
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Lindtvedt, Bascunan &
 Kristiansen

Sebastian Lindtvedt
Salvador Bascunan
Dennis Kristiansen

Cloud-native solution for building
digital twins

Bachelor’s thesis in Bachelor in Programming
Supervisor: Tom Røise
May 2022Ba

ch
el

or
’s

th
es

is

Sebastian Lindtvedt
Salvador Bascunan
Dennis Kristiansen

Cloud-native solution for building
digital twins

Bachelor’s thesis in Bachelor in Programming
Supervisor: Tom Røise
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Summary of Bachelor Project
Title Cloud-native solution for building digital twins

Project No. 32
Date 20.05.2021

Authors Sebastian Lindtvedt
Salvador Bascunan
Dennis Kristiansen

Supervisor Tom Røise

Client Glex AS
Contact Person Jørgen Engen Napstad

Keywords CCS, Digital Twin, Full Stack, REST API, Cloud Native, Azure
Pages 100
Attachments 9
Availability Open

Abstract Glex develops digital twins for their customers. In 2022, they
announced a task in which they want to explore the possibility
of digital twins within ocean space. The task developed into a
general solution for generating digital twins based on data. The
general solution is used to create a digital twin of Smeaheia, an
area for CO2 storage. This thesis describes the process around
a full-stack development project, with the cloud architecture in
focus. The end product is a solution consisting of several micro-
services for data processing, a REST API and a website.

i

Sammendrag av Bacheloroppgave
Tittel Cloud-native solution for building digital twins

Prosjekt Nr. 32
Dato 20.05.2021

Deltakere Sebastian Lindtvedt
Salvador Bascunan
Dennis Kristiansen

Veileder Tom Røise

Oppdragsgiver Glex AS
Kontaktperson Jørgen Engen Napstad

Nøkkelord CCS, Digital Twin, Full Stack, REST API, Cloud Native, Azure
Antall sider 100
Antall vedlegg 9
Tilgjengelighet Open

Sammendrag Glex utvikler digitale tvillinger for sine kunder. I 2022 utlyste
de en oppgave der de ønsker å utforske mulighetene for di-
gitale tvillinger innen havrom. Oppgaven utviklet seg til å bli
en generell løsning for å genere digitale tvillinger basert på data.
Den generelle løsningen anvendes for å skape en digital tvil-
ling av Smeaheia, et område for CO2 lagring. Denne oppgaven
beskriver prosessen rundt et fullstack utviklingsprosjekt, med
skyarkitekturen i fokus. Sluttproduktet er en løsning bestående
av flere mikrotjenester for prosessering av data, et REST API og
en nettside.

ii

Preface
We would like to thank everyone involved in this bachelor’s project. Thanks to our

supervisor, Tom Røise, for continuous support and feedback during the development
of this project. Our client, Glex, provided us with a unique task within a field we had
no previous experience in. We are thankful for this opportunity, and we would like to

thank our Product Owner, Jørgen Engen Napstad together with Brit Thyberg and
Patrick Sullivan, for their active engagement and assisting us in developing the best

possible solution.

iii

CONTENTS

Contents

List of Figures vii

List of Tables ix

List of Listings xi

1 Introduction 1

1.1 Domain . 1

1.2 Target Audience . 4

1.3 Group Background . 5

1.4 Delimitations . 5

1.5 Constraints . 6

1.6 Project Goals . 6

1.7 Group organization . 8

1.8 Thesis Structure . 8

2 Requirements 10

2.1 Use Case . 13

2.2 Performance . 16

2.3 Security . 16

3 Development Process 17

3.1 Project Characteristics . 17

3.2 Software Development Model . 17

3.3 Project management tools . 20

3.4 Version Control and Code Organization . 20

3.5 Gantt Diagrams & Sprint Breakdowns . 20

4 Graphical User Interface 25

4.1 Figma . 25

4.2 Improvements . 27

4.3 Final Result . 28

5 Technical Design 29

5.1 System Architecture . 29

5.2 Architecture Alternative . 30

5.3 Frontend . 31

iv

CONTENTS

5.4 REST API . 32

5.5 Persistent Storage . 33

5.6 Surfaces . 35

5.7 Well logs . 37

5.8 Faults . 38

5.9 Horizons . 39

5.10 Security . 40

6 Testing 41

6.1 Test Driven Development . 41

6.2 Automated Testing . 41

6.3 Manual Testing . 44

6.4 User Testing . 44

7 Implementation 46

7.1 Frontend . 46

7.2 REST API . 47

7.3 Surfaces . 49

7.4 Wells and well-logs . 67

7.5 Faults . 74

7.6 Realtime data . 81

7.7 Horizons . 83

8 Deployment 85

8.1 Deploying to Azure . 85

8.2 Continuous Integration and Continuous Deployment . 86

9 Discussion 91

9.1 Development Process . 91

9.2 Test Driven Development . 93

9.3 Technical Design . 93

9.4 Product . 96

9.5 Group collaboration . 97

9.6 Time allocation . 98

10 Conclusion 99

10.1 Process . 99

v

CONTENTS

10.2 Product . 99

10.3 Future Development . 99

10.4 Final words . 100

References 101

Appendix 105

A Project Plan 105

A Background . 105

B Domain . 105

C Project Goals . 106

D Delimitation . 107

E Framework . 108

F Case Description . 108

G Project Organization . 109

H Planning, Follow up and Reporting . 111

I Organization of Quality Assurance . 115

J Plan of Action . 120

B Project Agreement (Prosjektavtale) 121

C Task Description (Oppgavebeskrivelse) 128

D Meeting Minutes 131

E Sprint Retrospectives 164

F Timesheets 170

G Project Data Notes 192

H Smeaheia Dataset License 198

vi

LIST OF FIGURES

List of Figures

1 Examples of surface layers . 3

2 Example of how a fault occurs . 3

3 Example of how faults are visualized in our solution. 3

4 Diagram of different roles in the project. 8

5 The different stages of issues . 19

6 The first prototype, used in the planning phase . 25

7 Prototype for faults menu . 26

8 Prototype for well-logs menu . 26

9 Showing the right side panel with toggle visibility menu 27

10 Final GUI . 28

11 Simplified data flow diagram of the solution . 30

12 Detailed data flow diagram of the solution . 30

13 Alternative data flow diagram of the solution . 31

14 Overview of persistent storage documents . 35

15 Overview of Surfaces service architecture . 36

16 Overview of Well logs service architecture . 38

17 Overview of Faults service architecture . 39

18 Shows the area around Smeaheia and the wells, indicating the depth of the sea bottom . . . 52

19 Surface with incorrect color interpolation . 54

20 Surface with correct color interpolation . 55

21 Poisson Surface Reconstruction . 57

22 Illustration showing ball-pivoting algorithm . 58

23 Ball-Pivoting Surface Reconstruction . 60

24 Mesh holes . 61

25 Normals with wrong orientation . 62

26 Resulting texture map . 72

27 A well-log as visualized by the frontend . 73

28 A wellbore, intersecting with surfaces, and with a lithostratigraphy map applied 74

29 Example of a fault . 78

30 Diagram showing the architecture in Azure . 86

31 Pull request with CI status indicating successful CI deployment 88

32 Overview of CI workflow . 89

33 Overview of CI jobs . 90

vii

LIST OF FIGURES

34 Overview of CI jobs expanded . 90

35 Overview of percentage use of time . 98

viii

LIST OF TABLES

List of Tables

1 Overview of sprint structure . 20

2 Step-by-step procedure for testing wep app . 44

3 Sample of feedback from Glex . 45

4 Overview of time spent on various activities . 98

5 Risk standard . 118

6 Risks . 118

7 Risk mitigation . 119

ix

LIST OF LISTINGS

List of Listings

1 PyTest test example from REST API . 42

2 PyTest fixtures from REST API . 42

3 REST API Test coverage report . 42

4 well-logs test coverage report . 42

5 Faults test coverage report . 43

6 Surfaces test coverage report . 43

7 Horizons test coverage report . 43

8 Wells are loaded using the manifest . 46

9 The wells is loaded . 47

10 The manifests module . 48

11 An API test showing how the manifest endpoint is tested 49

12 Parts of a surface file to illustrate the structure . 49

13 Two methods that work together in removing comments from surface files 50

14 Point cloud data organizing for Open3D . 50

15 Read data from input stream . 51

16 Method to modify vertex data . 51

17 Depth level values and pre-defined colors. 53

18 Parts of the depth level check to illustrate adding color 53

19 Method to add color to vertex . 53

20 RGB values set in range between 0 and 1 . 54

21 Create point cloud object . 56

22 Estimate normals for point cloud . 56

23 Generate mesh with Poisson Algorithm . 57

24 Method to calculate radius . 59

25 Generate mesh with Ball-Pivoting algorithm . 59

26 Calculate radius final version . 62

27 Method to handle point cloud final version . 63

28 Method that runs when function app is triggered for surfaces 64

29 Bindings in function.json . 65

30 Test method for remove_elements method . 65

31 Method to remove elements from list . 66

32 Surface method to load GlTF and compute normals . 66

33 Surfaces method that loads all surfaces . 67

34 Truncated example of well-log from 32/4-1 T2 showing depth vs. permeability 68

35 Simplified example of well-log from 32/4-1 T2 showing raw LAS file 68

36 Code for generating wellbore geometry . 71

37 Code for generating texture maps . 71

x

LIST OF LISTINGS

38 A truncated example of processed well-log . 72

39 The fault data format . 74

40 Point class test . 75

41 Point class implementation . 75

42 New fault encountered . 76

43 New fault stick encountered . 76

44 Connecting to the Fault’s blob client . 77

45 Parsing and inserting Faults data into CosmosDB . 77

46 Add all faults that have been enabled using the toggle menu 79

47 Creating fault components for each Fault . 79

48 Fault data complexity reduction . 79

49 Fault stick geometry generation . 80

50 Fault geometry generation . 80

51 Function for generating realtime flow rate . 81

52 Realtime endpoint . 82

53 Hook for fetching realtime data continously . 82

54 Code for generating a line graph with Victory . 83

55 Code for reading the shape file . 83

56 Branch selectors . 87

57 Concurrency group . 88

58 Workflow jobs . 89

xi

Glossary

Glossary

Atlassian Company offering tools for software engineering and software development. 92

Azure Microsoft’s cloud service. 93

Azure Functions Azure’s function as a service offering. 94

Azure Storage Explorer A program containing a GUI for accessing and manipulating data in Azure Blob

Storage. 6

CCS Carbon Capture and Storage [59]. 2, 100

chronostratigraphy The study of the ages of strata. The comparison, or correlation, of separated strata

can include study of their relative or absolute ages[33]. 12, 27, 71

Confluence Atlassian’s document authoring solution. 92

DOM HTML Document Object Model. The parsed form of an HTML document. 44

Figma Prototyping and wireframing software. 25, 26

Flask Minimal Python framework for web applications. 32, 33, 47, 48, 93

glTF A open specification format for models and scenes. x, 32, 34, 37, 50, 55, 64, 66, 72, 94

Jest A testing framework for JavaScript. 43

Jira Atlassian’s issue tracking solution. 92

lithological Pertaining to lithology, The study of rocks [61]. 71

lithostratigraphy The study and correlation of strata to elucidate Earth history on the basis of their li-

thology, or the nature of the well log response, mineral content, grain size, texture, and color of

rocks[34]. 4, 12, 27, 71

microservice A microservices architecture is an approach to building a server application as a set of small

services [27]. 1, 7, 10, 11, 17, 18, 29, 30, 32, 37, 47, 94, 96, 97

PyTest A testing framework for Python. 41, 42

React Popular frontend web development framework for JavaScript. 32, 34, 43, 44, 46, 47, 95, 97

React Testing Library A support library for writing DOM tests for React components. 43

React Three Fiber A JavaScript library combining ThreeJS and React. 32, 46, 95, 96

xii

Glossary

SDK Software Development Kit. 35–37, 39, 47, 93

strata Layers of sedimentary rock[35]. 71

ThreeJS A JavaScript library enabling 3D rendering using WebGL. 31, 32, 34, 44, 46, 47, 50, 66, 79, 95,

100

TVD True Vertical Depth, [63]. 69, 70

TVDKB True Vertical Depth Kelly Bush, [64]. 69

TVDSS True Vertical Depth Sub Sea, [65]. 69

Unity A high quality game engine. 95, 96

webgl WebGL is a cross-platform, royalty-free open web standard for a low-level 3D graphics API based

on OpenGL ES [55]. 96

wellbore The drilled hole or borehole, including the openhole or uncased portion of the well [37]. 4, 11,

12, 37, 67–71, 73, 94, 95

xiii

1 INTRODUCTION

1 Introduction

As of May 2022, there is a live version of the web-app. We recommend running it on a 1920x1080 resolu-

tion.

This bachelor’s task was provided by Glex, our contact person was Jørgen Engen Napstad.

Glex is a company based in Bergen. Their focus areas are a unique mix of game development, geology

and geospatial technology. Glex focuses on building solutions that solve complex problems for several

customers.

Glex’s main building blocks consist of Oil & Gas Exploration, Deep Sea Minerals, Renewable Energy,

and Carbon Capture & Storage. With this unique toolkit, Glex is able to provide customers an end-to-end

solution for managing and staying up to date with their exploration and/or renewable portfolios.

Currently, Glex has a couple of customers using their main software, Glex Energy[14]. This is within

the Oil & Gas Exploration industry. For the time being, this is Glex’s main area of focus, but they are

experimenting with new segments, such as Carbon Capture and Storage.

For this project, Glex presented the idea of creating a digital twin, a virtual representation of a physical

object. The group discussed several different cases with Glex, in regards to what the project focus was

going to be. It was established early on that the group were to utilize a dataset that had to be processed

and converted to a format which were sensible for further visualization. One of the datasets which Glex

suggested for this purpose was the Smeaheia dataset. This dataset would serve as our specific project case.

During these discussions, the group quickly realized that the functionality required to parse and process

the Smeaheia dataset could be transformed into a more generalized format, facilitating the parsing of other

datasets in the future. This would result in a solution that was not only able to process the data in the

Smeaheia dataset, but any other datasets with similar types of data. The general idea behind the solution

was to have a microservices-like architecture that could handle a broad range of different datatypes, parsing

and processing them on-demand. The data would be both static and dynamic. Everything would then be

served through a REST API for the web-app to consume and display with a graphical user interface.

1.1 Domain

To establish a common knowledge ground for this thesis, a few clarifications regarding terminology and

concepts are beneficial.

Digital Twin

According to IBM[17]

A digital twin is a virtual model designed to accurately reflect a physical object. The object

being studied for example, a wind turbine is outfitted with various sensors related to vital areas

1

https://ashy-water-0bb63b703.1.azurestaticapps.net/

1 INTRODUCTION

of functionality. These sensors produce data about different aspects of the physical objects

performance, such as energy output, temperature, weather conditions and more. This data is

then relayed to a processing system and applied to the digital copy.

Carbon Capture & Storage

There is a growing need to be able to safely dispose of excess CO2 in the world today. This is especially

important in the Oil and Gas industry. Carbon capture and storage, CCS, is a solution to this. CCS is

a process where excess CO2 is captured at a production site and transported to a storage site where the

CO2 is stored permanently. Interest in this area has increased following The Norwegian Government’s

announcement of project Longship, Equinor’s project Northern Lights, and Blue Barents CSS project. All

projects dedicated to realizing the CSS potential present on The Norwegian Continental Shelf.

According to NPD[31]:

Depending on their specific geological properties, several types of geological formations can

be used to store CO2. In the North Sea Basin, the greatest potential capacity for CO2 storage

will be in deep saline-water saturated formations or in depleted oil and gas fields.

CO2 will be injected and stored as a supercritical fluid. It then migrates through the intercon-

nected pore spaces in the rock, just like other fluids (water, oil, gas).

And according to Gassnova[13]

We need to increase the efficiency of our energy consumption and promote sources of non-fossil

fuel energy. Yet despite advances in these areas and technological leaps forward in renewables

such as solar, wind and hydropower, the world is in danger of failing to meet those targets.

In turn, we are in danger of failing our responsibility to future generations. Energy intensive

industry accounts for 25% of global CO2 emissions and cannot go down to zero without CCS.

An area with potential for CO2 storage on the Norwegian Continental Shelf, is the Smeaheia area, located

on the Hordaland Platform in the North Sea near Mongstad. This area has been evaluated by both Gassnova

and Equinor, and together they have released and open-sourced a dataset containing subsurface data, reports,

and geomodels, for the purpose of encouraging research and learning around CCS. [42]

Surface Layers

The definition of a surface is - geology and correlation of rock formations, structures, and other features as

seen at the Earth’s surface [58]. In this case, we worked with sub-sea level surfaces which contains several

layers underneath itself. We have a seabed surface at the top, and multiple other layers of "rock" which

creates the context for other visualizations such as faults and well data. The surfaces in this dataset are

represented as a point cloud. An example of visualization of surfaces:

2

1 INTRODUCTION

Figure 1: Examples of surface layers

Faults

A fault is one or more fractures between two blocks of rock [53]. The visualization of faults is utilized to

increase the visibility of these fractures. A fault stick is a part of a fault, and is a single "line" within the

fault. Geologists use the angle of the fault with respect to the surface and the direction of slip along the

fault to classify faults[19]. Examples of visualization of faults:

Figure 2: Example of how a fault occurs

The fault sticks are the black lines, the fault itself is the red "plane"

Figure 3: Example of how faults are visualized in our solution.

3

1 INTRODUCTION

Wells

The well data consists of information about several parts that will be visualized in the scene. These are:

• Wellbores

The drilled hole or borehole, including the openhole or uncased portion of the well. Borehole may

refer to the inside diameter of the wellbore wall, the rock face that bounds the drilled hole[37]. In our

specific case, the wellbore is utilized for the injection of CO2.

• Well-logs

The measurement versus depth or time, or both, of one or more physical quantities in or around a

well[36]. These can be represented in the scene as geometry alongside the well trajectory, or as a 2D

graph.

• Lithostratigraphy

Lithostratigraphy is the study and correlation of strata, which are the layers of sedimentary rock [35],

of Earth history based on the well log response, mineral content, grain size, texture, and color of

rocks [34]. For instance, a lithostratigraphy log, can be a vertical slice of the earth, showing different

types of rockmass, like sandstone and slate. These rockmasses have different properties that are of

interest to a geologist.

• Chronostratigraphy

Chronostratigraphy is the study of the ages of strata. This comparison, or correlation, of separated

strata can include study of their relative or absolute ages [33].

1.2 Target Audience

The finished product will be of interest to several different actors. There will a resulting thesis, in addition

to a product.

1.2.1 Thesis

The thesis will primarily interest of the actors involved in the grading process of this project, but we do

believe that all individuals with an interesting in computer science and technology will find it interesting. It

is worth noting that some technical experience within software development and programming is expected,

in regards to understanding all aspects of the thesis.

1.2.2 Product

The solution we are developing will have different use cases for different actors. The entire solution is

targeted at Glex, which will be able to utilize it to create digital twins for their clients. The case-specific

4

1 INTRODUCTION

digital twin generated through the use of the pipeline utilizing the Smeaheia dataset will be targeted at

professionals within the field of Carbon Capture & Storage. This ranges from geologists to executives.

1.3 Group Background

We will shortly present the background of our group, both academically and motivationally speaking.

1.3.1 Academic Background

All the group members are students in the Bachelor in Programming programme, taught at NTNU Gjøvik.

All the courses we have had throughout the programme have contributed to our overall level of knowledge

and is thus contributing to our work on this project. There are some some courses that we deem especially

relevant:

PROG2053 - Web Technologies Overall knowledge of HTMl, CSS & JavaScript

PROG2002 - Graphic Programming Low level graphic programming

PROG2005 - Cloud Technologies Overall knowledge of cloud based programming

IMT3603 - Game Programming Development of interactive applications

PROG2052 - Integration Project Software development and project management

PROG2006 - Advanced Programming General knowledge of programming

PROG2051 - Artificial Intelligence Artificial Intelligence and machine learning

1.3.2 Motivations

When the group were reviewing the different project proposals, ambitious projects were in focus. We

wanted to pick a project that would be both challenging and educational. We were intrigued by the idea

of experimenting with new architectures and solutions within the field of digital twins, as it is a relatively

unknown and uncovered field within computer science [12].

We established a great connection with the client early on. We had a great talk after the presentations at

campus, which also served as a great incentive for choosing this project.

1.4 Delimitations

There are some delimitations in the project. The group is developing a solution capable of processing

any dataset similar to Smeaheia, but due to limited access to data, this project will only feature a single

geographic location, namely the Smeaheia storage site.

Carbon storage & Capture can be categorized into three different subsystems: Capture, Transport and Stor-

age. This project will only focus on the sub-system "Storage".

5

1 INTRODUCTION

Even though the solution requires data managers to handle the data associated with the different digital

twins, the group will not develop the interface for this functionality. For this purpose, Azure’s pre-existing

tools such as Azure Storage Explorer will be utilized.

1.5 Constraints

There are three different types of constraints we have to pay attention to.

1.5.1 Time

The first constraint we have is time. The task at hand is both large and complex, and it is easy to get carried

away. We therefore need to follow the development plan carefully, to ensure that we keep on track. The

project must be finalized within the 20th of May 2022.

1.5.2 Hardware and Software

Hardware is rapidly evolving, any requirements in this regards can therefore be deprecated quickly. Instead,

we will utilize some set browser versions as requirements for the web interface of the solution.

Users must utilize hardware supporting, and software version matching these browsers:

• Firefox 4+

• Google Chrome 9+

• Opera 12+

• Safari 5.1+

• Microsoft Edge build 10240+

1.5.3 Legal

The Smeaheia dataset comes with a license[44], whose terms we have to abide by. Some other assets have

been acquired under creative commons licenses. Mainly, this allows us to use the dataset, on the condition

that we credit Gassnova and Equinor.

1.6 Project Goals

1.6.1 Result Goals

• A general processing solution that facilitates generation of geological digital twins from data.

6

1 INTRODUCTION

• A digital twin, generated through the developed solution using the Smeaheia dataset and made ac-

cessible through a web interface.

• The solution should be able to process different data types, such as Surfaces, Horizons, Faults and

Well logs.

• The solution should be able to support real-time data.

• The solution should have plotting and visualization functionality to display processed data in graphs,

both in UI panels and in the scene.

• The solution must be modular and expandable.

1.6.2 Effect Goals

Qualitative Goals

• Determine the advantages/disadvantages of an alternative workflow in terms of the visualization of

digital twins, compared to Glex’s current solution.

• Increase the accessibility of high fidelity visualizations.

• Ease the process of generating geographic digital twins.

Quantitative Goals

• Reduce the time it takes to show implementation to clients.

• Increase the accessibility of digital twins.

• Reduce the hardware requirements required to view digital twins.

Learning Goals

• Learn more about Scrum based development.

• Learn more about Test Driven Development (TDD).

• Learn more about Git best practices, continuous development and continuous deployment.

• Learn more about project management.

• Learn more about microservices.

• Learn more about complex cloud architectures.

7

1 INTRODUCTION

1.7 Group organization

All the group members are primarily developers, in addition to this they have some secondary roles. This

means that the group members are of the Scrum team, and are responsible for taking on and completing

issues from the sprint backlog. The completion of all issues in each sprint is a shared responsibility for the

whole Scrum team.

Sebastian Lindtvedt is the group leader. This entails ensuring the project progresses forward in a satisfactory

manner. The group leader will also be responsible for solving internal conflicts.

Dennis Kristiansen is the Scrum master. The responsibilities of a Scrum master includes: maintaining the

issue backlog, training and coaching the other members on Scrum and agile development, removing barriers

for the Scrum team, and making sure the Scrum events take place and serve their purpose.

Salvador Bascunan is mainly responsible for communication with Glex. This will entail keeping track of

our weekly meeting invitations, schedule, change date or time if needed, and bringing topics between us

and Glex if needed.

Figure 4: Diagram of different roles in the project.

1.8 Thesis Structure

This thesis is structured into ten different chapters, each containing several sections. In addition to this, the

thesis includes a list of figures, tables, listings, and a glossary which can be found above the introduction.

We used a template from NTNU [46], made by Jon Arnt Kårstad. This provided us with the title page and

examples of how chapters and section could be implemented. Our chapter structure is based on internal

discussions within the group and feedback from our supervisor. The structure aims to facilitate what the

group members deemed an optimal reading experience of the thesis as a whole. Below is a short description

of each chapter in chronological order.

1. Introduction: Contains a introduction to the client, the task and the group.

2. Requirements: Covers the requirements for the solution, as well as specifications and requirements

8

1 INTRODUCTION

from the client.

3. Development Process: Contains the planning and process of the development.

4. Graphical User Interface: Covers the development of the graphical user interface.

5. Technical Design: Contains the groups technical design decisions regarding each part of the solution.

6. Testing: Covers our approach to test driven development, and other aspects of testing in the project.

7. Implementation: Contains a more detailed description of how the different aspects of the solution

were implemented.

8. Deployment: Covers how the solution was deployed to Azure, and our integration of CI and CD in

the development process.

9. Discussion: Contains reflections of how the technical design and implementation of the different

aspects of the solution worked.

10. Conclusion: Covers our own thoughts on the project process, product and future development. It

also covers a few final words on our learning experience in this bachelor’s project.

9

2 REQUIREMENTS

2 Requirements

The requirements for this project are a result of a collaboration process between the group and the client.

Glex made it clear from the beginning that they wanted a resulting digital twin, but they were unsure about

what they wanted the digital twin to be a virtual representation of. Through our first meetings we exchanged

some ideas, like:

• Offshore Windmill Park

• Carbon Capture and Storage

• Carbon Transportation

While discussing the different ideas with Glex, we identified that a more general digital twin generation

solution could be created for this project. This entailed creating separate modules to process and generate

visualizations based on the dataset. Glex supported the idea, but were concerned about the scope, believing

the project would be too large. Our main argument was that the resulting solution would allow Glex to

implement new digital twins from other datasets much faster, and save valuable development time for the

team and their clients in the future.

It was important for Glex that this digital twin would be derived from real world data. This was the main

reason for why the Smeaheia Carbon Capture and Storage dataset was selected. Even though the Smeaheia

site is not in production as of today (May 2022), it would still provide great insights into how a real-world

digital twin potentially could look like. In the dataset, we had data for surfaces, horizons, faults and well

data. Real-time data does not exist, as the site is not live yet. Real-time data will be mocked in this project.

Below we will cover the requirements we had for the cloud-native solution designed to handle the dataset,

as well as the specifications and requirements we received from Glex for the Smeaheia Carbon Capture and

Storage site specifically.

Cloud-Native Solution

As previously mentioned, the specific project case was a result of continuous conversations with Glex during

the project planning period. This made the group recognize that there was room to build a modular system

for generating the different aspects of the digital twin. In reality, this would look like this: A new file is

uploaded, the file then gets automatically parsed, processed and served to the web app, allowing a client to

get quick and flexible access to a visualized version of the data.

Cloud-Native Solution Requirements

• Several microservices for parsing and processing different data formats such as surfaces, horizons,

faults and well data.

10

2 REQUIREMENTS

By creating modular solutions for the parsing and processing of several different data types we

provide Glex with flexibility in regard to processing of new datasets in the future.

• All the microservices must be modular, loosely coupled and testable.

By creating microservices with these properties, we establish a environment which in itself is easily

extensible for further development.

Smeaheia Specification

The main objective of the specification was to build an interactive digital twin of the Smeaheia Carbon

Storage site. This is based on a subset of the existing historic data, as well as real-time data simulating an

active CO2 injection process. This meant that the digital twin should feature a 3D visualization of the area,

the Smeaheia Carbon Storage site. This included the well trajectories for the wellbores:

• 32/4-1 T2

• 32/4-1

• 32/2-1

It would also include a 3D seismic cube that represents the two areas, horizons and surfaces of the storage

site, and the fault sticks and well data. The well data would consist of different types of data such as

pressure, porosity, salinity, etc. In addition to this, the digital twin would include reports on crucial and

relevant information based on subsurface evaluations and interpretations.

This project showcases the possibilities that are enabled by creating digital twins for carbon storage. The

digital twin may later be integrated into the Glex Digital Platform and put in a regional context. This would

enable new ways of working and instant access to relevant data and knowledge for the end-users. The end-

users would be companies working with Carbon Capture and Storage on the Norwegian Continental Shelf

today. These are companies like:

• Shell

• Equinor

• Horisont Energi

• Northern Lights JV

• Vår Energi

Smeaheia Requirement 1 - Historical data to be implemented

For the digital twin, one of the requirements was to implement historical data. This is static data that would

be displayed either through graphs or generated into geometry. We will go through each of the requirement

11

2 REQUIREMENTS

and briefly explain what the requirement was, and point to the section where the development process of

the implementation is further explained.

• 3D Cube outlines for TNE01 and GN1101

These cubes would outline the areas in which the wells, faults, and surfaces would be. In this dataset

we only had data that would cover the GN1101 cube. Both cube outlines are implemented in the

scene.

• Interpreted surfaces from 3D seismic

The surface files we received through the dataset were point clouds. The files had to be parsed and

processed into generated geometry. We will explain how this was conducted in the Surfaces section

of the implementation.

• Faults

The fault files in the dataset had to be parsed and processed into geometry. This is further explained

in the Faults section of the implementation.

• Well locations and Trajectory surveys for wellbores 32/2-1, 32/4-1 and 32/4-1 T2

The well data for the wellbores contained the location and trajectory for the wells in the digital twin.

This data was contained within an Excel spreadsheet. Details regarding how these files were parsed

and processed is located within the Well logs section of the implementation.

• Composite log data for all wellbores

The composite logs in the dataset were in LAS format. Details regarding how these files were parsed

and processed is located within the Well logs section of the implementation.

• Lithostratigraphy and Chronostratigraphy data

The lithostratigraphy and chronostratigraphy data had to be retrieved from the Excel spreadsheets.

Details regarding how these files were parsed and processed is located within the Well logs section

of the implementation.

• Formation Pressure and Core Porosity/Permeability data

We received the formation pressure and core porosity/permeability data through an Excel spreadsheet.

Details regarding how these files were parsed, processed and plotted is located within the Well logs

section of the implementation.

Smeaheia Requirement 2 - Plotting and Visualization functionality

Our second requirement was to plot and visualize the dataset in different ways. The data that were to be

visualized in this manner:

• Composite Log Data

12

2 REQUIREMENTS

• Lithostratigraphy

• Chronostratigraphy

• Porosity/Permeability

• Formation Pressure

The second part of this requirement was displaying the historical data as a graph. The data that were to be

visualized in this manner:

• Formation Pressure vs Depth (MD and TVDSS)

• Porosity vs Permeability

• Porosity vs Depth (MD and TVDSS)

• Permeability vs Depth (MD and TVDSS)

• Lithostratigraphy data should be indicated in these plots

Smeaheia Requirement 3 - Real-time data

Since the Smeaheia site is not in active production today, no real-time data currently exists. This data had

to be mocked. The real-time data that would have existed had the site been active would have looked like

this:

• Well Pressure

• Flow Rate data

2.1 Use Case

We created a use-case diagram based on the requirements we received from Glex. The diagram includes two

different actors: Geologist and Data manager. The geologist operates within the web app of the use-case,

while the data manager operates outside of the web app, on the solution itself.

13

2 REQUIREMENTS

2.1.1 Actors

• Geologist: A geologist that will use the digital twin for analyzing and research. The geologist uses

digital twin software on a regular basis, several times per week. A geologist know how software like

ours work and how to utilize it.

• Data Manager: A data manager that will add new data to the storage account to trigger functionality.

14

2 REQUIREMENTS

The data manager has previous knowledge of the storage system to upload the files, and know what

format the files needs to be in.

2.1.2 User stories

The user stories for geologists are derived issues from the project backlog. These are meant to describe

functionality and actions that a geologist may want to perform/achieve. We have also created a specific user

story for the data manager. The only pre-condition for the user stories is that the actors needs to have an

internet connection.

User Story: As a geologist, I want to visualize well-logs

Actor: Geologist

Goal: View the well logs of the digital twin

Description:

The user clicks on a well on the scene. Then clicks on the graphs icon

at the top center of the screen. A panel will open on the left with the

well logs data.

User Story: As a geologist, I want to visualize faults

Actor: Geologist

Goal: View the fault sticks of the digital twin

Description:

The user clicks on the visibility menu icon at the top center of the

screen. A panel will open on the right with the fault stick visibility

check boxes. The user can click these checkboxes to make certain faults

visible or invisible.

User Story: As a geologist, I want to visualize surfaces

Actor: Geologist

Goal: View the surfaces of the digital twin

Description:

The user clicks on the visibility menu icon at the top center of the

screen. A panel will open on the right with the surface names. Next

to these names there is a checkbox to turn either on or off the visibility.

User Story: As a geologist, I want to view wellbore

Actor: Geologist

Goal: View the wellbores of the digital twin

Description:

The user clicks on the visibility menu icon at the top center of the

screen. A panel will open on the right with the wellbore names. Be-

low these names there is a checkbox to turn on either of the options to

view default, chrono, formations and groups.

15

2 REQUIREMENTS

User Story: As a geologist, I want to view realtime data

Actor: Geologist

Goal: View the realtime data of the digital twin

Description:
The user clicks on the graph icon at the top center of the screen. A panel

will open on the left with the realtime data displaying.

User Story: As a data manager, I want to upload data to visualize in the web-app

Actor: Data Manager

Goal:
Add a data file to storage that will trigger the service and visualize it in

the web-app

Description:

The user adds a data file to the Azure Storage Account. Authentication

is taken care of by Azure. This will trigger the services that will process

and generate a visualization of the data in the web-app.

2.2 Performance

The web-app requires an internet connection. We have also established some minimal requirements for the

computer/laptop running the service:

• 4-core Intel Core i5-8265U

• 8 GB RAM DDR3 2133MHz

• Intel HD Graphics 620

• 1920x1080 resolution screen

Having a dedicated GPU is in most cases beneficial, but in our case it has not proven to make a significant

difference. We have discovered that newer hardware, computer/laptop, has shown better results in terms of

performance. In some cases, a newer computer/laptop with integrated graphics proved to run the service

better than a two year old computer/laptop with dedicated graphics.

2.3 Security

In terms of security, the solution must follow all industry standards and best practices. Security concerns

that arose during development is covered in the relevant sections.

16

3 DEVELOPMENT PROCESS

3 Development Process

The group will explain some of the key characteristics of the project in general and how this affected the

initial plan. The initial development plan will be covered, and then compared to how the actual development

turned out. In addition to this, a summary of the project management tools utilized will be covered. We

will showcase the initial Gantt diagram and the final one. The final Gantt diagram reflects the changes that

occurred during development.

The focus of this chapter is not to go into depth about technical details, but to give a summary of what was

implemented when. Technical details around the implementation is located in Chapter 7.

3.1 Project Characteristics

This project was the largest and most complex development task the group had taken on so far. This was

something that had to be considered when planning out the project. It was of utmost importance that the

process was well organized from start to finish to ensure that things progressed in a consistent manner.

There were many moving parts and a broad range of different tasks happening at the same time. There were

several stakeholders involved, which had different expectations at different times, such as our supervisor

and the client. The key thing we drew from these characteristics was that the project had to be structured.

Some of the stakeholders representing the client did not have any technical background in terms of software

development. It was therefore essential to keep a close dialogue with them to avoid any miscommunication.

This further strengthened the need for a structured development process.

The project naturally facilitated a variety of different programming languages and frameworks. The reason

for this was due to tasks such as parsing of different data formats, which was conducted at non-scheduled

time periods. An example of such formats is geological data. We did not know when new data would be

presented, but we had to process it whenever it was released. This meant that the processes for conversion,

etc. had to be run multiple times. When creating several different microservices, an agile way to work was

beneficial.

Due to the reasons mentioned above, the project had to be conducted in an agile, but structured way. This

is because there were several sub systems that needed to be implemented, which benefited from an agile

methodology, and several different stakeholders that wanted to monitor the progress of the project which

benefited from a solid structure.

3.2 Software Development Model

The project facilitated an agile methodology. We needed to create several different microservices with

varying languages and frameworks. An incremental, rapid development cycle was beneficial in this regard.

17

3 DEVELOPMENT PROCESS

Each microservice was developed as an individual software project. This meant that each microservice was

planned, designed, implemented and tested in its own cycle.

We considered two different Software Development Models to use: Kanban and Scrum. Kanban consists

of visualizing all the tasks of the project into a board. There is a maximum amount of tasks at any given

time, and each team member is free to pick any task they see fit. Kanban is very flexible, and could have

been a good solution for this project, given that we were a small team that communicated frequently. The

problem with Kanban is that it lacks some of the structure Scrum provides. Kanban could very easily have

gotten out of hand, leading to a messy development environment.

A Scrum project is split into sprints. During each sprint, several Scrum events take place. Sprint review,

sprint planning, daily stand-ups, etc. These meetings provide the project with structure. By scheduling

several preplanned meetings in advance, it became much easier to actually see them through.

By comparing these two models, we concluded that Scrum provided us with the structure required for a

project of this scale. We did however like the board from Kanban. We therefore planned to implement the

board alongside the structure of Scrum.

We followed Scrum as our development model. We organized the project into 2-week long sprints, with

two stand-up meetings each week (totaling to four each sprint). During the first week of each sprint we

had two special meetings. We met with the client every other Tuesday at 1400. This meeting served as a

combination of sprint review/sprint planning meeting. During the first half of the meeting, we presented

the progress from the previous sprint. This allowed us to receive rapid feedback on our development work,

and gave us good insights regarding where to concentrate our energy in the coming sprint. The second part

of the meeting was the planning part. Here, Glex presented their perspective on the development work.

In addition to presenting their perspective on the development work, they described/showcased features

of which they wanted us to incorporate into the project. After the meetings with Glex, we processed the

information received and converted them into relevant issues for the upcoming sprint. Secondly, we had

a meeting with our supervisor, who gave us great feedback on different aspects of our project, providing

insights from a outwards perspective. This feedback helped stake out the general direction of the project,

allowing us to concentrate our energy on the more academically important aspects of the project.

We structured the issues into user stories. Issues typically looked like: ‘As a geologist, I want to be able

to visualize fault sticks and their faults’, ‘As a geologist, I want to visualize well logs alongside the well

trajectory’, etc. The reason for choosing this approach was due to our previous experiences with sprint

planning. Sprint planning was hard, and especially hard due to the fact that we wanted to create good issues

that lasted an entire sprint. By going for a user story oriented approach, it became easier for us to create

issues at the beginning of a sprint. It is natural that new, small issues arise during development. Since

we already had our more general user stories, these smaller child issues were added to the parent issues

consecutively.

The issues were primarily assigned during the sprint planning meetings, but issues were also assigned

18

3 DEVELOPMENT PROCESS

during sprint stand-ups. Each team member stood free to dispose the tasks they have been assigned freely.

Meaning that it was each member’s responsibility to ensure that each task was completed in the allocated

time frame. All issues had to pass through a review phase, before finally being marked as done. The review

process was conducted manually in the beginning, and partially through code tests as the project progressed.

