
Takami et al. (2021)  Post-print 

1 
 

TITLE: 

Real-time Deterministic Prediction of Wave-induced Ship Responses Based on Short-

time Measurements 

 

AUTHOR(s): 

Tomoki Takami*1, Ulrik Dam Nielsen*2,3, and Jørgen Juncher Jensen*2   

*1  National Maritime Research Institute, Japan 

*2  Technical University of Denmark, Denmark 

*3  Centre of Autonomous Marine Operations and Systems, NTNU AMOS, Norway 

E-mail: takami-t@m.mpat.go.jp 

 

KEYWORDS: 

Autocorrelation, Real-time Prediction, Nonstationary Wave-induced Response, Prolate Spheroidal Wave 

Functions,  

 

ABSTRACT: 

This paper studies real-time deterministic prediction of wave-induced ship motions using the 

autocorrelation functions (ACFs) from short-time measurements, namely the instantaneous ACFs. The 

Prolate Spheroidal Wave Functions (PSWF) are introduced to correct the large lag time errors in the 

instantaneous sample ACF, together with a modification of the autocorrelation (AC) matrix for ensuring its 

positive definiteness. The validity of the PSWF-based ACFs is first examined by using the ship motion 

measurements from model experiment under stationary wave excitations. It is shown that the use of PSWF-

based ACFs leads to better prediction accuracy than direct use of sample ACFs. The validation is then 

extended to ship motion prediction using in-service data from a container ship, and an improvement of the 

prediction accuracy by PSWF-based ACFs is again found. Finally, the effectiveness of use of the 

instantaneous ACFs for non-stationary wave-induced responses is highlighted by comparing with the 

prediction results based on the ACFs from long-time measurements. 

 

NOMENCLATURE 

ACF     Autocorrelation Function 

AC      Autocorrelation 

PSWF    Prolate Spheroidal Wave Functions 

AR      Auto-Regressive 

SVM     Support Vector Machine 

LSTM    Long-Short-Term-Memory 

FFT      Fast Fourier Transform 
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PSD    Power Spectrum Density 

EVD    Eigenvalue Decomposition 

TEU    Twenty-foot Equivalent Unit 

LPF    Low-pass Filter 

CDF    Cumulative Distribution Function 

GPS    Global Positioning System 

JWA    Japan Weather Association 

NCEP   National Centers for Environmental Predictions 

NED    North-East-Down 

 

1.  INTRODUCTION 

  Deterministic time domain prediction of wave-induced responses plays an important role for many types 

of marine operation. For instance, real-time prediction could benefit decision support systems related to, 

e.g., helicopter landings on the deck of a ship and crane and maintenance operations (on deep water) of 

offshore installations, but it may also be of direct use as input for motion stabilization systems with and 

without ship speed (Nakatani et al., 2006; Perez, 2005). Conventionally, AR models have been widely 

adopted for such prediction methods (Duan et al., 2015b). The AR models are useful methods in the sense 

that they do not require input about the waves. Recent researches have shown that the AR models are 

capable of predicting wave elevations and wave-induced responses (Duan et al., 2015a; Huang et al., 2015; 

Peña-Sanchez et al., 2020). However, it is critical that the model parameters need to be updated with off-

line training thus not covering all operational scenarios, and moreover, the large number of training data 

prohibits real-time prediction because of too low computational efficiency (Huang et al., 2014). Meanwhile, 

recent machine learning techniques have matured and have been applied for achieving real-time prediction 

of waves and wave-induced responses. (Sclavounos and Ma, 2018) and (Ma et al., 2018) applied the SVM 

regression algorithm for wave elevation forecast. The LSTM deep learning model has been adopted to ship 

motion predictions most recently, see e.g. (Zhang et al., 2020). In this line, (Duan et al., 2019) demonstrated 

the effectiveness of LSTM on nonlinear ship motion. However, there are no consistent methods for 

assessing the length of time required for training even if such matured machine learning techniques are 

used, and this highlights the problems associated with the necessity for offline training and computational 

efficiency. 

  (Andersen et al., 2013) and (Nielsen et al., 2018; Nielsen and Jensen, 2017) assumed that the future 

wave-induced responses follow the expected mean variation of the conditional process, and then a different 

approach for deterministic response prediction using the measured ACF was investigated and demonstrated. 

In (Nielsen et al., 2018), the ACFs from long-time model-scale measurements via the FFT are utilized, and 

then reasonable prediction accuracy of ship motion under stationary sea states was demonstrated within 2-

4 wave periods ahead, with real-time computations. However, the efficiency of this ACF-based method 
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using full-scale measurements is still open to doubt, as operation in real seaways (waves) are influenced by 

non-stationary conditions; not only may the seaway itself be non-stationary, but, maybe more importantly, 

the wave-induced responses should in many cases be considered as non-stationary because of effects related 

to maneuvering, e.g. changes in ship speed and heading relative to the waves within short time periods. 

