
CT SCANNING AS A TOOL FOR QUALITY
ASSURANCE IN ADDITIVE MANUFACTURING

Jens Fossan Tingstad, Eirik Gjertsen Norbye, Sander Island

20 May 2022

Sammendrag

Additiv tilvirkning er i stadig vekst og kan erstatte konvensjonell produksjon på
mange områder, og behovet for kvalitetssikring er stort. Jotne EPM Technology
er en ledende aktør innen utveksling av produktdata. De vil se på hvordan CT-
scanning kan bli brukt for å løse denne oppgaven og hvordan CT-scandataen kan
bli distribuert best mulig.Prosjektet har som målsetning å konvertere rådata til
det standariserte formatet ISO 10303 (også kjent som STEP, "STandard for the
Exchange of Product model data"), noe som vil resultere i en mer sømløs og for-
utsigbar distribusjon av modelldata.

I denne avhandlingen har det blitt utviklet en funksjonell model viewer og
GUI. Et EDMsdk-eksempel ble levert av Jotne, hvor videre utvikling er nødvendig
for integrasjon mellom model viewer og GUI. Prosjektet har endret kurs flere
ganger i løpet av utviklingen, noe som har påvirket slutt resultatet.

Model viewer er i stand til å prosessere wavefront objekter, tekstur og har et
kamera- og bevegelsessystem. Vi klarte å få EDMsdk til å kjøre som forventet ved
bruk av AP209 skjemaet. En enkel GUI ble bygget for å håndtere funksjoner som
vi hadde planlagt å implementere, men dette ble ikke fullført.

iii

Abstract

Additive manufacturing is increasing in usage and can replace conventional man-
ufacturing in many areas, and the need for quality assurance is high. Jotne EPM
Technology is a leader in product data exchange. They want to look at how CT
scanning can be used as a tool for this task and how the CT scan data can be
exchanged most seamlessly. This project aims to convert raw data to the stand-
ardized format ISO 10303 (also known as STEP, "STandard for the exchange of
Product model data"), which will enable less friction and greater predictability in
the exchange of model data.

In this thesis, components of a model viewer and GUI has been developed. An
EDMsdk-example was delivered by Jotne, which requires further development for
integration between the model viewer and GUI. The project has changed course
multiple times during development, which has affected the results to some extent.

The model viewer we created is able to render wavefront objects, layer texture
and has a camera and movement system. We were able to get the EDMsdk example
to run as expected using the AP209 schema. A simple GUI was built to handle the
functions calls we planned to implement, but this work was never completed.

v

Preface

This bachelor’s thesis is written by Jens Fossan Tingstad, Eirik Gjertsen Norbye,
and Sander Island, students at NTNU in Gjøvik, department of Computer Science.

We want to thank Jotne EPM Technology, particularly Henrik Galtung, Tord
Kaasa, Remi Lanza, and Arne Tøn, for giving us an exciting assignment. They
have provided exceptional feedback and support while also being patient and re-
sourceful when needed. The project has been challenging but interesting while
also allowing us to gain knowledge within multiple fields, such as CT scanning,
CAD, system development and project management.

We want to thank our supervisor Ivar Farup for giving us valuable guidance
and feedback throughout the project.

vii

Contents

Sammendrag . iii
Abstract . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
Acronyms . xix
Glossary . xxi
1 Introduction . 1

1.1 Background . 1
1.2 Target Group . 2
1.3 Project Group & Roles . 2
1.4 Delimitation . 2
1.5 Employer . 3
1.6 Supervisor . 3
1.7 Report Structure . 3

2 Theory & Technology . 5
2.1 CT Scanning . 5

2.1.1 How It Works . 6
2.2 Voxel Models . 6
2.3 Mesh Models . 7
2.4 ISO 10303 (STEP) . 7
2.5 AP209 . 8
2.6 EXPRESS Data Manager . 8
2.7 OpenGL . 9

2.7.1 Shaders . 9
2.7.2 Transformations . 9
2.7.3 Coordinate Systems . 10
2.7.4 Local Space . 10
2.7.5 World Space . 10
2.7.6 View space . 10
2.7.7 Clip Space . 11
2.7.8 Camera View . 11

ix

x Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

2.7.9 Assimp . 11
2.8 Qt . 11
2.9 Wireframe . 11

3 Requirements . 13
3.1 Use Cases . 13
3.2 System Requirements . 15
3.3 Security Requirements . 15
3.4 Testing . 16

4 Software Development Method . 17
4.1 Scrum . 17

4.1.1 Sprints . 18
4.2 Kanban . 18
4.3 Status Meetings . 19
4.4 Communication . 19
4.5 Clockify . 19
4.6 Version Control . 20

5 Design . 21
5.1 Backend . 21
5.2 GUI . 21

5.2.1 Buttons . 21
5.2.2 Other Features . 22
5.2.3 Wireframe . 22

6 Process & Implementation . 25
6.1 Setting Up Environment . 25
6.2 Scrum Sprints . 25

6.2.1 Sprint 1 . 26
6.2.2 Sprint 2 . 26
6.2.3 Sprint 3 . 28
6.2.4 Sprint 4 . 33
6.2.5 Sprint 5 . 39
6.2.6 Sprint 6 . 50
6.2.7 Sprint 7 . 61
6.2.8 Sprint 8 . 71

7 Results . 73
7.1 Class Structure . 73
7.2 EDMsdk . 74
7.3 GUI . 74

8 Discussion . 77
8.1 Development Method & Process . 77
8.2 Future Development . 78
8.3 Workflow . 79
8.4 Project Goals . 79
8.5 Learning Goals . 80
8.6 Conclusion . 82

Contents xi

Bibliography . 83
A Project Description . 85
B Project Agreement . 89
C Project Plan . 97
D Meetings . 109

D.1 Møtereferat 01.02.2022 . 109
D.2 Møtereferat 02.02.2022 . 109
D.3 Møtereferat 07.02.2022 . 110
D.4 Møtereferat 09.02.2022 . 110
D.5 Møtereferat 15.02.2022 . 111
D.6 Møtereferat 16.02.2022 . 111
D.7 Møtereferat 24.02.2022 . 111
D.8 Møtereferat 09.03.2022 . 111
D.9 Møtereferat 15.03.2022 . 112
D.10 Møtereferat 25.03.2022 . 112
D.11 Møtereferat 06.04.2022 . 112
D.12 Møtereferat 12.04.2022 . 112
D.13 Møtereferat 20.04.2022 . 113
D.14 Møtereferat 21.04.2022 . 113
D.15 Møtereferat 22.04.2022 . 113
D.16 Møtereferat 26.04.2022 . 114
D.17 Møtereferat 28.04.2022 . 114

D.17.1 Møte 1 . 114
D.17.2 Møte 2 . 114

D.18 Møtereferat 29.04.2022 . 115
D.19 Møtereferat 02.05.2022 . 115
D.20 Møtereferat 04.05.2022 . 115
D.21 Møtereferat 10.05.2022 . 115
D.22 Møtereferat 11.05.2022 . 116
D.23 Møtereferat 18.05.2022 . 116

E Project Contribution . 117
F Work Hours . 119

Figures

2.1 Zeiss Metrotom 1500, the CT scanner used in this project 5
2.2 An image showing how an industrial CT scan is done 6
2.3 Higher resolution gives more detailed images 7
2.4 An example of a mesh model . 7
2.5 An example of a three dimensional coordinate system 10

3.1 Use case diagram . 14

4.1 An example of a kanban board . 19
4.2 Clockify interface . 20

5.1 A wireframe of an optimal GUI . 23

6.1 Kanban board from the start of sprint 1 26
6.2 Kanban board from the start of sprint 2 27
6.3 Kanban board from the start of sprint 3 28
6.4 Current window . 32
6.5 Kanban board from the start of sprint 4 33
6.6 Star visualization . 34
6.7 Rendered star . 39
6.8 Kanban board from the start of sprint 5 40
6.9 Star rendered with color values from shader communication 45
6.10 Star with fragment interpolation . 47
6.11 Calculating rotation around y-axis . 48
6.12 Star rotating . 49
6.13 Kanban board from the start of sprint 6 50
6.14 3D star . 52
6.15 Star viewed with camera . 59
6.16 Qt Creator IDE . 60
6.17 Error message from Qt in CLion . 60
6.18 Kanban board from the start of sprint 7 61
6.19 Visual Studio error . 70
6.20 Output from the EDMsdk program . 70
6.21 Voxel scan data . 71
6.22 Kanban board from the start of sprint 8 71

xiii

xiv Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

7.1 Screenshot of the current GUI . 74

Tables

3.1 Import file use case table . 14
3.2 Export file use case table . 14
3.3 Inspect model use case table . 15
3.4 Get model information . 15
3.5 Calculate density . 15
3.6 System Requirements . 16

4.1 Kanban category colors . 18

5.1 GUI Features . 22

E.1 Member contribution . 117

xv

Code Listings

6.1 Initial CMake file . 29
6.2 Includes . 29
6.3 First window . 30
6.4 Scaling function . 31
6.5 ProcessInput function . 31
6.6 Vertex positions . 34
6.7 Setting indicies . 35
6.8 Binding and transfering data to buffers 35
6.9 Vertex shader code . 36
6.10 Fragment shader code . 36
6.11 Creating a fragment shader . 37
6.12 Shader program . 37
6.13 Drawing our shape . 38
6.14 Definition prefix . 40
6.15 Identifier . 40
6.16 Storage objects . 41
6.17 Reading files and storing data as strings 41
6.18 Creating and binding our shader program 42
6.19 Function for printing error info . 43
6.20 CheckCompileError calls . 43
6.21 New vertex shader . 44
6.22 New fragment shader . 44
6.23 Shader adaptation to find color data 46
6.24 Specifying how the data should be read 46
6.25 Glm includes . 47
6.26 Transformation data passed to vertex shader 48
6.27 Defining our rotation . 48
6.28 Simple 3D expansion of our star . 51
6.29 Camera preprocessor directives and includes 53
6.30 Attributes and constructor . 54
6.31 View matrix function . 55
6.32 Keyboard input processing . 55
6.33 Mouse movement processing . 56

xvii

xviiiBachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

6.34 Callback functions for mouse inputs . 57
6.35 Key triggers . 58
6.36 Delta frame . 58
6.37 Rendering our model . 58
6.38 Data assignment and constructor . 62
6.39 Model constructor . 65
6.40 Load model function . 65
6.41 Recursive function for processing nodes 66
6.42 Loading textures from materials . 68

Acronyms

AP Application Protocol. 8

API Application Programming Interface. 2, 8, 9, 78

CAD Computer-Aided Design. vii, 8, 9, 11

CAE Computer-Aided Engineering. 8

CAM Computer-Aided Manufacturing. 8

CFD Computational Fluid Dynamics. 8

CPU Central Processing Unit. 9

CT Computed Tomography. iii, v, vii, 1, 2, 5, 6, 75, 81

EBO Element Buffer Object. 35, 36

EDM EXPRESS Data Manager. 8, 75

ESA European Space Agency. 1

FEA Finite Element Analysis. 8

GLM OpenGL Mathematics. 25, 27, 47

GLSL OpenGl Shading Language. 36

GPU Graphics Processing Unit. 9, 35, 73

GUI Graphical User Interface. iii, v, 11, 21, 22, 25, 50, 59, 69, 73–75

IDE Integrated Development Environment. 11, 25, 59, 74, 78

IP Internet Protocol. 15

MAIT Manufacturing, Assembly, Integration, Testing. 1

OAIS Open Archival Information System. 1

xix

xx Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

OpenGL Open Graphics Library. 9–11, 13, 25, 28, 30, 31, 33, 35, 36, 38, 39, 46,
50, 61, 78, 81

PDM Produuct Data Management. 8

PLM Product Lifecycle Management. 8

PMI Product Manufacturing Protocol. 8

RAM Random Access Memory. 9

STEP STandard for the Exchange of Product model data. iii, v, 1, 7, 8, 13, 15, 22,
70, 73–75, 78–81

UX User Experience. 21

VAO Vertex Array Object. 35, 62

VBO Virtual Buffer Object. 35, 36

VR Virtual Reality. 9, 27

Glossary

AP209 Part 209 of the ISO 10303 STEP standard.. iii, v, 70, 74, 81

Assimp Open Asset Import Library (Assimp) is a cross-platform 3D model import
library which aims to provide a common application programming interface
(API) for different 3D asset file formats [1]. 11, 61, 65, 69, 79

C A general-purpose programming language[2]. 25

C++ A popular high-level programming language created as an extension of the
C programming language. 2, 8, 25, 28, 36, 59, 78, 81

CLion A cross-platform IDE for Linux, Windows and macOS made by JetBrains.
25, 59, 61, 70, 74, 75, 78, 81

Clockify An online service for tracking work hours[3]. 19

CMake In software development, CMake is cross-platform free and open-source
software for build automation, testing, packaging and installation of soft-
ware by using a compiler-independent method [4]. 25, 28, 29, 33, 69, 78,
80, 81

Discord A free communication platform that makes it possible to chat with voice,
video and messages, as well as sharing files and other media. 19

EDMsdk Jotne’s EXPRESS Data Manager software development kit. iii, v, 70, 74,
75, 78, 80, 81

GitLab A web-based platform used for version control in coding using git, while
also making cooperation easier. 20, 78

Glad Is an OpenGL Loading Library that helps OpenGL manage and access func-
tion pointers more effectively. 16, 25, 29

GLFW Graphics Library Framework (GLFW) is an open-source library for OpenGL.
GLFW is a framework that handles windows, contexts and events in an
OpenGL-program. It also handles user input. 16, 25, 27, 29–33, 48

xxi

xxiiBachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Go A programming language developed by Google. 2

ISO The International Organization for Standardization is an international or-
ganization that develops and publishes both technical and non-technical
standards. "ISO" is not an abbreviation/acronym, but comes from the Greek
word for "equal" [5]. iii, v, 1, 2, 7, 8, 79, 80

Java An object-oriented programming language. 2

JetBrains A software development company that makes tools for software de-
velopers. 25, 59, 78

Microsoft Teams Is a business communication platform. 19

Python An object-oriented programming language. 2

Qt A software framework for developing Graphical User Interfaces (GUIs). 11,
25, 59, 74

Qt Creator Qt’s own IDE for developing Graphical User Interfaces (GUIs). 59, 74

Visual Studio Microsoft’s cross-platform IDE for Linux, Windows and macOS. 25,
61, 69, 70, 74, 75, 78

Chapter 1

Introduction

1.1 Background

Jotne EPM Technology is a leader in the development of standards-based software
products. They specialize in product data exchange, product life-cycle manage-
ment, long-term data and product, Open Archival Information System (OAIS)-
archiving, data validation and verification, code checking, rule-based data mod-
eling, and cross-platform data sharing within the structure of objects Jotne has
produced.

As technology advances, additive manufacturing (3D printing) is increasingly
relevant in the aerospace industry. In collaboration with the ESA (European Space
Agency)-project METRIC, Jotne is looking at the opportunity of producing a satel-
lite component of aluminum using additive manufacturing technology. The main
goal of this joint effort is to use state-of-the-art technology to reduce cost and
increase quality and quality assurance to the MAIT (Manufacturing, Assembly,
Integration, Testing)-processes for telecom satellites. We use CT scans of the com-
ponent to assure the required quality, both internal and external structure, and
geometric dimensions. This is to validate and document that the final product
satisfies all parameters.

Jotne wants to see how the scan data is managed and how it can be used for a
digital twin of the component. A digital twin is a virtual representation that serves
as a real-time digital counterpart of a physical object; in simpler terms, the digital
twin is a copy of an object from the real world to the virtual world. Digital twins are
a focus area for Jotne and a vital part of the METRIC project. Important addition
is that the digital twin is based on the ISO-standard, ISO 10303, informally known
as "STandard for the Exchange of Product model data (STEP)," which is essential
in most of Jotne’s work.

1

2 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

1.2 Target Group

A target group is a group of people that our product targets explicitly. The use-
case for this software is within a small field since Jotne and potential partners will
mainly use the software.

1.3 Project Group & Roles

The project group consists of three bachelor’s students in Computer Science. One
of the students has a bachelor’s degree in Machine Engineering from earlier stud-
ies and has some relevant knowledge about 3D modeling. From the study pro-
gram, the students have gained basic knowledge of coding in different languages
such as Java, C++, Go and to some extent Python. They also have relevant know-
ledge within subjects such as computer vision, algorithmic methods, and system
development.

The responsibilities and roles within the group have been vague, as all mem-
bers have done a bit of everything. Still, the prominent roles consist of Jens, por-
traying as project leader and chairman regarding the follow-up meetings. He was
assigned to this role because of his prior knowledge about the subjects we are cur-
rently working within. We agreed that he would have the authority to make final
decisions regarding project decisions. Sander has been assigned as Scrum mas-
ter while also responsible for meeting documentation. Eirik has been assigned to
the project’s documentation, which entails documenting significant and relevant
decisions within the project.

1.4 Delimitation

Since an external party provided the project, we expected that a set of limitations
would follow regarding the project’s implementation. First of all, they demanded
that we should write the code in C++, this is because the Application Program-
ming Interfaces (APIs) they provide uses this language.

They also specified that the platform should be compatible with Windows
while also being deployable within the ISO standard that Jotne currently works
with.

Permissions regarding the use of the report were provided in the contract
between the employer and us, which specifies that we have all the rights to the
final product, they will cover travel expenses, and potential CT scans we have to
perform in the future. If there are any extra expenses beyond this, they will have
to be discussed with the employer.

Chapter 1: Introduction 3

1.5 Employer

Jotne EPM Technology AS
Location: Oslo, Norway
Represented by: Henrik Galtung and Tord Kaasa

1.6 Supervisor

Ivar Farup, Professor
Department of Computer Science
Faculty of Information Technology and Electrical Engineering

1.7 Report Structure

The report structure is categorized into multiple chapters, where we begin with
the theory that provides a general description of key concepts that has been used
throughout the development phase. After theory, we move on to "requirements,"
which explains the specifications we had set before the development stage, includ-
ing use-cases. Moving on to the next chapter, we go through finding the most suit-
able development method and explaining why we chose this particular method.
We also include other sections such as status meetings, time management, and
version control. Next, we have included all of the main chapters, where we start
with "Process & Implementation," where we discuss the implementation of the
software which is followed by sprints. Results go through the product’s final res-
ults, explaining what we were able to complete and what remained unfinished.
In the discussion chapter, we discussed the thought process throughout the whole
project in general, while in the conclusion chapter, we talked about thoughts we
had regarding the outcome of the project.

Chapter 2

Theory & Technology

2.1 CT Scanning

Computed Tomography (CT) scanning is a technology that uses X-rays to make an
external and internal image of an object. It is widely used in medical aspects, but
here the focus area is on the industrial use of CT scanning. Industrial CT scanning
is being used to inspect both the internal and external structure of a component
or object. An image of the internal structure makes it possible to detect flaws,
cracks, and other attributes such as porosity. In 3D software, it is also possible to
accurately see the dimensions of the scanned part, which is useful to check if the
component is manufactured correctly. [6]

Figure 2.1: Zeiss Metrotom 1500, the CT scanner used in this project

5

6 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

2.1.1 How It Works

A CT scanner is built up by an X-ray generator, a rotating stage where the com-
ponent is placed, and an X-ray detector field. The X-ray generator produces a
cone-shaped beam that shoots through the element, and the detector field detects
the X-rays. As the rotating stage is rotating, the generator and detector make a
considerable amount, usually thousands of 2D images, that are later processed to
a 3D image.

Figure 2.2: An image showing how an industrial CT scan is done

(Downloaded from Wikipedia, public domain)
(https://en.wikipedia.org/wiki/File:Ct_scan_cone_beam.png)

2.2 Voxel Models

Voxels are explained as three-dimensional pixels, and the word itself comes from
"volume" and "pixel." A pixel, which comes from "picture" and "element," is a small
part of a two-dimensional picture. Voxels are the same, but for three-dimensional
images. Voxels are commonly shaped as cubes, and together, all these volume
elements make up a 3D voxel model.