When a team member picked up an issue, they first transitioned the issue from "Todo" to "In progress". If

other issues blocked the progress, the member transitioned the issue into a "Blocked" state. When the issue

was completed, the issue was transitioned into "For review", where the other group members reviewed the

issue before finally transitioning the issue into the "Done" state.

Figure 5: The different stages of issues

We conducted sprint retrospective meetings during the first meeting of each new sprint. We utilized these

meetings to discover things that could be improved for further project work. In the beginning, a few key

problems were brought up and discussed. Some examples of things we discussed:

Problem Solution
We feel like we spend too much time in un-
necessary meetings.

Reduce meeting frequency, but increase
the prework before each meeting.

Issues are too broad and general Spend more time planning issues

We brought up a broader range of issues at the retrospective meetings in the beginning of the project work.

We believe that the amount of issues arisen was reduced throughout the project due to the fact that dis-

covered issues were handled and fixed. The retrospective meetings were a nice way to bring up project

related issues in a structured manner.

As a summary, our meeting schedule looked like this:

19

3 DEVELOPMENT PROCESS

Week Mon Tue Wed Thu Fri

1st
• Daily Scrum

• Retrospective

• Client Meeting

• Sprint Review

• Sprint Planning

Supervisor
meeting Daily Scrum No meetings

2nd Daily Scrum No meetings No meetings Daily Scrum No meetings

Table 1: Overview of sprint structure

3.3 Project management tools

We utilized the Atlassian suite for most tasks related to the development process, with the exception of

version control, which was done through GitHub. The main tool for keeping track of the project was Jira

[6]. We organized all of the issues of the project into a backlog in Jira.

We utilized a tool called Tempo for time tracking. Tempo is tightly integrated into Jira and the Atlassian

suite as a whole. The use of Tempo facilitated a common way for us to track time spent on the project.

There also exists extensions for editors such as VSCode, making it easy to track time spent coding.

For project pages we used a tool called Confluence. Confluence allows all members of the group to cooper-

ate on documents in the cloud. This was very handy in meetings and other activities that requires some sort

of note taking/overview tracking.

3.4 Version Control and Code Organization

We choose to use GitHub as the collaboration tool for the project’s source code. The project’s code is

organized as subprojects in a monorepo. Individual parts of our project like the web-app, the REST API,

the services, etc. are all stored as separate folders in one larger git repository. The advantages of this

approach is that we get one single source of truth, it is easier to share and reuse common code amongst

subprojects, and we can more easily make atomic changes across subprojects, like changing the REST API,

which requires changing API consumers as well[32]. This approach also allowed us to set up larger test

runners, facilitating running all the test of the project as a whole at the same time.

3.5 Gantt Diagrams & Sprint Breakdowns

We initially planned on a sequentially based development process. What we mean by that is that we es-

timated that we were going to finalize different parts of the ‘pipeline’ at different stages. As the project

turned out, it became more of a continuous improvement cycle where several modules were continuously

improved to match the project’s progress. One example here is the parsing, where aspects came up during

the deployment stage that encouraged us to revisit the parsers to improve them. Because of this, some issues

20

3 DEVELOPMENT PROCESS

were continuously re-added to the project backlog for further iterations. We planned to finalize the devel-

opment work before the Easter break. Due to the fact that we did continuous improvements of previous

iterations of code, the development work spanned over a longer period of time than initially planned. This

resulted in five sprints with development work in focus.

TODAY

2022

Jan Feb Mar Apr May

W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20

100% complete Planning, organization and research

Planning

100% completeSprint 1

Decide technology and frameworks

Setup development environment

Frontend - Wireframe

100% completeSprint 2

Parse data

Generate geometry

Frontend - design layout

Setup cloud architecture

Setup CI/CD

100% completeSprint 3

Frontend - third iteration

User testing

100% completeSprint 4

Frontend - final design

100% completeSprint 5

Focus on writing

Easter break

100% completeSprint 6

Finish software development

100% completeSprint 7

Prepare presentation

Write Bachelor Thesis

21

3 DEVELOPMENT PROCESS

TODAY

2022

Jan Feb Mar Apr May

W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20

100% complete Planning, organization and research

Planning

100% completeSprint 1

Decide technology and frameworks

Setup development environment

Explore data, research CCS and norther lights

Frontend - Wireframe and layout

100% completeSprint 2

Write project plan

Cloud Architectural drawings

Setup CI/CD

Parse data - First iteration

Generate geometry - First iteration

Frontend - Second iteration

100% completeSprint 3

Parse data - Second iteration

Generate geometry - Second iteration

Frontend - Third iteration

100% completeSprint 4

Setup cloud architecture

Parse data - Final iteration

Generate geometry - Final iteration

Frontend - Final design

100% completeSprint 5

Finish software development

Easter break

100% completeSprint 6

Focus on writing

100% completeSprint 7

Prepare presentation

Write Bachelor Thesis

22

3 DEVELOPMENT PROCESS

3.5.1 Planning phase

We had frequent meetings with the client in the planning phase. The main focus in the phase was to establish

the specific case of which to base the entire project on. The project plan was written concurrently alongside

the planning.

3.5.2 Sprint 1: Technology choices and setup

During sprint 1, the majority of our focus was targeted at research of relevant technologies, the setup of

development environments, and the wire-framing of the web app. Several small "demo" projects were

created during this phase, to test the capabilities of different languages and frameworks. One example of

this is a CSV-file parser that was written in Python.

3.5.3 Sprint 2: Cloud Architecture drawing

During this sprint, we created the first iteration of the web app’s design. We researched Azure and created

architectural drawings for the general cloud infrastructure. We started working on the different user stories:

Fault sticks, Surfaces and Well logs. The primary focus was parsing of data at this stage, but some geometry

generation of surfaces were performed.

3.5.4 Sprint 3: CI/CD

During sprint 3, we established the initial setup of the CI/CD pipeline. After this had been set up, code that

was pushed to the repository was automatically deployed to Azure. Work also continued on the user stories,

in addition to data processing and geometry generation.

3.5.5 Sprint 4: Web app

An MVP was finalized, all major components were implemented in a minimal, but functional manner. The

primary focus of the MVP was to showcase the project progression to the client. Everything was starting to

come together, which uncovered a new set of issues.

3.5.6 Sprint 5: Finish software development

During sprint 5, the finalization of the software development was in focus. This meant solving various issues

and bugs with the implementation, polishing the UI, and updating the documentation and READMEs with

the latest information.

23

3 DEVELOPMENT PROCESS

3.5.7 Sprint 6 & 7: Report writing

During spring 6 and 7 the writing of the thesis itself was in focus. We went through several iterations with

our supervisor gathering feedback in addition to meetings with the client about regarding sensitive contents

in the report. We did this to ensure all the stakeholders were satisfied with the end result.

24

4 GRAPHICAL USER INTERFACE

4 Graphical User Interface

We will talk about our development process regarding the visualization of the different parts of the digital

twin. How we developed the different prototypes, and how we worked with the feedback we received from

Glex.

4.1 Figma

Our first iterations of the GUI were done in Figma. Here, we were able to draft some suggestions on how

the GUI could look. We started by creating a top menu on the scene.

Figure 6: The first prototype, used in the planning phase

Our idea here was to have a top menu with the most essential buttons available. We chose to display the

fault stick, well data and surfaces buttons because these are parts we knew were going to be visualized in

the web-app.

When it came to presenting the fault sticks, we knew that the requirement was that the faults had to be

visualized in the scene, and also include a menu to toggle specific faults on and off. We decided to present

this menu as a side panel. This side panel would open when the fault sticks button was pressed on the top

menu.

25

4 GRAPHICAL USER INTERFACE

Figure 7: Prototype for faults menu

We had a similar idea for the well data. This data was going to be plotted alongside the well trajectory, and

with a side panel to chose which data was to be displayed.

Figure 8: Prototype for well-logs menu

Our plan for visualizing the surfaces on the web-app were similar to the fault sticks and well data, so we

decided against creating a page on Figma specifically for this. The plan for the surfaces was that they would

have a menu on the side panel to toggle each one on and off. This was also the case for horizons.

We showed Glex our Figma iterations and got positive feedback. This lead us to begin the GUI work on the

26

4 GRAPHICAL USER INTERFACE

web-app. From here, we could show Glex the iterations on the web-app and adjust the GUI based on the

feedback.

4.2 Improvements

After each sprint in the development process, we did some manual user testing with Glex. This allowed us

to gather useful feedback and make improvement during the development. With the experience Glex has

in the geology field, we were able to determine how the user interface should be organized to best fit their

needs.

Organizing the GUI was the first thing we performed after receiving feedback. Glex suggested that all of the

visibility toggles should be grouped into one side panel, and the rest of the data should grouped in another.

So, for instance, the visibility toggles could be grouped in the right side panel, and the data on the left panel.

These panels are collapsible via the panel buttons on the top center of the scene.

Figure 9: Showing the right side panel with toggle visibility menu

Glex also mentioned that it would be helpful to be able to toggle between the chronostratigraphy and

lithostratigraphy color palettes on the wells. This was added to the toggle menu as seen on the right side

panel image above.

27

4 GRAPHICAL USER INTERFACE

4.3 Final Result

After considering Glex’s requirements and feedback during the development process, we came to a final

version of the GUI.

Figure 10: Final GUI

Some of the requirements had to be revised and implemented in a different manner than initially planned.

This was mostly regarding the plotting functionality alongside the well trajectory. We will revisit these

matters in the Discussion section.

28

5 TECHNICAL DESIGN

5 Technical Design

In this section we will explain our choices in regards to the architecture of the project as a whole, in addition

to specific choices related to the different submodules.

5.1 System Architecture

The system architecture of our solution, and how it enables us to build a pipeline for building digital twins,

is perhaps the most interesting aspect of this entire project. Not only does it serve to build a digital twin for

the Smeaheia area, but it can be extended and expanded to include additional areas and form new digital

twins, all within the same architecture and system.

Some of the key observations that we made were the following. The vast majority of the geological data

relevant to the digital twin, is static. This means that the optimal architecture for this system is one that

enables us to perform any heavy processing needed on this static data only once, without losing the ability

to add more data later. This static data takes many forms, which all require their own form of processing,

which can be done entirely separate from one another. This is why we decided to build a pipeline for

processing geological data, and importing it into the system. Additionally, the system must also be able to

handle real-time data, which is mocked for the time being. The system is designed and facilitated to easily

transition from mocked data to actual real-time data, provided by sensors out in the real world.

The idea for how to build this pipeline efficiently was taken from the concept known as Materialized

Views[26] from the field of databases. In a database, a view is a way to define aggregate queries, pulling and

combining data from multiple tables, into a pseudo table every time the view is queried. Materialized Views

turns this around, by materializing the view, the database will run all the computations every time the data

changes, so that by the time it is queried, it is ready. Additionally, it also avoids unnecessary computations.

For us, this signifies finding a way to run the processing of static data only when new data comes in, or

when data changes, and storing the result in some kind of persistent storage.

While looking into the dataset we were provided, we also observed that we would need to deal with a large

variety of different file formats and data types. Potentially requiring different approaches when it comes to

parsing and processing. It would be best if we could build entirely separate and independent services for

handling these different data types, such that we could use the technologies best suited for the individual

tasks. This led us to consider the idea of using a microservice Architecture[27]. Using such an architecture

would allow us to build entirely decoupled services which could perform parsing and processing of various

data types, each in the most optimal way. The only requirements given to these services is that they expose

inputs and outputs for the data and results.

We used ideas from the API gateway pattern[24] as inspiration when making a REST API, making up the

business logic layer in a traditional n-layer architecture[28] from the perspective of the frontend. This REST

API would serve the processed data from the individual processing services to the frontend, which would

29

5 TECHNICAL DESIGN

then visualize the data and present it to the user.

When combined, the overall architecture looked like this:

Figure 11: Simplified data flow diagram of the solution

Figure 12: Detailed data flow diagram of the solution

5.2 Architecture Alternative

Our final architecture consisted of a presentation layer accessible to the user, with a REST API backend

which fetches data and subsequentially serves it to the user. The processed data is stored in a database

for ease of access, and data is not processed more than once. The microservices which processes the data

are triggered by new file uploads. We did however consider a different approach in the planning phase.

An architecture based on the Gateway Routing pattern was what we initially planned. The service would

appear identical to the users regardless of the choice of architecture. This architecture would look more

like this: The user accesses the presentation layer, which sends requests to the REST API. The REST

30

5 TECHNICAL DESIGN

API would manage the different services and call them when necessary. The data requested by the users

would be processed on demand. When data gets processed, it would be cached in-memory in the REST

API. Subsequent calls to the REST API after the initial data processing would be fast and efficient. The

architecture would have looked like this:

Figure 13: Alternative data flow diagram of the solution

There were some problems with this architecture: The first user to visit the page after a service restart

would experience a much longer waiting time, as the geometric data would have to be re-generated. The

same data would be processed over and over again, without any real need for it, as the data has most likely

not been updated since the last processing. The reason we choose not to pursue this approach was due to

the unnecessary data processing that this architecture would require.

5.3 Frontend

In the original project description, Glex proposed two alternative technologies for the frontend. Option

one was using Unity, which is what Glex uses for their digital twins today. Unity is a full game engine,

with a rich set of features, supporting a multitude of platforms, including desktop, mobile, and web[52].

Unity applications are developed in C#, with Unity providing an advanced interactive editor for making

rich scenes. Going over the requirements for our specific project case, we also took into account importing

geometry and plotting a chart with data on a 3D scene. Glex has extensive knowledge of the Unity engine.

If we had chosen Unity, they would have been able to provide us with advice and knowledge. Picking Unity

would have resulted in the exploratory parts of the bachelor’s project being significantly reduced.

Option two was using a web based framework, like ThreeJS, to make a slightly different user experience

than what Glex usually offers. This is a more ambitious option, where we take more of a risk by not knowing

if the technology really supports the complexity of this project. Picking this approach would provide the

group with a great learning opportunity. The knowledge gained from exploring this approach would be

useful for Glex regarding further development of digital twins in the future.

Diving more into the second, option. ThreeJS is a lightweight, general-purpose 3D JavaScript library[50].

31

5 TECHNICAL DESIGN

ThreeJS does not provide a built-in solution for UI creation, but since it is a JavaScript framework, we can

utilize other web frameworks for this purpose. One solution is to combine the use of ThreeJS with the

popular web development framework React. This will provide us with the best of both worlds, granting

access to complex 3D rendering on one end, and React’s performance, speed, and flexibility on the other

end. Specifically, a library called React Three Fiber facilitates this combination of technologies in a sensible

and efficient manner.

We researched whether or not the web based framework was capable of handling the requirements of this

project. ThreeJS has many loaders for 3D models, but the documentation recommends importing GlTF files.

This is because GlTF is focused on runtime asset delivery, it is compact to transmit and fast to load[49].

GlTF is a royalty-free specification for the efficient transmission and loading of 3D scenes and models by

applications. It minimizes the size of 3D assets, and the runtime processing needed to unpack and use

them[57]. Additionally, by using React with ThreeJS in React Three Fiber we get access to a collection of

libraries, like Victory, which we can use to generate graphs using a collection of React components. Victory

is a set of modular charting components for React and React Native. It let’s us create one of a kind data

visualizations with fully customizable styles and behaviors. It uses the same API for web and React Native

applications, which makes it extensible to mobile in case that is an option in the future[4].

The main difference we identified between the two options, were how they impacted user experience. The

main way to ship and distribute Unity based applications today, involves the user installing an application

locally on their computer. What we want to explore with a web based approach is giving the user the ability

to simply visit a website, and get the same information as before, but in a much more accessible form. This

could perhaps make it easier to utilize the digital twin during a meeting, on a laptop, compared to having to

utilize a desktop PC with preinstalled software to access the same information.

5.4 REST API

As established, we are building a solution based on microservices. Therefore, we needed a gateway for

information to be communicated between the frontend, and the various backends and persistent storage, as

we do not want the individual microservices to communicate with the outside world. This is based on the

API Gateway pattern, which is a popular pattern in the world of microservices.

Since the concept of a REST API is so well established, we had a plethora of options when it came to

the implementation languages and frameworks. There were mainly three options that were considered.

Node based JavaScript implementation using expressjs, ASP.NET based implementation, or a Flask based

implementation using Python. These options were all supported by Azure, which we needed for deploy-

ment. They all provide viable frameworks for implementing REST APIs. The choice eventually came

down to economy of mechanism. We did not want to take on unnecessary complexity by adding a whole

new language without proper reason, and we did not want to introduce unneeded task switching mental

overhead for the group members. We knew that we had to utilize various Azure APIs from the other mi-

32

5 TECHNICAL DESIGN

croservices already, so sticking with Python for interacting with these APIs made a lot of sense to us. Node

and ASP.NET are both viable options, but for us, going with Python and Flask was the most sensible and

economical option.

5.5 Persistent Storage

We had several different requirements regarding our choice of persistent storage. The first big question

is whether or not a SQL or NoSQL based database should be utilized. We approached this questions by

looking at the data we were going to store. Generally speaking, a SQL database style is a great choice

when the data is relational. Relational data means that there exists some semi "flat" hierarchy between the

data[16]. The data with have to work with in the Smeaheia dataset does not have much correlation between

each other, an example of this is that the well logs don’t directly relate to the faults in any sensible way. The

biggest advantage of using a SQL database is its querying capabilities. This way of querying data is great

when data is not initially coupled. If we have a service which receives 100 new transactions every second,

it would make sense to store it into a transaction table. We could then easily query this data later, locating

all transactions matching a user with a specific ID. In our case, all the data is precoupled. As an example,

a fault file contains all the data necessary for making sense of a complete fault. No new data regarding a

previous fault will be pushed to the database, we thus know all the information we need to know at the time

of parsing/processing. Based on this, we decided that an NoSQL database would be the best choice for our

project.

There exists four different types of NoSQL databases: Key-Value stores, Column-oriented databases, Graph

databases and document databases. When deciding on which of these types were the most sensible for us,

we took a look at our data once again. Our data is logically coupled together. For instance, all data regarding

a fault collection is contained within a fault file. The first alternative we considered was a key-value store.

A key-value store is the simplest form of NoSQL database, linking a key directly to a value. Our data is a

bit more complex than this, and a key-value store database was therefore not a viable option. A column-

oriented database focuses primarily on aggregating all the values in a given column together. The main

strength of a column-oriented database is for analytical purposes, such as determining the total number of

sales that have been completed during the last month. We do not need this analytical power in our project,

and a column-oriented approach was therefore disregarded. Next up is a graph database. The main strength

of a graph database is the relationship between nodes. The real power of graph databases comes into play

when the joining of data is the primary focus. As already established, all of our data is "self-contained"

meaning the faults are not particularly interested in the values of the well logs, as an example. The final

type was the Document databases. A document database is theoretically a perfect match for our use case.

The main benefit of document databases are the fact that objects can be retrieved in a form that closely

resembles the way it is going to be utilized in the application itself. What this means is that the documents

contains all the data required to utilize it directly. The problem with the data we have to work with in the

dataset is that the data is not directly usable, we have to parse and process it into a data format that makes

33

5 TECHNICAL DESIGN

sense in a document database[30].

The next thing we had to do was to decide on a data format for our data. The logical way to approach

this problem was to look at the different document database vendors, to determine what data format their

databases utilizes. Since the client utilizes Azure as their cloud vendor, this was a natural place to start.

Azure has a wide variety of different database solutions, one of which is CosmosDB[21]. CosmosDB

provides several features that suits our project in a great way. CosmosDB scales in a automatic and limitless

manner. The theoretical maximum size of CosmosDB is only limited by the budget of your service. Azure

provides a serverless CosmosDB alternative, meaning that you do not have to have servers running around

the clock when you don’t have traffic. And finally, the most appealing feature: You can select from a wide

variety of ‘backends’. It is possible to use backends such as MongoDB, SQL, or Cassandra. We have

a pretty solid foundation in the use of SQL from the course IDATG2204 - Data modeling and database

systems. By utilizing CosmosDB, we get a hybrid solution that gives us the best of both worlds: Self

contained documents with data available through a SQL-like querying syntax.

We needed to transform the data into a format available for storage in CosmosDB. CosmosDB Documents

are of the JSON data format. JSON was a nice alternative in regard to data such as Faults and Well logs.

Since we went for the web oriented approach of ThreeJS and React, the most sensible format for the surfaces

was GlTF files. We solved this concern through the use of Blob Storage in combination with CosmosDB

documents. We created documents with references to blobs in the blob storage, allowing the surfaces to

be fetched with a Blob Client using the reference located in CosmosDB. The way this works is that the

database is queried for surfaces with a given name, the surfaces matching this name returns the reference to

the actual file in blob storage, which then can be fetched.

34

5 TECHNICAL DESIGN

The different documents looked like this:

Figure 14: Overview of persistent storage documents

5.6 Surfaces

In the Smeaheia dataset there were several surface files. A surface file consists of a point cloud that repres-

ents a surface in 3D space. A point cloud is a set of data points in space, which we can view as a collection

of data points defined by a given coordinate system. In our case, the coordinate system is in 3D space and

defined the shape of the surfaces. With these point clouds, we could create 3D meshes of the surfaces and

visualize them in the scene.[45]

The process of choosing the technology for the implementation of the surfaces was a combination of looking

at the documented SDK’s for Azure Function Apps, and what libraries could meet our requirements of

generating geometry from a point cloud. While researching our possibilities in Azure, we considered the

35

5 TECHNICAL DESIGN

SDK’s that were available in the documentation[23].

One of the libraries we tested for generation of geometry from point clouds was Open3D, which is a library

that has a Python API. Below we will go into some of the technical design choices we made for implement-

ing the surfaces of the project, focusing on the data processing and libraries that were chosen.

Adding a surface file in blob storage will trigger the parser code, which will process and generate a geometry

file. When the Parser Code is finished, the generated geometry file will be stored back in blob storage, and

a path to this file along with its name, will be stored in CosmosDB. The REST API can then serve the

geometry file from blob storage, and the name from CosmosDB, for the Web app to fetch for visualization.

Our final architecture for the surfaces:

Figure 15: Overview of Surfaces service architecture

Data Processing

Processing the surface data meant that we had to organize the point cloud in such a way that Open3D could

read it and create a point cloud object from it. This point cloud object would later generate a geometry file

with one of Open3D’s algorithms. This gave us some flexibility, as writing to a file can be implemented in

several ways. However, in our case we had to take the Azure Functions into consideration. This meant that

we had to try and not write the point cloud data to a file, but rather pass it to Open3D as an object. This is

because Azure Functions are on-demand and serverless, which means that writing a file to disk is not ideal

as the service does not provide any persistent storage[1].

Based on the knowledge we gained on how Open3D has to receive point cloud data, we decided to utilize

the Python SDK for Azure’s services.

Open3D

Open3D is an open-source library that supports rapid development of software that deals with 3D data. The

36

5 TECHNICAL DESIGN

Open3D frontend exposes a set of carefully selected data structures and algorithms in both C++ and Python.

The backend is highly optimized and is set up for parallelization[38]. In our case, we used the Python API

for Open3D. This is further explained in the Implementation section of surfaces.

Pygltflib

While working with Open3D, a limitation was uncovered that would cause us difficulties in the web-app.

Open3D would allow us to generate a GlTF file, but modifying it once created was not possible. One of the

requirements we discovered from the web-app was that the GlTF file’s geometry node had to be named in

a specific way in order for them to be imported into the scene. Open3D did not allow us to accomplish this,

so we needed a separate library for this purpose.

Pyglflib is a library for reading, writing, and handling GlTF files[41]. This library would allow us to name

the geometry in the GlTF file for the web-app to read. This is further explained in the Implementation

section of surfaces.

5.7 Well logs

The requirements specified that we needed to visualize the three wellbores of the Smeaheia area, as well

as their well-logs. By wellbore we mean the borehole that has been drilled from the sea surface, to the

aquifer that represents the potential carbon storage site. We are especially interested in the curvature and

inner-surface properties of this wellbore, as well as other properties of the wellbore. All of this information

that we would like to know about the wellbores have been recorded into well-logs of various formats, that

we will need to parse and process, in order to eventually visualize.

When it came to choosing the technologies for implementing this parsing and processing, we had a few

constraints. One of our constraints were that the implementation language had to be supported by Azure

Functions and Azure SDKs. We wanted libraries capable of parsing the well-logs, as these come in quite

archaic formats that would require a significant time investment to be parsed properly with a custom built

solution.

Well-log parsing

Most of the options for parsing libraries were either immature or unmaintained, or lacked support for the

particular formats we needed. However, based on an article provided by Glex[54], and our own research,

we found two viable alternatives Log I/O and lasio. Log I/O is an enterprise grade parse for a multitude

of well-log formats, it did however come with a price tag that quickly disqualified it for us. On the other

hand, lasio is an open-source parser, written in Python, supporting the specific well-log format that we need.

Since we had already decided to use Python for some of the other microservices at this point, we decided

to use a Python based stack for parsing and processing well-logs as well.

Well-log processing

37

5 TECHNICAL DESIGN

Additionally, we needed functionality for parsing Excel files and for processing tabular data in general.

Python offers some excellent libraries in the form of Pandas and NumPy for these purposes. We have

worked with these libraries in the PROG2051 - Artificial Intelligence course, and so they were the obvious

choice. Pandas is a data analysis and manipulation library, which is well suited for working with tabular

data[3]. NumPy is a fundamental library for a broad range of mathematical and scientific calculations in

Python[2]. Pandas and NumPy work well together, as values produced by one library is accepted as input

into the other.

Wellbore geometry generation

We tried to locate libraries that implements some of the calculations and geometry generation we required

for this service, but we were unsuccessful in this regard. Therefore, the calculations and generation had to

be implemented manually, with the help of Pygltflib for exporting the geometry, and Pillow for exporting

the texture maps.

Service Architecture

The service, running as an Azure Function, waits for inputs from blob storage. When input arrives, the func-

tion runs, processing the well-logs, and finally outputting the results back to blob storage and CosmosDB,

making them available through the REST API.

Figure 16: Overview of Well logs service architecture

5.8 Faults

When deciding on the technologies for parsing the faults, there were a few requirements. The most essential

ones were that the language could run in Azure cloud functions, and have bindings for Azure services such

as CosmosDB and Blob Storage. When parsing data, there often exist libraries for parsing the format

of which the data is in. This was not the case with faults. The data format was of a non-standardized,

38

5 TECHNICAL DESIGN

unknown format. Preexisting libraries were thus not of any concern when considering the language for

parsing/processing the faults.

Python provides SDKs for Azure’s services, and runs in Azure Functions. The only drawback to Python

is the relatively weak type system, making test writing a bit messy compared to languages such as Rust or

Haskell. Considering the trade-off with the great support for Python in Azure against a bit messy tests, we

decided that Python was the best choice for the faults parser.

The faults parser is written in Python, runs in an Azure Function, outputs its resulting data into CosmosDB,

which in turn is queried by the REST API, and finally the geometry is generated in the web-app. The

architecture for the faults service looks like this:

Figure 17: Overview of Faults service architecture

5.9 Horizons

The horizons in the dataset were not a part of the final product. We developed the parser and geometry

generator for the horizons, but not the function app or visualization in the web-app. The horizon files in the

Smeaheia dataset are shape files, consisting of multiple files in multiple formats. A shapefile is a simple,

non-topological format for storing the geometric location and attribute information of geographic features.

Geographic features in a shapefile can be represented by points, lines, or polygons[56]. The formats we

needed to consider for this dataset, were .shp, shx, .dbf and .prj.

We had to extract the point cloud from the .shp and .shx files. Neither the .dbf or .prj contained information

we needed for this visualization. Choosing a technology to accomplish this job boiled down to finding a

library that could extract the point cloud from the shape files. Through our research, we tested GeoPandas.

GeoPandas is an open source project to make working with geospatial data in Python intuitive. GeoPandas

extends the data types used by pandas to allow spatial operations on geometric types[60]. We will go further

into how the point cloud was extracted in the implementation part of the horizons.

After extracting the point cloud, we needed a tool for generating geometry. Here, we needed to either

39

5 TECHNICAL DESIGN

triangulate the geometry, as we did with the surfaces, or create point geometry. Having had some experience

with Open3D, we tested this library first to check if it could meet our requirements. We already knew

Open3D could triangulate a point cloud, but we found that the library was also able to generate point

geometry in situations where the points in the point cloud were too far apart to triangulate properly.

5.10 Security

There are usually three main aspects to security in the cyberspace. Confidentiality, integrity, and availability.

Confidentiality for us is mainly in regard to how we secure our secrets, since all the other data in the system

is public. Integrity would be making sure the data we serve and visualize is accurate, and that it has not

been manipulated, neither in transit nor at rest. And availability would be in regard to ensuring our solution

is available to the users when then need it. In this section, we will explain how we secure these aspects of

our solution.

By secrets, we mean different account credentials, connection strings, publishing profiles, and such that are

used for authorizing and authenticating between different services in the system. All of these need to be kept

confidential in order to prevent unauthorized access to our resources. Different services and environments

deal with secrets differently, and so we had to be careful when handling these.

For our local development environments, we chose dotenv files as an intuitive and effective way of dealing

with secrets. Dotenv files are plaintext files stored on individual developers machines that list individual

secrets in key-value pairs. These files are usually sourced into the developers shells and made available

to local processes via shell environment variables. This is by no means a perfect solution to managing

secrets for developers, as these environment variables can be accessed by any process run by the shell after

sourcing the dotenv file. Knowing this, we chose to adapt our secret consumers to source these dotenv files

themselves, bypassing the need for developers to source them into their shell environments. There is still a

risk posed by these files being plaintext files on disk, but we deemed this to be an acceptable risk, as theft

of physical hardware or physical break-ins, necessary to compromise disk confidentiality, seemed unlikely

in our situation.

Azure already makes several promises about availability. Based on the fact that none of the requirements

state that we must achieve extra high availability, because downtime of this solution is not a business halting

problem, we deemed Azures promises about availability good enough for this solution. Azure also provides

several extra options for various availability related services, like DDOS protection[22], which can easily

be incorporated into the solution if deemed necessary in the future.

40

6 TESTING

6 Testing

In this section, we will talk about our approach to writing tests using Test Driven Development, and how

we tested the various aspects of the solution.

6.1 Test Driven Development

One of our learning goals for this project was to learn more about test driven development. Test Driven

Development is a software development practice that focuses on creating unit test cases before developing

the actual code[62]. Therefore, we had a focus on writing unit tests throughout the project, completing

the red/green/refactor cycle over and over. We felt this was an important measure in order to manage the

complexity of this project. There are many parts that all have to interact in complex ways. Making sure that

they all individually work as specified, helped us be more productive in our work and more confident in our

solution as a whole.

6.2 Automated Testing

One of our goals for this project was to learn about test driven development. And in order to utilize TDD

properly, we had to set up automated test suites for all our tests. By an automated test suite, we mean that

we want to be able to run all the tests associated with a single project component, independent of all other

components, and with all the configuration and set up parts automated. Meaning we should be able to run

a single shell command, either locally or as part of the continuous integration, and be able to know if a

component is working as intended or not.

The first step to setting up automated testing is to pick a test runner or a testing framework. Since our

project uses multiple programming languages and frameworks, we needed to choose one testing framework

for each programming language we used.

For the components written in Python, we chose to use PyTest as our testing framework. Alternatives here

would have been Pythons built-in testing framework called unittest, or another test runner called tox. This

was mostly a question of what level of abstraction we wanted to work at. unittest is a low level, rudimentary

testing framework. It lacks many of the convenient features of PyTest, such as PyTests simple and reusable

test fixtures and, PyTests improved output and debugability. tox[51] on the other hand attempts to solve a

different problem. tox describes itself as a development task automation tool and the main selling point is

its ability to run tasks targeting multiple Python implementations. This is not really relevant for us, since

we know exactly what version and implementation of Python we are going to use ahead of time. PyTest

also integrates nicely with Flask, which will be relevant when we describe the implementation of the REST

API.

Setting up PyTest is as intuitive as writing a few tests. As long as they are in the ‘tests’ directory, and have

41

6 TESTING

the ‘test_’ prefix in the file name, PyTest will automatically discover the test and run them when invoked.

See listing 1 for an example of what these test looked like. Additionally, PyTest has powerful support for

fixtures, allowing us to create and reuse boilerplate setup and teardown code. See listing 2 for an example

of how these fixtures are defined in code.

1 def test_get_smeaheia(client: FlaskClient):
2 """Test getting the manifest for the smeaheia area."""
3 res = client.get("/manifests/smeaheia")
4
5 assert res.is_json
6
7 json = res.get_json()
8 assert isinstance(json, dict)
9

10 assert json["id"] == "smeaheia"
11 assert len(json["wells"]) == 3

Listing 1: PyTest test example from REST API

1 @pytest.fixture()
2 def app() -> Iterable[Flask]:
3 app = create_app()
4 app.testing = True
5 yield app
6
7 @pytest.fixture()
8 def client(app: Flask) -> FlaskClient:
9 return app.test_client()

Listing 2: PyTest fixtures from REST API

------- coverage: platform linux, python 3.9.12-final-0 -------
Name Stmts Miss Cover

app/__init__.py 7 0 100%
app/__main__.py 3 3 0%
app/common.py 27 4 85%
app/factory.py 14 0 100%
app/faults.py 22 3 86%
app/manifest.py 24 0 100%
app/realtime.py 40 18 55%
app/surfaces.py 31 1 97%
app/well_blob_queries.py 30 6 80%
app/well_cosmos_queries.py 22 0 100%
app/wells.py 46 7 85%
conftest.py 16 1 94%
tests/test_faults.py 24 0 100%
tests/test_manifests.py 17 0 100%
tests/test_realtime.py 9 0 100%
tests/test_surfaces.py 28 0 100%
tests/test_wells.py 37 0 100%

TOTAL 397 43 89%

Listing 3: REST API Test coverage report

------- coverage: platform linux, python 3.9.12-final-0 -------
Name Stmts Miss Cover

composite-function/__init__.py 37 37 0%
excel-function/__init__.py 19 19 0%
tests/__init__.py 0 0 100%
tests/test_composite.py 14 0 100%
tests/test_excel.py 3 0 100%
tests/test_trajectory.py 31 0 100%
tests/test_well_logs.py 3 0 100%
well_logs/__init__.py 1 0 100%
well_logs/composite.py 19 0 100%
well_logs/excel.py 52 0 100%
well_logs/gltf.py 20 6 70%
well_logs/header.py 16 0 100%
well_logs/log.py 46 1 98%
well_logs/trajectory.py 102 9 91%

TOTAL 363 72 80%

Listing 4: well-logs test coverage report

42

6 TESTING

------- coverage: platform linux, python 3.10.4-final-0 -------
Name Stmts Miss Cover

dependencies/__init__.py 1 0 100%
dependencies/parser.py 46 10 78%
dependencies/types.py 43 5 88%
tests/__init__.py 0 0 100%
tests/test_parser.py 24 0 100%
tests/test_types.py 29 0 100%

TOTAL 143 15 90%

Listing 5: Faults test coverage report

------- coverage: platform win32, python 3.9.10-final-0 -------
Name Stmts Miss Cover

common__init__.py 5 0 100%
common\color_generator.py 46 2 96%
common\data_processing.py 36 1 97%
common\geo_generate.py 65 12 82%
common\py_gltf.py 5 3 40%
tests__init__.py 0 0 100%
tests\test_color_generator.py 72 0 100%
tests\test_data_processing.py 44 0 100%
tests\test_geo_generate.py 36 0 100%
tests\test_py_gltf.py 0 0 100%

TOTAL 309 18 94%

Listing 6: Surfaces test coverage report

------- coverage: platform win32, python 3.9.10-final-0 -------
Name Stmts Miss Cover

color__init__.py 2 0 100%
color\color_generator.py 46 2 96%
geometry__init__.py 2 0 100%
geometry\gen_geometry.py 14 4 71%
processing__init__.py 2 0 100%
processing\data_processing.py 36 11 69%
shapefiles__init__.py 2 0 100%
shapefiles\shapefile_processing.py 19 3 84%
tests__init__.py 0 0 100%
tests\test_color_generator.py 72 0 100%
tests\test_data_processing.py 25 0 100%
tests\test_geo_generate.py 21 0 100%
tests\test_shapefiles.py 18 0 100%

TOTAL 259 20 92%

Listing 7: Horizons test coverage report

The web app is written in JavaScript, and therefore requires a different testing framework. There is a

plethora of options when it comes to testing frameworks and libraries for JavaScript, making it difficult

to choose without preexisting experience. We therefore based our choice on React’s official recommenda-

tion[48] of using Jest as our testing framework, which allowed us to use React’s built-in snapshot testing,

and to perform DOM testing via React Testing Library.

Since we are using create-react-app, testing with Jest and all the configuration that comes with it, is already

set up and done for us. We add tests by creating ‘*.test.js’ files in the ‘src’ directory and define the tests

using Jests testing primitives, the methods used for building tests. This allows us to write unit tests for our

JavaScript code. However, if we want to write unit tests for our React components, we have the option of

using React’s built-in snapshot testing, and/or DOM testing via React Testing Library.

Snapshot testing is an approach to testing component driven web apps, and React apps in particular, where

we test if rendering a component produces the same DOM tree, and attributes as it did last time. The info,

43

6 TESTING

stored as part of the tests, that defines how a component should render, is called a snapshot. The advantage

of this approach is that it is intuitive to implement for React apps. The disadvantage is that it does not fully

test all aspects of a component, only how it renders, and not aspects such as what side effects it generates.

DOM testing is a testing approach where the components are rendered into a virtual DOM tree. And tests

are run against this virtual DOM. This gives us some advantages over snapshot testing, like the ability

to run precise queries against the tree, but not needlessly fail if insignificant differences occur as a result

of implementation details. In addition, we can also test what side effect the component generates as it is

mounted, updated, and unmounted. However, we still can’t test what the component looks like and other

details related to styling.

There are many other alternatives to testing web apps and websites in general, like Selenium. These testing

approaches are not well suited for testing ThreeJS applications, and were disregarded for this project.

6.3 Manual Testing

Since UIs are hard to fully test in an automated way, we also developed a strategy for manually testing

the web app. Specifically, we had the following step-by-step procedure for testing the web app with good

coverage.

Step Activity Expected behavior Status

1. Test camera controls Camera can rotate, zoom, and pan Work-
ing

2. Test toggling menus Inspector and toggle menu can be toggled Work-
ing

3. Test selecting wellbore Clicking on a wellbore selects it in the in-
spector

Work-
ing

4. Test well-logs Well-logs render correctly and can be col-
lapsed

Work-
ing

5. Test switching wellbore texture Chronostratigraphy, lithological formations
and groups can all be projected onto the well-
bore

Work-
ing

6. Test toggling fault visibility Faults can be shown and hidden Work-
ing

7. Test toggling surface visibility Surfaces can be shown and hidden Work-
ing

Table 2: Step-by-step procedure for testing wep app

6.4 User Testing

We conducted informal user testing as part of our meetings with Glex at the end of each sprint. We roughly

based the testing procedure on the manual testing procedure above. The point of these tests was mainly

to figure out if the functionality as implemented satisfied the specified requirements, and to gather any

44

6 TESTING

feedback Glex had for us. Based on this feedback, we revised the requirement specification. Clarifying

some points, added some, and removing others that became irrelevant or out of scope. Therefore, one of

the most important things the feedback was utilized for, was to verify that the work being performed was

correct in terms of their expectations, and what parts of the specification were the most important for Glex.

