve chosen to use Kanban to help our work visualized and to keep
everyone on the same page, by easily keeping track of what has been done and what needs to be
done. Kanban has also been favored over something like Scrum, to keep our work routines a little
more flexible, by not thinking about sprints or strict deadlines. Most importantly, Kanban is a
fairly easy framework which will keep us focused on the actual work, instead of getting slowed
down by investing time into learning and using a framework correctly. [6]

4.1.2 Description of how the group will follow the model

Group will follow the model by creating a Kanban board on Github to keep track of our progress
and work backlog. The board will be divided up in a To do, To do - Priority, In progress, Testing
and Done.

5

4.2 Plan for status meetings and decision moments in the periodE. Dale Y. Pursley H. Fjørkenstad

Figure 3: Shows our kanban board on Github.

4.2 Plan for status meetings and decision moments in the period

Meetings: Group meetings are held every Monday at 12:00, where we discuss our work from the
previous week and keep each other informed on the progress. We also discuss potential problems
and questions that we would like to take up in the following meetings that week. The meetings do
not have a set time limit, but are usually between 1-2 hours. Group meetings are also held after
every other type of meeting. Meetings with the client is held every Thursday between 12:00 and
13:00, where we discuss our current project and ask questions.

Meetings with the advisor is held every Thursday/Friday somewhere between 10:00 and 15:00.

4.3 Plan if some our main goals are not met

• If our pre-processing goals are not met for the damaged scrolls we will have to work with
well conditioned scrolls only. Damaged and fragmented scrolls may be harder to image pre-
process, so denoising and enhancing them might be hard.

• If we are not able to segment the letters/words automatically, we will then focus on manually
segmenting the letters. We can either work on manually fixing the letters/words that were
not automatically segmented correctly or simply segment all the letters/words manually. We
will then focus more on the other parts of the project like Image Enhancement and letter
classification.

• If we are not able to classify the letters with high enough precision, we will focus more on
Image Enhancement, Image Segmentation, and the literary research part of the project.

4.4 Plan if resource needs are not met

If we are not able to get at least 120 crop images of all the 22 letters we might have to consider
data augmentation.[7]

5 Organizing of Quality Assurance

5.1 Documentation, Standards and Configuration

H̊avard is responsible for keeping an overview of the documentation. We make sure that it is easy
for the group to find out what we are working on, who is responsible for what, and that we write
good documentation in our code.

6

5.2 Plan for Inspections and Testing E. Dale Y. Pursley H. Fjørkenstad

5.1.1 Tools

Name Type Area of use
Discord Communication Platform Communication and meetings for the group.

Microsoft Teams Communication Platform Meetings with advisors and client.
Google Docs Online word processor Collaboration agreement, standard agreement

and meeting log.
Google Sheet Spreadsheet program Used to log time and create Gantt-diagram.

Overleaf LaTeX editor Writing the Project Plan and report.
Google Slides Presentation program For making presentations.
PyCharm Python IDE Writing and running python code.

Visual Studio Code IDE Writing and running python code.
Jupyter Notebook Python notebook Writing and running python code

Microsoft PowerToys Image editing tool Mostly for resizing images
Lucidchart Online chart drawer Creating diagrams and figures

5.2 Plan for Inspections and Testing

5.2.1 Testing Image Segmentation Results

For testing the Image Segmentation we draw rectangles over each of the letters/words on the
image of the scroll provided by the code. After filtering the image segmentation results, we draw
red rectangles over results that the filter filtered out and blue ones over the results we want. This
allows us to get an oversight of how well the images segmentation worked. We can zoom in on the
document, analyze and compare with different results.

To test the individual letters we can create a ground truth of a the shape of a letter and then
compare it with the prediction using the ”Intersection over Union” metric.[2]. We can also use this
metric to calculate the precision of the amount of letters/words it segmented in the document.

5.2.2 Testing Machine Learning Results

While training the model, we will use 20% of the dataset to test the accuracy of the model, as well
as the average loss.

The finished model will also be used to predict the labels of a known dataset, which allows us to
easily see and visulize how the model preforms on both standard and edge cases.

5.2.3 Testing Image Denoising

Testing and inspection of image denoising methods are in general pretty easy to evaluate just by
looking at the differences in the original and the denoised image. There exists however mathem-
atical formulas to test the different kinds of denoising methods. PSNR is one that can be used to
evaluate performance metrics of such methods.[8] PSNR is used to estimate the efficiency of com-
pressors, filters, etc. A larger PSNR value means a more effictient compression or filter method.[3]
This is what we will use to evaluate the performance of the different methods we have used to try
reducing noise in our scroll-images.

