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Abstract

Economic development has gradually promoted an increase in the demand for and size of long-span bridges
worldwide. A tangible example of such development is the Coastal Highway Route E39 led by the Norwegian
Public Roads Administration (NPRA). The project proposes the construction of a 1000 km ferry-free highway from
the cities of Kristiansand to Trondheim, including 8 major fjord crossings spanning from 1300 to 5000 m at water
depths from 500 to 1250 m. The longest, single-span suspension bridge planned within the project is the 3000 m
bridge across Sulafjord in the county of Mgre og Romsdal in western Norway. The project has encouraged several
research studies from which this thesis takes off.

Structures such as the Sulafjord Bridge pose a major challenge to the existing technologies of bridge construction.
As bridges become longer, they become more flexible and susceptible to wind loading. However, wind loading
and its effects are often oversimplified in most of the current design guidelines. Some of these simplifications may
be acceptable for designing regular structures but are unaccurate for long-span bridges. Recent experience based
on full-scale measurements has shown discrepancies between the observations and available analytical
formulations. Therefore, the need to revaluate the design guidelines is exposed. Existing research has pointed out
the omission of the stochastic behaviour of the structural response and wind turbulence as the main reason for
these discrepancies. Alternatively, full long-term analysis is recognized as the most accurate way to evaluate the
stochastic behaviour of the structural response given the fluctuations of the environmental conditions during the
lifetime of a structure. Nevertheless, the traditional full long-term analysis is based on numerical integration and
requires the evaluation of the short-term response statistics from several environmental states. This requirement
renders the approach unfeasible for practical engineering applications such as the Sulafjord Bridge.

The objective of this thesis is to propose a reliable and computationally efficient, full long-term framework for the
wind-resistant design of long-span bridges. The Sulafjord Bridge was selected as a case study. Although the results
are site-specific, the framework can be easily extended to similar projects given that site-specific data are
available, which is the case for most projects of this magnitude. The thesis is composed of a collection of papers,
each of which accomplishes a portion of the general objective. The first paper shows surrogate modelling
strategies to reduce the computational effort in the estimation of the short-term statistics of the wind responses
given a wind state. Conversely, the paper applied the data of the Hardanger Bridge as the accuracy of the
surrogate modelling was compared with full-scale, measured bridge responses (not available at Sulafjord). The
second paper presents the wind characterization of the Sulafjord site with the environmental contour method
and a probabilistic model of wind turbulence. The third paper presents a full long-term analysis of the extreme
response and compares the results with the existing methods utilized in the design guidelines. In this paper, we
also proposed a framework to reduce the computational effort of the full long-term analysis by replacing the
traditional analysis based on numerical integration with importance sampling Monte Carlo (ISMC) simulations.
The fourth and final paper combines the strategies of surrogate modelling and importance sampling Monte Carlo
simulations to enhance the efficiency of full long-term analysis.

The results of this thesis showed that environmental contours were the most efficient strategy for representing
the characterization of the wind conditions at the Sulafjord Bridge site. The contours captured the variability
measured wind turbulence and provided a more complete and yet intuitive description of the wind field compared
with the current design methodology. Extreme responses from the environmental contours were on average 14%
higher than the common practice based on the short-term method. The surrogate modelling strategy was a very
accurate alternative for estimating the short-term statistics. The models evaluated in this thesis showed a
complementary mean absolute percent error (1-MAPE) of 98% compared with analytical predictions of the
buffeting response, and the full long-term framework based on the surrogate model required less than 1% of the
computational effort of the traditional full long-term analysis. The most important finding of this thesis is that the
extreme response from the full long-term analysis was on average more than 25% larger than the traditional
short-term methodology.



Acknowledgements

| dedicate this work to my son. | hope that this research inspires you to achieve your goals in life. Nonetheless, |
regret every moment that | missed with you while | was away. Hopefully, we will not be apart anymore. | also
thank Yamile Aponte for being such an important source of support during this period. Herminia Castellon was
also invaluable; thank you for always listening to me during our phone conversations. This work is for you. Your
efforts supported me during the dark nights and tough winters.

