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Abstract—Using the acoustic emission method, we have determined the probability density distribution 

function of shear band lengths in a metallic glass and demonstrated its independence of stoichiometric 

composition of glass and experimental conditions. The power-law form of this distribution confirms 

independently the observed quadratic scaling in the time dependence of the rate of shear processes in 

metallic glass. 

 

1. INTRODUCTION 

 

Scale invariance (or scaling) indicating the general nature of physical phenomena at different scale 

levels is undoubtedly important in various fields of natural science [1–4]. In the case of scaling 

invariance, a phenomenon under investigation exhibits self-similarity; i.e., changing in space and time, 

the phenomenon reproduces itself in varying spatial or temporal scales. From the analytical point of 

view, this implies the existence of a power-law relation between main characteristics of the given 

phenomenon [4]. Self-reproduction of physical phenomena with scale invariance makes it possible to 

simulate and study these effects in laboratory conditions on small scales and to extend the results to 

similar large-scale effects. In particular, it was substantiated in monograph [5] based on the continuum 

mechanics that the shear band front appearing during the fracture of the earth crust is a macroscopic 

seismodislocation with the corresponding long-range field of stresses. Analogous conclusions were 

formulated in [6] for the shear band front in a metallic glass. Despite different scales of the phenomena 

considered in these publications, it is natural to put forth the hypothesis on their scale invariance and 

analyzing the kinematics of shear bands in metallic glasses, to extend the results to the description of shear 

processes in the earth crust. 

Self-organized criticality in the behavior of metallic glasses, which is analogous to that in granular 

media and tectonic processes, was noted by some authors on the basis of investigation of stress removal 

accompanying the propagation of shear bands [7–9]. 



However, this process consists of two stages, viz., rapid formation of the band front followed by a 

relatively slow shear of one part of the sample relative to the other over the band [10, 11]. 

In particular, it was found in in situ experiments [12–14] on the kinetics of initiation and 

subsequent evolutionary growth of a shear band in a metallic glass that the time dependences of the 

shear band front velocity is of an asymmetric pulsed type and includes conditionally two stages: (i) rapid 

(over time τi < 30 µs) increase in the front velocity from zero to a certain maximal value Vmax (smaller 

than 5 m/s) and (ii) slow (about 300 µs) decrease. It was found that the rates of shear processes in a 

metallic glass at the stage of conditional deceleration from the maximal velocity to its final value are 

characterized by the power-law distribution of average velocity (or instantaneous velocity within the 

time measuring error) in form 

( ) ~ 1V αξ ξ  (ξ - is the time at the instant of measurement), where ~ 2α ; this was 

confirmed by numerous experimental data [13, 14]. 

The power-law dependence of the shear band velocity (and, accordingly, shear band length if we dis- 

regard a constant term), which has been revealed in [13], indicates scale invariance of the process of 

shear band propagation at the conditional deceleration stage. The consequences and prolongation of 

interpre- tations of the detected invariance were also considered in detail in [14]. In addition, an analytic 

description was proposed for the observed scaling, which in spite of its approximate nature, can serve 

as a universal application to any shear process in continuum mechanics because only the power in 

the function of the probability density power-law distribution over the shear band lengths serves as a 

control parameter. This circumstance can be used, in particular, for estimating the velocity and time of 

shear processes in the earth crust, which is very important for estimating the dynamics of possible 

earthquakes. 

In the derivation in [14] of the form of the function of distribution over the shear band lengths at the 

stage of propagation from the maximal velocity to its final value, we used the proportionality of the 

shear band length to the local stress removal [15, 16]; in this sense, the function of distribution over 

shear band lengths must repeat the distribution function over stress removals to within a constant 

normalization factor. Such an approach is justified, but is indirect. Since the time evolution of the shear 

band length is continuous, the shear band length distribution function must pre- serve its form at the first 

stage (acceleration) as well as at the second stage (deceleration down to the final value of the shear 

band velocity). However, an analogous distribution over shear band lengths at the first stage, namely, a 

rapid (over less than in 30 µs) increase in the velocity of the shear band front from zero to a certain 

maximal value (not smaller than 5 m/s) was not considered because this fast process requires a quite 

different experimental approach. 



