FENT2900 @ NTNU
Appendix A

This appendix shows the imports that were required for the simulations in this report. Further
utility functions, both adapted and custom made, are shown in Listing A.1, Listing A.2, Listing
A.3 and Listing A .4.

A.1 Utility and Utility Functions

This section includes listings that showcase the required imports, as well as utility functions
that were built to be used together with the main simulation program. The main simulation
program can be found in Appendix B. Listing A.1 shows the three types of imports that were

required in this report.

Listing A.1: Required imports
1 # building and simulating battery models

2 import pybamm

data processing
5 import numpy as np
6 import pandas as pd
7 import math

9 # memory packages
10 import tracemalloc
11 import gc

Listing A.2 shows how the data were obtained after the simulations were completed in this report.
Note that there are multiple data types in PyBaMM, because of this three separate methods were
constructed to obtain data for post-processing in MATLAB. The save_data_to_csv function
saves one data point per cycle by using the simulation solution as an input, since the needed
data are stored inside the solution object. The keyword argument file_name_add_on can be
specified in the save_data_to_csv function such that CSV files are not overwritten.

Listing A.2: Processing and saving simulation data to a CSV file

I def save_data_to_csv(N_per_slice, solution, file_name_add_on):
2 # reading the number of cycles which were simulated
3 N_cycles = solution.summary_variables|["Cycle number"][-1]

5 # saving vars which depend on cycle number

6 datalD_names — [”Time [s]", "Terminal voltage [V]", "Battery voltage [V]",

7 "Measured battery open circuit voltage [V]", "Resistance [Ohm]",
8 "Current [A]", "C-rate", "Power [W]",

9 "Discharge capacity [A.h]",

10 "Total lithium lost [mol]", "LLI [%]",

11 "Loss of lithium inventory, including electrolyte [%]",

1: "LAM_ne [%]", "LAM_pe [%]",

13 "Loss of active material in negative electrode [%]",

1 "Loss of active material in positive electrode [%]",

15 "Loss of capacity to SEI [A.h]",

16 "Loss of lithium to SEI [mol]", "Discharge capacity [A.h]",
17 "Loss of lithium to lithium plating [mol]l",

18 "Loss of capacity to lithium plating [A.h]",

19 "Ambient temperature [K]"]

data_1darray = [[], (I, I, 00, 0, 00, 0, 0, 0, 0, [,

0, 0. 0.0, 0.0.0.0,0,0. 0

A-1

FENT2900 @ NTN U

i=90
saving data from each cycle
for entry_datalD_names in datalD_names:
data from cycle 1 at the end of the first step.
saved individually because the steps between the
two first cycles which are saved, and the steps
between the other cycles that are saved is different
datalD = solution.cycles[0].steps[0][entry_datalD_names]
appending last value of the first step of cycle 1 to datalD_names
data_lDarray[i].append(datalD.data[-1])
for cycle_N in range(N_per_slice-1, N_cycles, N_per_slice):
data from cycle N at the end of the first step
datalD = solution.cycles|[cycle_N].steps[0][entry_datalD_names]
appending last value of first step of cycle N to datalD_names
data_lDarray [i].append(datalD.data[-1])
i=1i+1

saving the 1D variable data to a CSV file

dfl = pd.DataFrame(data_lDarray, index = datalD_names)

disabled, saving in one file rather than three at the end of this function
dfl.to_csv(f"simX{str(file_name_add_on)}.csv", header = False, sep = ",")

saving vars which depends on x and t
data2D_names = ["X-averaged SEI thickness [m]",
"X-averaged lithium plating thickness [m]",
"X-averaged Ohmic heating [W.m-3]",
"X-averaged reversible heating [W.m-3]1",
"X-averaged irreversible electrochemical heating [W.m-3]",
"X-averaged total heating [w.m—3]"]
data_2barray = [[], [}, [I, I, (I, []]

i=0
saving one averaged datapoint from each cycle for each data name
for data2D_name in data2D_names:
data2D = sum(solution.cycles|[0][data2D_name].data)/len(solution.cycles[0]]
data2D_name |.data)
data_2Darray|[i].append(data2D)
for cycle_N in range(N_per_slice-1, N_cycles, N_per_slice):
data2D = sum(solution.cycles|[cycle_N]|[data2D_name].data)/len(solution.
cycles[cycle_N][data2D_name].data)
data_2Darray [i].append(data2D)
i=1i+41

