
Chapter 1
Challenges in the Realm of Embedded Real-Time
Image Processing

Philippe Millet, Michael Grinberg and Magnus Jahre

Abstract The development of power-efficient solutions gives new embedded prod-
ucts the ability to analyse images and thereby brings more intelligence to embedded
systems – providing more and better services of higher quality as well as advanced
capabilities such as self-adaptation and autonomy. This will allow cars to drive safer,
medical devices to assist surgeons, and autonomous drones to find people that have
gotten lost. For small-series products, one needs to find an embedded platform that
provides enough performance, does not exceed the target price, and has sufficiently
low power consumption. As these requirements are typically conflicting, image pro-
cessing engineers spend considerable time identifying the best possible trade-off for
their algorithm implementation on the chosen platform. Providing a common plat-
form that allows the efficient implementation of image processing systems across
diverse application domains – a key objective of our Tulipp project – requires a
solid understanding of the constraints and challenges of each domain. In this paper,
we report the key challenges we identified within the medical, Unmanned Aerial
Vehicle (UAV), and automotive domains to aid the community in developing the
next generation of embedded image processing systems.

1.1 Introduction

Embedded computing refers to a computing solution that performs a dedicated
function within a larger mechanical or electrical system. The larger system is often
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Fig. 1.1: A typical embedded image processing system. The system (1) captures input
with one or more sensors, (2) uses a computing platform to analyse the captured
image, and (3) either outputs an enhanced image or takes action.

mobile, commonly process sensor data, andmay need to perform computation within
given deadlines (i.e., real-time constraints). Embedded systems bring functions such
as control and automation to devices in common use today – e.g., mobile phones,
washing machines, cameras, pacemakers, TVs, and alarm clocks. A recent study
found that 98% of all manufactured microprocessors are components of embedded
systems [1].

Even though the spectrum of embedded computing solutions is very wide, from
a bird’s-eye view, common characteristics and concerns can still be found when
comparing typical embedded computers to general-purpose ones. We can notice
that embedded solutions are always faced with small or highly constrained volume,
weight constraints, and limits on power consumption or heat dissipation. This is
referred as SWaP (Size, Weight, and Power) constraints.

These constraints have a drastic impact on the embedded computing platform. For
instance, the platform is constrained with respect to the processor’s capabilities and
the size of the memories (RAM as well as Flash memory). The storage capabilities
are also limited; there is often no hard drive. Further, there is almost always links to
sensors and actuators. When the device has access to a network, the system can use
cloud resources to provide more advanced features. For instance, the Google GPS
application on Android mobile phones uses the network servers to compute the best
way to reach a given destination.

Figure 1.1 illustrates an embedded image processing system in more detail. Gen-
erally speaking, an image processing platform is composed of a hardware platform
on top of which low-level software is implemented to operate the hardware (e.g., an
operating system, libraries, and the application itself). Further, a set of tools, gener-
ally called a tool-chain, must also be available to develop applications. Typically, the
image processing platform uses one or more sensors (e.g., a camera or camera-like
device) to capture images. Through a dedicated algorithm, higher-level information
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will be extracted from the image. This result is then used to take action or output
enhanced information with the image.

Since the sensor outputs frames at a given rate, the platform must be able to
process the images at the same rate to not lose any information. In some systems,
the loss of frames may have dire consequences such as an aircraft crashing (i.e.,
hard real-time systems). In soft real-time systems, loosing frames means that the
system is failing to perform its desired function. Most embedded image processing
systems have (soft or hard) real-time constraints which means that the system must
be dimensioned to process data at the same rate as it is produced. To achieve this, a
holistic view of the system is required.

Increasing single-thread performance typically requires increasing clock fre-
quency which in turn increases power consumption [4]. Alternatively, the system
can be partitioned into different components that work in parallel which enables im-
proving performance while keeping clock frequency constant. Power-efficiency can
be improved even further by mapping each system component to a computing device
that is specialised to the core computation performed by that particular component
(e.g., [12, 13, 7]). This makes the hardware platform heterogeneous, and heteroge-
neous platforms are typically more efficient than homogeneous platforms [2].

Unfortunately, heterogeneity comes at a cost. More specifically, the program-
mer is forced to specialise each system component to its target computing device
which reduces programmability and versatility. This often means using dedicated
programming languages or restricted Application Programming Interfaces (APIs).
In addition, the programmer is exposed to the conventional challenges of parallel
programming which for instance include taking into account task scheduling and or-
chestrating data transfers between tasks. This complexity means that advanced image
processing systems benefit significantly from using an operating system as it pro-
vides convenient services such as transparently mapping and scheduling tasks onto
hardware compute devices. Another way of making development for heterogeneous
platforms more manageable is to provide extensive tool support (e.g., STHEM [10]).
This enables the developer to quickly assess how well the application performs in
relation to key requirements such as frame rate and power consumption.