A voxel model can be of different resolution, just as regular 2D pictures, de-
pending on the size of each voxel. A higher resolution model will give a much
more detailed representation than a lower resolution image. The torus in Figure
2.3 is represented in three different resolutions, and the model with higher resol-
ution gives a much more accurate and rounder shape.[7]

Chapter 2: Theory & Technology 7

Figure 2.3: Higher resolution gives more detailed images

2.3 Mesh Models

A mesh model is a 3D model built up of polygons. The polygons are usually tri-
angles but can be other polygons as well. With the use of triangles, a program can
attach triangles to make up the shape of a specific object. A 3D mesh is generally
a hollow shell of an object, which means there is an empty internal structure.[8]

Figure 2.4: An example of a mesh model

(Downloaded from Wikipedia, public domain)
(https://en.wikipedia.org/wiki/Polygon_mesh/media/File:Dolphin_

triangle_mesh.png)

2.4 ISO 10303 (STEP)

ISO 10303 is an ISO standard for representation and exchange of product manu-
facturing information. The standard’s official title is "Automation systems and in-
tegration — Product data representation and exchange." It is informally known as
STEP, which stands for "STandard for the Exchange of Product model data." Devel-

8 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

opment of STEP began in the mid-1980s to make sharing and exchanging files con-
taining 3D data across different software much easier by providing a standardized
file format to work on 3D models. The STEP file format is used in Computer-Aided
Design (CAD), Computer-Aided Manufacturing (CAM), Computer-Aided Engin-
eering (CAE), product data management, enterprise data management and other
CAx systems.[9][10]

The ISO 10303 standard is available as a series of documents. Most of these
documents are data models written in the EXPRESS data modeling language,
which is documented by the same standard. Each data model part covers a certain
concept, that is, mathematical constructs, product description, product versioning,
geometric shapes, product properties, meshes and materials. These data models
are bundled in Application Protocols (APs), to cover a complete engineering do-
main. Most known are the APs AP203, AP214 and AP242, which are implemen-
ted in CAD applications. AP209 is a superset of AP242, which in addition to CAD,
Produuct Data Management (PDM), PDM and Product Manufacturing Protocol
(PMI), also supports Finite Element Analysis (FEA), Computational Fluid Dynam-
ics (CFD) and composite materials. AP209 is the STEP Application Protocol we
wish to support in the STEP translation process.[11]

2.5 AP209

AP209 (Multidisciplinary Analysis and Design) is an Application Protocol in the
ISO 10303 standard. It is a data model written in the data modelling language
EXPRESS which covers the representation of simulation, CAD, PDM, Product Life-
cycle Management (PLM) and PMI data. Similarly, as AP242 is used by CAD tools
to share, store and archive design models independent of proprietary formats,
AP209 is intended as a format for exchanging, storing, and archiving models from
CAE applications.[11]

2.6 EXPRESS Data Manager

EXPRESS Data Manager (EDM) is a database system that implements the meth-
odology of ISO 10303. It can be used to create and manage databases that uses
EXPRESS schemas. This allows the creation of databases based on ISO 10303 Ap-
plication Protocols such as AP242 or AP209. The databases can be local or hosted
by an EDM server for remote connection. EDM provides a client application and
an API (in multiple languages) for managing, among other things, databases, and
servers. It can also generate specific APIs (C++) for EXPRESS schemas. In this
project Jotne provided us, in addition to EDM, a C++ API generated from the
AP209 schema. This allows to us to create an AP209 model in an EDM database
directly from our application. Such AP209 model can then be exported to a STEP
(.stp) file.[11]

Chapter 2: Theory & Technology 9

2.7 OpenGL

Open Graphics Library (OpenGL) is a cross-language, cross-platform API for ren-
dering 2D and 3D graphics. OpenGL interacts with the computer’s Graphics Pro-
cessing Unit (GPU) to achieve hardware-accelerated rendering. OpenGL comes
with a large number of functions that you can use to make complex 2D and 3D
graphics from simple geometric entities such as points, lines, and polygons. The
interface also contains functions for rendering scenes with lighting control, ob-
ject surface properties, transparency, anti-aliasing, and texture mapping. OpenGL
enables software developers to create high-performance graphics applications for
areas such as CAD, medical, manufacturing, Virtual Reality (VR) and entertain-
ment such as gaming and content creation. Although OpenGL was released in
1992 by Silicon Graphics inc., it is still managed and maintained by Khronos Group
and able to use all the features of the newest graphics hardware.[12]

In the sections below, we will cover functions within OpenGL that are relev-
ant to the project. We will use shaders, transformations, coordinate systems, and
camera functionality in the development phase. These are essential functionalit-
ies to display a functional 3D model. Other features could be used as well, such
as textures and lightning. However, these features are used for design purposes,
which is not the main priority.

2.7.1 Shaders

Shaders are mainly divided into vertex- and fragment shaders, where the main
task of the vertex shader is to specify the calculations that transform 3D coordin-
ates of vertices to 2D screen coordinates. The coordinates of each triangular ele-
ment are passed to the fragment shader, which specifies the calculations for the
coordinates and colors of the pixels within each rendered triangle. The calcula-
tions are performed by the GPU.[11]

2.7.2 Transformations

Transformations can be described as vector manipulation because we are work-
ing with different vector structures. Transformations are helpful in making adjust-
ments to positional or size-based functionality. Developing these transformations
can be accomplished using different approaches; an example of that is by chan-
ging the vertex positions manually and updating the buffers for each frame, but
that is an unprofessional approach that does not make use of the functionality
that OpenGL offers. The most common practice would be to use identity matrices,
translation vectors, and transformation matrices to perform the transformations.
This approach also helps reduce the strain on the Random Access Memory (RAM)
and Central Processing Unit (CPU) because manually updating each buffer each
frame requires more computational power.

10 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

2.7.3 Coordinate Systems

In terms of 3D geometry, a coordinate speaks to a position in space. It is defined
by a position along the x-, y-, and z-axis.

Figure 2.5: An example of a three dimensional coordinate system

2.7.4 Local Space

Local space can be described as the local space according to our object, as in
the origin of our object. When we create objects in OpenGL, the origin of our
object is generally positioned at (0,0,0), but the object may be positioned dif-
ferently."Probably all the models you’ve created all have (0,0,0) as their initial
position. All the vertices of your model are therefore in local space: they are all
local to your object." [13]

2.7.5 World Space

World space means transferring our local object out into world space, scattering
our objects into a "larger" world, thus giving your vertices different positions. We
can accomplish this by using a "Model matrix." "The model matrix is a transform-
ation matrix that translates, scales, and/or rotates your object to place it in the
world at a location/orientation they belong to." [13]

2.7.6 View space

View space can be described as a camera that stimulates the front of the user’s
view. "This is usually accomplished with a combination of translations and rota-
tions to translate/rotate the scene so that certain items are transformed to the
front of the camera." [13]

Chapter 2: Theory & Technology 11

2.7.7 Clip Space

Clip space is a conversion tool used after each vertex run. Since the vertex expects
NDC- coordinates, "NDC –coordinates are coordinates that are normalized, which
means they are within –1 to 1 on the xyz-axis. Clip space circumvents this, making
it possible to have coordinates outside this normalized range.

2.7.8 Camera View

The camera viewer enables the user to move around the object, making it more
manageable to get a closer look at different angles of the object. This will help
determine and reveal flaws with the rendered object. OpenGL do not have any
specific camera functionality, which means we have to use a different strategy. We
can use a trick to simulate a camera effect, which is done by moving the objects
in the scene instead of having a camera that is moving. By moving the objects
backward or forward in the background, we create the simulated effect of the
camera.

2.7.9 Assimp

Assimp is an extensive library that contains various model struct data, which en-
ables users to import different types of models into a pre-made struct. This sim-
plifies the process of importing models since, normally, without the library, we
would have to build these struct variables manually. Assimp is mainly used for
game-related scenes, which contain texture and mesh-based scenery-modeling,
but it also supports various 3D-printing and CAD-formats.

2.8 Qt

Qt is a software framework for developing modernGraphical User Interfaces (GUIs)
interfaces. Qt comes with an Integrated Development Environment (IDE) which
is called Qt Creator. In the IDE, the GUI creation is fairly simple as you can drag
and drop buttons and other objects to the window.

2.9 Wireframe

A wireframe is a type of sketch where we draw outlines of the desired design.
This will give a rough idea of how much space is needed, what type of content we
should include, and what functions seem necessary. Wireframes can often be por-
trayed as a simplistic designs; this is to avoid the risk of misunderstanding between
the designers, developers, and the employer. Elements that are often prominent
within wireframes consist of "squares and rectangles that represent images and
icons, text that is visualized with ’lorem ipsum’ or lines inside a box, buttons that
are either rounded or darker grey, icons that are either small symbols or squares

12 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

with an x." [14]Wireframes have three different variants that are most commonly
used. These are low fidelity, medium-fidelity, and high fidelity wireframes.

Low fidelity is more of a user-centered process, where the design process is not
at the center of focus. Here we will often see a simplistic design, often hand-
drawn, with only the essential features of the prototype.

Medium fidelity is where the design process becomes more refined and detailed.
Here the focus lies more on the functionality within the prototype while also
giving some thought to the placements of the different elements.

High fidelity is a prototype that should be as close to the final product as pos-
sible; here, you have taken a great deal of consideration towards coloring
and design issues while also having functionality that is relevant and useful
inside the prototype.[15]

Chapter 3

Requirements

In this chapter, we will cover a set of requirements within our system. The require-
ments has been set based on the project description. (Appendix A), meetings and
decisions with our employer.

3.1 Use Cases

This section will go through use case, design, and system requirements. We have
included tables that will help establish an overview.

Figure 3.1 tries to convey how the user would operate within this system.
The diagram has a user, which can import, export, view, show info, and calculate
density. These are the main features that will be available when opening the ap-
plication. While on the other side of the application, there is a STEP-converter,
which Jotne is responsible for, that converts the model into STEP format, and the
OpenGL application that is responsible for the "model viewer."

13

14 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Figure 3.1: Use case diagram

Tables 3.1-3.5 describes how each use case works.

Table 3.1: Import file use case table

Action: Import file
Actor: User
Goal: Import file to view or convert

Description:
The user gets directed to the file explorer and selects a
file to import to the program.

Table 3.2: Export file use case table

Action: Export file
Actor: User
Goal: Export file or convert to STEP
Description: The user exports the already imported file as a STEP file.

Chapter 3: Requirements 15

Table 3.3: Inspect model use case table

Action: Inspect 3D model
Actor: User
Goal: Inspect 3D model for flaws
Description: The user inspects the 3D model in the graphics view

Table 3.4: Get model information

Action: Get model information
Actor: User
Goal: Gain knowledge about the model data
Description: The user gets information about the 3D model.

Table 3.5: Calculate density

Action: Calculate density
Actor: User
Goal: Gain knowledge about the object’s average density

Description:
The user inputs a known weight of the object so the pro-
gram can calculate the average density.

3.2 System Requirements

In this section, we will cover all of the requirements we thought were appropri-
ate to list, according to the development plan we made prior to the development
phase. The list will be based on low to high priority, where the functions given high
priority are essential for the product to be complete. In contrast, the lower prior-
ities are not defined as "Must have," but they would complement the application.
These requirements were made through discussions with the employer, ensuring
that we had the right priorities from the start of the development.

3.3 Security Requirements

This section will cover all of the requirements we have regarding security within
the application. The security aspect within the product is important considering
we have received a custom STEP library from Jotne, which they have explicitly told
us to keep private. Jotne has already implemented some preventive actions within
the application by providing a license registration for each Internet Protocol (IP)
address that tries to use the application. Jotne directly provides this licence key.
We, however, have the responsibility of making sure that all of the code is written
within the terms of confidentiality and integrity. Availability is not that relevant
to our project since the software will not be running on a server that demands to
be active at all times; it is software that will be run locally on the computer.

16 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Table 3.6: System Requirements

System Requirements
Function Description Priority

Convert to STEP-format Converts a voxel model
into STEP-format

High

Import voxel file Takes voxel models as
input

High

3D environment Displays the voxel
model in 3D space

Medium

Prompts showing
additional information

Showing information
like density, porosity,

texture etc.

Low

Camera functionality Enables the user to
move around the model

Medium

Confidentiality is the practice of keeping private and sensitive information
separate from the public. Integrity within the application entails giving the appro-
priate access rights to eligible people. Integrity is an essential aspect of security;
if the access rights are not managed properly, we increase the risk of people who
are unauthorized to modify or change the code intentionally with malicious in-
tentions.

3.4 Testing

This section will cover the requirements we set regarding tests within our applica-
tion. The tests would include functional testing and validation testing. Functional
testing includes checking that all functions work correctly within the parameters
that have been set. Validation testing is used to make sure that the application
works correctly. It is responsible for checking that specific inputs and outputs are
correct.

The validation tests would mainly include if-loops, ensuring that the input in-
serted into each function is valid; it would be logged into the terminal if not. The
same procedure would be done for output. We currently have not implemented
a test environment within the application, but we have included tests for com-
pilation and linking status within our fragment and vertex shader which were
important components. We also included some tests regarding Glad and GLFW,
which checks if the libraries were initialized correctly, if not they would print out
an error statement.

Chapter 4

Software Development Method

When researching different development strategies, we had a few demands. The
first being it must be an iterative process, meaning it is possible to make changes
and updates to the planned schedule as we go. This is especially important for
code-heavy projects since making changes in one section of the code might mean
reviewing other parts of the project. Secondly, we required a method that broke
down the project into smaller bits for more manageable review sessions. Since we
plan to rely on input from the employer and supervisor, we want smaller chunks
of work so it is quickly approved or rejected during discussions.

Based on this, we quickly decided to research agile development methodolo-
gies. After reviewing multiple methods, we decided on something that matched
all our criteria and formalized the workflow we had already intended.

Since creating an efficient workflow is essential, we decided to use Scrum, an
agile development strategy suited for small project groups. We chose this strategy
as it focuses on short sprint-based development cycles where we set ourselves
small goals with short and specific deadlines. After each sprint, we will review
our work in collaboration with our supervisor and employer. Here we will discuss
problems and produce viable solutions. This is to keep the next goal as straight-
forward as possible and ensure it is within the realm of reason that the work is
finished within the given time frame. Another reason we chose this strategy is
because of how available and flexible our employer is; if we have any questions
outside of the arranged meetings, they are always there to answer them.

4.1 Scrum

Scrum is described as a set of frameworks to help and encourage the team to work
and reflect on each win and loss. Scrum enables the team to learn through exper-
ience and failure while adjusting accordingly, depending on our results. Scrum is
defined as agile since it circles around flexibility, adaptability, and quality work
that should be executed within a short timeframe.

17

18 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

4.1.1 Sprints

Sprints can be described as the amount of work needed within a set time. Sprints
are effective for getting work done in a structured and time-efficient manner,
which keeps the agile team free from headaches. "With Scrum, a product is built
in a series of iterations called sprints that break down big, complex projects into
bite-sized pieces" .[16]

4.2 Kanban

We used a kanban board to keep track of what tasks to do. A kanban board can be
described as sticky notes sorted into categories that describe a task’s stage during
the project. This is a straightforward method for organizing tasks during a project.

We have used kanbantool.com[17], which provides a simple kanban board.
The categories we have used are "to do," "doing," and "done." This is a very simplistic
and transparent way of sorting the tasks. kanbantool.com allows for delegating
tasks to a person in the group, however the free license of the software only ac-
cepts two users per kanban board. As we were only three people in the group,
we decided that setting a name on each task was unnecessary as we easily would
remember who was set to do what.

Each Scrum sprint will have its kanban board. At the beginning of every sprint,
a new kanban board will be set up with new tasks. When a group member com-
pletes a task, the other two members will review the work before placing the card
into the categorized sections. If tasks are done before the sprint is over, new tasks
will be discussed and put onto the kanban board.

An additional feature the software provides is the opportunity to categorize
each card in colors. Table 4.1 shows how we have categorized with colors.

Table 4.1: Kanban category colors

Category Color
Research related Yellow
Organizational Orange
Implementation related Blue
Report related Green

Chapter 4: Software Development Method 19

Figure 4.1: An example of a kanban board

4.3 Status Meetings

Status meetings will be performed every other week to keep our employer up to
date. We will also have weekly status reports with our supervisor to get feedback
concerning changes we make within our project. These meetings will be of high
value, ensuring that the choices we make under development correlate with the
employer’s expectations.

4.4 Communication

To ensure seamless internal communication, we have set up a Discord server
where we can share everything related to the project in a structured manner. We
also have most of our digital meetings in a voice channel, and as a quick way to
send messages, we have used Facebook Messenger.

Meetings with supervisor and employer have been held on Microsoft Teams.
Several physical meetings have also been done with the supervisor and two with
the employer.

4.5 Clockify

To track time usage, we have used Clockify, which is an online service that makes
it possible for all group members to track their work time. In Clockify, we set
predefined categories we had worked on to track how much time we spent on
each phase of the project. Clockify also gave us an opportunity to give precise
information concerning what was worked upon at different time stamps.

20 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Figure 4.2: Clockify interface

4.6 Version Control

Version control is often used in both smaller and larger projects where the devel-
opment phase is extended over weeks or months. This method is useful since it
is possible to browse through previous versions of the project. If there is a prob-
lem within the project, you can go back to previous versions and try a different
approach. In this project we will take use of Jotne’s GitLab repository. In this re-
pository, we operate with different branches for each person in the group while
also having one master branch where the code that is completed will initially be
pushed to. This is to ensure that any changes made within the code never reach
the master branch without proper reviewing.

Chapter 5

Design

In this chapter, we will cover the backend and GUI design. To start with, we cover
the backend of the system and how this will be implemented while also going
through some features with the help of use-case tables in the requirements chapter
(3).

5.1 Backend

The backend of the GUI would consist of a controller inside the viewer applic-
ation. This controller would mainly consist of "action" based code that operates
through "if" loops. These commands will be based on user operations within the
application. An example of this is if the user clicks on the "import" function, this
operation would activate a function within the controller that is linked up with
the import feature inside the viewer.

5.2 GUI

GUI is an extra addition to the project that we wanted to implement. The focus
area within the GUI was to ensure simplicity for the user, making the software
user-friendly. We would approach this by performing usability testing and retriev-
ing feedback from users to ensure that the final product would be within high
standards. Apart from a simplistic and clear design, User Experience (UX) and
design principles will not be a priority as the primary focus lies within the func-
tionality. Table 5.1 shows how we have prioritized functions in our GUI.

5.2.1 Buttons

The buttons are the most crucial feature within the GUI since, without them, the
user would not be able to operate within the interface. The import button is re-
sponsible for importing files that are within the specified format, while the export

21

22 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Table 5.1: GUI Features

GUI Requirements
Feature Description Priority

Import button Opens a file explorer
where the user can
import a voxel file

High

Export button Exports an AP209 STEP
file

High

Graphics view Displays the voxel
model

Medium

Mesh import Functionality for
loading mesh models

Low

Prompts showing
additional information

Showing information
like density, porosity,

texture etc.

Low

Jotne colors Using Jotne’s turquoise
color in the GUI. Not

very important, but nice
to have

Low

button is responsible for converting the imported file into STEP-format. These
buttons are essential for the software to work as intended.

5.2.2 Other Features

Other features are functionalities within the GUI that are not crucial for the inter-
face to work, such as "calculate density," where the user inputs the object’s weight
to calculate the average density. Another eye-catching functionality would be the
graphics viewer, where we can view and rotate the model that has been imported
into the GUI. These features are not essential, but they would complement the
interface, making it more informative and exciting.

5.2.3 Wireframe

Figure 5.1 is a high fidelity wireframe that aims to be as close as possible to the
final product. The wireframe contains all the desired features while still maintain-
ing a clean and simplistic design.

Chapter 5: Design 23

Figure 5.1: A wireframe of an optimal GUI

Chapter 6

Process & Implementation

In this chapter, we will cover the process behind implementing the software. The
software development is executed according to the Scrum framework with short
sprints, followed by kanban boards included in each sprint. The process behind the
implementation will be followed by code listings that will be explained thoroughly
in each sprint intermission.

6.1 Setting Up Environment

The project was built using CLion, which is a cross-platform IDE for C and C++
developed by JetBrains. This platform does not have any included plugins for
OpenGL integration, which meant we had to integrate it manually. This was ac-
complished by importing external libraries and using pre-compiled binaries that
matched our build system. We used several OpenGL based libraries for ease of
certain operations, as doing it manually would be time-consuming and inefficient.
We made use of GLFW for window and context handling, OpenGL Mathematics
(GLM) for mathematical operations and Glad as a loader. We had to use CMake
to include and link the different libraries with the folder structure we currently
had. We also used a Visual Studio compiler to compile our project in CLion.

