
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Sergio Martinez
Robin Christoffer Vold

Evaluating Evolution Strategies as a
Method to Combat Adversarial
Attacks on Convolutional Neural
Networks

Bachelor’s thesis in Computer Engineering
Supervisor: Ole Christian Eidheim
May 2022

Ba
ch

el
or

’s
th

es
is

Sergio Martinez
Robin Christoffer Vold

Evaluating Evolution Strategies as a
Method to Combat Adversarial Attacks
on Convolutional Neural Networks

Bachelor’s thesis in Computer Engineering
Supervisor: Ole Christian Eidheim
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

In recent years, deep neural networks have been used for image classification,
and have achieved impressive results. However, neural networks are vulnerable
to adversarial attacks, where small alterations are added to the input images.
This paper aims to address this vulnerability by using evolution strategies.
Evolution strategies are a gradient free optimization technique which has
recently resurfaced as an algorithm that can be parallelized very efficiently.
We have trained models with evolution strategies, and evaluated how this
affects a model’s robustness against adversarial attacks. We find that models
trained with evolution strategies show interesting properties during training,
and are more robust against certain attacks, but not against others. 1

1The source code for our project can be found here: https://github.com/Evolutionary-
strategies/Evolutionary-strategies and here: https://github.com/Evolutionary-strategies/ares

i

Sammendrag

De siste årene har dype nevrale nettverk blitt brukt til bildeklassifisering, og
de har oppnådd imponerende resultater. Desverre er nevrale nettverk sårbare
for angrep, der små endringer legges til bildene. Denne artikkelen forsøker å
løse dette problem ved å bruke evolusjonsstrategier. Evolusjonsstrategier er
en gradientfri optimaliseringsteknikk som nylig har dukket opp igjen som en
algoritme som kan parallelliseres veldig effektivt. Vi har trent modeller med
evolusjonsstrategier, og evaluert hvordan dette påvirker en modells robusthet
mot motstandsangrep. Vi finner at modeller trent med evolusjonsstrategier viser
interessante egenskaper under trening, og er mer robuste mot visse angrep, men
ikke mot andre. 2

2Kildekoden for prosjektet vårt ligger her: https://github.com/Evolutionary-
strategies/Evolutionary-strategies og her: https://github.com/Evolutionary-strategies/ares

ii

Acknowledgements

We would like to express our gratitude to our supervisor, Ole Christian
Eidheim, who has guided us during this project. We would also like to thank
the Department of Computer Science at NTNU, and Aleksander Tandberg for
providing us with access to hardware with which we could perform our
experiments. Finally we wish to thank Liliana Martinez for proofreading, and
providing feedback, and Janne Cathrin Hetle Aspheim and Hilde Hefte Haug
for providing feedback on our result representations.

iii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Related Work 2

2.1 Evolution Strategies . 2

2.1.1 Natural Evolution Strategies 3

2.2 Adversarial Attacks . 3

2.2.1 Gradient-Based White Box Attacks 4

2.2.2 Black Box Attacks . 5

2.2.3 Adversarial Defence . 6

2.2.4 Evaluation of Adversarial Attacks and Defence 7

3 Method 7

3.1 Model . 8

3.2 Training Algorithm . 9

3.3 Training . 11

3.4 Adversarial Attacks . 12

4 Results 15

4.1 Models . 15

iv

4.2 Attacks . 16

5 Discussion 23

5.1 Training . 23

5.2 Attacks . 24

5.2.1 White Box Attacks . 24

5.2.2 Black Box Attacks . 26

5.3 Key Findings . 27

6 Conclusion 27

6.1 Further Work . 28

References 30

7 Appendix A: Attack hyperparameter configurations 34

7.1 Foolbox . 35

7.2 ARES . 36

8 Appendix B: Full experiment data 37

8.1 ARES . 37

8.1.1 White Box . 37

8.1.2 Black Box . 41

8.2 Foolbox . 43

8.2.1 White Box . 43

v

8.2.2 Black Box . 45

vi

List of Figures

1 An illustration of an adversarial attack taken from ”Explaining
and harnessing adversarial examples” by Goodfellow et al. [16].
Left: An image of a panda is passed to a classifier, and classified
correctly. Right: Perturbation is added to the image, causing the
model to misclassify. 1

2 An illustration of our model architecture. In the first
convolutional layer, the channels are increased from 3 to 64, the
output is then max-pooled. In the second convolutional layer
the channels are again increased to 128 and the output is once
again max-pooled. Finally, the output from the second
max-pool layer passes through two fully connected layers. 8

3 Graphs showing training accuracy over time with GD training
and NES training. We see that the GD trained model has a more
volatile accuracy graph under training, and that it reaches a peak
accuracy. On the other hand, the NES trained model has a very
smooth accuracy graph, and does not seem to reach a clear peak. 16

4 L∞ ARES FGSM attack data. Left: FGSM with CE loss. Right:
FGSM with CW loss. The BIM, MIM, and PGD attacks, show
very similar results with both CE loss and CW loss. 18

5 L∞ Foolbox Deepfool and ARES black box score-based attack
data. 18

6 Attack data for noise or contrast based attacks. Upper left: L2

Additive Gaussian Noise Attack. Upper right: L2 Contrast
Reduction Attack data. Lower left: L2 Salt and Pepper Noise
Attack. Lower right: L∞ Additive Uniform Noise Attack. 20

7 Results from the CE-based L2 ARES FGSM and Foolbox
NewtonFool attacks. We see that the NES trained models have
the same accuracy no matter how high the epsilon value is.
ARES CE-based L2 BIM, MIM and PGD attacks show very
similar results. 22

vii

8 The resulting adversarial examples from running ARES
L2-based FGSM at 1.0 epsilon against GD and NES trained
models. Left: the original image. Middle: the adversarial
example from the attack on the GD trained model. Right: the
adversarial example from the attack on the NES trained model.
As we can see, the adversarial example for the NES trained
model is completely black. This is likely because the obfuscated
gradients in the NES trained models cause the attack to behave
strangely. 22

9 Adversarial examples produced by Newtonfool with an epsilon
value of 0.3. Left: The original image. Middle: adversarial
example generated against the GD trained model. Right:
adversarial example generated against the NES trained model.
Once again, we see that the adversarial example for the NES
trained model is completely black. 23

viii

List of Tables

1 Hardware used to train the ES models. 11

2 Hardware used to train the GD trained models, and run ARES
attacks. 11

3 List of all attacks used for our research, with corresponding
distance measure, type and library. 13

4 Hardware used to run Foolbox attacks. 14

5 Perturbation budgets used for different attacks. 14

6 Our models and their achieved accuracy, training time, training
parameters and running loss. 15

7 Perturbation budgets used for Table 8, 9 and 11. 16

8 Attack results for L∞-based attacks, where each row is an attack,
and each column is one of our models. 17

9 Attack results for L2-based attacks, where each row is an attack,
and each column is one of our models. 19

10 Attack results for noise or contrast-based attacks, where each row
is an attack, and each column is one of our models. 19

11 Attack results for L2-based attacks where epsilon was not used
to measure attack strength, or where the attacks gave strange
results. Each row is an attack, and each column is one of our
models. 21

ix

Abbreviations

AGN - Additive Gaussian Noise attack
AUN - Additive Uniform Noise attack
BIM - Basic Iterative Method
CE loss - Cross Entropy Loss
CMA - Covariance Matrix Adaptation
CNN - Convolutional Neural Network
CR - Contrast Reduction Attack
CW attack - Carlini Wagner Attack
CW loss - Carlini Wagner Loss
ES - Evolution Strategies
FGSM - Fast Gradient Sign Method
GD - Gradient Decent
MIM - Momentum Iterative Fast Gradient Sign Method
NES - Natural Evolution Strategies
PGD - Projected Gradient Descent
S&P - Salt and Pepper Noise Attack
SPSA - Simultaneous Perturbation Stochastic Approximation

x

1 Introduction

Starting with AlexNet in 2012, Convolutional Neural Networks (CNN) trained
with Gradient Descent (GD) have shown themselves to be a powerful tool for
image recognition [24]. The finding that CNNs can be trained on GPUs have
made it so that CNNs can also be trained quite quickly. Since then, CNNs
have been able to achieve up to a 90% accuracy on ImageNet [5]. However,
with the introduction of adversarial attacks it has been shown that CNNs can
be fooled into misclassifying images which have very slight alterations [42, 16].
Misclassification has also been found with real images, where modifications to
the surroundings of the classifiable object have been made, causing the model
to fail [6].

Figure 1: An illustration of an adversarial attack taken from ”Explaining and
harnessing adversarial examples” by Goodfellow et al. [16]. Left: An image of
a panda is passed to a classifier, and classified correctly. Right: Perturbation is
added to the image, causing the model to misclassify.

In Figure 1, the perturbation is imperceptible to the human eye but the model
fails to classify the image correctly. The finding of attacks such as these has
resulted in a developing research field, in an attempt to improve the defences of
classifier models [27].

In 2017, Salimans et al. used a novel version of Evolution Strategies (ES) to
train MuJoCo models to walk, and achieved good results [40]. The approach of

1

Salimans et al. generated the mutations for ES training by using known seeds.
This allowed the algorithm to be efficiently scaled, and run by a large number
of machines. Additionally, the resulting models achieved by this method of
training are quite varied, and solve the problem in several different ways.