Listing 3 shows a sample of the feedback given to us in one of these sessions

Problem Solution Severity Added
to back-
log

Status

Well-logs are upside down Flip the x-axis for the graph High Yes Fixed

Some of the wellbores and well-
logs are missing

Add the remaining of the wellbores
and well-logs

High Yes Fixed

Wellbores should be labeled Add floating label for wellbores in
scene

High Yes Fixed

The faults disappear when the
toggle menu is closed

Faults should stay visible High Yes Fixed

We want to be able to toggle sur-
faces

Overhaul and extend toggle menu
to include surfaces

Medium Yes Fixed

Seabed surface is missing It isn’t High Yes Fixed

Some of the surfaces are duplicated Remove duplicates High Yes Fixed

The web-app performance is poor
on low-end hardware

Look into optimizing the perform-
ance of the web-app

High Yes Im-
proved

Camera controls are hard to use Look at other alternatives for cam-
era controls

Medium No In pro-
gress

Maybe add templates for the wells
on the seabed

Maybe Low No In pro-
gress

Table 3: Sample of feedback from Glex

45

7 IMPLEMENTATION

7 Implementation

In this chapter, we will go further into the implementation of the different aspects of the project. We have

divided the most central parts into sections, with each having several subsections within themselves.

7.1 Frontend

As explained in the technical design chapter, we decided to utilize React, ThreeJS, and React Three Fiber

for the web app. The web app itself is structured into several different React components, some of which

contains ThreeJS code, represented through the React Three Fiber library.

The web app consists of a root containing five subcomponents: The app loader, the viewport, the inspector,

the toggle menu and the status bar component. The app loader is responsible for fetching all of the data of

the service, and stores it into state. This allows the subcomponents to access the global state, ensuring that

the entire web app operates on the same data.

7.1.1 Data loading

The data is loaded through the custom useData() hook. The first thing that happens is that the manifest is

fetched. The manifest contains all the specific information related to a given digital twin area/site. If the

manifest fails to load, the loading of the web app is aborted.

1 export function useData() {
2 const [data, setData] = useState(undefined)
3 const [done, setDone] = useState(false)
4
5 const f = useCallback(async () => {
6 const area = "smeaheia"
7 const manifest = await fetch(
8 `https://dt-api.azurewebsites.net/manifests/${area}`
9)

10 .then((res) => res.json())
11 .catch(() => console.error("Failed to load manifest!"))
12

Listing 8: Wells are loaded using the manifest

After the manifest has been loaded, all the other sources of data is fetched. The manifest is responsible of

defining where the data can be fetched from. An example of how this fetching looks, with wells in this

particular case:

46

7 IMPLEMENTATION

1 const wells = manifest.wells.map(async (well) => {
2 let ret = {
3 logs: {},
4 maps: {},
5 realtime: 0.1,
6 }
7
8 ret.header = await fetch(
9 `https://dt-api.azurewebsites.net/wells/${well}`

10)
11 .then((res) => res.json())
12 .catch(() => console.error("Failed to get well header!"))
13

Listing 9: The wells is loaded

7.1.2 The Viewport

The viewport contains the 3d world of which the digital twin resides. All ThreeJS code is written with a

syntax similar to React. The code for the respective parts of the 3d world is covered in each subsection

further down in the implementation chapter.

7.2 REST API

This section will cover the implementation of the REST API. The REST API serves mostly as a gateway

to the database and the results of any processing the other microservices have done. As discussed in the

technical design chapter, the REST API is implemented in Python using Flask as the main framework, in

addition to utilizing Azure’s Python SDK for accessing the database and blob storage.

7.2.1 Factory and Blueprints

Based on recommendations from Flask’s own documentation[20], we decided to implement our Flask ap-

plication using the factory pattern[5]. This means that there is one module dedicated to creating the Flask

app, loading configuration, registering all the endpoints, and managing all global resources. This pattern

is compatible with Python’s WSGI specification[11], meaning that our application can be plugged into a

variety of web servers, both development servers and production servers.

In order to make our REST API as modular and cohesive as possible, we followed Flask’s advice on split-

ting related endpoints and functionality into their own modules, and making use of Blueprints[29] in order

to mount these standalone modules into the Flask app. Listing 10 shows an example of the manifest module,

and how it defines its own endpoints and implements the specific functionality it needs to function. This

module can then be mounted into the rest of the API without regard for the other modules and implementa-

tion details.

47

7 IMPLEMENTATION

1 manifests_blueprint = Blueprint("manifest", __name__)
2
3 @manifests_blueprint.get("/manifests/<string:cube>")
4 def one_manifests(cube: str) -> Union[dict, tuple[str, int]]:
5 """Return one manifest from cosmos db."""
6 manifest = get_manifest(cube)
7
8 if manifest is None:
9 return "Manifest not found", 404

10
11 return manifest
12
13 def get_manifest(cube: str) -> Union[None, dict]:
14 """Return one manifest, by id, from cosmos db."""
15 documents = well_logs_container.query_items(
16 query="""
17 SELECT c.id, c.cubes, c.transformations, c.wells, c.faults, c.surfaces
18 FROM c
19 WHERE c.id = @id
20 """,
21 parameters=[{"name": "@id", "value": cube}],
22)
23
24 return first(documents)

Listing 10: The manifests module

7.2.2 Development vs. Production

Because we chose to implement the REST API as a generic WSGI server, this gave us options and flex-

ibility when it came to what development server and what production server we chose to use. For local

development, we used Flask’s own development server[8], which provides features such as hot-reloading

of modules, dotenv autoloading, and better debugging support. This greatly sped up development time. On

the other hand, our production environment is using a standard Azure Python Web App, which is reality

is Gunicorn[15] behind the scenes. Gunicorn is a much more scalable and production ready web server

compared to Flasks built-in one, and allows for such things as multiple concurrent connections, due to sup-

porting running multiple workers, which for servers dealing with a lot of I/O, which our server does, is a

big advantage.

7.2.3 Testing

Flask provides guidelines[47] for how to implement API tests, in addition to conventional unit tests, that

we used to guide our implementation of testing for the REST API. Specifically, we implemented a set

of fixtures, like the FlaskClient, which helped us define succinct and to the point tests without too much

boilerplate code, and used the APIs Flask provides in order to test for status codes, Content-Type, the

schema of the JSON response, and in order to run queries against the response body. And with a test

coverage of 90%, this gave us confidence that the API worked the way we intended it to.

48

7 IMPLEMENTATION

1 def test_get_smeaheia(client: FlaskClient):
2 """Test getting the manifest for the smeaheia area."""
3 res = client.get("/manifests/smeaheia")
4
5 assert res.is_json
6
7 # Check json format
8 json = res.get_json()
9 assert isinstance(json, dict)

10
11 # Check some known info about manifest
12 assert json["id"] == "smeaheia"
13 assert len(json["wells"]) == 3

Listing 11: An API test showing how the manifest endpoint is tested

7.3 Surfaces

7.3.1 Surfaces Data Processing

As mentioned in the Technical Design chapter, we had to parse, process and generate geometry from the

surface files. In this section we will cover how we analyzed the data, parsed, processed and made it ready

for geometry generation.

Analyzing the Data

Our intention with analyzing the data was to get an overview over how it was structured. The structure

was similar in all surface files, which allowed us to develop a parser that could handle the surface format in

general. In 12 a snippet of a surface file is presented to illustrate the general structure.

1 # Type: scattered data
2 # Version: 6
3 # Description: No description
4 # Format: free
5 # Field: 1 x
6 # Field: 2 y
7 # Field: 3 z milliseconds
8 # Field: 4 column
9 # Field: 5 row

10 556399.694580 6716786.249595 -630.122375 123 2
11 556449.694580 6716786.249595 -630.604858 124 2
12 556499.694580 6716786.249595 -629.811157 125 2
13 556399.694580 6716836.249595 -629.808044 123 3
14 556449.694580 6716836.249595 -630.629639 124 3
15 556499.694580 6716836.249595 -630.128113 125 3
16 556549.694580 6716836.249595 -627.973328 126 3
17 556599.694580 6716836.249595 -626.480347 127 3

Listing 12: Parts of a surface file to illustrate the structure

When analyzing the data, we came to the conclusion that none of the comments, which are the lines that

start with a hashtag, were needed. We also did not need the last two fields on each vertex because they

represent the column and row of the vertex, as stated in the comments within the file.

Initial Tests

Our initial tests were done in Haskell. We decided to try this after doing some research on what technologies

were good for data processing, and because we had previous experience with parsing using Haskell from

the PROG2006 Advanced Programming course. Our initial idea was to parse the data to JSON format,

making it storable in CosmosDB. We initially planned to generate the surface geometry in the web-app

49

7 IMPLEMENTATION

on-demand. In order to achieve this in Haskell, we had to first recognize the lines that started with a

hashtag, and remove them. This was achieved through the removeComments function, which also used the

checkComment function:

1 checkComment :: Char -> [Char] -> Bool
2 checkComment a b = a `elem` b
3
4 removeComments :: Char -> [String] -> [String]
5 removeComments _ [] = []
6 removeComments c (x:xs)
7 | checkComment c x = removeComments c xs
8 | otherwise = x:xs

Listing 13: Two methods that work together in removing comments from surface files

After this, we could remove the last two fields of the vertex be running the init method twice, and later

encode the x, y and z coordinates to JSON format.

After doing further analysis on the data and what we researched for the frontend, we decided that this

would not be the optimal solution. It would be more beneficial to create a preprocessed GlTF file from the

vertex data. Our reason for this came after reading the documentation of ThreeJS. It is stated there that the

recommended format for import assets is GlTF, as explained in the frontend section of the Technical Design

chapter. This would also ensure that no unnecessary data processing was performed. As mentioned in the

surfaces section of the Technical Design chapter, we looked into Open3D and how the data would need to

be organized in order to create a GlTF file from it.

The data format required to be inputted into Open3D had to be of the format illustrated in 14.

1 556399.694580 6716786.249595 -630.122375
2 556449.694580 6716786.249595 -630.604858
3 556499.694580 6716786.249595 -629.811157
4 556399.694580 6716836.249595 -629.808044
5 556449.694580 6716836.249595 -630.629639
6 556499.694580 6716836.249595 -630.128113
7 556549.694580 6716836.249595 -627.973328
8 556599.694580 6716836.249595 -626.480347

Listing 14: Point cloud data organizing for Open3D

Here, we can see the x, y and z coordinates of each vertex, which is what Open3D needs in order to create a

point cloud object. There exists two different approaches for generating point cloud objects with Open3D.

The first one is reading the necessary data directly from file. The other option is passing the data as a NumPy

array. Since we ran the processing in a cloud function, we had to utilize the NumPy approach.

Point Cloud

Having the data processing running in a function app, meant that we had to read the data through an input

stream. The input stream data type was converted into a list of strings after it was fetched from blob storage.

As mentioned earlier, we needed to process the data into a point cloud for Open3D to be able to generate a

GlTF file.

We needed to skip the lines that started with a hashtag. This filtering was performed while the reading of

50

7 IMPLEMENTATION

the input stream occurred.

1 def read_from_inputstream(inputstream: list[str], symbol: str) -> list:
2 """Reads data from file line by line
3
4 Opens a file and reads each line by enumerating. Checks if a line has the
5 # symbol and ignores it.
6
7 Parameters
8 -------
9 inputstream : list[str]

10 list of string from inputstream
11 symbol : str
12 the symbol that indicates a line to be ignored
13
14 Returns
15 -----
16 list[float]
17 """
18 l_return = []
19
20 for _, line in enumerate(inputstream):
21 if symbol in line:
22 continue
23 else:
24 l_return.append(line)
25
26 return l_return

Listing 15: Read data from input stream

After reading each line, and skipping the comments, the method returns a list with all the vertex data. Next

up we needed to remove the column and row values from each vertex, as well as reduce the value of each

axis. More information on why we needed to reduce the value is covered in the Open3D section:

1 def modify_vertex_data(l_input: list, r_num: int, reduce_amount: int) -> numpy.ndarray:
2 """Modify the vertex data from file
3
4 Takes in the list that is read from the data. Iterates through the list and splits
5 up the elements into floats. Optionally, the remove_elements() method can be used
6 to reduce the amount of data each vertice will have. And the reduce_amount variable
7 can be used to reduce the size of the vertex position.
8
9 Parameters

10 ------
11 l_input : list
12 the list from reading data
13 r_num : int
14 the remove count on each vertex
15 reduce_amount : int
16 the amount to be reduced in vertex position
17
18 Returns
19 -----
20 np.ndarray
21 numpy array to be used for creating geometry
22 """
23 vertex_list = []
24
25 for i, _ in enumerate(l_input):
26 l_temp = [round(float(j) / reduce_amount, 9) for j in l_input[i].split()]
27
28 if not l_temp:
29 continue
30 else:
31 l_temp = remove_elements(l_temp, r_num)
32 l_temp += c.color_generator(l_temp)
33 vertex_list.append(l_temp)
34
35 # convert the vertex list to a numpy array
36 numpy_vertex_array = numpy.array(vertex_list, dtype='float')
37
38 return numpy_vertex_array

Listing 16: Method to modify vertex data

In order to mitigate any potential inconsistencies in the point cloud, we decided to round the resulting value

after the reduction of the vertex value had been performed. We chose the value "9" here to make sure that

all of the original value were included after rounding.

We also added a remove_elements() method, to remove the column and row values from each vertex. This

51

7 IMPLEMENTATION

method runs the pop() method on the list a certain of times to remove unneeded values. And finally, the

color_generator method is used to add a color to the vertex before the result is appended to the vertex list,

which we will talk about in the next section.

Surface Color

Adding color to the surface meshes was important in order to indicate what depth level the surface had. We

decided to implement the color palette from the Smeaheia website[43].

Figure 18: Shows the area around Smeaheia and the wells, indicating the depth of the sea bottom

The colors represent the depth level that a surface has. Our initial implementation had some problems,

which will be explained further below. The method starts by extracting the z-axis from the vertex, and

utilizes it to determine the color of the surface.

52

7 IMPLEMENTATION

1 z_value = z value from vertex in parameter
2
3 # Depth level
4 depth_level_0 = -300
5 depth_level_1 = -600
6 depth_level_2 = -900
7 depth_level_3 = -1200
8 depth_level_4 = -1500
9 depth_level_5 = -1800

10 depth_level_6 = -2100
11
12 # Colors for the surfaces
13 color_level_0 = [200,32,0] # Red
14 color_level_1 = [255,132,0] # Orange
15 color_level_2 = [255,245,0] # Yellow
16 color_level_3 = [66,255,0] # Green
17 color_level_4 = [0,255,208] # Teal
18 color_level_5 = [0,130,255] # Blue
19 color_level_6 = [201,0,255] # Purple

Listing 17: Depth level values and pre-defined colors.

After this, we checked the z value of the vertex against the depth level, and set a color for the vertex. We

then calculate the color range between the depth levels, and utilized the add color method to interpolate

between them.

1 if z_value > depth_level_1:
2 input_color_range = (z_value - depth_level_0) / (depth_level_1 - depth_level_0)
3 return add_color(color_level_0, color_level_1, input_color_range * -1)
4
5 elif z_value > depth_level_2:
6 input_color_range = (z_value - depth_level_1) / (depth_level_2 - depth_level_1)
7 return add_color(color_level_1, color_level_2, input_color_range * -1)
8 ...

Listing 18: Parts of the depth level check to illustrate adding color

This value is then checked against each depth level. The add_color method takes in the start color, target

color and what range between them is to be used. These values are later used to interpolate and return a list

with the accurate color between two depth levels.

1 def add_color(start_color: list, target_color: list, color_percentage: float) -> list[float]:
2 """Returns a color
3
4 Lerps a color between the start and target color with a certain percentage.
5
6 Parameters
7 -------
8 start_color : list
9 the start color

10 target_color : list
11 the target color
12 color_range : float
13 the percentage between the start and target color
14
15 Returns
16 -----
17 list[float]
18 the calculated color between start and target
19 """
20 return_color = []
21
22 for i, _ in enumerate(start_color):
23 return_color.append(color_lerp(start_color[i], target_color[i], color_percentage))
24
25 return return_color

Listing 19: Method to add color to vertex

And finally, the color_lerp method simply holds the formula for interpolating between two values

a + (b - a) * x

53

7 IMPLEMENTATION

where a is the starting value, b is the target value and x is the value between a and b. This gave us the

following result on a surface:

Figure 19: Surface with incorrect color interpolation

As can be seen here, there is no real interpolation between the depth levels. Another problem here is that

the colors were too bright, which is not hard to spot since the light intensity is dialed down to 0.01. Both

problems were handled by setting the RGB range to be between 0 and 1, and through the removal of the -1

that was multiplied into the color range. So the final color result looked like this:

1 # Colors for the surfaces
2 color_level_0 = [0.784, 0.125, 0.0] # Red
3 color_level_1 = [1.0, 0.517, 0.0] # Orange
4 color_level_2 = [1.0, 0.960, 0.0] # Yellow
5 color_level_3 = [0.258, 1.0, 0.0] # Green
6 color_level_4 = [0.0, 1.0, 0.815] # Teal
7 color_level_5 = [0.0, 0.509, 1.0] # Blue
8 color_level_6 = [0.788, 0.0, 1.0] # Purple

Listing 20: RGB values set in range between 0 and 1

This yielded a much better result, both in the interpolation and the brightness of the surface.

54

7 IMPLEMENTATION

Figure 20: Surface with correct color interpolation

7.3.2 Surfaces Geometry Generation

While working on the data processing we researched how we could generate geometry from the point

cloud. As mentioned in the data processing section, we discussed doing this on demand in the web-app.

This generation process is relatively heavy, and it was thus not sensible to do this generation every single

time the page loads. Because of this, we went with the approach of pre-generated GlTF files as stated in the

Technical Design chapter.

In this section we will talk about how we used the geometry generation tools we presented in the Technical

Design chapter. As well as what challenges we faced, how we tackled them and what the results were.

Open3d

Our purpose with using Open3D was to generate a GlTF file from a surface point cloud. The first thing we

analyzed was the input data format of Open3D’s point cloud triangulation algorithms. We had to estimate

the normals of the point cloud, this was an additional input requirement for the triangulation algorithm.

As mentioned in the data processing section, we had to organize the point cloud in a way that Open3D was

able to process 14. Open3D reads point clouds through the use of NumPy arrays. We had to specify where

the points are located within the NumPy array.

55

7 IMPLEMENTATION

1 def point_cloud_data(point_cloud_array: np.ndarray) -> open3d.cpu.pybind.geometry.PointCloud:
2 """Read the point cloud data from file
3
4 Reads the point cloud from the array that is sent in and assigns the position and color
5 from the point_cloud_array. Calculates the distances between the points in the point cloud
6 to determine the difference betweeen the minimum and maximum distance. The radius with which
7 normals are calculated with are determined by the min_max_diff value.
8
9 Parameters

10 -------
11 point_cloud_array : np.ndarray
12 numpy array with vertex data
13
14 Returns
15 -----
16 o3d.cpu.pybind.geometry.PointCloud
17 the point cloud that will be used for generating geometry
18 """
19 pcd = o3d.geometry.PointCloud()
20 pcd.points = o3d.utility.Vector3dVector(point_cloud_array[:,:3])

Listing 21: Create point cloud object

The next part that had to be performed was the estimation of normals.

1 pcd.estimate_normals(search_param=
2 o3d.geometry.KDTreeSearchParamHybrid(radius=1.1, max_nn=30))

Listing 22: Estimate normals for point cloud

The estimate normals method iterates through all of the points and calculates the normals in relation to

one another. The parameter radius and max_nn are the radius and the maximum amount of neighbors the

method will take into consideration.

After processing the point cloud and estimating normals, we had to apply an algorithm that was able to

triangulate the point cloud into geometry. The two alternatives we considered for this triangulation were

the Poisson and Ball-Pivoting algorithms. There are advantages and disadvantages with both algorithms.

Below we will outline how each of them work and what went into our final decision regarding which one

to apply.

Poisson Algorithm

The Poisson algorithm considers all the points at once, without resorting to heuristic spatial partitioning or

blending, and is therefore highly resilient to data noise. Unlike radial basis function schemes, the Poisson

approach allows a hierarchy of locally supported basis functions, and therefore the solution reduces to a

well conditioned sparse linear system. We describe a spatially adaptive multiscale algorithm whose time

and space complexities are proportional to the size of the reconstructed model[40]. Because of the fact that

the Poisson algorithm considers all the points at once, it proved to give fast results when it came to the

triangulation. The method we used for this was:

56

7 IMPLEMENTATION

1 def triangle_mesh_poisson(pcd: PointCloud, depth: int, scale: float, linear_fit: bool) -> TriangleMesh:
2 """Triangle the point cloud into a mesh with the poisson algorithm
3
4 Generates the mesh with the poisson algorithm. Creates a bounding box after and crops the mesh.
5
6 Parameters
7 -------
8 pcd : o3d.cpu.pybind.geometry.PointCloud
9 the point cloud to be made into a mesh

10 depth : int
11 max depth of tree for surface reconstruction
12 scale : float
13 ratio between the diameter of the cube used for reconstruction
14 linear_fit : bool
15 if true, use linear interpolation to estimate position of iso-vertices
16
17 Returns
18 -----
19 o3d.cpu.pybind.geometry.TriangleMesh
20 the generated mesh
21 """
22 poisson_mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
23 point_cloud, depth=9, scale=1.1, linear_fit=True)[0]
24
25 bbox = pcd.get_oriented_bounding_box()
26 p_mesh_crop = poisson_mesh.crop(bbox)
27
28 return p_mesh_crop

Listing 23: Generate mesh with Poisson Algorithm

We can see that the poisson algorithm method takes the point cloud as a parameter. The algorithm also

expects the parameters depth, scale and linear fit. The scale describes the ratio between the diameter of

the cube used to reconstruction and the diameter of the samples bounding box. The greater the scale, the

less detail will be retained. If the scale is big enough the geometry will collapse onto itself, creating a

watertight mesh. The depth parameter is used to defined how detailed the mesh will be, higher value equals

more details. The linear fit allows the reconstruction to use linear interpolation to estimate the positions of

iso-vertices, if set to true.

We also needed to crop the mesh. This was done by retrieving the bounding box of the point cloud with the

"get_oriented_bounding_box" method, and then cropping the generated mesh with the bounding box. The

result looked like this:

Figure 21: Poisson Surface Reconstruction

57

7 IMPLEMENTATION

There are some downsides to the Poisson algorithm, mainly jagged edges and loss of detail, which is evident

in 21. One of the upsides is that the triangulation is fast. Generating this mesh took 24 seconds. The Poisson

algorithm was ruled out, in favor of the Ball-Pivoting algorithm, discussed in the next section. A detailed

and consistent mesh is vital for a geologist to be able properly utilize a digital twin, which is a requirement

the mesh generated through the Poisson algorithm did not satisfy.

Ball-Pivoting Algorithm

The Ball-Pivoting algorithm is named for the simulated use of a virtual ball to help reconstruct a mesh from

a point cloud.

In the Ball-Pivoting algorithm, we can image a tiny ball rolling across the surface of points. This ball will

have a radius which determines the distance the ball will take into consideration when rolling across the

points. The radius should be slightly higher than the average space between points. When the ball has rolled

on three points, it forms a triangle. From that location, the ball can roll into any direction[7].

Figure 22: Illustration showing ball-pivoting algorithm

The ball will be pivoting along the triangle edge formed from two points. This will then settle the ball in a

new location which will form another triangle, utilizing the point it just located alongside the two previous

points. This process is repeated until the mesh is fully formed.

The Ball-Pivoting algorithm requires a radius which determines the distance to be taken into consideration

by the ball while rolling across the surface. We calculated the radius with the following method:

58

7 IMPLEMENTATION

1 def calculate_radius(pcd: PointCloud) -> list:
2 """Calculate the radius of the point cloud points
3
4 Calculate the radius of each point in the point cloud. Used later on the open3d TriangleMesh method.
5
6 Parameters
7 -------
8 pcd : o3d.cpu.pybind.geometry.PointCloud
9 the point cloud to calculate point radius

10
11 Returns
12 -----
13 list
14 """
15 distances = pcd.compute_nearest_neighbor_distance()
16 avg_dist = np.mean(distances)
17 radius = avg_dist * 2.0
18
19 return radius

Listing 24: Method to calculate radius

We use the Open3D method to compute the nearest neighbor distances, and then NumPy to calculate the

average. The average was multiplied with two, and the resulting value was set as the radius. The value

used for the multiplication of the average would prove to cause some issues later, which we will explain in

the Problem areas section. This radius is then used in the Ball-Pivoting algorithm to triangulate the surface

point cloud.

1 def triangle_mesh_bpa(pcd: PointCloud, radius: list) -> TriangleMesh:
2 """ Triangle the point cloud into a mesh with the ball pivot algorithm
3
4 Generates a mesh with the ball pivoting algorithm. Cleans up the geometry with several methods from open3d.
5 Calculates different distances between the points in the point cloud to verify is the merge_close_vertices method
6 is needed.
7
8 Parameters
9 -------

10 pcd : o3d.cpu.pybind.geometry.PointCloud
11 the point cloud to be made into a mesh
12 radius : list
13 the radius to be used in the algorithm
14
15 Returns
16 -----
17 o3d.cpu.pybind.geometry.TriangleMesh
18 the generated mesh
19 """
20 bpa_mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting(
21 point_cloud, o3d.utility.DoubleVector(radius))
22
23 # Clean up geometry
24 bpa_mesh.remove_degenerate_triangles()
25 bpa_mesh.remove_duplicated_triangles()
26 bpa_mesh.remove_duplicated_vertices()
27 bpa_mesh.remove_non_manifold_edges()
28
29 return bpa_mesh

Listing 25: Generate mesh with Ball-Pivoting algorithm

We also utilized several Open3D methods to clean up the mesh, by removing degenerate and duplicated

triangles, duplicate vertices and non-manifold edges. This would also make the mesh file smaller in size

because unneeded geometry was removed.

Using the Ball-Pivoting algorithm yielded much better results than the Poisson algorithm. Using it on the

same surface data as shown in the Poisson mesh image, resulted in this mesh:

59

7 IMPLEMENTATION

Figure 23: Ball-Pivoting Surface Reconstruction

Using this algorithm also presented some issues. We will talk more about them, and how we solved them,

in the section below.

Problem areas

One of the main issues we discovered when using the Ball-Pivoting algorithm was that it was slow in

comparison to the Poisson algorithm. When generating the mesh with default settings, the average surface

would be processed in 6 minutes and 45 seconds. At first, we thought this was going to be a significant issue

for the solution. But looking more into the issue, we found that the time it would take to generate a surface

geometry would not matter much. The reason for this is that all of the surface data was static, so it would

only have to be generated once. And if ever updated, the web-app would only load it after the geometry

generation had been completed. As we go into some of the other issues, we will see that the generation time

was improved alongside other issues.

Another notable issue we had was holes in the generated surface meshes. These came from inconsistencies

with the value that the average distances between points was multiplied with. It resulted in issues that

looked like this:

60

7 IMPLEMENTATION

Figure 24: Mesh holes

We found that the inconsistencies were mainly a result from the radius value that the Ball-Pivoting algorithm

was being provided. This value could be fixed by trial and error, but what we found later was that each

surface required a custom value in order to be generated without holes. This meant that we had to find a

way to generate a custom radius based on the requirement that a specific surface would have.

To mitigate this issue, we started calculating the difference between the minimum and maximum distance

in the points of the point cloud. This helped us create a minimum and maximum threshold, which was

a consistent way of recognizing the requirements that different surfaces could have. We also needed a

value that could amplify the radius, similar to what the value did in our first iteration of radius. We used the

average, minimum and maximum distance value to create this by adding them together and then multiplying

them by 10. The multiplication was needed because the point cloud had been scaled down significantly to

be able to estimate normals correctly. The final implementation of the radius method looked like this:

61

7 IMPLEMENTATION

1 def calculate_radius(pcd: PointCloud) -> list:
2 """Calculate the radius of the point cloud points
3
4 Calculate the radius of each point in the point cloud. Used later on the open3d TriangleMesh method.
5
6 Parameters
7 -------
8 pcd : o3d.cpu.pybind.geometry.PointCloud
9 the point cloud to calculate point radius

10
11 Returns
12 -----
13 list
14 """
15 distances = pcd.compute_nearest_neighbor_distance()
16
17 avg_dist = np.mean(distances)
18 max_dist = max(distances)
19 min_dist = min(distances)
20
21 min_max_diff = max_dist - min_dist
22
23 max_threshold = 0.032
24 min_threshold = 0.001
25
26 # Above the threshold of difference between min and max distances, a bit
27 # extra amplify is needed to avoid holes in the computed mesh.
28 if min_max_diff > max_threshold or min_max_diff < min_threshold:
29 amplify = (avg_dist + min_dist + (max_dist * 1.3)) * 10
30 else:
31 amplify = (avg_dist + min_dist + max_dist) * 10
32
33 radius = [max_dist * amplify]
34
35 return radius

Listing 26: Calculate radius final version

We also added an if statement to recognize a couple of surfaces that needed an extra amplifier. These

surfaces had characteristics that were either over the maximum threshold, or below the minimum threshold.

This method would adjust according to the distance between points on each surface, and make sure there

were no holes in the meshes.

There were some issues with normal estimation as well. The orientation of the normals was flipped or in

the wrong direction, this caused some minor holes to appear in the mesh. While the issue with holes in the

mesh was fixed by the radius method, the orientation needed more work.

Figure 25: Normals with wrong orientation

As we can see here, the orientation of the normals does not follow the orientation of the surface. This makes

it so that certain parts, like the ones outlined in the image, will point horizontally and not be affected by

62

7 IMPLEMENTATION

light in the correct way. This would leave marks similar to "patches" on the mesh. Our solution to this was

to use the distance between points again to calculate the correct radius for normals estimation. The final

method looked like this:

1 def point_cloud_data(point_cloud_array):
2 """Read the point cloud data from file
3
4 Reads the point cloud from the array that is sent in and assigns the position and color
5 from the point_cloud_array. Calculates the distances between the points in the point cloud
6 to determine the difference between the minimum and maximum distance. The radius with which
7 normals are calculated with are determined by the min_max_diff value.
8
9 Parameters

10 -------
11 point_cloud_array : np.ndarray
12 numpy array with vertex data
13
14 Returns
15 -----
16 o3d.cpu.pybind.geometry.PointCloud
17 the point cloud that will be used for generating geometry
18 """
19 pcd = o3d.geometry.PointCloud()
20 pcd.points = o3d.utility.Vector3dVector(point_cloud_array[:,:3])
21 pcd.colors = o3d.utility.Vector3dVector(point_cloud_array[:,3:6])
22
23 distances = pcd.compute_nearest_neighbor_distance()
24 max_dist = max(distances)
25 min_dist = min(distances)
26
27 min_max_diff = max_dist - min_dist
28
29 min_threshold = 0.030
30 increase_radius = 0.01
31
32 # Increase the radius to calculate normals by a bit if the min max difference
33 # is below the minimal threshold.
34 if min_max_diff < min_threshold:
35 radius = max(distances) + increase_radius
36 else:
37 radius = max(distances)
38
39 max_neighbor = int(len(distances) / 100)
40
41 pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(
42 radius=radius, max_nn=max_neighbor), fast_normal_computation=False)
43
44 pcd.orient_normals_consistent_tangent_plane(100)
45 pcd.normalize_normals()
46
47 return pcd

Listing 27: Method to handle point cloud final version

As mentioned, we used the difference between the minimum and maximum distance between points to

determine what the radius would be. The difference here is that we only used this to recognize the surface

in an if statement. For the actual radius we took the maximum distance of the points, and set that as the

radius. In some cases, as detected by the if statement, the radius needed to be increased a bit in order to

return the optimal result. We also utilized a Open3D method to orient the normals correctly and normalize

them.

When the holes and normals issues were resolved, we saw a significant improvement in how little time the

geometry generation took. The surface that initially took 6 minutes and 45 seconds to generate previously,

was now down to 1 minute and 35 seconds. The geometry generation was thus much more efficient.

7.3.3 Surfaces Cloud Function

After finishing the processing and geometry generation for surfaces, we needed to deploy this to a Azure

cloud function. This function app would be triggered every time a new surface file was added to the Storage

Account, and generate a geometry file which would then be stored for further use by the web app.

63

7 IMPLEMENTATION

1 def main(blobIN: func.InputStream, blobOUT: func.Out[func.InputStream]):
2 """Main function of blob trigger
3
4 Is triggered when a file is added to azure blob storage. Gets the name of the file that triggered
5 and checks the extension. Will currently only process .surface files.
6
7 Parameters
8 -------
9 blobIN : func.InputStream

10 file that triggered function read as inputstream
11 blobOUT : func.Out[func.InputStream]
12 processed file saved to storage with inputstream
13
14 Returns
15 -----
16 No value
17 """
18 # Log some information about the blob
19 logging.info(
20 f"Python blob trigger function processed blob \n"
21 f"Name: {blobIN.name}\n"
22)
23
24 # grab the file with basename method
25 data_file = os.path.basename(blobIN.name)
26
27 # check whether the file that triggered function has file extension .surface
28 if data_file.endswith('.surface'):
29 # decode the bytes that are read from blob
30 input_lines = bytes.decode(blobIN.read()).split("\n")
31
32 # Send a request to grab if the surface name already exists
33 req = requests.get("https://dt-api.azurewebsites.net/surfaces/exists",
34 params={"surface_name": data_file},
35)
36
37 # Check if the surface already exists in the database
38 if req.content.decode('UTF-8') == "false":
39 # process inputstream to a point cloud array
40 point_cloud_array = process.process_inputstream(input_lines, '#', 2, 1000)
41
42 # get the temp directory where the function app is running to temporarily store gltf file
43 dir_path = tempfile.gettempdir()
44 temp_store_geometry = dir_path + "/" + data_file + ".gltf"
45
46 # generate the geometry and store the file in the temp folder
47 geometry.generate_geometry(point_cloud_array, temp_store_geometry)
48
49 # load and name the geometry node in the gltf file. needed for web-app
50 pygltf.load_and_name_gltf(temp_store_geometry, data_file)
51
52 # read the binary data from temp folder and read it to blobOUT for blob storage
53 data = open(temp_store_geometry, "rb")
54 blobOUT.set(data.read())
55
56 surface_name = data_file.split(".")[0]
57 surface_uri = blobIN.name.replace("data", "geometry").replace(".surface", ".gltf")
58
59 surface = {
60 "surface_name" : surface_name,
61 "surfaces_uri" : surface_uri
62 }
63 CosmosDB.set(func.Document.from_json(json.dumps(surface)))
64
65 logging.info(f"surface name : {surface_name} \n"
66 f"surface uri : {surface_uri} \n")
67
68 logging.info(f"Data written to blob storage : {temp_store_geometry} \n")
69 else:
70 logging.info(
71 f"Surface file {data_file} already exists. "
72)

Listing 28: Method that runs when function app is triggered for surfaces

The filename is retrieved with the help of the basename method. This is then used to verify that the file

extension is ".surface", so that we can be sure that the type of the file being processed is correct. If the

file extension is correct the input stream is read with the decode method and split for each new line it

encounters. We also added an if statement to verify whether or not the file being processed exists in the

database already or not. The processing will only run if the file does not already exist. From here, we can

use the methods we created to process and generate the GlTF file. This is temporarily stored in local disk,

due to further processing with pygltflib. pygltflib adds the name to the geometry node in the GlTF file. This

is a requirement to be able to load the file in the web app.

The function app uses bindings to both trigger the function, and store the file in the Storage Account. This

is done through the function.json file:

64

7 IMPLEMENTATION

1 {
2 "scriptFile": "__init__.py",
3 "bindings": [
4 {
5 "name": "blobIN",
6 "type": "blobTrigger",
7 "direction": "in",
8 "path": "rawstorage/Surfaces/data/{name}.surface",
9 "connection": "ntnuccsstorage_STORAGE"

10 },
11 {
12 "name": "blobOUT",
13 "type": "blob",
14 "direction": "out",
15 "path": "rawstorage/Surfaces/geometry/{name}.gltf",
16 "connection": "ntnuccsstorage_STORAGE"
17 }
18]
19 }

Listing 29: Bindings in function.json

The name, type, direction, path and connection of the binding is set. In this case we have a blobTrigger for

input and an out binding pointing to blob storage for output. These are both connected to the ‘ntnuccsstor-

age_STORAGE’ which is the storage account located in Azure.

7.3.4 Surfaces Testing

Since one of our project goals was to learn more about test-driven development we created tests for the

surface section. We planned out the methods we needed for parsing and processing purposes based on

the data in the dataset. This contributed to the test driven approach, where we would create tests before

implementing the methods. The implementation of tests in the surfaces section was a hybrid approach

where some methods were developed on a test-first basis, and some with functionality-first basis. The most

challenging aspect of testing surface generation was the Open3D section, and because of this most of the

testing regarding Open3D was conducted manually in the beginning.

Testing the data processing and color generator for the surfaces were performed as planned. The tests were

written before the implementation of the methods. To illustrate how we went about testing surfaces, we will

showcase the process for the remove_elements method:

The first thing we had to identify was what functionality the method had to accomplish. We needed a

method that would remove a certain amount of elements from a list. The list and the amount value would

be passed as parameters, and the pop() method would run the operation "number" amount of times on the

list. Writing the test case to achieve this functionality looked like this:

1 def test_remove_elements():
2 """remove elements from list"""
3
4 l_test_1 = [1,2,3,4,5]
5 l_test_2 = ['one', 'two', 'three']
6
7 l_test_1 = remove_elements(l_test_1, 2)
8 l_test_2 = remove_elements(l_test_2, 1)
9

10 assert(len(l_test_1) == 3)
11 assert(len(l_test_2) == 2)

Listing 30: Test method for remove_elements method

65

7 IMPLEMENTATION

We started off by created two test lists. We would then run the method, removing a certain amount of

elements, and then asserting the length of these lists. Having created the test, developing the method was a

straightforward process, as it was possible to determine when the functionality was sufficiently implemented

(When the test passed).

1 def remove_elements(l_input: list[float], amount: int) -> list[float]:
2 """Remove elements from a list
3
4 Takes in a list and amount, and runs pop() on it amount times.
5
6 Parameters
7 -------
8 l_input : list[float]
9 the list to be modified

10 amount : int
11 amount of times to run pop()
12
13 Returns
14 -----
15 list[float]
16 """
17 for _ in range(amount):
18 l_input.pop()
19
20 return l_input

Listing 31: Method to remove elements from list

Testing the geometry generation involved checking the generated files, and validating the point cloud object.

7.3.5 Surfaces Web-app

The surfaces are loaded through the use of the manifest, as explained in the frontend section of this chapter.

The surface method loads the GlTF file that is fetched through the API call.