7

5.3 Risk Analysis E. Dale Y. Pursley H. Fjørkenstad

5.3 Risk Analysis

5.3.1 Risk Assessment

Description Likelihood Consequence Risk Measures
Conflict within the group. Unlikely Problematic Less Severe Yes
Somebody is sick for a significant
duration.

Unlikely Severe Considerable Yes

Project is not finish in time. Unlikely Problematic Less Severe Yes
Somebody leaves the group. Unlikely Severe Considerable Yes
Loss of documents and/or source
code.

Unlikely Severe Considerable Yes

Unable to implement specific
functionality.

Likely Problematic Considerable Yes

Client wants to change the re-
quirements specification.

Very Likely Problematic Serious Yes

5.3.2 Measures

Number Measure
1 If there is a conflict within the group we will have to resolve this problem

quickly through meetings with the group and with supervisors if neces-
sary. It is important to solve it quickly to minimize the consequences.

2 and 4 To reduce the consequences of somebody being sick for a long duration,
we make sure that everybody in the group understands what each of us
are working on in the project. Good documentation is also important. If
somebody is not able to work or they have to leave the group, we would
be able to continue working on what they were working on.

3 We will have a meeting with the client if we are not able to finish the
project in time. We will have to discuss with them about reducing the
scope of the project. We make sure that we are aware of the progress
of our work so that if we notice that something is behind schedule we
address it early on.

5 All of our documents are stored on Google docs/Sheet and overleaf. We
upload our source code to our GitHub repository and locally on our
computers.

6 If we are unable to implement certain functionalities to the project we
will have to have a meeting with our client and explain why we were
unable to do that. We will then discuss alternative solutions to the
problem.

7 If the client wishes to change the requirements specification we will have
to evaluate if we have enough time and knowledge of the thing they wish
us to change and/or implement. We have a meeting with them at least
once a week on Thursday which makes it easier for us to evaluate the
change and discuss with the client about it.

8

6. Plan for implementation E. Dale Y. Pursley H. Fjørkenstad

6 Plan for implementation

6.1 Gantt-diagram

DSS Gantt Diagram Week number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Documentation Responsible
Make project plan All
Make collaboration agreement All
Make standard agreement All
Make confidentiality agreement All
First milestone

Literary research All

Development
Image enhancement Erik
Image segmentation Yeshi
Develop a classifier Håvard
Classify test case letters Håvard
Classify letters in scrolls All
Classify letters in damaged scrolls All
Second milestone
Third milestone

If time permits
Classify letters in fragmented scrolls All
Classift authorship and time period All
GUI All
Forth milestone

Report
Writing the report All
Finishing the report All
Deadline All
Fifth milestone

Presentation
Preperation All
Practice All
Present All

Individual Reflection
Write reflection note All
Deadline for individual reflection note All

Figure 4: Our Gantt diagram. Link to it.

6.2 Activities, Milestones and Decision Moments

First milestone:

• Finish the project plan.

• Finish the collaboration agreement.

• Finish the standard agreement.

Second milestone:

• Finish code for Image Enhancement.

• Finish code for Image segmentation.

• Develop a classifier.

• Finish code that is able to classify test case letters.

9

6.2 Activities, Milestones and Decision Moments E. Dale Y. Pursley H. Fjørkenstad

• These tasks will provide the core functionality that we will need to work on the scrolls. We
will work more on Image Enhancement and Image Segmentation later to improve results but
when we finish this milestone those functionalities will provide good enough results for the
next milestone.

Third milestone:

• Create code that can classify letters in the clean scrolls provided by Tabita.

• Create code that works for scrolls that need image enhancement.

• In this milestone we expand on our work from the previous milestone.

Forth milestone:

• Create code that works for scrolls that are fragmented.

• Create code for recognizing handwriting.

• Create a GUI.

• This milestone contains optional tasks that we can work on if we need more work.

Fifth milestone:

• Finish the report. We will be working on the report during the entire project.

10

BIBLIOGRAPHY E. Dale Y. Pursley H. Fjørkenstad

Bibliography

1. Halevi S. The Leon Levy Dead Sea Scrolls Digital Library. Available from: https ://www.
deadseascrolls.org.il/explore-the-archive/image/B-508181 [Accessed on: 2022 Jan 28]

2. Jordan J. Evaluating image segmentation models. Available from: https://www.jeremyjordan.
me/evaluating-image-segmentation-models/ [Accessed on: 2022 Jan 23]

3. Saha A. Python— Peak Signal-to-Noise Ratio (PSNR). Available from: https://www.geeksforgeeks.
org/python-peak-signal-to-noise-ratio-psnr/ [Accessed on: 2022 Jan 21]

4. Tobing T. Handwritten Text Recognition on the Dead Sea Scrolls. 2022

5. Radigan D. Agile vs. Waterfall project managment. Available from: https://www.atlassian.
com/agile/project-management/project-management-intro [Accessed on: 2022 Jan 23]