In this report, we aim to train image classification models with the algorithm
proposed by Salimans et al., and see if the resulting models have increased
resilience against adversarial attacks. Due to the inherent randomness in the
algorithm and the results Salimans et al. achieved, we hypothesize that ES
training might find a larger width of solutions than traditional GD training.
Our goal is to train several models using ES, to discover whether there will
be more variety in our models or not, and if any of these models will be more
robust.

2 Related Work

In this chapter, we describe previous research within the fields of evolution
strategies and adversarial attacks. There is a large amount of research on these
topics, so we have chosen to review only what we found to be most relevant to
our work. The descriptions we give in this section are brief and are only meant
to give the reader a basic understanding of the significance of the research, so
that the reader can better contextualize our work. We encourage interested
readers to read the original papers for more detailed explanations.

2.1 Evolution Strategies

Evolution Strategies (ES) are a type of evolutionary algorithm and were first
developed in Germany in the 1960s [3]. ES handles optimization problems
by mutating the proposed solution several times, and then selecting the best
mutations and recombining them into a new proposed solution. This process is
continued in an iterative fashion until the solution is satisfactory.

2

2.1.1 Natural Evolution Strategies

Wierstra et al. proposed Natural Evolution Strategies (NES), where the
mutations made to the solution are taken from a randomized search
distribution [44]. All the candidate solutions are then evaluated using a fitness
function. Using the fitness of the candidate solutions, a search gradient is
estimated. Finally, gradient ascent is performed on the estimated natural
gradient. As in normal ES, this process is iterated until the goal has been
reached.

The algorithm used by Salimans et al. is a form of NES [40]. In their algorithm,
the mutation step is expanded to rely upon random seeds to select mutations
from the random search distribution. The use of random seeds enables the
algorithm to be run in parallel, as it allows the worker threads to transmit
the seeds they used to other workers, instead of the entire candidate solution.
Each worker then reconstructs the other workers’ solutions using the seeds, and
performs the gradient ascent step using the fitness of these solutions. Once this
is done all the workers will be synchronized, as they will have recombined the
previous experiments into a common, new candidate solution. This algorithm
will from now on be referred to as Parallelizable NES.

In 2021, Jacobsen and Dalheim from NTNU used an algorithm similar to
Parallelizable NES to generate cellular automata [20]. They found that
training with ES instead of GD produced cellular automata that were
consistent over time once the desired image had been generated. On the other
hand, cellular automata generated with GD would continue to make changes
after the desired image was finished. This finding indicates that models
trained with ES may have properties not found in models trained with GD.

2.2 Adversarial Attacks

Szegedy et al. showed that neural networks can be tricked into misclassifying
images by adding perturbations to the input images [42]. By using
optimization algorithms to find the smallest perturbation needed, these
perturbations could be so small that they were imperceptible to the human
eye. Biggio et al. similarly found that adversarial perturbation could be used
to bypass a PDF malware scanner [4]. After these findings, a lot of research
has gone into both the development of new more powerful attack methods,

3

and ways to defend models against them. These attack methods differ in how
much information they have about the model, and can be divided into white
box and black box attacks.

2.2.1 Gradient-Based White Box Attacks

White box attacks are attacks that have complete information about the model,
its parameters and its training data. The attacks used by Szegedy et al. and
Biggio et al. [42, 4] belong in this category. These types of attacks use an
objective function to find the loss a model has on an input image, and then use
the gradient of this loss to perturb the image minimally. Several of the attacks
we perform in our experiments fall within this category.

Goodfellow et al. described a white box attack using the loss gradient to linearize
the loss function, with the L∞ norm as a distance measure [16]. This attack
is called the Fast Gradient Sign Method, often abbreviated as FGSM. Kurakin
et al. proposed an extension of the FGSM algorithm by performing FGSM
multiple times, iteratively taking small steps along the gradient, always ensuring
the attack is within the chosen perturbation budget [25]. This method is called
the Basic Iterative Method (BIM). Dong et al. further improved upon this
idea by adding a momentum term to BIM, which helps to stabilize the update
directions of each iteration [13]. This attack is known as MIM. Another similar
method is the Projected Gradient Decent attack (PGD), introduced by Madry
et al. [32]. It works similarly to the BIM algorithm, but it starts at a random
perturbation within the perturbation budget, and iteratively takes small steps
along the gradient to achieve the greatest loss within the given perturbation
budget.

The DeepFool attack, proposed by Moosavi-Dezfooli et al., is based on
iterative linearization to make the model misclassify with the minimal
perturbation possible [35]. The paper described using the L2 norm as a
distance measure for the attack, but variations using other Lp norms are also
provided. Another gradient-based adversarial attack, quite similar to
DeepFool, is the NewtonFool attack presented by Jang et al. [22]. It is an
iterative attack where the step size is a function of the loss landscape. The
algorithm described by Jang et al. uses the minimum norm, but a general
method for all Lp norms is also given.

As a way to show that current defence methods were insufficient, Carlini and

4

Wagner proposed three improved gradient-based attacks, each using one of the
L0, L2 and L∞ norms as a distance measure [7]. Out of these, the main one is the
L2 attack, which we will hereby refer to as the CW attack. The improvements
found in this attack are in part achieved by changing the objective function
(the function used to determine how far an image is from being an adversarial
example). The CW attack, along with PGD are considered to be the most
powerful gradient-based attacks we have today [12, 7].

2.2.2 Black Box Attacks

In black box attacks, the attacker has limited information about the model, and
in some cases a limited number of model queries. In this report we use attacks
that have knowledge of the probability distribution of a model guess, known as
score-based attacks, and attacks that only have access to a discrete model guess,
known as decision-based attacks.

Uesato et al. proposed repurposing several gradient free optimization
algorithms into adversarial attacks for use in score-based settings [43]. Among
these were Simultaneous Perturbation Stochastic Approximation (SPSA) [41]
and NES [44]. SPSA was found to reliably produce adversarial examples. Ilyas
et al. proposed the use of ES in adversarial attacks, as a query efficient attack
method in query limited score-based settings [19]. Ilyas et al. estimate the
search gradient from model queries, using a NES algorithm similar to
Parallelizable NES. Then the sign of the estimated gradient is used with PGD
to generate an adversarial image. Li et al. similarly proposed using NES to
attack classifiers in black box settings [28]. This attack does not estimate the
gradient, and does not search for the optimal adversarial perturbation.
Instead, NES is used to find a probability distribution centered around the
input image, where samples drawn from the distribution have a high likelihood
of being adversarial.

As da Costa et al. argue, there is a lot of uncertainty around the quality
of the input images [9]. Dodge and Karam showed that CNNs are especially
vulnerable to blur and noise, but also show some accuracy decrease with high
amounts of contrast or compression [11]. These findings can be formalized
into different attacks especially suited for a decision-based setting with only
discrete predictions. Bennabhaktula et al. describe two decision-based black
box attacks, Additive Uniform Noise attack (AUN) and Additive Gaussian Noise
attack (AGN) [2]. Both of these work in a similar way, by adding random values

5

drawn from either a uniform distribution or a Gaussian distribution to each pixel
in the image. The formalization of noise attacks has also lead to the creation
of attacks like Salt and Pepper Noise attack (S&P) and Contrast Reduction
attack (CR) [39]. Nazaré et al. and da Costa et al. both use S&P Noise to show
an accuracy decrease with a noisy test set [36, 9]. Dodge and Karam’s findings
regarding contrast-based perturbations also demonstrate the possibility of using
CR as a weak adversarial attack [11].

2.2.3 Adversarial Defence

Several different approaches have been tried in the field of adversarial defence.
The methods used are often divided into categories. Li et al. separate defences
into four categories [27], whereas Dong et al. use five non-exclusive categories
[12]. In this section, we will cover the categories known as Robust Training,
Input Transformation, Randomization, Detection and Model Ensemble.

Robust Training involves making changes to the training of the CNN model to
obtain greater robustness. One form of Robust Training is training the model
on already adversarially modified images. This was proposed in the same paper
as the FGSM attack [16]. Several methods that use this idea have been proposed
[32, 47] and shown to be among the most effective against state of the art attacks
such as the CW attack [1, 12].

Input Transformation uses a transformation of the input images before they
are evaluated by the model. Several types of input transformation have been
attempted, either where the image is changed directly [14, 46, 17] or where a
generative model is used to project the input image on the training data
[21, 33]. A similar method is Randomization, where randomness is added
either to the input image [45, 8], or to the model [29, 31, 10]. However both
Input Transformation and Randomization have been found to rely on
obfuscated gradients to defend against attackers, and can be bypassed by
either strong white box attacks such as the CW attack or black box attacks
[1, 27].

The Detection method attempts to detect which images are adversarial examples
by using an additional classifier. This can either be done preemptively [15],
or by using the output of the intermediate layers of the model [34, 26]. The
Model Ensemble method similarly uses several classifiers, but instead attempts
to aggregate the output of the classifiers into one classification [12]. Liu et al.

6

combine this idea with Randomization, and shows good results against state of
the art attacks [30].

2.2.4 Evaluation of Adversarial Attacks and Defence

Dong et al. propose a method for evaluating adversarial attacks [12]. This
method involves evaluating the attacks by using several different perturbation
budgets (epsilons). This has the unfortunate effect of increasing the
computational cost, thus increasing the testing and attacking time.
Nevertheless using several perturbation budgets in the evaluation is necessary
for a proper analysis, as some attacks have different accuracy development
with changing epsilons (i.e. attack a may have better performance than attack
b at epsilon e0, but worse performance at epsilon e1).