Under these circumstances, the use of ACFs from long-time measurements for predictions will be 

questionable. In order to address such non-stationarities caused by both waves and maneuvering, it is ideal 

to make predictions using the ACFs from the shortest possible measurement period, namely ‘instantaneous 

ACFs’. 

  When considering an application of the instantaneous ACFs to prediction, a concern about the large-lag 

time errors in the sample ACFs arises, as reported by, e.g., (Box et al., 2008). Thus, it is known that the 

sample ACF from time series measurements includes unphysical parts at large-lag time, since the practical 

measured signal is discretized and the measurement time window is limited (Box et al., 2008). This large-

lag time error influences the prediction accuracy and smoothing of the ACF or the associated PSD is 

therefore necessary (Nielsen et al., 2018). Recently, the authors presented a new approach for obtaining 

smoothed ACF and PSD from short-time measurements (Takami et al., 2020b). In (Takami et al., 2020b), 

the PSWF (Slepian and Pollak, 1961) were used to taper the sample ACF for reducing the large-lag time 

errors. The tapered time length in ACF can be adjusted by changing the number of PSWF. The advantage 

of the PSWF-based approach is that one can adjust the tapered time length to any time, while maintaining 

high frequency resolution in PSD, unlike the FFT-based approach. Then, it is expected that the PSWF-based 

smoothing method will be useful for non-stationary wave-induced response predictions, as it allows for 

using only recent measurements with rather small computational efforts. 

  However, in (Takami et al., 2020b), a problem in making predictions using PSWF-based ACFs was found 

and discussed; a ‘numerical concern’ related to inversion of the AC matrix, which can become non-positive 

definite when the PSWF-based ACF is introduced. Although the sample AC matrix, per se, should be non-

negative definite (McLeod and Jimenez, 1984), it is not necessarily the case for the PSWF-based AC 

matrices. This problem can be avoided to some degree by adding white noise to PSWF-based ACF as 

demonstrated in (Takami et al., 2020b), however, it is unclear what level of noise is appropriate. From this, 

the authors proposed the EVD based and PSD modification approaches towards the positive definite AC 

matrix (Takami et al., 2020c). By applying these approaches, a positive definiteness in AC matrices is 

secured. Moreover, it was shown that the PSD modification-based approach enables prediction in real-time, 

and the results of which are comparable to the computationally time-consuming EVD based approach. 

  In this paper, the effectiveness of the PSWF-based ACF together with AC matrix modification for 

deterministic prediction of the wave-induced ship motions is further investigated and demonstrated. To 

achieve the positive definiteness of the AC matrices assigning the PSWF-based ACFs, the PSD 

modification approach presented by (Takami et al., 2020c) is used. Experimental measurements of heave 

motion under a stationary sea state are first used for making a series of sensitivity analyses regarding 
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changeable parameters in the present PSWF-based prediction methods, while comparing the prediction 

accuracy with results from direct use of sample ACFs. Then, full-scale measurements from a large container 

ship in size of 14,000TEU (Okada et al., 2017) are used for validations. The ship motion time series under 

two different maneuvering conditions are used, and the validity of PSWF-based instantaneous ACF for 

predicting (non-stationary) ship motions is finally discussed. 

 

2.  ACF BASED PREDICTION BY PSWF 

2.1. Conditional Prediction by ACF 

  The ACF-based conditional prediction adopted in this study is briefly introduced in this section. 

(Andersen et al., 2013; Lindgren, 1970; Nielsen et al., 2018; Nielsen and Jensen, 2017) can be referenced 

for the derivation of formulae and theoretical background. 

Let t0 be the start time of prediction. Using the recent n measurements, x(t0), x(t1),…, x(tn-1) where 

t0>t1>…>tn-1, the predictions at time t ahead of current time (t0) are given by 
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 r R x                                                             (1) 

 

where xmean denotes the mean value of x(t0), x(t1),…, x(tn-1). r(t) denotes the autocorrelation vector, Rn the 
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where r(t) denotes the ACF, which can be derived from either by using sample ACF directly or PSWF-based 

one based on the measurements prior to t0. 

 

2.2. Correction of Sample ACF by PSWF 

  If the sample ACF rs(t) is given by the time series measurements, then the PSWF-based ACF is written 

in the form (Takami et al., 2020b): 
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Here j  denotes the PSWF (Slepian and Pollak, 1961), c the Slepian frequency, Ne the number of PSWF 

components, and T the time length of ACF. If Ne takes a large value close to 2c/π, rp is very close to the 

sample ACF rs within 0 t T  , while smaller Ne results in a smoothed ACF where rp is converged to zero 

by a certain time (Takami et al., 2020b). Using the PSWF-based ACF rp, the PSD is also explicitly expressed 

by PSWF, as 
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where λj denotes the scaled eigenvalues of PSWF, and Ω the upper limit of angular frequency which satisfies 

the following relationship (Slepian and Pollak, 1961) 

 

c T                                                                             (6) 

 

  The numerical derivation of PSWF is made using the Legendre polynomials-based approach presented 

by (Xiao et al., 2001). In this study, PSWF of c=300 and c=600 are adopted from here onwards. The absolute 

values of the scaled eigenvalues λj with respect to c=300 and c=600 are plotted in Fig. 1. Indeed, the largest 

2c/π eigenvalues are dominant. The significant values of |λj| become |λj| 2 / c  (Moore and Cada, 2004). 