1 const Surface = memo(function Surface({ name, surface }) {
2 const ref = useRef()
3 const model = useGLTF(surface)
4 const geometry = model.nodes[name].geometry
5
6 geometry.computeVertexNormals()
7
8 return (
9 <mesh ref={ref} scale={1} geometry={geometry}>

10 <meshStandardMaterial
11 side={Three.DoubleSide}
12 transparent={true}
13 opacity={0.75}
14 vertexColors={true}
15 />
16 </mesh>
17)
18 })

Listing 32: Surface method to load GlTF and compute normals

Here, we can see how the name of the surface file is used. This is needed in order to access the geometry

within the GlTF file and properly display it in the scene. We utilize a ThreeJS method for the computation

of vertex normals. This is a safeguard to make sure that the orientation of the normals are correct on the

scene. The material of the surface is also set here, giving it some transparency and activating the usage of

the vertex color generated from depth levels. The surfaces are then exported with:

66

7 IMPLEMENTATION

1 function Surfaces({ surfaces, surfacesState }) {
2 return (
3 <group>
4 {surfaces
5 .filter(({ name }) => surfacesState[name])
6 .map((item, index) => {
7 return (
8 <Surface
9 key={index}

10 surface={item.surface}
11 name={item.name}
12 />
13)
14 })}
15 </group>
16)
17 }

Listing 33: Surfaces method that loads all surfaces

These are then passed into the "Surfaces" object in the viewport, which draw the surfaces on the scene.

7.4 Wells and well-logs

7.4.1 Well and Well-logs data

In order to visualize wells and well-logs, first we will need to read, parse and process a broad range of

different data, provided both as part of the Smeaheia dataset, and other datasets available to Glex.

Wellbore 32/2-1 and 32/4-1 both have somewhat minimal data available for them, but wellbore 32/4-1 T2

on the other hand has the most data available, with 17 different logs and data curves to extract and visualize.

There are mainly two data formats we had to deal with for this project. Compiled logs, which are tabular

logs manually compiled into spreadsheets by data managers at Glex. And composite logs, which are logs

generated in the process of drilling and probing a wellbore, here in the form of LAS files.

We went back and forth on the format of the compiled logs quite a bit, the reason being that we needed a

machine-readable format that was also easy for non-technical actors to author. We ended up with a custom

excel sheet format. Essentially a single excel file per well, where the different sheets inside the excel file

represent different well logs, some of which are mandatory, and others optional.

Listing 34 shows a truncated example of a permeability log. This showcases how most of the compiled

data is formatted. The data is tabular, where each column represents a different measurement, and each row

represents each measurement at different depths. By depth, we mean measured depth in meters relative to

the drilling platform, and the curvature of the wellbore. This will be relevant later, as this depth is not the

true vertical depth that we might expect it to be. Each log also has a set of measurements or labels for this

row, in this example a measurement of permeability, which is what we want to visualize.

67

7 IMPLEMENTATION

1 depth permeability
2 1220.5 0.224
3 1221.5 0.097
4 1222.5 0.882
5 1223.5 0.215
6 1224.5 0.131
7 1225.5 0.123
8 1226.5 0.819
9 1227.5 0.102

10 1228.5 0.086
11 1229.5 0.091
12 1230.5 0.128
13 1231.5 0.316
14 1232.5 1.14
15 1233.5 0.021
16 1234.5 0.063
17 1235.5 0.053

Listing 34: Truncated example of well-log from 32/4-1 T2 showing depth vs. permeability

Listing 35 shows a simplified raw LAS file. The actual file is about 18 000 lines long, but this excerpt

still highlights the overall structure of the file, and some of the most interesting information. We can see

that the file consists of information blocks, indicated by the ˜ symbol. These blocks contain various pieces

of information about the well-log. For example, we can see the general information about the well and

wellbore in the well information block. In the curve information block, we can see descriptions and units

for the individual curves, or data points for the log. And in the ASCII block, we see the raw data, formatted

not too dissimilar to a CSV file.

1 ~VERSION INFORMATION
2 VERS. 2.0: CWLS Log ASCII Standard-VERSION 2.0
3 WRAP. NO: One line per depth step
4 ~Well Information Block
5 STRT.M 389.8880: Top Depth
6 STOP.M 3164.3300: Bottom Depth
7 STEP.M .15240: Depth Increment
8 NULL. -999.250: Null Value
9 FLD . Q32: Field Name

10 WELL. 32/4-1: NAME
11 WBN . 32/4-1 T2: WELLBORE
12 NATI. NOR: COUNTRY
13 ~Curve Information Block
14 #MNEM.UNIT API CODE No Description
15 #========= ======== == ===========
16 DEPT.M 00 001 00 00: 1 DEPTH
17 HAC.US/F : 2 Sonic Transit Time (Slowness)
18 HCAL.IN : 3 Caliper
19 HGR.GAPI : 4 Gamma Ray
20 HRD.OHMM : 5 Deep Resistivity
21 HRD1.CPS : 6 Far Thermal Neutron Count Rate
22 HRD2.CPS : 7 Far Thermal Neutron Count Rate
23 HRS.OHMM : 8 Micro Resistivity
24 ~ASCII
25 389.8880 -999.2500 -999.2500 -8219.5742 -999.2500 -999.2500 -999.2500 -8223.6055
26 390.0404 -999.2500 -999.2500 22.0639 -999.2500 -999.2500 -999.2500 .3882
27 390.1928 -999.2500 -999.2500 21.2065 -999.2500 -999.2500 -999.2500 .4003
28 390.3452 -999.2500 -999.2500 20.5128 -999.2500 -999.2500 -999.2500 .3776
29 390.4976 -999.2500 -999.2500 20.5980 -999.2500 -999.2500 -999.2500 .3799
30 390.6500 -999.2500 -999.2500 21.4558 -999.2500 -999.2500 -999.2500 .4349
31 390.8024 -999.2500 -999.2500 21.8847 -999.2500 -999.2500 -999.2500 .5474
32 390.9548 -999.2500 -999.2500 22.2225 -999.2500 -999.2500 -999.2500 .7874
33 391.1072 -999.2500 -999.2500 23.3564 -999.2500 -999.2500 -999.2500 .8468
34 391.2596 -999.2500 -999.2500 26.9873 -999.2500 -999.2500 -999.2500 .9354
35 391.4120 -999.2500 -999.2500 24.9395 -999.2500 -999.2500 -999.2500 .9342
36 391.5644 -999.2500 -999.2500 23.4503 -999.2500 -999.2500 -999.2500 .9652
37 391.7168 -999.2500 -999.2500 27.3499 -999.2500 -999.2500 -999.2500 .9842
38 391.8692 -999.2500 -999.2500 25.1465 -999.2500 -999.2500 -999.2500 .9930
39 392.0216 -999.2500 -999.2500 22.8582 -999.2500 -999.2500 -999.2500 1.0146
40 392.1740 -999.2500 -999.2500 17.9492 -999.2500 -999.2500 -999.2500 .9905
41 392.3264 -999.2500 -999.2500 19.0793 -999.2500 -999.2500 -999.2500 .9937

Listing 35: Simplified example of well-log from 32/4-1 T2 showing raw LAS file

7.4.2 Well and Well-logs parsing and processing

In order to work with well-logs, we first needed to obtain some metadata about the well and wellbore. This

information is represented by the header and trajectory logs in the compiled well-logs. The well-log header

68

7 IMPLEMENTATION

gives us information such as the wellbore ID, for example 32/2-1, and where the wellbore is located in

the world. The trajectory log, on the other hand, gives us information about the curvature of the wellbore,

which we will need later.

With this, the following needs to be completed in order to meet the requirements provided to us by Glex:

• Calculate true vertical depth for any measured depth.

• Generate a mesh representing the wellbore for visualization.

• Generate texture maps in order to visualize stratigraphy logs.

• Output logs as JSON documents for consumption by the web app.

Foremost, though, we had to validate and remove incorrect data. Mostly this involved removing null, NaN,

and empty values, but we also tried to validate if the data was within realistic limits, like checking for

negative values where they should not be. This proved difficult, as we did not always know what the data

represented, and what these limits were. Therefore, we went with a more minimalistic approach where the

data is represented mostly as given, except removing some values as mentioned. We then also wrote a set

of tests for parsing and processing data, which we made use of through the rest of this implementation.

To calculate true vertical depth, (TVD, TVDKB, TVDSS), which was identified as an important piece of

information by our requirements, Glex recommended we use the minimum curvature method. The minimum

curvature method is a mathematical method for calculating the minimum curvature of a graph, or a wellbore

in our case, based on a series of data points consisting of measured depths, angles, and azimuths, which is

the data we had, from the wellbore survey, as part of the compiled logs.

However, the minimum curvature method only gives TVDs corresponding to the depth measurements it was

given. In order to calculate TVD for any arbitrary depth measurement, we needed to find some continuous

function for mapping measured depth to TVD. We could use regression in order to fit the function. The

problem was determining the degree of the function to be utilized. Here we chose to experiment by using

first linear, and then progressively higher degrees of polynomial functions, in order to see when the accuracy

tapered off. Accuracy was measured and tested by splitting the dataset into a training dataset, and a test

dataset. This way, we could test if the predictions the model makes for value we already know the answer

to were close or not. This approach was inspired by the linear regression models we made as part of the

PROG2051 - Artificial Intelligence course.

We ended up using a second degree polynomial function, as this provided a small advantage over linear

regression, and the same accuracy as higher degree ones. We tested this on the limited data we had, though,

and it is likely that wellbores that are much more curvy than the one we had, will require higher degree

functions. Alternatively, a high fidelity solution would be to figure out how many curves the wellbore has

ahead of time, as this is linked to the degree of polynomial function you will need to create this mapping.

But considering we had already found a solution that was good enough for our purposes, we chose not to

69

7 IMPLEMENTATION

prioritize this, sacrificing a bit of accuracy, for the time to explore other more interesting aspects of this

project.

Finally, this function could then be used to predict the TVD of any depth measurement in any of the other

logs. With reasonable accuracy.

The minimum curvature calculations not only yields the true vertical depth, but also the relative deviations

of the wellbore, or its curvature. Based on this data, we generated a polygon mesh representing the well-

bore trajectory. This is useful for visualization purposes in the web app. We struggled to find any geometric

shapes that fully captured the curvature of the wellbore, without becoming way too complicated to imple-

ment. Therefore, we had to come up with an algorithm for constructing this geometry ourselves. Since our

input was a list of points, representing the points on the wellbore with the calculated deviation as x and y

coordinates and the calculated true vertical depth as the z coordinate, we could form a pipe, by calculating

vertex coordinates in a circle around each point, and by drawing triangles between these vertices. These

vertices and triangles, being defined by indices, as well as appropriate texture coordinates, are then com-

bined into a mesh. This forms a mesh, representing the wellbore as a pipe, made up of cylinder sections that

go together without overlap. Listing 36 shows a simplified view of how this algorithm was implemented.

70

7 IMPLEMENTATION

1 def vertex_circle(
2 x: float, y: float, z: float, segments: int, radius: float
3) -> list[list[float]]:
4 vertices = []
5 for i in range(segments + 1):
6 angle = (math.pi * 2.0) * i / segments
7 vertex = [(math.cos(angle) * radius) + x, (math.sin(angle) * radius) + y, z]
8 vertices.append(vertex)
9

10 return vertices
11
12
13 def indices(segments: int, row: int) -> list[list[int]]:
14 # We have segments+1 number of vertices in each circle
15 # We want to make 2 triangles/1 quad per segment
16 vertices_per_row = segments + 1
17 indices = []
18 for i in range(vertices_per_row):
19 i = i + (vertices_per_row * row)
20 indices.append([i, i + 1, i + vertices_per_row])
21 indices.append([i + 1, i + 1 + vertices_per_row, i + vertices_per_row])
22
23 return indices
24
25
26 def uvs_circle(z: float, max_z: float, segments: int):
27 # Can't generate UVs for cylinders with fewer than 2 segments. (What would the shader blend between?)
28 assert segments >= 2
29
30 uvs = []
31 for i in range(segments + 1):
32 u = float(i) / float(segments)
33 v = z / max_z
34 uvs.append([u, v])
35
36 return uvs
37
38 def make_pipe(
39 points: np.ndarray, segments: int, radius: float
40) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
41 vertices = []
42 faces = []
43 uvs = []
44
45 for [x, y, z] in points:
46 vertices.extend(vertex_circle(x, y, z, segments, radius))
47
48 rows = len(points)
49 for row in range(rows - 1):
50 faces.extend(indices(segments, row))
51
52 max_z = points[-1][2] # The max z value will be the last one
53 for [_, _, z] in points:
54 uvs.extend(uvs_circle(z, max_z, segments))
55
56 return (
57 np.array(vertices, dtype="float32"),
58 np.array(faces, dtype="uint32"),
59 np.array(uvs, dtype="float32"),
60)

Listing 36: Code for generating wellbore geometry

Then, we generated texture maps, based on the lithostratigraphy and chronostratigraphy data from the com-

piled logs. These texture maps can be applied onto the wellbore mesh, in order to visualize the lithological

units and groups, and what ages the different strata that the wellbore intersects. Which was identified as

information of interest to Glex. The texture is generated by drawing colored bands on a palette, where each

unique color represent either a lithological unit, or a geologic age. Listing 37 shows the code for generating

these textures, and figure 26 shows an example of the resulting texture.

1 # series here is the log data itself in the format [(color, top, base)]
2
3 for (_, row) in series.iterrows():
4 color: tuple[int, int, int] = row["color"] # type: ignore
5
6 # Convert 0..max_depth into 0..height range
7 start = math.floor((float(row["top"]) / max_depth) * heigth) # type: ignore
8 end = math.floor((float(row["base"]) / max_depth) * heigth) # type: ignore
9

10 # Draw a stripe into a section of the image, representing a formation, group, or age
11 for y in range(start, end):
12 # print(y, color)
13 for x in range(width):
14 img.putpixel((x, y), color)

Listing 37: Code for generating texture maps

71

7 IMPLEMENTATION

Figure 26: Resulting texture map

Finally, since these well-logs will be stored in a document database, we needed to convert them from various

idiosyncratic tabular formats, into a unified JSON format. This was achieved by extracting only the minimal

relevant metadata provided by all logs, and placing this as fields in a sort of header to the document. And

then by extracting the tabular data that represents the log itself, converting these into a records format, and

placing it at the end of the document.

1 {
2 "id": "32-4-1 T2-permeability",
3 "wellbore": "32/4-1 T2",
4 "mnemonic": "permeability",
5 "description": "Measured depth vs. permeability",
6 "unit": "kl-h",
7 "columns": [
8 "depth",
9 "permeability",

10 "tvd"
11],
12 "data": [
13 {
14 "depth": 1220.5,
15 "permeability": 0.224,
16 "tvd": 1220.4591135430153
17 },
18 {
19 "depth": 1221.5,
20 "permeability": 0.097,
21 "tvd": 1221.4590599015503
22 },
23 {
24 "depth": 1222.5,
25 "permeability": 0.882,
26 "tvd": 1222.4590061768924
27 },
28 {
29 "depth": 1223.5,
30 "permeability": 0.215,
31 "tvd": 1223.4589523690418
32 },
33 {
34 "depth": 1224.5,
35 "permeability": 0.131,
36 "tvd": 1224.458898477998
37 },
38 {
39 "depth": 1225.5,
40 "permeability": 0.123,
41 "tvd": 1225.4588445037614
42 },
43 {
44 "depth": 1226.5,
45 "permeability": 0.819,
46 "tvd": 1226.458790446332
47 },
48 {
49 "depth": 1227.5,
50 "permeability": 0.102,
51 "tvd": 1227.4587363057096
52 },
53 {
54 "depth": 1228.5,
55 "permeability": 0.086,
56 "tvd": 1228.4586820818943
57 },
58 ...
59],
60 }

Listing 38: A truncated example of processed well-log

In order to implement all of this functionality, we tried to reuse existing components and libraries as best

we could. We found lasio for parsing LAS files, pyglftlib for generating GlTF files, wellpathpy for doing

72

7 IMPLEMENTATION

minimum curvature calculations, and Pillow for encoding image files/textures. In addition to a set of Python

libraries we had previous experience with from the PROG2051 - Artificial Intelligence course for doing data

processing, namely Pandas, NumPy, Matplotlib, and SciPy.

7.4.3 Well and Well-logs cloud functions

There are actually two separate cloud functions for processing well-logs. There is one for compiled well-

logs, that is triggered by ‘*.xlsx’ files being uploaded to the ‘well-logs’ directory in blob storage. And the

other is for composite well-logs, and is triggered by ‘*.las’ files being uploaded into the same directory.

These functions both take the well logs as input, use the internal modules that implement the functionality

we talked about earlier, process the well-logs into a suitable data format, in addition to generating auxiliary

assets. Which are both then uploaded to the database and blob storage respectively.

7.4.4 Well and Well-logs visualization in web app

Visualizing the well-logs was done by generating graphs directly in the frontend, see the implementation

section for the frontend for more details. Figure 27 shows what these graphs ended up looking like in the

frontend.

Figure 27: A well-log as visualized by the frontend

Since the frontend implements full 3D graphics capabilities, the wellbore geometry we generated can be

visualized by rendering a mesh, placed at the correct location for this well. Figure 28 shows what this looks

like in the frontend. Admittedly, it is difficult to make out the fact that this wellbore actually curves. In order

to visualize the mesh, it was scaled by increasing the radius to 100 meters, making any of the 1-5 meter

deviations that the wellbore actually has difficult to spot in this case. However, it is important to implement

with respect to this being a generic well and well-log processing service, that could potentially have to

handle a wellbore with significant curves and deviation, which the service will now handle gracefully.

73

7 IMPLEMENTATION

Figure 28: A wellbore, intersecting with surfaces, and with a lithostratigraphy map applied

7.5 Faults

One of the data sources that needed to be parsed and displayed was Faults. Fault sticks are lines consisting

of several points located in the world. By combining these points, drawing a line between them, we get

a "stick". We can further combine these sticks, by creating a plane between them. We then end up with

something called a fault. A fault is a fracture between two "blocks" of landmass. These faults allow the

different "blocks" to move relative to each other[53].

7.5.1 The faults data

The faults data was structured in text files with space separated values. Each file represents an individual

fault collection. Within each file, there are several lines, each of which represents a single point in the world.

All points have some metadata associated with it, namely a fault name and a point index. The fault name

clarifies which fault any given fault stick belongs to. By combining the fault name and the point index, one

can tell which fault stick any one point belongs to.

The data looks like this (note that the row with column explanations is not part of the actual data):

1 #unused unused unused x y z fault name index
2 INLINE- 1140 976 554563.82213 6734960.79353 1576.22278 Fault_interpretation_1 1
3 INLINE- 1110 976 554874.79295 6735143.23622 1930.71108 Fault_interpretation_1 1
4 INLINE- 1098 976 555012.32603 6735223.92516 2202.36315 Fault_interpretation_1 1
5 INLINE- 1130 1008 554461.82192 6735364.71100 1576.22278 Fault_interpretation_1 2
6 INLINE- 1110 1008 554681.50972 6735493.59908 1794.81449 Fault_interpretation_1 2
7 INLINE- 1094 1008 554837.29941 6735584.99894 1939.17816 Fault_interpretation_1 2
8 INLINE- 1078 1008 555028.99375 6735697.46362 2081.28394 Fault_interpretation_1 2
9 INLINE- 1108 1040 554488.22650 6735843.96194 1559.28863 Fault_interpretation_1 3

10 INLINE- 1100 1040 554589.24637 6735903.22904 1693.06845 Fault_interpretation_1 3
11 INLINE- 1076 1040 554844.83882 6736053.18194 1962.46262 Fault_interpretation_1 3
12 INLINE- 1060 1040 555000.62851 6736144.58180 2113.17660 Fault_interpretation_1 3

Listing 39: The fault data format

The first three columns contains information regarding how the data was captured and is thus not relevant

for the visualization we are going to do. The last 5 columns contains the x coordinate, y coordinate, z

74

7 IMPLEMENTATION

coordinate, fault name and the point index. In the data example, we can see that there are three different

fault sticks, from one fault: Fault_interpretation_1.

7.5.2 Testing Faults

The first thing that was defined when the Faults were developed was the tests. By defining the tests before-

hand, the actual development work became easier. The general idea behind the tests was to verify that the

correct types of data had been parsed correctly. Since the language chosen for the faults parser was Python,

verifying that the data had been parsed to the correct format was non-intuitive. The problem of verifying

that the data types had been parsed to the correct type was solved through the use of classes. The classes

had attributes, and a constructor was utilized to ensure that the correct data was assigned to the correct

variables.

An example of how point creation was tested:

1 def test_point_creation():
2 """Verifies that a single point is created successfully"""
3 point = types.Point(1,2,3)
4 assert point.x == 1
5 assert point.y == 2
6 assert point.z == 3

Listing 40: Point class test

With the test defined, it was intuitive to develop the actual class that served as a Point:

1 class Point:
2 """Contains information about a single point"""
3
4 def __init__(self, x: float = 0, y: float = 0, z: float = 0) -> None:
5 """Initializes a new Point object
6 Parameters
7 -------
8 x : float, optional
9 The x coordinate of the point, by default 0

10 y : float, optional
11 The y coordinate of the point, by default 0
12 z : float, optional
13 The z coordinate of the point, by default 0
14 """
15 self.x = x
16 self.y = y
17 self.z = z

Listing 41: Point class implementation

7.5.3 The faults parser

The faults parser transforms the plain text fault files into a more usable JSON format. The first thing we

did when creating the parser was defining the different data types. From our previous experience creating

a parser in Haskell during the PROG2006 - Advanced Programming course, we found that having specific

types for the objects we were parsing was a really powerful feature. Although no such thing as the Haskell

type system exists in Python, we created classes that were meant to serve somewhat of the same purpose.

By creating classes for each of the data types to be parsed, testing became easier.

75

7 IMPLEMENTATION

The fault stick parser accepts two different types of input: A file path to a file containing fault data or a list

of fault stick strings. If the class receives a file path, the lines contained within the file are read. All the

lines are then sent onward to the parseFaultSticks function, where the parsing occurs.

1 def parseFaultSticks(self, lines: list[str]):
2 """Converts lines of Fault Sticks into faults
3
4 Parameters
5 -------
6 lines : list[str]
7 List of lines (strings) that is going to be converted into faults
8 """
9

10 self.faults = types.Faults(fault_collection_name=self.filename)
11
12 current_fault_name = ""
13
14 for line in lines:
15 [x, y, z, fault_name, stick_number] = line.split()[3:]
16
17 # If the line is a new fault
18 if fault_name != current_fault_name:
19 current_fault_name = fault_name
20 self.faults.faults.append(types.Fault())
21 current_fault = self.faults.faults[-1]
22 current_fault.faultName = current_fault_name
23 current_fault.faultSticks = []
24 current_stick_number = 1

Listing 42: New fault encountered

The parser processes one line at a time. The first thing that happens is that the parser splits the line into 5

different variables. The current_fault_name variable stores the name of the current fault being processed.

The newly parsed fault’s name is checked against this variable, this is to check if the line currently being

parsed belongs to the fault of previous iterations, or is an entirely new one. If the newly parsed fault name

is not equal to the previous one, we have encountered a new fault. When a new fault is encountered, the

current_fault_name is updated to reflect the change, a new Fault gets added to the faults list, and the current

stick number is set back to 1.

1 # If the line is a new faultstick
2 if stick_number != current_stick_number:
3 current_stick_number = stick_number
4 current_fault.faultSticks.append(types.FaultStick())
5 current_faultstick = current_fault.faultSticks[-1]
6 current_faultstick.points = []
7
8 # Adds the point to the current faultstick in the current fault
9 current_faultstick.points.append(types.Point(float(x), float(y), float(z)))

Listing 43: New fault stick encountered

The next thing that gets checked is the line’s stick number. As explained previously, all lines have a number

indicating which fault stick within a fault it belongs to. If the stick_number is different from the cur-

rent_stick_number, we have encountered a new fault stick. When a new fault stick is encountered, the

current_stick_number gets updated to reflect this change, and a new fault stick is appended to the fault stick

list of the current fault. The current_faultstick is the variable that always points to the current fault’s current

fault stick, the fault stick that should receive the next point.

Finally, the x, y and z coordinates are added as a point to the correct fault stick.

76

7 IMPLEMENTATION

7.5.4 Faults cloud function

The parser runs in an Azure cloud function. This function monitors the blob storage, and when a new fault

collection is uploaded, the function is triggered. The function takes the filename of the newly uploaded file,

connects to the blob storage container, and fetches the content of the provided file. After the content has

been read, the lines of the file are separated into a list of strings.

1 def main(myblob: func.InputStream, CosmosDB: func.Out[func.Document]):
2 """Takes in a blob (filestream), parses it into Faults, then writes them to CosmosDB
3
4 Parameters
5 -------
6 myblob : func.InputStream
7 The blob file containing the data to be read
8 CosmosDB : func.Out[func.Document]
9 The binding to CosmosDB, used to write the data

10 """
11
12 # If the blob is of the correct file extension
13 if os.path.splitext(myblob.name)[1] == ".faultsticks":
14
15 # Extract the filename of the blob
16 filename = os.path.basename(myblob.name)
17
18 # Fetch the connection string
19 CONNECTION_STRING = os.environ["ntnuccsstorage_STORAGE"]
20
21 # Create the container client
22 blob = BlobClient.from_connection_string(conn_str=CONNECTION_STRING,container_name="rawstorage",blob_name='Fault_Sticks/data/'+filename)
23
24 # Read the blob
25 lines = bytes.decode(blob.download_blob().readall()).split("\n")

Listing 44: Connecting to the Fault’s blob client

The function then verifies that the newly uploaded fault collection does not previously exist in the database.

The checks are conducted by sending a request to the REST API. The reason we choose to utilize the

REST API for this purpose, was to avoid creating an unnecessary amount of connections to the database.

The lines are then consumed by the parser, and subsequently converted into CosmosDB documents, before

finally being inserted into the database.

1 # Check if the fault collection already exists in the database
2 req = requests.get(
3 "https://dt-api.azurewebsites.net/faults/exists",
4 params={"fault_collection": filename},
5)
6
7 if req.content.decode('UTF-8') == "false":
8
9 # Parse lines to Faults

10 fsp = parser.FaultStickParser(lines=lines, filename=filename)
11
12 documents = []
13 # Create list of documents to insert into DB
14 for doc in fsp.faults.toSeparatedJSON():
15 documents.append(func.Document.from_json(doc))
16
17 # Set the DB output to the generated list of documents
18 CosmosDB.set(func.DocumentList(documents))
19 else:
20 logging.info(
21 f"Fault collection that already exists: {filename} was attempted parsed"
22)

Listing 45: Parsing and inserting Faults data into CosmosDB

77

7 IMPLEMENTATION

7.5.5 Faults in the web app

The REST API has endpoints available for fetching faults data. When the web app loads, the fault data is

fetched from the endpoints. There is some further geometry generation that has to be done before the faults

can be displayed to the user. The reason we chose to generate this geometry on demand was due to the file

sizes of the generated geometry. The data stored about the fault sticks in the database is restricted to the

bare minimum required for the front end to be able to generate proper geometry. By structuring our data this

way, we reduced the size of the data being transmitted from the REST API to the web app. The generation

work that needs to be done is cheap from a system resource point of view, ensuring that this generation is

fast and efficient.

Two types of geometry are generated for the faults. Lines are generated, representing the fault sticks. The

other type of geometry is the mesh, consisting of a "plane" illustrating the surface between the fault sticks

in a given fault. In this particular case, the fault sticks are black, and the "surface" is red.

Figure 29: Example of a fault

The generation of these geometries are done on demand. We utilize state to ensure that only the faults that

have been selected for displaying are processed. This ensures that we do not generate any unnecessary

geometry. This is done through a map function, where the list of all faults (data) are iterated over. Each

element in this list contains fault data, this includes the name of the fault, the fault sticks with its accompa-

nying points, etc. We utilize the name of the fault to check against the faultState, verifying whether or not

this particular fault is currently toggled for visualization.

78

7 IMPLEMENTATION

1 function Faults({ faultsState, data }) {
2 // Filter fault data to only what is enabled via faultsState
3 const faults = []
4 data.map((fault,) => {
5 if (faultsState[fault.fault_name])
6 faults.push(fault.fault_sticks)
7 })

Listing 46: Add all faults that have been enabled using the toggle menu

After all the list of faults to be further processed has been generated, it is iterated over, creating a Fault

component for each fault in the list.

1 return faults.map((fault_sticks, index) => (
2 <Fault key={index} fault_sticks={fault_sticks} />
3))
4 }

Listing 47: Creating fault components for each Fault

Inside the fault component, the JSON data is further simplified. The reason this has to be done is because

of the geometry that is going to be generated. To visualize the fault sticks, we are utilizing ThreeJS Line

geometry. Line geometry expects a list of points. This list of points will also be utilized for generating the

"fault surface" mesh.

1 const Fault = memo(function Fault(props) {
2 let fault_sticks = []
3 for (let i = 0; i < props.fault_sticks.length; i++) {
4 fault_sticks.push([])
5 for (let j = 0; j < props.fault_sticks[i].length; j++) {
6 fault_sticks[i].push([
7 props.fault_sticks[i][j]["x"] / 1000,
8 props.fault_sticks[i][j]["y"] / 1000,
9 -props.fault_sticks[i][j]["z"] / 1000,

10])
11 }
12 }

Listing 48: Fault data complexity reduction

The result of this operation is the nested list fault_sticks. All point values were divided by 1000, to match

the rest of the digital twin (assuming we have covered the reason behind this number somewhere else.).

Due to the fact that the input data organized its z coordinate in the wrong direction, we also had to flip the

z values.

The next step was to utilize the nested list to generate the actual geometry. For the line geometry, we created

a Fault_Stick component. This component takes a points argument, these supplied points (A list of points)

will be transformed into line geometry.

79

7 IMPLEMENTATION

1 const Fault_Stick = memo(function Fault_Stick(props) {
2 return (
3 <Line
4 points={props.points}
5 color="black"
6 transparent={true}
7 opacity={0.5}
8 lineWidth={0.5}
9 />

10)
11 })

Listing 49: Fault stick geometry generation

Next up was the "surface" of the faults, which consists of mesh geometry. We needed to generate both the

necessary indices in addition to the vertices. The mesh consists of several squares. Each square is drawn

between the start and end points of two subsequent fault sticks. For this reason, we needed to have access

to both the current fault stick, alongside the previous one. We solved this by assigning the current fault to

the previous_fault variable, to be used in the next iteration of the processing.

1 let previous_points = null
2
3 return fault_sticks.map((points, index) => {
4 const indices = new Uint32Array([0, 1, 2, 3, 2, 1])
5
6 if (previous_points != null && index < fault_sticks.length) {
7 let vertices = new Float32Array([
8 points[0][0],
9 points[0][1],

10 points[0][2],
11 points[points.length - 1][0],
12 points[points.length - 1][1],
13 points[points.length - 1][2],
14 previous_points[0][0],
15 previous_points[0][1],
16 previous_points[0][2],
17 previous_points[previous_points.length - 1][0],
18 previous_points[previous_points.length - 1][1],
19 previous_points[previous_points.length - 1][2],
20])
21
22 previous_points = points
23
24 return (
25 <group key={index}>
26 <Fault_Stick points={points} />
27 <mesh>
28 <bufferGeometry>
29 <bufferAttribute
30 array={indices}
31 attach={"index"}
32 count={indices.length}
33 itemSize={1}
34 />
35 <bufferAttribute
36 attachObject={["attributes", "position"]}
37 count={vertices.length / 3}
38 array={vertices}
39 itemSize={3}
40 />
41 </bufferGeometry>
42 <meshBasicMaterial
43 side={Three.DoubleSide}
44 transparent={true}
45 opacity={0.2}
46 color="red"
47 flatShading={true}
48 />
49 </mesh>
50 </group>
51)
52 }
53
54 previous_points = points
55 return <Fault_Stick key={index} points={points} />
56 })

Listing 50: Fault geometry generation

To limit edge conditions, we included an if statement to ensure that previous_points is assigned, and that

the index has not gone out of range. In the situations where these conditions apply, only the line geometry

(fault sticks) are displayed.

80

7 IMPLEMENTATION

7.6 Realtime data

7.6.1 Realtime data generation

Since we had to generate realtime data ourselves, we had to define some characteristics that the algorithm

had to satisfy. The algorithm had to be deterministic, meaning that a specific input would always provide

the same output. The reason we had to provide this trait was due to our choice of not storing realtime data in

the database, by creating a deterministic algorithm we could regenerate data at any point in time, whenever

we want to. The second requirement was that the data interval was to be between 0 and 3.

The function for generating the realtime data looked like this:

1 def flowrate(timestamp: float) -> float:
2 """Mocks a flowrate value for a given point in time
3
4 Parameters
5 -------
6 timestamp : float
7 A UNIX timestamp (seconds elapsed since Jan. 1 1970, exc leap seconds)
8
9 Returns

10 -----
11 float
12 The flowrate at any given second
13 """
14 # Seed random so we will always get the same output
15 random.seed(timestamp)
16
17 # Generate a random offset
18 offset = (random.random() - 0.5) / 5
19
20 # Convert the time to the interval 0-119
21 modtime = timestamp % 120
22
23 # Convert modtime to the interval 0-1
24 t = modtime / 120
25
26 # Calculate the current flow rate
27 rate = quadbeziercurve(0, 0, 2 + offset, t)
28
29 # Returns the flowrate, or 0 if the flowrate is negative (as this is not possible)
30 return max(rate + offset, 0)

Listing 51: Function for generating realtime flow rate

The first thing that happens is that the random is seeded, ensuring that the rest of the generation is determ-

inistic. From this seeded random an offset is generated, this is to simulate an unpredictable offset in the

general flow rate, due to some natural condition. Since the flow rate moves in cycles, the timestamp is

converted to an interval of 0-119, further this value is converted to the interval 0-1. We do this conversion to

get a value we can use in the interpolation function. We set the interpolation midpoint to be the maximum

value, and the start and endpoint to be 0.

7.6.2 Realtime data endpoint

The realtime data endpoint takes a timestamp as input, and runs the generation algorithm on it. This gives

a flow rate for any given second in time, which is returned as a response.

81

7 IMPLEMENTATION

1 @realtime_blueprint.route("/realtime/flowrate/<float:ts>", methods=["GET"])
2 def flowrate_timestamp(ts: float):
3 """Generates a flowrate for a given point in time
4
5 Parameters
6 -------
7 ts : float
8 UNIX timestamp
9

10 Returns
11 -----
12 json
13 Returns time and a flowrate
14 """
15 timenow = datetime.fromtimestamp(ts)
16 return jsonify(
17 {"time": timenow.strftime("%Y-%m-%d %H:%M-%S"), "flowrate": flowrate(ts)}
18)

Listing 52: Realtime endpoint

7.6.3 Realtime data chart

Whenever the diagram for the realtime data component is active, requests are continuously sent to the REST

API to fetch the current flowrate. This is done through a useEffect() hook, which sets an interval of 1000ms

between each request.

1 useEffect(() => {
2 function fetchRealtimeData() {
3 let timestamp = Number(Math.floor(Date.now() / 1000) + props.offset).toFixed(2)
4
5 fetch("https://dt-api.azurewebsites.net/realtime/flowrate/" + timestamp)
6 .then(res => res.json())
7 .then(data => {
8 setFlowdata(flowdataRef.current.slice(-100).concat(data));
9 })

10
11 }
12 const intervalID = setInterval(() => {
13 fetchRealtimeData()
14 }, 1000)
15
16 return () => clearInterval(intervalID)
17
18 }, [props.offset])

Listing 53: Hook for fetching realtime data continously

The data is limited to 100 entries, meaning older entries gets overwritten once 100 timestamps worth of

realtime data has been collected.

When the data has been collected, it is displayed in a Victory graph.

82

7 IMPLEMENTATION

1 return (
2 <div className='graph'>
3 <h3>{props.wellname} Flowrate</h3>
4 <div
5 style={
6 {textAlign: 'center'}
7 }
8 >Current flowrate: </div>
9 {flowdata.length > 1 && (

10 <div
11 style={{
12 backgroundColor: "lightgrey",
13 paddingTop: '0.5rem',
14 paddingBottom: '0.5rem',
15 textAlign: 'center',
16 textJustify: 'center',
17 }}
18 >
19 {flowdata[flowdata.length - 1]["flowrate"]} / s
20 </div>
21)}
22
23 {flowdata.length > 1 && <VictoryChart>
24 <VictoryLine
25 x="time"
26 y="flowrate"
27 data={flowdata}/>
28 <VictoryAxis tickFormat={(t) => t.split(" ")[1].replace("-",":")}
29 tickCount={5}
30 domain={{x: [0,3]}}/>
31 <VictoryAxis dependentAxis={true}/>
32 </VictoryChart>}
33 </div>
34)

Listing 54: Code for generating a line graph with Victory

7.7 Horizons

As mentioned in the technical design section, the function app and visualization part of the horizons were

not implemented. In this section, we will briefly go over the implementation that was done, which is the

extraction of point cloud from the shape files, parsing, and generating of point geometry.

Extracting the point cloud from the shape files was done with GeoPandas. Since we did not get to the

implementation of a function app for the horizons, the implementation was done locally, saving the output

to files. The implementation of reading the shape file and retrieving the point cloud looked like this:

1 def read_shape_file(filepath):
2 gdf = gpd.read_file(filepath)
3
4 coordinates = gdf["geometry"]
5
6 return coordinates
7
8 def retrieve_coordinates(coordinates):
9 l_return = []

10
11 for i, _ in enumerate(coordinates):
12 l_return.append([coordinates[i].x, coordinates[i].y, coordinates[i].z])
13
14 return l_return

Listing 55: Code for reading the shape file

Here, we extract the coordinates with the help of GeoPandas read_file method, to find the geometry element.

And in the next method we extract each coordinate and append them to a list. This is later written to a file

as a point cloud for further processing.

The data processing and color generation is done the same way as with the surfaces implementation. The

only difference is that this was not adjusted to work as a function app. The geometry generation is done with

83

7 IMPLEMENTATION

Open3D. Here, we read the processed point cloud and colors, and then write the point cloud as a geometry

file. This generated point geometry, and the result can be seen below.

84

8 DEPLOYMENT

8 Deployment

When we were given this project, it came with the requirement that the solution had to be deployable to

Microsoft Azure. This chapter explains how the different components of the project were deployed.

8.1 Deploying to Azure

Before looking at our deployment, let us present some of the nomenclature around Azure. First of all

in order to run anything in Azure, we needed a subscription. The subscription serves to facilitate paying

Azure for their services, keeping track of costs and where they originate from, and for setting budgets and

warnings, so that you do not end up paying too much.

Second, we required a resource group for our resources. Resources in Azure are any of the individual

services we spin up. Like a virtual machine, a database, or anything else. A resource group is a folder

for these resources to live in, and facilitates things such as keeping track of all the resources, sharing

common properties, and deleting them all when we are done with them. Resource groups are not strictly

mandatory, but based on Microsoft’s advice[25], it is best practice to use them to organize your resources.

We experienced ourselves how useful they were when we had to migrate which region our resources were

located in due to some needed functionality not being available in our original region of choice.