saving the 2D variable data to a CSV file

df2 = pd.DataFrame(data_2Darray, index = data2D_names)

disabled, saving in one file rather than three at the end of this function
df2.to_csv(f"simY{str(file_name_add_on)}.csv", header = False, sep = ",")

saving summary variables

dataSummary_names = ["Cycle number", "Capacity [A.h]",
"Local ECM resistance [Ohm]",
"Loss of lithium inventory [%]",
"Loss of lithium inventory, including electrolyte [%]",
"Measured capacity [A.h]",
"Negative electrode capacity [A.h]",
"Positive electrode capacity [A.h]",
"Total capacity lost to side reactions [A.h]",
"Total lithium [mol]",
"Total lithium in electrolyte [mol]",
"Total lithium in negative electrode [mol]",
"Total lithium in particles [mol]",
"Total lithium in positive electrode [mol]",
"Total lithium lost [mol]",

A-2

FENT2900

"Total lithium lost from electrolyte [mol]",

"Total lithium lost from particles [mol]",

"Total lithium lost to side reactions [mol]"]
data_Summaryarray = [[]) H) []) H) H) []) H) H) [])

a0, 0, 0, 0.0, 0,0, 0, 0

i=0

saving data from each summary variable

for dataSummary_name in dataSummary_names:
save_data_typeSummary = solution.summary_variables|[dataSummary_name |[0]
data_Summaryarray[i].append(save_data_typeSummary)
for cycle_N in range(N_per_slice-1, N_cycles, N_per_slice):

save_data_typeSummary = solution.summary_variables|[dataSummary_name ||
cycle_N|
data_Summaryarray[i].append(save_data_typeSummary)
i=1+1

saving the summary variables to a CSV file

df3 = pd.DataFrame(data_Summaryarray, index = dataSummary_names)
disabled, saving in one file rather than three at the end of this function
df3.to_csv(f"simZ{str(file_name_add_on)}.csv", header = False, sep = ",")

collecting all variable values and names into respective arrays
save_data_to_csvFile = data_1lDarray + data_2Darray + data_Summaryarray
varData_names = datalD_names + data2D_names + dataSummary_names

concatenating the dataframes and aligning them along the row (index) axis
df = pd.concat ([dfl, df2, df3], axis = 0)

df = pd.DataFrame(save_data_to_csvFile, index = varData_names)

saving the data to a CSV file for further post-processing
df.to_csv(f"Sim{str(file_name_add_on)}.csv", header = False, sep = ",")
return

@NTNU

The memory tracking function, display_memory_usage, were utilised together with the garbage
collector module, gc, from Listing A.1, to map memory usage and memory clearing. Together,
they were used to pinpoint memory usage by the different program components to a reasonable
accuracy. The display_memory_usage in Listing A.3 is directly adopted from the tracemalloc
documentation [141].

Listing A.3: Memory utilization tracking function

1 # https://docs.python.org/3/library/tracemalloc.html

2 def display_memory_usage(snapshot, key_type = ’lineno’):
3 snapshot = snapshot.filter_traces ((
tracemalloc.Filter (False, "<frozen importlib._bootstrap>"),
5 tracemalloc.Filter (False, "<unknown>"),
6)
7 top_stats = snapshot.statistics(key_type)
8 total = sum(stat.size for stat in top_stats)
9 print ("Total allocated size: %.1f GiB" % (total/(1024*106"6)))
10 return

Listing A.4 presents a custom memory clearing function. The RAM_clearing_routine replicates
the functionality provided by the save_at_cycles keyword argument in the PyBaMM solve
method. The function were however not based on any source code. To see that the
RAM_clearing_routine worked as intended, it was checked against the functionality which
save_at_cycles provides. After some iterations of the RAM_clearing routine it provided
the same functionality, but it can be used for any cycling scheme involving a loop, unlike
save_at_cycles which were not designed for this.