A key challenge of applying specialisation to embedded image processing systems
is that the appropriate trade-off point among the conflicting requirements differ
between application domains. Thus, a good understanding of the each domain’s
key challenges is necessary. In the Tulipp project [5], we addressed this issue by
studying key applications within the medical, Unmanned Aerial Vehicle (UAV),
and automotive domains. We now outline the key challenges of these domains in
Section 1.2, 1.3, and 1.4, respectively. Finally,we discuss the efficient implementation
of Convolutional Neural Networks (CNNs) in Section 1.5 as CNNs are likely to
become a widely used component of future embedded image processing systems.
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1.2 Image Processing Challenges in the Medical Domain

The medical domain. As defined by the physicians, Medicine is an art based on
science. Doctors have to diagnose, to make prognosis, and to make decisions based
partly on protocols and scientific examination of the patient. The difficulties they face
are mostly to be able to understand what is going wrong with only partial information
of a human being. The human body is such a complex system that it requires a lot of
practice and experience for doctors to deal with it.

Even if medicine is an art, it is a highly technical domain. Technological improve-
ments enable medical staff to benefit frommore accurate measurements and imagery.
Medical imaging is the visualisation of body parts, organs, tissues, or cells for clinical
diagnosis and preoperative imaging. The global medical image processing market
is about $15 billion a year. The imaging techniques used in medical devices include
a variety of modern equipment in the field of optical imaging, nuclear imaging,
radiology, and other image-guided intervention. The radiological method, or X-ray
imaging, renders anatomical and physiological images of the human body at a very
high spatial and temporal resolution.

Imagery is one of the key mechanisms to improve diagnostic accuracy, reduce the
time spent to cure patients, or to increase the level of control while administering
the cure. It also allows for faster surgery, smaller cuts in the body, and faster patient
recovery. All these improvements allow reducing the costs to cure, which is a priority
for insurance companies and governments.

The Tulipp medical use case. The Tulipp medical use case focuses on X-ray
instruments and thereby addresses a significant part of the market share. More
specifically, we focused on the mobile C-armwhich is a perfect example of a medical
system that improves surgeon efficiency. This device shows the doctor a real-time
view from inside the body of the patient during the operation, allowing for small
incisions instead of wide-cuts and more accurately targeting the desired region. As
a result, the patient recovers much faster and the risk of nosocomial diseases is
reduced. The drawback of this technique is the radiation dose which is 30× higher
than what we receive from our natural surroundings each day. This is a significant
problem for the medical staff that performs such interventions all day long, several
days a week.

While the X-ray sensor is very sensitive, lowering the emission dose increases the
level of noise on the pictures, making them unreadable. This can be corrected with
proper image processing. More specifically, it is possible to divide the radiation by
a factor of 4 and restore the original quality of the picture by applying specific noise
reduction algorithms running on high-end PCs. Unfortunately, in such a confined
environment as an operating room, crowded with staff and equipment, where size
and mobility matters, this is not convenient.

Another issue is that regulations require that all radiation that the patient is
exposed to must have a specific purpose. Thus, each photon that passes through the
patient and is received by the sensor must be delivered to the practitioner; no frame
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should ever be lost. This creates the need to manage side-by-side strong real-time
constraints and high-performance computing.

In the Tulipp project, our heterogeneous hardware platform provides computing
power comparable to a standard desktop computer while being comparable to the
size of a smartphone. Thus, Tulipp makes it possible to lower the radiation dose
while maintaining image quality. We achieved this goal by taking a holistic approach
to image processing system development (see Chapter ?? for more details).

1.3 Image Processing Challenges in the UAV Domain

The UAV domain. The term Unmanned Aerial Vehicle (UAV) refers to any flying
aircraft without humans on board. In recent years, the usage of UAVs in differ-
ent application fields has increased significantly. Currently, most important markets
for UAVs are aerial photogrammetry, panoramic photography, precision farming,
surveillance, and reconnaissance. Further application fields are for instance rescue,
law enforcement, logistics, and research. The usage of such systems in the enter-
tainment domain is growing especially fast. This development is boosted by the
constantly rising commercial market for small UAVs providing broad accessibility,
diversity, and low costs. Essential enhancements to UAV usage are expected from
improvement of their capabilities; perception and intelligent evaluation of the en-
vironment make many new applications possible. Many of those applications can
greatly benefit from intelligent on-board image processing. However, most of the
image processing algorithms are developed in high-level programming languages
such as C/C++ and are quite complex. Optimising them for an embedded system is,
hence, a quite challenging task.