3 Method

In this chapter we describe the implementation of the training algorithms and
the adversarial attacks that were used in our experiments.

After reviewing the relevant litterature, we found the Parallelizable NES
algorithm to be particularly interesting because of the varied and unique
results achieved with it. Based on this, we formulated our hypothesis:

Classification models trained with NES may find a larger width of
solutions, and some of these models may be more robust against
adversarial attacks.

In order to fully test this hypothesis, we needed several fully trained ES
models which we could run attacks on. To train these models, we needed to
implement a training algorithm that could train models to be sufficiently
accurate in a manageable amount of time. Additionally, we considered that ES
trained models might have increased resilience against some types of attacks,
but not against others. To test this we needed to implement as many different
types of adversarial attacks as possible.

7

3.1 Model

Our goal for the model architecture was to have a relatively simple model that
could be trained quickly. At the same time, we also wanted the model to have as
high accuracy as possible. The architecture we ended up using was implemented
in PyTorch [37], and consists of two convolutional layers that are max-pooled,
followed by two dense layers. We also tried modifying this architecture: We
tried using three dense layers, using three convolutional layers, and changing
the number of output channels on the convolutional layers. In the end, we
found that the version in Figure 2 provided the best balance between short
training times and good accuracy.

Figure 2: An illustration of our model architecture. In the first convolutional
layer, the channels are increased from 3 to 64, the output is then max-pooled. In
the second convolutional layer the channels are again increased to 128 and the
output is once again max-pooled. Finally, the output from the second max-pool
layer passes through two fully connected layers.

8

3.2 Training Algorithm

For our training algorithm, we considered Parallelizable NES and two CMA-ES
variants. Parallelizable NES was our primary focus, and was the first algorithm
we implemented. As for the CMA-ES variants, we found that these algorithms
were too slow when optimizing a large number of parameters. Therefore, we
made the choice to only use Parallelizable NES in our model training.

For Parallelizable NES to work, there needs to be a fitness function which is
used to test the different mutations. We attempted two different approaches:
One approach was to use loss as a measure of fitness, and attempt to minimize
the loss like it is done in Gradient Descent (GD) training. The other approach
was to use recognition accuracy as a measure of fitness directly, and attempt to
maximize the accuracy. Both fitness measures had to be normalized in order to
be usable as weightings for the mutations. We used the following formula where
w are the weightings, x are fitnesses, x̄ is mean fitness and σ is the standard
deviation of fitnesses:

w =
x− x̄

σ

After implementing both approaches, we found that the approach using loss
failed to converge. Therefore we applied the approach using accuracy in the
training algorithm.

To make training times shorter, the algorithm runs in parallel. This was
implemented using an architecture where one master thread communicates
with a variable amount of worker threads. Each worker thread makes
mutations to the parameter vector using a random seed, and tests the fitness
of these mutations. The seed and the fitness are then sent to the master
thread. The master thread is used for communication between workers. It
collects seeds and fitness data from all the worker threads. Using the fitness
that was achieved with the different seeds, it calculates the search gradient for
the next iteration, i.e. how much the mutations made by each seed should be
weighted. The seeds and the relative weightings are then distributed to each
worker. Using this data, each worker can calculate the parameter vector for
the next iteration.

For the mutations, a large table of standard normally distributed data is
initialized at the start of each training run. When the workers need to fetch

9

mutations in each iteration, they index the table using their random seed, and
use the data as the mutation.

The final training algorithm is very similar to Parallelizable NES and looks like
this:

Algorithm 1 Training algorithm
1: Input: learning rate α, exploration rate σ, parameter vector x, fitness

function F , desired fitness f⋆

2: while F (x) ≤ f⋆ do
3: Create seeds δ on master, and distribute to workers
4: for each worker i = 1,...,n do
5: Fetch mutation ϵi ∼ N(0, 1) with δi
6: x⋆

i ← x + σϵi
7: Calculate fitness fi ← F (x⋆

i)

8: Send δi and fi to master
9: end for

10: On master, compute weightings from received fitnesses
11: W← f−f̄

σf

12: Distribute W to all workers
13: for each worker i = 1,...,n do
14: Fetch all mutations ϵ using all seeds δ recieved from master
15: Compute next parameter vector x← x + α

nσ

∑n
j=1 Wjϵj

16: end for
17: end while

In this algorithm, there are two hyperparameters that we paid special attention
to, namely, the learning and exploration rate. These hyperparameters can either
be viewed as fixed, and remain constant during an entire training run, or they
can change throughout a training run. In our models, we chose to view them as
fixed hyperparameters. This choice was made because we had a limited amount
of time for training models, and we had to choose between trying several different
approaches, or training several models with the same approach. We chose to
prioritize training several models with the same approach because we needed to
know if our training method would produce consistent or varying results.

The initial weights can also be viewed as a hyperparameter. We decided it
would be best to let these be fixed, and to let every model start from the same
initial weights. This decision was made so that comparisons between models

10

and training methods can be as fair as possible. 3

3.3 Training

For training we were given access to part of a CPU cluster hosted by the
Department of Computer Science at NTNU. This cluster consists of AMD
EPYC 7742 processors in Dell PowerEdge r7525 racks. We were given access
to one full processor.

CPU AMD EPYC 7742: 64 cores, 128 threads, 256MiB l3, 32MiB l2, 4MiB l1
RAM 64GB
Disk 100GB

Table 1: Hardware used to train the ES models.

Our NES trained models were trained on the test set of CIFAR10 [23]. The GD
trained model that was compared against these was also trained on the test set.
A 10000 image subset of the training set, with a 1000 images of each class, was
used for test accuracy evaluation and in attack experiments. The 10000 image
test set was used for training, instead of the usual 50000 image training set in
order to reduce training time.

All NES training was done with 127 worker threads and one master thread to
fully utilize the processing power we had at our disposal.

Our GD trained model was trained on a personal machine, which is described in
Table 2. It used Stochastic Gradient Descent as an optimizer. For this model,
we decided to stop training prematurely, so the model accuracy would be at a
comparable level to the accuracy found in the NES trained models. This decision
was made to make the comparisons between the models as fair as possible.

CPU Intel® Core™ i5-10400 Processor: 6 cores, 12 threads, 12MB intel smart cache
RAM 16GB
Disk 500GB
GPU Nvidia GeForce RTX 3060 Ti

Table 2: Hardware used to train the GD trained models, and run ARES attacks.
3The source code for our training algorithm found here: https://github.com/Evolutionary-

strategies/Evolutionary-strategies

11

In addition, a GD trained model and a NES trained model were trained for
observation purposes. In these models all training was logged and converted to
graphs, so that the training could be compared over time. Both models were
left to train past what we assumed to be their peak, to see how both training
methods would adapt to overtraining. The NES trained model was trained
using the 10000 image train subset and validated with the test set. The GD
trained model was trained with the full training set and validated with the test
set. The full training set was chosen for GD training in order to observe what
we consider to be a ”normal” GD trained model, this was not done for the NES
trained model, so that it would be comparable to the NES trained models we
used for attack experiments.

3.4 Adversarial Attacks

Two different libraries were used for the implementation of the adversarial attack
algorithms. The decision to use two separate libraries was made because we
were unable to find one library that contained all the attacks we wanted to use.
Furthermore, comparing the results from two different libraries would serve as
a way to validate our results.

One of the libraries we used was Foolbox. The reason for choosing this particular
library was its easy integration with PyTorch [37], and its wide selection of
attacks. It is also well suited for use within academic research, with its own
paper dedicated to it [39]. Foolbox is also written using EagerPy [38] as a base,
making it both high performing and modular, a sought after feature in case we
needed to change from PyTorch to another library. Our implementation uses
Python´s multiprocessor library alongside Foolbox to enable multiple attacks
simultaneously. After the attacks have been carried out, the results are printed
to a table, and plotted to a graph, with Matplotlib [18].

The other library we used was ARES. ARES is the library developed and used
for the benchmarking done by Dong et al. [12]. It contains multiple attacks
missing in the Foolbox library, in particular score-based attacks. It also offers
greater customizability than Foolbox, for example allowing us to use the
objective function described by Carlini and Wagner as our loss function
instead of cross entropy loss in gradient-based attacks [7].

For the attack hyperparameters and configuration we attempted to stay as close
as possible to what was recommended in the original papers. In some attacks we

12

had to make small changes to the configuration in order to reduce computation
time. This was necessary due to our time constraints. We arrived at these
changes by running test attacks on our GD trained model, and seeing how long
they took. The changes made were reducing the number of iterations allowed in
the CW attack, the SPSA attack, the NES attack and NAttack. In our gradient-
based attacks, we used both CW loss and CE loss if these were available, and
only one of these otherwise. The attacks where both CE loss and CW loss were
used are FGSM, BIM, MIM and PGD. A full list of the attacks we performed
can be found below in Table 3, and in Appendix B, where the hyperparameters
of each attack are also described.

Attack Lp-Distance measure Knowledge Library
FGSM L∞ and L2 White ARES and Foolbox
BIM L∞ and L2 White ARES and Foolbox
PGD L∞ and L2 White ARES and Foolbox

DeepFool L∞ and L2 White ARES and Foolbox
MIM L∞ and L2 White ARES

NewtonFool L2 White Foolbox
CW L2 White ARES
SPSA L∞ and L2 Score ARES
NES L∞ and L2 Score ARES

NAttack L∞ Score ARES
AUN L∞ Decision Foolbox
AGN L2 Decision Foolbox
CR L2 Decision Foolbox
S&P L2 Decision Foolbox

Table 3: List of all attacks used for our research, with corresponding distance
measure, type and library.