A-3

FENT2900

@NTNU

19

Listing A.4: Memory clearing function

def RAM_clearing_routine(cycle_N, N_per_slice, sol):
calculating which slice to clear solutions from
clearing_N = math.ceil(cycle_N/N_per_slice)
If first slice, data needs to be treated differently,
since the first cycle should be saved

if clearing_ N — 1:

looping through the cycles of the first slice

for N in range(len(sol.cycles)):

if N = 0:

N number of cycles in the first slice

saving the first cycle

continue
elif (N+1)%N_per_slice:

clearing RAM by replacing sol with None

sol.cycles [N] = None
else:

saving the ones specified by N_per_slice

continue

all the slices after the first slice is treated similarly
since the first cycle of these slices should not be saved

else:

if cycle_N < N_per_slice®clearing_N:

calculating the number of cycles which were

not completed within the slice

subN = N_per_slice*clearing_N -

len(sol.cycles)

looping through the cycles of the partially completed slice

for N in range((clearing_N-1)*N_per_slice, clearing N*N_per_slice-subN):

clearing RAM by replacing sol with None

sol.cycles [N] = None
else:

looping through the cycles of a fully completed slice
for N in range((clearing_N-1)*N_per_slice, clearing N*N_per_slice):

if (N+1)%N_per_slice:

clearing RAM by replacing sol with None
sol.cycles [N] = None

else:

saving the ones specified by N_per_slice

continue

A-4

FENT2900 @ NTNU
Appendix B

This appendix includes Listing B.1 which shows how the simulations of this report were
customized. Listing B.2 further shows how these settings were implemented into simulations,
and in the end simulated.

B.1 Customizing and Conducting the SoC Window Simulation

Listing B.1 shows how the discussed settings from Chapter 4, are implemented into a simulation,
and how it is solved. The base parameter set is set, further, Listing B.1 shows the imported
parameters, submodel options, solver options, and mesh customisation. At the end of Listing
B.1 all the listed choices are implemented into a custom simulation function, which was utilised
to cycle between two defined SoC values. This function can be found in Listing B.2. To vary
any given parameter three lines of code are simply changed in Listing B.1. The program has
been divided into sections to ease the readability. The sections are defined as presented in the
following list.

e Simulation settings
— Lines 6-33

e Setting submodel options
— Lines 36-47

o Parameter settings
— Lines 49-126

e Solver settings
— Lines 129-131

e Mesh settings
— Lines 135-147

e Solving the specified battery model
— Lines 150-173

e Vary another parameter

— Lines 16, 168 and 170

Listing B.1: Customizing the simulation

I # # # UTILITY SECTION # # #
setting the logging level to notice for visualisation of simulation progress:
pybamm.set_logging_level ("NOTICE")

SIMULATION SETTINGS SECTION # #

7 # defining important variables for the type of experiment which is conducted:
how many cycles for each experiment + which SoC ranges to test in the

experiments, C-rates for charge and discharge are also set.

11 # Note that for every array element a corresponding datafile

B-1

FENT2900 E NTNU

will be created. It can be ID’d by its value.

Which SoC ranges to cycle between and compare:

The different ambient temperatures to compare ageing
between in degrees C:

T_ambs = [0, 25, 50]

default value: 25 degrees C (298.15 K)

Number of cycles per temperature setting:
N_cycles_per_param = 80

Number of cycles before clearing RAM:

(Must be smaller than or to N_cycles_per_param)
cycles_per_slice = 40

Done to reduce RAM usage, clears RAM after

every slice of N cycles is run through

C-rates:
charging_C_rate = 2
discharging_C_rate = 1

Which initial SoC’s to cycle between:
lower_SoC = 0.3
upper_SoC = 0.7

MODEL SECTION # #
setting submodel options:
LAM_1i_plt_SEI_thermal_options = {
"particle mechanics": "swelling and cracking",
"loss of active material" : "stress-driven",
"lithium plating" : "irreversible",
"lithium plating porosity change" : "true",
"SEI" : "solvent-diffusion limited",
"SEI film resistance" : "distributed",
"SEI porosity change" : "true",
"thermal" : "lumped"

PARAMETER SECTION # #
chosing Chen2020 as base parameter set and editing it:
chen2020_params = pybamm.parameter_sets.Chen2020

to run with Oregan2021 as the base parameter set
https://github.com/pybamm-team/PyBaMM/blob/develop/pybamm/input/parameters/
lithium_ion/seis/example/parameters.csv

chen2020_params["sei"] = "example"