In many cases, Sp(ω) can be represented by using values of Ne smaller than 2c/π (Takami et al., 2020b). 

Since |λj| are nearly constant when Ne<2c/π, see Fig. 1, the PSWF-based PSD Sp(ω) can be expressed by 
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without any needs of calculating λj. Ne can be determined by the time at which the PSWF-based ACF 

converges, as discussed in sub-section 3.3.2. 

 

  
Fig. 1 Absolute values of the scaled eigenvalues λj with a) c=300 and b) c=600 

   

2.3. Modification of AC Matrix by Removal of Negative PSD + White Noise 

  It is known that the eigenvalues of a Toeplitz matrix, like a typical AC matrix, are asymptotically 

correlated to the discretized PSD components, see e.g. (Gray, 2006). Indeed, it was shown in (Takami et 

al., 2020b) that the PSWF-based PSD by Eq. (5) may include negative PSD depending on Ne value. Thus, 

the removal of negative values in PSD may provide a way to modify the AC matrix ensuring the positive 

definiteness. The removal of negative values is made for a given threshold value of PSDs, which means 

that the modified PSD becomes 
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where s denotes the constant value (i.e. threshold) indicating a lower limit of PSD. Note that the upper limit 

of ωi should be the Nyquist frequency, ωN=π/Δt., while the frequency range in PSWF-based PSD Sp defined 

by Eq. (5) is limited within 0≤ωi≤Ω. The modification by Eq. (8) implies that a bandlimited white noise is 

added to the nonnegative PSD Sp’(ωi). When the white noise covers the frequency range –ωN ≤ωi≤ ωN, the 

ACF corresponding to constant value of s in PSD can be expressed in a form (Jensen, 2001) 
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Eq. (9) implies that the variance of white noise is equal to sωN.  

Here suppose that the noise level correlates to the negative area of PSD. Thus, 
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where α denotes a correction factor to adjust the noise level, noting that α typically can be smaller than 1 

as also discussed later. Then, the modified AC matrix becomes 
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where 
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according to the Wiener–Khinchin theorem. The inverse matrix of Rn
* can be assigned to Eq. (1) and be 

used for predictions. The corrected ACF r*(t) is also introduced into the autocorrelation vector as  
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r*(t) is then assigned to Eq. (1) and be used for predictions as well.  

 

3.  SENSITIVITY ANALYSIS BY USING EXPERIMENTAL 

MEASUREMENTS 

 

3.1. Data Summary 

  In this section, the experimental measurements in (Nielsen et al., 2018) are used to validate the present 

ACF based prediction method using PSWF and to perform sensitivity analyses. The measurements originate 

from model tests with a platform supply vessel model in scale 1/30 with dimensions; Lpp = 1.97 [m] and B 

= 0.44 [m]. The model has eight 12 V batteries supplying power to the thrusters equipped in the model and 

a National Instruments™ CompactRIO (cRIO) that runs the dynamic positioned control system. The case 

of a heave motion time series of duration 780 [s] (named as ‘Case 2a’ in (Nielsen et al., 2018)) is used, see 
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Fig. 2. The time series data have been measured at 20Hz, thus Δt=0.05 [s], under head sea condition with 

zero forward speed. A low-pass filter (LPF) with cut-off frequency of ωLPF=20 [rad/s] is applied to exclude 

high-frequency noise, and a rectangular window is used as a window function. The stationary irregular 

waves are generated according to the JONSWAP type wave spectrum with significant wave height of 5.0 

[cm] and peak wave period of 0.9 [s]. The PSD of heave motion is calculated by FFT and plotted in Fig. 3. 

The input wave spectrum is also plotted by a black dotted line, as a reference. The smoothing of the heave 

motion PSD is made by using WAFO (Brodtkorb et al., 2000) with smoothing window functions of 240 

elements/weights as demonstrated in (Nielsen et al., 2018), and presented in Fig. 3 with a red solid line. The 

dominant frequency band of the heave motion is distributed widely within 5-10 [rad/s], as also observed in 

(Nielsen et al., 2018). Fig. 4 shows the CDF of the heave motion measurements, including the fitting by the 

normal distribution. Although an initial "run-in phase" may have appeared in the measured time series, the 

present heave motion can be regarded as a stationary process, since the CDF is very close to the normal 

distribution.  