To run the attack experiments we used our personal computers. Their
specifications can be found in Tables 2 and 4.

13

CPU AMD FX 6300 3.5GHz
RAM 8GB DDR3
Disk 300GB
GPU AMD Radeon R9 280

Table 4: Hardware used to run Foolbox attacks.

To evaluate the results of the adversarial attacks, we used the method
described by Dong et al. [12] where several perturbation budgets are used.
Due to time constraints, we chose only a limited number of epsilon values
when testing the models. The chosen epsilons e differ between attacks and
distance measures. Additionally a different number of epsilons were chosen for
each attack depending, on how computationally expensive the attack was. The
epsilon values themselves were determined by running test attacks with a
smaller subset of images, and finding which epsilon resulted in a significant
drop in accuracy. The epsilons that were used for each attack can be found in
Table 5.

Attack(s) Perturbation Budgets
L∞-based FGSM, BIM, MIM, PGD, DeepFool 0.005, 0.01, 0.02
L2-based FGSM, BIM, MIM, PGD, DeepFool 0.3, 0.5, 1.0

L∞-based NES 0.01, 0.03
L2-based NES 0.7, 1.0, 1.3

L∞-based NAttack, SPSA 0.01, 0.02. 0.03
L2-based SPSA 0.5, 0.7, 1.0

L2-based NewtonFool 0.0001, 0.001, 0.005, 0.1, 0.3, 0.5
L∞-based AUN 0.005, 0.01, 0.02, 0.1, 0.3, 0.5, 0.8, 1.0

L2-based CR and AGN 0.3, 0.5, 1.0, 3.0, 5.0, 8.0, 10.0, 13.0, 15.0, 18.0, 20.0
L2-based S&P 0.001, 0.01, 0.1, 0.5, 1.0, 3.0, 5.0

Table 5: Perturbation budgets used for different attacks.

For our result graphs, we normalized the data with the following function:

αi =
yi
y0
∗ 100

where αi is the normalized accuracy, yi is the current data point, or accuracy
value, and y0 is the starting accuracy of the model. This allowed us to look at
model accuracy as a percentage, and visualize the attack results as a relative
drop in accuracy, instead of looking at the start accuracy and the absolute
accuracy drop. We chose to do this because our models had different starting

14

accuracies, which would have made the result graphs harder to read. 4

4 Results

4.1 Models

The models we present in Table 6 were all trained on the test set and
validated/attacked with a subset of the training set. In order to differentiate
between the models, we have assigned them names or model numbers which
we we will use to refer to them hereafter.

Model number Accuracy Training time Sigma Learning rate Running loss
Baseline gradient
descent model

54.48 % 30 minutes - 0.001 1.269

1 54.79 % 18 days 0.1 0.01 50348.1
2 54.93 % 10 days 0.15 0.01 6445.6
3 54.50 % 5 days 0.15 0.01 4789.3
4 51.04 % 8 days 0.15 0.01 11047.8

Table 6: Our models and their achieved accuracy, training time, training
parameters and running loss.

During model training, we observed that models trained with Natural
Evolution Strategies (NES) do not seem to reach a peak validation accuracy in
the same way Gradient Descent (GD) models do. In GD training, the model
peaks at a max validation accuracy, then the validation accuracy starts to
drop off. However, in NES training the validation accuracy does not
necessarily seem to reach a peak, instead reaching a point where the model
continues to improve at a very diminished rate. Another thing to take note of
is that all our NES trained models seemed to reach this point at roughly the
same accuracy. The training graphs of a GD trained model and a NES trained
model can be seen in Figure 3.

4The source code for our attacks be found here: https://github.com/Evolutionary-
strategies/Evolutionary-strategies and here: https://github.com/Evolutionary-strategies/ares

15

Figure 3: Graphs showing training accuracy over time with GD training and
NES training. We see that the GD trained model has a more volatile accuracy
graph under training, and that it reaches a peak accuracy. On the other hand,
the NES trained model has a very smooth accuracy graph, and does not seem
to reach a clear peak.

We also observed that models trained with NES and with accuracy as a fitness
function have a very high running loss when compared to GD trained models.

4.2 Attacks

To make this section more readable we have chosen to only show attacks with
one perturbation budget in the tables below. For some attacks, we have also
included a graph that shows several different perturbation budgets and the
corresponding model accuracies.

The perturbation budgets for the tables are shown in Table 7:

L∞-based White box 0.02
L2-based White box 0.5

L∞-based Black box score 0.03
L2-based Black box score 1.0

Table 7: Perturbation budgets used for Table 8, 9 and 11.

16

Attack Model number

Attack category Attack name Baseline gradient
descent model

1 2 3 4

ARES White L∞

CE loss

FGSM
BIM
MIM
PGD

20.59 %
18.26 %
18.87 %
25.72 %

54.75 %
54.75 %
54.75 %
54.72 %

54.66 %
54.66 %
54.66 %
54.81 %

54.15 %
54.15 %
54.15 %
54.32 %

50.93 %
50.93 %
50.93 %
50.72 %

ARES White L∞

CW loss

FGSM
BIM
MIM
PGD

19.64 %
17.48 %
17.93 %
24.05 %

0.05 %
0.01 %
0.01 %
0.03 %

1.66 %
0.44 %
0.5 %
1.64 %

1.98 %
0.69 %
0.79 %
2.09 %

1.60 %
0.44 %
0.49 %
1.37 %

Foolbox White L∞

FGSM
BIM
PGD

DeepFool

20.6 %
17.44 %
21.06 %
17.2 %

54.77 %
54.77 %
54.78 %
0.01 %

54.68 %
54.68 %
54.79 %
0.64 %

54.16 %
54.16 %
53.98 %
0.86 %

50.95 %
50.95 %
50.84 %
0.64 %

ARES Black Score L∞

SPSA
NES

NAttack

28.13 %
35.40 %
19.90 %

0.59 %
3.53 %
39.41 %

37.53 %
13.52 %
27.50 %

31.17 %
14.10 %
27.50 %

39.51 %
11.84 %
27.50 %

Table 8: Attack results for L∞-based attacks, where each row is an attack, and
each column is one of our models.

Table 8, and Figures 4 and 5 show our L∞-based attack data. Here we found
that gradient-based attacks using CE loss and L∞ as a distance measure do not
seem to work against NES trained models. This finding is consistent in both
our ARES and Foolbox-based attacks. However, the same attacks using CW
loss are more effective on NES trained models than on the GD trained model.
We also found that NES trained models seem more resilient against NAttack
than the GD trained model. On the other hand the GD trained model seems
more resilient against the SPSA attack and NES attack than the NES trained
models.

17

Figure 4: L∞ ARES FGSM attack data. Left: FGSM with CE loss. Right:
FGSM with CW loss. The BIM, MIM, and PGD attacks, show very similar
results with both CE loss and CW loss.

Figure 5: L∞ Foolbox Deepfool and ARES black box score-based attack data.

18

Attack Model number

Attack category Attack name Baseline gradient
descent model

1 2 3 4

ARES White L2

CW loss

FGSM
BIM
MIM
PGD

30.78 %
30.75 %
30.98 %
31.27 %

4.05 %
10.00 %
10.02 %
10.02 %

8.10 %
11.48%
11.56 %
11.68 %

8.89 %
11.78 %
11.92 %
12.08 %

6.80 %
10.96 %
11.03 %
11.10 %

Foolbox White L2

FGSM
BIM
PGD

DeepFool

27.46 %
25.5 %
29.84 %
24.45 %

54.77 %
54.77 %
54.69 %
0.07 %

54.77 %
54.74 %
54.67 %
2.61 %

54.38 %
54.36 %
54.55 %
3.2 %

51.01 %
51.01 %
51.08 %
2.21 %

ARES Black Score L2
SPSA
NES

33.01 %
45.33 %

1.85 %
18.14 %

10.55 %
29.67 %

11.11 %
30.90 %

9.03 %
27.45 %

Table 9: Attack results for L2-based attacks, where each row is an attack, and
each column is one of our models.

Table 9 shows our L2-based attack data. We found that the CE-based Foolbox
versions of FGSM, BIM and PGD failed against the NES trained models.
Against the CW-based ARES FGSM, BIM, MIM and PGD, the NES trained
models perform significantly worse than the GD trained model. We also found
that NES trained models perform significantly worse against L2-based NES
and SPSA attacks.

Attack Model number
Distance

measurement
Attack
name

Epsilon Baseline gradient
descent model

1 2 3 4

L∞ AUN 0.5 17.49 % 16.74 % 22.81 % 24.88 % 19.92 %

L2

AGN
CR
S&P

10.0
10.0
3.0

34.17 %
20.37 %
33.28 %

25.87 %
25.06 %
5.57 %

37.72 %
21.81 %
14.4 %

37.84 %
23.03 %
17.02 %

33.71 %
22.51 %
14.63 %

Table 10: Attack results for noise or contrast-based attacks, where each row is
an attack, and each column is one of our models.

19

Figure 6: Attack data for noise or contrast based attacks. Upper left: L2

Additive Gaussian Noise Attack. Upper right: L2 Contrast Reduction Attack
data. Lower left: L2 Salt and Pepper Noise Attack. Lower right: L∞ Additive
Uniform Noise Attack.