* W W W

Lithium plating parameters inserted from Okane2020 parameter set:

https://github.com/pybamm-team/PyBaMM/tree/develop/pybamm/input/parameters/
lithium_ion/lithium_platings/okane2020_Li_plating

chen2020_params ["lithium plating"] = "okane2020_Li_plating"

ParameterValues set such that missing parameters can be inserted:
params = pybamm.ParameterValues (chemistry = chen2020_params)

Negative electrode parameters inserted from Ai2020 parameter set:
https://github.com/pybamm-team/PyBaMM/blob/develop/pybamm/input/parameters/

H*

lithium_ion/negative_electrodes/graphite_Ai2020/parameters.csv

Negative electrode, mechanical properties:

params.update({"Negative electrode Poisson’s ratio" : 0.3}, check_already_exists =
False)

params.update({"Negative electrode Young’s modulus [Pal" : 15e9},
check_already_exists = false)

params.update ({"Negative electrode reference concentration for free of deformation [

B-2

FENT2900 @ NTN U

mol.m-31" : 0}, check_already_exists = false)

74 params.update ({"Negative electrode partial molar volume [m3.mol-1]1" : 3.le-6},
check_already_exists = false)

75 # Parameter defined as a function, as shown in Table 4.6

76 params.update({"Negative electrode volume change" : graphite_volume_change_Ai2020},
check_already_exists = false)

78 # Negative electrode, crack model:

79 params.update ({"Negative electrode initial crack length [m]" : 20e-9},
check_already_exists = false)

80 params.update({"Negative electrode initial crack width [m]" : 15e-9},
check_already_exists = false)

81 params.update({"Negative electrode number of cracks per unit area [m-2]" : 3.18el5},
check_already_exists = false)

82 params.update ({"Negative electrode Paris’ law constant b" : 1.12},
check_already_exists = false)

83 params.update({"Negative electrode Paris’ law constant m" : 2.2},
check_already_exists = false)

84 # Parameter defined as a function, as shown in Table 4.6

85 params.update({"Negative electrode cracking rate" : graphite_cracking_rate_Ai2020},
check_already_exists = false)

86 params.update({"Negative electrode activation energy for cracking rate [J.mol-1]"
0}, check_already_exists = false)

88 # Negative electrode, loss of active materials (LAM) model:

89 params.update ({"Negative electrode LAM constant proportional term [s-1]" : 0},
check_already_exists = false)

90 params.update({"Negative electrode LAM constant exponential term" : 2},
check_already_exists = false)

91 params.update({"Negative electrode critical stress [Pal]" : 60e6},
check_already_exists = false)

92
93 # Positve electrode parameters inserted from Ai2020 parameter set:
https://github.com/pybamm-team/PyBaMM/blob/develop/pybamm/input/parameters/
95 # lithium_ion/positive_electrodes/lico2_Ai2020/parameters.csv

96

H*

94

97 # Positve electrode, mechanical properties:

98 params.update ({"Positive electrode Poisson’s ratio" : 0.2}, check_already_exists =
false)

99 params.update({"Positive electrode Young’s modulus [Pal]" : 375e9},
check_already_exists = false)

100 params.update({"Positive electrode reference concentration for free of deformation [
mol.m-31" : 0}, check_already_exists = false)

101 params.update ({"Positive electrode partial molar volume [m3.mol-1]" : -7.28e-7},

check_already_exists = false)
102 | # Parameter defined as a function, as shown in Table 4.6

103 params.update ({"Positive electrode volume change" : lico2_volume_change_Ai2020},
check_already_exists = false)

104

105 # Positve electrode, crack model:

106 params.update ({"Positive electrode initial crack length [m]" : 20e-9},
check_already_exists = false)

107 params.update({"Positive electrode initial crack width [m]" : 15e-9},
check_already_exists = false)

108 params.update ({"Positive electrode number of cracks per unit area [m-2]" : 3.18el5},
check_already_exists = false)

109 params.update ({"Positive electrode Paris’ law constant b" : 1.12},
check_already_exists = false)

110 params.update({"Positive electrode Paris’ law constant m" : 2.2},
check_already_exists = false)

111 | # Parameter defined as a function, as shown in Table 4.6

112 params.update({"Positive electrode cracking rate" : lico2_cracking_rate_Ai2020},
check_already_exists = false)