With a subscription and resource group set up, we could now create the individual resources we needed

for our project. That being, an Azure Static Web App for our frontend, an Azure Web App for our REST

API, a Storage Account for blob storage, a Cosmos DB instance as our database, and three different Azure

Functions for the different data processing components.

Figure 30 shows how all the resources and how the data flows between them. Green arrows indicate reading,

blue arrows indicate writing, and orange arrows indicate waiting on triggers. We can also see that all the

resources are in one resource group, managed by one subscription.

These triggers are one of the really interesting things about our solution. The cloud functions are all set up

to watch for new files being uploaded to blob storage. When a new file is uploaded, the relevant function,

based on file type, will run, processing the data in whatever way appropriate.

The diagram also indicates how the two main actor archetypes interact with the deployment. These being,

the geologists and other users, who mainly interact with the frontend, none of which require any access to

Azure at all. And the data managers, who upload data to the system, which requires read-write access to

blob storage in Azure. Not included in the diagram are the administrators and developers, both of whom

require access to create, destroy and manage resources in Azure. We incorporated this information into the

user roles we created in Azure, in order to effectively secure access to our resources.

85

8 DEPLOYMENT

Figure 30: Diagram showing the architecture in Azure

8.2 Continuous Integration and Continuous Deployment

Throughout this project, we have made use of continuous integration[10] and continuous deployment[9].

Continuous integration, or CI, is the practice of automatically, and continuously, building, testing and as-

serting that new code integrates correctly before merging into a central repository or branch. Continuous

deployment, or CD, takes this a step further, and automates the deployment of code into production, if and

only if the previous tests and assertions were successful.

CI and CD are useful as they automate the precarious and finicky process of building and deploying software

to the cloud, without losing the ability to perform quality assurance before pushing code into production.

The system we used to automate CI and CD is GitHub Actions. GitHub Actions comes built-in to GitHub

and is one of the most intuitive CI/CD systems to incorporate with GitHub. It does cost a little bit of money

to use, but it did not amount to much throughout our project.

GitHub Actions consists of a set of primitives which can be composed into a CI/CD system. These are:

• Actions: Pre-made apps to run on your code to perform some action. (Like install python, run tests,

lint the code, etc.)

• Workflows: A workflow is a specification for how to automate the CI and CD related to one compon-

ent of the overall project.

86

8 DEPLOYMENT

• Jobs: Jobs are a set of steps to perform in order to achieve some high level objective, isolated from

other jobs.

• Steps: Steps are part of a job and perform some specific action. Either through using actions or by

running shell commands.

There are multiple workflows as part of our CI and CD. But they are all very similar, so we will only

showcase the workflow for the REST API. The other workflows follow more or less the same structure and

sequence, only differing in some key configuration.

The workflow only runs when it should. This results in the CI running when we open a pull request, as seen

in figure 31.

We only want to invoke the workflow when we have actually made relevant changes. To do this, we instruct

GitHub to only invoke the workflow when code in the dt-api directory changes, or when the workflow itself

changes. We also instruct GitHub to invoke the workflow both for when we push to or merge to the main

branch, and when we are working on a pull request.

1 on:
2 push:
3 branches:
4 - main
5 paths:
6 - "dt-api/**"
7 - ".github/workflows/dt-api.yml"
8 pull_request:
9 types: [opened, synchronize, reopened, closed]

10 branches:
11 - main
12 paths:
13 - "dt-api/**"
14 - ".github/workflows/dt-api.yml"

Listing 56: Branch selectors

87

8 DEPLOYMENT

Figure 31: Pull request with CI status indicating successful CI deployment

The workflow is smart about cancelling redundant runs, and avoiding race-conditions. For example if we

merge two pull requests one after the other, which results in the workflow being invoked twice. In the event

of two simultanious pull requests, we only want to deploy the latest one. The developer merging the pull

requests expects to see the changes from both PRs, but depending on how long the individual jobs takes

to run, we may end up with only the changes from the first pull request being pushed to production, as

which invocation of the workflow that ends up pushing its changes to production depends not on when it

was invoked like we might expect, but on when the invocation finishes.

To avoid this problem of race conditions and redundant workflow runs, we use a concurrency group. This is

a fancy concurrency primitive for synchronizing runs one after another, and optionally cancelling redundant

invocations. A redundant workflow invocation being an invocation that will be immediately superseded by

another. See listing 57.

1 # Only allow one running workflow.
2 # Cancel the previous workflow when a new one is started.
3 # This avoids race-conditions for deployments.
4 concurrency:
5 group: dt-api-production
6 cancel-in-progress: true

Listing 57: Concurrency group

In listing 58 we see the individual jobs and steps in the workflow. In listed order, they are, the step for

checking out the code from the relevant commit. A step for installing the correct version of the Python

88

8 DEPLOYMENT

1 jobs:
2 build-and-deploy:
3 runs-on: ubuntu-latest
4 environment: dev
5 steps:
6 # Checkout the repo
7 - uses: actions/checkout@v2
8
9 # Setup python installation

10 - name: Setup Python
11 uses: actions/setup-python@v1
12 with:
13 python-version: ${{ env.PYTHON_VERSION }}
14
15 # Install dependencies into virtual environment
16 - name: Python install
17 working-directory: ${{ env.WORKING_DIRECTORY }}
18 run: |
19 sudo apt install python${{ env.PYTHON_VERSION }}-venv
20 python -m venv -copies antenv
21 source antenv/bin/activate
22 pip install setuptools
23 pip install -r requirements.txt
24
25 # Run PyTest
26 - name: Run Tests
27 working-directory: ${{ env.WORKING_DIRECTORY }}
28 env:
29 FLASK_ENV: "production"
30 FLASK_APP: "app.factory:create_app()"
31 ACCOUNT_URI: ${{ secrets.ACCOUNT_URI }}
32 ACCOUNT_KEY: ${{ secrets.ACCOUNT_KEY }}
33 AZURE_STORAGE_CONNECTION_STRING: ${{ secrets.AZURE_STORAGE_CONNECTION_STRING }}
34 run: |
35 source antenv/bin/activate
36 pytest
37
38 # Deploy to production when main updates
39 - name: Deploy
40 if: github.event_name == 'push'
41 uses: azure/webapps-deploy@v2
42 with:
43 app-name: ${{ env.AZURE_WEBAPP_NAME }}
44 package: ${{ env.WORKING_DIRECTORY }}
45 slot-name: "Production"
46 publish-profile: ${{ secrets.AZUREAPPSERVICE_PUBLISHPROFILE_7D9FAB1C04EB4DAEBA5AC430D48296D6 }}

Listing 58: Workflow jobs

interpreter. A step for setting up a virtual environment and installing all the needed dependencies. A step

for running the test suite, which fails and aborts the job if any of the tests fail. And a step for finally

deploying the new code to the production environment. You can also see that we use an if in the deploy

step to only deploy to production if the invocation was caused by pushing or merging to main, not when

working on a pull request. See figure 34 for an example of what this looks like in GitHub, after a workflow

has finished.

Figure 32: Overview of CI workflow

89

8 DEPLOYMENT

Figure 33: Overview of CI jobs

Figure 34: Overview of CI jobs expanded

90

9 DISCUSSION

9 Discussion

We will discuss our development process as a whole, and dive deeper into parts like the initial project plan,

our technology choices, how scrum worked for us, how we worked as a group, how our choices affected the

final solution, what we think of the final product, and more.

9.1 Development Process

During our initial planning phase, we decided that writing was something we were going to do concurrently

with the development of the project. Although, we did write some parts, we see in hindsight that even

more writing would have been beneficial. The development work became a much bigger task than initially

planned. As explained in earlier parts of this document, our decision to create a reusable, more general

‘pipeline’ for digital twins had its cost. Considering that a shifted weight on writing at the cost of reduced

focus on development would ultimately have led to a weaker final product, we believe that the way things

turned out was for the better.

The last month of the project period was very heavily focused on writing. Even though we had a much

bigger writing job in the final phase, we believe that the thorough development work that we conducted

laid a solid foundation for the writing phase, making this part easier than if it had been done earlier in the

project work.

We initially wanted to perform the development work in an even more sequential manner than how it

actually turned out. We estimated that different components of the project would be finalized much quicker

than they were in reality. The result of the more iterative approach we ended up with was in the end a much

more well thought through solution. The reason for this was that new issues arose during development that

we went back and fixed. One example of this was with the faults parser. Here we went back and customized

how data was converted into JSON, this allowed the JSON to be much more sensible in regard to how the

web-app and CosmosDB had been set up.

9.1.1 Scrum

Scrum served as a great framework for keeping the development work structured. The routine Scrum

provided, with clearly defined events occurring every single sprint served as a great way to keep the up

the progress of the project. Although the specific meetings, such as retrospective, were very handy in the

start of the project, we do feel that their usefulness declined over time. Towards the end of the project the

sprint retrospective, for example, yielded no useful information anymore, as all the issued we had in earlier

retrospectives had been resolved. If the project were to keep on for much longer, we should have considered

rethinking the frequencies of the different scrum meetings. Though, for the project we had, the frequencies

we chose were appropriate.

91

9 DISCUSSION

9.1.2 Meetings

As touched upon in the previous section, we followed our initial plan of meetings defined in the project

planning phase. The frequency of these meetings was fine. The two weekly stand-up meetings were more

than plenty to keep in touch within the team, the reason for this is that we communicate frequently within

the team on platforms such as Discord in addition to these meetings. We established a Slack channel with

the client early on. This communication channel was a great way to communicate outside of the meeting

we had every two weeks. We met with our supervisor almost every two weeks. These meetings were an

excellent way to receive feedback, both on our writing, but also on our the overall project progress. Overall,

we would say that the meeting structure we followed in this project is sensible to adhere to in further work

as well.

9.1.3 Atlassian suite

We utilized the Atlassian suite of software for almost all project process related issues, except for version

control and communication. It was nice to have a platform that served several purposes, as everything

worked together nicely. In previous projects we have used the issue tracker built into GitHub, this allowed

the issues to be a bit more connected to the code in our opinion. The advantage of Jira was that we could

link project pages and time tracking directly to specific issues. Overall, the advantage of the integration of

tools was worth the trade-off between less connection between issues and code.

Project pages

Atlassian has a tool for writing project pages called Confluence. Confluence allows for live collaboration on

documents, as well as integrating tightly with Atlassian’s other products. It was nice to have all notes related

to meetings located right next to Jira, and be able to reference relevant issues. An alternative here would

have been to use tools such as Google Docs, where similar cloud collaboration features are available, or

GitHub Wiki, which provides an alternative way of creating a knowledge base and documentation. Overall,

we think Confluence was a great tool for our purpose, as we felt like it was easy to organize our common

project notes using this tool.

Time tracking

In previous projects, time tracking has been a consistent issue. The different group members have all

utilized different tools for time tracking, making the final phase of combining all tracking together to a

common format a real struggle. Tempo was a nice tool for tracking time. It had extensions for editors such

as VSCode, which allows for easy time tracking. Tempo also integrates nicely with Jira as a whole, making

time tracking of specific issues a breeze. Overall, we were happy with Tempo.

92

9 DISCUSSION

9.2 Test Driven Development

This was the first time the group had worked with a test driven development workflow. It was a steep learn-

ing curve to get the hang of the test-first, red/green/refactor cycle. Testing was difficult in the beginning,

but became easier as the project progressed. These difficulties lead to some situations where functionality

was developed before the tests. The habit of testing first, implementing second grew on the group members

throughout the project period. The value of TDD became more apparent as the backlog of tests grew.

9.3 Technical Design

9.3.1 Azure

This project came with a strong recommendation to use Azure as the cloud vendor. Even so, we think

it is important to give Azure some due criticism in this part of the paper, as Azure has been a source of

frustration throughout the project.

During the project, Azure suffered a series of outages and service disruptions that left us unable to deploy

any of our Python services for two days. The source being a misconfiguration on Microsoft’s part, that

made Onyx attempt to build our services with the wrong version of the Python interpreter[18]. This is in

turn caused by Azure not being very flexible when it comes to the exact version of Python a project uses,

only allowing the choice between a few select versions, none of which are the latest one. You are also not

allowed to select a patch version, only major and minor versions.

Microsoft’s way of structuring their documentation has caused some issues throughout the development

process. Microsoft does have a massive library of documentation, but the problem is that it is difficult to

navigate at times. The documentation sometimes repeats itself, while failing to mention some topics. An

example of this is how to query for an exact CosmosDB document based on captured expressions in Azure

Function bindings. The upside of Microsoft’s documentation is their SDKs, which provide a solid interface

for interacting with their different services, such as CosmosDB, Blob Storage, etc.

9.3.2 REST API

Flask is a minimal framework. We were a bit worried that there might be some features required for the

REST API that Flask would not be able to satisfy, but these concerns proved themselves unfounded. Flask

provided a quick and straightforward way to set up different endpoints. The trade-off between simplicity

and features was perfectly balanced in our case, as we did not feel limited by Flask. We were able to

implement all the necessary functionality for our REST API using Flask, and we would gladly use Flask

again in further projects.

93

9 DISCUSSION

9.3.3 Persistent storage

CosmosDB proved to be a great persistent storage solution. The ease of querying the data using SQL like

syntax was really handy. The SQL way of thinking is something we as a group has had a lot of previous

experience with, and the opportunity to utilize this knowledge was a time saver in the development work.

The option to run CosmosDB in a serverless manner suited our project perfectly, as queries against the

database happened at non-scheduled, unpredictable times.

9.3.4 Surfaces

Python proved to be a good choice for us when it came to the implementation of the surfaces service. It

gave us the flexibility of writing both the parser and the geometry generation in the same language. Because

of Python’s mature ecosystem, we had good alternatives for libraries to solve our problems.

Choosing Open3D to generate glTF files from point clouds proved to be a good choice. Open3D is a well

established library with good documentation. The few issues we faced with the geometry, as mentioned in

the implementation, were manageable. Early in the development process, we briefly considered developing

our own geometry generator. Although this sounded interesting, we quickly decided to use a library, in this

case Open3D, which we believe saved us valuable development time.

In our case, choosing to utilize Open3D for our geometry generation is what determined how we needed

to parse the surface data. As explained in the implementation, Open3D needs a NumPy array. This can

either be received as an object, or as a file. How Azure Functions work influenced our choice of creating the

parser in Python. As explained in the implementation, we tested parsing the data in Haskell, which would

have been an interesting subject to explore further

9.3.5 Horizons

Python proved to be a good choice for the implementation parts we performed on the horizon files. It gave

us great flexibility to have the point cloud extraction, parser, and geometry generator be using the same

technology. GeoPandas, together with Open3D, allowed us to cover the requirements well. The horizons

were not a part of the final product because Glex did not see any value in including them.

9.3.6 Well logs

As far as the microservice implementation goes, we think utilizing Python with the libraries that we did was

a good choice, and we would not have done anything differently.

When it comes to visualization of the wellbores and well-logs, things could have been better. The visualiza-

tion of the wellbores themselves is correct, but it is a bit hard to see that we have implemented full wellbore

94

9 DISCUSSION

geometry generation when the wellbore are so straight, however we felt like the scaling and transformations

we applied were still correct in the context of visualization of the well-logs on the wellbore.

The visualization of the well-logs did not go quite to plan. Visualizing well-logs in 3D proved to be a much

harder, and more importantly time-consuming task than originally estimated. The choice of using ThreeJS

over Unity might not have been the best. ThreeJS does not have any built-in functionality for building

graphs, and although we made a good attempt at doing this manually, we eventually had to down prioritize

the 3D graphing functionality in favor of a more complete 2D graphing and visualization functionality.

9.3.7 Faults

Python was a nice language for the faults parser. The only drawback to Python is the relatively weak type

system in comparison to languages such as Rust or Haskell. The code was written in a way that attempted

to recreate some of the benefits of languages with a better type system, with classes serving as different data

types. This worked to some degree, although not very optimally. A better alternative would perhaps have

been to utilize a language such as Haskell. Since Haskell has a strong type system, it would have resulted

in cleaner tests in our opinion. We believe that a language such as Haskell or Rust would have been a better

fit for this service.

9.3.8 Frontend

Our choice to develop a web-app to visualize the digital twin proved to be one of the more challenging parts

of the project. Early in the development process we discussed whether we would use a web-based frontend

framework like React in combination with ThreeJS, or Unity, a standalone game engine. Our discussing

revolved mainly around the fact that our client already used Unity in their preexisting projects. Here, we

will discuss the strength and weaknesses we found in using a web-based approach with React Three Fiber,

among other tools, compared to Unity.

Unity vs React Three Fiber

Using React Three Fiber meant that we could use React components together with ThreeJS. This was

beneficial for us because we had some previous experience with React from other projects. Loading the

generated geometry was not an issue and the performance proved to be acceptable. The issues began when

we tried to implement the plotting requirements alongside the well trajectory. This requirement meant that

certain well data needed to be visualized in the 3D scene. We tried using Victory, but the implementation

ended up being a lot more time-consuming than originally estimated. Even though we did implement a low

fidelity prototype of this, we ended up focusing on improving the 2D graphs to display the well data, which

we think was the right call in the end.

It is regarding the 3D graph plotting requirement, we think Unity might have worked out better, considering

Unity has built-in support for this. Other advantages of using Unity would have been its interactivity,

95

9 DISCUSSION

inspectability, and the write-build-debug cycle being faster, as these were low points for React Three Fiber.

We are also not sure how big of an advantage a purely web based solution has over using Unity’s Webgl

backend, even if we know the latter has disadvantages and constraints as well, like not being able to mix

well with HTML.

Frontend Conclusion

Having discussed these comparisons and seen the results we achieved, we think that our web based approach

had its upsides, but making it work even better would require a significant investment in order to get 3D

graph functionality comparable with what Unity already has. On the other hand, using web technologies

made the frontend much more accessible than we believe a Unity based approach would have been.

9.4 Product

The presentation layer of the final product is the component we are the least satisfied with. The reason the

web-app turned out suboptimal was due to the focus on the general pipeline, as opposed to the more specific

digital twin. Our choice of creating reusable components instead of custom tailoring the service to suit the

Smeaheia dataset is apparent.

The overall quality of the architecture as a whole however is of a much higher quality than it would have

been, had we gone for the specific approach. All the different microservices are written in a way that easily

enables a data manager to create new digital twins within ocean spaces, containing data from a totally

different area in the world. This pipeline is really what our project has been all about, and we are proud of

how it turned out.

The time required to create new digital twins have been significantly reduced by courtesy of our pipeline.

We are satisfied with how our architecture easily facilitates further expansion of new services and features.

The architecture is highly scalable, modular, and ready for additional microservices.

9.4.1 Revisiting Project Result Goals

In this section, we will revisit the result goals we set in the Introduction. We will discuss to what degree

these goals were met, and what we could have done different in the situations where a certain goal was not

met.

• A general processing solution that facilitates generation of geological digital twins from data.

This goal was met through the solution we developed. We implemented this through the use-case of a

data manager, where a data file is uploaded to blob storage and subsequently triggers the appropriate

service for that data type. Once finished, the result can be visualization in the web-app.

• A digital twin, generated through the developed solution using the Smeaheia dataset and made

96

9 DISCUSSION

accessible through a web interface.

The pipeline proved itself more than capable of processing the Smeaheia dataset. The resulting

visualization is available through the web interface we developed. The web app runs on several

different devices, including mobile. The performance is generally speaking pretty good.

• The solution should be able to process different data types, such as Surfaces, Horizons, Faults

and Well logs.

Our goal of creating services to handle different data types from the dataset was accomplished. The

solution provides a set of services for each data type that runs when new files are added to blob

storage. The cloud service part of Horizons was not implemented because Glex did not see the value

of visualizing this in the web-app.

• The solution should be able to support real-time data.

Mocking of real-time data was implemented and visualized in the form of a graph in the UI panel.

The solution supports live real-time data, if this ever comes into existence.

• The solution should have plotting and visualization functionality to display processed data in

graphs, both in UI panel and scene.

Plotting functionality was implemented, although only partially in the 3d scene. The UI panels fa-

cilitates access to Victory, a powerful graphing library for React, which was utilized to create the

necessary graphs. The 3D plotting functionality, as touched upon earlier in the well logs section of

the Discussion, was implemented in a limited manner.

• The solution must be modular and expandable.

The different parts of the solution are modular, which makes the solution as a whole expandable.

Adding new services to handle more types of data is only a matter of creating the actual microservices,

as the solution itself is readily expandable.

9.5 Group collaboration

As a group, we are happy with our collaboration in this project. We have collaborated on multiple projects

throughout our time here at NTNU, so we are well-aware of our level of ambition. We have also established

a certain level of trust within the group, which allows us to collaborate very effectively.

Communication

For the majority of our time here at NTNU, we have had to take COVID-19 into consideration. This has

created a more digital approach to collaboration and general school work. Discord has been our main

communication tool during our time here at NTNU, and was our main communication tool in this project as

well. We created a dedicated channel for this project and shared thoughts, problems, and possible solutions

there.

97

9 DISCUSSION

Group Work

At the beginning of the project period, we established some ground rules regarding workdays. Every week-

day, all group members would be required to be available on Discord from 10 am to 6 pm. This was to

establish an environment with workday continuity so that we could rely on each other. Having our two

weekly stand-up meetings allowed us to stay up-to-date on each other’s progress as well. This enabled us

to quickly discuss and solve any issues within the group or the development process.

9.6 Time allocation

In regard to time spent during the project period, we utilized labels to categorize different types of activities.

As can be seen in Figure 35, we spent more than 50% of our time doing actual development work. Overall,

we are happy with the time and effort invested into the project, and we feel like this is well reflected in both

the thesis and final product. Table 4 showcases how many hours went into each activity.

Type of activity Hours spent
Client meetings 34.42
Supervisor meetings 39.93
Internal meetings 227.93
Thesis writing 432.38
Development work 937.45

Table 4: Overview of time spent on various activities

Figure 35: Overview of percentage use of time

98

10 CONCLUSION

10 Conclusion

We will write a small summary of this project and how the process was for us, and how the product looks

and works from our perspective. We will also mention some possibilities regarding future development of

this project

10.1 Process

Our way of structuring and working on this project was a success. The structure provided by Scrum helped

keeping the progress consistent. Both the product and the thesis were finalized in time. The group members

were able to conduct work on consistent levels throughout the entire project period, resulting in a satis-

factory amount of time invested in the project as a whole. We conducted the entire project digitally, as the

group have grown accustomed to this workflow after several years of Covid-19 pandemic.

10.2 Product

We are satisfied with the resulting product. The purpose of the finalized solution is to provide Glex with a

simplified workflow when creating digital twins. Due to time constraints, we have not made a user interface

for the data manager role, meaning the solution assumes technical experience and knowledge with regard to

Azure’s data management tools, which the client has. The solution is highly scalable, and readily facilitated

for further service integration and expansion.

10.3 Future Development

Although the work that has been done creates a solid foundation, there are several potential additions that

would increase the value of the solution if it were to be developed further:

• Create a service/interface for Data managers, allowing them to upload, modify, and delete data related

to the digital twins.

• Further development on the user interface of the web-app. Our focus on this project has been the

system architecture and cloud service, so further development on the UI would benefit the solution as

a whole.

• Explore the discoveries made regarding mobile devices. Glex informed us that they tested the web-

app on their phones, and achieved good performance. This opens up a whole specter of possibilities

for web-based digital twins in the future.

99

10 CONCLUSION

10.4 Final words

During our time working on our bachelor’s thesis, we have acquired new knowledge within fields such as

cloud, digital twins, project management and overall software development. It has been both exciting and

a great learning experience to work on such a big project. Being able to contribute within the field of CCS

has felt rewarding, knowing we are contributing to a greener tomorrow.

It has been exciting to create something with potential impact in the relatively new field of digital twins. By

experimenting with new technologies such as ThreeJS, we are exploring a new approach within the domain

of digital twins as a whole. In addition to this, discovering the possibilities the web-based approach has for

mobile devices, opens up a whole new way of displaying and utilizing digital twins.

In conclusion, we are very satisfied with the project as a whole. Due to the continuous efforts of the group,

we were able to finalize both a thesis and a solution we are proud of.

100

REFERENCES

References

[1] About Azure Functions. Microsoft. URL: https://docs.microsoft.com/en-us/azure/azure-
functions/ (visited on 18th May 2022).

[2] About NumPy. NumPy. URL: https://numpy.org/about/ (visited on 18th May 2022).

[3] About Pandas. Pandas. URL: https://pandas.pydata.org/about/ (visited on 18th May 2022).

[4] About VictoryChart. Victory. URL: https://formidable.com/open-source/victory/about
(visited on 18th May 2022).

[5] Application Factories. Flask. URL: https://flask.palletsprojects.com/en/2.1.x/patterns/
appfactories/ (visited on 14th May 2022).

[6] Atlassian. Atlassian Jira. Atlassian. URL: https://www.atlassian.com/software/jira (visited

on 4th May 2022).

[7] Ball Pivoting Algorithm. Brett Rapponotti, Michael Snowden and Allen Zeng. URL: https : / /
cs184team.github.io/cs184-final/writeup.html (visited on 19th May 2022).

[8] Command Line Interface. Flask. URL: https ://flask .palletsprojects .com/en/2.1.x/cli/
(visited on 14th May 2022).

[9] Continuous Deployement. IBM. URL: https://www.ibm.com/cloud/learn/continuous-
deployment (visited on 1st May 2022).

[10] Continuous Itegration. Atlassian. URL: https://www.atlassian.com/continuous-delivery/
continuous-integration (visited on 1st May 2022).

[11] P.J. Eby. PEP 3333 Python Web Server Gateway Interface. Python. URL: https://peps.python.
org/pep-3333/ (visited on 15th May 2022).

[12] Marco Macchi Elisa Negri Luca Fumagalli. LATEX: A review of the roles of Digital Twin in CPS-based

production systems. 2017.

[13] Gassnova. The world comes together to tackle climate change. Gassnova. URL: https://gassnova.
no/en/why-ccs (visited on 26th Jan. 2022).

[14] Glex Energy. Glex. URL: https://glex.no/product (visited on 18th May 2022).

[15] Gunicorn. Gunicorn. URL: https://gunicorn.org/ (visited on 15th May 2022).

[16] Sakshi Gupta. What is SQL? Springboard. URL: https://www.springboard.com/blog/data-
analytics/what-is-sql/ (visited on 8th May 2022).

[17] IBM. What is a digital twin. IBM. URL: https://www.ibm.com/topics/what-is-a-digital-
twin (visited on 26th Jan. 2022).

[18] Installing python 3.9 fails as of 2022-04-06 20:00 EST. Microsoft. URL: https://github.com/
microsoft/Oryx/issues/1330#issuecomment-1091739027 (visited on 28th Apr. 2022).

101

https://docs.microsoft.com/en-us/azure/azure-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://numpy.org/about/
https://pandas.pydata.org/about/
https://formidable.com/open-source/victory/about
https://flask.palletsprojects.com/en/2.1.x/patterns/appfactories/
https://flask.palletsprojects.com/en/2.1.x/patterns/appfactories/
https://www.atlassian.com/software/jira
https://cs184team.github.io/cs184-final/writeup.html
https://cs184team.github.io/cs184-final/writeup.html
https://flask.palletsprojects.com/en/2.1.x/cli/
https://www.ibm.com/cloud/learn/continuous-deployment
https://www.ibm.com/cloud/learn/continuous-deployment
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration
https://peps.python.org/pep-3333/
https://peps.python.org/pep-3333/
https://gassnova.no/en/why-ccs
https://gassnova.no/en/why-ccs
https://glex.no/product
https://gunicorn.org/
https://www.springboard.com/blog/data-analytics/what-is-sql/
https://www.springboard.com/blog/data-analytics/what-is-sql/
https://www.ibm.com/topics/what-is-a-digital-twin
https://www.ibm.com/topics/what-is-a-digital-twin
https://github.com/microsoft/Oryx/issues/1330#issuecomment-1091739027
https://github.com/microsoft/Oryx/issues/1330#issuecomment-1091739027

REFERENCES

[19] Intro Faults. Geology Page. URL: https://www.geologypage.com/2017/10/what-is-a-
geologic-fault.html (visited on 14th Jan. 2022).

[20] Large Applications as Packages. Flask. URL: https://flask.palletsprojects.com/en/2.1.x/
patterns/packages/ (visited on 14th May 2022).

[21] Microsoft. Azure databases. Microsoft. URL: https://azure.microsoft.com/en-ca/product-
categories/databases/ (visited on 8th May 2022).

[22] Microsoft. Azure DDoS Protection Standard overview. Microsoft. URL: https://docs.microsoft.
com/en-us/azure/ddos-protection/ddos-protection-overview (visited on 25th Apr.

2022).

[23] Microsoft. Azure Function Apps. Microsoft. URL: https://docs.microsoft.com/en-us/azure/
azure-functions/functions-overview (visited on 8th May 2022).

[24] Microsoft. Gateway Routing pattern. Microsoft. URL: https://docs.microsoft.com/en-us/
azure/architecture/patterns/gateway-routing (visited on 5th May 2022).

[25] Microsoft. Manage Azure resource groups by using the Azure portal. Microsoft. URL: https : //
docs . microsoft . com / en - us / azure / azure - resource -manager /management /
manage-resource-groups-portal (visited on 22nd Apr. 2022).

[26] Microsoft. Materialized Views. Microsoft. URL: https://docs.microsoft.com/en-us/azure/
data-explorer/kusto/management/materialized-views/materialized-view-overview
(visited on 5th May 2022).

[27] Microsoft. Microservice Architecture. Microsoft. URL: https://docs.microsoft.com/en-us/
dotnet/architecture/microservices/architect-microservice-container-applications/
microservices-architecture (visited on 5th May 2022).

[28] Microsoft. N-layer Architecture. Microsoft. URL: https : / / docs .microsoft . com/en - us /
dotnet/architecture/modern-web-apps-azure/common-web-application-architectures#
traditional-n-layer-architecture-applications (visited on 6th May 2022).

[29] Modular Applications with Blueprints. Flask. URL: https://flask.palletsprojects.com/en/2.1.
x/blueprints/ (visited on 14th May 2022).

[30] MongoDB. Types of NoSQL databases. MongoDB. URL: https : / /www.mongodb . com/
scale/types-of-nosql-databases (visited on 8th May 2022).

[31] CO2 Team NPD. CO2 Atlas for The Norwegian Continental Shelf. Ed. by Eva K. Halland & Jasminka

Mujezinovi & Fridtjof Riis. The Norwegian Petroleum Directorate. 2014. URL: https://www.npd.
no/en/facts/publications/co2-atlases/co2-atlas-for-the-norwegian-continental-
shelf/ (visited on 18th Jan. 2022).

[32] Nrwl. What is a Monorepo? Nrwl. URL: https://monorepo.tools/#what-is-a-monorepo
(visited on 7th May 2022).

102

https://www.geologypage.com/2017/10/what-is-a-geologic-fault.html
https://www.geologypage.com/2017/10/what-is-a-geologic-fault.html
https://flask.palletsprojects.com/en/2.1.x/patterns/packages/
https://flask.palletsprojects.com/en/2.1.x/patterns/packages/
https://azure.microsoft.com/en-ca/product-categories/databases/
https://azure.microsoft.com/en-ca/product-categories/databases/
https://docs.microsoft.com/en-us/azure/ddos-protection/ddos-protection-overview
https://docs.microsoft.com/en-us/azure/ddos-protection/ddos-protection-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-routing
https://docs.microsoft.com/en-us/azure/architecture/patterns/gateway-routing
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-groups-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-groups-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-groups-portal
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/management/materialized-views/materialized-view-overview
https://docs.microsoft.com/en-us/azure/data-explorer/kusto/management/materialized-views/materialized-view-overview
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/microservices-architecture
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/microservices-architecture
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/microservices-architecture
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures#traditional-n-layer-architecture-applications
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures#traditional-n-layer-architecture-applications
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures#traditional-n-layer-architecture-applications
https://flask.palletsprojects.com/en/2.1.x/blueprints/
https://flask.palletsprojects.com/en/2.1.x/blueprints/
https://www.mongodb.com/scale/types-of-nosql-databases
https://www.mongodb.com/scale/types-of-nosql-databases
https://www.npd.no/en/facts/publications/co2-atlases/co2-atlas-for-the-norwegian-continental-shelf/
https://www.npd.no/en/facts/publications/co2-atlases/co2-atlas-for-the-norwegian-continental-shelf/
https://www.npd.no/en/facts/publications/co2-atlases/co2-atlas-for-the-norwegian-continental-shelf/
https://monorepo.tools/#what-is-a-monorepo

REFERENCES

[33] Oilfield Glossary - chronostratigraphy. Schlumberger - Oilfield Glossary. URL: https://glossary.
oilfield.slb.com/en/terms/c/chronostratigraphy (visited on 14th Jan. 2022).

[34] Oilfield Glossary - lithostratigraphy. Schlumberger. URL: https://glossary.oilfield.slb.com/
en/terms/l/lithostratigraphy (visited on 14th Jan. 2022).

[35] Oilfield Glossary - strata. Schlumberger - Oilfield Glossary. URL: https://glossary.oilfield.slb.
com/en/terms/s/strata (visited on 14th Jan. 2022).

[36] Oilfield Glossary - well log. Schlumberger. URL: https://glossary.oilfield.slb.com/en/terms/
w/well_log (visited on 14th Jan. 2022).

[37] Oilfield Glossary - wellbore. Schlumberger. URL: https://glossary.oilfield.slb.com/en/terms/
w/wellbore (visited on 14th Jan. 2022).

[38] Open3D. Open3D Documentation. Open3D. URL: http://www.open3d.org/docs/release/
introduction.html (visited on 9th May 2022).

[39] Ministry of Petroleum and Energy. Announcement of Longship by Norwegian Government. Norwe-

gian Government. URL: https://www.regjeringen.no/no/dokumentarkiv/regjeringen-
solberg/aktuelt-regjeringen-solberg/smk/pressemeldinger/2020/regjeringa-lanserer-
langskip-for-fangst-og-lagring-av-co2-i-noreg/id2765288/ (visited on 26th Feb. 2022).

[40] Poisson Surface Reconstruction. Michael Kazhdan, Matthew Bolitho and Hugues Hoppe. URL: https:
//hhoppe.com/poissonrecon.pdf (visited on 19th May 2022).

[41] Pygltflib. Pygltflib Documentation. Pygltflib. URL: https://gitlab.com/dodgyville/pygltflib
(visited on 9th May 2022).

[42] Smeaheia Dataset. Gassnova & Equinor. URL: https://co2datashare.org/dataset/smeaheia-
dataset (visited on 18th Jan. 2022).

[43] Smeaheia Dataset. Smeaheia. URL: https://co2datashare.org/dataset/smeaheia-dataset
(visited on 15th May 2022).

[44] Smeaheia Dataset License. Gassnova & Equinor. URL: https : / /co2datashare .org/view/
license/26af9426-203f-4993-9d41-2e1bf191ceaf (visited on 18th Jan. 2022).

[45] Tech27. What are point clouds? Tech27. URL: https://tech27.com/resources/point-clouds/
(visited on 5th Feb. 2022).

[46] Template Project NTNU. Jon Arnt Kårstad. URL: https://no.overleaf.com/latex/templates/
template-project-ntnu/zjystqvqztpg (visited on 17th May 2022).

[47] Testing Flask Applications. Flask. URL: https://flask.palletsprojects.com/en/2.1.x/testing/
(visited on 15th May 2022).

[48] Testing Overview. Facebook. URL: https://reactjs.org/docs/testing.html#tools (visited on

15th Apr. 2022).

[49] ThreeJS. Loading 3D models in ThreeJS? ThreeJS. URL: https ://threejs .org/docs/ index.
html#manual/en/introduction/Loading-3D-models (visited on 2nd May 2022).

103

https://glossary.oilfield.slb.com/en/terms/c/chronostratigraphy
https://glossary.oilfield.slb.com/en/terms/c/chronostratigraphy
https://glossary.oilfield.slb.com/en/terms/l/lithostratigraphy
https://glossary.oilfield.slb.com/en/terms/l/lithostratigraphy
https://glossary.oilfield.slb.com/en/terms/s/strata
https://glossary.oilfield.slb.com/en/terms/s/strata
https://glossary.oilfield.slb.com/en/terms/w/well_log
https://glossary.oilfield.slb.com/en/terms/w/well_log
https://glossary.oilfield.slb.com/en/terms/w/wellbore
https://glossary.oilfield.slb.com/en/terms/w/wellbore
http://www.open3d.org/docs/release/introduction.html
http://www.open3d.org/docs/release/introduction.html
https://www.regjeringen.no/no/dokumentarkiv/regjeringen-solberg/aktuelt-regjeringen-solberg/smk/pressemeldinger/2020/regjeringa-lanserer-langskip-for-fangst-og-lagring-av-co2-i-noreg/id2765288/
https://www.regjeringen.no/no/dokumentarkiv/regjeringen-solberg/aktuelt-regjeringen-solberg/smk/pressemeldinger/2020/regjeringa-lanserer-langskip-for-fangst-og-lagring-av-co2-i-noreg/id2765288/
https://www.regjeringen.no/no/dokumentarkiv/regjeringen-solberg/aktuelt-regjeringen-solberg/smk/pressemeldinger/2020/regjeringa-lanserer-langskip-for-fangst-og-lagring-av-co2-i-noreg/id2765288/
https://hhoppe.com/poissonrecon.pdf
https://hhoppe.com/poissonrecon.pdf
https://gitlab.com/dodgyville/pygltflib
https://co2datashare.org/dataset/smeaheia-dataset
https://co2datashare.org/dataset/smeaheia-dataset
https://co2datashare.org/dataset/smeaheia-dataset
https://co2datashare.org/view/license/26af9426-203f-4993-9d41-2e1bf191ceaf
https://co2datashare.org/view/license/26af9426-203f-4993-9d41-2e1bf191ceaf
https://tech27.com/resources/point-clouds/
https://no.overleaf.com/latex/templates/template-project-ntnu/zjystqvqztpg
https://no.overleaf.com/latex/templates/template-project-ntnu/zjystqvqztpg
https://flask.palletsprojects.com/en/2.1.x/testing/
https://reactjs.org/docs/testing.html#tools
https://threejs.org/docs/index.html#manual/en/introduction/Loading-3D-models
https://threejs.org/docs/index.html#manual/en/introduction/Loading-3D-models

REFERENCES

[50] ThreeJS. ThreeJS. ThreeJS. URL: https://threejs.org/ (visited on 7th May 2022).

[51] Tox. Tox. URL: https://github.com/tox-dev/tox (visited on 2nd May 2022).

[52] Unity. Unity. Unity. URL: https://unity.com/solutions/game (visited on 5th July 2022).

[53] USGS. What is a fault? USGS. URL: https://www.usgs.gov/faqs/what-fault-and-what-
are-different - types?qt -news_ science_products=0#qt -news_ science_products
(visited on 1st Mar. 2022).

[54] Erlend Viggen. DLIS Files. URL: https://erlend-viggen.no/dlis-files/ (visited on 11th Jan.

2022).

[55] WebGL. Khronos. URL: https://www.khronos.org/webgl/ (visited on 20th May 2022).

[56] What are Shape files? ArcMap. URL: https://desktop.arcgis.com/en/arcmap/latest/
manage-data/shapefiles/what-is-a-shapefile.htm (visited on 15th May 2022).

