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Abstract
In this text the derivations of the Hartree Fock, density function theory and density function
based tight binding has been derived, but not post methods. We then look at some of the some
of the assumption on the Hartree Fock and density function theory. Density function based
tight binding is then looked at as a technique and the application on the technique as well as
a rough look at the accuracy.
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2 THEORY

1 Introduction
Computational chemistry has been a keen part in understanding of how systems of particles
is build up and interact with other systems. The way to this point has been long and been
through many known names. From the black body radiation to the duality of matter to the
Schrödinger equation, in short, the system of particles could be explained. Because of electron-
electron repulsion only a few particles be solved exactly and the need to solve numerical was
needed. Along this road two different approaches has been arrived, the Hartree-Fock approach
with its post Hartree-Fock methods, which uses the wave function, and density function theory
(DFT), which uses an electron density.

These system have given a good approximation at describing small particles and systems.
However, when it comes to larger particles and systems, like organic chemistry, the calculation
can take up long time and computational resources. To be able to compute these systems
new approximations need to be made in semi-empirical methods. One of these techniques is
density function based tight binding (DFTB), which builds on DFT. Figure 1.1 shows where
the DFTB scheme lies compared to other techniques.

Figure 1.1: A size and time scale of simulation methods used in chemistry and material science. [1]

In this paper the derivation Hartree-Fock, DFT and DFTB will be derived. However, they use
similar principles which will be derived under the Hartree-Fock approach. Further the use of
DFTB will be discussed against DFT and HF to find if DFTB gives accurate results.

2 Theory

2.1 Quantum Theory
2.1.1 The Schrödinger equation

A given system of particles can be explained by the wave function theory. It describes each
quantum state of a system using a single function denoted as Ψ. The wave function is depends
on the position of the particles and time. Where the positions of electrons is denoted with r⃗i
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2.1 Quantum Theory 2 THEORY

and nucleus with R⃗i and t for time, giving Ψ(r⃗, R⃗, t). From the Born interpretation we get that
the square modulus of the wave function will give the probability of finding a given electron.
To get a readable probability the wave function is scaled by a factor N so the sum is equal to
1. The wave function is then normalised, as in the rest of the text, and can be written as

∫ ∞

−∞
|Ψ(r⃗, R⃗, t)|2dr⃗ =

∫ ∞

−∞
Ψ∗(r⃗, R⃗, t)Ψ(r⃗, R⃗, t)dr⃗ = ⟨Ψ(r⃗, R⃗, t)|Ψ(r⃗, R⃗, t)⟩ = 1 (2.1)

where the second last equality introduces a compacted notation called the bra-ket notation.
The ket, |Ψ⟩, is the regular function and the bra, ⟨Ψ|, is the complex conjugated function.
Combining the bra and ket we get an integral. The wave function is usually orthonormal as
well and we get for the wave function the cronical delta

⟨Ψi|Ψj⟩ = δij

{
i ̸= j =⇒ 0

i = j =⇒ 1
(2.2)

If the wave function is not orthonormal we get overlap indices denoted Sij which has a value
between 0 and 1. Furthermore we introduce observables, an observable is the expected value
of an operator (acts on a function on its right), Ω̂, that acts on a ket. A function is called an
eigenfunction if it returns itself with an value, ω (eigenvalue), as a multiple.

⟨Ω̂⟩ = ⟨Ψ|Ω̂|Ψ⟩
⟨Ψ|Ψ⟩

.
= ω⟨Ψ|Ψ⟩ = ω[Ψ] (2.3)

where .
= is possible given the condition the operator is Hermitian and wave function is nor-

malised. The importance of Hermitian operators is that they always gives real numbers by
satisfying Ω̂ = Ω̂†, and by doing it they can act on the bra or ket (⟨Ψ|Ω̂|Ψ⟩ = (⟨Ψ|Ω̂|Ψ⟩)∗).
ω[Ψ] denotes the eigenvalue and can be describes as a functional (function of functions). It
can be showed that the potential and kinetic operators to the wave function is Hermitian and
by combining these operators we get the Hamiltonian operator Ĥ. The system of the wave
function can is described by the Schrödinger equation where