For such an approach to detecting the growth of the shear band velocity from zero to a certain 

maximal value, we propose the acoustic emission method based on the detection of elastic vibrations 

(acoustic waves) that are generated during the initiation of a shear band  [17–20]. 

The acoustic emission (AE) method proved to be a powerful diagnostic tool for interpreting peculiarities 

in the evolution of a dislocation structure of a material experiencing deformation (including a metallic 

glass). The predictability of this tool as regards the emergence of features of a plastic flow and the critical 

state formation is quite promising both for laboratory tests as in industrial monitoring and diagnostic 

systems. In this study, we propose a method for reconstructing the shear band length distribution 

based on the amplitude distribution of acoustic emission signals and demonstrate the existence of 

scaling effects in the formation and propagation of shear bands in metallic glasses. 

 

2. EXPERIMENTAL TECHNIQUE 

 

As objects of investigation, we chose several glass-forming alloys based on Zr, Ni, and Pd- 

based alloy systems (Zr60Cu30Al10, Zr52.5Ti5Cu17.9Ni14.6Al10, Zr64.13Cu5.75Ni10.12Al10, Ni40Cu10Ti33Zr17, 

and Pd40Cu30Ni10P20  alloys were prepared by pressure casting into a copper crucible as described in 

[21]. The 3 × 3 ×6 mm samples were tested for compression with simultaneous recording of the acoustic 

emission signal. A detailed description of this technique can be found in [21]. The 

Zr64.13Cu5.75Ni10.12Al10 samples were tested at rates of 10–2, 10–3, and 10–5 s–1, the remaining samples 

were tested at a rate of 10–3 s–1. The acoustic emission signal was recorded continuously with an 18-bit 

resolution and a discretization frequency of 2 MHz. We used a broadband AE900S-WB sensor. The 

signal was amplified to 60 dB and was recorded using a PCI-2 system (Physical Acoustic Corp., 

USA). 

 

From mechanical tests of these samples, we obtained the experimental time dependences of 

the mechanical stress and the amplitude of acoustic emission signal. By way of example, Fig. 1 shows 

such dependences, which have been obtained by compressive loading of a bulk Zr60Cu30Al10 metallic 

glass sam-le for a loading rate of 1 × 10–3 s–1 [21]. The inset to Fig. 1 shows a fragment of the acoustic 

emission signal flow, which illustrates the synchronous emergence of acoustic emission pulses and 

stress jumps due to the initiation and propagation of shear bands that are also shown on the microscopic 

image obtained using a scanning electron microscope. 

 



Typical amplitude distribution of acoustic emission signals and its approximation by a power-law 

dis- tribution function, which were obtained during the loading of a Zr64.13Cu5.75Ni10.12Al10 metallic 

glass sample, are shown in Fig. 2. The subsequent analysis revealed that the probability distribution 

function of acoustic emission signal amplitudes, which is normalized in amplitude (Fig. 3), is a power-

law function, and all experimental data in logarithmic coordinates fit well to the same straight line 

irrespective of the stoichiometric composition of the metallic glass and the loading rate in 

mechanical tests. 

 

 

 

Fig. 1. Experimental mechanical stresses (black color) and amplitudes of acoustic emission signals (green color) as 

functions of time, which were obtained during compressive loading of a Zr60Cu30Al10 bulk metallic glass sample for a loading 

rate of 1 × 10–3 s–1 [21]. The inset shows a fragment of acoustic emission signal flow, illustrating synchronous emergence of 

acoustic emission pulses and stress jumps because of the initiation and propagation of macroscopic shear bands, which are 

also seen in the microscopic image 

 

3. RESULTS AND DISCUSSION 

 

Thus, it follows directly from Fig. 3 that during the initiation of shear bands, the amplitude of 

acoustic emission signals is a random quantity with the probability distribution density obeying a power 

law 

 ( ) 1~AE N
AE

U
U

ϕ , где 2.03 0.12N = ±  (1) 



The instantaneous acoustic emission power during the initiation of a shear band is estimated as the 

instantaneous elastic energy relaxation: 