[57] What is a glTF file? Khronos. URL: https://www.khronos.org/gltf/ (visited on 19th May 2022).

[58] What is a surface in geology? Mindat. URL: https://www.mindat.org/glossary/surface_
geology (visited on 15th May 2022).

[59] What is CCS. Equinor. URL: https : / /www.equinor . com/energy /carbon - capture -
utilisation-and-storage?e93a3fa409d4=0 (visited on 19th May 2022).

[60] What is GeoPandas? GeoPandas. URL: https : / /geopandas . org /en/ stable/ (visited on

15th May 2022).

[61] What is lithological. Schlumberger. Oilfield Glossary. URL: https://glossary.oilfield.slb.com/
en/terms/l/lithologic (visited on 19th May 2022).

[62] What is Test Driven Development. IBM. URL: https://www.ibm.com/garage/method/
practices/code/practice_test_driven_development/ (visited on 19th May 2022).

[63] What is TVD. Oilfield Glossary. URL: https://glossary.oilfield.slb.com/en/terms/t/true_
vertical_depth (visited on 19th May 2022).

[64] What is TVDKB. Oilfield Glossary. URL: https://help.dugeo.com/m/faq/l/167077-height-
datums-and-abbreviations (visited on 19th May 2022).

[65] What is TVDSS. Research Gate. URL: https : //www. researchgate .net/figure/Seismic -
depth-slices -at -2304-m-TVDSS-True-Vertical -Depth-Sub-Sea-showing- faults - in -
the_fig15_304066028 (visited on 19th May 2022).

[66] Wikipedia. What is a unit test. Wikipedia. URL: https://en.wikipedia.org/wiki/Unit_testing
(visited on 28th Jan. 2022).

[67] Wikipedia. What is an integration test. Wikipedia. URL: https : / /en .wikipedia . org /wiki /
Integration_testing (visited on 28th Jan. 2022).

104

https://threejs.org/
https://github.com/tox-dev/tox
https://unity.com/solutions/game
https://www.usgs.gov/faqs/what-fault-and-what-are-different-types?qt-news_science_products=0#qt-news_science_products
https://www.usgs.gov/faqs/what-fault-and-what-are-different-types?qt-news_science_products=0#qt-news_science_products
https://erlend-viggen.no/dlis-files/
https://www.khronos.org/webgl/
https://desktop.arcgis.com/en/arcmap/latest/manage-data/shapefiles/what-is-a-shapefile.htm
https://desktop.arcgis.com/en/arcmap/latest/manage-data/shapefiles/what-is-a-shapefile.htm
https://www.khronos.org/gltf/
https://www.mindat.org/glossary/surface_geology
https://www.mindat.org/glossary/surface_geology
https://www.equinor.com/energy/carbon-capture-utilisation-and-storage?e93a3fa409d4=0
https://www.equinor.com/energy/carbon-capture-utilisation-and-storage?e93a3fa409d4=0
https://geopandas.org/en/stable/
https://glossary.oilfield.slb.com/en/terms/l/lithologic
https://glossary.oilfield.slb.com/en/terms/l/lithologic
https://www.ibm.com/garage/method/practices/code/practice_test_driven_development/
https://www.ibm.com/garage/method/practices/code/practice_test_driven_development/
https://glossary.oilfield.slb.com/en/terms/t/true_vertical_depth
https://glossary.oilfield.slb.com/en/terms/t/true_vertical_depth
https://help.dugeo.com/m/faq/l/167077-height-datums-and-abbreviations
https://help.dugeo.com/m/faq/l/167077-height-datums-and-abbreviations
https://www.researchgate.net/figure/Seismic-depth-slices-at-2304-m-TVDSS-True-Vertical-Depth-Sub-Sea-showing-faults-in-the_fig15_304066028
https://www.researchgate.net/figure/Seismic-depth-slices-at-2304-m-TVDSS-True-Vertical-Depth-Sub-Sea-showing-faults-in-the_fig15_304066028
https://www.researchgate.net/figure/Seismic-depth-slices-at-2304-m-TVDSS-True-Vertical-Depth-Sub-Sea-showing-faults-in-the_fig15_304066028
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Integration_testing

A PROJECT PLAN

Appendix

A Project Plan

A Background

Glex is a company mainly based in Bergen, with ambitions to expand their offices to Oslo. Their focus

areas are a unique mix of game development, geology and geospatial technology. Glex focuses on building

solutions to solve complex problems for some of the most demanding customers in the world.

Glex main building blocks consist of Oil & Gas Exploration, Deep Sea Minerals, Renewable Energy, and

Carbon Capture & Storage. With this unique toolkit, Glex is able to give their customers an end-to-end

software for managing and staying up to date with their exploration and/or renewable portfolios.

Currently, Glex has a couple of customers using their main software. This is within the Oil & Gas Explora-

tion industry. For the time being, this is Glex’s main area of focus as they are in contact with more potential

customers in this segment.

For this project, Glex wants us to develop a digital twin of the Smeaheia Carbon Storage site. This will entail

having a graphical user interface with the geometry that the digital twin represents, and a user interface

displaying the data. We will be exploring new ways of visualizing the data on the frontend, with ThreeJS

running on top of WebGL in the browser. So far we have planned to serve the data processed on the backend

with a variety of different microservices.

B Domain

There is a growing need to be able to safely dispose of excess CO2 in the world today. This is especially

important in the Oil and Gas industry. Carbon capture and storage, CCS, is a solution to this. CCS is

a process where excess CO2 is captured at a production site and transported to a storage site where the

CO2 is stored permanently. Interest in this area has increased following The Norwegian Government’s

announcement of project Longship [39], Equinor’s project Northern Lights, and Blue Barents CSS project.

All projects dedicated to realizing the CSS potential present on The Norwegian Continental Shelf.

According to CO2 Atlas[31]:

Depending on their specific geological properties, several types of geological formations can

be used to store CO2. In the North Sea Basin, the greatest potential capacity for CO2 storage

will be in deep saline-water saturated formations or in depleted oil and gas fields.

CO2 will be injected and stored as a supercritical fluid. It then migrates through the intercon-

nected pore spaces in the rock, just like other fluids (water, oil, gas).

105

A PROJECT PLAN

And according to Gassnova[13]

We need to increase the efficiency of our energy consumption and promote sources of non-fossil

fuel energy. Yet despite advances in these areas and technological leaps forward in renewables

such as solar, wind and hydropower, the world is in danger of failing to meet those targets.

In turn, we are in danger of failing our responsibility to future generations. Energy intensive

industry accounts for 25% of global CO2 emissions and cannot go down to zero without CCS.

An area with potential for CO2 storage on the Norwegian Continental Shelf, is the Smeaheia area, located

on the Hordaland Platform in the North Sea near Mongstad. This area has been evaluated by both Gassnova

and Equinor, and together they have released and open-sourced a dataset containing subsurface data, reports,

and geomodels, for the purpose of encouraging research and learning around CCS. [42]

Before reading the rest of this paper, it is important to also know what we mean by a digital twin.

According to IBM: What is a digital twin?[17]

A digital twin is a virtual model designed to accurately reflect a physical object. The object

being studied for example, a wind turbine is outfitted with various sensors related to vital areas

of functionality. These sensors produce data about different aspects of the physical objects

performance, such as energy output, temperature, weather conditions and more. This data is

then relayed to a processing system and applied to the digital copy.

C Project Goals

C.1 Result Goals

• Create a digital twin of the Smeaheia carbon storage site based on historical and real-time data, from

the processing of raw data all the way to visualization.

• Explore a new workflow within visualizing digital twins in web browsers.

• Create a user interface for the digital twin that runs in the browser.

• The digital twin will be accurate enough to represent the physical area for further research.

C.2 Effect Goals

Qualitative goals:

• Gain experience about the advantages and disadvantages of our technology choices versus those

currently being utilized by Glex.

106

A PROJECT PLAN

• Increase the availability of high fidelity visualizations.

Quantitative goals:

• Reduce the time it takes to show implementations to clients.

• Reduce the threshold for clients to run the web application

• Lower hardware requirements compared to previous similar solutions

C.3 Learning Goals

• Improve our knowledge within Scrum based development.

• Improve our knowledge within Test Driven Development (TDD).

• Improve our knowledge within git best practices, continuous development and continuous deploy-

ment.

• Learn and apply Three.js, a WebGL library for 3d graphics on the web.

• Learn more about microservices.

• Learn about complex cloud architectures and improve our knowledge of cloud in general.

• Improve our knowledge about project management in general, and specifically learn Jira, a cloud

collaboration tool.

D Delimitation

• The software will only feature a specific geographic area.

• The visualization will be limited by the available data in the Smeaheia dataset, and those supplied by

Glex.

• Only two wells will be visualized.

• The full-scale CCS value chain can be defined as 3 sub-systems; Capture, Transport, and subsurface

Storage, including injection location of the CO2. The bachelor thesis will focus only on the sub-

system Subsurface Storage.

• The software’s geographic data will not be updated live.

• The software is designed for desktop devices, not mobile ones, like phones and tablets.

107

A PROJECT PLAN

E Framework

Together with Glex we have formulated the following framework requirements.

• The web app will work on the latest version of Chrome, Edge, and Firefox respectively.

• The back-end services will be deployable to Microsoft Azure.

F Case Description

This project will be based on a subset of the existing historic data available, and real-time data. The digital

twin will feature a 3D visualization of the area, including the 32/4-1 well trajectory, 2D and 3D seismic,

horizons, surfaces, fault sticks and well data such as pressure and porosity. This data will be supplied

mainly from the Smeaheia dataset, and in addition it will be supplemented with data from Glex.

The digital twin should be made available to the end-users via a web-based interactive application, where

users can access historical information, operational information, and key performance indicators, by inter-

acting with different parts of the visualized 3D environment.

The project as a whole will showcase the potential that are enabled by creating a digital twin for carbon

storage. Our end users will be any and all actors within the CCS segment on the Norwegian Continental

Shelf today. e.g. Shell, Equinor, Horisont Energi, Northern Lights JV, Vår Energi.

Glex have divided the project into several separate requirements for us to complete in sequence.

F.1 Requirement 1: Historical data

In order to create the 3D visualization as specified above, data needs to be fetched and extracted from

multiple sources.

• 3D Cube outlines for TNE01 and GN1101. Source: Excel sheet provided by Glex.

• Interpreted surfaces from 3D seismic. Surfaces to be in depth. Source: Files provided.

• Fault sticks (depth-conversion required?). Source: Files provided.

• Well locations and Trajectory surveys for wellbores 32/2-1, 32/4-1 and 32/4-1 T2 (technical side-

track). Source: Excel sheet provided.

• Composite log data for all wellbores. Source: LAS files provided.

• Lithostratigraphy and Chronostratigraphy data. Source: Excel sheet provided.

• Formation Pressure and Core Porosity/Permeability data. Source: Excel sheet provided.

108

A PROJECT PLAN

F.2 Requirement 2: Plotting and Visualization

The ability to visualize the 3D cube outlines, surfaces, fault sticks and wellbores.

Data to be visualized alongside the well trajectory in 3D:

• Composite Log Data.

• Lithostratigraphy.

• Chronostratigraphy.

• Porosity/Permeability.

• Formation Pressure.

Data to be visualized using plots and graphs (Lithostratigraphy data should be indicated in these plots):

• Formation Pressure vs Depth (MD and TVDSS). [Most important]

• Porosity vs Permeability.

• Porosity vs Depth (MD and TVDSS).

• Permeability vs Depth (MD and TVDSS).

F.3 Requirement 3: Real-time data

In order to make a proper digital twin, real-time data needs to be fetched and integrated into the environment.

These pieces of data are much harder to source and might need to be mocked or faked for this project, as

opposed to basing ourselves on real data the way we are doing for the above requirements.

These are the most critical pieces of real-time data:

• Well pressure.

• Flow rate.

G Project Organization

G.1 Responsibilities and Roles

G.1.1 Glex

109

A PROJECT PLAN

Glex is the client and product owner, where our contact person is Jørgen Engen Napstad. We will have

weekly meetings where we will update them regarding the progress, as well as ask questions. We have

established a Slack channel where we can communicate frequently.

G.1.2 Supervisor

Our supervisor for this project is Tom Røise. Initially we have established weekly meetings and will adjust

according to the need for supervision.

G.1.3 Group roles

Sebastian Lindtvedt is the group leader. This entails making sure the project’s progress is moving forward.

The group leader will also be responsible for solving internal conflicts

Dennis Kristiansen is the Scrum master. The responsibilities of a Scrum master includes: maintaining the

issue backlog, training and coaching the other members on Scrum and agile development, removing barriers

for the Scrum team, and making sure the Scrum events take place and serve their purpose.

Salvador Bascunan is mainly responsible for communication with Glex. This will entail keeping track of

our weekly meeting invitations, schedule, change date or time if needed, and bringing topics between us

and Glex if needed.

All the group members are also developers. This of course means that they are members of the Scrum

team, and are responsible for taking on, and completing, issues from the sprint backlog, moving the project

forward. The completion of all issue in each sprint is a shared responsibility for the whole Scrum team.

G.2 Routines and Rules

Basic rules for group work:

• All members must attend daily Scrum meetings on Mondays and Thursday.

110

A PROJECT PLAN

• All members attend project meetings, status meetings and meetings with the supervisor.

• All members are expected to work at least 30 hours each week on the project.

• All members should be available during the hours of 1000-1600 Monday-Friday, exceptions must be

expected in some situations.

• All members must communicate their absence if it surpasses one hour during working time

• A meeting summary should be written for each formal meeting.

• All work hours should be tracked using Jira.

• Specific work tasks for each member will be distributed continuously through Jira.

• Should it happen that a member consistently breaks with routines and rules, the remaining members

will hold a meeting with the project supervisor, to determine the consequences of these actions.

• If a team member is unable to comply with the rules, this must be informed in advance so that

alternative solutions can be found. (e.g. a member is sick before a meeting)

H Planning, Follow up and Reporting

H.1 Development Process

H.1.1 Project Characteristics

This project will be the largest and most complex development task the group have taken on so far. This

is something we have to consider when planning how we are going to conduct the project. It is of utmost

importance that the process is well organized from start to finish, to ensure that things progress in a smooth

manner. There will be many moving parts and a broad range of different things happening at the same time.

There are several stakeholders involved, which have different expectations at different times. The key thing

to draw from these characteristics is that the project has to be structured.

Some of the stakeholders representing the client do not have technical backgrounds in terms of software

development. It is therefore essential to keep a close dialogue with them to avoid any miscommunication.

This further strengthens the need for a structured development process.

The project naturally facilitates a variety of different programming languages and frameworks. This is due

to the tasks at hand. There will be tasks such as parsing of different data formats, which will be conducted at

non-scheduled time periods. An example of this is geological data. We do not know when new data will be

presented, but we have to process it when it is released. This means that the processes for conversion, etc.

needs to be run again. When creating several different microservices, an agile way to work is beneficial.

111

A PROJECT PLAN

Due to the reasons mentioned above, the project will have to be conducted in a agile, but structured way.

This is because there are several sub systems that needs to be implemented, which benefits from an agile

methodology, and several different stakeholders that want to monitor the progress of the project that benefits

from a good overall structure.

H.1.2 Software Development Model

The project facilitates an agile methodology. We need to create several different microservices, with varying

languages and frameworks. This facilitates an incremental, rapid development cycle. Each microservice

will be developed as an individual software project. This means that each microservice will be planned,

designed, implemented and tested in its own cycle.

We had two different Software Development Models in mind when considering which one to use: Kanban

and Scrum. Kanban consists of visualizing all the tasks of the project into a board. There is a maximum

amount of tasks at any given time, and each team member is free to pick any task they see fit. Kanban

is very flexible, and could be a good solution for this project, given that we are a small team, and we are

communicating frequently. The problem with Kanban is that is lacks some of the structure Scrum provides.

Kanban could very easily get out of hand, leading to a messy development environment.

A Scrum project is split into sprints. During each sprint, several Scrum events take place. Sprint review,

sprint planning, daily stand-ups, etc. These meetings provide the project with structure. By scheduling

several preplanned meetings in advance, it becomes much easier to actually implement them.

By comparing these two models, we concluded that Scrum provides us with the structure required for a

project of this scale. We do however like the board from Kanban. We therefore plan to implement the board

alongside the structure of Scrum.

112

A PROJECT PLAN

H.1.3 Plan For Usage of Model

We will use a mostly standard Scrum development model, because that worked well in previous projects.

We will organize the project into 2-week sprints, with two daily stand-up meetings each week, totaling to

four stand-up meetings each sprint. At the beginning of each sprint, we will meet with Glex. During this

meeting we will first do a sprint review, where we present the progress and results made in the previous

sprint. After that we will transition the meeting into a sprint planning meeting, this way we will ensure that

the project are progressing in a direction that both the client and ourselves are satisfied with. Finally, we

will conduct a sprint retrospective, where we go over how the sprint went. The sprint retrospective will be

conducted in the daily standup at the beginning of new sprints.

Issues will primarily be added at the sprint planning meeting, but issues that arise during development can

also be brought up for discussion during the daily stand-up meetings.

The issues will primarily be assigned during the sprint planning meeting, but issues can also be assigned

during sprint stand-ups. Each team member is free to dispose the tasks they have been assigned freely.

Meaning that it is each member’s responsibility to ensure that each task is completed in the allocated time.

All issues must pass through a review phase, before finally being marked as done. The review can either be

conducted manually, or ideally through passing of automatic tests.

When a team member picks up an issue, they first transition the issue from "Todo" into "In progress". If

they then discover that there are other issues that block their progress, the member can transition the issue

into a "Blocked" state. When the issue is complete, the issue will be transitioned into "For review", where

the other group members will review the issue before we can finally transition the issue into being "Done".

Sprint review will be conducted consecutively during each meeting with Glex. This ensures rapid feedback

from the product owners and helps us as developers to develop a product the client is satisfied with.

Backlog refinement will be a "ongoing" process. We will do necessary backlog refinements in the daily

standup meetings. Individual members are also allowed to refine issue throughout a sprint. New issues will

be added, and old ones will be refined, by splitting up large issues, and combining small issues.

A sprint retrospective meeting will occur during the daily stand-up at the mondays in new sprints. At

this meeting all team members will reflect on questions such as: "What went well?", "What could be

improved?", "What should we commit to doing in the next sprint?"

113

A PROJECT PLAN

114

A PROJECT PLAN

H.2 Plan for Status Meetings and Decision-Making

The tentative plan for meetings is as follows:

• Daily Scrum every Monday and Thursday, 10:00.

• Status meetings with supervisor Wednesday’s every second week, 14:00.

• Status meetings with client Tuesday’s every second week, 16:00.

I Organization of Quality Assurance

I.1 Documentation, Standards, Configuration Management

I.1.1 Documentation

In this project we will be exploring new technologies for developing the visualization parts of the digital

twin. It’s therefore vital that all the functionality and REST APIs are well documented. This allows Glex

or any other entity, to understand, re-use parts, or continue development of the project. With this in mind,

we have created some rules in order to keep the documentation organized:

• Each git commit should be atomic, with a descriptive message explaining what and why the commit

was made.

• Comments, doc-comments, and tests will serve as the main source of documentation for the source

code.

• Each supervisor, Glex, and sprint meeting will be documented with participants, subjects and a short

summary.

• READMEs for frontend, backend and additional services, will be kept up to date. This will include

installation, build and deployment instructions.

• We will supply an OpenAPI specification for the main REST API of the project.

I.1.2 Standards

We will follow best practices regarding code and commenting standards of the respective technologies that

we work with. This is to ensure the overall quality of the project, and to make it simpler for other group

members to continue working on each others code. This will also aid us in the general documentation of

the project.

115

A PROJECT PLAN

I.1.3 Configuration Management

• Overleaf - We will use Overleaf as the main document writing tool for our Bachelor thesis. This will

also be used for the project plan.

• Jira - This will be our main project management tool. Here we will create and assign issues, and keep

track of them and their progress. This will also include tools for documentation and time tracking.

• Confluence - We will use Confluence for documenting our different meetings. These will be created

in Jira and connected to their respective issue.

• Tempo - For time tracking we will use Tempo. This will be done inside of Jira. Here, we will be able

to track time individually and connect these trackers to issues, be it tasks or meetings.

• GitHub - Our project code will be hosted on GitHub. We will use this for version control.

• Microservices - For the backend and API development of our project, we will use microservices. This

allows us to use several different technologies. Not fully decided yet. Could be subject to change

according to the requirements of the project.

• react-three-fiber - For visualization in frontend, we will use react-three-fiber. This is a framework

that includes ThreeJS in the React component workflow. ThreeJS is a library built on WebGL, which

allows for graphical rendering in the browser.

• Azure - For the cloud services in this project, we will use Azure.

• Visual Studio Code - The IDE of our choice. Has several plugins for integration with Jira, Github,

etc.

116

A PROJECT PLAN

I.2 Plan for Inspection and Testing

Having a test-driven development is something we have tried to utilize in previous projects, which is why

we decided to make it a priority for this project. Our plan for testing is to identify the functionality needed

to satisfy the requirements of the project, and write tests from the very beginning. This will be subject to

change as the development process moves forward keeping in mind that changes can occur. In the section

below, we will go through our plan for testing in this project, as well as an overview over the different

frameworks we have available in the different technologies.

I.2.1 Testing

Our initial plan for the backend development is microservices. Here, we will implement independent testing

of the individual services. This will entail a combination of mocking, stubbing, API validation testing, and

others. A more specific overview of what we end up using will be provided in the final bachelor thesis

report.

We will test the web app by using a combination of testing libraries for testing general JavaScript, React

components, and ThreeJS based component. Jest will be the test runner and main testing library, supple-

mented by DOM Testing Library and React Testing Library for testing React components, and Fiber’s own

test renderer for testing ThreeJS based components. This will facilitate writing unit tests for all the units

our web app consists of.

For the individual back-end services, we will use the appropriate testing framework, either built-in or third-

party, for each of the languages and frameworks we choose to use. These will also facilitate writing unit

tests, as well as writing integration and functional tests for using these services together.

Our general plan is to start with unit tests. A unit test is a programming testing method by which individual

unit of source code are tested ([66]). This way we can test functionality independently, and not having to

worry about breaking anything else.

Later we will move forward to integration tests. An integration test is when software modules are combined

and tested as a group ([67]). And functional tests where we can test multiple modules together to see if they

give us the result we expect. An example for this would be the generation of geometry from point cloud

data. This requires multiple smaller modules to work together.

117

A PROJECT PLAN

Technology Framework

JavaScript/React Jest

C++ doctest

Haskell HUnit

Rust Built-in

Python Unittest

C#/.NET xUnit

I.3 Risk Analysis

Table 5: Risk standard

Likelihood/
Consequence Minimal Minor Moderate Significant Critical

highly likely

likely

probable

unlikely

highly unlikely

Table 6: Risks

Risk Description Likelihood/Consequence

1 Loss of a group member (COVID, sickness, etc.) Highly Unlikely/Significant

2 Not enough or not relevant data for digital twin. Unlikely/Significant

3 Wrong choice of technologies, e.g., web not suitable for
heavy visualization.

Unlikely/Significant

4 Product not finished by deadline. Unlikely/Significant

5 Product does not satisfy customer requirements and ex-
pectations. Due to miscommunication, incorrect priorit-
ization, etc.

Unlikely/Significant

6 Exceed the budget on cloud services. Likely/Moderate

7 Unable to perform user testing because of COVID-19 and
the limited demographic for the service.

Likely/Significant

8 Loss of documentation and/or source code. Highly Unlikely/Significant

9 Insufficient test coverage/weak tests. Unlikely/Moderate

118

A PROJECT PLAN

Table 7: Risk mitigation

Priority Risk Mitigation
Medium 1 The group will carry on, potentially with a smaller scope negotiated

with the client. All progress and code written will be documented with
tests and comments, allowing their work to be continued by other team-
mates

Low 2 Work closely with Glex throughout the project to obtain the most relev-
ant data for the project.

Low 3 Adopt the project scope to something that can be achieved despite the
constraints.

Low 4 Divide the project into smaller parts that can be completed iteratively.
Make it so that the project is not all or nothing, but rather that we will
always have something to show.

Low 5 Work closely with Glex and communicate rapidly throughout the whole
project.

High 6 Set up a budget and alerts if the forecast cost exceeds the budget.

High 7 Try, to our best ability, to conduct the user tests through an online plat-
form. This can entail having frequent meetings online with potentials
user testers. This can be achieved by having a development server up
and running.

Medium 8 Use Overleaf as our main document writing tool for the bachelor thesis.
We will also have our source code in a Github repository and commit
frequently. There will also be local storage of the project files.

Medium 9 Document the project in other ways, such as in the bachelor thesis. This
will ensure good documentation regardless of test performance

119

A PROJECT PLAN

J Plan of Action

J.1 GANTT diagram

TODAY

2022

Jan Feb Mar Apr May

W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20

100% complete Planning, organization and research

Planning

100% completeSprint 1

Decide technology and frameworks

Setup development environment

Frontend - Wireframe

100% completeSprint 2

Parse data

Generate geometry

Frontend - design layout

Setup cloud architecture

Setup CI/CD

100% completeSprint 3

Frontend - third iteration

User testing

100% completeSprint 4

Frontend - final design

100% completeSprint 5

Focus on writing

Easter break

100% completeSprint 6

Finish software development

100% completeSprint 7

Prepare presentation

Write Bachelor Thesis

120

B PROJECT AGREEMENT (PROSJEKTAVTALE)

J.2 Milestones and Crash Courses

J.3 Milestones

1. 31.01.22 - Finish Project Plan

2. 14.02.22 - Finish sprint 1

3. 28.02.22 - Finish sprint 2

4. 14.03.22 - Finish sprint 3

5. 28.03.22 - Finish sprint 4

6. 11.04.22 - Finish sprint 5

7. 11.04.22 - Split up focus between development and writing

8. 11.04.22 - 18.04.22 - Easter break

9. 02.05.22 - Finish sprint 6

10. 03.05.22 - Switch main focus to writing

11. 16.05.22 - Finish sprint 7

12. 20.05.22 - Deliver thesis

13. 10.06.22 - Project presentation

J.4 Crash Courses

During the project period, we will have three crash courses. Our first crash course was held 11.01.22 in

Teams. Where, we got an overview of what could benefit us when planning the project, having contact with

our client, and writing our project plan.

Our second crash course will be about writing the bachelor thesis. This will be held sometime between 1 -

10 of March. And our last crash course will be about the bachelor presentation. This will be held sometime

between 23 - 27 of May.

B Project Agreement (Prosjektavtale)

121

1 NTNU 10.12.2020

Norges teknisk-naturvitenskapelige universitet

Fastsatt av prorektor for utdanning 10.12.2020

STANDARDAVTALE

om utføring av studentoppgave i samarbeid med ekstern virksomhet

Avtalen er ufravikelig for studentoppgaver (heretter oppgave) ved NTNU som utføres i
samarbeid med ekstern virksomhet.

Forklaring av begrep

Opphavsrett
Er den rett som den som skaper et åndsverk har til å fremstille eksemplar av åndsverket og
gjøre det tilgjengelig for allmennheten. Et åndsverk kan være et litterært, vitenskapelig eller
kunstnerisk verk. En studentoppgave vil være et åndsverk.

Eiendomsrett til resultater
Betyr at den som eier resultatene bestemmer over disse. Utgangspunktet er at studenten
eier resultatene fra sitt studentarbeid. Studenten kan også overføre eiendomsretten til den
eksterne virksomheten.

Bruksrett til resultater
Den som eier resultatene kan gi andre en rett til å bruke resultatene, f.eks. at studenten gir
NTNU og den eksterne virksomheten rett til å bruke resultatene fra studentoppgaven i deres
virksomhet.

Prosjektbakgrunn
Det partene i avtalen har med seg inn i prosjektet, dvs. som vedkommende eier eller har
rettigheter til fra før og som brukes i det videre arbeidet med studentoppgaven. Dette kan
også være materiale som tredjepersoner (som ikke er part i avtalen) har rettigheter til.

Utsatt offentliggjøring
Betyr at oppgaven ikke blir tilgjengelig for allmennheten før etter en viss tid, f.eks. før etter
tre år. Da vil det kun være veileder ved NTNU, sensorene og den eksterne virksomheten som
har tilgang til studentarbeidet de tre første årene etter at studentarbeidet er innlevert.

2 NTNU 10.12.2020

1. Avtaleparter

Norges teknisk-naturvitenskapelige universitet (NTNU)
Institutt: NTNU Gjøvik

Veileder ved NTNU: Tom Røise
e-post og tlf. tom.roise@ntnu.no, 97139769

Ekstern virksomhet: Glex AS
Ekstern virksomhet sin kontaktperson, e-post og tlf.: Jørgen Engen Napstad
jorgen@glex.no, 93406526

Student: Salvador Bascunan

Student: Sebastian Lindtvedt

Student: Dennis Kristiansen

Partene har ansvar for å klarere eventuelle immaterielle rettigheter som studenten, NTNU,
den eksterne eller tredjeperson (som ikke er part i avtalen) har til prosjektbakgrunn før bruk
i forbindelse med utførelse av oppgaven. Eierskap til prosjektbakgrunn skal fremgå av eget
vedlegg til avtalen der dette kan ha betydning for utførelse av oppgaven.

2. Utførelse av oppgave
Studenten skal utføre: (sett kryss)

Masteroppgave

Bacheloroppgave x

Prosjektoppgave

Annen oppgave

Startdato: 11.01.22

Sluttdato: 20.05.22

Oppgavens arbeidstittel er:

 Smeaheia Digital Twin

Ansvarlig veileder ved NTNU har det overordnede faglige ansvaret for utforming og
godkjenning av prosjektbeskrivelse og studentens læring.

3. Ekstern virksomhet sine plikter
Ekstern virksomhet skal stille med en kontaktperson som har nødvendig faglig kompetanse
til å gi studenten tilstrekkelig veiledning i samarbeid med veileder ved NTNU. Ekstern
kontaktperson fremgår i punkt 1.

3 NTNU 10.12.2020

Formålet med oppgaven er studentarbeid. Oppgaven utføres som ledd i studiet. Studenten
skal ikke motta lønn eller lignende godtgjørelse fra den eksterne for studentarbeidet.
Utgifter knyttet til gjennomføring av oppgaven skal dekkes av den eksterne. Aktuelle
utgifter kan for eksempel være reiser, materialer for bygging av prototyp, innkjøp av prøver,
tester på lab, kjemikalier. Studenten skal klarere dekning av utgifter med ekstern virksomhet
på forhånd.

Ekstern virksomhet skal dekke følgende utgifter til utførelse av oppgaven:

• Bruk av skytjenester (Microsoft Azure)

• Lisenser til eventuelle nødvendige rammeverk / verktøy

• Reisekostnader ved eventuell fysisk workshop i Oslo eller Bergen

Dekning av utgifter til annet enn det som er oppført her avgjøres av den eksterne underveis
i arbeidet.

4. Studentens rettigheter
Studenten har opphavsrett til oppgaven1. Alle resultater av oppgaven, skapt av studenten
alene gjennom arbeidet med oppgaven, eies av studenten med de begrensninger som følger
av punkt 5, 6 og 7 nedenfor. Eiendomsretten til resultatene overføres til ekstern virksomhet
hvis punkt 5 b er avkrysset eller for tilfelle som i punkt 6 (overføring ved patenterbare
oppfinnelser).

I henhold til lov om opphavsrett til åndsverk beholder alltid studenten de ideelle rettigheter
til eget åndsverk, dvs. retten til navngivelse og vern mot krenkende bruk.

Studenten har rett til å inngå egen avtale med NTNU om publisering av sin oppgave i NTNUs
institusjonelle arkiv på Internett (NTNU Open). Studenten har også rett til å publisere
oppgaven eller deler av den i andre sammenhenger dersom det ikke i denne avtalen er
avtalt begrensninger i adgangen til å publisere, jf. punkt 8.

5. Den eksterne virksomheten sine rettigheter
Der oppgaven bygger på, eller videreutvikler materiale og/eller metoder (prosjektbakgrunn)
som eies av den eksterne, eies prosjektbakgrunnen fortsatt av den eksterne. Hvis studenten
skal utnytte resultater som inkluderer den eksterne sin prosjektbakgrunn, forutsetter dette
at det er inngått egen avtale om dette mellom studenten og den eksterne virksomheten.

Alternativ a) (sett kryss) Hovedregel

 Ekstern virksomhet skal ha bruksrett til resultatene av oppgaven

Dette innebærer at ekstern virksomhet skal ha rett til å benytte resultatene av oppgaven i
egen virksomhet. Retten er ikke-eksklusiv.

1 Jf. Lov om opphavsrett til åndsverk mv. av 15.06.2018 § 1

4 NTNU 10.12.2020

Alternativ b) (sett kryss) Unntak

x Ekstern virksomhet skal ha eiendomsretten til resultatene av oppgaven og
studentens bidrag i ekstern virksomhet sitt prosjekt

Begrunnelse for at ekstern virksomhet har behov for å få overført eiendomsrett til
resultatene:

Sluttresultatet av oppgaven vil ligge veldig tett på bedriftens kjernevirksomhet,
strategi og videre kommersiell satsning, og selskapet ønsker derfor å stå fritt til å
videreutvikle og potensielt kommersialisere en løsning basert på resultatet.

6. Godtgjøring ved patenterbare oppfinnelser
Dersom studenten i forbindelse med utførelsen av oppgaven har nådd frem til en
patenterbar oppfinnelse, enten alene eller sammen med andre, kan den eksterne kreve
retten til oppfinnelsen overført til seg. Dette forutsetter at utnyttelsen av oppfinnelsen
faller inn under den eksterne sitt virksomhetsområde. I så fall har studenten krav på rimelig
godtgjøring. Godtgjøringen skal fastsettes i samsvar med arbeidstakeroppfinnelsesloven § 7.
Fristbestemmelsene i § 7 gis tilsvarende anvendelse.

7. NTNU sine rettigheter
De innleverte filer av oppgaven med vedlegg, som er nødvendig for sensur og arkivering ved
NTNU, tilhører NTNU. NTNU får en vederlagsfri bruksrett til resultatene av oppgaven,
inkludert vedlegg til denne, og kan benytte dette til undervisnings- og forskningsformål med
de eventuelle begrensninger som fremgår i punkt 8.

8. Utsatt offentliggjøring
Hovedregelen er at studentoppgaver skal være offentlige.

Sett kryss

 x Oppgaven skal være offentlig

I særlige tilfeller kan partene bli enige om at hele eller deler av oppgaven skal være
undergitt utsatt offentliggjøring i maksimalt tre år. Hvis oppgaven unntas fra
offentliggjøring, vil den kun være tilgjengelig for student, ekstern virksomhet og veileder i
denne perioden. Sensurkomiteen vil ha tilgang til oppgaven i forbindelse med sensur.
Student, veileder og sensorer har taushetsplikt om innhold som er unntatt offentliggjøring.

Oppgaven skal være underlagt utsatt offentliggjøring i (sett kryss hvis dette er aktuelt):

Sett kryss Sett dato

5 NTNU 10.12.2020

 x ett år 01.06.23

 to år

 tre år

Behovet for utsatt offentliggjøring er begrunnet ut fra følgende:

Offentliggjøring av sluttresultat vil potensielt medføre at selskapets strategi og
forretningsmodell blir synliggjort tidligere enn ønsket.

Dersom partene, etter at oppgaven er ferdig, blir enig om at det ikke er behov for utsatt
offentliggjøring, kan dette endres. I så fall skal dette avtales skriftlig.

Vedlegg til oppgaven kan unntas ut over tre år etter forespørsel fra ekstern virksomhet.
NTNU (ved instituttet) og student skal godta dette hvis den eksterne har saklig grunn for å
be om at et eller flere vedlegg unntas. Ekstern virksomhet må sende forespørsel før
oppgaven leveres.

De delene av oppgaven som ikke er undergitt utsatt offentliggjøring, kan publiseres i NTNUs
institusjonelle arkiv, jf. punkt 4, siste avsnitt. Selv om oppgaven er undergitt utsatt
offentliggjøring, skal ekstern virksomhet legge til rette for at studenten kan benytte hele
eller deler av oppgaven i forbindelse med jobbsøknader samt videreføring i et master- eller
doktorgradsarbeid.

9. Generelt
Denne avtalen skal ha gyldighet foran andre avtaler som er eller blir opprettet mellom to av
partene som er nevnt ovenfor. Dersom student og ekstern virksomhet skal inngå avtale om
konfidensialitet om det som studenten får kjennskap til i eller gjennom den eksterne
virksomheten, kan NTNUs standardmal for konfidensialitetsavtale benyttes.

Den eksterne sin egen konfidensialitetsavtale, eventuell konfidensialitetsavtale den
eksterne har inngått i samarbeidprosjekter, kan også brukes forutsatt at den ikke inneholder
punkter i motstrid med denne avtalen (om rettigheter, offentliggjøring mm). Dersom det
likevel viser seg at det er motstrid, skal NTNUs standardavtale om utføring av
studentoppgave gå foran. Eventuell avtale om konfidensialitet skal vedlegges denne avtalen.

Eventuell uenighet som følge av denne avtalen skal søkes løst ved forhandlinger. Hvis dette
ikke fører frem, er partene enige om at tvisten avgjøres ved voldgift i henhold til norsk lov.
Tvisten avgjøres av sorenskriveren ved Sør-Trøndelag tingrett eller den han/hun oppnevner.

Denne avtale er signert i fire eksemplarer hvor partene skal ha hvert sitt eksemplar. Avtalen
er gyldig når den er underskrevet av NTNU v/instituttleder.

6 NTNU 10.12.2020

Signaturer:

Instituttleder:
Dato:

Veileder ved NTNU:
Dato:

Ekstern virksomhet: Jørgen Engen Napstad

Dato: 27.01.2022

Student: Salvador Bascunan

Dato: 31.01.22

Student: Dennis Kristiansen

Student: Sebastian Lindtvedt

Dato 07.02.2022

C TASK DESCRIPTION (OPPGAVEBESKRIVELSE)

C Task Description (Oppgavebeskrivelse)

128

Skybasert digital tvilling for integrerte
dynamiske systemer innenfor havrom
Oppdragsgiver:
Oppdragsgiver: Glex AS (Glex)
Kontaktperson: Jørgen Engen Napstad, CEO
Adresse: Skur 25, Møhlenpriskaien 8, 5006 Bergen
Telefon: +47 93 40 65 26
Epost: jorgen@glex.no
Hjemmeside: www.glex.no

Glex AS
Glex er et softwareselskap med kontorer i Bergen og Oslo, og består i dag av et team med bakgrunn i
geologi, data management, digitalisering og spillutvikling.

Glex har siden 2017 utviklet produktet Glex Energy; Et samarbeids- og visualiseringsverktøy med
interaktive presentasjonsmuligheter, benyttet av flere norske selskaper innenfor olje og gass.

Selskaper kombinerer sky- og spillteknologi (Unity) for å lage nyskapende og kompleks 2D og 3D
visualisering.