To my supervisor Ole @iseth, | sincerely thank you for your guidance and patience. | learned many valuable lessons
from you, and | will treasure them during my journey. To my work team, Aksel Fenerci and @yvind Petersen, | am
thankful for the positive comments and your commitment to my work without any expectation of retribution.

I thank the dynamics group for their help and wonderful conversations during the coffee breaks. To my officemate
Maria, thank you for the music that we played. To Anno and Sebastian, thank you for training me to achieve one
of my side goals of completing a triathlon. To Niccolo, Gabriel and Oddbjgrn, thank you for listening to me and
showing me the qualities of a good friendship. To the other team members, Anders, Stefano, Bjgrn, Gunnstein,
Tor Martin, Knut, Bartoz, Minglie, Teng Jiao, and the remainder of the community in the structural department,
thank you for the amazing working environment.



Preface

This thesis is submitted in partial fulfilment of the requirements for the degree Philosophiae Doctor at the
Norwegian University of Science and Technology (NTNU). The work has been carried out at the Department of
Structural Engineering, Faculty of Engineering and with financial support from the Norwegian Public Road
Administration (NPRA). Professor Ole Andre @iseth, Associate Professor Aksel Fenerci and researcher @yvind Wiig
Petersen supervised the work.

This thesis is composed of a collection of four papers, either published or submitted to international peer-
reviewed scientific journals, and the following introductory part.

Dario Rafael Fernandez Castellon
Trondheim, Norway
March 2022



List of appended papers

I [1] Castellon D, Fenerci A, @iseth O. A comparative study of wind-induced dynamic response models of
long-span bridges using artificial neural networks, support vector regression and buffeting theory. J.
Wind Eng. Ind. Aerodyn., vol. 209, p. 104484, 2021, doi: https://doi.org/10.1016/j.jweia.2020.104484.
II. [2] Castellon D, Fenerci A, @iseth O. Environmental contours for wind-resistant bridge design in complex
terrain. J. Wind Eng. Ind. Aerodyn., vol. 224, p. 104943, 2022, doi: 10.1016/j.jweia.2022.104943.
M. [3] Castellon D, Fenerci A, @iseth O, Petersen @. Investigations of the long-term extreme buffeting

response of long-span bridges using importance sampling Monte Carlo simulations. Submitted for
Journal publication.

IV. [4] Castellon D, Fenerci A, @iseth O, Petersen @. Full long-term buffeting analysis of suspension bridges
using Gaussian process surrogate modelling and importance sampling Monte Carlo simulations.
Submitted for Journal publication.


https://doi.org/10.1016/j.jweia.2020.104484

Other scientific contributions

[5] D. F. Castellon, A. Fenerci, and O. A. @iseth, “A study on the evaluation of wind induced vibration of
long-span suspension bridges with artificial neural networks,” Proc. Int. Conf. Struct. Dyn., EURODYN,
vol. 1, no. June, pp. 1958-1967, 2020.

[6] D. F. Castellon, Aksel Fenerci, and O. @iseth, “A PROBABILISTIC ANALYSIS OF THE WIND FIELD AT
SULAFJORDEN BRIDGE SITE,” in ANCRISST:14th International Workshop on Advanced Smart Materials
and  Smart  Structures Technology, 2019, pp. 115-118, [Online]. Available:
https://doi.org/10.13133/9788893771146.

D. F. Castellon, A. Fenerci, and O. A. @iseth, “Estimation of extreme buffeting response in long-span
bridges with Environmental Contour Method”. Submitted to conference publication 8EACWE: 8th

European African Conference on Wind Engineering.