When we built the GUI, we chose to use Qt, which is commonly used within
the development of modern GUIs. It is also the preferred choice for integrating
with separate IDEs.

6.2 Scrum Sprints

This section will cover all of the sprints throughout the planning and implement-
ation phase. Each sprint will include a summary explaining the goal of the sprint,
followed by an intermission.

25

26 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

6.2.1 Sprint 1

This sprint consists of important sections we need to cover in the project plan
(Appendix C). We used sprints in the project plan, hoping it would prove advant-
ageous later in the development stage.

Figure 6.1: Kanban board from the start of sprint 1

Intermission 1: The result of intermission 1 is according to the project plan
(Appendix C).

6.2.2 Sprint 2

This sprint consists of all the participants researching, getting an overview of what
we have to do, and deciding upon which approach benefits us the most. The first
sprint had a timeframe of two weeks, where all participants discussed what they
should work on in different stages of development.

Chapter 6: Process & Implementation 27

Figure 6.2: Kanban board from the start of sprint 2

Intermission 2: Taking from the results and discussions of this sprint, we set
up a schedule for who should be working on what using our kanban board. Ini-
tial delegation states that two group members should be assigned to code related
work, while the other should have the written report as their primary responsib-
ility.

During research, we found several approaches to implement libraries and dis-
cussed which libraries to choose from and which to disregard. Ultimately we
settled for GLFW and GLM. Kan vel nevne noe om OpenGL her?

Logistically we were situated in the VR lab, where work could be done in
peace. However, due to new restrictions in the new booking system, we were
not granted access to admin users. The group’s momentum was affected by the
lack of these access rights, as certain installations and implementations required
supervision of third parties that were often unavailable.

28 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

6.2.3 Sprint 3

A three-week period was allotted for re/-learning C++ syntax and a light intro-
duction to working with OpenGL. We did some C++ exercises and started on the
introduction chapter on "learnOpenGL"[18], which can be seen as an online text-
book for learning to work with computer graphics. We set up an initial model
viewer for viewing simple 2D models based on "learnOpenGL." Later we played
around with different functionality, color allocation, placements, orientations, and
scaling until we were familiar with our current functionality. This meant imple-
menting a build system for including, linking, and implementing different libraries
to get access to the required functionality. CMake seemed like the perfect tool for
the job.

Figure 6.3: Kanban board from the start of sprint 3

Intermission 3: We started the implementation of OpenGL by linking the re-
quired libraries with our project using CMake. This took a lot of time and effort, as
the build system was difficult to grasp at first glance. This sprint had the steepest
learning curve as we implemented multiple concepts. Using CMake to define what
to include and how it should be linked proved quite a challenge, but we managed
to get a stable build in the end.

Chapter 6: Process & Implementation 29

1 cmake_minimum_required(VERSION 3.12)
2 project(Gltest)
3

4 set(CMAKE_CXX_STANDARD 14)
5

6

7 #Header directory
8 include_directories(C:/glfw-3.3.6/build/include/GLFW)
9

10 #External library link
11 link_directories(C:/glfw-3.3.6/build/lib)
12

13

14

15 add_executable(Gltest main.cpp)
16

17 target_link_libraries(Gltest glfw3)

Code listing 6.1: Initial CMake file

In the above snippet, you can see how we initially linked the GLFW library to
our project. First, we included the directories where the header files were located.
In this iteration, the paths were hardcoded to the specific machine. We used this
technique originally to make sure the project worked as intended before general-
izing the paths, mainly since we did not have enough experience with CMake as
a build system to implement this yet. Secondly, we link the libraries to our pro-
ject using the link_directories function and use the add_executable function to set
which executable(s) should be built from the source files. Lastly, we link the GLFW
library to our project using the target_link_libraries function; this is to ensure that
the header files get access to all the functions and class definitions it needs. We
also added the Glad library; this is useful as there are many different drivers that
support a variety of graphics cards. This means the location of different functions
is not known before they are queried at runtime. Luckily, the Glad library helps
us define and store this information in function pointers for later use.

1 #include <glad/glad.h>
2 #include <GLFW/glfw3.h>
3

4 #include <iostream>

Code listing 6.2: Includes

Now we can include the headers for both Glad and GLFW, and make use of
their functionality.

30 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

1 int main()
2 {
3 // Set up GLFW, set glfw version to 3 or above
4 glfwInit();
5 glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
6 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
7 glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
8

9 //Create window, if window is not created print statement.
10 GLFWwindow* window = glfwCreateWindow(screen_width, screen_height, "JESviewer",

NULL, NULL);
11 if (window == NULL)
12 {
13 std::cout << "Failed to create window" << std::endl;
14 glfwTerminate();
15 return -1;
16 }
17 //set current glfw context to created window
18 glfwMakeContextCurrent(window);
19 //Callback to scale window if scale is changed
20 glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
21

22 // Makes glad load function pointers to current driver, print error statement if
glad is not working properly

23 if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
24 {
25 std::cout << "Failed to initialize GLAD" << std::endl;
26 return -1;
27 }
28 //Render loop
29 while (!glfwWindowShouldClose(window))
30 {
31 // input
32 //Input is linked to current context (window)
33 processInput(window);
34

35 // render
36 //Sets background color taking RGBA input
37 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
38 glClear(GL_COLOR_BUFFER_BIT);
39

40 //swap the color buffer, check for events
41 glfwSwapBuffers(window);
42 glfwPollEvents();
43 }
44 // clear all allocated glfw resources
45 glfwTerminate();
46 return 0;
47 }

Code listing 6.3: First window

We start our main function by initiating GLFW with glfwInit, this lets us configure
GLFW with which version of OpenGL we are using. In this case, we are using 3.3,

Chapter 6: Process & Implementation 31

so we set both context versions to 3. Finally, we set the OpenGL profile to the core
profile, so we do not have to worry about backward compatibility.

Now we create our first window by calling the glfwCreateWindow function,
we set it’s size parameters to predefined variables screen_width and screen_height.
Then we name the window, meaning the text that appears above the window when
it is rendered. The two last variables are for fullscreen compatibility; here you can
reference different monitor types to make it scale to fullscreen mode automatic-
ally. We will not be using this, so we set them both to NULL. Finally, we run an
if-loop to check if the window was created correctly. If it was not, we print an error
statement and clear the allocated GLFW resources. However, if it works properly
the function returns a window object which we then set as the main context on
our current thread.

To access more OpenGL functionality we have to initiate glad. We do this with
an if-statement where we use GLADloadproc to load our OpenGL function pointers,
and glfwGetProcAddress to define the correct loading function for our operating
system. An error statement is printed if the function pointers do not load. In order
to keep the window scaling properly, we introduce a callback function (Code list-
ing 6.4) to handle scaling. The function glfwSetFramebufferSizeCallback takes our
window and current scale as an argument and changes the viewport accordingly.

1

2 void framebuffer_size_callback(GLFWwindow* window, int width, int height)
3 {
4 glViewport(0, 0, width, height);
5 }

Code listing 6.4: Scaling function

This scaling function takes a window, width, and height as parameters. Then
it adjusts glViewport to the new scale. The viewport function is used to set the size
of our rectangle(window); the first two parameters are the x and y coordinates
of the bottom left corner of the rectangle. The last two parameters are in the top
right corner.

Our render loop starts by checking whether or not the window should close;
it does this at every iteration of the while loop. Then it runs a function for pro-
cessing the input since the previous frame(one iteration of the while loop = one
frame).

1 void processInput(GLFWwindow *window)
2 {
3 if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
4 glfwSetWindowShouldClose(window, true);
5 }

Code listing 6.5: ProcessInput function

32 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Right now, our function for processing user input only handles closing the window
by pressing the escape key while it is active. The GLFW library has functions for
all of this; here we check to see if the escape key is pressed and if it is, we set
glfwSetWindowShouldClose to true. Thereby the window closes.

We can now start to play around with the window; emphglClearColor sets
the background color in our window by RGBA input, where the first three values
decide our color and the fourth our windows background opacity. An input of
(0,0,0,1) as shown in Figure 6.4 gives a completely black background. Now we can
call the glClear function by passing it GL_COLOR_BUFFER_BITto clear the current
color values and assign it the glClearColor values we just set.

The glfwSwapBuffers functions swaps out the color buffer for the previous
render loop iteration for the new one. The color buffer is a large 2D buffer that
contains color values for all pixels on the screen, and for changing color states, this
needs to be done for each iteration. Lastly, we poll for events, any user input like
keyboard presses and mouse movement will be recognized here, and the corres-
ponding functions called. At the end of our main function, we call glfwTerminate
to clear all resources allocated to GLFW.

Figure 6.4: Current window

Chapter 6: Process & Implementation 33

6.2.4 Sprint 4

This sprint is more code-focused as we go deeper in exploring OpenGL and start to
introduce complex concepts. We struggled with all of the imports we had to man-
age in order to get the libraries working correctly. This resulted in using more time
to understand CMake. We knew this would be useful for us later, as we would need
to import many more libraries further in the development process. This caused the
sprint to be extended an additional five days.

Figure 6.5: Kanban board from the start of sprint 4

Intermission 4: After sprint 4, we were using GLFW windows to create and
display simple 2D models, manipulating their properties by using shaders. Con-
cepts like graphics programming take time to comprehend and even longer to
understand. However, this sprint gave us sufficient insight to be able to create the
first iteration of our class diagram, to be further improved and refined as the pro-
ject went on.

To start displaying a model in our window, we first had to define it. We did
this by defining normalized coordinate values for the different points. Since our
windows view is defined between -1.0 and 1.0, anything outside these values
would be clipped (not shown). To define our first model, we added an array of
vertices, points in normalized space, that would be used to build our model.

34 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

1 float vertices[] = {
2 -1.0f, 0.0f, 0.0f, //left edge
3 -0.25f, 0.25f, 0.0f, //top right edge
4 -0.25f, -0.25f, 0.0f, //bottom left edge
5 0.0f, 1.0f, 0.0f, //top edge
6 0.25f, 0.25f, 0.0f, // top right edge
7 1.0f, 0.0f, 0.0f, //right edge
8 0.25, -0.25, 0.0f, // bottom right edge
9 0.0f, -1.0f, 0.0f, // bottom edge

10 };

Code listing 6.6: Vertex positions

Figure 6.6: Star visualization

In this case we are making a star made up of triangles, and all the points
defined here are the corners of the different triangles.

Chapter 6: Process & Implementation 35

1 unsigned int indices[] = {
2 0,1,2, //left
3 1,3,4, //top
4 4,5,6, //right
5 6,7,2, //bottom
6 1,2,6, //mid bottom
7 1,4,6 //mid top
8 };

Code listing 6.7: Setting indicies

Now we can set the indicies, based on the vertices. The indicies are the points
that make up the edges of our triangles, so all we do here is define which points
make up which triangles.

1 unsigned int VBO, VAO, EBO;
2 glGenVertexArrays(1, &VAO);
3 glGenBuffers(1, &VBO);
4 glGenBuffers(1, &EBO);

Now we define a Virtual Buffer Object (VBO), a Vertex Array Object (VAO)
and an Element Buffer Object (EBO). The virtual buffer object is used to store
information in the GPU‘s memory. Having the data stored in the GPU makes it fast
to access later. We generate a new buffer by passing glGenBuffer the buffer’s index
and a reference to the empty buffer object we created. Vertex array objects are
required by OpenGL to interpret vertex inputs, and we generate one by calling
the glGenVertexArrays function.

When drawing triangles, we will not always have to specify three new vertices.
Sometimes the same vertex is used for multiple triangles. Avoiding duplications
like this is essential for larger models built by thousands of triangles. The EBO
helps us avoid duplication by storing indices defined by unique vertices. We gen-
erate an EBO the same way as an VBO.

1 glBindVertexArray(VAO);
2

3 glBindBuffer(GL_ARRAY_BUFFER, VBO);
4 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
5

6 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
7 glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

Code listing 6.8: Binding and transfering data to buffers

We start by binding the VAO by calling glBindVertexArray, now all calls to other
buffer objects will be stored in the bound VAO. Now we call the glBindBuffer func-
tion and bind the VBO to the GL_ARRAY_BUFFER type. After binding the VBO
we call glBufferData to copy the vertex data in to it‘s memory. This function takes
the buffer type, how many bytes to be stored, the predefined data, and which

36 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

draw function to use. GL_STATIC_DRAW is used here, but GL_DYNAMIC_DRAW
should be used if the vertex positions are not static. After the VBO is bound and
configured, we do the same to the EBO. The difference here is that the EBO is
bound to the GL_ELEMENT_ARRAY_BUFFER, which stores index data.

Before we start rendering models with OpenGL we need to introduce shaders.
First we will introduce the vertex shader, which is a small program that takes a
vertex position as input. Shaders have their own language, OpenGl Shading Lan-
guage (GLSL), which is very similar to C++.

1 const char *vertexShaderSource = "#version 330 core\n"
2 "layout (location = 0) in vec3 position;\n"
3 "void main()\n"
4 "{\n"
5 " gl_Position = vec4(position.x, position.y, position.z, 1.0);\n"
6 "}\0";

Code listing 6.9: Vertex shader code

As of now, the vertex shader is stored as a C string in our main file, and we
start by defining which OpenGL version we are using. Here we are using OpenGL
version 3.3(330), and as set previously (Code listing 6.3, line 7), we are using the
OpenGL core profile. Secondly we define the shaders input as a three-dimensional
vector "position" and specify that it is found at location = 0. Inside the main body,
we use gl_Position to set the output of our vertex shader. This function is by default
a four-dimensional vector; therefore we get the x, y, and z values from our input
vector and set them accordingly. The last attribute is used for transformations and
normalizing coordinates, but we will not be using that yet, so we set it to 1.0.

1 const char *fragmentShaderSource = "#version 330 core\n"
2 "out vec4 FragColor;\n"
3 "void main()\n"
4 "{\n"
5 " FragColor = vec4(1.0f, 1.0f, 1.0f, 1.0f);\n"
6 "}\n\0";

Code listing 6.10: Fragment shader code

We now introduce a fragment shader, this shader is responsible for calculating
the color values of each pixel. We set its output as a four-dimensional vector called
FragColor, defined in the main body. The three first variables in this vector define
our models color; in this case it is white.
Now that we have defined what our shaders should do, we can implement their
functionality.

Chapter 6: Process & Implementation 37

1 unsigned int vertexShader = glCreateShader(GL_VERTEX_SHADER);
2 glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
3 glCompileShader(vertexShader);
4 // check for and print compilation errors
5 int success;
6 char infoLog[512];
7 glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
8 if (!success)
9 {

10 glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
11 std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::

endl;
12 }

Using the glCreateShader function, we create a new shader and specify that
it should be a vertex shader. The first argument of the glShaderSource function
defines where the source code should be compiled to. After telling it to compile
into our newly created shader object, we have to specify how many strings are in
our shader’s source code; we only have one in this state. In the third argument,
we reference the source code itself, and the fourth specifies the lengths of the
different input strings. The last argument we can set to null since we only pass
the function one string.

Finally, we can compile the shader by calling glCompileShader on our vertex
shader object. After doing this, we have to check for compilation errors; this is
done by calling glGetShaderiv. This function allows us to query the shader for dif-
ferent information. In our case, we query for GL_COMPILE_STATUS, define an
integer to indicate successful compilation and pass it as the third argument. If the
compilation has errors, we want to print them, so we have to define a space to
print the error messages. We do this by defining an array of characters which we
pass to glGetShaderInfoLog, and print the errors.

1 unsigned int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);

Code listing 6.11: Creating a fragment shader

The fragment shader is created and compiled the same way as the vertex shader,
but this time we specify to glCreateShader that we want to create a fragment
shader.

1 unsigned int shaderProgram = glCreateProgram();
2 glAttachShader(shaderProgram, vertexShader);
3 glAttachShader(shaderProgram, fragmentShader);
4 glLinkProgram(shaderProgram);

Code listing 6.12: Shader program

Since we already created and compiled our shaders, we now have to create a
shader program that we link them to. The shader program is created by calling

38 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

glCreateProgram, we then attach both our shaders with glAttachShader. Finally,
we link our shaders to our program; this is done by the glLinkProgram function.
After our shaders are linked, the output of the first shader in the graphics pipeline
is used as input for the next one. In our case, the output of our vertex shader is
now our fragment shader input. As a last check, we implement an error check
similar to the ones used on our shaders, but this time to check for linking errors.
Once our shaders are correctly linked to our shader program, we can delete the
shader objects.

1 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
2 glEnableVertexAttribArray(0);

Even though of shader program is complete, we still have to tell our shaders
how our data is structured and how it is supposed to be read. The glVertexAt-
tribPointer function does exactly this; it takes a number of arguments we have to
define. The first is which attribute we want to configure, and we previously defined
our attribute location as 0 in the vertex shader source code. The second argu-
ment specifies the number of components per vertex attribute; since we previously
defined this as a three-dimensional vector, it takes three values. The third argu-
ment specifies the data type, and the fourth attribute is for normalizing data. Since
our data is already normalized, we leave the fourth argument as false. The next
argument is the stride, meaning the space between the attributes in bytes. Since
each of our vertices consists of three float values, the stride is set to 3*sizeof(float)
or 3*4=12 bytes. The last component is for offset; this is if the data you are read-
ing does not start at index = 0 in the array. In our case, it does, but the argument
needs to be of type void, so we have to cast it to 0. Now we can finally call glEn-
ableVertexAttribArray by passing it our attribute location.

1 glUseProgram(shaderProgram);
2 glBindVertexArray(VAO);
3 glDrawElements(GL_TRIANGLES, 18, GL_UNSIGNED_INT, 0);

Code listing 6.13: Drawing our shape

Everything is set up and ready to draw our first shapes. Inside the render
loop, we first call glUseProgram; this makes sure the rest of the function calls use
our shaders. We once again bind our vertex array object, so the drawing function
knows where to look and call glDrawElements. To draw our model using elements,
we first need to specify that we want OpenGL to draw triangles. Secondly, we need
to specify the number of elements to draw; in our case, we have a total of six tri-
angles, all built from three points. The last two arguments specify which type of
values are in our indices and the offset of these.

Chapter 6: Process & Implementation 39

Figure 6.7: Rendered star

6.2.5 Sprint 5

These weeks went to improving our class layout, loosening coupling and improv-
ing cohesion. Furthermore, we continued work on the OpenGL curriculum we set
for ourselves. Throughout these chapters we created a shader class that handles
both the vertex and fragment shaders, which allowed us to manipulate different
visual aspects in our 3D model rendering more efficiently. We introduced differ-
ent matrix operations, such as transformations for rotating models either by static
variables or dynamic functions.

40 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Figure 6.8: Kanban board from the start of sprint 5

Intermission 5: As we previously defined our two shaders on top of our main
file, it leaves room for improvement. In the current state we have to compile them
individually and manually check for compilation errors for every shader. If we
introduce more shader variations this process will quickly become tedious. There-
fore we want to create our own shader that reads our source files, compiles and
links them to a shader program.

1 #ifndef SHADER_H
2 #define SHADER_H
3 #endif

Code listing 6.14: Definition prefix

We start by creating a new header file, starting with the preprocessor direct-
ives ifndef and define. This makes sure our shader is compiled and included only
once, avoiding linking problems. The endif directive is inserted at the bottom of
our class definition to decide where the ifndef directive is completed.

1 public:
2 unsigned int shaderID;
3 // constructor generates shader by specified paths
4 Shader(const char* vertexPath, const char* fragmentPath)

Code listing 6.15: Identifier

Next we assign our shader a unique identifier, introduced here as shaderID.
Our constructor takes two arguments, the paths to our vertex and fragment shader
code. Our shader class needs to take these paths, open the files, read, store, com-

Chapter 6: Process & Implementation 41

pile and link them to a shader program.

1 std::string vertexCode;
2 std::string fragmentCode;
3 std::ifstream vShaderFile;
4 std::ifstream fShaderFile;
5

6 vShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
7 fShaderFile.exceptions(std::ifstream::failbit | std::ifstream::badbit);

Code listing 6.16: Storage objects

To read the files we need somewhere to store them and a way to read them.
We preemptively create a string and an input file stream (ifstream) object for each
shader. The string object is meant to store their source code, while the stream ob-
jects will read them from the files. When using ifstreams it important to make sure
exceptions can be thrown when needed, here we allow failbit and badbit excep-
tions. These exceptions are thrown if a file is unsuccessfully read, due to loss of
stream integrity or a logic issue.