6. Rehkopf M. What is a kanban board? Available from: https://www.atlassian.com/agile/kanban/
boards [Accessed on: 2022 Jan 23]

7. Wikipedia. Data augmentation. Available from: https://en.wikipedia.org/wiki/Data augmentation
[Accessed on: 2022 Jan 29]

8. Fan L, Zhang F, Fan H and Zhang C. Brief review of image denoising techniques. Available
from: https://vciba.springeropen.com/articles/10.1186/s42492-019-0016-7 [Accessed on: 2022
Jan 21]

11

BIBLIOGRAPHY E. Dale Y. Pursley H. Fjørkenstad

Appendix

12

STANDARD AGREEMENT

on student works carried out in cooperation with an external organization

The agreement is mandatory for student works such as master’s thesis, bachelor’s thesis or project

assignment (hereinafter referred to as works) at NTNU that are carried out in cooperation with an

external organization.

Explanation of terms

Copyright

Is the right of the creator of a literary, scientific or artistic work to produce copies of the work and

make it available to the public. A student thesis or paper is such a work.

Ownership of results

Means that whoever owns the results decides on these. The basic principle is that the student owns

the results from their own student work. Students can also transfer their ownership to the external

organization.

Right to use results

The owner of the results can give others a right to use the results – for example, the student gives

NTNU and the external organization the right to use the results from the student work in their

activities.

A Standard Agreement E. Dale Y. Pursley H. Fjørkenstad

A Standard Agreement

13

Project background

What the parties to the agreement bring with them into the project, that is what each party already

owns or has rights to and which is used in the further development of the student’s work. This may

also be material to which third parties (who are not parties to the agreement) have rights.

Delayed publication (embargo)

Means that a work will not be available to the public until a certain period has passed; for example,

publication will be delayed for three years. In this case, only the supervisor at NTNU, the examiners

and the external organization will have access to the student work for the first three years after the

student work has been submitted.

1. Contracting parties

The Norwegian University of Science and Technology (NTNU)

Department:

Institutt for datateknologi og informatikk

Supervisor at NTNU:

Aditya Suneel Sole

Marius Pedersen

email / telephone:

A Standard Agreement E. Dale Y. Pursley H. Fjørkenstad

14

aditya.sole@ntnu.no / 94165542

marius.pedersen@ntnu.no / 93634385

External organization:

Contact person, email address and telephone number of the external organization:

Sule Yildirim Yayilgan, sule.yildirim@ntnu.no, 46623172

Tabita Anggraini Meilita, tabita.tobing@ntnu.no, +62 852 176 976 52

Students:

Erik Dale

Yeshi Jampel Pursley

Håvard Østli Fjørkenstad

Date of birth:

06.01.2000 (Yeshi)

07.01.2000 (Erik)

01.02.2000 (Håvard)

The parties are responsible for clearing any intellectual property rights that the student, NTNU, the

external organization or third party (which is not a party to the agreement) has to project background

before use in connection with completion of the work. Ownership of project background must be set

out in a separate annex to the agreement where this may be significant for the completion of the

student work.

2. Execution of the work

The student is to complete: (Place an X)

A Standard Agreement E. Dale Y. Pursley H. Fjørkenstad

15

A master’s thesis

A bachelor’s thesis X

A project assignment

Another student work

Start date: 01.01.2022

Completion date: 20.05.2022

The working title of the work is:

Image Content\Hand Writing Analysis of the Dead Sea Scrolls for Provenance

A Standard Agreement E. Dale Y. Pursley H. Fjørkenstad

16

The responsible supervisor at NTNU has the overarching academic responsibility for the design and

approval of the project description and the student’s learning.

3. Duties of the external organization

The external organization must provide a contact person who has the necessary expertise to provide

the student with adequate guidance in collaboration with the supervisor at NTNU. The external contact

person is specified in Section 1.

The purpose of the work is to carry out a student assignment. The work is performed as part of the

programme of study. The student must not receive a salary or similar remuneration from the external

organization for the student work. Expenses related to carrying out the work must be covered by the

external organization. Examples of relevant expenses include travel, materials for building prototypes,

purchasing of samples, tests in a laboratory, chemicals. The student must obtain clearance for coverage

of expenses with the external organization in advance.

The external organization must cover the following expenses for carrying out the work:

No

Coverage of expenses for purposes other than those listed here is to be decided by the external

organization during the work process.

4. The student’s rights

Students hold the copyright to their works [2]. All results of the work, created by the student alone

through their own efforts, is owned by the student with the limitations that follow from sections 5, 6

and 7 below. The right of ownership to the results is to be transferred to the external organization if

Section 5 b is checked or in cases as specified in Section 6 (transfer in connection with patentable

inventions).