 

  

Fig. 2 Heave motion time series by experimental measurements (Nielsen et al., 2018) 

 

  

Fig. 3 PSD of heave motion time series and input wave spectrum 
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Fig. 4 Cumulative density function of heave motion from the model experiment  

 

3.2. Prediction Setups 

  Three different combinations of T and Ω as listed in Table 1 are employed for a series of predictions by 

PSWF-based ACFs. The AC matrices of the size corresponding to the time length T are used for predictions, 

i.e. 201  201 on Case A and 301  301 on Case B and Case C. The instantaneous sample ACFs are 

calculated according to the following discretized form (Kitagawa, 2010), 
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where µx denotes the mean value of discretized measurements xm within 0 0 [s]t T t t   .  

  Note that for Case A and Case C, Ω values are larger than the cut-off frequency of the time signal, 

ωLPF=20[rad/s]. In these cases, the PSWF-based PSD Sp(ω) occasionally includes non-zero value within 

ωLPF  ω  Ω [rad/s] depending on the choice of Ne value. To avoid this, in Case A and Case C, Sp
’ in Eq. 
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used, tpre=1.5, 3.0, and 6.0 [s].  

 

Table 1 Combinations of c, T, Ω, and AC matrix size for each case. 

 c  T [s] Ω [rad/s] AC matrix size n 

Case A 300 10 30.0 201 

Case B 300 15 20.0 301 

Case C 600 15 40.0 301 

 

 

Fig. 5 Sequential prediction procedure using instantaneous ACFs  
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tt0

Measurements x(t)

t0-T

Calculate sample ACF by Eq. (14)

Correction of ACF using PSWF by Eq. (3)

Step 1

Step 2

Step 3 AC matrix modification by Eq. (11)

Step 4 Prediction up to tpre ahead by Eq. (1)

tt0

Predictions ˆ( )x t

t0+tpre

t0+tpret0+tpre-T

t0+2tpre

1

1

2

2

…

…



Takami et al. (2021)  Post-print 

11 
 

  The PSWF-based ACF (rp) and modified ACF (rp
*) are introduced into the 301×301 AC matrices, and 

then the eigenvalues are examined. Fig. 8 shows a comparison of eigenvalues. Here, α=1.0 is employed. 

One can find that negative eigenvalues appeared without modification of ACF. By applying the present 

PSD modification approach, on the other hand, all the eigenvalues are indeed corrected to positive values. 

In contrast to the normal EVD based approach, e.g. see (McMurry and Politis, 2015), this PSD modification 

approach allows real-time computations.    

 

  

Fig. 6 Comparison of ACFs among sample ACFs, PSWF based ACF (rp), and modified one (rp
*). 105-120 

[s] measurements are used for calculating sample ACF. Ne=124 is employed 

 

  

Fig. 7 Comparison of PSDs among FFT result, PSWF based ACFs (Sp), and modified one (Sp
*). 105-120 

[s] measurements are used for calculating FFT. Ne=124 is employed 
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Fig. 8 Comparison of eigenvalues of 301×301 PSWF-based AC matrices with Case B, Ne=124 
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Fig. 9 Plots of rp(0)/rs(0) with respect to Ne values 

 

  

  
Fig. 10 Memory time of PSWF-based ACFs with respect to Ne values 

 

3.3.3 Sensitivity analysis on noise level 
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[s]. The Pearson Correlation Coefficient ρ is calculated in order to evaluate the prediction accuracy: 
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where x  and x̂  denote the mean values of measurements and predictions, respectively. N is the number 

of predictions or measurements corresponding to the time range from T [s] to 780 [s]. According to (Taylor, 

1990), ρ  0.35 is generally considered to reflect low or weak correlation, 0.36 to 0.67 modest or moderate 

correlation, while 0.68 to 1.0 indicates strong or high correlation. Another metric, like the Determination 

Coefficient R2, may also give insights on prediction accuracies. However, in the following discussions focus 

will only be on ρ values, while results on R2 are listed in Appendix 1 as supplemental information, since 
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checking ρ values should suffice to judge the prediction accuracy. 

  Under the prediction time length of tpre=1.5 [s], the evaluated ρ are plotted with respect to α values for 

each case in Figs. 11, 12, and 13. Ne=124 is used on Case A and Case B, while Ne=250 is used on Case C. 