ĤΨ(r⃗, R⃗, t) = iℏ
∂

∂t
Ψ(r⃗, R⃗, t) (2.4)

By assuming the time and position can be separated, we get the time independent Schrödinger
equation

ĤΨ(r⃗, R⃗) = EΨ(r⃗, R⃗) (2.5)

where E is the total energy of the system. The Hamiltonian is composed of the kinetic and
potential operators

Ĥ = T̂N + T̂e + V̂NN + V̂ee + V̂eN (2.6)

where T̂N and T̂e is the total kinetic energy of the nucleus and electrons, V̂NN and V̂ee is
the nucleus-nucleus and electron-electron repulsion and V̂eN is the electron-nucleus attraction.
These operators can be shown to be

T̂N = −
N∑

I=1

1

2MI
∇2

i (2.7a)
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T̂e = −
n∑

i=1

1

2
∇2

i (2.7b)

V̂NN =

N∑
I=1

N∑
J>I

ZIZJ

rIJ
(2.7c)

V̂ee =

n∑
i=1

n∑
j>i

1

rij
(2.7d)

V̂eN = −
n∑

i=1

N∑
I=1

ZI

riI
=

n∑
i=1

v(r⃗i) (2.7e)

where ∇ = ∂
∂x1

+ · · ·+ ∂
∂xn

, the partial derivative across all dimensions. MI is mass ratio and
ZI is the charge ratio of nucleus I compared to an electron and rab is the distance between
particle a and b. V̂eN is also described as the external potential that acts on electron i,
denoted v(r⃗i). All of the equations give the Hartree energy which use the atomic units where
EHartree = ℏ2

mea2
0
= me(

e2

4πϵ0ℏ )
2, and will be used for the rest of text. Where ℏ is the reduced

Plack constant, me is the electron mass, a0 is the Bohr radius and ϵ0 is the electric constant.

2.1.2 Born-Oppenheimer approximation

The Schrödinger equation can be solved analytically for the hydrogen atom (to body problem).
However, simple molecules cannot be solved analytically. As systems grows the calculations
needed grows as well. To simplify the system we use the Born-Oppenheimer approximation
which notes the large difference in mass between the electron and the nucleus. We therefore
assume that the nucleus are stationary so the wave function can be separated to ψe(r⃗; R⃗) and
ψN (R⃗) and like wise for the Hamiltonian into a nucleus and an electronic Hamiltonian with
He being

Ĥe = T̂e + V̂ee + V̂eN + V̂NN (2.8)

V̂NN is included because it becomes a constant, but can be added at any time of calculations.
The nucleus Hamiltonian is the remaining operator T̂N . The Schrödinger equations can then
be rewritten into two equations

Ĥe(r⃗; R⃗)ψe(r⃗; R⃗) = Ee(R⃗)ψe(r⃗; R⃗) (2.9a)

(
T̂N (R⃗) + Ee(R⃗)

)
ψN (R⃗) = EψN (R⃗) (2.9b)

The system is calculated multiple times over different nucleus configuration and a map/graf of
the energies are found and the optimal configuration is found. This approximation is reliable
for ground electronic states and less reliable for excited states. The approximation gives a
mean to calculate H+

2 exactly.

2.1.3 Variational principle and Lagrange multiplier

The energy for a system is described by Equation 2.3, however the wave function is not known
excact. To work around this we introduce the variational priciple where we guess a trial wave
function Ψtrial and find the Rayligth-ratio,

E =
⟨Ψtrial|Ĥ|Ψtrial⟩
⟨Ψtrial|Ψtrial⟩

(2.10)
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2.1 Quantum Theory 2 THEORY

where it can be proved that the Rayligth-ratio energy E is always larger (or equal) than the
ground state energy E0. What this is implies is that we have a way to describe an upper bound
of the energy to a system. The trial function can be expressed by a set of basis function

Ψtrial =

n∑
i

ciψi (2.11)

where ψi is the basis and ci is a constant. To minimise the ⟨Ĥ⟩ we introduce the Lagrange
multiplier λ under the constraint that ⟨Ψ|Ψ⟩ is equal to 1.