A Standard Agreement E. Dale Y. Pursley H. Fjørkenstad

17

In accordance with the Copyright Act, students always retain the moral rights to their own literary,

scientific or artistic work, that is, the right to claim authorship (the right of attribution) and the right to

object to any distortion or modification of a work (the right of integrity).

A student has the right to enter into a separate agreement with NTNU on publication of their work in

NTNU’s institutional repository on the Internet (NTNU Open). The student also has the right to publish

the work or parts of it in other connections if no restrictions on the right to publish have been agreed

on in this agreement; see Section 8.

5. Rights of the external organization

Where the work is based on or further develops materials and/or methods (project background)

owned by the external organization, the project background is still owned by the external organization.

If the student is to use results that include the external organization’s project background, a

prerequisite for this is that a separate agreement on this has been entered into between the student

and the external organization.

Alternative a) (Place an X) General rule

The external organization is to have the right to use the results of the work

This means that the external organization must have the right to use the results of the work in its own

activities. The right is non-exclusive.

Alternative B) (Place an X) Exception

A Standard Agreement E. Dale Y. Pursley H. Fjørkenstad

18

X The external organization is to have the right of ownership to the results of the

task and the student’s contribution to the external organization’s project

Justification of the external organization’s need to have ownership of the results transferred to

it:

Because this work is carried out within the scope of the lying pen of scribes project founded

by the research council of Norway.

6. Remuneration for patentable inventions

If the student, in connection with carrying out the work, has achieved a patentable invention, either

alone or together with others, the external organization can claim transfer of the right to the invention

to itself. A prerequisite for this is that exploitation of the invention falls within the external

organization’s sphere of activity. If so, the student is entitled to reasonable remuneration. The

remuneration is to be determined in accordance with Section 7 of the Employees’ Inventions Act. The

provisions on deadlines in Section 7 apply correspondingly.

7. NTNU’s rights

The submitted files of the work, together with appendices, which are necessary for assessment and

archival at NTNU belong to NTNU. NTNU receives a right, free of charge, to use the results of the work,

including appendices to this, and can use them for teaching and research purposes with any

restrictions as set out in Section 8.

A Standard Agreement E. Dale Y. Pursley H. Fjørkenstad

19

8. Delayed publication (embargo)

The general rule is that student works must be available to the public.

Place an X

X The work is to be available to the

public.

In special cases, the parties may agree that all or part of the work will be subject to delayed publication

for a maximum of three years. If the work is exempted from publication, it will only be available to the

student, external organization and supervisor during this period. The assessment committee will have

access to the work in connection with assessment. The student, supervisor and examiners have a duty

of confidentiality regarding content that is exempt from publication.

The work is to be subject to delayed publication for (place an X if this applies):

Place an X Specify date

one year

two years

three years

A Standard Agreement E. Dale Y. Pursley H. Fjørkenstad

20

The need for delayed publication is justified on the following basis:

If, after the work is complete, the parties agree that delayed publication is not necessary, this can be

changed. If so, this must be agreed in writing.

Appendices to the student work can be exempted for more than three years at the request of the

external organization. NTNU (through the department) and the student must accept this if the external

organization has objective grounds for requesting that one or more appendices be exempted. The

external organization must send the request before the work is delivered.

The parts of the work that are not subject to delayed publication can be published in NTNU’s

institutional repository – see the last paragraph of Section 4. Even if the work is subject to delayed

publication, the external organization must establish a basis for the student to use all or part of the

work in connection with job applications as well as continuation in a master’s or doctoral thesis.

9. General provisions

This agreement takes precedence over any other agreement(s) that have been or will be entered into

by two of the parties mentioned above. If the student and the external organization are to enter into a

confidentiality agreement regarding information of which the student becomes aware through the

external organization, NTNU’s standard template for confidentiality agreements can be used.

The external organization’s own confidentiality agreement, or any confidentiality agreement that the

external party has entered into in collaborative projects, can also be used provided that it does not

include points in conflict with this agreement (on rights, publication, etc). However, if it emerges that

A Standard Agreement E. Dale Y. Pursley H. Fjørkenstad

21

there is a conflict, NTNU’s standard contract on carrying out a student work must take precedence.

Any agreement on confidentiality must be attached to this agreement.

Should there be any dispute relating to this agreement, efforts must be made to resolve this by

negotiations. If this does not lead to a solution, the parties agree to resolution of the dispute by

arbitration in accordance with Norwegian law. Any such dispute is to be decided by the chief judge

(sorenskriver) at the Sør-Trøndelag District Court or whoever he/she appoints.

This agreement is signed in four copies, where each party to this agreement is to keep one copy. The

agreement comes into effect when it has been signed by NTNU, represented by the Head of

Department.