Oppgaven:
Studentene vil få i oppgave å utvikle en skybasert digital tvilling av et (hypotetisk) scenario innenfor
et konkret use-case, som for eksempel karbonlagring (CCS), fornybar energi, havbunnsmineraler,
akvakultur eller et annet relevant energi/havrom-system.

Oppgaven legger til rette for at flere studentene jobber sammen i team med de ulike deloppgavene.
Det er hensiktsmessig å definere oppgaven i fire hoveddeler: Datahåndtering, cloud, API og front-
end. Den digitale tvillingen vil hente data fra forskjellig kilder og databaser, prosessere dataene i
flere microservices, mellomlagre data i databaser, gjøre dataene tilgjengelige via et API, og til sist
visualisere dataene gjennom en nettbasert 2D & 3D front-end løsning. Se nærmere beskrivelse av
disse fire hoveddelene nedenfor.

Oppgaven vil være krevende og kompleks, da dette i utgangspunktet er en stor case med mange
dynamiske delsystemer, og derfor er det viktig at del-systemene defineres og de forskjellige
utviklings-oppgavene begrenses. Det er mulighet for at oppgavene også kan videreføres med økende
grad av kompleksitet, og mulighet for oppskalering og videreutvikling på mastergrads-nivå.

Dersom man må begrense omfang er det mulig å benytte Glex sin eksisterende teknologi for å
forenkle prosessen/oppgaven. Hvis studentene ønsker å grave seg dypere ned i visse deler av
oppgaven og for eksempel velger å fokusere på å utvikle unike skalerbare front-end løsninger kan
utvikling av et nytt API droppes, og Glex’ eksisterende API kan benyttes.

Gjennomføring av oppgaven vil gi studentene innføring i et variert og relevant fagområde, med
teknologi som er i bruk hos ledende softwareselskaper i dag.

Datahåndtering:
Dataene som skal visualiseres vil inkludere relativt tunge statiske datasett (geologi og geofysikk), GIS
data, historiske meta-data, media (bilder og video) og sanntidsdata. Vi vil i så stor grad som mulig
bruke reelle datasett fra industrielle aktører, men vi vil også vurdere å bruke «mock» data dersom
dette er hensiktsmessig for noen av kildene.

Dataene vil samles og/eller genereres i skybaserte tjenester. Studentene vil så måtte velge mellom
forskjellige database-løsninger (sql, no-sql, file/blob storage) for mellomlagring av dataene.

Cloud:
Hele systemet vil utvikles for, og kjøres i Microsoft Azure. Dette er skyløsningen Glex bruker i dag, og
har god kontroll på. Vi vil anbefale å bruke en rekke tjenester for å sette studentene i gang, men vil
holde det åpent for at studentene kan eksperimentere og velge disse selv.

Data-håndtering og prosessering vil foregå i en rekke micro-services. Disse tjenestene må utvikles,
deployes, tunes og vurderes (sikkerhet og kostnad). Frittstående tjenester kan utvikles i flere språk
(Eksempelvis Azure FunctionApps, som kan utvikles i C#, Java, Javascript, Python, Go, m.m.
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview)

API:
All data som flyter mellom back-end og front-end skal bevege seg gjennom et API. Studentene kan
enten utvikle dette selv, eller de kan velge å koble seg på selskapets eksisterende REST API.

Front-end:
Dataene skal presenteres til sluttbruker gjennom en skreddersydd og web-basert front-end løsning.
Studentene kan selv velge mellom to innfallsvinkler/teknologivalg:

1. Unity: Studentene kan bruke spillutviklingsverktøyet Unity til å utvikle applikasjonen (Glex
AS utvikler i dag sitt produkt i Unity, og har stor kompetanse innenfor dette). Dersom man
velger denne retningen vil programmeringsspråk være C#, og studentene vil kunne lene seg
på eksisterende teknologi og verktøy som allerede er bygget opp internt i Glex.

2. Javascript og Three.js: Studentene kan bruke ett av de populære JS rammeverkene (React,
Angular, Vue, etc.) i kombinasjon med teknologien Three.js (https://threejs.org/). Går man
for denne innfallsvinkelen vil Glex h mindre kunnskap å bidra med, men studentene vil bruke
teknologi som er bredere brukt i industrien.

Front-end løsningen vil visualisere dataene i både 2D og 3D, og skal simulere en operativ modell
brukt av f.eks. et energiselskap eller et industrielt service-selskap.

Prosjektstyring og dokumentasjon:
Vi vil vektlegge at studentene hele veien dokumentere sine løsninger, og vil legge til rette for at
studentene kan dokumentere løsningen gjennom verktøy som er hyppig brukt i industrien i dag
(Swagger, MkDocs, Confluence, etc.)

Vi ønsker at studentene skal bruke prosjektstyringsverktøyet Jira for å holde oversikt over
prosjektet.

Vi vil gjennom hele prosjektet holde en løpende dialog om og veilede studentene med teknologivalg
(kodespråk, hvilke tjenester de bruker i Azure, tredjeparts rammeverker som blir implementert, osv).

D MEETING MINUTES

D Meeting Minutes

131

2022-01-10 Internal meeting

Date

10 Jan 2022

Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Goals

Getting started after the break
Think about the specific case and scope for the project

Discussion topics

Subject Notes

Specific case Talked about visualizing a windmill park
We will talk to Glex more about this

Scope We want to be responsible and not take on a task bigger then what can be
achieved.

Action items

Specific case - We will keep an open mind in our meeting with Glex

Summary

We talked about what the bachelor assignment could entail. This was mostly towards what specific case we would be tackling. We agreed to
keep an open mind and discuss this further after the meeting with Glex. We also agreed to do further research when it comes to the project
setup, version control, time tracking and the rest of the documentation. We also discussed establishing a lot of the tools as soon as possible, in
order to not have to go back and re-do things later.

2022-01-11 Client meeting

Date

11 Jan 2022

Participants

Group members

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Glex

Jørgen Engen Napstad
Brit Thyberg

Goals

Discuss the bachelor assignment
Scope
Specific case
Technologies

Communication channels
Meeting frequency
Workshop

Discussion topics

Subject Notes

Bachelor assignment What is the our specific case going to be about
Carbon
Equinor

How are we going to scope the project
What should we look into as a pre-requisite to the project
How is the process of the project development going to look like

Communication Channels Group members use Discord for communication now
Glex uses Slack for chat and sharing of content, Teams for video calls

Meeting frequency Suggestion for weekly meetings, Tuesdays at 16.00

Workshop Needed to look into the opportunity of having offices in Oslo

Action items

Established Slack channel for communication

Look further into the specific case we could tackle as our bachelor assignment

Set weekly meetings

Closed the discussion regarding workshop

Summary

Good first meeting for introductions. The group members will continue the discussion of our understanding of the project and communicate with
Glex through Slack.

2022-01-11 Internal meeting

Date

11 Jan 2022

Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Goals

Setup different tools
Jira
Overleaf
Time tracking

Recap meeting with Glex
Specific case
Scope

Discussion topics

Subjects Notes

Specific case/Scope Still unclear as to what we are going to create a digital twin of

Action items

Establish a clear idea of what we think can be made

Summary

We established some setup tools and started working with them and getting to know them. We have started creating some issues and looked into
the time tracking. The idea here is to make it as seamless as we can, so it does not disrupt the workflow. We also discussed the meeting with
Glex and decided to talk about this with our supervisor tomorrow. There is some confusion from our side about what we are going to create a
digital twin of.

2022-01-12 Internal meeting

Date

12 Jan 2022

Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Goals

Establish a couple of specific cases to show Glex
Further work on the tools that will be used during development

Discussion topics

Subjects Notes

Specific case Further discussion on what we could present to Glex

Tools Trying to make the workflow seamless
Some issues with time tracking
Some issues with meeting documents

Action items

Create a short text with image and sent to Glex

Established more of the workflow in Jira

Summary

We drafted a short text for Glex and posted it on the Slack channel. We suggested a new meeting as soon as possible to make it easier to
explain our thoughts clearly. We also continued working on the tools of the project, and got to know Jira better. We established more of the
workflow regarding time tracking and meeting documentation.

2022-01-12 Supervisor meeting

Date

12 Jan 2022

Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Tom Røise

Goals

Introduction for the semester
Summary of the meeting with Glex
General guidance

Discussion topics

Subject Notes

Meeting with Glex Positive meeting
Explained some confusion regarding what the specific case for the project is
Established some practical things, like communication channels etc.

General guidance How we should approach getting a clearer picture of what our specific case for the
project is
What we should focus on otherwise moving forward

Action items

Clear idea on how to communicate some of the confusion with Glex

Summary

We received some good guidance on how to communicate our confusions with Glex. We also talked about our ambitions for this project and how
we have started to plan and setup the different tools. We will focus a bit more on meeting logs and time tracking at the beginning to establish a
good foundation.

2022-01-13 Glex meeting

Date

13 Jan 2022

Participants

Group members

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Glex

Jørgen Engen Napstad
Brit Thyberg

Goals

Specific case for digital twin
Combination between static and dynamic/live data
Technologies
Specification sheet frontend

Discussion topics

Subjects Notes

Specific case CO2 storage well
Dataset
Set new meeting with data manager
Test technologies
Specification sheet for front end, what is required

Action items

More details about the specific case digital twin of a CO2 storage well

 Summary

Glex described more on the entire value-chain. We agreed to go more into detail regarding the CO2 storage well. We will begin writing our project
plan and keep in touch with Glex for more information. From Glex’s side, they agreed to create a specification sheet for the frontend that needs to
be developed. This will make it easier for us to specify what the requirements are in the project plan.

2022-01-18 Glex meeting

Date

18 Jan 2022

Participants

Group members

@ Sebastian Lindtvedt

@ Dennis Kristiansen

@ Salvador Bascunan

Glex:

Jørgen Engen Napstad
Brit Thyberg

Goals

Figure out details related to project plan document
What does Glex want to achieve from this project?
What is the overall goal of the software to be created?
Who is going to use this system?
What is the use case of the system?
What do you want us to create?
What sensors will be available?
We need to know one specific case now, but it can change later. This is primarily a formal thing.
Clear up expectations when it comes to the project case. What our role is, and what their role is.

Discussion topics

Subject Notes

Use case Who - Companies that do CCS - Equinor/Northern lights
Evaluate real-time the workflow on CCS
Log data - to be able to go back
Multiple use cases - Investors/Geologists

What we are creating Future visualization for CCS - This is something that everyone will have to take into account sooner
or later

Action items

 Summary

Got more insight on what our specific project case was going to be. And who would possibly use the software.

2022-01-19 Supervisor meeting

Date

19 Jan 2022

Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Goals

Feedback on previous project
Bachelor project

Discussion topics

Subject Notes

Feedback Good idea on the project
Good implementation within timeframe
Good in the technology aspect
Good sections in the report - implementation and architecture
Could improve - security aspects
Could improve - user-friendly design - usability
Could improve - kravspek, brukergrensesnitt (a bit weak)
Could improve - how non-technical people would understand the project

Bachelor Specific case can be a bit open, even after the project planning
It’s not a problem that our project case changes a bit

Important to keep it interesting for us

Other Don’t try to do everything - pick our battles

Summary

We got a good overview over the feedback given to us on our previous. This allows us to have some clear pointers regarding what we can
improve on in this project. We also cleared some confusion and worry regarding our project case. We can write in the project plan that our case is
not decided yet. We also got some tips on what to focus on in our project.

2022-01-25 Glex meeting

Date

25 Jan 2022

Participants

Group members

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Glex

Brit Thyberg
Jørgen Engen Napstad
Patrick Sullivan

Goals

Clarify visualization in 3D
More specifics

Discussion topics

Subject Notes

3D Visualization alongside well Important to Glex
Must further research the technical aspects around this, is this possible to
implement?

 Summary

We agreed to further investigate technologies for frontend, and how some of the visualization can be implemented.

2022-01-26 Supervisor meeting

Date

26 Jan 2022

Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Tom Røise

Goals

Feedback on project plan

Discussion topics

Subject Notes

Prosjektplan Klargjør om det er digital tvilling eller visualisering i henhold til
forventningene
litt mer om Glex som et firma, mange kunder, hva slags kunder
spesifisere hele pipelinen i result goals
læringsmål?
om hva “skal ikke” inngå - delimitation
mer i case description - En eventuell visualisering av hele pipelinen
mer dybdebegrunnelse bak valgene - project characteristics
mer dybde og forklaring bak valg - plan for usage of model
noe rundt statuser i prosess-løpene?

Epic? - f eks ha user testing etter 3 sprinter
større statussjekk
leveranse/testslipp e.l. i løpet av våren

bruker tester?
kunne vært flere risikoer

forretning
teknologi
prosjekt

Summary

Got useful feedback on Project Plan.

2022-01-31 Internal meeting

 Date

31 Jan 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

 Goal

Fill backlog
Estimate story points
Assign issues

 Discussion topics

Subjects Notes

Discuss story points Implement story points as a conceptual scale, measuring only the relation between different issues and
not its scale in time. The scale will be a WIP as the project work continues.

 Action items

 Summary

Agreed to implement user stories.

2022-02-01 Client meeting

 Date

01 Feb 2022

 Participants

@ Sebastian Lindtvedt

@ Dennis Kristiansen

@ Salvador Bascunan

Glex:

Jørgen Engen Napstad
Brit Thyberg
Patrick Sullivan

 Goals

Discuss project agreement

 Discussion topics

Subject Notes

Project agreement Discuss further with supervisor

 Summary

Agreed to discuss the project agreement further with supervisor.

2022-02-02 Supervisor meeting

 Date

02 Feb 2022

 Participants

@ Sebastian Lindtvedt

@ Salvador Bascunan

@ Dennis Kristiansen

Tom Røise

 Goals

Further discuss project agreement

 Discussion topics

Presenter Notes

Project Plan feedback As a whole - Still creates the expectation of more dynamic - The project plan has been approved
dynamic vs static

Sources - Wikipedia is ok here, but be careful overusing it
Domain - precise
Domain - presis use of references - italic

otherwise good
goals - effect - some could be quantitative

bit difficult to specify exact
should have some quantitative, despite not having numbers

goals - learning - practice is not a goal, but through this you can gain experience. consider merging
delimitation - is it created in a flexible manner where the object changes..? - are we developing for a
special field. to specify if it can be used to something other than specified
requirement 3 - good
dont need that many sub-levels
characteristics - good
dev model - good case discussion, but reference to the point before. final report should contain references
to specific sources
usage of model - combine SRM and SPM?
Sprint review meeting? sprint retrospective?
Figure out about logos
testing - clear detailt for introverted testing

what about user testing
what about system testing
to find errors, but also to increase usability and understanding

risks - find more descriptive mitigations
gantt - mostly good - no other activities except easter, outside of school
milestones - can include something about user-testing, that is a milestone milestone

Gjenstående dev model - good case discussion, but reference to the point before. final report should contain references
to specific sources
Figure out about logos
testing - clear detailt for introverted testing

what about user testing
what about system testing
to find errors, but also to increase usability and understanding

milestones - can include something about user-testing, that is a milestone milestone
At numbers to risks in the top table

 Action items

 Summary

Good feedback session.

2022-02-08 Client meeting

 Date

08 Feb 2022

 Participants

Group members

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Glex

Jørgen Engen Napstad
Brit Thyberg
Patrick Sullivan

 Goals

 Discussion topics

Subject Notes

Access to blob storage Added. confirmed with Azure Portal.

Meeting frequency Agreed to hold the communication open on Slack.
Agreed to have meeting every two weeks

 Summary

Agreed on some practical subjects.

2022-02-14 Internal meeting

 Date

14 Feb 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

 Goals

Visualization of different parts (fault sticks, well logs, horizon, surfaces)
Sprint planning
Create user stories to different parts of the project

 Discussion topics

Subject Notes

General We discussed how the different parts of the digital twin could be visualized.
We still have some problems understanding how all of this would work
together.

Horizons What do XLINE and INLINE mean?
We decided to ask Glex more about this to be able to write a user story

Fault sticks We understand enough to create a user story

Well logs We understand enough to create a user story

Surfaces Are the column and rows going to be used for anything, going to ask Glex

 Summary

Productive meeting where we discussed some parts of the project which are still a bit unclear. How we are going to deal with scaling, rotation and
translation of the object in the scene is still a bit unclear. We decided to ask Glex more about this in the Slack channel, and see if it makes things
clearer. We also have a meeting tomorrow which could clarify more.

2022-02-15 Client meeting

 Date

15 Feb 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Glex

Jørgen Engen Napstad
Brit Thyberg
Patrick Sullivan

 Goals

Clarify some confusion around some areas of the project

 Discussion topics

Subject Notes

What are the Shape files going to be used for? 2D data to map
Will possibly not be implemented

What is lithostratigraphy? What does the data in the excel sheet mean?
And how to visualize it?

It will be visualized as start/end on well trajectory
Divided in Lithos, a certain trait

How do we visualize chronostratigraphy? Arrows and text? Same as lithostratigraphy, show timeperiod with start/end

Well trajectory surveys: Is the intention that receive the “raw trajectory
survey data” and then calculate well-path?

Calculate from raw data

Is it correct to say that the data from excel sheet always comes in an
excel sheet, not in formal/official formats that are machine readable?

The excel file can be converted to a machine readable format

How does positioning work in the scene? Will the models values be used
the way they are, or are we supposed to adjust them manually?

Positions come from UTM, all x y are inside a “box”

Feedback on Figma Fault sticks - correct visualization
Well logs - color palette

 Summary

Good a lot of answers to questions and doubts. Clarified some areas of the project.

2022-02-16 Supervisor meeting

 Date

16 Feb 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Tom Røise

 Goals

Feedback on Bachelor Thesis

 Discussion topics

Subject Notes

Feedback Introduction: POC eller functioning/extensible software - creates expectations
if we create a digital twin for this dataset only
or if we create a program that facilitates creating digital twin from dataset

Domain: Sources to Norwegian Government announcement
Product: Missing: Figure/Sketch/World + digital twin/a little bit about geologic-showing against what their
vision is for digital twin/ short intro about static and dynamic data/ or intro about “storage” smeaheia figure
Project goals: Stakeholders
Use case: What else? discussion around methodology and technical decisions? operational requirements,
issues/kanban?

create some drafts and discuss with client maybe.
Development plan: maybe merge 3 and 5

risk analysis?
General: Need more about digital twins, like an intro with sources
Technical design: Sources

Why have we structure it this way
How did we figure out the different parts
sources

Data processing: Discuss the different alternatives
static and dynamic, how we thought about dividing this

REST API: is REST REST? or can be implemented as another type of “REST”?
GUI: and inspiration sources? - show different iterations. Traditional geologic software/ our sketches/ final
solution. HCI / GUI patterns to show dynamic data?
Geometry Generation: Build credibility around how we found tools

code snippets and explanation
no so much text
show tables

Deployment: can include diagrams and sketch from supplier
Testing: Include more types of testing
Discussion: Talk about sustainability and the groups contribution to the world
Use the “emnebeskrivelse” in discussion

 Action items

 Summary

Good feedback session on our plan for the bachelor thesis.

2022-02-18 Client meeting

 Date

18 Feb 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Glex:

Patrick Sullivan

 Goals

Further clarification on subjects in project

 Discussion topics

Subject Notes

Explain measured depth vs. TVDSS vs. TVDKB and
calculations and conversions.

See figure for terms
Conversion via minimum curvature method
Useful to be able to toggle between them

 Action items

 Summary

Short meeting with Patrick. Helped us clarify some doubts about certain formulas.

2022-03-01 Client meeting

 Date

01 Mar 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Glex

Jørgen Engen Napstad
Brit Thyberg

 Goals

Show off our progress so far and get some feedback.
Show off our Cloud Architecture and get some feedback.
Obtain permissions for Azure.

 Discussion topics

Subject Notes

What we presented How the fault sticks processing is going
How the different file types in well logs are handled
How the surfaces look, showed a small demo

Feedback Try to have a minimal prototype of the program to present next meeting
Good progress so far

 Action items

Check out the limits imposed on Azure Functions and Azure Web Jobs to make sure they will work for our purposes.

 Summary

Good feedback session with regards to our progress so far.

2022-03-09 Supervisor meeting

 Date

09 Mar 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Tom Røise

 Goals

General update

 Discussion topics

Subject Notes

Nothing in particular to note.

 Action items

 Summary

Updated supervisor with current progress.

2022-03-15 Client meeting

 Date

15 Mar 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Glex

Jørgen Engen Napstad
Brit Thyberg

 Goals

 Discussion topics

Subject Notes

 Action items

 Decisions

2022-03-23 Supervisor meeting

 Date

23 Mar 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Tom Røise

 Goals

Feedback on MVP
General update

 Discussion topics

Subject Notes

Feedback MVP Looks good!

Well-logs 2D graphs Make sure we get more feedback from Glex

Other well-logs data Make a few different data visualization methods, do not spend time visualizing tonnes of data, focus
on the different visualization methods.

How do we handle data, missing
data, incorrect data?

Write about this in the report.
Make sure we apply a consistent method for handling data.

Code quality? We have linting and CI on web-app and REST API, what about the rest?
How do we lint and check code quality for Python projects?

 Action items

 Summary

Good feedback session on MVP. Got some pointer on what to write about also.

2022-03-29 Client meeting

 Date

29 Mar 2022

 Participants

@ Salvador Bascunan

@ Dennis Kristiansen

@ Sebastian Lindtvedt

Glex

Jørgen Engen Napstad

 Goals

Go through web-app and get feedback

 Discussion topics

Subject Notes

UX/UI Well names on top of wells
To differenciate

From Feasibility we will use seabed and top sognefjord fm, remove
gassnova
Toggle surfaces on/off
Group faults - within the 3D cube
Be able to pick faults and see them at the same time
Group toggle functionality
Insert a map/image of the area somewhere in the UI

Navigasjon Add controls
Preset camera positions

Content Fix well-trajectory

 Action items

 Summary

Good feedback session with Glex.

2022-03-30 Supervisor meeting

 Date

30 Mar 2022

 Participants

@ Salvador Bascunan

@ Dennis Kristiansen

@ Sebastian Lindtvedt

Tom Røise

 Goals

Feedback session

 Discussion topics

Subject Notes

Feedback Explain how our solution can work with other dataset
Should talk about security in general

How can someone “mess” with the service
How can this be handled
We must explain how and why we thought this through

Have a draft ready by 19.04

 Action items

 Summary

Feedback session with deadline on having a draft ready for review.

2022-04-21 Supervisor meeting

 Date

21 Apr 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Tom Røise

 Goals

Feedback session

 Discussion topics

Subject Notes

Table of contents Trim down to two levels only, three is unnecessary

Glossary More words need to be included

Introduction How has the definition of a digital twin affected our work

General Remember to bring forward our idea to create a more general pipeline for digital twins.

Time perspective, past tense

Comment on balance between static and real-time data

Quotes, include who came with a certain claim, not just a number. Short explanation on who made the
claim.

Don’t simplify our own work. Don’t use words like “just”, “simple”, “relative” etc. Makes it seem like we have
done a small job.

Show before and after an optimalisation

Not much on why the whole pipeline can be used in other geographical areas, this concerns all data types.
Why we can just add a surface, faults etc.. from other datasets.

Explain the usefulness of our service to the environment. How our solution can contribute to CO2 storage.

Target audience Only for demo/test, or to a real audience? just for smeaheia or in general?

Delimitations What is the consequence of just focusing on “Storage”, is this solution created with the intention of
integrating it with other parts of the CCS

What data will be updated live, which are not. Bit unclear now

Group organization All team members are developers primarily, its not an extra job.

Use case Is use-case right for us? do we need it?

Can have just the diagram and issue board

Remember that it can be difficult to understand the service. Show all functionality through use-cases,
diagrams etc.

A sketch of the service as a whole

Development plan Our use of scrum, not in general

Collaboration with Client

Roles, meeting, assigning tasks, sprint length, focus, adjustments

Gantt, can be useful with a before and after

Technical design Should know more about the domain before the technical aspect begins. Describe a bit about the geology
and CO2 storage before we go into our solution. Justify the solution..

Maybe also what the different elements are, like surfaces, well logs, faults etc..

System architecture Sources, more content.

Project organization “And so on”………..

Explain in more detail why this is a good structure for our project

Data processing Introduce the reader to what surface data is, what a geologist uses it for

Sources, discuss alternatives

Why we ended up with the value 1000

Nothing is random, or stumble on, show that everything has intention and meaning

“x is the value between them”, explain this better

Development process Discuss Scrum roles, meetings etc..

GUI Show earlier iterations, improvements etc..

Implementation Where is it explained that this will run in a browser

We didn’t stumble upon good framworks, explain how and why we use them

When talking about algorithms, explain why this algorithm is good for our use-case. Show data that
supports this.

Show sources and code examples/snippets.

What defines a good results? why is our result the best?

Well and well-logs Figure and sketch is needed

What is the level of quality of the data, and how do we deal with errors in the data

Too simple explanation on why we use JSON, explain more.

Code snippets, important

Source to polynomial regression, why do we use this?

Reference to requirement specification on why we calculate certain values, TVDSS etc.

Before and after an optimalization, etc

Real time Remember real time data…

Fault sticks Show what faults are, figure etc..

Deployment Why we use different technologies. What is it about our case that made us use Azure Functions. Not useful
to talk about technologies if we dont explain what they do for us.

Testing Talk about why we test everything.

Performance test

User tests, we made an early prototype. we got feedback etc. Advantages with the approach we used.
Quick feedback etc

Discussion Bring forward/focus on why its relevant today. we created a service that helps with CO2 capture etc. Bring
forward sustainability and usefulness for the environment.

 Action items

 Summary

Extensive and productive feedback session on bachelor thesis.

2022-04-26 Client meeting

 Date

26 Apr 2022

 Participants

@ Sebastian Lindtvedt

@ Salvador Bascunan

Jørgen Engen Napstad

 Goals

Showcase progress and discuss the last phase of the project with client

 Discussion topics

Subject Notes

Discussion Focus is bachelor thesis now
Maybe try and finish some of the last issues in the web-app

 Action items

 Summary

Short meeting updating our client to the progress.

2022-04-27 Supervisor meeting

 Date

27 Apr 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Tom Røise

 Goals

Thesis feedback

 Discussion topics

Subjects Notes

Questions How can we formulate that were presented with a project proposal to create a specific digital twin, and we
adjusted this to create a more general solution?
What adjustments would need to be made in order for another dataset to be used here
Text build-up

Fault stick part is organized to read

Design vs discussion Talk about possible alternatives at the start, discuss the consequence of those choices in the discussion

Surfaces Geometry Explain why we chose glTF format on the file
We tried other format - include this

Create a figure/sketch - explain the steps on generating
URL to Open3D - sources in general
Sources behind algorithms, definitions and explain why these algorithms where considered
Define the criteria's for what makes an algorithm good for our purpose. compare them. maybe a table?
source to pivot image

Faults Images of faults, difficult to know what we are talking about
Sequence sketch as illustration
Difficult to see how each part is connected and works together
Image say very little, set it in a perspective so it’s easier to understand what is going on

 Action items

 Summary

Productive feedback meeting.

2022-05-04 Supervisor meeting

 Date

04 May 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Tom Røise

 Goals

Thesis feedback

 Discussion topics

Subject Notes

Questions How do we explain the whole blob trigger functionality?
It is ok to have cosmosDB in the service, or should it be outside
How can we include “Data Manager” actor
Can we have blob storage in the service?
Functional and non-functional security requirements

Requirements More focus on what, not how
Explain how the requirements have evolved, right now get the impression of waterfall model. Careful
stating that these are the final requirements
don’t use “would”
Say something about end-user earlier
Maybe include a sketch of the requirements
Don’t have anything regarding the solution in the requirements
include the use-case diagram earlier
figures on litho and chrono if possible
consider project goals in chapter 1
characterize geologist more, what he/she knows etc. define the stereotype
Use use stories instead of high-level/low-level use cases
Think measurability

Development Plan Plan or process?
Just structure? maybe dynamic and easy to change
Bring forward that we experiment, iterate, etc..
Don’t use supervisor name
Move technology choices to technical design
Gantt, split up to iterations

Deployment Architecture in deployment? Needs to be properly explained. deployment is more a transition to operation
in an automated way. Be concrete about what we are talking about here.
Security, should this be in deployment?
Security on technical design
Our implementation in Azure, explain it this way
Long code snippets

 Action items

 Summary

Good feedback session on bachelor thesis.

2022-05-12 Supervisor meeting

 Date

12 May 2022

 Participants

@ Salvador Bascunan

@ Sebastian Lindtvedt

@ Dennis Kristiansen

Tom Røise

 Goals

Thesis feedback

 Discussion topics

Subject Notes

Title Find a name that reflects the project as a whole

Requirements Show surfaces, faults etc.. earlier, so the reader can understand what the report is about
Explain what the different elements are in this context
Show what it entails when a requirement is met

Use case Don’t call it Azure
Data management system

Say more about actors
Connect use-cases to issues

Technical design Overall image is a bit confusing
Talk about that there is not talk about how things were implemented before the
implementation part

Figures and tables Name figures and tables, and add explanations

General Talk about how much code we have, and how it distributes

Discussion Result goals

 Action items

 Summary

Final session with supervisor. Productive feedback on bachelor thesis.

E SPRINT RETROSPECTIVES

E Sprint Retrospectives

164

Sprint 1 Retrospective

 Overview

Reflect on past work and identify opportunities for improvement by following the instructions for the .Retrospective Play

Date 14.02.2022

Team Bachelor Project

Participants @ Sebastian Lindtvedt @ Dennis Kristiansen @ Salvador Bascunan

 Retrospective

What worked well? What could be improved? What should we commit to doing in the
next sprint?

The two weekly standup meetings Reduce the amount of time spent on
meetings, reduce the frequency

Prepare more for the meetings with Glex
and the supervisor

Sprint length worked well The issues are vague and tends to lasts
a long time

More specific issues, spend a little more
time planning issues at the beginning of
each sprint

 Action items

Add your Start doing, Stop doing, and Keep doing items to the table below. We'll use these to talk about how we can improve our
process going forward.

Sprint 2 Retrospective

 Overview

Date 28.02.2022

Team Bachelor Project

Participants @ Sebastian Lindtvedt @ Dennis Kristiansen @ Salvador Bascunan

 Retrospective

What worked well? What could be improved? What should we commit to doing in the next
sprint?

Time wasted on pending access to Azure Be more clear in our messages with the client
that access is crucial in terms of time

TDD in general is starting to feel better We can create issues based on the different
test cases

Use smart commits linked with specific issues,
such as a specific test cases

 Action items

Add your Start doing, Stop doing, and Keep doing items to the table below. We'll use these to talk about how we can improve our
process going forward.

Sprint 3 Retrospective

 Overview

Date 14.03.2022

Team Bachelor Project

Participants @ Sebastian Lindtvedt @ Dennis Kristiansen @ Salvador Bascunan

 Retrospective

What worked well? What could be improved? What should we commit to doing in the next
sprint?

Integration of all the elements went well
enough

Communication around who does what. Define issues and assign them. Then stick to
that.

The meetings went well when they
occurred

Improve communication within the group in
regard to planned meetings.

Notify earlier when scheduled meetings can’t be
attended.

 Action items

Add your Start doing, Stop doing, and Keep doing items to the table below. We'll use these to talk about how we can improve our
process going forward.

Sprint 4 Retrospective

 Overview

Reflect on past work and identify opportunities for improvement by following the instructions for the .Retrospective Play

Date 28.03.2022

Team Digital Twin

Participants @ Dennis Kristiansen @ Sebastian Lindtvedt @ Salvador Bascunan

 Retrospective

Start doing Stop doing Keep doing

Nothing particular Nothing particular Nothing particular

 Action items

Add your Start doing, Stop doing, and Keep doing items to the table below. We'll use these to talk about how we can improve our
process going forward.

Sprint retrospective 5

 Overview

Reflect on past work and identify opportunities for improvement by following the instructions for the .Retrospective Play

Date 19.04.2022

Team Digital Twin

Participants @ Dennis Kristiansen @ Sebastian Lindtvedt @ Salvador Bascunan

 Retrospective

Start doing Stop doing Keep doing

Nothing particular Nothing particular Nothing particular

 Action items

Add your Start doing, Stop doing, and Keep doing items to the table below. We'll use these to talk about how we can improve our
process going forward.

F TIMESHEETS

F Timesheets

170

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

DIG-1 - Write project plan... 15.65

Dennis Kristiansen 3.75

Salvador Bascunan 6.00

Sebastian Lindtvedt 5.90

DIG-2 - Setup collaboration tools... 4.38

Dennis Kristiansen 3.00

Sebastian Lindtvedt 1.38

DIG-3 - Test vscode jira integration... 0.50

Dennis Kristiansen 0.50

DIG-5 - Draft of project idea... 5.00

Dennis Kristiansen 1.00

Salvador Bascunan 1.00

Sebastian Lindtvedt 3.00

DIG-6 - Research CCS and Northern Lights... 17.48

Dennis Kristiansen 14.00

Salvador Bascunan 1.70

Sebastian Lindtvedt 1.78

DIG-7 - Research and Learn MS Azure... 9.75

Dennis Kristiansen 9.75

DIG-8 - Internal meeting 10.01.22.. 0.50

Dennis Kristiansen 0.50

DIG-9 - Internal meeting 11.01.22.. 3.00

Salvador Bascunan 1.50

Sebastian Lindtvedt 1.50

DIG-10 - Supervisor meeting 12.01.22.. 1.00

Salvador Bascunan 0.50

Sebastian Lindtvedt 0.50

DIG-11 - Internal meeting 12.01.2022.. 7.50

Dennis Kristiansen 2.50

Salvador Bascunan 2.50

Sebastian Lindtvedt 2.50

DIG-12 - Glex meeting 11.01.22... 2.00

2022-05-19
Page 1 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Salvador Bascunan 1.00

Sebastian Lindtvedt 1.00

DIG-14 - Explore tools related to development.. 35.83

Dennis Kristiansen 3.00

Salvador Bascunan 15.55

Sebastian Lindtvedt 17.28

DIG-15 - Glex meeting 13.01.22... 3.00

Dennis Kristiansen 1.00

Salvador Bascunan 1.00

Sebastian Lindtvedt 1.00

DIG-16 - Internal meeting 13.01.22.. 2.00

Dennis Kristiansen 1.00

Salvador Bascunan 1.00

DIG-17 - Internal meeting 14.01.22.. 4.33

Dennis Kristiansen 1.40

Salvador Bascunan 1.50

Sebastian Lindtvedt 1.43

DIG-18 - Internal meeting 17.01.22.. 5.63

Dennis Kristiansen 1.87

Salvador Bascunan 1.88

Sebastian Lindtvedt 1.88

DIG-19 - Experiment with react-threejs-fiber for frontend.. 19.58

Dennis Kristiansen 14.67

Salvador Bascunan 2.00

Sebastian Lindtvedt 2.92

DIG-20 - Research Three.js with vanilla react.. 4.03

Sebastian Lindtvedt 4.03

DIG-21 - Glex meeting 18.01.22... 2.08

Dennis Kristiansen 0.75

Salvador Bascunan 0.67

Sebastian Lindtvedt 0.67

DIG-22 - Internal meeting 18.01.22.. 3.00

2022-05-19
Page 2 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Dennis Kristiansen 1.00

Salvador Bascunan 1.00

Sebastian Lindtvedt 1.00

DIG-23 - Write about Planning, Follow up and Reporting... 3.93

Sebastian Lindtvedt 3.93

DIG-24 - Learn LaTeX and BibTex... 0.50

Dennis Kristiansen 0.50

DIG-26 - Supervisor meeting 19.01.22.. 1.50

Dennis Kristiansen 0.50

Salvador Bascunan 0.50

Sebastian Lindtvedt 0.50

DIG-27 - 20.01.22 Internal meeting.. 6.05

Dennis Kristiansen 2.00

Salvador Bascunan 2.05

Sebastian Lindtvedt 2.00

DIG-28 - Research ASP.NET Web APIs... 6.62

Dennis Kristiansen 4.50

Salvador Bascunan 1.00

Sebastian Lindtvedt 1.12

DIG-29 - 22.01.22 Internal meeting.. 2.00

Salvador Bascunan 1.00

Sebastian Lindtvedt 1.00

DIG-30 - 24.01.22 Internal meeting.. 10.08

Dennis Kristiansen 2.50

Salvador Bascunan 3.60

Sebastian Lindtvedt 3.98

DIG-31 - 25.01.22 Glex meeting... 2.25

Dennis Kristiansen 0.75

Salvador Bascunan 0.75

Sebastian Lindtvedt 0.75

DIG-32 - 26.01.22 Supervisor meeting.. 1.50

Dennis Kristiansen 0.50

2022-05-19
Page 3 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Salvador Bascunan 0.50

Sebastian Lindtvedt 0.50

DIG-33 - Finish - Background.. 0.50

Salvador Bascunan 0.50

DIG-34 - Finish - Domain... 1.50

Dennis Kristiansen 1.50

DIG-35 - Finish - Project Goals.. 0.27

Sebastian Lindtvedt 0.27

DIG-37 - Finish - Case Description.. 0.75

Dennis Kristiansen 0.75

DIG-38 - Finish - Planning, Follow up and Reporting... 0.62

Dennis Kristiansen 0.33

Sebastian Lindtvedt 0.28

DIG-39 - Finish - Organization of Quality Assurance... 1.00

Salvador Bascunan 1.00

DIG-41 - Setup Jira, sprints and SCRUM workflow... 1.00

Dennis Kristiansen 1.00

DIG-46 - Finish - Configuration management... 0.35

Sebastian Lindtvedt 0.35

DIG-47 - Internal meeting 27.01.2022.. 4.07

Dennis Kristiansen 1.37

Salvador Bascunan 1.35

Sebastian Lindtvedt 1.35

DIG-48 - 28.01.22 Internal meeting.. 10.45

Dennis Kristiansen 3.45

Salvador Bascunan 3.50

Sebastian Lindtvedt 3.50

DIG-49 - Setup test framework for the front-end.. 4.00

Dennis Kristiansen 4.00

DIG-50 - 31.01.22 Internal meeting.. 9.17

Dennis Kristiansen 3.17

Salvador Bascunan 2.95

2022-05-19
Page 4 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Sebastian Lindtvedt 3.05