113 params.update ({"Positive electrode activation energy for cracking rate [J.mol-1]1"

B-3

FENT2900

114
115
116

118

0}, check_already_exists = false)

Positve electrode, loss of active materials (LAM) model:
params.update ({"Positive electrode LAM constant proportional term [s-1]"
check_already_exists = false)

params.update ({"Positive electrode LAM constant exponential term" 2},
check_already_exists = false)

params.update({"Positive electrode critical stress [Pal" 375e6},
check_already_exists = false)

Cell parameter inserted from Ai2020:

https://github.com/pybamm-team/PyBaMM/blob/develop/pybamm/input/parameters/

lithium_ion/cells/Enertech_Ai2020/parameters.csv

params.update({"Cell thermal expansion coefficient [m.K-1]"
check_already_exists = false)

1.1e-6},

Lowering the cut-off voltage:

params.update ({"Lower voltage cut-off [V]" 2.5}) # default value: 2.8 V

CHOSING SOVLER SECTION # #
Using the CasadiSolver with custom settings to solve the model
solver = pybamm.CasadiSolver(atol = le-6, rtol = le-6, mode = "fast with events")

MESH SECTION # #
making the mesh finer to avoid SolverErrors
var_pts = {

"x_n" 50, # x-direction, length, negative electrode

"x_s" 50, # x-direction, length, separator

"x_p" : 50, # x-direction, length, positive electrode

"r_n" : 50, # number of volumes in the radial direction, negative particle
"r_p" : 50, # number of volumes in the radial direction, positive particle
"y" o 10, # y-direction, depth (kept at default value)

"z" 10, # z-direction, height (kept at default value)

"R_n" : 30, # negative particle radius (kept at default value)

"R_p" : 30 # positive particle radius (kept at default value)

ACQUIRING INITIAL CELL CAPACITY SECTION # #
running an experiment to get the initial battery cell capacity
mapping_experiment = pybamm.Experiment ([

("Rest for 1 minute")]

extracting initial capacity of a fresh LiB cell by solving

the model and reading the "Capacity [A.h]" summary variable.
dfn = pybamm.lithium_ion.DFN()

mapping_sim = pybamm.Simulation(dfn, parameter_values = params,
mapping_experiment, var_pts = var_pts)

start at 0.3 SoC to avoid minimum/maximum voltage error

solver = solver,
experiment =

mapping_sol = mapping_sim.solve(initial_soc = 0.3)
mapping_solution = mapping_sim.solution
initial_cap = mapping_solution.summary_variables|["Capacity [A.h]"][0] # Ah

SOLVING THE SPECIFIED SIMULATION SECTION # #
SIM start,
for T_amb in T_ambs:

updating the param which is investigated

params.update ({"Ambient temperature [K]" 273.15 + T_amb})

conductSim = sim_N_cycles_individually (N_cycles = N_cycles_per_param,

one for each parameter value

B-4

@NTNU

2.78e-13},

FENT2900 @ NTN U

N_per_slice = cycles_per_slice, solution = mapping_solution, lower_SoC =
SoC_range [0], upper_SoC = SoC_range[l], options = LAM_1i_plt_SEI_thermal_options,
params = params, solver = solver, var_pts = var_pts, C_charge = charging_C_rate
, C_discharge = discharging_C_rate)

172 # saving specified data

173 save_data_to_csv(N_per_slice = cycles_per_slice, solution = conductSim[0],
file_name_add_on = str(T_amb))

Listing B.2 shows how the SoC cycling method was performed after all settings were set, as shown
in Listing B.1. The sim_N_cycles_individually function accepts information on amount of
cycles, when to clear memory, starting solution to use, lower and upper SoC, C-rates, submodel
options, parameter values, solver and mesh. It makes sure that the simulation starts on the
specified lower SoC, as seen in line 25. The next cycles are, however, set to start on the previous
cycle’s simulation sol, as seen in line 31. Several checks are implemented from line 26 to 45 to
deal with the minimum and maximum voltage issue, for instance, as discussed in Section 3.4.3.
The memory clearing routine is also called every N_per_slice cycles in line 42, to counteract
the general relation of rising memory utilisation as a function of number of cycles. Even though
it copied the only memory saving technique presented in the PyBaMM documentation, it only
helped to alleviate some memory usage.