Table 10 and Figure 6, show the results from the noise or contrast-based attacks.
With AUN, AGN and CR we found that a very high epsilon value is required
to make any noticeable change to the model accuracy. We also found that GD
and NES trained models show similar resilience against these attacks. Against
the S&P attack, NES trained models performed worse than GD trained models.

20

Attack Model number

Attack category Attack name Baseline gradient
descent model

1 2 3 4

ARES White L2

CE loss

FGSM
BIM
MIM
PGD

27.45 %
25.20 %
25.78 %
25.79 %

6.22 %
6.22 %
6.22 %
6.17 %

6.26 %
6.26 %
6.26 %
6.25 %

5.92 %
5.92 %
5.92 %
5.97 %

6.85 %
6.85 %
6.85 %
6.83 %

ARES White L2
Deepfool

CW
5.71 %
0 %

11.21 %
0 %

12.65 %
0 %

15.15 %
0 %

11.98 %
0 %

Foolbox White L2 NewtonFool 27.84 % 10.0 % 10.03 % 10.0 % 9.98 %

Table 11: Attack results for L2-based attacks where epsilon was not used to
measure attack strength, or where the attacks gave strange results. Each row
is an attack, and each column is one of our models.

In Tables 8, 9, 10 and 11, we find that NES trained model 1 seems to achieve a
lower accuracy compared with the other NES trained models against white box
attacks using CW loss, all DeepFool variants and most black box attacks.

Table 11 shows attack data from attacks that could not be grouped together with
the attacks listed in Tables 8, 10 and 9. In the case of the ARES CW attack and
DeepFool attack, the attack strength was measured using a maximum number
of iterations instead of an epsilon value. The results from the CW attack show
that it completely bypassed the defences of both GD and NES trained models.
In the case of the DeepFool attack, we found that the ARES and Foolbox
implementations achieve different results. In the ARES-based Deepfool attack
the NES trained models perform better than the GD trained model, in the
Foolbox version the opposite happens.

Furthermore, Table 11 shows that the NewtonFool attack and the ARES L2-
based FGSM, BIM, MIM and PGD attacks seem to be very effective against
NES trained models. However if we look at how these attacks behave over
several epsilons, and look at the generated adversarial images we find that these
results are misleading. As shown in Figure 7, the NES trained models achieve
identical accuracies, no matter what value epsilon has. In Figures 8 and 9 we
also see that when the NES trained models are attacked, the adversarial image
becomes completely black.

21

Figure 7: Results from the CE-based L2 ARES FGSM and Foolbox NewtonFool
attacks. We see that the NES trained models have the same accuracy no matter
how high the epsilon value is. ARES CE-based L2 BIM, MIM and PGD attacks
show very similar results.

Figure 8: The resulting adversarial examples from running ARES L2-based
FGSM at 1.0 epsilon against GD and NES trained models. Left: the original
image. Middle: the adversarial example from the attack on the GD trained
model. Right: the adversarial example from the attack on the NES trained
model. As we can see, the adversarial example for the NES trained model is
completely black. This is likely because the obfuscated gradients in the NES
trained models cause the attack to behave strangely.

22

Figure 9: Adversarial examples produced by Newtonfool with an epsilon value
of 0.3. Left: The original image. Middle: adversarial example generated against
the GD trained model. Right: adversarial example generated against the NES
trained model. Once again, we see that the adversarial example for the NES
trained model is completely black.

5 Discussion

5.1 Training

One obvious drawback with using Natural evolution strategies (NES) to train
CNNs is the far greater time required to train the neural network to achieve a
workable accuracy, compared to Gradient Descent (GD) training.
Unfortunately, the information we have gathered about training times is not
exact, but our results point in the direction that the NES trained model with
the most similar accuracy to the GD trained model has a training time that is
greater by several orders of magnitude. This estimation does not take into
consideration the different hardware used to train the different models. As GD
training is done on GPU and NES training is done on CPU, it is difficult to
make a direct comparison. If a comparison could be made with two equally
powerful systems, we suspect that the training time difference would be even
greater.

Another drawback with NES is the low accuracy. Despite the long training time,
all the NES trained models seemed to reach 51-55% accuracy. It is possible
that, if allowed to train long enough, the accuracy may be higher. Another
approach to raising the accuracy would be adding things like weight decay or
experimenting with a variable exploration rate. However, we leave this to further
research, as it was not possible to test within our timeframe. The GD trained

23

model we used in our experiments was prematurely stopped in order to have a
similar accuracy to the NES trained models. If the GD trained model had not
been stopped, it would likely have had an accuracy of around 72%, similar to
the model displayed in Figure 3.

The finding that all NES trained models reached a similar accuracy may indicate
that NES training achieves somewhat consistent results. On the other hand, our
results showed that the different NES trained models had varying performance
against adversarial attacks. This is similar to the results found by Salimans et
al., in that it shows that NES training can find several different solutions to the
same optimization problem [40].

Another interesting observation is that the validation accuracy of NES trained
model did not reach a clear peak, in the way the GD trained model did. We
surmise that this may be similar to the findings by Jacobsen and Dalheim
during their training of cellular automata models, where their models would
stop making changes to the generated image after it was completed [20]. This
could imply that using NES to train CNN models achieves more stable results
with prolonged exposure to the data, compared to GD training.

5.2 Attacks

5.2.1 White Box Attacks

The results from the L∞ and Foolbox L2-based FGSM, BIM, MIM and PGD
attacks with CE loss, indicate that these attacks have little to no effect on
NES trained models. One likely reason for this is that accuracy maximization
was used for our training fitness function, instead of loss minimization. The
resulting high loss from this type of training may cause the CE loss gradients to
be obfuscated. Obfuscated gradients may cause the attacks to become confused,
and add random or inadequate perturbation to the image. If this is the case, it
is similar to what was found for the Input Transformation and Randomization
defence methods [1].

The ARES L2-based FGSM, BIM, MIM and PGD attacks with CE loss, as
well as the Foolbox NewtonFool attack had some unexpected results. When
attacking the GD trained model, the attacks worked well, but against the NES
trained models they produced adversarial examples that were completely black,

24

instead of producing images similar to the originals. This happened no matter
what epsilon was used, and always happened to a similar number of images,
resulting in a similar accuracy, regardless of the supposed attack strength. All
of these attacks are gradient-based and use CE loss. We believe that what
happened here was similar to what happened with the L∞-based versions of the
same attacks, where the attack became confused because of the obfuscated loss
gradient. In this case, instead of adding inadequate perturbation to the image,
the attack showed unexpected behaviour, and completely blackened the image
to make sure it is misclassified. We can not say for certain that obfuscated
gradients are the cause of the unexpected behaviour, and even if they are, the
images being blackened regardless of the epsilon value is not something that
should happen. We leave it to further work to find out what caused these
attacks to behave like this.

In all white box attacks using CW loss instead of CE loss, the NES trained
models performed significantly worse than the GD trained model. Attacks using
CW loss performing better than attacks using CE loss is an expected result, as
the CW objective functions have previously been shown to be superior to CE
loss, and to work well despite the CE loss gradients being obfuscated [7].

The finding that using CW loss bypasses the defences of NES trained models,
in the same way that it bypasses Input Transformation and Randomization
based defences is also interesting. This finding strengthens the implication that
the CE-based L∞ attacks fail against NES trained models because the CE loss
gradients are obfuscated.

The results from our DeepFool attack experiments show an interesting
discrepancy. In the L2-based ARES DeepFool attack our findings indicate
that the NES trained models are more robust against DeepFool than the GD
trained models. On the other hand, our findings from L2-based and L∞-based
Foolbox DeepFool indicate the reverse. This discrepancy may be caused either
by implementation differences within the libraries, or within our code. A
potential reason may be that different hyperparameters were used to control
the attack strength in the Foolbox and ARES versions of DeepFool. In the
Foolbox version, an epsilon value was used as the perturbation budget, and
several epsilons were tested. In the ARES version, no epsilon value was
specified, instead using a max number of iterations as a way to control the
attack strength. Regardless of what the cause is, we have chosen to view the
results from our DeepFool experiments as inconclusive. We leave it to further
research to do more thorough experimentation with DeepFool attacks on NES

25

trained models. We believe that these results support the findings of Dong et
al., showing the importance of evaluating attacks using multiple epsilons and
different hyperparameters [12].

5.2.2 Black Box Attacks

In our score-based attack experiments, the NES trained models performed worse
than the GD trained model against the SPSA and NES attacks. This suggests
that attacks using gradient estimation perform well against NES trained models.

Against the NAttack, the NES trained models performed better than the GD
trained model (As we mentioned earlier, the NAttack does not attempt to find
the optimal adversarial perturbation). This finding may indicate that NES
trained models perform better against sub-optimal adversarial examples, such
as the ones produced by the NAttack. The cause of this is something we leave
to further research, as we have been unable to determine it.

The NES trained models and the GD trained models performed quite similarly
against all noise- and contrast-based attacks except S&P. Against the S&P
attack, the NES trained models all performed significantly worse than the GD
trained models. These findings suggests that NES trained models do not
generalize better than GD trained models in noise or contrast induced
environments. In addition, our results suggest that the S&P attack is a more
powerful attack than CR and AGN, causing a greater accuracy loss at the
same perturbation budget.

The high perturbation budget required to successfully attack models using
contrast-based attacks confirms the findings by Dodge and Karam [11].
However, in our experiments, the CR attack seems to be stronger than the
AGN attack, albeit only marginally, which is in conflict with the results of
Dodge and Karam [11]. Further research is needed before concluding which
attack is stronger.