L (c1, ..., cn, λ) = ⟨Ψ|Ĥ|Ψ⟩ − λ(⟨Ψ|Ψ⟩ − 1) (2.12)

where Ψ can be expressed by Equation 2.11 with the corresponding c values in the L . We
then introduce a small change to c values denoted δc and the L can be expressed as

L (c1 + δc1, ..., cn + δcn, λ) = L + δL +O(δc2n) (2.13)

since δci is small, O(δc2n) is approximate zero. The L is the same as in Equation 2.12 and we
need to solve for δL = 0 in Equation 2.13.

2.1.4 Hartree-Fock and Slater determinants

The wave function Ψ propagates through the 3D space and is called a spatial orbital. However,
each particle also has a property called spin, given by the spin functions α(ω) and β(ω) where
ω is the spin coordinate. The new function is denoted as ϕ

ϕ(x⃗) =

{
ψ(r⃗)α(ω)

ψ(r⃗)β(ω)
(2.14)

and gives us the spin orbitals, where x⃗ = {r⃗, ω} As electrons are fermions, the electrons needs
to be treated as indistinguishable and an exchange of two fermions will change the sign of the
system, ψ(x⃗1, ..., x⃗n) = −ψ(x⃗n, ..., x⃗1). This is summarised in the anti-symmetry principle and
by looking at Equation 2.14 we see that to fulfil this principle there can be no spin orbitals
alike. The spatial orbital is split in two different spin orbitals and therefore spatial orbitals
can only hold two electrons, this is known as the Pauli principle.

Following the anti-symmetry principle we want to solve Equation 2.9a as the Hartree-Fock
approach. Because of V̂ee this equation cannot be solved exact and needs to be approximated,
where the simplest approximation is the Hartree product

Ψ(x⃗1, x⃗2, ..., x⃗n) = ϕ(x⃗1)ϕ(x⃗2) · · ·ϕ(x⃗n) (2.15)

with n electrons. However, the Hartree product does not fulfill the anti-symmetry principle,
but this can be fixed by creating an linear combination of different Hartree products which
combined can be written as a Slater determinant (SD).

Ψ(x⃗1, x⃗2, . . . , x⃗n) =
1√
n!

∣∣∣∣∣∣∣∣∣
ϕ1 (x⃗1) ϕ2 (x⃗1) · · · ϕn (x⃗1)
ϕ1 (x⃗2) ϕ2 (x⃗2) · · · ϕn (x⃗2)

...
...

. . .
...

ϕ1 (x⃗n) ϕ2 (x⃗n) · · · ϕn (x⃗n)

∣∣∣∣∣∣∣∣∣ . (2.16)
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2 THEORY 2.1 Quantum Theory

where 1√
n!

is the normalisation factor. The Hartree-Fock approach then minimize the SD using
the variational principle.

E[ΨSD] = ⟨Ĥ⟩ =
〈
ΨSD

∣∣∣Ĥ∣∣∣ΨSD
〉
=

〈
ΨSD

∣∣∣∣∣
n∑
i

−1

2
∇2

i −
M∑
A

ZA

riA

∣∣∣∣∣ΨSD

〉

+

〈
ΨSD

∣∣∣∣∣∣
n∑
i

n∑
j>i

1

rij

∣∣∣∣∣∣ΨSD

〉
=

N∑
i

⟨ϕi|ĥ|ϕi⟩+
1

2

n∑
i

n∑
j

⟨ϕiϕj | |ϕiϕj⟩

(2.17)

where we split the Hamiltonian into a single electron operator denoted ĥ(i), where (i) ≡ x⃗i,
the core Hamiltonian, and the two electron operator