1 try
2 {
3 // open files
4 vShaderFile.open(vertexPath);
5 fShaderFile.open(fragmentPath);
6 std::stringstream vShaderStream, fShaderStream;
7 // read file from buffer
8 vShaderStream << vShaderFile.rdbuf();
9 fShaderStream << fShaderFile.rdbuf();

10 // close file
11 vShaderFile.close();
12 fShaderFile.close();
13 // convert stream into string
14 vertexCode = vShaderStream.str();
15 fragmentCode = fShaderStream.str();
16

17 }
18 catch (std::ifstream::failure& readError)
19 {
20 std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ: " << readError.what()

<< std::endl;
21 }

Code listing 6.17: Reading files and storing data as strings

We start by trying to call the open function on our stream objects, opening the
files and associating them with the corresponding stream objects. After they are
associated we define the streams as stringstreams, and call the rdbuf function to
read the data from the buffer to the streams. Now that the data is read we can
close the files. Finally we call the str function to copy the stream data into our ini-
tial string objects. We end with a catch statement, printing which exception was

42 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

thrown if the files were not read properly.

1 const char* vShaderCode = vertexCode.c_str();
2 const char * fShaderCode = fragmentCode.c_str();
3 //compile shaders
4 unsigned int vs, fs;
5 // vertex shader
6 vs = glCreateShader(GL_VERTEX_SHADER);
7 glShaderSource(vs, 1, &vShaderCode, NULL);
8 glCompileShader(vs);
9 // fragment Shader

10 fs = glCreateShader(GL_FRAGMENT_SHADER);
11 glShaderSource(fs, 1, &fShaderCode, NULL);
12 glCompileShader(fs);

Since glShaderSource takes needs its source code as a string of characters, we
use the c_str function to set a pointer to an immutable character array containing
it. Compiling the shaders is done the same way as before, and with the same ar-
guments.

1 // shader Program
2 shaderID = glCreateProgram();
3 glAttachShader(shaderID, vs);
4 glAttachShader(shaderID, fs);
5 glLinkProgram(shaderID);
6 // delete shaders after link
7 glDeleteShader(vs);
8 glDeleteShader(fs);

Code listing 6.18: Creating and binding our shader program

The compiled shaders are linked to a new program defined by shaderID and
the shaders are deleted after they are linked.

Chapter 6: Process & Implementation 43

1 private:
2 //function for checking shader compilation/linking errors.
3 void checkCompileErrors(GLuint shader, std::string type)
4 {
5 GLint success;
6 GLchar infoLog[1024];
7 if (type != "PROGRAM")
8 {
9 glGetShaderiv(shader, GL_COMPILE_STATUS, &success);

10 if (!success)
11 {
12 glGetShaderInfoLog(shader, 1024, NULL, infoLog);
13 std::cout << "ERROR::SHADER_COMPILATION_ERROR of type: " << type << "\n" <<

infoLog << std::endl;
14 }
15 }
16 else
17 {
18 glGetProgramiv(shader, GL_LINK_STATUS, &success);
19 if (!success)
20 {
21 glGetProgramInfoLog(shader, 1024, NULL, infoLog);
22 std::cout << "ERROR::PROGRAM_LINKING_ERROR of type: " << type << "\n" <<

infoLog << std::endl;
23 }
24 }
25 }

Code listing 6.19: Function for printing error info

We used to have two seperate functions for printing error messages in the
initial setup, here we group them all into one so we can call the same function
to check both compilation and linking errors. This function takes a shader object
and a type as input, then contains an if statement to separate the different queries.
This is mostly the same process as the previous iteration, only this version of more
generalized and can be called with a simple oneliner. The infolog is also twice as
large, allowing more information to be returned.

1 checkCompileErrors(vs, "VERTEX");
2 checkCompileErrors(fs, "FRAGMENT");
3 checkCompileErrors(shaderID, "PROGRAM");

Code listing 6.20: CheckCompileError calls

The new function is inserted after each compilation, so we can easily spot
where any errors occur.
Now that we have a working shader program, created by our shader class we need
to specify the input and outputs of our vertex and fragment shader.

44 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

1 #version 330 core
2 layout (location = 0) in vec3 position;
3

4 out vec4 vertexColor;
5

6 void main()
7 {
8 gl_Position = vec4(position.x, position.y, position.z, 1.0);
9 vertexColor = vec4(0.0, 1.0, 0.0, 1.0);

10 }

Code listing 6.21: New vertex shader

1 #version 330 core
2 out vec4 FragColor;
3

4 in vec4 vertexColor;
5 void main()
6 {
7 FragColor = vertexColor;
8 }

Code listing 6.22: New fragment shader

This version of the vertex shader differs from our last iteration, in that it spe-
cifies its output as vec4 (a floating point vector with four components). This is
now set as the input for our fragments shader. The vertex shader passes a color
value, in this case green, to the fragment shader. Which in turn gives the rendered
model its color.

Chapter 6: Process & Implementation 45

Figure 6.9: Star rendered with color values from shader communication

Defining the color data in the shaders themselves is not always a good idea.
Different models can have different data attached, a mesh model might have a
texture or a voxel model might have material data attached. In this case we will
add some color data to the vertex array, and extract it from our shaders.

1 float vertices[] = {
2 -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, //left edge
3 -0.25f, 0.25f, 0.0f, 0.0f, 1.0f, 0.0f, //top right edge
4 -0.25f, -0.25f, 0.0f, 0.0f, 0.0f, 1.0f, //bottom left edge
5 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, //top edge
6 0.25f, 0.25f, 0.0f, 1.0f, 0.0f, 0.0f, // top right edge
7 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, //right edge
8 0.25, -0.25, 0.0f, 0.0f, 0.0f, 1.0f, // bottom right edge
9 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // bottom edge

10 };

The data is now structured so that the first three floats define vertex positions,
and the next three define the vertex color attribute. This sequence repeats for all
vertices.

46 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

1 //Vertex shader
2

3 #version 330 core
4 layout (location = 0) in vec3 position;
5 layout (location = 1) in vec3 colorData;
6

7 out vec3 vertexColorFromData;
8

9 void main()
10 {
11 gl_Position = vec4(position.x, position.y, position.z, 1.0);
12 vertexColorFromData = colordata;
13 }
14

15 //Fragment shader
16

17 #version 330 core
18 out vec4 FragmentColor;
19

20 in vec3 vertexColorFromData;
21 void main()
22 {
23 FragmentColor = vec4(vertexColorFromData, 1.0);
24 }

Code listing 6.23: Shader adaptation to find color data

The process is much like we did when specifying positional data, we create a
new layout. This time we say the layout has location = 1, and give it a name to
signify it defines color. We pass the fragment shader the color data with a vec3
output, and adapt it to a vec4 so the drawing function will accept it.

1 glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3 *
sizeof(float)));

2 glEnableVertexAttribArray(1);

Code listing 6.24: Specifying how the data should be read

We have to specify to OpenGL how the data should be read. Earlier we set a
vertex attribute pointer for layout= 0, in this case we want to specify for layout=
1. Some arguments have different parameters than previous iterations. The stride
needs to be changed to 6*4 bytes, since the next value of the same type is stored 6
positions (32 bytes)later in the array. For location =1 (colorData), we also specify
an offset, saying that it should skip the first three instances and start reading from
vertices at index 3.

Chapter 6: Process & Implementation 47

Figure 6.10: Star with fragment interpolation

The result is not what we first expected. The fragment shader creates way more
fragments then the ones we specified in our indices array. It then extrapolates
the color values based on its proximity to the specified color fragments. So if a
fragment is directly between a green and a red instance, the pixels color output is
50% green and 50% red, resulting in an orange pixel.

A model viewer is not complete without some kind of interaction with either
perspective, position or both. As our current iteration only renders static 2D ob-
jects, we needed a way to change the positions of the rendered triangles. To do
this we used the GLM library to access matrix operations that makes it possible to
change the position of the vertices without manual input.

1 #include <glm/glm.hpp>
2 #include <glm/gtc/matrix_transform.hpp>
3 #include <glm/gtc/type_ptr.hpp>

Code listing 6.25: Glm includes

To start using GLM functions, we need to include the proper header files. There
are many different header files in the GLM library, we only include the ones we
need.

48 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

1 #version 330 core
2 layout (location = 0) in vec3 position;
3 layout (location = 1) in vec3 colorData;
4

5 out vec3 vertexColorFromData;
6

7 uniform mat4 transformation;
8

9 void main()
10 {
11 gl_Position = transformation * vec4(position, 1.0);
12 vertexColorFromData = colorData;
13 }

Code listing 6.26: Transformation data passed to vertex shader

We want to start implementing rotation by using matrix transformations. The
first thing we need to do is make sure our vertex shader is connected to the rota-
tion matrix. To do this we create a uniform of type mat4. We multiply this matrix
with our vertex position before passing it to gl_Position. The type mat4 represents
a 4x4 matrix, which when multiplied with the position will allow us to rotate our
model.

1 glm::mat4 transform = glm::mat4(1.0f);
2 transform = glm::rotate(transform, (float)glfwGetTime(), glm::vec3(0.0f, 1.0f,

0.0f));

Code listing 6.27: Defining our rotation

Inside our render loop we initialize a new 4x4 matrix, and set it as an identity
matrix. The argument we pass to glm::mat4 specifies the diagonal values, and an
identity matrix is a 4x4 matrix where all the diagonals have a value of 1. Next
we call the glm::rotate function on our new matrix. The rotate function takes a
few argument, we need to specify which matrix to preform our rotation on, the
angle of rotation and its direction. Here we set the angle by calling the glfwGet-
Time function, which gives the time since GLFW was initiated. Lastly we want to
rotate around the y-axis, to give us our first impression of 3D-space.

Figure 6.11: Calculating rotation around y-axis

Chapter 6: Process & Implementation 49

The above figure shows the math behind the rotation sequence. A 4x4 matrix
multiplied with a vertex position giving a rotated output. In our case the angle()
is given by time since program initiation, while the time value rises the angle a
vertex rotates increases linearly for each frame. It can clearly be seen in the result
of the multiplication that the y-value stays the same while the other positions
change.

1 unsigned int transformLoc = glGetUniformLocation(newShader.shaderID, "
transformation");

2 glUniformMatrix4fv(transformLoc, 1, GL_FALSE, glm::value_ptr(transform));

This final part is done after activating our shader program, first we ask our
shader for the location of our uniform by calling glGetUniformLocation and passing
it our shaders id and the name of our uniform. Secondly we set the value of our
uniform with glUniformMatrix4fv, passing it the uniform location, its count, trans-
position and a pointer to the transformation matrix we set earlier. Since we did
this inside the render loop, the rotation will update the vertex positions continu-
ously for as long as the program is running. This means the object will be spinning
around the y-axis.

Figure 6.12: Star rotating

Figure 6.12 shows the star halfway through its rotation. This gives the im-

50 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

pression of 3D-space. However, since our model has no thickness, it is more like
a section of a plane rotating.

6.2.6 Sprint 6

This late in the development stage we redistributed responsibility over different
project areas. Development was started on a GUI, focus shifted to more document-
ation and report work while development continued on the OpenGL codebase.
The goal of this sprint was to implement our first 3D model and a working cam-
era system. These seemed to work perfectly fine, but are still applied exclusively
to locally created models.

Figure 6.13: Kanban board from the start of sprint 6

Intermission 6: This sprint was dedicated to get camera functionality up and
running, meaning we could play around with perspectives, rotations and transla-
tions in a more efficient manner. Naturally the first thing we will need is an actual
3D-model. Since we still lack import functions for external models, we created
our own.

Chapter 6: Process & Implementation 51

1

2 float vertices[] = {
3 //3D star
4 -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,//left edge
5 -0.25f, 0.25f, 0.0f, 1.0f, 0.0f, 0.0f,//top left edge
6 -0.25f, -0.25f, 0.0f, 1.0f, 0.0f, 0.0f,//bottom left edge
7 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,//top edge
8 0.25f, 0.25f, 0.0f, 1.0f, 0.0f, 0.0f,// top right edge
9 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,//right edge

10 0.25, -0.25, 0.0f, 1.0f, 0.0f, 0.0f,// bottom right edge
11 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,// bottom edge
12 0.0f, 0.0f, 0.2f, 0.0f, 0.0f, 1.0f, //front :
13 0.0f, 0.0f, -0.2f, 1.0f, 0.0f, 0.0f//back :
14 };
15 unsigned int indices[] = {
16 //triangles front
17 0,8,1,
18 0,8,2,
19 3,8,1,
20 3,8,4,
21 4,8,5,
22 6,8,5,
23 6,8,7,
24 2,8,7,
25

26 //triangles back :
27 0,9,1,
28 0,9,2,
29 3,9,1,
30 3,9,4,
31 4,9,5,
32 6,9,5,
33 6,9,7,
34 2,9,7,
35 };

Code listing 6.28: Simple 3D expansion of our star

Extending our star into three dimensions is relatively straight forward, add
two points at the origin (center) and offset them along the z-axis on both sides.
Then we decide which triangles to draw in the indices array. An approach like this
is very input heavy, but for now it works just fine.

52 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Figure 6.14: 3D star

Now that our star finally is a real 3D model, we need to implement some
features for inspecting it. To do this we want to implement a camera system, that
allows us to view a model from any angle. We start by creating a new camera
class.

Chapter 6: Process & Implementation 53

1 #ifndef CAMERA_H
2 #define CAMERA_H
3

4 #include <glad/glad.h>
5 #include <glm/glm.hpp>
6 #include <glm/gtc/matrix_transform.hpp>
7

8 #include <vector>
9

10 // Which directions the camera can move
11 enum Camera_Movement {
12 FORWARD,
13 BACKWARD,
14 LEFT,
15 RIGHT
16 };
17

18 const float SENSITIVITY = 0.2f;
19 const float SPEED = 4.0f;
20 const float ZOOM = 45.0f;
21 const float YAW = -90.0f;
22 const float PITCH = 0.0f;

Code listing 6.29: Camera preprocessor directives and includes

We start by defining some essential enumerations, consisting of the base move-
ment features of our camera. Next we set up some starting variables for camera
control. We decide how aggressively the mouse reacts to input, the movement
speed of our camera and to which degree the field of view can be affected by
zooming. The default yaw value is set to -90 degrees, this is because if it was
set to 0 the camera would start by looking at the positive x-axis. Rotating it by
-90degrees starts the camera view towards the negative z-axis, which is exactly
what we want.

54 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

1 class Camera
2 {
3 public:
4

5 // camera Attributes
6 glm::vec3 Position;
7 glm::vec3 Front;
8 glm::vec3 Up;
9 glm::vec3 Right;

10 glm::vec3 WorldUp;
11

12 // euler Angles
13 float Yaw;
14 float Pitch;
15

16 // camera options
17 float MovementSpeed;
18 float MouseSensitivity;
19 float Zoom;
20

21 // constructor
22 Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3 up = glm::vec3

(0.0f, 1.0f, 0.0f), float yaw = YAW, float pitch = PITCH)
23 {
24 Front = glm::vec3(0.0f, 0.0f, -1.0f);
25 MovementSpeed = SPEED,
26 MouseSensitivity = SENSITIVITY,
27 Zoom = ZOOM;
28 Position = position;
29 WorldUp = up;
30 Yaw = yaw;
31 Pitch = pitch;
32 updateCameraVectors();
33 }

Code listing 6.30: Attributes and constructor

The first thing we need to do is define which attributes the camera needs. It needs
some vectors to define both movement and direction. The position vector gives
the camera its current position in world space and the front vector tells the cam-
era which direction it is looking. There are two up-vectors, the first is the cameras
local "up" which changes depending on where the camera is looking, the second
is the global "up". It also needs a right or a left vector, but not both as a left vector
is the same as a -right vector.

We need some float values for the yaw and the pitch. These represent rotation
around the y and the x-axis, more easily visualized as if the camera is looking
diagonally up/down or left/right. Our constructor instantiates the camera, and
sets it to its starting values. We set our camera to start at the global origin and
looking down the negative z-axis.

Chapter 6: Process & Implementation 55

1 glm::mat4 GetViewMatrix()
2 {
3 return glm::lookAt(Position, Position + Front, Up);
4 }

Code listing 6.31: View matrix function

The GetViewMatrix function returns the cameras view matrix. The view matrix is
the rendered space visible by our camera, we find it by calling glm::lookAt. This
function takes a position as its first argument. Secondly it takes a direction, in our
case this is the position plus our front vector, this way we make sure we are always
looking forwards. The up vector is used to calculate our right vector.

1 void ProcessKeyboard(Camera_Movement direction, float deltaTime)
2 {
3 float velocity = MovementSpeed * deltaTime;
4 if (direction == FORWARD)
5 Position += Front * velocity;
6 if (direction == BACKWARD)
7 Position -= Front * velocity;
8 if (direction == LEFT)
9 Position -= Right * velocity;

10 if (direction == RIGHT)
11 Position += Right * velocity;
12 }

Code listing 6.32: Keyboard input processing

We want our camera to be able to move around our scene, here we define the out-
put of different button presses. This function takes one of our predefined enums
as input and the time since the last frame. We specify which changes in position
we want for the different movement directions with a series of if-statements.

56 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

1 void ProcessMouseMovement(float xoffset, float yoffset, GLboolean constrainPitch
= true)

2 {
3 xoffset *= MouseSensitivity;
4 yoffset *= MouseSensitivity;
5

6 Yaw += xoffset;
7 Pitch += yoffset;
8

9 // Statement to stop pitching > 90 degrees
10 if (constrainPitch)
11 {
12 if (Pitch > 89.0f)
13 Pitch = 89.0f;
14 if (Pitch < -89.0f)
15 Pitch = -89.0f;
16 }
17

18 // update vectors
19 updateCameraVectors();
20 }

Code listing 6.33: Mouse movement processing

We want the input from our mouse to decide where the camera is looking and we
specify this by changing the pitch and yaw values. The changes in our pitch and
yaw values scale with our preset sensitivity, if not the response would be way to
quick. If the pitch value goes to or above +/-90 degrees the screen will flip, caus-
ing unwanted behaviour. This can be avoided by constraining the pitch to never
go above 89 degrees. Finally we call the updateCameraVectors function to adjust
the vectors according to the new pitch and yaw values.

1 void updateCameraVectors()
2 {
3 //new front vector
4 glm::vec3 front;
5 front.x = cos(glm::radians(Yaw)) * cos(glm::radians(Pitch));
6 front.y = sin(glm::radians(Pitch));
7 front.z = sin(glm::radians(Yaw)) * cos(glm::radians(Pitch));
8 Front = glm::normalize(front);
9

10 // Handle up and right vector
11 Right = glm::normalize(glm::cross(Front, WorldUp));
12

13 Up = glm::normalize(glm::cross(Right, Front));
14 }

Seeing as the camera is able to look in all directions, we need a function for up-
dating its vectors as their values change. The updateCameraVectors function does
just this. It instantiates an empty vector, and assigns it the adjusted values based

Chapter 6: Process & Implementation 57

on the new yaw and pitch values. The values are calculated by using formulas
derived from Euler angles, for instance the x component of our front vector is the
product of cos(pitch) and cos(yaw). Our right vector is the cross product of our
new front and the global up vector, and the new local up vector a cross of our new
right and front vectors.

1 void ProcessMouseScroll(float yoffset)
2 {
3 Zoom -= (float)yoffset;
4 if (Zoom < 1.0f)
5 Zoom = 1.0f;
6 if (Zoom > 45.0f)
7 Zoom = 45.0f;
8 }

We also want to be able to zoom in our view, to get a better look at model details.
The ProcessMouseScroll function handles scroll input, based on our field of view.
Our global field of view value is set at 45, so we implement a constraint so we
are not able to zoom out more than where we started. The camera class is now
completed and we can start to utilize it.