Model 1 performed worse than model 2-4 against white box attacks using CW
loss, all DeepFool variants and most black box attacks. Model 1 has certain
characteristics that the other NES trained models do not. One of these
characteristics is that it uses a different exploration rate, which may lead the
training to a different solution, thus making the model less robust to noise
attacks. Another potential reason is that it has a higher running loss, and a

26

longer training time compared to the other models. We believe either of these
could be the reason for the lower performance, but we can not be certain. For
future research, we suggest training NES models with different
hyperparameters and training durations.

5.3 Key Findings

• NES training is slower than GD training and produces models with lower
accuracy.

• NES training produces models with a consistent accuracy, but with
varying resilience against adversarial attacks.

• NES training shows increased stability under prolonged training exposure
when compared to GD training.

• NES trained models show strong resilience against Gradient based attacks
that use CE loss. This is likely due to obfuscated gradients.

• Some attacks showed unexpected behavior, such as blackening the input
image, when run against NES trained models.

• If CW loss was used instead of CE loss for gradient based attacks, NES
trained models performed worse than GD trained models.

• NES trained models perform worse than GD trained models against the
NES attack and the SPSA attack.

• NES trained models perform better than GD trained models against
NAttack.

• NES trained models perform similarly or worse than GD trained models
against noise or contrast based attacks.

6 Conclusion

NES trained models show interesting properties during training, such as more
stability over prolonged time than GD trained models. Against adversarial
attacks, NES trained models are successful in defending against most
gradient-based attacks. This is likely because of obfuscated CE loss gradients.

27

Against the NAttack, NES trained models also show increased resilience. The
same robustness is not seen against attacks that can avoid using the CE loss
to calculate a gradient, either by using another objective function as a loss
function, or by estimating the gradient through other means. NES trained
models also do not show increased resilience against noise or contrast induced
images. Given that NES trained models do not defend well against all attacks,
NES training can not be considered a reliable method of defending against
adversarial attacks.

6.1 Further Work

During this project we were not able to test all the approaches we wanted to
test during model training, and we were not able to find the cause of some of
the results we had. We believe this shows the need for further research where
classifier models are trained with NES and adversarial attacks are run against
them.

One line of further work would be to test more approaches for model training.
We suggest that using weight decay, variable learning rate or variable
exploration rate might yield different results, both when it comes to the
accuracy of the resulting models and their resilience against adversarial
attacks. As we observed that models show stability with prolonged exposure
to NES training, it would also be interesting to train a model with NES for a
longer duration of time.

Another line of further work is to continue running attacks against NES trained
models, to clarify or explain our results in cases where the results were unclear,
or could not be explained. We did not have time to find the cause of the
image blackening behaviour exhibited by the ARES FGSM, BIM, MIM, PGD
and FoolBox NewtonFool attacks with CE loss and L2 distance measure. We
believe the easiest way to research this would be to attempt to reproduce the
image blackening, and analyze why it happens. It would also be interesting
to run the attacks that showed unexpected behaviour against models trained
with Randomization and Input Transformation defences, to see if the same
image blackening behaviour is found there, as these defences also make use of
obfuscated gradients.

Our DeepFool experiments gave inconsistent results. We believe that running
more DeepFool experiments against NES trained models would be sufficient to

28

produce clearer results. These experiments would ideally, experiment more with
hyperparameter changes, and use a larger range of perturbation budgets, both
in terms of epsilon values and max iterations.

In our NAttack results, we found that NES trained models performed better
than GD trained models, but we were unable to determine why this was the
case. It would be useful to run more experiments with the NAttack against
NES trained models, and analyze the results more thoroughly, to determine the
reason for the increased resilience seen in NES trained models.

29

References

[1] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples, 2018.

[2] G. S. Bennabhaktula, J. Antonisse, and G. Azzopardi. On improving
generalization of cnn-based image classification with delineation maps using
the corf push-pull inhibition operator. In International Conference on
Computer Analysis of Images and Patterns, pages 434–444. Springer, 2021.

[3] H. Beyer. Evolution strategies. Scholarpedia, 2(8):1965, 2007. revision
#193589.

[4] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli. Evasion attacks against machine learning at test
time. In Joint European conference on machine learning and knowledge
discovery in databases, pages 387–402. Springer, 2013.

[5] A. Brock, S. De, S. L. Smith, and K. Simonyan. High-performance large-
scale image recognition without normalization, 2021.

[6] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer. Adversarial
patch, 2017.

[7] N. Carlini and D. Wagner. Towards evaluating the robustness of neural
networks, 2016.

[8] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter. Certified adversarial robustness
via randomized smoothing, 2019.

[9] G. B. P. da Costa, W. A. Contato, T. S. Nazare, J. E. Neto, and M. Ponti.
An empirical study on the effects of different types of noise in image
classification tasks. arXiv preprint arXiv:1609.02781, 2016.

[10] G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein, J. Kossaifi,
A. Khanna, and A. Anandkumar. Stochastic activation pruning for robust
adversarial defense, 2018.

[11] S. Dodge and L. Karam. Understanding how image quality affects deep
neural networks. In 2016 eighth international conference on quality of
multimedia experience (QoMEX), pages 1–6. IEEE, 2016.

[12] Y. Dong, Q.-A. Fu, X. Yang, T. Pang, H. Su, Z. Xiao, and
J. Zhu. Benchmarking adversarial robustness on image classification. In

30

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 321–331, 2020.

[13] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li. Boosting
adversarial attacks with momentum, 2017.

[14] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy. A study of the effect of
jpg compression on adversarial images, 2016.

[15] Z. Gong, W. Wang, and W.-S. Ku. Adversarial and clean data are not
twins, 2017.

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[17] C. Guo, M. Rana, M. Cisse, and L. van der Maaten. Countering adversarial
images using input transformations, 2017.

[18] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007.

[19] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-box adversarial attacks
with limited queries and information, 2018.

[20] J. B. Jacobsen and W. Dalheim. Regeneration and generalization of cellular
automata through evolution strategies, 2021.

[21] A. Jalal, A. Ilyas, C. Daskalakis, and A. G. Dimakis. The robust manifold
defense: Adversarial training using generative models, 2017.

[22] U. Jang, X. Wu, and S. Jha. Objective metrics and gradient descent
algorithms for adversarial examples in machine learning. In Proceedings of
the 33rd Annual Computer Security Applications Conference, pages 262–
277, 2017.

[23] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for
advanced research).

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[25] A. Kurakin, I. Goodfellow, S. Bengio, et al. Adversarial examples in the
physical world, 2016.

31

[26] X. Li and F. Li. Adversarial examples detection in deep networks with
convolutional filter statistics, 2016.

[27] Y. Li, M. Cheng, C.-J. Hsieh, and T. C. M. Lee. A review of adversarial
attack and defense for classification methods. The American Statistician,
pages 1–17, jan 2022.

[28] Y. Li, L. Li, L. Wang, T. Zhang, and B. Gong. Nattack: Learning the
distributions of adversarial examples for an improved black-box attack on
deep neural networks, 2019.

[29] X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh. Towards robust neural
networks via random self-ensemble, 2017.

[30] X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh. Towards robust neural
networks via random self-ensemble, 2017.

[31] X. Liu, Y. Li, C. Wu, and C.-J. Hsieh. Adv-bnn: Improved adversarial
defense through robust bayesian neural network, 2018.

[32] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards
deep learning models resistant to adversarial attacks, 2017.

[33] D. Meng and H. Chen. Magnet: a two-pronged defense against adversarial
examples, 2017.

[34] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff. On detecting
adversarial perturbations, 2017.

[35] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2574–2582,
2016.

[36] T. S. Nazaré, G. B. Costa, W. A. Contato, and M. Ponti. Deep
convolutional neural networks and noisy images. In Iberoamerican Congress
on Pattern Recognition, pages 416–424. Springer, 2017.

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

32

[38] J. Rauber, M. Bethge, and W. Brendel. EagerPy: Writing code that works
natively with PyTorch, TensorFlow, JAX, and NumPy. arXiv preprint
arXiv:2008.04175, 2020.

[39] J. Rauber, W. Brendel, and M. Bethge. Foolbox: A python toolbox to
benchmark the robustness of machine learning models. arXiv preprint
arXiv:1707.04131, 2017.

[40] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning, 2017.

[41] J. Spall. Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation. IEEE Transactions on Automatic
Control, 37(3):332–341, 1992.

[42] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[43] J. Uesato, B. O’Donoghue, A. v. d. Oord, and P. Kohli. Adversarial risk
and the dangers of evaluating against weak attacks, 2018.

[44] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Natural evolution
strategies. pages 3381–3387, 06 2008.

[45] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille. Mitigating adversarial
effects through randomization, 2017.

[46] W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting adversarial
examples in deep neural networks. In Proceedings 2018 Network and
Distributed System Security Symposium. Internet Society, 2018.

[47] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan.
Theoretically principled trade-off between robustness and accuracy, 2019.

33

7 Appendix A: Attack hyperparameter
configurations

This appendix shows the hyperparameter configurations we have used for the
different attacks. For the attacks where distance measure is not mentioned, the
same configuration was used for both versions of the attack. If an attack is not
mentioned, the only hyperparameters used for it are: epsilon, distance norm
and/or loss function. Loss function and epsilon values are not included in this
appendix, as they are discussed in the main report.