α values are changed within 0<α<1. In the figures, ρ from direct use of sample ACF are denoted by black 

dotted lines. From the figures, for Case A and Case C, the smaller α value apparently leads to better 

prediction accuracy rather than the direct use of sample ACF, as evaluated by ρ values. However, in the 

event of too small α value, e.g. in the case of α=0.0001, the accuracies are reduced. This is attributed to the 

near non-positive definiteness of AC matrices in some cases. As a reference, prediction results within 225-

230 [s] from sample ACF, i.e. Case A with α=0.01 versus Case A with α=0.0001, are compared with the 

measurements in Fig. 14. The prediction results around 227-229 [s] show high frequency oscillations due 

to the near non-positive definiteness of AC matrices. Therefore, a selection of smallest possible α is ideal 

to obtain reliable prediction results by PSWF-based ACF. As for Case B results, the dependence on the 

noise level to the prediction accuracy is found to be more sensitive than the other cases. In this case, α=0.2 

provides the best accuracy.  

 

 

Fig. 11 Correlation coefficient ρ with respect to α values on Case A. Ne=124 and tpre=1.5 [s] are applied 

 

 

Fig. 12 Correlation coefficient ρ with respect to α values on Case B. Ne=124 and tpre=1.5 [s] are applied 
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Fig. 13 Correlation coefficient ρ with respect to α values on Case C. Ne=250 and tpre=1.5 [s] are applied 

 

 

Fig. 14 Comparison of predictions results within 225-230 [s] by sample ACF and Case A with different α 

values. Ne=124 and tpre=1.5 [s] are applied 
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  By Comparing Cases B and C results, which are those with the same T length, one can find that Case C 

has a higher prediction accuracy. This is owning to the smaller noise level α in Case C. It is inferred that 

under the same time length T, the larger Slepian frequency c value allows the choice of a smaller α and thus 

guarantees a stable prediction accuracy. 

 

Fig. 15 Correlation coefficient ρ with respect to prediction time length tpre and Ne values on Case A. 

α=0.01 is employed 

 

 

Fig. 16 Correlation coefficient ρ with respect to prediction time length tpre and Ne values on Case B. 

α=0.01 is employed 

 

 

Fig. 17 Correlation coefficient ρ with respect to prediction time length tpre and Ne values on Case C. 

α=0.01 is employed 
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4.  APPLICATION TO FULL-SCALE MEASUREMENTS 

4.1. Data Summary 

  In this section, full-scale measurements of ship motions of a large containership in size of 14,000TEU 

(Okada et al., 2017) are used as input for a series of ACF based predictions. As examples, two sets of 3600 

[s] measurements of wave-induced vertical acceleration and roll motion at the Bosun store in the ship at 

different measurement periods are used, named as State 1 and State 2. The detailed locations of the ship on 

these states can be seen in Fig. A6 in Appendix 2 based on the GPS data histories. Associated integral wave 

parameters, representing the wave conditions during the measurement periods, have been provided by JWA, 

and Table 2 lists estimates of significant wave height, significant wave period, and mean wave direction, of 

which definitions follow e.g. (Goda, 2010). The parameters have been derived from a hindcast analysis 

made by NCEP and are the result of computations made using the third generation spectral wave model 

WAM (Komen et al., 1994).  

  The course and speed over ground during the measurements are examined based on the GPS data and 

plotted together with vertical acceleration and roll motion time series in Fig. 18. Time series data of the 

ship motions are stored at 10Hz using a gyro sensor. The vertical acceleration time series indicate stable 

mean values close the gravity acceleration (-9.81 [rad/s]), throughout the measurement time. The course is 

positive in the clockwise direction where North is 0 [deg]. As for State 1, the ship was sailing in the same 

direction with almost constant forward speed. Thus, it is deduced that only the non-stationarity in the 

seaway may influence the wave-induced responses in State 1. Since the mean wave direction over ground 

was 5.5 [deg] as seen from Table 2, it is assumed that the ship was sailing under nearly the following sea 

condition. On the other hand, State 2 indicates the large variations in course and ship speed. Such kind of 

maneuvering is expected to induce non-stationary effects in the wave-induced responses in State 2 on top 

of the non-stationarity in waves. One can find a significant difference in the amplitudes of vertical 

accelerations between State 1 and State 2, even though the significant wave height and wave period are 

similar in the two situations. This fact confirms that changes in ship speed and voyage direction has a 

significant effect on the motion amplitude. For State 1, a large roll motion has been observed, while the roll 

motion under State 2 is not significant, although large variations in the mean value occurs over a long period 

of time. 

  The PSDs of vertical accelerations are shown in Fig. 19, together with zooms of high frequency 

components. The gravity acceleration has been subtracted from each signal of vertical acceleration in 

calculating PSDs. Although the PSDs are noisy because of the limited time range and of spectral leakage 

(Box et al., 2008), the PSDs are wide-banded in frequency content especially in State 1. The high frequency 

components distribute within 3.0 to 9.0Hz. As a reference, Fig. 20 shows a zoom of the times series at 1000-

1100 [s] under State 1. The mean values are adjusted to zero in Fig. 20. The high frequency noise caused 

by structural vibrations appears significant in the raw vertical acceleration time series. This high frequency 
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noise has been removed from the measurements in order to distinguish the wave-induced components. 