Signatures:

Head of Department: Marius Pedersen

Date:31/01/22

Supervisor at NTNU: Aditya Sole

Date: 31-01-2022

External organization (Employer at NTNU): Sule Yildirim Yayilgan

A Standard Agreement E. Dale Y. Pursley H. Fjørkenstad

22

Date: 19.01.2022

Student:

___________ _________________ ________________

Erik Dale Yeshi Jampel Pursley Håvard Østli Fjørkenstad

Date: 26.01.2022

[1] If several students co-author a work, they can all be listed here. The students then have
joint rights to the work. If an external organization instead wants a separate agreement to be
concluded with each student, this is done.

[2] See Section 1 of the Norwegian Copyright Act of 15 June 2018 [Lov om opphavsrett til
åndsverk]

A Standard Agreement E. Dale Y. Pursley H. Fjørkenstad

23

Approved by the Pro-Rector for Education 10 December 2020

STANDARD template between a student and an external organization for student work such as

master’s thesis or another student work in cooperation with an external organization, cf. Clause 9 in

the standard agreement on student work carried out in cooperation with an external organization.

Student at NTNU:

Erik Dale

Yeshi Jampel Pursley

Håvard Østli Fjørkenstad

Date of birth:

07.01.2000 - Erik Dale

06.01.2000 - Yeshi Jampel Pursley

01.02.2000 - Håvard Østli Fjørkenstad

External organization:

NTNU

1. The student is to carry out work in cooperation with an external organization that is part of his/her

course of study at NTNU.

B Confidentiality Agreement E. Dale Y. Pursley H. Fjørkenstad

B Confidentiality Agreement

24

2. The student undertakes to maintain secrecy regarding what he/she learns about technical

equipment, procedures as well as operational and business matters that for competitive reasons

have importance for the external organization. It is the responsibility of the external organization to

make it absolutely clear what this information includes.

3. The student is obliged to maintain secrecy about this for 5 years from the date he/she completed

work at the organization.

4. The confidentiality requirement does not apply to information that:

a) was in the public domain when it was received

b) was lawfully received from a third party without any agreement concerning secrecy

c) was developed by the student independently of information received

d) the parties are obliged to provide in accordance with law or regulations or by order of a public

authority.

Signatures

Student:

___________ _________________ ________________

Erik Dale Yeshi Jampel Pursley Håvard Østli Fjørkenstad

Date:

19.01.2022

B Confidentiality Agreement E. Dale Y. Pursley H. Fjørkenstad

25

External organization: Sule Yildirim Yayilgan, NTNU

Date: 19.01.2022

B Confidentiality Agreement E. Dale Y. Pursley H. Fjørkenstad

26

Appendix E

How We Created a Custom
TRAINEDDATA File

We followed all of the steps on the website [53] to create our custom TRAINED-
DATA file. We used the article [54] to get a better understanding of the steps in
[53].
We used Tesseract version 4.0.0. Other versions might not work.

The filename to the images we wish to train with Tesseract needs to have the
form: [language name].[font name].exp[number].[file extension]. The steps we
are going to list, which are the steps we followed to create our custom TRAINED-
DATA file, include the steps from the website [53], how we used QT Box editor,
and examples of each step.

1. Open CMD.
2. Create a box file.

• Syntax: tesseract [langname].[fontname].[expN].[file-extension] [lang-
name].[fontname].[expN] batch.nochop makebox
• Example: tesseract heb.Dssfont-Regular.exp0.png heb.Dssfont-Regular.exp0

batch.nochop makebox

3. Use QT Box Editor to fix boxes that are incorrect. More information about
QT Box Editor can be read in Section 3.3.5. Select the image in the applic-
ation and not the box file.

4. Create a .tr file.

• Syntax: tesseract [langname].[fontname].[expN].[file-extension] [lang-
name].[fontname].[expN] box.train
• Example: tesseract heb.Dssfont-Regular.exp0.png heb.Dssfont-Regular.exp0

box.train

5. Extract the charset from the box file.

• Syntax: unicharset_extractor [langname].[fontname].[expN].box
• Example: unicharset_extractor heb.Dssfont-Regular.exp0.box

153

154 E. Dale Y. Pursley H. Fjørkenstad: E.0

6. Create font properties file

• Syntax: echo "[fontname] [italic (0 or 1)] [bold (0 or 1)] [monospace
(0 or 1)] [serif (0 or 1)] [fraktur (0 or 1)]" > font_properties
• Example: echo "Dssfont-Regular 0 0 0 0 0" > font_properties

7. Train the data

• Syntax: mftraining -F font_properties -U unicharset -O [langname].unicharset
[langname].[fontname].[expN].tr
• Example: mftraining -F font_properties -U unicharset -0 heb.unicharset

heb.Dssfont-Regular.exp0.tr

• Syntax: cntraining [langname].[fontname].[expN].tr
• Example: cntraining heb.Dssfont-Regular.exp0.tr

8. Rename the files that were created after training the data to include the
language.

• Syntax: rename first_filename second_filename
• Example: rename shapetable heb.shapetable

9. Combine the files we renamed into a TRAINEDDATA file

• Syntax: combine_tessdata [langname].
• Example: combine_tessdata heb.