34

7.1 Foolbox

Foolbox hyperparameter configurations
Attack Hyperparameter

FGSM

relative stepsize
absolute stepsize

steps
random start

1.0
None
1

False

BIM

relative stepsize
absolute stepsize

steps
random start

0.2
None
10

False

DeepFool

steps
candidates
overshoot

loss

50
10
0.02
logits

L∞ PGD

relative stepsize
absolute stepsize

steps
random start

0.03333333333333333
None
40

True

L2 PGD

relative stepsize
absolute stepsize

steps
random start

0.025
None
50

True

Newtonfool steps
stepsize

100
0.01

Contrast Reduction Attack target 0.5

Salt and Pepper Noise Attack
steps

across channels
channel axis

1000
True
None

35

7.2 ARES

ARES hyperparameter configurations
Attack name Hyperparameters Values

L∞ BIM steps
stepsize

100
epsilon/steps

L∞ MIM
steps

stepsize
decay factor

100
epsilon/steps

1.0

L∞ PGD steps
stepsize

100
epsilon/steps

L2 BIM steps
stepsize

100
2.5*epsilon/steps

L2 MIM
steps

stepsize
decay factor

100
2.5*epsilon/steps

1.0

L2 PGD steps
stepsize

100
2.5*epsilon/steps

DeepFool overshoot
max iterations

0.2
50

CW

learning rate
kappa

c
binary search steps

max iterations

0.2
0

0.01
4
50

NES

samples
samples per draw

max queries
stepsize

10
20
2000

epsilon/100

SPSA

learning rate
delta

samples
samples per draw

max queries

0.01
0.01
10
20
2000

NAttack

learning rate
sigma

sample size
max queries

0.02
0.1
100
1000

36

8 Appendix B: Full experiment data

This appendix shows the raw data from our experiments.

8.1 ARES

8.1.1 White Box

FGSM with cw loss and L∞ distance measure
Model number epsilon 0.005 epsilon 0.01 epsilon 0.02

Baseline GD trained model 43.33 % 33.33 % 19.64 %
1 10.36 % 1.46 % 0.05 %
2 23.19 % 9.44 % 1.66 %
3 24.42 % 10.20 % 1.98 %
4 21.31 % 8.04 % 1.60 %

FGSM with ce loss and L∞ distance measure
Model number epsilon 0.005 epsilon 0.01 epsilon 0.02

Baseline GD trained model 44.37 % 35.19 % 20.59 %
1 54.75 % 54.75 % 54.75 %
2 54.66 % 54.66 % 54.66 %
3 54.15 % 54.15 % 54.15 %
4 50.93 % 50.93 % 50.93 %

FGSM with cw loss and L2 distance measure
Model number epsilon 0.3 epsilon 0.5

Baseline GD trained model 40.17 % 30.78 %
1 6.43 % 4.05 %
2 16.68 % 8.10 %
3 17.59 % 8.89 %
4 14.59 % 6.80 %

37

BIM with cw loss and L∞ distance measure
Model number epsilon 0.005 epsilon 0.01 epsilon 0.02

Baseline GD trained model 43.09 % 32.46 % 17.48 %
1 7.95 % 0.44 % 0.01 %
2 21.55 % 6.82 % 0.44 %
3 22.65 % 7.30 % 0.69 %
4 19.64 % 5.57 % 0.44 %

BIM with ce loss and L∞ distance measure
Model number epsilon 0.005 epsilon 0.01 epsilon 0.02

Baseline GD trained model 44.17 % 34.31 % 18.26 %
1 54.75 % 54.75 % 54.75 %
2 54.66 % 54.66 % 54.66 %
3 54.15 % 54.15 % 54.15 %
4 50.93 % 50.93 % 50.93 %

BIM with cw loss and L2 distance measure
Model number epsilon 0.3 epsilon 0.5

Baseline GD trained model 40.71 % 30.75 %
1 10.63 % 10.00 %
2 18.16 % 11.48 %
3 18.73 % 11.78 %
4 16.25 % 10.96 %

MIM with cw loss and L∞ distance measure
Model number epsilon 0.005 epsilon 0.01 epsilon 0.02

Baseline GD trained model 43.14 % 32.66 % 17.93 %
1 8.31 % 0.55 % 0.01 %
2 21.84 % 7.14 % 0.50 %
3 23.01 % 7.73 % 0.79 %
4 20.02 % 5.88 % 0.49 %

38

MIM with ce loss and L∞ distance measure
Model number epsilon 0.005 epsilon 0.01 epsilon 0.02

Baseline GD trained model 44.20 % 34.58 % 18.87 %
1 54.75 % 54.75 % 54.75 %
2 54.66 % 54.66 % 54.66 %
3 54.15 % 54.15 % 54.15 %
4 50.93 % 50.93 % 50.93 %

MIM with cw loss and L2 distance measure
Model number epsilon 0.3 epsilon 0.5

Baseline GD trained model 40.84 % 30.98 %
1 10.73 % 10.02 %
2 18.41 % 11.56 %
3 19.00 % 11.92 %
4 16.45 % 11.03 %

PGD with cw loss and L∞ distance measure
Model number epsilon 0.005 epsilon 0.01 epsilon 0.02

Baseline GD trained model 45.79 % 37.63 % 24.05 %
1 14.31 % 1.88 % 0.03 %
2 27.67 % 12.33 % 1.64 %
3 28.93 % 12.96 % 2.09 %
4 25.44 % 10.55 % 1.37 %

PGD with ce loss and L∞ distance measure
Model number epsilon 0.005 epsilon 0.01 epsilon 0.02

Baseline GD trained model 46.82 % 39.22 % 25.72 %
1 54.50 % 54.49 % 54.72 %
2 54.83 % 54.59 % 54.81 %
3 54.19 % 54.20 % 54.32 %
4 50.92 % 50.98 % 50.72 %

39

PGD with cw loss and L2 distance measure
Model number epsilon 0.3 epsilon 0.5

Baseline GD trained model 41.02 % 31.27 %
1 10.81 % 10.02 %
2 18.69 % 11.68 %
3 19.34 % 12.08 %
4 16.60 % 11.10 %

FGSM with ce loss and L2 distance measure
Model number epsilon 0.0001 epsilon 0.3 epsilon 0.5 epsilon 1.0

Baseline GD trained model 54.48 % 37.35 % 27.45 % 12.00 %
1 6.22 % 6.22 % 6.22 % 6.22 %
2 6.26 % 6.26 % 6.26 % 6.26 %
3 5.92 % 5.92 % 5.92 % 5.92 %
4 6.85 % 6.85 % 6.85 % 6.85 %

BIM with ce loss and L2 distance measure
Model number epsilon 0.0001 epsilon 0.3 epsilon 0.5 epsilon 1.0

Baseline GD trained model 54.48 % 36.29 % 25.20 % 8.13 %
1 6.22 % 6.22 % 6.22 % 6.22 %
2 6.26 % 6.26 % 6.26 % 6.26 %
3 5.92 % 5.92 % 5.92 % 5.92 %
4 6.85 % 6.85 % 6.85 % 6.85 %

MIM with ce loss and L2 distance measure
Model number epsilon 0.0001 epsilon 0.3 epsilon 0.5 epsilon 1.0

Baseline GD trained model 54.48 % 36.49 % 25.78 % 9.23%
1 6.22 % 6.22 % 6.22 % 6.22 %
2 6.26 % 6.26 % 6.26 % 6.26 %
3 5.92 % 5.92 % 5.92 % 5.92 %
4 6.85 % 6.85 % 6.85 % 6.84 %

40

PGD with ce loss and L2 distance measure
Model number epsilon 0.0001 epsilon 0.3 epsilon 0.5 epsilon 1.0

Baseline GD trained model 54.46 % 36.61 % 25.79 % 12.28 %
1 6.22 % 6.22 % 6.17 % 6.16 %
2 6.25 % 6.25 % 6.25 % 6.24 %
3 5.95 % 5.95 % 5.97 % 5.96 %
4 6.87 % 6.87 % 6.83 % 6.84 %

DeepFool
Model number overshoot 0.005 overshoot 0.01 overshoot 0.02 overshoot 0.03

Baseline GD trained model 20.74 % 9.96 % 5.71 % 3.59 %
1 26.83 % 18.98 % 11.21 % 6.68 %
2 25.95 % 19.34 % 12.65 % 8.09 %
3 28.80 % 22.47 % 15.15 % 10.03%
4 24.43 % 17.71 % 11.98 % 8.02 %

CW
Model number kappa 0 kappa 0.1

Baseline GD trained model 0 % 34.98 %
1 0 % 0 %
2 0 % 0 %
3 0 % 0 %
4 0 % 0 %

8.1.2 Black Box

NES L∞

Model number epsilon 0.01 epsilon 0.03
Baseline GD trained model 47.80 % 35.40 %

1 25.23 % 3.53 %
2 35.09 % 13.52 %
3 36.32 % 14.10 %
4 32.51 % 11.84 %

41

NES L2

Model number epsilon 0.7 epsilon 1.0 epsilon 1.3
Baseline GD trained model 46.59 % 45.33 % 44.56 %

1 21.63 % 18.14 % 16.57 %
2 32.46 % 29.67 % 28.27 %
3 33.81 % 30.90 % 29.42 %
4 29.78 % 27.45 % 26.16 %

SPSA L∞

Model number epsilon 0.01 epsilon 0.02 epsilon 0.03
Baseline GD trained model 45.73 % 36.43 % 28.13 %