Hence, the LPF with cutoff frequency of 1.0[rad/s] is applied to the raw data and are compared in the figure. 

As seen from Fig. 20, the high frequency components can be removed from the vertical acceleration 

measurements by the LPF. In the following prediction cases, the low-pass filtered data with cutoff frequency 

of 1.0 [rad/s] are used for a series of predictions, both for State 1 and State 2. Fig. 21 shows the CDFs of 

the vertical acceleration measurements under State 1 and State 2. From the CDFs, the measurements under 

State 1 are almost in stationary state, whereas non-stationarities can be found in State 2 measurements.  

The PSDs of roll motion measurements are shown in Fig. 22. The PSD under State 1 indicates a quite 

narrow-banded response with large amplitudes, while State 2 indicates small amplitudes. It is deduced that 

parametric rolling likely led to the large roll motion amplitudes in State 1, as the ship sailed in following 

sea in this condition. In this sense, conditions are equivalent to cases studied by (Nielsen and Jensen, 2009) 

which showed that encounters of parametric rolling may appear quite regularly when conditions are right; 

almost like large rolling is being turned on and off with a fixed time interval. In contrast to State 1, speed 

and course controlling during State 2 voyage suppressed large motion. The results and discussion onwards 

will focus only on the vertical accelerations, while those on the roll motions are presented in Appendix 3; 

noting that roll motion generally is a more resonant type of response (narrow-banded in its frequency 

content) hence being relatively easier to deterministically predict. 

   

Table 2 Sea states estimated by JWA. Note that mean wave direction is defined in the standard NED frame 

of reference and indicates where the waves come from. 

  
Significant wave height 

Significant wave period Mean wave 

direction 

State 1 5.05 [m] 8.3 [s] 5.5 [deg] 

State 2 4.17 [m] 7.2 [s] 197.3 [deg] 
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  a) State 1 

 

 

 

  b) State 2 

Fig. 18 Course, ship speed, vertical acceleration, and roll motion histories during the measurements on 

State 1 and State 2 
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a) State 1 

   

                                b) State 2 

Fig. 19 PSDs of vertical acceleration under State 1 and State 2 

  

 

Fig. 20 Zoom of times series of vertical acceleration within 1000-1100 [s] under State 1 comparing with 

low-pass filtered one 
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Fig. 21 Cumulative probability distributions of the vertical acceleration of the full scale containership 

under State 1 and State 2  

 

 

a) State 1                                b) State 2 

Fig. 22 PSDs of roll motion under State and State 2 

 

4.2. PSWF Settings for Instantaneous ACFs 

  The predictions are made using the recent 100 [s] past measurements and instantaneous ACFs with same 

length in every case, i.e. the AC matrix size of n=1001 as sampling frequency of 10Hz. The PSWF of c=300 

is used. According to the relationship in Eq. (6), T=100 [s] and Ω=3 [rad/s] are employed. Using a typical 

ACF from the vertical acceleration measurements under State 1, the non-dimensional variance values in 

PSWF-based ACFs, i.e. rp(0)/rs(0), and the memory time of PSWF-based ACFs are calculated and plotted 

with respect to Ne values in Fig. 23. The memory time in Fig. 23 b) is defined as the time over which the 

ACF converged to 0.1% of the signal variance or less, i.e. 0.001rs(0). From Fig. 23 a), the appropriate 

representations of rs(0) value by PSWF is expected when Ne>50. In the following prediction cases, three Ne 

values, Ne=84, 124 and 150 with expected memory time as 76 [s], 88 [s], and 94 [s], respectively, are 
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               a) ACF at t=0 [s]                           b) Memory time of ACF 

Fig. 23 Plots of rp(0)/rs(0) with respect to Ne values (left) and memory time of PSWF-based ACFs with 

respect to Ne values (right) 
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ACF underestimates the amplitudes.   

 

 

Fig. 24 Comparisons of ρ values of prediction results on vertical acceleration under State 1. Instantaneous 

ACFs are taken from recent 100 [sec]. α=0.2 is employed 

 

  

Fig. 25 Comparisons of ρ values of prediction results on vertical acceleration under State 2. Instantaneous 

ACFs are taken from recent 100 [sec]. α=0.2 is employed 

 

 

Fig. 26 Comparisons of prediction results within 900-1000 [s] from sample ACF and PSWF-based ACF 

(Ne=124, α=0.2) on vertical acceleration under State 2. tpre=10 [s] is used. Instantaneous ACFs are taken 

from recent 100 [sec].  
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4.4. Instantaneous ACF vs. Long-term ACF 

  Finally, the presented prediction results based on the instantaneous ACFs are compared with those when 

the sample ACFs are taken from recent measurements but of a long(er) period; in the following referring to 

this ACF as ‘long-term ACF‘. The long-term ACFs are calculated from the past 3600 [s] before starting a 

prediction, i.e. T=3600 [s], and then the predictions are made using past 100 [s] measurements using ACF 

up to 100 [s], i.e. the AC matrix size is n=1001. Based on the course and speed records, investigation of the 

former 3600 [s] before State 1 and before State 2 confirms that the ship was sailing at almost constant 

course and speed in both cases. 