Appendix F

User Interface Repository Link
and README

Following is a link to the user interface GitHub repository and its README.

F.1 Link

https://github.com/ErikDale/DSS_userinterface

F.2 README

155

https://github.com/ErikDale/DSS_userinterface

ErikDale / DSS_userinterface Public

DSS_userinterface / README.md

Notifications Fork 0 Star 0

Code Issues Pull requests Actions Projects Wiki Security Insights

 main Go to file

DSS_userinterface
This application is made mainly for Windows and the following steps are for Windows OS primarily.

Run User Interface

To run this program you can either use our .exe file or clone this repo and run our python file.

Use Our Executable File

Here: https://www.dropbox.com/s/pp1g0mtchkgy6gz/dss_userinterface.zip?dl=0 you can find a zip file containing our executable file. Simply
download that, unzip it and run the dss_userinterface.exe file that is inside it. You unzip a zip-file by right clicking it and selecting "extract all":

If you move the .exe file from the folder it will not work, so keep it in the folder.

Use Repository To Run User Interface

Install Python and Anaconda

To run our user interface using our repository you need to have python: https://www.python.org/downloads/ installed on your Windows
computer. I would also recommend you download Anaconda: https://www.anaconda.com/products/individual to make it easier to run the
appliction.

Clone Repository

Clone repository in a wanted location on your computer using:

Open Anaconda Prompt

Once you have installed Anaconda you should be able to press the Windows button and search for Anaconda Prompt:

Once you have opened that you should navigate to the repo. You can do this by using:

Use Pip Install

When you have navigated to the cloned repo you should use:

to install all the dependencies needed to run the application.

git clone https://github.com/ErikDale/DSS_userinterface.git

cd <full_path to the cloned repo>

pip install -r requirements.txt

54 lines (38 sloc) 2 KB Raw Blame

Sign upProduct Team Enterprise Explore Marketplace Pricing Search Sign in

Run User Interface

When that is done you should be able to run the user interface using:

Test image

To test the user interface we have added a test image called test.jpg in the repo. The image is a paragraph from The Great Isaiah Scroll
column 35, gotten from: https://archive.org/details/qumran

python ./dss_userinterface.py

© 2022 GitHub, Inc. Terms Privacy Security Status Docs Contact GitHub Pricing API Training Blog About

Appendix G

Repository Link and README

Following is a link to the main GitHub repository and its README.

G.1 Link

https://github.com/yeshipursley/image-analysis-DSS

G.2 README

159

https://github.com/yeshipursley/image-analysis-DSS

yeshipursley / image-analysis-DSS Public

image-analysis-DSS / README.md

Notifications Fork 0 Star 1

Code Pull requests Actions Projects 1 Security Insights

 master Go to file

Image Analysis DSS
The files in this project is made mainly for Windows and the following steps are for Windows OS primarily. The files can however be run on
other operative systems as well.

Run Files

Install Python and Anaconda

To run our files using our repository you need to have python: https://www.python.org/downloads/ installed on your Windows computer. I would
also recommend you download Anaconda: https://www.anaconda.com/products/individual to make it easier to run the files.

Clone Repository

Clone repository in a wanted location on your computer using:

Open Anaconda Prompt

Once you have installed Anaconda you should be able to press the Windows button and search for Anaconda Prompt:

Once you have opened that you should navigate to the repo. You can do this by using:

Use Pip Install

Before installing the pip packages, create a virtual enviroment to make managing the pacakges easier with:

Then, to activate the virtual enviroment do:

Terminal should now show (dss) before the prompt.

When that is done you should use:

to install all the dependencies needed to run the files.

Run Image Enhancement Files

The image enhancement part of the project has been divided into three folders: Histogram, MorpholigicalTransformations and NoiseReduction.
The way you run the python files in these three folders is the same for every folder. You should run them in the Anaconda Prompt after you
have installed the necessary dependencies using the earlier step. This is how you run them:

git clone https://github.com/yeshipursley/image-analysis-DSS.git

cd <full_path to the cloned repo>

python3 -m venv dss

dss\Scripts\activate

pip install -r requirements.txt

111 lines (93 sloc) 5.52 KB Raw Blame

Sign upProduct Team Enterprise Explore Marketplace Pricing Search Sign in

Use cd to move to wanted folder.