Listing B.2: SoC window simulation function

I def sim_N_cycles_individually (N_cycles, N_per_slice, solution, lower_SoC, upper_SoC,
options, params, solver, var_pts, C_charge, C_discharge):

sim_stopped_progression = false

3 # set to false by default since the sim is not stopped by default

N

cycling through every cycle one by one
5 for cycle_N in range(l, N_cycles+tl):
6 # obtaining remaining cap

7 remaining_cap = solution.summary_variables|["Capacity [A.h]"][-1]

8 initial_lower_Q = lower_SoC * remaining_cap # Ah

9 initial_upper_Q = upper_SoC * remaining_cap # Ah

10 charging_current = C_charge * remaining_cap # A

11 discharging_current = C_discharge * remaining_cap # A

12 charge_time = (initial_upper_Q - initial_lower_Q)/charging_current # h

13 discharge_time = (initial_upper_Q - initial_lower_Q)/discharging_current # h

15 # defining experiment, model and simulation

16 experiment_N_1 = pybamm.Experiment (|

17 (f"Charge at {charging_current} A for {charge_time} hours",

18 f"Discharge at {discharging_current} A for {discharge_time} hours")])

19 dfn = pybamm.lithium_ion.DFN(options = options)

20 sim = pybamm.Simulation(dfn, parameter_values = params, solver = solver,
experiment = experiment_N_1, var_pts = var_pts)

21

22

23 if cycle_ N — 1:

24 # solving sim, first cycle starting on lower SoC

25 sol = sim.solve(initial_soc = lower_SoC)

26 try: # checking if the first cycle was successfully solved

27 len(sol.cycles)

28 except AttributeError:

29 raise Exception(’The first cycle did not complete. Use pybamm.
set_logging_level ("NOTICE") to see what went wrong.’)

30 else:

31 # solving sim, starting on sol

32 sol = sim.solve(starting_solution = sol)

33 # obtaining information for starting point for next cycle

3 solution = sim.solution

B-5

FENT2900 @ NTN U

36 # check if last cycle were successfully solved
37 if len(sol.cycles) != cycle_N:
38 sim_stopped_progression = True

40 # RAM clearing routine enabled every N_per_slice cycles

41 if cycle_N%N_per_slice — 0 or sim_stopped_progression — True:
42 RAM_clearing_routine(cycle_N, N_per_slice, sol)

43 # loop is cut short if the sim is not progressing

44 if sim_stopped_progression:

15 return [solution, sol]

16 return [solution, sol]

B-6

FENT2900 @ NTNU
Appendix C

This appendix is included to highlight a proposed SoC pathfinder algorithm. The basic working
principle is explained, and the program is presented in Listing C.1.

C.1 Proposal for an Optimal SoC Window Pathfinder Algorithm

A pathfinder theorem has been conjectured, and it has been shown to increase SoH as a function
of time and cycle number in simulations. The use of the program presented in Listing C.1 has
been shown to increase capacity retention compared to cycling at static SoC windows, with the
method shown in Listing B.2. Note that the ASoC stays the same between the comparisons. The
program finds the best static SoC range for a set amount of cycles defined by loop_n_cycles.
Then a new best SoC range is found for the next loop_n_cycles. This is repeated until the
number of desired cycles are completed. Note that the code, as presented in Listing C.1, checks
with 2% SoC steps and excludes the 20% upper and 20% lower states of charge. This is done
to decrease compute time. Accuracy decreases when using 2% steps compared to 1%, and
lower. It was however not practical to do the simulations with any lower resolution due to both
computational constraints, and the fact that SoC cannot be measured directly in the real world.
The upper and lower states of charge were also eliminated, and thus not checked, in order not
to waste any time checking the areas which are traditionally known as the worst for battery
health.