The Tulipp UAV use case. In most cases, UAVs are carrying a sensor payload that
allows them to accomplish their respective tasks. Even though we are used to hear
about autonomous drones, most of the current systems are still remotely piloted by
humans. A human on the ground has to permanently monitor both the drone flight
in order to avoid collisions with obstacles and the payload of the drone in order to
successfully accomplish the desired mission (e.g., to capture the desired data).

The simultaneous operation of the UAV and of the sensor payload is a challenging
task. Mistakes may be fatal either with regard to the mission success or – much
worse – with regard to mission safety. Besides, there might be a limitation of the
UAV operation area due to the need for a constantly available communication link
between the UAV and the remote control station.

A major improvement could be made if UAVs were capable of autonomous
navigation or at least had an obstacle detection and avoidance capability. Such a
capability can be achieved bymeans of additional sensors, such as ultrasonic sensors,
radars, laser scanners, or video cameras, that monitor the UAV’s surroundings as
shown in Figure 1.2.
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Fig. 1.2: Obstacle detection and avoidance for UAV.

Fig. 1.3: Obstacle avoidance using a stereo camera setup. Obstacle detection is done
based on disparity images D that are computed from the stereo camera images Ileft
and Iright. A disparity is the displacement of a pixel in one stereo camera image
with respect to the corresponding object pixel in the image of the second camera.
The smaller the distance to an object, the larger is the disparity of its pixels. In this
figure, disparities are visualised by means of a false-color image. Small disparities
are shown in blue, large in red.

However, the ultrasonic sensors have a very limited range, the radar sensors might
“overlook” non-metal objects, and the laser scanners are heavy and energy-intensive
and thus not well suited for with UAVs that already have tight weight and power
constraints. A pragmatic solution can be achieved using a lightweight stereo video
camera setup with cameras orientated in the direction of flight. Hence, the UAV
use case in Tulipp deals with high-performance stereo vision algorithms for UAV
obstacle avoidance.

Stereo vision based obstacle detection is usually done by analysing the so called
depth or disparity images. They are computed from the stereo camera images and
encode distances to objects in the captured scene as shown in Figure 1.3. The
most challenging part in this case is the disparity estimation algorithm. This is
particularly true for “good” dense disparity estimation algorithms which are based
on pixel matching with global optimisation approaches.

Within Tulipp we implemented a collision avoidance system that is based on dispar-
ity image analysis and performs the following functions:

1. Synchronous image acquisition from two video cameras.
2. Stereo image processing to compute disparity images.
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3. Obstacle detection and collision avoidance.

We describe in more detail how we implemented these functions in Chapter ??
of this book. This required utilising the heterogeneous Tulipp compute platform
to enable real-time operation while appropriately balancing weight, performance,
and power consumption [9]. While implemented for UAVs, the technology is easily
portable to other vehicles and particularly cars.

1.4 Image Processing Challenges in the Automotive Domain

The automotive domain. Advanced Driver-Assistance Systems (ADAS) – which
help the driver to focus on what is important on the road – are developing at
a very fast pace. Sustained by available and sufficiently performant technology,
devices are embedding more and more intelligence to analyse the driver and the
car’s environment and might even act and control the car in case of danger. Since
this technology saves lives, it is strongly supported by governments and insurance
companies.

Having more electronic devices in a car comes with its own set of significant
challenges. The first challenge is the power consumption. When the number of
compute platforms increases, power consumption goes up and the trend towards
requiring more computation and more powerful processors exacerbates this issue. A
second challenge is that the number of sensors is also increasing at a fast pace. More
cameras are added to better understand the whole environment of the car, but also
to interpret the behaviour of the passengers and to supervise the driver’s actions.
Images will also be linked with other sensors in the car and sensor fusion algorithms
will be required for the car to fully understand the current situation and make the
right decision.

Ideally, the car should be able to foresee situations before they are encountered.
To reach this goal, the car must be able to predict the behaviours of the other cars.
Since legacy cars will still be operational for many years, this problem cannot be
solved completely by the cars communicating with each other. Thus, the car must
rely on advanced techniques to analyse the behaviour based on what it sees, just like
humans do. Human drivers continuously learn how to interpret traffic, and it is not
unlikely that cars will have to develop learning capabilities of their own.

ADAS systems are costly. The technology is typically first developed for high-end
cars, but is commonly introduced into the consumer market after only a few years.
While the target price of the high-end versionmay not be an issue, the implementation
for consumer cars must be as cheap as possible. The consumer market is the main
objective since the larger volume results in higher return on investment.