1 17.77 % 3.40 % 0.59 %
2 29.76 % 13.73 % % 5.73 %
3 31.11 % 14.42 % 6.18 %
4 27.36 % 12.21 % 4.80 %

SPSA L2

Model number epsilon 0.5 epsilon 0.7 epsilon 1.0
Baseline GD trained model 44.36 % 40.06 % 33.01 %

1 15.33 % 7.06 % 1.85 %
2 27.61 % 19.26 % 10.55 %
3 28.99 % 20.46 % 11.11 %
4 25.46 % 17.58 % 9.03 %

NAttack
Model number epsilon 0.03 epsilon 0.05 epsilon 0.1

Baseline GD trained model 19.90 % 10.54 % 4.54%
1 39.41 % 32.00 % 25.96%
2 37.53 % 38.00 % 38.14%
3 31.17 % 31.98 % 32.28%
4 39.51 % 39.41 % 39.13%

42

8.2 Foolbox

8.2.1 White Box

L∞ FGSM
Model epsilon 0.005 epsilon 0.01 epsilon 0.02

Baseline GD trained model 44.39 % 35.2 % 20.6 %
1 54.77 % 54.77 % 54.77 %
2 54.68 % 54.68 % 54.68 %
3 54.16 % 54.16 % 54.16 %
4 50.95 % 50.95 % 50.95 %

L∞ BIM
Model epsilon 0.005 epsilon 0.01 epsilon 0.02

Baseline GD trained model 44.05 % 34.07 % 17.44 %
1 54.77 % 54.77 % 54.77 %
2 54.68 % 54.68 % 54.68 %
3 54.16 % 54.16 % 54.16 %
4 50.95 % 50.95 % 50.95 %

L∞ DeepFool
Model epsilon 0.005 epsilon 0.01 epsilon 0.02

Baseline GD trained model 43.12 % 32.51 % 17.2 %
1 9.2 % 0.66 % 0.01 %
2 22.46 % 7.88 % 0.64 %
3 23.71 % 8.57 % 0.86 %
4 20.52 % 6.53 % 0.64 %

L∞ PGD
Model epsilon 0.005 epsilon 0.01 epsilon 0.02

Baseline GD trained model 45.31 % 36.38 % 21.06 %
1 54.73 % 54.59 % 54.78 %
2 54.61 % 54.72 % 54.79 %
3 54.15 % 54.08 % 53.98 %
4 50.93 % 50.92 % 50.84 %

43

L2 FGSM
Model epsilon 0.3 epsilon 0.5 epsilon 1.0

Baseline GD trained model 37.36 % 27.46 % 12.0 %
1 54.77 % 54.77 % 54.77 %
2 54.77 % 54.77 % 54.77 %
3 54.38 % 54.38 % 54.38 %
4 51.01 % 51.01 % 51.01 %

L2 BIM
Model epsilon 0.3 epsilon 0.5 epsilon 1.0

Baseline GD trained model 36.37 % 25.5 % 7.81 %
1 54.77 % 54.77 % 54.77 %
2 54.74 % 54.74 % 54.74 %
3 54.36 % 54.36 % 54.36 %
4 51.01 % 51.01 % 51.01 %

L2 DeepFool
Model epsilon 0.3 epsilon 0.5 epsilon 1.0

Baseline GD trained model 34.87 % 24.45 % 8.26 %
1 1.45 % 0.07 % 0.0 %
2 11.08 % 2.61 % 0.03 %
3 11.98 % 3.2 % 0.05 %
4 9.63 % 2.21 % 0.01 %

L2 PGD
Model epsilon 0.3 epsilon 0.5 epsilon 1.0

Baseline GD trained model 39.32 % 29.84 % 12.25 %
1 54.77 % 54.69 % 54.47 %
2 54.86 % 54.67 % 54.87 %
3 54.33 % 54.55 % 54.46 %
4 51.13 % 51.08 % 50.71 %

L2 Newtonfool
Model epsilon 0.0001 epsilon 0.001 epsilon 0.005 epsilon 0.1 epsilon 0.3 epsilon 0.5

Baseline GD trained model 54.5 % 54.44 % 54.16 % 48.59 % 37.49 % 27.84 %
1 10.0 % 10.0 % 10.0 % 10.0 % 10.0 % 10.0 %
2 10.03 % 10.03 % 10.03 % 10.03 % 10.03 % 10.03 %
3 10.0 % 10.0 % 10.0 % 10.0 % 10.0 % 10.0 %
4 9.98 % 9.98 % 9.98 % 9.98 % 9.98 % 9.98 %

44

8.2.2 Black Box

L∞ AUN
Model epsilon 0.005 epsilon 0.01 epsilon 0.02 epsilon 0.1 epsilon 0.3 epsilon 0.5 epsilon 0.8 epsilon 1.0

Baseline GD trained model 54.48 % 54.47 % 54.44 % 52.74 % 34.54 % 17.49 % 13.52 % 12.42 %
1 54.75 % 54.63 % 54.81 % 50.93 % 26.34 % 16.74 % 12.61 % 11.21 %
2 54.86 % 54.97 % 54.97 % 53.73 % 37.99 % 22.81 % 13.21 % 11.69 %
3 54.54 % 54.44 % 54.26 % 53.54 % 38.29 % 24.88 % 14.05 % 11.59 %
4 51.11 % 51.07 % 50.99 % 49.28 % 34.42 % 19.92 % 12.25 % 11.06 %

L2 CR
Model epsilon 0.3 epsilon 0.5 epsilon 1.0 epsilon 3.0 epsilon 5.0 epsilon 8.0 epsilon 10.0 epsilon 13.0 epsilon 15.0 epsilon 18.0 epsilon 20.0

Baseline gradient descent model 54.56 % 54.53 % 54.55 % 52.44 % 45.66 % 29.44 % 20.37 % 13.12 % 11.09 % 10.25 % 10.06 %
1 54.63 % 54.55 % 54.47 % 53.08 % 48.46 % 35.22 % 25.06 % 15.15 % 12.31 % 10.77 % 10.31 %
2 54.81 % 54.83 % 54.86 % 51.64 % 45.48 % 30.25 % 21.81 % 14.57 % 12.09 % 10.47 % 10.14 %
3 54.49 % 54.5 % 54.51 % 53.04 % 47.88 % 32.82 % 23.03 % 14.4 % 11.88 % 10.55 % 10.14 %
4 51.09 % 51.17 % 50.9 % 48.83 % 44.05 % 30.8 % 22.51 % 15.32 % 12.85 % 10.91 % 10.53 %

L2 AGN
Model epsilon 0.3 epsilon 0.5 epsilon 1.0 epsilon 3.0 epsilon 5.0 epsilon 8.0 epsilon 10.0 epsilon 13.0 epsilon 15.0 epsilon 18.0 epsilon 20.0

Baseline gradient descent model 54.61 % 54.53 % 54.59 % 52.91 % 49.93 % 41.81 % 34.28 % 24.43 % 20.44 % 16.49 % 15.52 %
1 54.75 % 54.88 % 54.68 % 52.02 % 43.97 % 31.36 % 26.27 % 20.71 % 18.74 % 15.9 % 14.97 %
2 54.99 % 54.85 % 55.1 % 54.56 % 50.7 % 43.22 % 37.84 % 30.23 % 26.18 % 20.72 % 18.58 %
3 54.66 % 54.6 % 54.29 % 53.4 % 50.56 % 43.36 % 37.92 % 31.32 % 27.1 % 22.7 % 20.38 %
4 50.95 % 51.0 % 50.87 % 49.3 % 46.12 % 38.94 % 34.21 % 27.33 % 23.54 % 18.97 % 16.6 %

L2 S&P
Model epsilon 0.001 epsilon 0.01 epsilon 0.1 epsilon 0.5 epsilon 1.0 epsilon 3.0 epsilon 5.0

Baseline GD trained model 54.5 % 54.5 % 54.16 % 51.5 % 47.48 % 33.28 % 22.46 %
1 54.81 % 54.74 % 53.73 % 44.6 % 29.7 % 5.57 % 1.6 %
2 54.95 % 54.89 % 54.23 % 47.6 % 36.85 % 14.4 % 6.51 %
3 54.52 % 54.48 % 53.89 % 47.76 % 38.79 % 17.02 % 8.29 %
4 51.06 % 51.02 % 50.52 % 44.72 % 34.88 % 14.63 % 6.85 %

45

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Sergio Martinez
Robin Christoffer Vold

Evaluating Evolution Strategies as a
Method to Combat Adversarial
Attacks on Convolutional Neural
Networks

Bachelor’s thesis in Computer Engineering
Supervisor: Ole Christian Eidheim
May 2022

Ba
ch

el
or

’s
th

es
is

	List of Figures
	List of Tables
	Introduction
	Related Work
	Evolution Strategies
	Natural Evolution Strategies

	Adversarial Attacks
	Gradient-Based White Box Attacks
	Black Box Attacks
	Adversarial Defence
	Evaluation of Adversarial Attacks and Defence

	Method
	Model
	Training Algorithm
	Training
	Adversarial Attacks

	Results
	Models
	Attacks

	Discussion
	Training
	Attacks
	White Box Attacks
	Black Box Attacks

	Key Findings

	Conclusion
	Further Work

	References
	Appendix A: Attack hyperparameter configurations
	Foolbox
	ARES

	Appendix B: Full experiment data
	ARES
	White Box
	Black Box

	Foolbox
	White Box
	Black Box