ĥ(i) = −1

2
∇2

i − v(i) (2.18a)

⟨ϕi(1)ϕj(2)∥ϕi(1)ϕj(2)⟩ = ⟨ϕi(1)ϕj(2)|
1

r12
|ϕi(1)ϕj(2)⟩ − ⟨ϕi(1)ϕj(2)|

1

r12
|ϕj(1)ϕi(2)⟩ (2.18b)

We then use the Lagrangian multipliers under the constraint that the orbitals are orthonormal

L [ΨSD] = ⟨Ĥ⟩ −
∑
i,j

ϵij(⟨ϕi|ϕj⟩ − δij) (2.19)

Because of hermitian matrix ϵij = ϵji and by introducing small change in the orbitals in SD
we get the Fock operator f̂

f̂ (1)|ϕi⟩ = ϵi|ϕi(1)⟩ (2.20a)

which is an eigenvalue for the orthonormal spin orbitals called canonical Hartree-Fock and the
sum of these Fock operator is denoted as F̂ . The Fock operator consist of new operator, the
Coulomb operator Ĵj and the exchange operator K̂j and they are given as

f̂ (1)|ϕi(1)⟩ =
[
ĥ(1) +

n∑
j

(Jj(1)−Kj(1))
]
|ϕi(1)⟩ (2.20b)

f̂ (1)|ψi(1)⟩ =
[
ĥ(1) +

n/2∑
j

(2Jj(1)−Kj(1))
]
|ψi(1)⟩ (2.20c)

Ĵj(1)|ϕi(1)⟩ = ⟨ϕj(2)|
1

r12
|ϕj(2)⟩|ϕi(1)⟩ (2.20d)

K̂j(1)|ϕi(1)⟩ = ⟨ϕj(2)|
1

r12
|ϕi(2)⟩|ϕj(1)⟩ (2.20e)

The sum of the two electron operator in Equation 2.20b gives an average potential energy of
electron 1 due to the presence of the n - 1 other electrons. The same applies for Equation 2.20c,
however this is for a closed shell system where the spatial orbitals are filled and the spin is
integrated out, called the restricted Hartree-Fock (RHF). For RHF the Fock operator acts on
a n/2 set of spatial orbitals that we expand to a set of G known spatial orbitals, mainly atomic
orbitals, as

ψi =

G∑
g=1

Cigχg (2.21)
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2.2 Density Functional Theory (DFT) 2 THEORY

The system can then be solved using the Roothaan-Hall equations

F(C)C = SCϵ (2.22)

where all are GxG matrixses and S is the overlap matrix explained with Equation 2.2, and the
equation is solved iterative based on the values of C. The energy of this RHF system, can be
shown to be

EHF = 2
∑
i

⟨ψi|ĥ|ψi⟩+
∑
i

∑
j

2⟨ψiψj |
1

r12
|ψiψj⟩ − ⟨ψiψj |

1

r12
|ψjψi⟩ (2.23)

2.1.5 Energy correlation

The energy found from the Hartree Fock method has an energy correlation ECorr which can
be summarised as

ECorr = EExact − EHF (2.24)

where EExact is the exact energy of the system and EHF is the calculated energy. Since the
Hartree-Fock methode is variational, the energy correlation is always negative. The energy cor-
relation is further reduced in post Hartree-Fock methods like f. ex. Møller Plesset pertubation
theory, configuration interaction and coupled cluster.

2.2 Density Functional Theory (DFT)

2.2.1 Electron density

A different approach to finding the energy, of a system of particles, is to describe it as a
density of electrons ρ(r⃗). Using the Born-Oppenheimer approximation the electron density
can be explained as

ρ(r⃗1) = N

∫ ∞

−∞

∫ ∞

−∞
|ψ(x⃗1, . . . , x⃗N )|2dσ1dx⃗2 . . . dx⃗N (2.25)

This reduces the wave function down to 3 coordinates, x, y and z, from 4N coordinates.
Integrating the density will give the total number of electrons in the system.