 
2

~ ~ ~
2AE

d kLP kLL kLV
dt
 
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  (2) 

where  L and V  are the current length and velocity of the shear band front. The maximal power 

of the acoustic emission signal at the shear band initiation 

: 

 max
max~AEP k L V⋅ ⋅  (3) 

On the other hand, the acoustic emission signal power over initiation time τi is determined by the 

mean-square amplitude of the signal in accordance with the following relation: 

 max 2 2

0

1 ( ) ~
i

AE AE AE
i

P U t dt U
τ

=
τ ∫  (4) 

On account of the uniformly accelerated initiation of the shear band, we have: 

 ( )max max
1
2 iL L V V= = τ  (5) 

Taking this relation into account, we can transform relation (3) to: 

 max 2
max~ ~AEP k L V k L⋅ ⋅ ⋅  (6) 

With an account for relation (4), we obtain: 

 2 2~AEU k L⋅  или ~AEU k L⋅  (7) 

 

Since the probability distribution density is invariant to the normalization in the argument: 

 

 ( ) ( )AE AEU dU L dLϕ = ϕ∫ ∫  (8) 

this immediately implies that the probability distribution densities for two arguments proportional to each 

other coincide. Formula (1) directly gives: 

 ( ) 1~ nL
L

ϕ , где 2.03 0.12n = ±  (9) 

In [14], the following expression was derived for the scaling of the average velocity of a shear band at its 

deceleration stage: 

 ( ) 1~V αξ
ξ

, where 
1

n
n

α =
−

 (10) 

With an account of  (9) we immediately obtain: 



 ( ) 2
1

1 1~ ~n
n

V
−

ξ
ξ

ξ
 (11) 

Thus, we have obtained a power-law distribution of the average (or instantaneous within the time 

measuring error) rate of shear processes in a metallic glass at the stage of conditional deceleration 

from the maximal velocity to its finalization in the form ( ) 1~V αξ
ξ

, which is confirmed not only 

by numerous experimental data ( ~ 2.2...2.8n , ~ 1.6...1.8α , [14]), but also by the results of precision 

measurements using the AE method, at the stage of the rise of the shear band front (n = α = 2.03 ± 

0.12, this study). 

Taking ( ) maxiV Vτ =  we immediately obtain: 

 ( )
2

max
2

iVV τ
ξ =

ξ
 (12) 

Integrating this relation with account for condition ( ) SL Lξ→∞ = , where SL  is the length of the 

specimen, we obtain: 

  ( )
2

max i
S

VL L τ
ξ = −

ξ
 (13) 

Relations (12) and (13) describe the scale invariance of the process of shear band propagation at the 

conditional deceleration stage in terms of variables  ( )( ); SL Lξ − ξ  and ( )( ); Vξ ξ  , respectively.  

As additional argumentation of the approach pro- posted here, which is based on formula (2), we can 

trace an analogy between seismic shear processes in the earth crust and the evolution of shear bands in 

metallic glasses. In particular, it is noted in [25] that seismic moment M0 and the scale of an earthquake 

of length L (of the shear band length, but only in the case of seismodislocation length) are connected 

by relation 2
0 ~M L . From the analysis of 1308 seismic events, the following interrelation between 

the studied seismic energy and the seismic moment was established in [26]: 

 6 1.04
02.33 10SE M−= ⋅  (14) 

Or, considering that 2
0 ~M L  we obtain: 

 1.04 2.08 2
0~ ~ ~SE M L L  (15) 

which fully corresponds to formula (2) that has been used for describing the instantaneous elastic 

energy relaxation in a metallic glass. This confirms once again the possibility of application of the approach 

proposed here for describing shear processes in the earth crust also. It should be noted, however, that in 

spite of the fact that scale invariance of physical quantities describing shear processes in the earth 

crust has been confirmed in numerous publications (see, for exam- ple, [27, 28]), it is still the subject 



of discussions and requires critical analysis in view of the ambiguity of numerical parameters of 

scaling. 

 

 

Fig. 2. Typical amplitude distribution of acoustic emission signals and its approximation by a power-law distribution 
function, which is obtained during loading of a Zr64.13Cu5.75Ni10.12Al10 metallic glass sample. 

 

 
Fig. 3. Amplitude-normalized distribution function of probability density for amplitudes of the acoustic emission 
signal in studied alloys. 
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