The Tulipp automotive use case. The strict requirements of ADAS systems pushes
technology development with respect to hardware, software, and algorithms. In
the Tulipp project, we focused on implementing pedestrian detection using Viola-
Jones classifiers on the heterogeneous Tulipp hardware platform using a High-Level
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Fig. 1.4: The basic structure of a Deep Neural Network (DNN).

Synthesis (HLS) [6, 11]. The key result was that we were able to implement a
near-real-time pedestrian detection system with a fraction of the manpower required
to implement similar systems using a traditional Register Transfer Level (RTL)
approach.

1.5 Looking into the Future: Neural Networks

Over the last 5 years, Deep Neural Networks (DNNs) have emerged as a promising
approach for analysing images with high quality of results and low error rates.
This family of algorithms follows a massively parallel and distributed computation
paradigm, as it emulates a very large number of neurons operating in parallel. As
shown in Figure 1.4, the neurons are organised into layers, each of which operates
successive and complementary processing. The first layer, the input layer, is in charge
of extracting the pixels from the image and may apply a first convolution or a filter to
the image. The last layer is the output layer. It is in charge of collecting the information
from the neural network. The internal layers between the input and output layers are
in charge of splitting and partly characterising the image through a list of features
and then combining the features to identify and classify the information extracted
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Fig. 1.5: Basic structure of a Convolutional Neural Network (CNN)

from the image. Each neuron within one layer provides a set of outputs that are
sent to other neurons on the next layer through connections called synapses. Each
synapse is weighted, and the set of all the network’s synaptic weights form the set
of so-called network parameters.

Various types of DNNs exist, and different DNNs mostly differ by the connection
policy between hidden layers. Providing all-to-all connection between layers (dense
layers) allows to build Multi-Layer Perceptrons (MLP) which are used for simple
data classification. For image processing, Convolutional Neural Networks (CNNs),
in which the connection policy emulates convolutional filters, are commonly used.
As shown in Figure 1.5, the convolutional layers are used to hierarchically extract
visual features. Pooling layers are used to down-sample visual features, thus reducing
the compute requirements. At the end of the so-called feature-extraction stage, dense
layers are used to perform classification based on extracted features.

The vastmajority of computation is performed by convolutional layers. The reason
is that the convolutional stage is much deeper than the classification stage [8, 3] and
that convolutional layers are more complex than pooling layers. Thus, accelerating
CNN algorithms mainly rely on accelerating convolution which is not an easy matter
when targeting embedded applications [14]. The two main constraints are: (1) the
amount of computation to process the convolutions is too high to be performed in
real-time, and (2) insufficient memory and bandwidth are available to store and use
the parameters of the network. For example, the network used by Burkert et al. [3]
requires performing more than 800k convolutions in the first layer.

Fortunately, neural networks are very static. Once a network has been trained, the
data path between the layers is known and predictable. This characteristic makes it
possible for hardware designers to fine-tune architectures to efficiently execute CNNs
(e.g., [12]). Dedicated processors with parallel accelerators for convolutions can be
combined with highly efficient memory access and large memory capacity. Due to
the predictability of the CNNs, the memory system might be highly hierarchical and
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Table 1.1: Summary of embedded image processing challenges.

Type Challenge
Sensors More sensors to capture the whole environment. More cameras with better

quality and larger image sizes.

Algorithms More complex, requiring more processing from the hardware. More informa-
tion will be extracted from the images. More intelligence that emerges from
the images and from other sources (other kinds of sensors, communication
between drones or cars, etc.).

Energy and Power The energy consumption should ideally remain constant. While this might
not be possible, it must be managed as more energy means bigger batteries
with higher costs and weight. Meeting the power-budget typically means that
higher processing-efficiency is required.

Development Costs Development costs should be as low as possible and time-to-market as short
as possible. To achieve this, the development must rely on advanced develop-
ment and analysis tools, operating systems, standard libraries, and reusable
APIs.

Customer Price The markets addressed by Tulipp are highly competitive. Therefore, the final
cost of the systemmust be controlled to be able to offer it at a price customers
can afford.

automatic code generation tools could then be helpful to schedule the execution of
the network and the flow of data between the memories and the processing units of
the architecture.

1.6 Conclusion

We have now outlined the key challenges of the application domains we focused on
in the Tulipp project. Overall, we find that more and more processing is required
to process data from an ever-increasing number of sensors that provide data with
increasing resolution (see Table 1.1). To respond to these trends, hardware platforms
must evolve to meet the requirements of current and future image processing algo-
rithms by providing more specialised hardware with larger yet low-power memory
systems. As the applications continue to evolve, a key challenge is to provide versatile
computing platforms capable of delivering high performance for the most important
computational patterns within each domain.
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