The .\filename.py is the name of the python file you want to run. The .\inputImage.jpg is the path of the image to want to do image enhancment
on. The .\outputImage.jpg is the path where you want to store the now newly created image that has been enhanced. Remember to include the
filename in this path. The paths can be absolute paths or relative paths to the cloned repo. Use backslashes ("\") in the paths and if you use
relative paths use a dot before the path (.\path\imageName.jpg).
IMPORTANT: For the adaptive_histogram.py file the image should be rgb or gray-scale. For all the other files the image should be binarized.

Image Segmentation Files Structure

Our image segmentation work has been divided into 5 folders:

binarization_comparison: this file was used to test different binarization methods.

custom_traineddata_file: contains our custom traineddata file

pytesseract_image_to_boxes_comparison: contains a file that was used to test how different binarization methods affect pytesseract's
segmentation.

segmentation_to_classifier: contains files needed to run our image segmentation.

yolo_to_img: a file we created to manually convert letters extracted from LabelImg in the YOLO format to images.

Run Image Segmentation Files

Steps to test our image segmentation:

Copy the segmentation_to_classifier folder into another folder.

Download tesseract - https://github.com/UB-Mannheim/tesseract/wiki

Copy the heb.traineddata file from the "custom_traineddata_file" folder in this GitHub repository and put it into your Tesseract-
OCR/tessdata folder.

Copy the default.model from "image-analysis-DSS/machine_learning/neural_network/models/default/" folder in this GitHub repository and
paste it in your segmentation_to_classifier folder.

In segmentation_to_classifier.py make sure the path, located at line 322, goes to your tesseract.exe file.

In segmentation_to_classifier.py add these lines at the bottom of the code:

Run the segmentation_to_classifier.py file.

Run Machine Learning Files

Training

Add --gpu to run the training on an available GPU
Add -e :number: to run the training for a set number of epochs, where :number: is your desired epoch (default is 20)
Add -d :name: or --dataset :name: to run a dataset other than the default "default", datasets must be located in the
MachineLearning/NeuralNetwork/datasets folder

Add -m :name: or --model :name: to give the trained model a name other than "default", trained models will be saved in the
MachineLearning/NeuralNetwork/models folder

Add --earlystop :loss: to use the callback function and stop the training at a certain loss value, or until all epochs are completed

Extraction

Add -d :path: to specify what :path: folder the dataset should be extracted from, folder needs to have subfolders with all the letters with
their respective name
Add -n :name: or --name :name: to specify what :name: the dataset should be called, datasets are saved in the
MachineLearning/NeuralNetwork/datasets folder

Predict

cd <folder_name>

python .\filename.py -input .\inputImage.jpg -output .\outputImage.jpg

img = cv2.imread('path to your image')

Segmentor().segmentClearBackground(img)
or
Segmentor().segmentVariedBackground(img)

python MachineLearning\NeuralNetwork\train.py

python MachineLearning\extract.py

python MachineLearning\NeuralNetwork\predict.py

You will need to change the model_name variable at line 114 to the desired model located in the MachineLearning/NeuralNetwork/models
folder

Test image

To test our code we have added a test image called test.png in the repo. The image is a paragraph from The Great Isaiah Scroll column 35,
gotten from: https://archive.org/details/qumran

© 2022 GitHub, Inc. Terms Privacy Security Status Docs Contact GitHub Pricing API Training Blog About

Appendix H

YOLO to Images Code

1 # Taken from https://stackoverflow.com/questions/64096953/how-to-convert-yolo-
format-bounding-box-coordinates-into-opencv-format

2 # Date: 25.02.2022
3 # Have done a few changes
4 import cv2
5 import matplotlib.pyplot as plt
6

7 # For changing the directory so that we can save images in a different folder
8 import os
9

10 # Reading the DSS-image
11 img = cv2.imread(’<DSS-image>’)
12

13 # Converting it to gray-scale
14 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
15

16 # Getting the shape of the gray-scale image
17 dh, dw = gray.shape
18

19 # Opening and reading the lines in the yolo-txt file and storing them in data
20 fl = open(’<yolo-txt-file>’, ’r’)
21 data = fl.readlines()
22 fl.close()
23

24 # Changing the folder to the folder you want to store the crops in. May need full
folder-path

25 os.chdir(’<Folder you want to store the crops in>’)
26

27 # Counter that is to be in the file name of the crops
28 counter = 1
29

30 # Going through all the crops and saving them as individual images.
31 # It also creates an image with rectangles over the crops that will be done.
32 for dt in data:
33

34 # Split string to float
35 _, x, y, w, h = map(float, dt.split(’ ’))
36

163

164 E. Dale Y. Pursley H. Fjørkenstad: H.0

37 # Taken from https://github.com/pjreddie/darknet/blob/810
d7f797bdb2f021dbe65d2524c2ff6b8ab5c8b/src/image.c#L283-L291

38 # via https://stackoverflow.com/questions/44544471/how-to-get-the-coordinates-
of-the-bounding-box-in-yolo-object-detection#comment102178409_44592380