∫
ρ(r⃗)dr⃗ = N (2.26)

2.2.2 The Hohenberg-Kohn Existence Theorem

The Hohenberg-Kohn existence theorem states that there is only one external potential v(r⃗) for
a given ground state density ρ(r⃗). To prove the statement we assume two external potentials
v(r⃗) and v′(r⃗) would give the same ground state density ρ(r⃗). This can be denoted in a short
scheme

N, v(r⃗) −→ H −→ ψ −→ ρ(r⃗) (2.27a)

N, v′(r⃗) −→ H ′ −→ ψ′ −→ ρ(r⃗) (2.27b)

where the difference between Ĥ and Ĥ ′ is the difference between the external potential.
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2 THEORY 2.2 Density Functional Theory (DFT)

Ĥ = Ĥ ′ −
∑
i

(v′(r⃗i)− v(r⃗i)) (2.28)

By applying the variational theorem on the wave function in Equation 2.27a and substituting
the Hamiltonian we get

⟨Ψ|Ĥ|Ψ⟩ = E0 < ⟨Ψ′|Ĥ|Ψ′⟩ =

⟨Ψ′|Ĥ ′|Ψ′⟩ −
n∑
i

⟨Ψ′|(v′(r⃗i)− v(r⃗i))|Ψ′⟩ = E′
0 −

∫ ∞

−∞
ρ(r⃗)(v′(r⃗i)− v(r⃗i))dr⃗

(2.29)

By following the same procedure with Equation 2.27b and adding them up, we get

E0 + E′
0 < E′

0 −
∫ ∞

−∞
ρ(r⃗)(v′(r⃗i)− v(r⃗i))dr⃗ + E0 −

∫ ∞

−∞
ρ(r⃗)(v(r⃗i)− v′(r⃗i))dr⃗ (2.30)

The energy contribution from the integrals cancel each other out and we are left with

E0 + E′
0 < E′

0 + E0 (2.31)

which is a contradiction and we can find the energy of a molecule using the ground state
density, as it holds all the information. The energy of the system can then be expressed as a
functional of the ground state as

E[ρ(r⃗)] =

∫ ∞

−∞
ρ(r⃗)v(r⃗)dr⃗ + Te[ρ(r⃗)] + Vee[ρ(r⃗)] (2.32)

where the last two functional is combined to EHK [ρ(r⃗)], which is unknown.

2.2.3 The Hohenberg-Kohn Variational Theorem

We introduce the variational principle to the density. This gives for a trial density ρ′(r⃗) an
energy that is never less than the ground state energy.

E[ρ′(r⃗)] ≥ E[ρ(r⃗)] = E0 (2.33)

By applying the constraint that the number of electrons is constant under changing of the
density, we can minimize E[ρ′(r⃗)] by applying the lagrange multiplier.

L [ρ′(r⃗)] = E[ρ′(r⃗)]− µ(

∫ ∞

−∞
ρ′(r⃗)dr⃗ −N) (2.34)

We then change the trial density by an amount δρ′(r⃗), which is non zero, and implementing
Equation 2.32 we get

δE[ρ(r⃗)]

δρ(r⃗)
=
δEHK [ρ(r⃗)]

δρ(r⃗)
+ v(r⃗) = µ (2.35)

where µ is the Lagrangian multiplier which describes the chemical potential of the system, for
a neutral molecule it can be derived to be zero.