Listing C.1: Proposed pathfinder algorithm

1 # # # SIMULATION SETTTINGS SECTION # # #
2 # How many cycles to find the best SoC range for:
3 N_cycles = 1000

5 # Which C-rates to use throughout the experiment:
6 charging_C_rate = 2
7 discharging_C_rate =1

9 # How large should the operating SoC range be (given as X %):
10 # Script searches from min SoC of 20% to max SoC of 80%

11 # A range_SoC of 30 cycles between 30%-60% for example

12 range_SoC = 40

13 # lowest SoC value to try

14 loop_from_lower_soc = 20

15 # when to check for new optimal SoC range

16 loop_n_cycles = 50

17 # Max upper SoC, set to 80%

18 max_upper_loop_SoC = round(100-19-range_SoC, 2)

23 # # # SOLVING THE SPECIFIED SIMULATION SECTION # # #

24 # making empty lists such that information can be appended at the

25 # end of each experiment

26 caps, sols, actual_lowerSoC_maxs, actual_upperSoC_maxs = [], [], [], []
27 N_split = N_cycles//loop_n_cycles-1

28 cap_max = 0

29 # doing "N_split #1"

30 for lowerSoC in range(loop_from_lower_soc, int(max_upper_loop_SoC), 2): # 20-80%, 2%
31 actual_lowerSoC = lowerSoC/100

32 actual_upperSoC = (lowerSoC + range_SoC)/100

33 upperSoC = lowerSoC + range_SoC

C-1

FENT2900 @ NTN U

34 lowerQ = lowerSoC * initial_cap/100

35 upperQ = upperSoC * initial_cap/100

36 charging_current = charging_C_rate * initial_cap

37 discharging_current = discharging_C_rate * initial_cap
38 charge_time = (upperQ - lowerQ)/charging_current

39 if charge_time <= 0.1: # minimum 6 min. charging

40 continue

11 discharge_time = (upperQ - lowerQ)/discharging_current
12

43 first_cycle_experiment = pybamm.Experiment (|

14 (f"Charge at {charging_current} A for {charge_time} hours",
15 f"Discharge at {discharging_current} A for {discharge_time} hours")}

46)

17

18 sim = pybamm.Simulation(dfn, parameter_values = params, solver = solver,
experiment = first_cycle_experiment, var_pts = var_pts)

19 sol = sim.solve(initial_soc = actual_lowerSoC)

50 solution = sim.solution # completed the first cycle

51

52 exceptionBool = False

53 try: # trying next n-1 cycles (try is used to counter voltage exception)

54 for cycle_N in range(l, loop_n_cycles): # looping through slice

55 remaining_cap = solution.summary_variables|["Capacity [A.h]"][-1] # Ah
56 charging_current = charging_C_rate * remaining_cap # A

57 discharging_current = discharging_C_rate *
58 charge_time = (upperQ - lowerQ)/charging_current # h

59 discharge_time = (upperQ - lowerQ)/discharging_current # h

remaining_cap # A

61 experiment = pybamm.Experiment (|
62 (£f"Charge at {charging_current} A for {charge_time} hours",
63 f"Discharge at {discharging_current} A for {discharge_time} hours")

D)

64

65 sim = pybamm.Simulation(dfn, parameter_values = params, solver = solver,
experiment = experiment, var_pts = var_pts)

66 sol = sim.solve(starting_solution = sol)

67 solution = sim.solution

68

69 if len(sol.cycles) != cycle_N + 1:

70 print ("Jump to outer SoC loop (Min/max voltage exception)")

71 exceptionBool = True

72 raise Exception()

74 if exceptionBool —— False:

75 if cycle_N + 1 = loop_n_cycles:

76 cap = solution.summary_variables|["Capacity [A.h]"][-1]

77 print (f"Last completed cycles: 1-{loop_n_cycles} with SoC: ",
actual_lowerSoC,"-", actual_upperSoC,"and Capacity: ", cap)

78 # saving the best static SoC for cycle 1-N

79 if cap > cap_max:

80 print("New max cap: ", cap)

81 sol_max = sol

82 cap_max = cap

83 solution_max = solution

84 actual_lower_SoC_max = actual_lowerSoC

85 actual_upper_SoC_max = actual_upperSoC

86 except Exception:

87 exceptionBool = False

88 continue

90 # first 10 cycles done, saving vars

91 caps.append(cap_max)

92 sols.append(sol_max)

93 actual_lowerSoC_maxs.append(actual_lower_SoC_max)

C-2

FENT2900 @ NTN U

94 actual_upperSoC_maxs.append(actual_upper_SoC_max)
95 print("First slice of cycles are completed. Best SoC saved:", actual_lowerSoC_maxs,
actual_upperSoC_maxs, "Capacity: , caps)