39 # Date: 25.02.2022
40 l = int((x - w / 2) * dw)
41 r = int((x + w / 2) * dw)
42 t = int((y - h / 2) * dh)
43 b = int((y + h / 2) * dh)
44

45

46 # Cropping every letter I have marked in labelImg
47 crop = gray[int(t):int(b), int(l):int(r)]
48

49 # The letter to use in the file-name
50 letter = ’<letter-name>’
51

52 # the number of the column if any
53 column = ’<column-number>’
54

55 # What the crops will be saved as in the folder you chose.
56 # Should name the crops the letter that it is a crop of and some kind of

counter.
57 cv2.imwrite(letter + ’0’ + column + str(counter) + ’.png’, crop)
58

59 # Increment the counter
60 counter += 1

Code listing H.1: How we convert the labels and coordinates from the YOLO
format to images.

Appendix I

Time Tracking

Here is a link to our time tracking log: https://docs.google.com/spreadsheets/
d/1yBRsi8tCnhGBsxudDbr1g2ywAfwAbc1PULBqGnk-si0/edit?usp=sharing

Figure I.1: Time tracking table. These numbers represent how many hours we
have worked.

165

https://docs.google.com/spreadsheets/d/1yBRsi8tCnhGBsxudDbr1g2ywAfwAbc1PULBqGnk-si0/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1yBRsi8tCnhGBsxudDbr1g2ywAfwAbc1PULBqGnk-si0/edit?usp=sharing

166 E. Dale Y. Pursley H. Fjørkenstad: I.0

Figure I.2: Time tracking graph. These numbers represent how many hours we
have worked.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Erik Dale
Håvard Østli Fjørkenstad
Yeshi Jampel Pursley

Image Content and Hand Writing
Analysis of the Dead Sea Scrolls

Bahelor's thesis in Computer Science

Bachelor’s thesis in Computer Science
Supervisor: Aditya Suneel Sole
Co-supervisor: Marius Pedersen
May 2022

Ba
ch

el
or

’s
th

es
is

	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	The Dead Sea Scrolls
	Project Objective
	Goals and Frames
	Frames
	Result Goals
	Effect Goals
	Problem Delimination

	Group Background
	Organization
	Roles and Responsibilities

	Structure of the Report

	Development Process
	Development Model
	How We Divided Our Work
	Gantt-Diagram

	Meetings
	Meetings With Employers
	Meetings With Supervisors
	Internal Meetings
	Meetings With Dead Sea Scroll Expert

	Background
	Dead Sea Scrolls
	Scrolls and Columns
	Letters

	Theory
	Computer Vision
	Image Enhancement
	Testing of Image Enhancement
	Image Segmentation
	Testing of image segmentation
	Machine Learning

	Technologies
	Python
	OpenCV
	LabelImg
	Tesseract
	QT Box Editor
	PyTorch

	State of The Art
	Image Enhancement
	Image Segmentation
	Machine Learning
	Summary

	Methodology
	Dataset
	The Size of the Dataset
	Acquiring the Dataset
	Variance in The Dataset
	Usage of the Dataset

	System Pipeline
	Image Enhancement
	Contrast Improvement
	Noise Removal

	Image Segmentation
	Binarization
	Using Pytesseract to Segment Letters
	Word Splitter
	Custom TRAINEDDATA File
	Calculating the Intersection over Union Score

	Machine Learning
	Model
	Model Improvements

	User Interface
	Functional Requirements
	User Patterns

	Sketch
	Method
	PyQt5
	Implementation of Image Enhancement, Image Segmentation and Machine Learning
	Design

	Results and Discussion
	Flow Chart
	Final Solution
	Classification Times
	Future Improvements to the User Interface

	Quality Assurance
	Code Quality
	Tools
	Documentation

	Results
	Image Enhancement
	Adaptive Histogram Equalization
	Morphological Transformations
	Blur and Denoising Methods
	Image Enhancement Process

	Image Segmentation
	Binarization Results
	Pytesseract Results
	Word Splitter Results
	Custom TRAINEDDATA Results
	IoU Results

	Machine Learning
	Prediction Results
	Comparison between epochs

	Discussion
	Project Process
	Working Environment
	Planning of the Project
	Meetings
	Development Process

	Technical Results
	Modifiable and Expandable Code
	Image Enhancement
	Image Segmentation
	Machine Learning

	Conclusion
	Goals Achieved
	Future Work

	Bibliography
	Standard Agreement
	Confidentiality Agreement
	Problem Statement
	Project Plan
	How We Created a Custom TRAINEDDATA File
	User Interface Repository Link and README
	Link
	README

	Repository Link and README
	Link
	README

	YOLO to Images Code
	Time Tracking