µ = v(r⃗) +
∂EHK [ρ]

∂ρ(r⃗)
(2.36)

9
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2.2.4 Kohn-Sham equations

Since there is no direct way to make progress on Equation 2.36 and EHK is large unknown value,
we introduce a hypothetical reference system to reduce the unknown energy. This system is
made of n non-interacting electrons in the external potential vref (r⃗). The potential is selected
so that the reference density is identical to the true density of the system and the Hamiltonian
can be expressed as

ĤKS =

n∑
i

hKS
i =

n∑
i

(
− 1

2
∇2

i + vref (r⃗)
)

(2.37)

where KS stands for Kohn-Sham. We then introduce one electron Kohn-Sham spin orbitals
ϕKS
i which are eigenfunction to the Kohn-Sham Hamiltonian

hKS(1)ϕKS
i (1) = ϵKS

i (1)ϕKS
i (1) (2.38)

and the reference density can be expressed by these orbitals

ρref (r⃗) =

n∑
i

|ϕi(r⃗)|2 (2.39)

We then add and subtract the Kohn-Sham Hamiltonian in Equation 2.32 the ground state
energy can be expressed as

E[ρ(r⃗)] =

∫ ∞

−∞
ρ(r⃗)v(r⃗)dr⃗ + Tref [ρ(r⃗)] + J [ρ(r⃗)] + EXC [ρ(r⃗)] (2.40)

where EXC is the remaining error expressed as

EXC = T − Tref + Vee − J (2.41)

and J is the Coulomb interactions which can be shown from the electron-electron repulsion
with an added error.

Eee =
1

2

∫∫
ρ(r⃗)ρ(r⃗′)

|r⃗ − r⃗′|
dr⃗dr⃗′ +∆Eee = J [ρ(r⃗)] + ∆Eee (2.42)

Likewise for the HF technique we combine the functionals together as

fKS(i) = hKS(i) + J(i) + EXC(i) (2.43)

and introducing Atomic orbitals as a basis we obtain Roothaan-Hall equations like with HF

FHKC = SCϵ (2.44)

The system can be solved iterated and is as cheap as HF, however DFT includes correlation.

10
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2.2.5 Exchange correlation

The correlation term can be expressed in a ladder of approximation. However, the approxima-
tion removes variational concept and DFT can therefore give energies bellow the true value.
Also the order on the ladder does not mean it will always be better. Further the exchange
correlation energy is often split in two different contributions.

EXC = EX + EC (2.45)

where the exchange is sometimes assumed to be grater than the correlation. The first of
the approximation is called the local density approximation (LDA) and assumes an uniform
electron gas and the exchange correlation can be expressed as

EXC =

∫
f(ρ(r⃗))dr⃗ (2.46)

this approximation works well for metals and semi-conductors as they have a relative uniform
electron density, however not as reliable for molecules with abrupt density changes. This
can be compensated by introducing a gradient ∇ρ, which is known as the general gradient
approximation (GGA). Example of this is the Perdew-Becke-Ernzerhof and Becke exchange
Lee-Yang-Parr correlation. Further we have the Meta - GGA, which includes the second
derivative.

EXC =

∫
ρ(ρ,∇ρ,∇2ρ, τ)dr⃗ (2.47)

where τ is the kinetic energy density, given as
∑

i |∇ϕi|2. And lastly we have the hybrid and
double hybrid functional where the first include exact exchange from Hartree Fock partially,
example B3LYP and PBEO. And the later include some correlation from post Hartree Fock
techniques. However, this include the scaling of the system. The DFT can also be expanded
to include other approximation like time dependance.

2.3 Density Functional Based Tight Binding (DFTB)

2.3.1 Tight Binding (TB)

HF and DFT are ab initio method, meaning ’from the beginning’, and there accuracy depends
on the method used. However, some exchange-correlation functionals in DFT use empirical
parameters and therefore not always considered as an ab initio method. For larger systems
ab initio methods can be quite demanding and semi-empirical methods are developed where
they simplify the Hamiltonian and adjust parameters based on experimental data. DFTB is
an semi-emperical methode parametrized on DFT, using linear combination atomic orbitals
(LCAO). The total energy in a tight binding scheme is

E = Ebnd + Erep (2.48)

where Ebnd is the sum of all occupied orbital energy derived from diagonalization of the elec-
tronic Hamiltonian and Erep is a repulsive contribution of atomic pairs. TB uses atomic
orbitals which can be expressed like Equation 2.21 in a small basis which reduces the time of
calculation. For an non-orthonormal basis we get secular equations to solve