  The predictions on vertical accelerations under State 1 and State 2 are made in the same manner as 

instantaneous ACF cases according the procedure in Fig. 5. The evaluation metric ρ are shown in Figs. 27 

and 28 that contain the comparison with the instantaneous ACF-based results. Note that the sample ACFs 

are directly used for predictions based on the long-term ACFs. Ne=124 and α=0.2 are used as with the 

instantaneous ACF-based results using PSWFs. Sort of intermediate ρ values are also calculated, thus the 

metrics are computed for the first and second halves of the full time span, i.e. a computation for the 100-

2000 [s] span and another for the 2000-3600[s] span on both State 1 and State 2; these results are shown in 

subfigures b) and c). From Fig. 27, in the case of State 1, the long-term ACFs give the best accuracy, at the 

expense of computational efforts in calculating sample ACFs of recent 3600[s]. Better accuracies are also 

found for the cases with a long prediction time tpre. As can be found from the probability distribution in 

State 1, see Fig. 21, the vertical acceleration under State 1 can be regarded as very close to being stationary, 

and, consequently, the larger value of T is considered to guarantee better prediction accuracy.  

  However, in the case of State 2, see Fig. 28, the long-term ACF does not provide better accuracies than 

the instantaneous ACF based results, in particular in the 2000-3600 [s] span, as evaluated by ρ. This trend 

becomes remarkable for longer tpre cases, see tpre=30 [s] and 60 [s] results. It is clear from Fig. 18 b) that 

the ship course was changed during State 2, and this has in turn led to a significant change in the heading 

angle relative to the waves. Thus, it is inferred that such maneuvering-induced non-stationarity results in 

the deterioration of the predictions using the long-term ACFs. It is also evident from Fig. 28 that the use of 

the instantaneous ACFs is effective in predicting wave-induced responses where maneuvering effects occur. 

  As presented by (Nielsen et al., 2018), the instantaneous ACFs and corresponding AC matrices can be 

stored for a certain period and reused for predictions, an approach by which the computational efforts of 

calculating the instantaneous ACF and AC matrix inversions can be reduced. For this reason, the 

instantaneous ACFs are updated every 300 or 600 [s], i.e., only executing Steps 1 to 3 in Fig. 5 every 300 

or 600 [s]. In this case, the prediction results of the vertical acceleration under State 2 are compared in Fig. 

29. tpre=30 [s] is adopted and the sample ACFs are used for all predictions without using PSWF. For 

comparison, the instantaneous ACF based results from every 30 [s] updates of instantaneous ACFs, which 

are already shown in Fig. 28, are plotted. From Fig. 29 a) and Fig. 29 b), the prediction accuracies are 

almost comparable within 100-3600 [s] or 2000-3600 [s], however, the accuracy has deteriorated within 
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100-2000 [s] when the 300 or 600 [s] updates are applied. In consequence of these demonstrations, it is 

inferred that frequent updates of instantaneous ACFs may be ideal, in particular if the ship response includes 

maneuvering-induced non-stationary effects. 

  

 

  a) 100-3600 [s] 

 

  b) 100-2000 [s] 

 

  c) 2000-3600 [s] 

Fig. 27 Comparisons of ρ values of prediction results on vertical acceleration under State 1. Compared 

with long-term ACF based results. α=0.2 is employed for PSWF-based predictions 
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  a) 100-3600 [s] 

 

  b) 100-2000 [s] 

 

  c) 2000-3600 [s] 

Fig. 28 Comparisons of ρ values of prediction results on vertical acceleration under State 2. Compared 

with long-term ACF based results. α=0.2 is employed for PSWF-based predictions 
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  a) 100-3600 [s] 

 

  b) 100-2000 [s] 

 

  c) 2000-3600 [s] 

Fig. 29 Comparisons of ρ values of prediction results on vertical acceleration under State 2. Compared 

with long-term ACF based results  

 

5.  CONCLUSIONS  
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Prolate Spheroidal Wave Functions (PSWF) were introduced to smooth the sample ACF, together with a 

modification of the autocorrelation (AC) matrix, in order to ensure positive definiteness. The validity of 

PSWF-based ACFs is checked using stationary and non-stationary ship motion measurements from, 

respectively, model experiments under stationary wave excitations and in-service operations of a container 

ship. The following conclusions can be drawn: 

1. By modifying the PSWF-based power spectrum density (PSD) in terms of removal of negative 

PSD together with noise inclusion, positive definiteness of AC matrices can be ensured. This 

procedure facilitates the computation of ACF-based predictions in real-time without the need to 

compute eigenvalues in AC matrices. 