1 void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
2 {
3 float xpos = static_cast<float>(xposIn);
4 float ypos = static_cast<float>(yposIn);
5

6 if (firstMouse)
7 {
8 lastX = xpos;
9 lastY = ypos;

10 firstMouse = false;
11 }
12

13 float xoffset = xpos - lastX;
14 float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to

top
15

16 lastX = xpos;
17 lastY = ypos;
18

19 camera.ProcessMouseMovement(xoffset, yoffset);
20 }
21

22 // glfw: whenever the mouse scroll wheel scrolls, this callback is called
23 // --
24 void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
25 {
26 camera.ProcessMouseScroll(static_cast<float>(yoffset));
27 }

Code listing 6.34: Callback functions for mouse inputs

The mouse_callback function takes the last position of our mouse on screen, sub-
tracts the new position and stores the change in position. It then sets the new po-

58 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

sition as the last position so the function avoids stalling. The function concludes
by calling the ProcessMouseMovement function from our camera class, passing it
the offsets as arguments. There is also a check to see if this is the first time the
mouse enters the screen, this is to avoid jagged movement when the mouse is first
triggered. We also have a function for reacting to scrolling, this directly calls the
ProcessMouseScroll function from the camera by passing it its y-offset.

1 void processInput(GLFWwindow *window)
2 {
3 if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
4 glfwSetWindowShouldClose(window, true);
5

6 if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
7 camera.ProcessKeyboard(FORWARD, deltaTime);
8 if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
9 camera.ProcessKeyboard(BACKWARD, deltaTime);

10 if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
11 camera.ProcessKeyboard(LEFT, deltaTime);
12 if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
13 camera.ProcessKeyboard(RIGHT, deltaTime);
14 }

Code listing 6.35: Key triggers

For movement we add additional triggers to our processInput function. They work
for the WASD keys by passing ProcessKeyboard function the associated enumera-
tions and the time since last frame.

1 float currentFrame = static_cast<float>(glfwGetTime());
2 deltaTime = currentFrame - lastFrame;
3 lastFrame = currentFrame;

Code listing 6.36: Delta frame

The time since last frame is calculated at the beginning of each render loop by
subtracting the current frame from the last frame. The last frame is then reset.

1 //inside render loop
2 glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)

screen_width / (float)screen_height, 0.1f, 100.0f);
3 glm::mat4 view = camera.GetViewMatrix();
4 newShader.setMat4("projection", projection);
5 newShader.setMat4("view", view);
6

7 // render the loaded model
8 glm::mat4 model = glm::mat4(1.0f);
9 newShader.setMat4("model", model);

10

11 //Position calculation in vertex shader
12 gl_Position = projection * view * model* vec4(position, 1.0);

Code listing 6.37: Rendering our model

Chapter 6: Process & Implementation 59

To render our model we now have to send the perspective to our shader for each
frame. We call the glm::perspective function by passing it our current camera zoom
in the field of view argument this time. We also send the current view matrix and
the identity matrix to the vertex shader uniforms, as the vertex positions now are
calculated by the product of its projection, view, model and position.

Figure 6.15: Star viewed with camera

Another part of this sprint involved building a GUI that would have the most
essential features. Research found that the GUI-builder tool Qt, was a good choice
for building GUI in C++.[19] Building a GUI in Qt’s own IDE "Qt Creator" was a
simple task, as its drag-and-drop functionality is very easy to use. However, we
encountered some problems mid sprint, as we struggled with getting the Qt frame-
work to work within CLion. This was due to a configuration error that happened,
which is shown in Figure 6.17. The latest version of Qt, 6.2.4 was used at first,
which proved to be difficult for integration because of lack of documentation
within this version. Therefore, we proceeded with trying Qt5 instead, but the
same error message kept popping up, even though we tried to follow JetBrains’
own Qt setup tutorial. After researching the error message for several days with
no progress, we decided to go away from the GUI implementation and focus on
developing the other applications, which was of higher significance. Figure 6.16
shows the Qt Creator interface, which has drag-and-drop features.

60 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Figure 6.16: Qt Creator IDE

Figure 6.17: Error message from Qt in CLion

Chapter 6: Process & Implementation 61

6.2.7 Sprint 7

In this stage of the development we wanted to integrate Assimp with OpenGL,
which would then later be used for retrieving structs that could take mesh as
input . We also had to do learn how to port a Visual Studio project to CLion,
which proved to be more difficult than anticipated.

Figure 6.18: Kanban board from the start of sprint 7

Intermission 7: Our goal during this sprint was to render an external model
using Assimp functionality. To do this we will need a mesh and an abstracted
model class that can be expanded to import other data structures in the future.
We start by implementing the mesh class.

1 struct Vertex {
2 // attributes
3 glm::vec3 Position;
4 glm::vec3 Normal;
5 glm::vec2 TexCoords;
6 };
7

8 struct Texture {
9 unsigned int id;

10 string type;
11 };

The struct Vertex holds all our vertex attributed. Since we are targeting external
models now, we include some texture data since the models we found has one or
more texture-maps accompanying them. We then store a texture-id and a type for
each texture we load.

62 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

1 class Mesh {
2 public:
3 // mesh Data
4 vector<Vertex> vertices;
5 vector<unsigned int> indices;
6 vector<Texture> textures;
7 unsigned int VAO;
8

9 // constructor
10 Mesh(vector<Vertex> vertices, vector<unsigned int> indices, vector<Texture>

textures)
11 {
12 this->vertices = vertices;
13 this->indices = indices;
14 this->textures = textures;
15

16 // set buffers and attribpointers
17 setupMesh();
18 }

Code listing 6.38: Data assignment and constructor

All necessary data is initiated and a new VAO is set up. The constructor passes
the mesh object the required data, a vector of vertex structs, indicies and a vector
containing texture data. It then calls a function for mesh data definition.

Chapter 6: Process & Implementation 63

1 unsigned int VBO, EBO;
2

3 void setupMesh()
4 {
5 glGenVertexArrays(1, &VAO);
6 glGenBuffers(1, &VBO);
7 glGenBuffers(1, &EBO);
8

9 glBindVertexArray(VAO);
10 // vertex buffer
11 glBindBuffer(GL_ARRAY_BUFFER, VBO);
12 glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0],

GL_STATIC_DRAW);
13

14 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
15 glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &

indices[0], GL_STATIC_DRAW);
16

17 // vertex attribute pointers
18 glEnableVertexAttribArray(0);
19 glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)0);
20 // vertex normals
21 glEnableVertexAttribArray(1);
22 glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof

(Vertex, Normal));
23 // vertex texture coords
24 glEnableVertexAttribArray(2);
25 glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof

(Vertex, TexCoords));
26

27 glBindVertexArray(0);
28 }

This section is generalized in the mesh class now, so we can avoid doing this in
our main file for every object. It works in much the same way, except this time we
are also parsing texture coordinates.

64 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

1 void Draw(Shader &shader)
2 {
3 //texture handling
4 unsigned int diffuseNr = 1;
5 unsigned int specularNr = 1;
6 for (unsigned int i = 0; i < textures.size(); i++)
7 {
8 glActiveTexture(GL_TEXTURE0 + i);
9 string number;

10 string name = textures[i].type;
11 if (name == "texture_diffuse")
12 number = std::to_string(diffuseNr++);
13 else if (name == "texture_specular")
14 number = std::to_string(specularNr++);
15

16

17 glUniform1i(glGetUniformLocation(shader.shaderID, (name + number).c_str()), i
);

18 glBindTexture(GL_TEXTURE_2D, textures[i].id);
19 }
20

21 // draw mesh
22 glBindVertexArray(VAO);
23 glDrawElements(GL_TRIANGLES, static_cast<unsigned int>(indices.size()),

GL_UNSIGNED_INT, 0);
24 glBindVertexArray(0);
25

26 glActiveTexture(GL_TEXTURE0);

Our drawing function now has to handle texture data. We start by checking how
many textures we have of each type by iterating through our texture vector, call-
ing glActiveTexture for each instance to prepare it for binding. Next we get the
texture type as a string to match the vertex uniforms. Then we give our uniform
the location of the active texture and bind it. The glBindTexture function binds a
texture to a texture type, in this case to 2D textures. Finally we draw the mesh,
but after we are done call glActiveTexture to set the the active texture to 0.

Large and complex models are often built by multiple meshes, which are later
connected and rendered together. In order to render a model consisting of more
then one mesh, we need to create a model class to load and render multiple
meshes at the same time.

Chapter 6: Process & Implementation 65

1 unsigned int TextureFromFile(const char *path, const string &directory);
2

3 class Model
4 {
5 public:
6 // model data
7 vector<Texture> textures_loaded;
8 vector<Mesh> meshes;
9 string directory;

10

11 // constructor
12 Model(string const &path)
13 {
14 loadModel(path);
15 }

Code listing 6.39: Model constructor

We define the model data, all textures currently bound, all meshes and the direct-
ory in which they are found. The constructor takes a path to the .obj wavefront
file as its argument and calls the loadModel function.

1 {void loadModel(string const &path)
2 {
3 Assimp::Importer importer;
4 const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate |

aiProcess_FlipUVs);
5 // check for errors
6 if (!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode)
7 {
8 cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
9 return;

10 }
11

12 directory = path.substr(0, path.find_last_of(’/’));
13

14 processNode(scene->mRootNode, scene);
15 }}

Code listing 6.40: Load model function

Our loadModel function creates an importer object from the Assimp library. We call
the importers ReadFile function by passing it the path and calling several methods
to process the data. First we call Triangulate which turns all non triangle shapes
in the mesh into triangles. Secondly we call FlipUVs to flip the texture maps, since
most texture maps are flipped by default.
Next we have a function to check for importer errors, that checks if the scene or
rootnode are null and query one of its flags to check for incomplete data. Then
we store the directory of the model and call the processNode function on our root
node.

66 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

1 void processNode(aiNode *node, const aiScene *scene)
2 {
3 for (unsigned int i = 0; i < node->mNumMeshes; i++)
4 {
5 aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
6 meshes.push_back(processMesh(mesh, scene));
7 }
8

9 for (unsigned int i = 0; i < node->mNumChildren; i++)
10 {
11 processNode(node->mChildren[i], scene);
12 }
13 }

Code listing 6.41: Recursive function for processing nodes

To process all the nodes in our meshes we first have to iterate through them.
ProcessNode takes a root node and a assimpScene as arguments. We check each
of the nodes indicies and store their meshes in the mMeshes array. We then call
the processMesh function on the mesh. Finally we do the same for all the nodes
children until the function stops.

1 Mesh processMesh(aiMesh *mesh, const aiScene *scene)
2 {
3 // data
4 vector<Vertex> vertices;
5 vector<unsigned int> indices;
6 vector<Texture> textures;
7

8 //iterate vertices
9 for (unsigned int i = 0; i < mesh->mNumVertices; i++)

10 {
11 Vertex vertex;
12 glm::vec3 vector;
13 // positions
14 vector.x = mesh->mVertices[i].x;
15 vector.y = mesh->mVertices[i].y;
16 vector.z = mesh->mVertices[i].z;
17 vertex.Position = vector;
18 // normals
19 if (mesh->HasNormals())
20 {
21 vector.x = mesh->mNormals[i].x;
22 vector.y = mesh->mNormals[i].y;
23 vector.z = mesh->mNormals[i].z;
24 vertex.Normal = vector;
25 }
26 // texture coordinates
27 if (mesh->mTextureCoords[0])
28 {
29 glm::vec2 vec;
30 //store textureData
31 vec.x = mesh->mTextureCoords[0][i].x;
32 vec.y = mesh->mTextureCoords[0][i].y;

Chapter 6: Process & Implementation 67

33 vertex.TexCoords = vec;
34 }
35 else
36 vertex.TexCoords = glm::vec2(0.0f, 0.0f);
37

38 vertices.push_back(vertex);
39 }
40 // check faces
41 for (unsigned int i = 0; i < mesh->mNumFaces; i++)
42 {
43 aiFace face = mesh->mFaces[i];
44 for (unsigned int j = 0; j < face.mNumIndices; j++)
45 indices.push_back(face.mIndices[j]);
46 }
47

48 aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
49

50 // diffuse
51 vector<Texture> diffuseMaps = loadMaterialTextures(material,

aiTextureType_DIFFUSE, "texture_diffuse");
52 textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
53 // specular
54 vector<Texture> specularMaps = loadMaterialTextures(material,

aiTextureType_SPECULAR, "texture_specular");
55 textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
56

57

58 // return a mesh object
59 return Mesh(vertices, indices, textures);
60 }

Since we have extracted the meshes it is time to process them. The function starts
with iterating through the vertex and storing the position data. It then checks
the normal data for each vertex, a normal decides which way a vertex is facing.
Knowing which side of a face is up or down is essential when layering textures.
Next it checks for texture data and stores all the data in the vertices vector. After
the vertex data is stored, we retrieve all the faces and store their index values in
our indices vector. The next step is querying for material data, as each mesh only
uses a single material. We can get this material data with mMaterialIndex. Finally
we look for textures, here we look for a specific naming convention, which is not
the most reliable. We store our textures as different types, in this case diffuse and
specular textures. The only thing left is to return a Mesh object, passing it the
vertices, indices and textures we recovered.

68 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

1 vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type,
string typeName)

2 {
3 vector<Texture> textures;
4 for (unsigned int i = 0; i < mat->GetTextureCount(type); i++)
5 {
6 aiString str;
7 mat->GetTexture(type, i, &str);
8 // check if texture is loaded
9 bool skip = false;

10 for (unsigned int j = 0; j < textures_loaded.size(); j++)
11 {
12 if (std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0)
13 {
14 textures.push_back(textures_loaded[j]);
15 skip = true;
16 break;
17 }
18 }
19 if (!skip)
20 {
21 Texture texture;
22 texture.id = TextureFromFile(str.C_Str(), this->directory);
23 texture.type = typeName;
24 texture.path = str.C_Str();
25 textures.push_back(texture);
26 textures_loaded.push_back(texture);
27 }
28 }
29 return textures;
30 }

Code listing 6.42: Loading textures from materials

The loadMaterialTextures function loads material textures that are not already
loaded. Queries the material data for the texture type, checks if it already is loaded
in our texture vector, if not it calls the TextureFromFile function. This function loads
the texture and returns us its id, we set its type and path before we add it to our
texture vector. Finally we add it to textures_loaded so it doesnt try to load the
same texture twice. The function returns the new textures vector.

Chapter 6: Process & Implementation 69

1 unsigned int TextureFromFile(const char *path, const string &directory,
bool gamma)

2 {
3 string filename = string(path);
4 filename = directory + ’/’ + filename;
5

6 unsigned int textureID;
7 glGenTextures(1, &textureID);
8

9 int width, height, nrComponents;
10 unsigned char *data = stbi_load(filename.c_str(), &width, &height, &nrComponents,

0);
11 if (data)
12 {
13 GLenum format;
14 if (nrComponents == 1)
15 format = GL_RED;
16 else if (nrComponents == 3)
17 format = GL_RGB;
18 else if (nrComponents == 4)
19 format = GL_RGBA;
20

21 glBindTexture(GL_TEXTURE_2D, textureID);;
22

23 stbi_image_free(data);
24 }
25 else
26 {
27 std::cout << "Texture failed to load at path: " << path << std::endl;
28 stbi_image_free(data);
29 }
30

31 return textureID;
32 }

Finally we have the TextureFromFile function, this function reads a texture file
and returns a texture. It takes the textures path and directory as its arguments, and
stores these as a string. The function uses stbil oad toload the f iledata, i tneedsthepathtoour tex ture, awid th, heighandhowmanycolorchannelswewant.Thetex tureimageisthenst retched tomatchthoseparameters.Thetex turesaregivendi f f erentcoloroutputsdependingonthespeci f iedcolorchannels.Thenit bindsthetex turetoa2Dtex ture.The f unct ioncal lsst bi_image_ f reetoclearal locatedresources.
NowourModelclassisread y f ordut y, allweneed todoisadaptourdrawing toworkwithournewclass.

1 //outside render loop
2 Model newModel("Models/backpack.obj");
3 //Render loop
4 newModel.Draw(newShader);

We create a new model object, and give it a path to a file we know is compatible.
In theory this should work, but there are issues with the Assimp dynamic link
library. We have tried to link it both with manual CMake input, and more recently
rebuilt our codebase in Visual Studio 16 by using the CMake GUI and integrated
linking systems. This seems to work for all but assimp.dll, and we have not solved
this problem yet.
This is, however, not the same error message as we got when we tried building

70 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Figure 6.19: Visual Studio error

with precompiled binaries in CLion. So this might just be a local compilation issue
that is easily fixed.

The EDMsdk example we retrieved currently generates a database with the
AP209 schema, with additional validation checks, such as; if a database does not
exist, create a database. The example also generates a model and a data repository,
which is given the same validation check as the database.

The example we received was developed in Visual Studio, while our applica-
tion was made in CLion, which made the configuration between the two applica-
tions more difficult than needed. We started of by opening the STEP example we
received in CLion, which resulted in multiple errors.

After being unsuccessful with CLion, we decided to use the software that was
originally used for developing the example, Visual Studio. Here we managed to
run the program after doing some minor adjustments regarding the libraries, since
libraries within Visual Studio is imported differently.

Figure 6.20: Output from the EDMsdk program

The last thing we did was look into the file structure of the CT-scanned parts we
were supposed to convert. We found that the original scanned files were 20-30%
larger then the .raw files we were working with. They are stored as voxel elements
with accompanied density values ranging from 0.0->22000. These density values
represent relative density, with 0 being the lowest density in the sensors field of
view and 22000 being the maximum.

The difference in size is most likely due to clipping of the model area, to re-
move voxels with close to zero in density values. The scale of the matrixes was
also much smaller as the original was 1807x1858x2051 voxels and the .raw file
1104x1031x1414 with a voxel size of 0.00278mm*3. The data was structured
by their density values, as an array of 2bit unsigned integers. We had planned to
create a voxel class to read this format, but do to our problems with the original

Chapter 6: Process & Implementation 71

Figure 6.21: Voxel scan data

viewer this was not done in time.

6.2.8 Sprint 8

Figure 6.22: Kanban board from the start of sprint 8

In the final sprint, all implementation and developing was temporarily stopped,
we had to focus on writing the final report. This was due to the short time we had
left before the deadline. We discussed with Jotne and explained that we had to
prioritize the report for now, and agreed that we would continue development

72 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

after the project deadline.

Intermission 8: The result of sprint 8 is the finished report.

Chapter 7

Results

In this section we will cover the final results of the project. Throughout this period
we have been working on solutions regarding the model viewer, STEP-converter
and the GUI.

7.1 Class Structure

The code structure contains six different classes where each one of them serve a
unique purpose. These classes work as intended, however issues caused by model
path definitions keeps the project from compiling properly. The project consists
of struct variables that only takes textured mesh models as input, with camera
functionality that allows the model to be inspected visually from all angles. An
abstract model class takes different model types as input and feeds it to the ren-
derer. Initially, the plan was to take mesh and voxel models as input, but due to
time constraints caused by compilation issues, we had to focus on only imple-
menting the mesh clash, followed by a definition of what the voxel class should
look like.

The mesh class handles mesh structure(s), which enables import and viewing
of mesh based models. Visual texture and color data is layered directly on the
model inside the render loop. We accomplished this by implementing the shader
class, supported by a fragment and vertex shader. The vertex shader takes pre-
defined color layouts and texture maps, and outputs a 2D vector to the fragment
shader. Then, the fragment shader interprets this information and converts it to a
4D vector based on several preset variables. The output from the fragment shader
tells the shader class what to overlay on triangular faces by utilizing the GPU.
Since the model class divides all non-triangular faces into triangles, this works
perfectly.

73

74 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

7.2 EDMsdk

We were provided a software development kit by Jotne, called EDMsdk. The
EDMsdk is capable of writing STEP files based on different predefined inputs util-
izing the AP209 schema. Although it works on predefined, locally created and
simplified models, it requires a deepened and generalized voxel class to function
properly for more complex models. Since we have not implemented such a class,
it currently does not work as intended.

7.3 GUI

The GUI is functioning in Qt’s own IDE, Qt Creator, but was never implemented
in the main project due to difficulties getting it to work with CLion. The current
GUI has the most essential functionalities, such as import and export button. It
also has a graphics viewer to display the imported 3D model.

Figure 7.1: Screenshot of the current GUI

The last part consists of integrating the CLion project with both the EDMsdk
and the Qt GUI. We did not manage to integrate the EDMsdk with the CLion pro-
ject do to library linking errors and configuration issues. Therefore we ported the
project to Visual Studio 2017 were the EDMsdk worked properly. Since time was

Chapter 7: Results 75

taken from GUI development to prioritize getting the CLion project to compile,
GUI is neither completed nor integrated.

The EDMsdk-example that we process as of now is running and working, but
as mentioned above we are still missing a deepened and generalized voxel class
for further implementation, such as model properties, values and materials that
naturally contains within a CT scanned object. We chose Visual Studio to develop
in, since this is the software where EDMsdk was originally developed; this is to
prevent any further integration errors than necessary.