∑
ab

cai
(
Hab − ϵiSab

)
(2.49)
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2.3.2 From DFT to DFTB

DFTB expands around a reference density ρ0(r⃗) using a Taylor expansion, and the total den-
sity can be written as ρ(r⃗) = ρ0(r⃗) + δρ(r⃗). By adopting the energy found in KS-equations
(Equation 2.40), energy up to the third order can be expressed as

EDFTB3[ρ0 + δρ] = VNN − J [ρ]−
∫
v(r⃗)po(r⃗)dr⃗ + EXC [p0]

+
∑
i

ni⟨ψi|Ĥ[p0]|ψi⟩+
1

2

∫∫ (
1

|r⃗ − r⃗′|
+

δ2EXC [ρ]

δρ(r⃗)δρ(r⃗′)

∣∣∣∣
ρ0

)
δρ(r⃗)δρ(r⃗′)dr⃗dr⃗′

+
1

6

∫∫∫
δ3EXC [ρ]

δρ(r⃗)δρ(r⃗′)δρ(r⃗′′)

∣∣∣∣
ρ0

δρ(r⃗)δρ(r⃗′)δρ(r⃗′′)dr⃗dr⃗′dr⃗′′

= E0[ρ0] + E1[ρ0, δρ] + E2[ρ0, (δρ)
2] + E3[ρ0, (δρ)

3]

(2.50)

where the first line is double counting contribution and VNN which is approximated as the
repulsive energy from pair interaction Erep = 1

2

∑
ij Vij . The later terms are build hierarchy

where each addition will lead to different DFTB methods. The first of this is DFTB1 or DFTB
contains only the first energy, the band energy, which consist of the Kohn-Sham Hamiltonian
over the reference density. The energy is using TB expressed as

E1[ρ0, δρ] =
∑
i

∑
ab

nicaicbiHab =
∑
g

niϵi (2.51)

For DFTB1 this gives energies as with a approximated repulsive contribution fitted to empirical
data or compared with DFT calculations. The main advantage with this approach is that Kohn-
sham equations are solved only ones. Furthermore, the method is non-self-consistent, unlike
DFTB2-3, making it a fast method and is suitable for system with small charge transfers or a
complete charge transfer. DFTB2 or self-consistent charge DFTB and DFTB3 uses the density
fluctuation as a superposition of atomic contribution

δρ =
∑
a

δρa (2.52)

Each of these atomic orbital fluctuations is expanded further in a multipole expansion, but
approximated using only the monopole term

δρa ≈ ∆qaF
a
00Y00 ≈ ∆qa

τ3a
8π
e−τa|r⃗−R⃗a| (2.53)

where δq denotes atomic charge fluctuation, F00 denotes the radial dependence with a corre-
sponding angular function Y00. This can be further approximated to the last term by assuming
exponential decay, where τa = 16

5 Ua in which Ua is the Hubbard parameter related to the chem-
ical hardness of the atom. E2 and E3 can be written as

E2 =
1

2

∑
ab

γab∆qa∆qb (2.54a)

E3 =
1

6

∑
abc

∆qa∆qb∆qc
δγab
δqc

=
1

3

∑
ab

∆q2a∆qbΓab (2.54b)

where Γ = δγab/δqb|q0a and γ is

12
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γab =

∫∫
1

|r⃗ − r⃗′|
τ3a
8π
e−τa|r⃗−R⃗a| τ

3
b

8π
e−τb|r⃗′−R⃗b| (2.55)

The Hamiltonian for the DFTB2-3 scheme can be expressed as

HDFTB2−3
ab = H0

ab+Sab

∑
c

∆qc

(
1

2
(γac+γbc)+

1

3
(∆qaΓac+∆qbΓbc)+

∆qc
6

(Γca+Γcb

)
(2.56)

which for DFTB2 only contains the first term in the Secular term. The Hamiltonian found need
then to be solved using Equation 2.49. The correction energy in DFTB2 allows treatments
of charge transfer effects and DFTB3 correction gives an additional flexibility, like proton
affinities. Further the scheme can be expanded to include some of its weakness like dispersion.
These are non-covalent interactions, Spin-polarized, self-interaction correction scheme, long
range corrected DFTB, time dependent DFTB, hybrid and QM-MM methods.