2. A series of validations using experimentally measured heave motion revealed that the use of 

PSWF-based ACFs led to better prediction accuracy than direct use of sample ACFs, owing to the 

smoothing of large-lag time errors in the sample ACFs. The application of smallest possible noise 

level was found to be ideal for obtaining better prediction results. The larger Slepian frequency 

value allows the choice of the smaller noise level and then guarantees a stable prediction accuracy. 

3. Improvement of prediction accuracy by PSWF-based ACFs was also found for cases based on full-

scale ship motions, where the vertical acceleration of the ship was considered. In the 

demonstrations, the better prediction accuracy was confirmed by comparing to similar results 

based on the sample ACF; this was observed for prediction horizons up to 30 [s]. It was also shown 

that the PSWF-based ACFs predict the extreme motion amplitudes with reasonable accuracy, 

whereas the sample ACF underestimates the amplitudes. 

4. When the vertical acceleration measurements are from a stationary state with only insignificant 

maneuvering effects, the ACFs from recent long-time measurements (long-term ACFs) provided 

better prediction accuracy. On the other hand, when the vertical acceleration measurements are 

influenced by maneuvering effects, a benefit of using the instantaneous ACFs was demonstrated 

by comparing with long-term ACF based results. In this sense, the effectiveness of using the 

instantaneous ACF on non-stationary wave-induced responses has been presented, and it was 

inferred that (large) changes in ship speed and heading angle relative to waves require frequent 

updates of the instantaneous ACFs. 

The present ACF-based prediction method has a potential to be useful for extrapolating Karhunen–Loeve 

representation of ocean waves (Sclavounos, 2012); noting that the Karhunen–Loeve wave representation 

generally can be applied for efficient extreme value predictions together with the First Order Reliability 

Method (Jensen, 2021; Takami et al., 2020a). This is currently under investigation. 
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APPENDIX 1 

  The Determination Coefficient R2 can calculated according to 
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R2 values with respect to prediction results are calculated in the same manner as the Pearson Correlation 

Coefficient ρ for experimental measurements and full-scale vertical acceleration measurements and are 

shown in Figs. A1 to A5. The same trends as those shown by the value of ρ is observed In terms of prediction 

accuracy. 

 



Takami et al. (2021)  Post-print 

32 
 

 

Fig. A1 Determination coefficient R2 with respect to prediction time length tpre and Ne values on Case A 

using experimental measurements. α=0.01 is employed 

 

 

Fig. A2 Determination coefficient R2 with respect to prediction time length tpre and Ne values on Case B 

using experimental measurements. α=0.01 is employed 

 

 

Fig. A3 Determination coefficient R2 with respect to prediction time length tpre and Ne values on Case C 

using experimental measurements. α=0.01 is employed 
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Fig. A4 Comparisons of R2 of prediction results on vertical acceleration from full-scale measurements 

under State 1. Instantaneous ACFs are taken from recent 100 [sec]. α=0.2 is employed 

 

  

Fig. A5 Comparisons of R2 of prediction results on vertical acceleration from full-scale measurements 

under State 2. Instantaneous ACFs are taken from recent 100 [sec]. α=0.2 is employed 

 

APPENDIX 2 

  The voyage histories of the full scale container ship under State 1 and State 2 are examined by using the 

GPS data. The ship locations have been recorded at every 1 hour and plotted in Fig. A6. The positions of 

the ship for several hours before and after State 1 and State 2 are also plotted so that the sea routes can be 

visualized. It is presumed that the ship was changing the course from northward to westward direction, 

during State 2. 
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Fig. A6 Voyage histories of the full scale container ship derived from GPS data. Date and time are 

described in UTC 

 

APPENDIX 3 

  The instantaneous ACF-based predictions on roll motion measurements are made in the same manner as 

the vertical acceleration cases in Section 4.3. The raw time series without application of the LPF are used 

for predictions. α=1.0 is employed for setting the noise level. The prediction results are compared in Figs. 

A7 and A8. For State 1, the tendency in terms of the improvement by the PSWF is in line with the vertical 

acceleration cases as described in Section 4.3. On the other hand, the changes in ρ and R2 depending on tpre 

are not significant in the case of State 2. This is due to a fact that the roll motion in this case indicates an 

extremely narrow-banded behaviour, i.e. the roll motion is dominated by the effects of resonance. This can 

be also found by looking the PSD shape of this case, see Fig. 22. 
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Fig. A7 Comparisons of ρ and R2 of prediction results on roll motion under State 1. Instantaneous ACFs 

are taken from recent 100 [sec]. α=1.0 is employed 

 

 

Fig. A8 Comparisons of ρ and R2 of prediction results on roll motion under State 2. Instantaneous ACFs 

are taken from recent 100 [sec]. α=1.0 is employed 
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