As of now, the EDMsdk example can create an EDM database, generate an
EDM model, establish nodes, create model elements and write out a model in
STEP format.

Chapter 8

Discussion

8.1 Development Method & Process

This section will go through the different choices taken throughout the develop-
ment process and reflect upon the results.

At the beginning of the project, we had to choose a development strategy that
would be used throughout the development process. We went for a combination of
two agile development methodologies, primarily due to our initially vague defined
problem statement, which resulted in multiple alterations within the original plan.
A combination of both kanban and Scrum seemed like a good starting point. These
options complement each other as kanban boards are an excellent solution for
getting an overview of the tasks we are currently working in; while the sprints
were used as a more detailed description of what had to be done, followed by
an intermission with in-depth explanation, where figures and code listings are
included.

Using these development strategies did not work as planned throughout the
development phase. We set specific deadlines for milestones that we expected to
complete without always being able to, as in figure 6.5, where the task involved
completing the chapters 4-7 in "learnopenGL"; but as you can see in the kanban
board from sprint 5, figure 6.8, we only managed to complete 1 chapter through-
out that sprint. This was due to difficulties we encountered within the configura-
tion , causing our external libraries to malfunction. We mostly used pre-compiled
binaries, while in the future, we would compile the libraries ourselves, ensuring
that the libraries are compatible with our system.

During the times we encountered technical issues, we should have asked for
assistance more often instead of wasting valuable time on minor issues. We tried
reaching out to the supervisor and the employees whom we had close contact
with, but they had limited knowledge within the field. If we had we been more
proactive, we would be able to avoid time delays that were caused by linking and
configuration errors.

77

78 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Figuring out the most suitable development tool was difficult; since we had
no prior experience working with 3D models, it was challenging to find the right
software with the necessary tools. We decided on using CLion simply because we
had experience with other JetBrains products. Our supervisor thought it made
sense to write our program around the OpenGL API. We took his advice after not
coming up with any better options. We had no prior experience using OpenGL,
but since it was a C++ based API we had to first spend time learning C++ syntax.
Another point to mention is that OpenGL had extensive documentation regarding
the different functions available in the application, which made the learning curve
manageable at the beginning.

Later in the project development, we started using more advanced functional-
ity within OpenGL, which again required more libraries to make use of the modern
functions that were related to 3D modeling. This is where the efficiency started
to decline since we had to manually import all the libraries through CMake. This
is a toolkit within CLion, where none of us had any experience.

When the OpenGL application was functional, we could finally point our atten-
tion towards implementing the application with the EDMsdk example that Remi
Lanza provided. The only concern we had at this point was the deadline of the
project since we received the EDMsdk example 22nd of April, which was already
late in the project phase.

After looking into the EDMsdkexample, we felt overwhelmed, since we had no
idea how to integrate this with the application made in OpenGL. First of all, the
application was developed in Visual Studio, which is a different IDE than the one
we are currently using. Still, we wanted to integrate the EDMsdk example with
CLion. After struggling with the integration for several days, we tried migrating
the code within Visual Studio instead. This was initially a safer approach since
the EDMsdk-example was more complex than the application we had made, so
running it within the IDE it was originally made in was a better option.

8.2 Future Development

In this section, we will discuss the possibilities for future development.

At the moment, we have not developed a complete product ready for use. We
have three separate applications that have not been integrated yet, and that are
still missing some adjustments within the code. As of now, we only have a OpenGL
viewer application that can take mesh-based models as input, but initially, we
would like the application to take voxel models as input. The same goes for the
STEP-converter that we have received; this application only handles mesh as well.
We have discussed and come to an agreement with Jotne that we will keep on
developing after the deadline to complete the software. Jotne has access to all of
the code in the GitLab repository, which gives them the opportunity to review the

Chapter 8: Discussion 79

code and give some feedback regarding further development. Jotne understood
that we had to prioritize the report and were supportive; they were also glad to
hear that we were going to continue developing after the deadline.

8.3 Workflow

This section entails how the group has functioned together as a unit and how we
combined work outside of studies and other subjects that we had this semester.

In general, the process has gone in waves. There are some weeks when the
development comes to a halt. This is partly because two group members had to
work outside of their studies. They had a plan to work more at the start of the
semester to work less later. The same members also had a subject where the exam
in one of the subjects dated early, while the other dated later in the semester. This
resulted in us working in a pair of two throughout a couple of weeks. Also, The
development got affected by the Covid-19 breakout within the group, which set
another dampener on the development for another three weeks in total. After the
covid breakout, two of the members struggled to recover entirely and kept getting
ill throughout the project. The project suffered too much from these events since
we did not achieve the number of hours we sought to reach with all three present.

Risk analysis defined in section 5.3 in the project plan (appendix C) shows
that we had foreseen this event.

8.4 Project Goals

In this section, we will discuss the goals we set at the start of the project, how it
turned out and how it could have been done differently.

Initially, the plan was to develop a model viewer to render mesh and voxel
data. Additionally, we needed an algorithm to manipulate this data, so it complied
with the ISO 10303 standards. We were supposed to develop the STEP-converter
from scratch, implementing struct variables that would suit the properties of the
models. After researching this approach, we figured that creating a model viewer
for mesh and voxel models was too comprehensive. We approached Jotne and
talked with them, explaining the situation, and came up with a new approach.

This approach entailed developing a STEP-converter for the mesh model, ex-
cluding the voxel model from the equation. We rapidly began researching and
figured that there are already available solutions online, such as the "freeCAD
converter." We received this information from the lead developer on the Assimp
library, who had substantial experience within this field; he also mentioned that
"step is a massive format beast." We relayed this piece of information to our em-
ployer, explaining the situation, and agreed to change the project’s direction again.

80 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

In this new approach, we were expected to first develop a viewer for voxel
models, which would display relevant information, such as material properties
and metadata. This would be accompanied by a STEP-converter that would be
implemented later in the development phase. The voxel viewer proved to be more
difficult than anticipated. A considerable amount of time went into creating just
a basic model viewer with the necessary struct variables that supports the voxel
format. This was due to configuration errors within CMake, where we could not ef-
ficiently import libraries. After struggling with this side of the task, we also figured
that creating a STEP-converter from scratch was unrealistic since we would have
to go through a huge amount of information. The standard itself had a guidebook
that contained complex information that we were unable to integrate into our
project. This was a stressful moment since we realized we would not complete
the product in time for the deadline. This resulted in a discussion with our super-
visor where we explained the current situation.

After discussing the situation with our supervisor, he came up with two po-
tential solutions. In the first option, he suggested that we write an assessment
report, which basically means explaining multiple approaches we took within a
problem area, describing what worked and what did not. We were skeptical of this
approach since it would be a total do-over when it was initially supposed to be a
development report, but we still considered it. The other option included imple-
menting only the crucial parts of ISO 10303; this would narrow down the amount
of information we would have to go through, so we were more optimistic about
this approach. After some discussion within the group, we contacted Jotne and
shared the options which our supervisor had suggested. They were supportive of
both options but said that they would prefer the option where we implemented a
small portion of the ISO 10303.

Further on in the meeting, they told us that we could use a portion of the
EDMsdk system they are using. We were told that one of the employees at Jotne
would develop an example that would work as a STEP-converter. This made the
development of the STEP-converter a lot more manageable since now we would
not have to create the STEP-converter from scratch, which felt like an impossible
task. After this turn of events, we had a clear problem area that we had discussed
thoroughly and were satisfied with.

8.5 Learning Goals

This section will cover everything according to the project plan about what we
expected to learn and what we actually learned.

Prior to the start of the development phase, we made a list of several skill
sets that we wanted to develop. The first goal stated the ability to execute a long-
term project, which we feel that we have accomplished. Even though we were
not able to develop a complete product, we still followed the process throughout

Chapter 8: Discussion 81

the whole project period. This includes everything from weekly status meetings,
using development methodologies, making a project plan, project management
and logging time.

The second goal in the project plan states that we should expect to acquire
knowledge about CT scan data and how to use it correctly. This is something we
accomplished partially. We managed to interpret the data correctly and figure out
how it was structured, but we did not have time to implement the voxel class to
utilize it.

The third section in the project plan points out the ability to gain further know-
ledge of different approaches and techniques we can use to implement into our
project. At the start of the development phase, we made sure to do a lot of research
ahead of the actual development stage. This was to ensure that we approached
the task with the right set of tools, avoiding any unnecessary headaches.

The fourth section suggests getting insight into how the client operates inside
their own work environment and how they work together. This section was not
correlated with the work in the project, but this was a way to gain more knowledge
regarding how they operate within their workstation and how they execute long-
term projects. This proved to be very educational. Learning goals are located in
the project plan (Appendix C), section 1.4.

Throughout this project, we have acquired a good amount of exposure within
multiple topics and fields. Some of these topics include 3D modeling, whereas we
researched voxel models, mesh models, and how they are structured and built.
In conjunction with 3D-modelling, CT scanning was also a field that we gained
extensive knowledge within; We had to figure out how the CT scanner works and
how it interprets the output that we received from the scanned objects. All this was
important for further development, making sure that we had extensive knowledge
about each topic that we were expected to start developing within.

Further on, we learned about software configuration and file structuring. Be-
fore we could fully start developing the software, we had to learn about the pro-
cess behind importing libraries and structuring folders. This was done in order
to operate with CMake more efficiently. After this section, we were closing in on
the development stage of the product, where we had to acquire some experience
with C++ beforehand since this was a language we were not that familiar with.
This was accomplished by going through basic tutorials and getting used to the
different syntax.

After this step, we started with graphical coding, using OpenGL inside CLion.
Here we learned quite a lot about the functionality that OpenGL had to offer,
and how 2D and 3D models are made inside the application. After doing research
regarding OpenGL and getting used to the software, we had to submerge ourselves
into the STEP-example that we received from Jotne. In the example, we learned
a lot about AP209 and the EDMsdk system that Jotne currently works within.

82 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

8.6 Conclusion

Looking back at the project, we definitely could have done things differently. We
have followed a methodical process with the use of kanban and Scrum, which has
been educational, but we were unable to complete tasks within the timeframes
we had initially set, which in the end resulted with an incomplete software. The
cooperation and communication within the group has been good, even though we
had certain incidents that affected the result of the project. This was unfortunate,
however we are glad that we were able to come up with a result that we were
satisfied with.

Bibliography

[1] Wikipedia. ‘Open asset import library.’ (), [Online]. Available: https://en.
wikipedia.org/wiki/Open_Asset_Import_Library. (accessed: 25.03.2022).

[2] Wikipedia. ‘C (programming language).’ (), [Online]. Available: https:
/ / en . wikipedia . org / wiki / C _ (programming _ language). (accessed:
17.05.2022).

[3] Clockify. ‘Clockify website.’ (), [Online]. Available: https://clockify.
me/. (accessed: 16.05.2022).

[4] Wikipedia. ‘Cmake.’ (), [Online]. Available: https://en.wikipedia.org/
wiki/CMake. (accessed: 9.05.2022).

[5] Wikipedia. ‘International organization for standardization.’ (), [Online].
Available: https://en.wikipedia.org/wiki/International_Organization_
for_Standardization. (accessed: 04.05.2022).

[6] Wikipedia. ‘Industrial computed tomography.’ (), [Online]. Available: https:
//en.wikipedia.org/wiki/Industrial_computed_tomography. (ac-
cessed: 01.02.2022).

[7] Wikipedia. ‘Voxel.’ (), [Online]. Available: https://en.wikipedia.org/
wiki/Voxel. (accessed: 01.02.2022).

[8] Wikipedia. ‘Polygon mesh.’ (), [Online]. Available: https://en.wikipedia.
org/wiki/Polygon_mesh. (accessed: 01.02.2022).

[9] Wikipedia. ‘Iso 10303.’ (), [Online]. Available: https://en.wikipedia.
org/wiki/ISO_10303. (accessed: 01.02.2022).

[10] Wikipedia. ‘Iso 10303.’ (), [Online]. Available: https://www.adobe.com/
creativecloud/file-types/image/vector/step-file.html. (accessed:
01.02.2022).

[11] R. Lanza, private communication, 18 May 2022.

[12] Wikipedia. ‘Opengl.’ (), [Online]. Available: https://en.wikipedia.org/
wiki/OpenGL. (accessed: 10.02.2022).

[13] J. d. Vries. ‘Coordinate systems.’ (), [Online]. Available: https://learnopengl.
com/Getting-started/Coordinate-Systems. (accessed: 10.05.2022).

[14] O. Velarde. ‘What is a wireframe?’ (), [Online]. Available: https://visme.
co/blog/what-is-a-wireframe/. (accessed: 18.05.2022).

83

https://en.wikipedia.org/wiki/Open_Asset_Import_Library
https://en.wikipedia.org/wiki/Open_Asset_Import_Library
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://clockify.me/
https://clockify.me/
https://en.wikipedia.org/wiki/CMake
https://en.wikipedia.org/wiki/CMake
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/Industrial_computed_tomography
https://en.wikipedia.org/wiki/Industrial_computed_tomography
https://en.wikipedia.org/wiki/Voxel
https://en.wikipedia.org/wiki/Voxel
https://en.wikipedia.org/wiki/Polygon_mesh
https://en.wikipedia.org/wiki/Polygon_mesh
https://en.wikipedia.org/wiki/ISO_10303
https://en.wikipedia.org/wiki/ISO_10303
https://www.adobe.com/creativecloud/file-types/image/vector/step-file.html
https://www.adobe.com/creativecloud/file-types/image/vector/step-file.html
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/OpenGL
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems
https://visme.co/blog/what-is-a-wireframe/
https://visme.co/blog/what-is-a-wireframe/

84 Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

[15] S. Wolhute. ‘Wireframing 101: The whats, the types, and the tools.’ (),
[Online]. Available: https://wearebrain.com/blog/customer-ux-ui/
wireframing-101-the-whats-the-types-and-the-tools/. (accessed:
18.05.2022).

[16] M. Rehkopf. ‘What are sprints?’ (), [Online]. Available: https://www.
atlassian.com/agile/scrum/sprints. (accessed: 27.04.2022).

[17] Kanbantool.com. ‘Kanbantool.com homepage.’ (), [Online]. Available: https:
//kanbantool.com/. (accessed: 15.05.2022).

[18] J. d. Vries. ‘Learn opengl.’ (), [Online]. Available: learnopengl.com. (ac-
cessed: 05.02.2022).

[19] T. Root. ‘The 7 best c++ frameworks for creating graphical interfaces.’ (),
[Online]. Available: https://terminalroot.com/the- 7- best- cpp-
frameworks-for-creating-graphical-interfaces/. (accessed: 26.03.2022).

https://wearebrain.com/blog/customer-ux-ui/wireframing-101-the-whats-the-types-and-the-tools/
https://wearebrain.com/blog/customer-ux-ui/wireframing-101-the-whats-the-types-and-the-tools/
https://www.atlassian.com/agile/scrum/sprints
https://www.atlassian.com/agile/scrum/sprints
https://kanbantool.com/
https://kanbantool.com/
learnopengl.com
https://terminalroot.com/the-7-best-cpp-frameworks-for-creating-graphical-interfaces/
https://terminalroot.com/the-7-best-cpp-frameworks-for-creating-graphical-interfaces/

Appendix A

Project Description

The next pages contains the original project description from Jotne.

85

Case C: Kvalitetssikring av deler fremstilt med Additiv Tilvirkning ved hjelp av CT-scanning

NB: dette oppgaveforslaget er ikke knyttet til BIM.

I romfartsindustrien er additiv tilvirkning (3D-printing) en tilvirkningsprosess som blir mer og mer aktuell

etter hvert som teknologien modnes. I forbindelse med ESA-prosjektet METRIC, ser Jotne på muligheten

for å produsere en satellittdel i aluminium med denne teknologien. Hovedmålet i prosjektet er å bruke

State-of-the-Art teknologi for å redusere kostnader og øke kvalitet og kvalitetskontroll til MAIT-

prosessene; (M)anufacturing, (A)ssembly, (I)ntegration og (T)esting, for telecom satellitter. I den

forbindelse er det ønskelig å gjennomføre en CT-scan av komponenten for å kvalitetssikre intern struktur

og måle kritisk geometri. Målet med dette er å validere parametere for tilvirkningsprosessen og å

dokumentere at det endelige produktet tilfredsstiller sine mekaniske og strålings krav.

Det er ønskelig å se på hvordan dataen fra skanningen behandles og hvordan den kan brukes i en digital

tvilling av komponenten; en digital representasjon i sanntid av den fysiske komponenten. Digitale

tvillinger er et fokusområde for Jotne og en sentral del av METRIC-prosjektet. Et viktig moment ved den

digitale tvillingen er at den er basert på den åpne standarden ISO 10303 (STEP), som er essensiell i det

meste av arbeid Jotne gjør.

Oppgaven vil først og fremst dreie seg om databehandling fra CT-skanning og hvordan dette kan

konverteres til nyttig data for den digitale tvillingen. Data fra skanningen blir lagret i et RAW-format, og

det er ønskelig at dette formatet undersøkes og beskrives for å danne grunnlaget for utviklingen i

oppgaven og å få data lagret i en ISO 10303 database I utgangspunktet skal alle utviklede algoritmer

behandle data fra RAW filene. Den nåværende arbeidsflyten ved laboratoriet hos NTNU Gjøvik nytter seg

av programvaren VG Studio MAX, og det er derfor også ønskelig å kartlegge egenskapene ved de

prosesserte formatene som kan eksporteres derifra.

• RAW filene inneholder CT-skanningens målinger som er materialets tetthet

• VG Studio MAX eksporterer diverse filer hvor RAW filene har blitt behandlet

Utviklingsdelen av oppgaven kan deles opp i følgende hovedpunkter:

• Utvikling av en algoritme som fra RAW data kan produsere et 3D mesh av skallelementer som

representerer objektets ytre flater

o Det er ønskelig at denne modulen også kan håndtere punktskyer

• Utvikling av en algoritme som fra RAW data produserer et 2D mesh (eventuelt bilde) for indre

«lag» i modellen der element er assosiert med tetthetsverdiene fra RAW data.

• Utvikling av en komprimeringsalgoritme som komprimerer en voxel modell til et 3D mesh av

volumelementer

o Komprimering vil hovedsakelig være ved å variere oppløsning basert på materialtetthet

og detaljer i den scannede delen

Det er ønskelig at algoritmene blir utviklet i C++, og helst som et sett av moduler (libraries) med

individuelle omfang; f.eks. data lesing, data prosessering, data skriving. Dette vil muligjøre oversettelse til

STEP på et senere tidspunkt (enten som en utvidelse av oppgaven, eller av Jotne)

Jotne vil bidra med:

• RAW data fra CT-scan samt prosesserte formater

• Jevnlig oppfølging av prosjektet

o Det er ønskelig med en jevn møtefrekvens, f.eks annenhver uke. Detaljer rundt dette

avtales i prosjektets oppstartsfase.

Oppgaver:

• Undersøke og beskrive RAW og prosesserte formater fra CT-maskinen (Zeiss Metrotom 1500)

• Konvertering fra RAW data til følgende:

o 3D skallelement mesh av ytre flater

o 2D skallelement mesh (eventuelt bilder) av indre lag

o 3D volumeelement mesh av volumet

▪ Utvikling av en komprimeringsalgoritme for dette meshet

Eksempel på del(er) som er ønskelig å karakterisere ved hjelp av CT-scanning

Appendix B

Project Agreement

The next pages contains the project agreement.

89

Norges teknisk-naturvitenskapelige universitet

Fastsatt av prorektor for utdanning 10.12.2020

STANDARDAVTALE

om utføring av studentoppgave i samarbeid med ekstern virksomhet

Avtalen er ufravikelig for studentoppgaver (heretter oppgave) ved NTNU som utføres i
samarbeid med ekstern virksomhet.

Forklaring av begrep

Opphavsrett
Er den rett som den som skaper et åndsverk har til å fremstille eksemplar av åndsverket og
gjøre det tilgjengelig for allmennheten. Et åndsverk kan være et litterært, vitenskapelig eller
kunstnerisk verk. En studentoppgave vil være et åndsverk.

Eiendomsrett til resultater
Betyr at den som eier resultatene bestemmer over disse. Utgangspunktet er at studenten
eier resultatene fra sitt studentarbeid. Studenten kan også overføre eiendomsretten til den
eksterne virksomheten.