3 Discussion

3.1 Approximations in DFT and HF
The Born-Oppenheimer approximation is a core approximation for computational chemistry,
and in general holds well for calculating energies for fixed nucleus. However, there are two
major application in which it breaks down. This is for non-adiabatic chemical behaviour, ex.
metal surfaces and electron transfer, and exotic molecules where the electron is exchanged
with heavier particles. In general the approximation does not lead to a great defecate, but
techniques can be expressed to demonstrate edge cases. This applies for the time variable
which will not be discussed.

Other major approximations are the uses of finite basis sets and the mean field approximation.
Depending on the basis set used there will be an error to the energy. Therefore, there is a
lot of work on different basis sets. These sets can be categorised in groups with a hierarchy,
where more orbitals is better. Choice of these basis sets depends on the wanted accuracy
and time available. The mean field approximation is what gives us the exchange correlation
error. When comparing the HF and DFT, DFT include the correlation energy given the same
computational cost. However, by doing so DFT loses its variational property and some of
these approximations increase the computational cost by including post HF methods. HF
can compensate this by including post-HF methods. However, the scaling of the computation
increases as the accuracy is increased.

3.1.1 DFTB as a technique

DFTB is parameterise from DFT meaning it will adopt all of its properties. It also makes some
new approximations from tight binding. These approximation will make DFTB less accurate
then DFT and post-HF methods. The first DFTB method is Good at describing systems where
there is no/small or complete charge transfers, while DFTB2-3 can handle these systems. Since
DFTB1 is non-self-consistent it is only solved once, where as DFTB2-3 need multiple iterations.
However, the reduction in computational time is what makes the DFTB schemes strong. And
likewise for DFTB it can be expanded to improve accuracy on its weaknesses.

3.1.2 Application and accuracy of DFTB

The application of the DFTB are many, one of the application is on small molecules, which
is used as building blocks for larger systems. This is a mean of bench marking different
DFTB schemes to check its accuracy vs DFT and HF techniques. Since the application can
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be addressed on a lot of different systems of particle, there is no good way to summarise.
Depending on the system you can get a large or small deviation of the system, where for some
it is in the threshold for chemical accuracy. However, DFTB is designed for larger systems.

As large systems is one of main driver behind the development of DFTB, system larger then that
of DFT, while maintaining an electronic scale description. These range from large molecules,
biomolecules, different clusters, nanoparticles and supported/embedded systems. DFTB shows
good results in its applications of cluster, where it noted that Au55 hold cavities, which has
been confirmed by two DFT studies. It also prevails at water cluster which is of significant
interest of understanding solvation.

DFTB is also used for vibrational spectroscopy, reactivity, fragmentation, thermodynamics and
exited states. The use of vibrational spectroscopy is an important issue as it allows for better
diagnostic for presence of species in samples. For thermodynamics it has been of interest to
study the evolution of structural properties under the change of temperature, as well as heat
capacities.

The results of the different application are too many to condense in one paper. Therefore, it will
be useful to dive in specific category of interest to see how it compares to the designated use.
DFTB techniques are under continuous development as not all elements are parameterised,
expansion of new orders. DFTB has not been compared to other semi-empirical methods,
which can be better. Therefore, for a given system DFTB should be a consideration.

4 Conclusion
DFTB is a method that parameterize the DFT through a taylor expansion of a referance den-
sity. From this there have been developed techniques up to the third order, as well as methods
to improve the shortcomings that DFTB holds. The accuracy depends on the systems, but most
are covered and is very accurate on some fields, and therefore should always be considered when
computing systems. [2;3;4;5;6;7;8;9;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;1;24;25;26;27;1;28;29;30;31]
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