97 # Simulating the next cycle slices

98 for j in range(l, N_split+l):

99 actual_completed_cycle_count = j*loop_n_cycles

100 cap_max = 0

101 previous_lower_Q = actual_lowerSoC_maxs|[-1]

102 previous_max_sol = sols[-1] # saving previous_max_sol to use in loop
103 remaining_cap = caps[-1] # saving previous max capacity

104 for lowerSoC in range(loop_from_lower_soc, int(max_upper_loop_SoC), 2):
105 actual_lowerSoC = lowerSoC/100

106 actual_upperSoC = (lowerSoC + range_SoC)/100

107 upperSoC = lowerSoC + range_SoC

108 lowerQ = lowerSoC * remaining_cap/100

109 upperQ = upperSoC * remaining_cap/100

110 charging_current = charging_C_rate * remaining_cap

111 discharging_current = discharging_C_rate * remaining_cap

113 # start on previous SoC

114 charge_time = (upperQ - previous_lower_Q)/charging_current
115 if charge_time <= 0.1: # minimum 6 min. charging

116 continue

117 discharge_time = (upperQ - lowerQ)/discharging_current

119 experiment = pybamm.Experiment (|
120 (f"Charge at {charging_current} A for {charge_time} hours",
21 f"Discharge at {discharging_current} A for {discharge_time} hours")])

23 sim = pybamm.Simulation(dfn, parameter_values = params, solver = solver,
experiment = experiment, var_pts = var_pts)

124 # starting on previous best sol

125 sol = sim.solve(starting_solution = previous_max_sol) # previous best

126 # using sol for the next N-1 cycles

127 solution = sim.solution

129 if len(sol.cycles) != actual_completed_cycle_count+l:
130 print ("Jump to SoC loop start (Min/max voltage exception)")
131 continue

133 exceptionBool = False
34 try: # trying to do the next slice
35 for cycle_N in range(2, loop_n_cycles + 1):

136 remaining_cap = solution.summary_variables["Capacity [A.h]"][-1]
37 charging_current = charging_C_rate * remaining_cap # A
38 discharging_current = discharging_C_rate * remaining_cap # A

39 new_lowerQ = actual_lowerSoC * remaining_cap # Ah

140 new_upperQ = actual_upperSoC * remaining_cap # Ah

141 charge_time = (new_upperQ - new_lowerQ)/charging_current # h

142 discharge_time = (new_upperQ - new_lowerQ)/discharging_current # h
143

144 experiment = pybamm.Experiment (|

145 (f"Charge at {charging_current} A for {charge_time} hours",
146 f"Discharge at {discharging_current} A for {discharge_time}

hours")])

147

148 sim = pybamm.Simulation(dfn, parameter_values = params, solver =
solver , experiment = experiment, var_pts = var_pts)

149 sol = sim.solve(starting_solution = sol)

50 solution = sim.solution

151

52 if len(sol.cycles) != actual_completed_cycle_count + cycle_N:

153 print ("Jump to outer SoC loop (Min/max voltage exception)")

C-3

FENT2900 B NTN U

180

exceptionBool = True
raise Exception()

if exceptionBool — False:
if cycle_N =— loop_n_cycles:
cap = solution.summary_variables["Capacity [A.h]"][-1]
print (£"Completed cycles: {actual_completed_cycle_count}-{
actual_completed_cycle_count+10} with SoC: ", actual_lowerSoC,"-",
actual_upperSoC,"and Capacity: ", cap)

if cap > cap_max: # saving the best static SoC for cycle 1-N

print ("New max cap: ", cap)
sol_max = sol
cap_max = cap
solution_max = solution
actual_lower_SoC_max = actual_lowerSoC
actual_upper_SoC_max = actual_upperSoC

except Exception:

exceptionBool = False

continue

saving vars for the next loop_n_cycles cycles

caps.append (cap_max)

sols.append(sol_max)

actual_lowerSoC_maxs.append(actual_lower_SoC_max)

actual_upperSoC_maxs.append(actual_upper_SoC_max)

print ("Next slice of cycles are completed. Best SoC saved:",

actual_lowerSoC_maxs, actual_upperSoC_maxs, "Capacity: , caps)
print("All cycles completed.")

@ NTNU SIEMENS
Norwegian Universy o CNErGY