DIG-51 - Establish development environments.. 0.65

Sebastian Lindtvedt 0.65

DIG-52 - Setup .NET environment.. 3.07

Sebastian Lindtvedt 3.07

DIG-53 - Test Python for 3D geometry.. 24.42

Salvador Bascunan 24.42

DIG-54 - Research technologies.. 9.02

Dennis Kristiansen 4.75

Salvador Bascunan 0.75

Sebastian Lindtvedt 3.52

DIG-56 - Setup cloud architecture.. 11.27

Dennis Kristiansen 9.17

Sebastian Lindtvedt 2.10

DIG-57 - Setup CI/CD.. 5.33

Dennis Kristiansen 4.50

Sebastian Lindtvedt 0.83

DIG-58 - Design frontend first iteration.. 4.75

Dennis Kristiansen 0.75

Sebastian Lindtvedt 4.00

DIG-59 - Link Figma to Jira.. 0.25

Dennis Kristiansen 0.25

DIG-60 - Setup shared Figma project... 0.08

Dennis Kristiansen 0.08

DIG-61 - 01.02.2022 Client meeting.. 2.40

Dennis Kristiansen 0.77

Salvador Bascunan 0.82

Sebastian Lindtvedt 0.82

DIG-62 - 02.02.2022 Supervisor meeting.. 2.47

Dennis Kristiansen 0.83

Salvador Bascunan 0.82

Sebastian Lindtvedt 0.82

2022-05-19
Page 5 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

DIG-63 - Setup initial layout for the main screen.. 1.50

Dennis Kristiansen 1.50

DIG-64 - Explore data... 6.90

Dennis Kristiansen 3.50

Salvador Bascunan 2.00

Sebastian Lindtvedt 1.40

DIG-65 - 03.02.2022 Internal meeting.. 2.50

Dennis Kristiansen 0.83

Salvador Bascunan 0.83

Sebastian Lindtvedt 0.83

DIG-66 - Test Python for CSV files.. 3.98

Sebastian Lindtvedt 3.98

DIG-67 - Look into GitHub Actions vs. DevOps Piplelines... 6.00

Dennis Kristiansen 6.00

DIG-68 - Research VictoryChart.. 11.54

Dennis Kristiansen 4.17

Sebastian Lindtvedt 7.38

DIG-69 - Experiment with React hooks... 24.20

Dennis Kristiansen 4.17

Salvador Bascunan 6.82

Sebastian Lindtvedt 13.22

DIG-70 - Internal meeting 7.02.2022.. 5.75

Dennis Kristiansen 1.92

Salvador Bascunan 1.92

Sebastian Lindtvedt 1.92

DIG-71 - As a geologist, I want to visualize well logs alongside the well-trajectory................... 29.75

Dennis Kristiansen 29.75

DIG-72 - Parse LAS files... 5.40

Dennis Kristiansen 5.40

DIG-73 - Replace xUnit with nUnit... 0.33

Dennis Kristiansen 0.33

DIG-74 - Setup doctesting in Python... 1.00

2022-05-19
Page 6 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Salvador Bascunan 1.00

DIG-78 - Explain REST technologies.. 0.65

Sebastian Lindtvedt 0.65

DIG-79 - Explain data processing technologies.. 3.23

Salvador Bascunan 3.23

DIG-81 - Write about architecture... 3.00

Dennis Kristiansen 3.00

DIG-83 - Write about TDD... 2.00

Dennis Kristiansen 2.00

DIG-85 - 08.02.2022 Glex meeting... 1.85

Dennis Kristiansen 0.62

Salvador Bascunan 0.62

Sebastian Lindtvedt 0.62

DIG-86 - Internal meeting 08.02.2022.. 1.68

Dennis Kristiansen 0.67

Salvador Bascunan 0.50

Sebastian Lindtvedt 0.52

DIG-87 - Visualize well logs with 2D graphs.. 8.97

Dennis Kristiansen 8.97

DIG-88 - Write Introduction.. 2.90

Sebastian Lindtvedt 2.90

DIG-89 - 10.02.2022 Internal meeting.. 1.57

Dennis Kristiansen 0.78

Salvador Bascunan 0.78

DIG-90 - Organize Thesis... 1.28

Sebastian Lindtvedt 1.28

DIG-91 - Visualize Fault Sticks.. 5.57

Sebastian Lindtvedt 5.57

DIG-92 - Visualize Horizons... 1.00

Salvador Bascunan 1.00

DIG-93 - Visualize Well logs... 4.22

Dennis Kristiansen 1.33

2022-05-19
Page 7 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Sebastian Lindtvedt 2.88

DIG-94 - 14.02.2022 Internal meeting.. 4.12

Dennis Kristiansen 2.25

Salvador Bascunan 0.87

Sebastian Lindtvedt 1.00

DIG-95 - As a geologist, I want to visualize fault sticks and their faults..................................... 9.87

Sebastian Lindtvedt 9.87

DIG-96 - Parse fault sticks... 13.10

Sebastian Lindtvedt 13.10

DIG-97 - As a geologist, I want to visualize the well-trajectories in 3D....................................... 14.97

Dennis Kristiansen 14.97

DIG-98 - Generate 3D well-trajectories... 13.25

Dennis Kristiansen 13.25

DIG-99 - As a geologist, I want to visualize the surfaces.. 2.50

Dennis Kristiansen 2.50

DIG-100 - Parse CSV files... 3.33

Dennis Kristiansen 3.33

DIG-102 - Learn more about Azure.. 10.75

Dennis Kristiansen 8.83

Salvador Bascunan 1.92

DIG-103 - Learn about Azure Functions.. 16.98

Dennis Kristiansen 11.00

Salvador Bascunan 2.87

Sebastian Lindtvedt 3.12

DIG-104 - Write some subsections in Bachelor Thesis and organize for feedback..................... 1.08

Salvador Bascunan 1.08

DIG-106 - Make generic in-scene depth vs. y graph... 5.25

Dennis Kristiansen 5.25

DIG-107 - Make in-scene graph for chronostratigraphy.. 1.50

Dennis Kristiansen 1.50

DIG-108 - Experiment with React Hooks... 14.63

Dennis Kristiansen 3.50

2022-05-19
Page 8 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Salvador Bascunan 7.55

Sebastian Lindtvedt 3.58

DIG-109 - 15.02.2022 Glex meeting... 3.33

Dennis Kristiansen 1.00

Salvador Bascunan 1.17

Sebastian Lindtvedt 1.17

DIG-110 - 16.02.2022 Supervisor meeting.. 2.75

Dennis Kristiansen 0.75

Salvador Bascunan 1.00

Sebastian Lindtvedt 1.00

DIG-111 - Make in-scene graph for lithostratigraphy.. 2.50

Dennis Kristiansen 2.50

DIG-112 - Learn about routing and traffic control for Azure.. 4.50

Dennis Kristiansen 4.50

DIG-113 - Parse text files... 2.38

Salvador Bascunan 2.38

DIG-114 - Write tests for parsing of text files.. 1.77

Salvador Bascunan 1.77

DIG-115 - Generate GLTF file from point cloud.. 39.40

Salvador Bascunan 39.40

DIG-116 - 17.02.2022 Internal meeting.. 3.02

Dennis Kristiansen 1.00

Salvador Bascunan 1.02

Sebastian Lindtvedt 1.00

DIG-117 - 18.02.2022 Glex meeting... 1.40

Dennis Kristiansen 0.50

Salvador Bascunan 0.45

Sebastian Lindtvedt 0.45

DIG-118 - Write test for GLTF generation.. 3.38

Salvador Bascunan 3.38

DIG-119 - Add name to mesh in gltf file... 1.43

Salvador Bascunan 1.43

2022-05-19
Page 9 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

DIG-120 - Add normals to web-app import of surfaces... 2.08

Salvador Bascunan 2.08

DIG-121 - Add color to surfaces based on height.. 1.72

Salvador Bascunan 1.72

DIG-122 - 22.02.2022 Internal meeting.. 4.50

Dennis Kristiansen 0.33

Salvador Bascunan 1.58

Sebastian Lindtvedt 2.58

DIG-123 - Review project plan.. 6.13

Sebastian Lindtvedt 6.13

DIG-124 - Export loaded data in a common format.. 14.58

Dennis Kristiansen 14.58

DIG-125 - Make Azure Function for uploading well-logs... 28.33

Dennis Kristiansen 28.33

DIG-126 - Learn about Pandas.. 8.95

Dennis Kristiansen 8.95

DIG-128 - Test web-app with all surfaces.. 10.60

Salvador Bascunan 10.60

DIG-129 - Add test cases for color and pygltflib.. 3.75

Salvador Bascunan 3.75

DIG-130 - Create JSON from parsed fault sticks... 2.43

Sebastian Lindtvedt 2.43

DIG-131 - Load fault sticks on frontend.. 3.08

Sebastian Lindtvedt 3.08

DIG-132 - Create geometry from loaded fault sticks... 36.68

Sebastian Lindtvedt 36.68

DIG-133 - Serve fault stick JSON data with cloud function... 10.85

Sebastian Lindtvedt 10.85

DIG-134 - 24.02.2022 Internal meeting.. 2.67

Dennis Kristiansen 0.67

Salvador Bascunan 1.00

Sebastian Lindtvedt 1.00

2022-05-19
Page 10 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

DIG-135 - Create architectural drawings... 2.43

Sebastian Lindtvedt 2.43

DIG-136 - Internal meeting 28.02.2022.. 1.57

Dennis Kristiansen 0.50

Salvador Bascunan 0.53

Sebastian Lindtvedt 0.53

DIG-137 - Document parsing of fault sticks.. 6.50

Sebastian Lindtvedt 6.50

DIG-138 - Add a color generator.. 5.37

Salvador Bascunan 5.37

DIG-139 - Client meeting 01.03.2022.. 4.90

Dennis Kristiansen 1.67

Salvador Bascunan 1.62

Sebastian Lindtvedt 1.62

DIG-140 - As a group, finalize the bachelor thesis... 22.20

Dennis Kristiansen 2.50

Sebastian Lindtvedt 19.70

DIG-141 - Learn about lasio.. 0.33

Dennis Kristiansen 0.33

DIG-142 - 02.03.2022 Lightning course - Report writing.. 4.00

Dennis Kristiansen 2.00

Salvador Bascunan 2.00

DIG-143 - Look into and setup storybook... 5.92

Dennis Kristiansen 5.92

DIG-144 - 03.03.2022 - Internal meeting.. 1.98

Dennis Kristiansen 1.00

Salvador Bascunan 0.50

Sebastian Lindtvedt 0.48

DIG-145 - Setup cloud function for surfaces processing... 58.32

Salvador Bascunan 56.38

Sebastian Lindtvedt 1.93

DIG-146 - Add data processing for horizons... 11.02

2022-05-19
Page 11 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Salvador Bascunan 11.02

DIG-147 - Add geometry generation for horizons.. 14.02

Salvador Bascunan 14.02

DIG-148 - Add color to horizon geometry .. 0.77

Salvador Bascunan 0.77

DIG-149 - Add tests to horizons functionality.. 2.32

Salvador Bascunan 2.32

DIG-150 - Add surfaces to a web app scene... 4.70

Salvador Bascunan 4.70

DIG-151 - Setup victory for 2d graphs... 2.00

Dennis Kristiansen 2.00

DIG-152 - Create static-web-service for web-app... 1.33

Dennis Kristiansen 1.33

DIG-153 - Create web-service for REST API... 2.82

Sebastian Lindtvedt 2.82

DIG-157 - Learn Victory... 1.00

Dennis Kristiansen 1.00

DIG-158 - Implement current wireframe in web-app.. 5.20

Dennis Kristiansen 5.20

DIG-159 - 08.03.2022 Internal meeting.. 5.57

Dennis Kristiansen 2.00

Salvador Bascunan 2.00

Sebastian Lindtvedt 1.57

DIG-160 - 09.03.22 Supervisor meeting.. 3.00

Dennis Kristiansen 1.00

Salvador Bascunan 1.00

Sebastian Lindtvedt 1.00

DIG-161 - Calculate true vertical depth.. 1.75

Dennis Kristiansen 1.75

DIG-162 - Surfaces: Write about data processing.. 19.67

Salvador Bascunan 19.67

DIG-163 - Fix color on surface mesh.. 2.82

2022-05-19
Page 12 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Salvador Bascunan 2.82

DIG-164 - 10.03.2022 Internal meeting.. 2.43

Salvador Bascunan 1.22

Sebastian Lindtvedt 1.22

DIG-165 - Rework UI... 27.92

Sebastian Lindtvedt 27.92

DIG-166 - Test processing shape files.. 3.32

Salvador Bascunan 3.32

DIG-167 - 14.03.2022 Internal meeting.. 4.03

Dennis Kristiansen 1.17

Salvador Bascunan 1.63

Sebastian Lindtvedt 1.23

DIG-168 - 15.03.2022 Client meeting.. 4.13

Dennis Kristiansen 1.50

Salvador Bascunan 1.32

Sebastian Lindtvedt 1.32

DIG-169 - Improve color on surface meshes ... 7.33

Salvador Bascunan 7.33

DIG-173 - Improve functionality to better fit cloud function... 16.68

Salvador Bascunan 16.68

DIG-174 - Optimize web-app performance... 2.98

Dennis Kristiansen 2.98

DIG-175 - Experiment with data fetching methods... 1.00

Dennis Kristiansen 1.00

DIG-176 - 21.03.2022 Internal meeting.. 6.80

Dennis Kristiansen 2.27

Salvador Bascunan 2.27

Sebastian Lindtvedt 2.27

DIG-179 - Generate UV mappings for well-trajectory geometry.. 1.25

Dennis Kristiansen 1.25

DIG-180 - Setup CosmosDB... 0.93

Sebastian Lindtvedt 0.93

2022-05-19
Page 13 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

DIG-181 - Write fault data to CosmosDB... 11.68

Sebastian Lindtvedt 11.68

DIG-182 - Generate texture maps with chrono and litho data.. 13.00

Dennis Kristiansen 13.00

DIG-183 - Surfaces: Write about geometry generating... 26.05

Salvador Bascunan 26.05

DIG-184 - 23.03.2022 Supervisor meeting.. 5.20

Dennis Kristiansen 2.00

Salvador Bascunan 1.58

Sebastian Lindtvedt 1.62

DIG-185 - Clean up and document FSP code.. 0.62

Sebastian Lindtvedt 0.62

DIG-186 - Deploy cloud function.. 8.22

Sebastian Lindtvedt 8.22

DIG-187 - 24.03.2022 Internal meeting.. 1.80

Dennis Kristiansen 0.67

Salvador Bascunan 0.55

Sebastian Lindtvedt 0.58

DIG-188 - Overhaul state and data handling in web-app... 5.50

Dennis Kristiansen 5.50

DIG-189 - Create endpoint for serving fault data in API... 26.97

Sebastian Lindtvedt 26.97

DIG-190 - 28.03.2022 Internal meeting.. 5.58

Dennis Kristiansen 1.75

Salvador Bascunan 1.92

Sebastian Lindtvedt 1.92

DIG-191 - 29.03.2022 Client meeting.. 2.57

Dennis Kristiansen 0.92

Salvador Bascunan 0.75

Sebastian Lindtvedt 0.90

DIG-192 - Add labels to wells.. 3.52

Dennis Kristiansen 1.00

2022-05-19
Page 14 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Sebastian Lindtvedt 2.52

DIG-193 - I want to see real-time data.. 0.40

Sebastian Lindtvedt 0.40

DIG-194 - Overhaul menu for toggling faults, surfaces, and chronostratigraphy...................... 6.67

Dennis Kristiansen 6.67

DIG-195 - 30.03.2022 Supervisor meeting.. 3.00

Dennis Kristiansen 1.08

Salvador Bascunan 0.83

Sebastian Lindtvedt 1.08

DIG-196 - Fix faulty cloud function.. 15.05

Sebastian Lindtvedt 15.05

DIG-197 - Write surface data to cosmosdb... 10.27

Salvador Bascunan 10.27

DIG-198 - Create endpoint for surfaces in API... 11.42

Salvador Bascunan 11.42

DIG-199 - Meeting 05.04.2022.. 4.35

Dennis Kristiansen 1.50

Salvador Bascunan 1.50

Sebastian Lindtvedt 1.35

DIG-200 - Read fault data from endpoint... 5.47

Sebastian Lindtvedt 5.47

DIG-201 - Mock real time data... 12.77

Sebastian Lindtvedt 12.77

DIG-202 - 07.04.2022 Internal meeting.. 7.65

Dennis Kristiansen 3.50

Salvador Bascunan 2.07

Sebastian Lindtvedt 2.08

DIG-203 - Deploy dt-api with mocked data... 0.82

Sebastian Lindtvedt 0.82

DIG-204 - Consume data and visualize on frontend.. 16.50

Sebastian Lindtvedt 16.50

DIG-205 - Make API endpoints for well-logs... 10.50

2022-05-19
Page 15 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Dennis Kristiansen 10.50

DIG-206 - Make Azure Function for composite logs... 2.50

Dennis Kristiansen 2.50

DIG-208 - Actually fix not-working binding expression and lookup in composition-function... 16.33

Dennis Kristiansen 16.33

DIG-209 - Write about faults... 20.75

Sebastian Lindtvedt 20.75

DIG-210 - 19.04.2022 Internal meeting.. 5.22

Dennis Kristiansen 1.83

Salvador Bascunan 1.67

Sebastian Lindtvedt 1.72

DIG-213 - Setup manifest for the area.. 9.50

Dennis Kristiansen 9.50

DIG-217 - Add tests for all endpoints.. 1.68

Sebastian Lindtvedt 1.68

DIG-219 - Add tests for /faults/overview.. 1.03

Sebastian Lindtvedt 1.03

DIG-220 - Add tests for /faults/exists.. 0.55

Sebastian Lindtvedt 0.55

DIG-221 - Add tests for /realtime/flowrate/<float:ts>... 0.23

Sebastian Lindtvedt 0.23

DIG-222 - Add tests for /surfaces... 0.82

Sebastian Lindtvedt 0.82

DIG-223 - Add tests for /surfaces/overview.. 0.17

Sebastian Lindtvedt 0.17

DIG-224 - Add tests for /surfaces/exists... 0.13

Sebastian Lindtvedt 0.13

DIG-225 - 21.04.2022 Supervisor meeting.. 3.42

Dennis Kristiansen 1.17

Salvador Bascunan 1.08

Sebastian Lindtvedt 1.17

DIG-226 - Fix project plan.. 0.12

2022-05-19
Page 16 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Sebastian Lindtvedt 0.12

DIG-227 - 25.04.2022 Internal meeting.. 3.45

Dennis Kristiansen 1.15

Salvador Bascunan 1.15

Sebastian Lindtvedt 1.15

DIG-228 - Handle feedback... 1.38

Sebastian Lindtvedt 1.38

DIG-229 - Write about Development plan/process.. 26.32

Sebastian Lindtvedt 26.32

DIG-230 - 26.04.2022 Client meeting.. 3.48

Salvador Bascunan 1.75

Sebastian Lindtvedt 1.73

DIG-231 - Write about Requirements.. 31.55

Salvador Bascunan 31.55

DIG-232 - 27.04.2022 Supervisor meeting.. 2.30

Salvador Bascunan 1.15

Sebastian Lindtvedt 1.15

DIG-233 - 28.04.2022 Internal meeting.. 1.50

Dennis Kristiansen 0.50

Salvador Bascunan 0.50

Sebastian Lindtvedt 0.50

DIG-234 - Add the other wells.. 2.00

Dennis Kristiansen 2.00

DIG-235 - Write about well-logs.. 11.28

Dennis Kristiansen 11.28

DIG-236 - Write about deployment.. 8.17

Dennis Kristiansen 8.17

DIG-238 - 02.05.2022 Internal meeting.. 5.68

Dennis Kristiansen 2.00

Salvador Bascunan 1.83

Sebastian Lindtvedt 1.85

DIG-241 - Re-organize "data processing surfaces" into implementation.................................... 6.30

2022-05-19
Page 17 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Salvador Bascunan 6.30

DIG-242 - Write use-cases and create use-case diagram.. 8.28

Salvador Bascunan 8.28

DIG-243 - 03.05.2022 Internal meeting.. 3.17

Dennis Kristiansen 1.17

Salvador Bascunan 1.17

Sebastian Lindtvedt 0.83

DIG-244 - Fix well maps endpoint returning incorrect output... 0.33

Dennis Kristiansen 0.33

DIG-245 - 04.05.2022 Supervisor meeting.. 6.32

Dennis Kristiansen 2.22

Salvador Bascunan 2.00

Sebastian Lindtvedt 2.10

DIG-246 - Write about technical design.. 40.52

Dennis Kristiansen 6.42

Salvador Bascunan 10.02

Sebastian Lindtvedt 24.08

DIG-247 - Internal meeting 05.05.2022.. 1.62

Dennis Kristiansen 0.33

Salvador Bascunan 0.50

Sebastian Lindtvedt 0.78

DIG-248 - Add FPS Panel to web-app... 0.83

Dennis Kristiansen 0.83

DIG-249 - Write about testing... 18.33

Dennis Kristiansen 18.33

DIG-250 - Write about Graphical User Interface.. 7.18

Salvador Bascunan 7.18

DIG-251 - 06.05.2022 Internal meeting.. 3.00

Dennis Kristiansen 1.00

Salvador Bascunan 1.00

Sebastian Lindtvedt 1.00

DIG-252 - 07.05.2022 Internal meeting.. 6.05

2022-05-19
Page 18 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Dennis Kristiansen 2.03

Salvador Bascunan 2.00

Sebastian Lindtvedt 2.02

DIG-253 - Add more display options for realtime data... 1.28

Sebastian Lindtvedt 1.28

DIG-254 - 08.05.2022 Internal meeting.. 0.92

Salvador Bascunan 0.42

Sebastian Lindtvedt 0.50

DIG-255 - Write discussion.. 19.18

Dennis Kristiansen 1.00

Salvador Bascunan 6.87

Sebastian Lindtvedt 11.32

DIG-256 - 09.05.2022 Internal meeting.. 2.13

Dennis Kristiansen 1.00

Salvador Bascunan 0.42

Sebastian Lindtvedt 0.72

DIG-257 - 10.05.2022 Internal meeting.. 4.53

Dennis Kristiansen 1.50

Salvador Bascunan 1.50

Sebastian Lindtvedt 1.53

DIG-258 - 10.05.2022 Glex meeting... 1.02

Dennis Kristiansen 0.33

Salvador Bascunan 0.33

Sebastian Lindtvedt 0.35

DIG-259 - Generate test coverage reports.. 1.00

Dennis Kristiansen 1.00

DIG-260 - 12.05.2022 Supervisor meeting.. 7.48

Dennis Kristiansen 2.53

Salvador Bascunan 2.50

Sebastian Lindtvedt 2.45

DIG-261 - 13.05.2022 Internal meeting.. 11.10

Dennis Kristiansen 3.73

2022-05-19
Page 19 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Salvador Bascunan 3.57

Sebastian Lindtvedt 3.80

DIG-262 - Write geology 101 section.. 4.10

Salvador Bascunan 4.10

DIG-263 - Re-format all tables, listings, and figure to a common format................................... 1.37

Dennis Kristiansen 1.00

Sebastian Lindtvedt 0.37

DIG-264 - Write implementation section of REST API.. 3.67

Dennis Kristiansen 3.67

DIG-265 - Write implementation section of frontend... 3.08

Sebastian Lindtvedt 3.08

DIG-266 - Re-write implementation section of well-logs.. 4.50

Dennis Kristiansen 4.50

DIG-267 - Write about realtime data... 3.63

Sebastian Lindtvedt 3.63

DIG-269 - Write about Horizons implementation.. 5.05

Salvador Bascunan 5.05

DIG-270 - Write abstract.. 1.00

Salvador Bascunan 1.00

DIG-271 - Write Conclusion... 1.53

Sebastian Lindtvedt 1.53

DIG-273 - 14.05.2022 Internal meeting.. 9.25

Dennis Kristiansen 3.25

Salvador Bascunan 3.00

Sebastian Lindtvedt 3.00

DIG-275 - Iterate through Requirements.. 4.93

Salvador Bascunan 4.93

DIG-277 - 15.05.2022 Internal meeting.. 5.58

Dennis Kristiansen 1.83

Salvador Bascunan 1.85

Sebastian Lindtvedt 1.90

DIG-278 - Read thesis and take notes... 3.75

2022-05-19
Page 20 of 21

Period: 2022-01-11 - 2022-05-31
Total Logged: 1672.40

Issue / User Logged

Salvador Bascunan 3.75

DIG-279 - 16.05.2022 Internal meeting.. 9.48

Dennis Kristiansen 2.50

Salvador Bascunan 3.45

Sebastian Lindtvedt 3.53

DIG-280 - Clean up py-horizons and py-surfaces branches... 5.27

Salvador Bascunan 5.27

DIG-281 - Thesis improvements.. 64.23

Dennis Kristiansen 15.00

Salvador Bascunan 26.23

Sebastian Lindtvedt 23.00

DIG-282 - 18.05.2022 Internal meeting.. 5.25

Dennis Kristiansen 1.75

Salvador Bascunan 1.75

Sebastian Lindtvedt 1.75

DIG-283 - 19.05.2022 Internal meeting.. 12.32

Dennis Kristiansen 4.50

Salvador Bascunan 2.03

Sebastian Lindtvedt 5.78

2022-05-19
Page 21 of 21

G PROJECT DATA NOTES

G Project Data Notes

192

Project data notes

Fault Sticks

An interpretation of where the faults are in the seismic. Many fault sticks combined equals a fault

Inside the file:

Fault name: Which fault this particular stick belongs to.

Stick: Which stick this point belongs to

Filename Notes

fault_sticks_2010

fault_sticks_2010.crsmeta.xml

fault_sticks_GN1101_2012

fault_sticks_GN1101_2012.crsmeta.xml

Horizon/Key_Horizons_2010/Shape files

Filename Notes

Draupne Fm .dbf
Draupne Fm .prj
Draupne Fm .shp
Draupne Fm .shx

dbf: attribute format; columnar attributes for each shape, in IV format {content-type: application/octet-dBase
stream OR text/plain}
prj: projection description, using a {content-type: well-known text representation of coordinate reference systems
text/plain OR application/text}
shp: shape format; the feature geometry itself {content-type: x-gis/x-shapefile}
shx: shape index format; a positional index of the feature geometry to allow seeking forwards and backwards
quickly {content-type: x-gis/x-shapefile}

Dunlin Gp .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Fenfjord Fm .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Johansen Fm .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Seabed .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Sognefjord Fm .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Statfjord Fm .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Top Shetland Group .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Horizons/Key_Horizons_2016

Filename Notes

Top_Brent_206 INLINE : ??
XLINE : ??
Last three values appear to be x y z coordinates

Top_Brent_206.crsmeta.xml Metadata
Contains the spatial context of the accompanied file
Unsure of how and what is going to be used from here

Top_Seabed_2016 Same as Top_Brent_206

Top_Seabed_2016.crsmeta.xml Same as Top_Brent_206

Top_Sognefjord_2016 Same as Top_Brent_206

Top_Sognefjord_2016.crsmeta.xml Same as Top_Brent_206

Top_Sognefjord_2016_3D_tracked Same as Top_Brent_206

Top_Sognefjord_2016_3D_tracked.crsmeta.xml Same as Top_Brent_206

Horizons/Key_Horizons_2016/Shape files

Filename Notes

Seabed .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Top Brent .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Top Sognefjord 3D .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Horizons/Key_Horizons_GN1101_2012

Filename Notes

Base Quaternary Same as Top_Brent_206

Base Quaternary.crsmeta.xml Same as Top_Brent_206

Fensfjord Fm Same as Top_Brent_206

Fensfjord Fm.crsmeta.xml Same as Top_Brent_206

Heather Fm 2 Same as Top_Brent_206

Heather Fm 2.crsmeta.xml Same as Top_Brent_206

Krossfjord Same as Top_Brent_206

Krossfjord.crsmeta.xml Same as Top_Brent_206

Peak Draupne Fm Same as Top_Brent_206

Peak Draupne Fm.crsmeta.xml Same as Top_Brent_206

Seabed Same as Top_Brent_206

Seabed.crsmeta.xml Same as Top_Brent_206

Sognefjord Fm Same as Top_Brent_206

Sognefjord Fm.crsmeta.xml Same as Top_Brent_206

Top Dunlin Group Same as Top_Brent_206

Top Dunlin Group.crsmeta.xml Same as Top_Brent_206

Top Shetland Group Same as Top_Brent_206

Top Shetland Group.crsmeta.xml Same as Top_Brent_206

Horizons/Key_Horizons_GN1101_2012/Shape files

Filename Notes

Base Quaternary .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Draupne Fm .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Dunlin Gp .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Fensfjord Fm .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Heather Fm 2 .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Krossfjord .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Seabed .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Sognefjord Fm .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Top Shetland Gp .dbf/.prj/.shp/.shx More information in Draupne Fm notes

Surfaces/Surfaces_Picks_From_Feasibility_Phase

Filename Notes

Sea bed Comments #
x y z column row
unsure if we need to process column and row for anything
Grid size - 669 x 519

Sea bed.crsmeta.xml Metadata
Contains the spatial context of the accompanied file
Unsure of how and what is going to be used from here

Top Sognefjord Fm Same as Sea bed

Top Sognefjord Fm.crsmeta.xml Same as Sea bed

Surfaces/Surfaces_GN1101_2012(Gassnova)

Filename Notes

Base Quaternary Same as Sea bed

Base Quaternary.crsmeta.xml Same as Sea bed

Dunlin Gp Same as Sea bed

Dunlin Gp.crsmeta.xml Same as Sea bed

Fensfjord Fm Same as Sea bed except:

Grid size - 224 x 235

Fensfjord Fm.crsmeta.xml Same as Sea bed

Seabed Same as Sea bed

Seabed.crsmeta.xml Same as Sea bed

Top Draupne Fm Same as Sea bed

Top Draupne Fm.crsmeta.xml Same as Sea bed

Top Shetland Gp Same as Sea bed

Top Shetland Gp.crsmeta.xml Same as Sea bed

Top Sognefjord Fm Same as Sea bed

Top Sognefjord Fm.crsmeta.xml Same as Sea bed

Well data/Composite well logs

The files contain log data from a probe descending down a well bore hole, collecting various pieces of information, that we would like to visualize
in the web app.

The LAS format (version 2) by The Canadian Well Logging Society, not to be confused with the LIDAR scan format with the exact same name. Is
a format for storing this composite well log information.

In order to visualize the data with JavaScript, it would be convenient to convert it into a JSON based format, like by https://jsonwelllogformat.org/
Petroware AS. For this we can use Log I/O, which is proprietary? …and paid? Or invent our own JSON based format like what have wellio.js
done (which is OSS and free). Maybe based on pandas DataFrame.to_json().

Well_Data/32-2-1

Filename Notes

DTP_2008__993-1__32-2-1__WLC_COMPOSITE__1.LAS

Well_Data/32-4-1 T2

Filename Notes

NEW_4C__17-1__32-4-1_T2__COMPOSITE__1.LAS

H SMEAHEIA DATASET LICENSE

H Smeaheia Dataset License

198

SMEAHEIA DATASET

THIS IS A HUMAN-READABLE SUMMARY OF AND

NOT A SUBSTITUTE FOR THE LICENSE

 You are free to:

• Download and use the Licensed Material for non-commercial and
commercial purposes

• Create, produce and reproduce Adapted Material

• Share the Licensed Material and/or the Adapted Material

Under the following terms:

• You may not sell the Licensed Material.
• You must give Equinor and Gassnova credit, and provide a link to these

terms and conditions, as well as a copyright notice if applicable

• You may not share Adapted Material under a license that prevents
recipients from complying with these terms and conditions

• You shall not use the Licensed Material in a manner that appears
misleading nor present the Licensed Material in a distorted or incorrect
manner.

This license is based on CC BY 4.0 license, two important changes are:

• The licensed material may not be sold
• The license covers all data in the dataset whether or not it is by law covered by copyright

SMEAHEIA DATASETS LICENSE

TERMS AND CONDITIONS FOR USE OF LICENSE

TO DATA

1.1 Gassnova SF and Equinor ASA owns the Smeaheia Dataset. Gassnova and Equinor have

decided to make this dataset available for you as Licensed Material, for the purpose of

encouraging innovative uses of the data and knowledge development of CO2 storage technology.

1.2 By exercising the License and/or downloading the Licensed Material, you accept to be bound by

these terms and conditions (“the Terms and Conditions”) as of that same time (“the Effective

Date”).

2 DEFINITIONS

For the purposes of these Terms and Conditions, the following terms shall have the meaning stated

below.

2.1 Adapted Material shall mean material that is derived from or based upon the Licensed Material

and/or in which the Licensed Material is modified. Changes in formatting, file types and other

changes that do not affect the content of the Licensed Material shall not result in the material

being Adapted Material as the result will remain as Licensed Material.

2.2 Data shall mean qualitative or quantitative data and information, in any form or format, whether or

not it is by law protected by copyright, by Sui Generis Database Rights, or neither.

2.3 Intellectual Property Rights (IPR) shall mean any and all intellectual property rights, such as

patents, utility models, software, source codes, databases, trademarks, designs, domain names,

copyrights, trade secrets or know-how.

2.4 Licensed Material shall mean the Data described in Exhibit 1.

2.5 Sui Generis Database Rights shall mean rights other than copyright resulting from Directive

96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection

of databases, as amended and/or succeeded.

3 LICENSE

3.1 The License

Subject to these Terms and Conditions, Gassnova and Equinor grant you a worldwide, royalty-free,

non-sublicensable, non-exclusive, irrevocable license to download and use the Licensed Material for

non-commercial and commercial purposes, including to create, produce and reproduce Adapted

Material (“the License”).

3.2 General limitations

You shall not use the Licensed Material in a manner that appears misleading nor present the Licensed

Material in a distorted or incorrect manner. You may not sell the Licensed Material. To the extent that

your use of the Licensed Material is permitted by mandatory law, you do not have to comply with these

Terms and Conditions.

3.3 Sharing Licensed Material and/or Adapted Material

You may share the Licensed Material and/or the Adapted Material, either openly or not, as long as

Gassnova and Equinor are attributed. A notice that refers to these Terms and Conditions should be

included, and if applicable, a copyright notice. If you share Adapted Material that may be shared under

an adapter’s license, the adapter’s license must not prevent recipients of the Adapted Material from

complying with these Terms and Conditions. Every recipient of the Licensed Material and/or Adapted

Material will automatically receive an offer to exercise the License under these Terms and Conditions.

3.4 Moral rights

To the extent the Licensed Material contains copyright protected material, moral rights are not licensed

under these Terms and Conditions. However, to the extent possible by law, Gassnova and Equinor

waive and/or agree not to assert any such rights held by Gassnova and Equinor to the limited extent

necessary to allow you to exercise the License, but not otherwise.

3.5 Sui Generis Database Rights

If you include all or a substantial portion of the Licensed Material in a database for which you have Sui

Generis Database Rights, then that database (but not its individual contents) constitutes Adapted

Material.

4 NO ENDORSEMENT

Nothing in these Terms and Conditions constitutes or shall be interpreted as you being, or your use of

the License being, connected with, sponsored or endorsed by Gassnova or Equinor. You may not use

Gassnova's or Equinor's name or trademark to support, recommend or market your use of the License

or any products or services using or encompassing the License or Licensed Material.

5 LIABILITY AND INDEMNITY

5.1 No warranties or liability

The Licensed Material is provided “as is” and may contain errors or omissions. Gassnova and Equinor

undertakes no liability for the risks of industrial realisation and commercial exploitation of the Licensed

Material and Gassnova and Equinor shall have no liability regarding the fitness for purpose, quality,

non-infringement, accuracy, or merchantability of the Licensed Material. Gassnova and Equinor

provides no warranties, expressed or implied, either relating to the content or to the relevance of the

Licensed Material. Gassnova and Equinor disclaim any liability for errors or defects associated with

the Licensed Material to the maximum extent permitted by law.

5.2 Damages

Gassnova and Equinor are not liable for any of your damages, direct, indirect or consequential losses

as a consequence of your use of the Licensed Material or infringement of third-party Intellectual

Property Rights or other rights.

5.3 Indemnification

You shall indemnify Gassnova and Equinor for any and all liability for lawsuits and claims by third

parties that arise as a consequence of your use of the License or infringement of third party Intellectual

Property Rights or other rights, insofar as such losses, lawsuits or claims are not a result of

Gassnova's and Equinor's defect in title, gross negligence or wilful breach.

6 TERMINATION

6.1 Termination

If you fail to comply with these Terms and Conditions, then the License terminates automatically. The

License may be reinstated if you cure the breach of these Terms and Conditions within 30 days of

discovering the breach, or upon express reinstatement by Gassnova and Equinor.

6.2 Changes in distribution

Gassnova and Equinor may decide to offer the Licensed Material under other terms and conditions or

stop distributing the Licensed Material at any time.

7 NORWEGIAN LAW AND DISPUTES

These Terms and Conditions shall be governed by and interpreted in accordance with Norwegian

law.

The parties shall endeavour to resolve disputes concerning these Terms and Conditions through

negotiation. Disputes which are not resolved by mutual agreement within one month after

negotiations were requested shall be settled by court proceedings brought before Stavanger

District Court as legal venue.

These Terms and Conditions are deemed accepted by you by exercising the License and/or

downloading the Licensed Material.

EXHIBIT 1 – LICENSED MATERIAL

Licensed Material includes the following:

Data: Smeaheia Dataset, published via the CO2 DataShare online portal administrated by SINTEF AS

(https://CO2datashare.org) as specified in the document "CO2DataShare Smeaheia Landing page"

(Link to document).

The referenced release document with supporting documentation is included in the dataset.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Lindtvedt, Bascunan &
 Kristiansen

Sebastian Lindtvedt
Salvador Bascunan
Dennis Kristiansen

Cloud-native solution for building
digital twins

Bachelor’s thesis in Bachelor in Programming
Supervisor: Tom Røise
May 2022Ba

ch
el

or
’s

th
es

is

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Domain
	Target Audience
	Group Background
	Delimitations
	Constraints
	Project Goals
	Group organization
	Thesis Structure

	Requirements
	Use Case
	Performance
	Security

	Development Process
	Project Characteristics
	Software Development Model
	Project management tools
	Version Control and Code Organization
	Gantt Diagrams & Sprint Breakdowns

	Graphical User Interface
	Figma
	Improvements
	Final Result

	Technical Design
	System Architecture
	Architecture Alternative
	Frontend
	REST API
	Persistent Storage
	Surfaces
	Well logs
	Faults
	Horizons
	Security

	Testing
	Test Driven Development
	Automated Testing
	Manual Testing
	User Testing

	Implementation
	Frontend
	REST API
	Surfaces
	Wells and well-logs
	Faults
	Realtime data
	Horizons

	Deployment
	Deploying to Azure
	Continuous Integration and Continuous Deployment

	Discussion
	Development Process
	Test Driven Development
	Technical Design
	Product
	Group collaboration
	Time allocation

	Conclusion
	Process
	Product
	Future Development
	Final words

	References
	Appendix
	Project Plan
	Background
	Domain
	Project Goals
	Result Goals
	Effect Goals
	Learning Goals

	Delimitation
	Framework
	Case Description
	Requirement 1: Historical data
	Requirement 2: Plotting and Visualization
	Requirement 3: Real-time data

	Project Organization
	Responsibilities and Roles
	Glex
	Supervisor
	Group roles

	Routines and Rules

	Planning, Follow up and Reporting
	Development Process
	Project Characteristics
	Software Development Model
	Plan For Usage of Model

	Plan for Status Meetings and Decision-Making

	Organization of Quality Assurance
	Documentation, Standards, Configuration Management
	Documentation
	Standards
	Configuration Management

	Plan for Inspection and Testing
	Testing

	Risk Analysis

	Plan of Action
	GANTT diagram
	Milestones and Crash Courses
	Milestones
	Crash Courses

	Project Agreement (Prosjektavtale)
	Task Description (Oppgavebeskrivelse)
	Meeting Minutes
	Sprint Retrospectives
	Timesheets
	Project Data Notes
	Smeaheia Dataset License