Bruksrett til resultater
Den som eier resultatene kan gi andre en rett til å bruke resultatene, f.eks. at studenten gir
NTNU og den eksterne virksomheten rett til å bruke resultatene fra studentoppgaven i deres
virksomhet.

Prosjektbakgrunn
Det partene i avtalen har med seg inn i prosjektet, dvs. som vedkommende eier eller har
rettigheter til fra før og som brukes i det videre arbeidet med studentoppgaven. Dette kan
også være materiale som tredjepersoner (som ikke er part i avtalen) har rettigheter til.

Utsatt offentliggjøring
Betyr at oppgaven ikke blir tilgjengelig for allmennheten før etter en viss tid, f.eks. før etter
tre år. Da vil det kun være veileder ved NTNU, sensorene og den eksterne virksomheten som
har tilgang til studentarbeidet de tre første årene etter at studentarbeidet er innlevert.

1 NTNU 10.12.2020

1. Avtaleparter

Norges teknisk-naturvitenskapelige universitet (NTNU)
Institutt:

Veileder ved NTNU: Ivar Farup
e-post og tlf.: ivar.farup@ntnu.no | 61135227 | 91695718
Ekstern virksomhet: Jotne IT
Ekstern virksomhet sine kontaktpersoner: Henrik Galtung, Tord Kaasa
e-post og tlf.: henrik.galtung@jotne.com, 90852108 | tord.kaasa@jotne.com, 90365197
Student: Sander Island
Fødselsdato: 1. juli 1997

Student: Eirik Gjertsen Norbye
Fødselsdato: 13. oktober 1997

Student: Jens Fossan Tingstad
Fødselsdato: 22. august 1993

Partene har ansvar for å klarere eventuelle immaterielle rettigheter som studenten, NTNU,
den eksterne eller tredjeperson (som ikke er part i avtalen) har til prosjektbakgrunn før bruk
i forbindelse med utførelse av oppgaven. Eierskap til prosjektbakgrunn skal fremgå av eget
vedlegg til avtalen der dette kan ha betydning for utførelse av oppgaven.

2. Utførelse av oppgave
Studenten skal utføre: (sett kryss)

Masteroppgave

Bacheloroppgave X

Prosjektoppgave

Annen oppgave

Startdato: 10. januar 2022

Sluttdato: 20. mai 2022

Oppgavens arbeidstittel er:
CT Scanning as a Tool in Additive Manufacturing

Ansvarlig veileder ved NTNU har det overordnede faglige ansvaret for utforming og
godkjenning av prosjektbeskrivelse og studentens læring.

2 NTNU 10.12.2020

3. Ekstern virksomhet sine plikter
Ekstern virksomhet skal stille med en kontaktperson som har nødvendig faglig kompetanse
til å gi studenten tilstrekkelig veiledning i samarbeid med veileder ved NTNU. Ekstern
kontaktperson fremgår i punkt 1.

Formålet med oppgaven er studentarbeid. Oppgaven utføres som ledd i studiet. Studenten
skal ikke motta lønn eller lignende godtgjørelse fra den eksterne for studentarbeidet.
Utgifter knyttet til gjennomføring av oppgaven skal dekkes av den eksterne. Aktuelle
utgifter kan for eksempel være reiser, materialer for bygging av prototyp, innkjøp av prøver,
tester på lab, kjemikalier. Studenten skal klarere dekning av utgifter med ekstern virksomhet
på forhånd.

Ekstern virksomhet skal dekke følgende utgifter til utførelse av oppgaven:
Reiser. Ca. 2500 kr
Potensiell CT scann av delen DGU. Ca. 2000kr dersom dette blir aktuelt.

Dekning av utgifter til annet enn det som er oppført her avgjøres av den eksterne underveis
i arbeidet.

4. Studentens rettigheter
Studenten har opphavsrett til oppgaven1. Alle resultater av oppgaven, skapt av studenten
alene gjennom arbeidet med oppgaven, eies av studenten med de begrensninger som følger
av punkt 5, 6 og 7 nedenfor. Eiendomsretten til resultatene overføres til ekstern virksomhet
hvis punkt 5 b er avkrysset eller for tilfelle som i punkt 6 (overføring ved patenterbare
oppfinnelser).

I henhold til lov om opphavsrett til åndsverk beholder alltid studenten de ideelle rettigheter
til eget åndsverk, dvs. retten til navngivelse og vern mot krenkende bruk.

Studenten har rett til å inngå egen avtale med NTNU om publisering av sin oppgave i NTNUs
institusjonelle arkiv på Internett (NTNU Open). Studenten har også rett til å publisere
oppgaven eller deler av den i andre sammenhenger dersom det ikke i denne avtalen er
avtalt begrensninger i adgangen til å publisere, jf. punkt 8.

5. Den eksterne virksomheten sine rettigheter
Der oppgaven bygger på, eller videreutvikler materiale og/eller metoder (prosjektbakgrunn)
som eies av den eksterne, eies prosjektbakgrunnen fortsatt av den eksterne. Hvis studenten
skal utnytte resultater som inkluderer den eksterne sin prosjektbakgrunn, forutsetter dette
at det er inngått egen avtale om dette mellom studenten og den eksterne virksomheten.

Alternativ a) (sett kryss) Hovedregel

1 Jf. Lov om opphavsrett til åndsverk mv. av 15.06.2018 § 1

3 NTNU 10.12.2020

Ekstern virksomhet skal ha bruksrett til resultatene av oppgaven

Dette innebærer at ekstern virksomhet skal ha rett til å benytte resultatene av oppgaven i
egen virksomhet. Retten er ikke-eksklusiv.

Alternativ b) (sett kryss) Unntak

X Ekstern virksomhet skal ha eiendomsretten til resultatene av oppgaven og
studentens bidrag i ekstern virksomhet sitt prosjekt

Begrunnelse for at ekstern virksomhet har behov for å få overført eiendomsrett til
resultatene:
Oppgave/prosjektbakgrunn inkluderer IPR som tilhører andre selskaper her under
Jotne, IDEAS, ESA, eventuelt andre. Software/kode, rapporter som studentene utvikler
følger alternativ a).
Jotnes IPR:
EDMopenSimDM, Simulation Data Management client/server application; Digital Twin
candidate
EDMtruePLM, Product Data Management client/server application
EDMsdk, Toolkit for developing EXPRESS-based applications and for browsing and
manipulating EXPRESS-based data
EDMinterface(C++/AP209), C++ API with AP209 specific convenience functions
EDMstepExplorer, Graphical browser of EXPRESS based data instances
EDMconverter (NASTRAN-to-AP209), Data translator of a subset of NASTRAN data types
to AP209
EDMconverter (AP209-to- NASTRAN), Data translator of a subset of NASTRAN data types
to AP209
EDMconverter (Abaqus-to-AP209), Data translator of a subset of Abaqus data types to
AP209
EDMconverter (AP209-to-ANSYS), Data translator of a subset of Ansys data types to
AP209
IDEAS IPR:
DGU, DHU og alle tilhørende maskintegninger, modeller og eventuell CT scann med
tilhørende filer.

6. Godtgjøring ved patenterbare oppfinnelser
Dersom studenten i forbindelse med utførelsen av oppgaven har nådd frem til en
patenterbar oppfinnelse, enten alene eller sammen med andre, kan den eksterne kreve
retten til oppfinnelsen overført til seg. Dette forutsetter at utnyttelsen av oppfinnelsen faller
inn under den eksterne sitt virksomhetsområde. I så fall har studenten krav på rimelig
godtgjøring. Godtgjøringen skal fastsettes i samsvar med arbeidstakeroppfinnelsesloven § 7.
Fristbestemmelsene i § 7 gis tilsvarende anvendelse.

4 NTNU 10.12.2020

7. NTNU sine rettigheter
De innleverte filer av oppgaven med vedlegg, som er nødvendig for sensur og arkivering ved
NTNU, tilhører NTNU. NTNU får en vederlagsfri bruksrett til resultatene av oppgaven,
inkludert vedlegg til denne, og kan benytte dette til undervisnings- og forskningsformål med
de eventuelle begrensninger som fremgår i punkt 8.

8. Utsatt offentliggjøring
Hovedregelen er at studentoppgaver skal være offentlige.

Sett kryss

X Oppgaven skal være offentlig

I særlige tilfeller kan partene bli enige om at hele eller deler av oppgaven skal være
undergitt utsatt offentliggjøring i maksimalt tre år. Hvis oppgaven unntas fra offentliggjøring,
vil den kun være tilgjengelig for student, ekstern virksomhet og veileder i denne perioden.
Sensurkomiteen vil ha tilgang til oppgaven i forbindelse med sensur. Student, veileder og
sensorer har taushetsplikt om innhold som er unntatt offentliggjøring.

Oppgaven skal være underlagt utsatt offentliggjøring i (sett kryss hvis dette er aktuelt):

Sett kryss Sett dato

 ett år

 to år

 tre år

Behovet for utsatt offentliggjøring er begrunnet ut fra følgende:

Dersom partene, etter at oppgaven er ferdig, blir enig om at det ikke er behov for utsatt
offentliggjøring, kan dette endres. I så fall skal dette avtales skriftlig.

Vedlegg til oppgaven kan unntas ut over tre år etter forespørsel fra ekstern virksomhet.
NTNU (ved instituttet) og student skal godta dette hvis den eksterne har saklig grunn for å
be om at et eller flere vedlegg unntas. Ekstern virksomhet må sende forespørsel før
oppgaven leveres.

De delene av oppgaven som ikke er undergitt utsatt offentliggjøring, kan publiseres i NTNUs
institusjonelle arkiv, jf. punkt 4, siste avsnitt. Selv om oppgaven er undergitt utsatt
offentliggjøring, skal ekstern virksomhet legge til rette for at studenten kan benytte hele

5 NTNU 10.12.2020

17.02.2022

Appendix C

Project Plan

The next pages contains the project plan.

97

CT SCANNING AS A TOOL FOR

QUALITY ASSURANCE IN ADDITIVE

MANUFACTURING
Project Plan

Bachelor project NTNU 2022

Jens Fossan Tingstad
Eirik Gjertsen Norbye
Sander Island

1

Table of Contents

1 GOALS AND FRAMEWORK ... 2

1.1 Background ... 2

1.2 Project goals .. 2

1.3 Effect goal for client .. 2

1.4 Learning goals ... 3

1.5. Project frame ... 3

2 SCOPE .. 3

2.1 Subject area .. 3

2.2 Problem area ... 3

2.3 Problem statement ... 4

3 ORGANIZATION .. 4

3.1 Responsibilities and roles .. 4

3.2 Employer ... 4

3.3 Supervisor ... 4

3.4 Routines and rules .. 4

4 PLANNING, FOLLOW-UP AND REPORTING .. 5

4.1. Software development strategy .. 5

4.2 Plan for status meetings and decisions ... 5

5 QUALITY ASSURANCE ... 5

5.1 Documentation, standards, configurations management, tools... ... 5

5.2 Plan for inspection and testing ... 6

5.3 Risk analysis .. 6

5.4 Risk management .. 8

5.4.1 Bad project management: ... 8

5.4.2 Missing access to critical resources: .. 8

5.4.3 Imprecise algorithms: .. 8

5.4.4 Failing to CT scan the physical part: ... 9

5.4.5 Health problems: ... 9

5.4.6 Covid restrictions: .. 9

6 IMPLEMENTATION PLAN .. 10

2

1 GOALS AND FRAMEWORK

1.1 Background
Jotne EPM Technology is a leader in the development of standard-based software products. They

specialize in product data exchange, product lifecycle management, long-term data and product, OAIS

archiving, data validation and verification, code checking, rule-based data modeling and cross-platform

data sharing within the structure of objects Jotne has produced.

In the aerospace industry, additive manufacturing (3D-printing) is increasingly relevant as technology

progresses. In collaboration with the European Space Agency (ESA)-project METRIC, Jotne is looking at

the opportunity of producing a satellite component of aluminum using additive manufacturing

technology. The main goal of this joint effort is to use state-of-the-art technology to reduce cost and

increase quality and quality assurance to the MAIT (Manufacturing, Assembly, Integration, Testing)-

processes for telecom satellites. It is desired to use CT-scans of the component to assure the required

quality, both internal structure and geometric dimensions. The point of this is to validate and document

that the final product satisfies within all parameters.

Jotne wants to see how the scan data is managed and how it can be used for a digital twin of the

component. A digital twin is a virtual representation that serves as a real-time digital counterpart of a

physical object, in simpler terms, the digital twin is a copy of an object from the real world to the virtual

world. Digital twins are a focus area for Jotne and a vital part of the METRIC project. An important

addition is that the digital twin is based on the open standard ISO 10303 (STEP), which is essential in

most of Jotne’s work.

1.2 Project goals
• The primary goal of the project is to process RAW data from a CT-scan of the 3D-printed part

and treat these datapoints using algorithmic methods to build a mesh based virtual model

matching the original.

• The secondary goal revolves around evaluating the internal structure of the part and making

sure the internal defects are within set parameters.

• Lastly, the results must be presented in a visual way, so that someone without an engineering

background can make sense of the results.

1.3 Effect goal for client
The client should expect a library of modules, which is able to produce a finished mesh model by

applying algorithmic solutions to a RAW data cloud. Optimally, additional functionality will be

implemented to allow analyzation of porosity. Jotne will be able to integrate these solutions in their

existing system, meaning the results can be used for quality inspection in the future.

3

1.4 Learning goals
• Learn how to structurally execute a long-term project.

• Learn about CT-scan data and how to read and use it properly.

• Get further knowledge of different approaches and techniques we can implement in our project.

• Get insight into how our client operates in their work environment and what work they do.

• Learn how to work with a scrum board, with weekly timeframes.

• Reviewing every two weeks, resetting and discussing what to do next.

1.5. Project frame
Time is of the essence, and development of this project must be completed between 10th of January

and the 1st of May. Primarily to give us time to spend on the report after the main development stage.

1. The code must be written in C++

2. The code must be structured into modules

3. No processing of the data should be needed before using our program

4. The solution should work on all CT-scanned parts

5. The solution must comply with ISO10303

2 SCOPE
We aim to deliver a set of software modules, structured in libraries. In the future, the scope may be

expanded to include a relevant and intuitive graphical user interface.

2.1 Subject area
The project will largely be within the fields of algorithmic thinking and computer vision. We classify our

problem area as the 3D-printing and CT-scanning space, since our solutions are thought to evaluate their

necessity in the aerospace industry in 2022.

We will not be creating a fully simulated digital twin, our focus is primarily on shape and internal

structure, not physical properties. This project is only meant to manipulate data, not to visualize it.

Therefore, third-party software can be used to visualize the final product.

2.2 Problem area
Our employer JOTNE wants to look at the relevance of 3D-printing in the aerospace industry. In doing so

they wish to use CT-scanning to analyze the quality of state-of-the-art printing technology. They have

tasked us with manipulating the RAW data from the scanning process and transform it into a virtual

model, which they can use to evaluate the part. For us this means building a mesh model replicating the

objects surface. Furthermore, our solution should present data on internal defects based on their size

and location.

4

2.3 Problem statement
We aim to create software which can manipulate RAW data from a CT-scanned part to build a mesh

model replicating the objects surface. Furthermore, our solution should present data on internal defects

based on their size and location.

3 ORGANIZATION

3.1 Responsibilities and roles
The bachelor group consists of:

Jens Tingstad: Project manager.

Sander Island: SCRUM master.

Eirik Norbye: Meeting management & project documentation.

3.2 Employer
Jotne EPM Technologies AS

• Location: Helsfyr, Norway.

• Represented by: Henrik Galtung, Tord Kaasa.

3.3 Supervisor
Ivar Farup, Professor

• Department of Computer Science.

• Faculty of Information Technology and Electrical Engineering.

3.4 Routines and rules
Desired routines:

o Meet up at school/online every weekday 8-9 AM and get at least 6 hours of work done. School

or online depending on what is most practical in case of pandemic restrictions or if someone is

unable to meet physically.

o Update the scrum board according to progress within the project.

o Update Clockify for tracking work time every day.

Rules:

o Meet up at scheduled time.

o Have an acceptable reason to not work in the scheduled sessions, such as other work, sickness…

5

If proper rules and/or routines are not followed, the group will meet to discuss solutions:

1. First offence will result in a warning during the subsequent meeting.

2. Recurring offences will result in a formal written warning, signed by the rest of the group.

3. If rules are broken regularly, steps will be taken to ensure the integrity of the project. The

supervisor will be involved in handling the situation, and in a worst-case scenario, the subject

may be removed from the group.

4 PLANNING, FOLLOW-UP AND REPORTING

4.1. Software development strategy
When researching different development strategies, we had a few demands. The first being it must be

an iterative process, meaning we can make changes and updates to the planned schedule as we go. This

is especially important when it comes to code heavy projects, since making changes in one section of

code might mean having to review other parts of the project. Secondly, we wanted a method that

embraced breaking down the project into smaller sizes to be individually reviewed. Since we are

planning to rely heavily on employer and supervisor input, we want smaller chunks of work, so it is easily

approved/rejected during discussions.

Based on this, we quickly decided agile development methodologies should be investigated. After

reviewing multiple different models, we decided on something that matched all our criteria, and

formalized the workflow we had already intended.

Since creating an efficient workflow is essential, we decided to use SCRUM, an agile development

strategy. We chose this strategy as it focuses on short sprint-based development cycles. Where we set

ourselves small goals with short and specific deadlines, spanning at most two weeks. After each sprint

we will review our work in collaboration with both our supervisor and employer. Here we will discuss

problems and produce viable solutions. The point of this is to keep the next goal as clear as possible, and

make sure it is within the realm of reason that the work will be completed in the given timeframe.

4.2 Plan for status meetings and decisions
Status meeting will be performed every other week to keep our employer up to date, besides that we

will also have weekly status reports with our supervisor to get feedback concerning changes we make

within our project.

5 QUALITY ASSURANCE

5.1 Documentation, standards, configurations management, tools...
As this project contains many different fields, we will be using a variety of software for different

applications:

- CLion and/or MATLAB

6

o Main coding hubs

- GitLab

o Communal code sharing and reviews, for collaboration with our client and supervisor.

- ISO 10303

o Standard for final deliverables, end product must adhere to its demands.

- Code documentation

o All methods and classes will have clear descriptions, both when it comes to

functionality, content and parameters.

As for project documentation we will make use of Stackfield, where we put all of the milestones we

need to reach within a certain deadline. Thus, giving us a solid overview of what is already in progress

and what’s done within our project. The initial milestones are as follows:

• Research – project planning.

• RAW data manipulation.

• Dividing point clouds into manageable chunks.

• Writing algorithms to construct surfaces.

• Building mesh model.

• Evaluate resulting mesh.

• Writing algorithms for internal structure.

• Analyzing internal structure.

• Report sprint.

5.2 Plan for inspection and testing
Inspection and testing will be conducted continuously during the development process, after and during

each sprint. We will primarily use GitLab as a resource for inspecting the code while it’s under progress

with our employer and supervisor. As for testing we will use the built-in debugger tool in CLion, which

we have some prior experience with. If this turns out to be troublesome, we will make use of Stack

Overflow, which isn’t exactly debugging, but more of a feedback/inspection forum where we can get

some input about certain changes/modifications that we need to make. Finally, we will also make use of

regression testing which entails doing continuous tests after changes that have been made in the code,

to make sure it compiles before pushing it into the main branch.

5.3 Risk analysis
In the risk chart below, the perceived potential risks are shown. Likelihood and impact score are on a 1-

10 scale, higher numbers translate to more severity.

Situation Impact Impact score Requirements Likelihood Risk (impact x

likelihood)

Health
problems

Could reduce
capacity to
meet
deadlines,

5 Bad luck 2 10

7

crippling
progress both
internally and
towards
employer/sup
ervisor

Missing access
to critical
resources

Has the
potential to
stop us from
testing and
improving our
algorithms, in
addition to
stopping us
from
visualizing our
solutions

6 Rejected access
to required
computational
environments,
or rooms fitted
with necessary
equipment

3 18

Covid
restrictions

Certain
restrictions
may interfere
with workflow
that impedes
progress

3 Severe covid
outbreak,
lockdowns,
campus closed

7 21

Failing to CT

scan the

physical part

Makes all the
algorithmic
work done
theoretical for
it’s practical
application
reducing the
impact of our
work

5 Failure by
employer to
deliver required
part, failure by
NTNU CT-lab to
allot time and
manpower
needed for
scanning

5 25

Bad project

management

Could disrupt
workflow
throughout
the project,
and greatly
reduce our
capacity to
meet our goals

7 Poor
communication,
insufficient
planning,
lacking
collaboration on
difficult
problems, no
backup

4 28

Imprecise

algorithms

Failing to
develop
sufficiently
sophisticated
algorithms

9 Lack of
cooperation,
research,
insufficient
coding abilities,

5 45

8

means the
final product
has the
potential to
fall short of
the tolerances
set for this
project, in this
case the final
product will
not be put to
use

poor
understanding
of datatypes,
difficulties in
adapting
existing libraries

5.4 Risk management
No project is without risk, so we must accept that there is a genuine possibility one or more of the

aforementioned risks could come to fruition. What matters is how we prepare to tackle these challenges

to mitigate risk.

5.4.1 Bad project management:
To combat this, we have set up several communication channels using different tools, we will use GitLab

for coding related work, “Stackboard" for our general project management, timelines and SCRUM

activities. In addition, we have scheduled weekly meetings with our supervisor every Wednesday, and

our employer every other Tuesday. This way we can keep everyone up to date and make sure we have

soft but important deadlines more frequently. Discord is also used as a low effort communication

platform internally, and Teams is used to communication between the group and our employer.

5.4.2 Missing access to critical resources:
Regarding resources there is a limit to what we can do, as this ultimately is out of our control. However,

what we do within this limit is important. Firstly, we will try to get access to the VR-lab on campus, this

lab contains two powerful computers capable of working with complex and large data files. If this fails,

we aim to get access to IDUN – a high performance cloud-based computing cluster, where we can run

computational tasks remotely. As a last resort, we will invest in hardware ourselves to make sure we are

able to reach our goals.

5.4.3 Imprecise algorithms:
This point relates to the first point about project management, as this can lead to severe crippling of the

algorithmic work. On its own, however, it is important to realize the difficulty of the subject. Writing

good code to manipulate complex data takes a lot of work, both in time and brainpower. Therefore, we

will be spending a lot of time initially to understand the data we are working with, research related

libraries, and refresh our knowledge of C++. If we get stuck at any point, it is important to take a step

back and discuss where the problems lie, if we can divide the problem into smaller chunks or take a

9

different approach. If this fails, we will discuss our approach with our supervisor, employer, and others.

It is of high importance to use all the resources available to us at this stage.

5.4.4 Failing to CT scan the physical part:
Clear communication with the staff at the CT-lab is vital in this case. Communication will happen

primarily by email, but there is a plan in motion to get a physical tour of the lab and a tutorial in their

workflow. By doing this we get more insight into the entire process, and it might provide relevant

information we can use at a later state in development. Should we for any reason be unable to contact

the staff by email, we will seek them out in their office to start communication. If our employers are

unable to provide the part we need within a reasonable time, we will work with the data we got and

make sure the code we run on that data is within the tolerances set by the project.

5.4.5 Health problems:
To avoid any illness, primarily covid related, we are following government guidelines to mitigate as

much risk as possible. We all live in communal houses, so there is a chance someone in the household is

not following these guidelines. In a worst-case scenario, we have all our project management systems

online, and therefore working from home in a digital environment is possible, but not ideal.

5.4.6 Covid restrictions:
New restrictions are following the infection trend, which is ever-changing. If new regulations demand

the closing of campus, we will need to push the deadlines of heavy computational work. By using the

SCRUM model, we should have many different tasks that require work at all points in time. Therefore, if

campus closes for a few weeks other parts of the project should be ahead of schedule.

10

6 IMPLEMENTATION PLAN
All work will be organized into small tasks on a Kanban/SCRUM board, with softer deadlines. Major

milestones are logged in a Gantt-chart, in which case the deadlines are firm.

Firstly, we will look at only the surfaces of the object, thus we will be neglecting the internal structure of

the material in the first phase of the project. We will break down the different phases of the problem in

the following way:

o Research data types and existing solutions

o Play around with the data, try manipulating it in simple ways

o Create a 2D sketch of the vertices in a given plane.

o Duplicate this sketch along a set number of planes.

o Create a 2D sketch of the vertices in a plane oriented perpendicularly to the original and

duplicate this along a set number of planes.

o Combine the sketches to create a 3D model.

o Convert the model to a mesh based one.

o Review the model.

o Look at internal defects of the aluminum alloy making up the part and set tolerances.

o Check that the internal structure is within set parameters

Appendix D

Meetings

D.1 Møtereferat 01.02.2022

Møte med Jotne.
Alle til stede.

De foreslo å sponse tur til Oslo, sånn at vi kan få sett hvordan de jobber.

Vi fikk opphavsrett til oppgaven, sånn at vi får lov til å publisere.

1600 kr for en CT-scan, stor mulighet for å få støtte fra NTNU, hvis ikke så kunne
oppdragsgiveren støtte oss.

Sensorplate, bilde sensor som du har i kamearet ditt. som har ett antall pixler,
og så har du en røntgenkilde også har du en kjegleformet stråle som treffer den
detektoren. mengde stråling, per areal blir mindre

Stort objekt = dårligere oppløsning.

D.2 Møtereferat 02.02.2022

Møte med Ivar.
Alle til stede.

Vi får bruke VR-lab som arbeidsplass/kontor for å ha tilgang på kraftigere PC
om nødvendig.

Trenger vi å bruke RAW-dataen? Hør med Jotne om vi trenger å lage ett pro-
gram for å konvertere RAW data, når det er allerede finnes flere løsning for dette.
Skal vi heller fokusere på å få ut spesifikk info fra RAW data? Som for eksempel
porøsitetsnivå osv. på objektet.

109

110Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Har de egen CT scanner? Dersom de bestiller scans, får de allerede prosesserte
filtyper i retur.
Finne metode for å integrere grensesnitt med eksisterende løsninger hos Jotne.
Endre dreining på oppgaven til dataanalyse?

Vi må undersøke RAW data, se om 3GB-filen er den samme som 13GB, men uten
støy. Se på parameterene i voxels, se om 8-bit formatet passer parametre. (grey-
scale, x, y, z).
Finne startvoxel for modellen, se om den er i senter/kant, hypotese om første
genererte voxel. Generere startmodell typ 100x100x100 for å teste endringer
(edge detection, mesh generation, remove faces, orientation).

D.3 Møtereferat 07.02.2022

Møte med Jotne.
Alle til stede.

Finn ut hvilke verktøy det finnes i VG STUDIO MAX.

Sjekk om det går an å identifisere enkelte områder, gi input.
Automatisk identifikasjon av porer? Finnes det funksjonalitet i VG STUDIO MAX
for å finne porer?

Er det mulig å komprimere filer ved å fjerne unyttige voxler, evt. å slå sammen
voxler?

Endre fokus fra å lage mesh etc. til å prøve å oversette til STEP.

Format for mesh og voxler er standardisert i ISO.

D.4 Møtereferat 09.02.2022

Møte med Ivar.
Alle til stede.

Recap om hva vi ble enig med Jotne om: det å ikke bygge mesh, men å fokusere
på dataanalyse istedenfor.

Prøve å bruke OpenGL til visualisering.

Chapter D: Meetings 111

D.5 Møtereferat 15.02.2022

Møte med Jotne.
Alle til stede.

Oppsummering av hvor langt vi har kommet.

Vi har ikke tenkt så langt med tanke på STEP-konvertering, men vi har sett at
det ligger en slags oppskrift på nett for det, med tanke på hva vi driver med i
OpenGL.
Akkurat nå er fokus på å få videreutviklet 3D-modellen vi har laget nå, også tar
vi det derifra.

D.6 Møtereferat 16.02.2022

Møte med Ivar.
Alle til stede.

Jens har fått covid og er med på møtet digitalt.
Fare for lite fremgang når vi bare blir to de neste dagene.
Oppsummering av hvordan vi ligger an med OpenGL og hva vi har snakket med
Jotne om.
Sander og Eirik vil fokusere på gruppearbeid i ingeniørfaglig systemtenkning mens
Jens er syk.

D.7 Møtereferat 24.02.2022

Møte med Jotne.
Sander og Jens til stede.

Henrik og Tord er på besøk på NTNU og CT-laben.
Vi spiste lunsj og viste Henrik og Tord litt rundt på campus, samt en tour på CT-
laben.

D.8 Møtereferat 09.03.2022

Møte med Ivar.
Alle til stede.

Statusoppdatering; Lite fremgang de siste ukene pga. sykdom og en del press fra
andre fag.
Ble gjort et lite retningsskifte i forhold til koding. Har som smått begynt å lage
rapporten i Overleaf. Har ordnet litt struktur og har skrevet på noen punkter.

112Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

D.9 Møtereferat 15.03.2022

Møte med Jotne, kun Tord.
Alle til stede.

En liten statusrapport om at vi har begynt å få struktur på rapporten, og Jens
og Eirik lærer seg OpenGL.

Tord og Henrik vil gjerne holde foredrag/lære oss mer om STEP. Det hadde vært
fint for vår del.

D.10 Møtereferat 25.03.2022

Møte med Ivar.
Sander og Jens til stede.

Statusrapport om hvor vi ligger an. Jens og Eirik har kommet et godt stykke med
OpenGL. Vi har fått sett på STEP og satt opp litt struktur på rapporten. Sander
skal begynne og se på GUI.

Send foreløpig rapport til Ivar mandag 4. april.

D.11 Møtereferat 06.04.2022

Møte med Ivar.
Sander og Jens til stede.

Gikk gjennom et foreløpig utkast av rapport vi hadde sendt inn til Ivar på forhånd.
Små innspill fra Ivar i form av kommentarer lagt inn i PDF-dokument.
Innspill gikk ut på alt fra småting i setninger til struktur på selve rapporten.
Sander har begynt lage GUI i Qt Creator, og vi skal prøve å få koblet GUI-en sam-
men med koden Jens og Eirik jobber på.

D.12 Møtereferat 12.04.2022

Møte med Jotne.
Sander til stede.

Gitt en oppdatering på hva vi har gjort.
Sander har knotet mye med GUI de siste ukene og sliter med å få det til å funke.

Prøve å få til tur til Jotne siste uka i april.

Chapter D: Meetings 113

D.13 Møtereferat 20.04.2022

Møte med Ivar.
Alle til stede.

Vi gikk gjennom at vi hadde tatt kontakt med en på Twitter som har jobbet med
Assimp i flere år om han hadde noen tips for utvikling av oversetting til STEP.
Fikk til svar at vi heller burde eksportere en obj.-fil og så bruke FreeCAD til over-
setting til STEP, fordi STEP er et monstrøst format.
Gikk gjennom løsninger: bruke et lite subsett av STEP-standarden, så vi ikke bruker
hele. Forslag fra Ivar.

Alternativ 2: Lage workflow for Jotne som beskriver fremgangsmåte fra mesh/-
voxel til STEP.

Rapportskriving: vurdere om vi skal ha uviklingsrapport, utredningsrapport eller
en kombinasjon.

Sett opp fysisk møte med Jotne neste uke (uke 17).

D.14 Møtereferat 21.04.2022

Møte med Jotne.
Sander og Jens til stede.

Gikk gjennom det vi fant ut om STEP-konvertering via en på Twitter som har
jobbet mye med Assimp-biblioteket.
Vi gikk også gjennom våre alternativer med å bare bruke et subsett av STEP-
formatet og å lage en salgs workflow for Jotne som beskriver fremgangsmåte.
Henrik og Tord tror det er mulig å bruke et subsett.

Viste Henrik og Tord forslag på GUI og fortalte plan for den og at vi sliter med å
få ting til å kommunisere.

Det er satt opp et møte med en med kompetanse innen STEP fra Jotnes side i
morgen (22. april). Han har nok gode innspill på hvordan vi skal løse dette.

Fysisk møte hos Jotne blir onsdag 27. april klokka 12 i Oslo.

D.15 Møtereferat 22.04.2022

Møte med Jotne.
Alle til stede.

114Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

Jotne stilte med IT-mann Remi som har peiling på STEP.
Remi viste et bibliotek som Jotne har som går ut på eksport av STEP-filer og funk-
sjonalitet de har liggende.

Vårt mål fremover blir å få til import av voxel-filer, i og med at vi kun har mesh
nå.
Deretter må vi få til eksport av filene ved bruk av Jotnes funksjonaliteter.

Dette er definitivt et møte vi burde hatt my tidligere i prosjektet.

D.16 Møtereferat 26.04.2022

Møte med Jotne.
Alle til stede.

Vi har fått tilsendt et ekesmpelprosjekt av Remi som viser litt hvordan man bruker
STEP-konverteringsfunksjonaliteten til Jotne.
Vi har sett litt på det og har delvis skjønt hvordan det er bygd opp, men sliter med
å få det til å kjøre.
Det er satt opp møte med Remi i morgen så vi kan få stille eventuelle spørsmål.

Planlagt møte hos Jotne i Oslo i morgen er klokken 11:30.

D.17 Møtereferat 28.04.2022

D.17.1 Møte 1

Møte med Jotne.
Alle til stede.

Møte med Jotne der vi fikk en gjennomgang av Remi hvordan eksempelet hans
funker og vi fikk skrevet ut en stp-fil (STEP-fil).
Denne STEP-filen er en såkalt P21-fil, som er en ASCII-fil. P21 kommer fra at det
er part 21 av STEP-standarden (ISO 10303-21).
For å få dette prosjektet over til CLion tror Remi at vi må se på preprocessor defin-
itions og precompiled headers.

D.17.2 Møte 2

Møte hos Jotne.
Alle til stede.

Chapter D: Meetings 115

Fikk en presentasjon av hva Jotne driver med og det ble mye prat om Jotnes
prosjekter.

D.18 Møtereferat 29.04.2022

Møte med Ivar.
Sander og Jens til stede.

Viste frem eksempelet fra Remi og forklarte litt hvordan det fungerer og nevnte
at vi gjerne burde hatt møtet med Remi for lenge siden.
Forklarte planene våre om å få til å importere og å skrive ut en P21-STEP fil.

D.19 Møtereferat 02.05.2022

Møte med Jotne.
Alle til stede.

Møte med Arne Tøn fra Jotne, som jobber mye med EDM og kan mye om det.
Prøvde å få hjelp til å få eksempelprosjektet til Remi til å funke i CLion, slik at vi
kan prøve å koble det sammen med resten av koden vi har.

D.20 Møtereferat 04.05.2022

Møte med Ivar.
Sander og Jens til stede.

Gikk gjennom at vi har slitt med å få koden til å funke. Jens skal prøve å få til
at koden fungerer med voxler.
Begynner å nærme seg at vi må se bort fra utviklingen og kun fokusere på rap-
porten.
Ivar foreslo at vi sender inn enkelte kapitler for vurdering/gjennomgang, slik at
det ikke blir hele rapporten på én gang. Ivar mener også det kanskje begynner å
bli gunstig å dreie mere mot en utredningsrapport kontra en utviklingsrapport.

D.21 Møtereferat 10.05.2022

Møte med Jotne.
Alle til stede.

Vi sa vi har sluttet med utviklingsprosessen og har kun fokus på rapporten frem
til leveringsfristen.
Siden vi ikke har fått til et fungerende produkt enda, sa vi at vi har lyst til å prøve

116Bachelor thesis: CT Scanning as a Tool for Quality Assurance in Additive Manufacturing

videre etter rapporten er levert og frem til fremføringen av prosjektet.
Remi er tilbake fra ferie, så han er tilgjengelig om vi trenger hjelp.

D.22 Møtereferat 11.05.2022

Møte med Ivar.
Alle til stede.

Vi hadd sendt inn et foreløpig utkast av rapporten og fikk Ivar til å lese gjen-
nom og komme med tips.
Han sa det var veldig mye prosessrelevant tekst under Implementation-kapittelet.
Dette kan fikses med at vi kaller kapittelet Process and Implementation, eller even-
tuelt har et eget kapittel om prosessen.
Videre var det mer ting å skrive på diskusjonsbiten om effektmål, resultatmål og
prosessen i seg selv.

Snakket om planer om å prøve å fullføre prosjektet etter leveringsfristen, både
for vår egen del og for Jotnes del.

Oppsummerte det vi gikk gjennom i forrige møte med Jotne.

D.23 Møtereferat 18.05.2022

Møte med Ivar.
Sander og Jens til stede.

Gikk gjennom en forhåndsinnsendt rapport og fikk feedback:
- Fjern "Functionality"-overskriften, slik at subsectionsa ligger under OpenGL
- Bruk sections i sprintene i Process & Implementation
- Fjern "Structure"-overskriften i Design
- Flytt "Wireframes" fra Design til Theory og skriv litt mer om hvilke designprins-
ipper som er fulgt i wireframen
- Skriv om hvordan vi har svart på requirements i Discussion
- Gjerne bruk descriptionlist i stedet for subsections

Appendix E

Project Contribution

This table shows how much each member has contributed in each aspect of the
project. The table is organized with a scoring system from 1 to 5, where 5 indicates
that the member has done a lot of work. A score of 1 indicates that the member
has done little work in the given aspect.

Table E.1: Member contribution

Chapter Sander Jens Eirik
Research 5 5 5
Code 3 4 5
GUI 5 1 1
Documentation 4 2 5
Report 5 5 5

117

Appendix F

Work Hours

119

Sanderi's workspace Created with Clockify 1

Summary report
01/01/2022 - 31/12/2022

Total: 1511:31:00 Billable: 00:00:00 Amount: 0.00 USD

Project

Bachelor 1511:31:00 100.00%

Task

Code - Bachelor 507:15:00 33.56%

Meeting - Bachelor 76:00:00 5.03%

Report - Bachelor 332:45:00 22.01%

Research - Bachelor 405:31:00 26.83%

Start-Up - Bachelor 190:00:00 12.57%

Sanderi's workspace Created with Clockify 2

Project / Task Duration Amount

Bachelor 1511:31:00 0.00 USD

Code 507:15:00 0.00 USD

Meeting 76:00:00 0.00 USD

Report 332:45:00 0.00 USD

Research 405:31:00 0.00 USD

Start-Up 190:00:00 0.00 USD

	Sammendrag
	Abstract
	Preface
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Background
	Target Group
	Project Group & Roles
	Delimitation
	Employer
	Supervisor
	Report Structure

	Theory & Technology
	CT Scanning
	How It Works

	Voxel Models
	Mesh Models
	ISO 10303 (STEP)
	AP209
	EXPRESS Data Manager
	OpenGL
	Shaders
	Transformations
	Coordinate Systems
	Local Space
	World Space
	View space
	Clip Space
	Camera View
	Assimp

	Qt
	Wireframe

	Requirements
	Use Cases
	System Requirements
	Security Requirements
	Testing

	Software Development Method
	Scrum
	Sprints

	Kanban
	Status Meetings
	Communication
	Clockify
	Version Control

	Design
	Backend
	GUI
	Buttons
	Other Features
	Wireframe

	Process & Implementation
	Setting Up Environment
	Scrum Sprints
	Sprint 1
	Sprint 2
	Sprint 3
	Sprint 4
	Sprint 5
	Sprint 6
	Sprint 7
	Sprint 8

	Results
	Class Structure
	EDMsdk
	GUI

	Discussion
	Development Method & Process
	Future Development
	Workflow
	Project Goals
	Learning Goals
	Conclusion

	Bibliography
	Project Description
	Project Agreement
	Project Plan
	Meetings
	Møtereferat 01.02.2022
	Møtereferat 02.02.2022
	Møtereferat 07.02.2022
	Møtereferat 09.02.2022
	Møtereferat 15.02.2022
	Møtereferat 16.02.2022
	Møtereferat 24.02.2022
	Møtereferat 09.03.2022
	Møtereferat 15.03.2022
	Møtereferat 25.03.2022
	Møtereferat 06.04.2022
	Møtereferat 12.04.2022
	Møtereferat 20.04.2022
	Møtereferat 21.04.2022
	Møtereferat 22.04.2022
	Møtereferat 26.04.2022
	Møtereferat 28.04.2022
	Møte 1
	Møte 2

	Møtereferat 29.04.2022
	Møtereferat 02.05.2022
	Møtereferat 04.05.2022
	Møtereferat 10.05.2022
	Møtereferat 11.05.2022
	Møtereferat 18.05.2022

	Project Contribution
	Work Hours