https://doi.org/10.13133/9788893771146

CONTENT

AADSTIACT ..t h bbbttt i
ACKN OWI BAZMENTS ...ttt ettt ettt a2t e a e be e bt e st e s b e b e e s e e ss e st e b e e ae e s s e s b e b e eae e s s esbeeseeseesbenbenseeneensen ii
PIETACE ... iii
List OF @PPENAEA PAPEIS ....veeiieiee ettt ettt ettt ettt a et a ettt ettt ettt ettt iv
Other sCientific CONTIIDULIONS ........oiiiiii ettt v
1 INEFOTUCTION .ttt ettt 1
1.1 Background @and MOTIVATION ..ottt ettt ettt 1
1.2 ODJECTIVES @NT SCOPE....cviiiietieteitete ettt ettt ettt s bttt e st bt b et se et es et b eseese st eneenesbene s n 2
13 Workflow and structure of the thesis..........ccciiii e 3
2 SUlafjord MONILOMING SYSTEIM ....iuiiiiiiiieicit ettt 5
2.1 LOCAI LOPOGIAPNY 1.ttt b ettt b bttt n ettt ene e 5
2.2 IVIONIEOTTNE SYSTEOM .ttt ettt bttt b bbb bt st et b e e st et et e st ent et ens 6
3 WINd tUrBUIENECE MOTEL. ... 7
31 Probabilistic MOTE ..ot 9
4 Buffeting response of [0NG-SPan DrIAEES .....cviiiiiiciic e e 10
4.1 Theoretical estimation of buffeting response with the Multi-modal approach............ccccoceeveveiiiniennns 10
4.2 Approximate estimation of buffeting response with machine learning...........ccccceevveviiiiieicciicenn 13
5 EXEreme reSPONSE @STIMQATION ..oo.iiiiii ettt ettt ettt et e et et et e e nt e et e nteeaneeeneeenees 18
5.1 SHOTT-terM METROM. ... 18
5.2 Environmental contour Method ..........o.oiiiiiiiiii e 19
5.3 FUIT TONGEEIM @NAIYSIS ...ttt ettt ettt ettt a et ss et 22
6 SUMMary of the aPPENAEA PAPEIS ..ooveeiiiiieie ettt ettt ettt st be et e b e ebeese e s e sbeeaeeneeseas 27
6.1 Declaration Of AULNOISNIP ...o.vii ittt 27
6.2 PP L bbb bbbttt 27
6.3 PP 2 bbb h bbbttt 27
6.4 P 3 et bbb bbbttt 28
6.5 PPEI 4 bbbttt 28
T CONCIUSIONS .ttt 29
8 FULUIE FESEAMCN ...ttt 29
9 RETEIEINCES ...ttt 30

Vi



1 Introduction
1.1 Background and motivation
1.1.1 Long-span bridges

Infrastructure development is a key factor for economic growth. Continuous commercial expansion worldwide
has promoted an unprecedented increase in the demand for long-span bridges (with a main span greater than
150 m) [7]. Globally, the United States has the largest number of long-span bridges (245), followed by China, with
98 long-span bridges and 23 long-span bridges, respectively, under construction. In the European scene, Norway
leads with 51 long-span bridges [7]. The increase in number is followed by an increase in scale; since the 19
century, the main span of the world’s longest bridge has doubled approximately every 50 years [8]. Cable-
supported bridges are the most suitable bridge type to cover the long main spans, with the suspension bridge
being the principal configuration of the longest-span bridges [9]. Currently, the longest single-span bridge is the
Canakkale 1915 Bridge in Turkey (2022), which is a suspension bridge with a 2023 m main span. The increase in
the scale of long-span bridges constantly challenges the existing technologies of bridge construction. As these
structures become slender and more flexible, they also become more susceptible to wind vibrations.

The design of long-span bridges is governed by wind loading and wind loading effects. Long-span bridges are
flexible structures with low structural damping and relatively light weight [9]. Therefore, the natural frequencies
of their principal modes are very low, overlapping with the frequencies where the wind spectrum encloses most
of its energy. The engineering community is well aware of bridge aerodynamics, and sophisticated models are
well documented in the literature [10]-[16].

On the other hand, wind loading effects are often simplified in the design guidelines. Wind actions in bridges are
considered with their characteristic values associated with a design return period. Most of the wind resistance
design guidelines assume the return period of the characteristic response to be equivalent to the return period
of the mean wind speed [17], [18]. Such an assumption may not be accurate because of the inherent stochastic
behaviour of the structural responses due to wind fluctuations. In addition, the variation in the wind turbulence
field is generally disregarded, as the common practice is to define the turbulence parameters from deterministic
relationships based on the mean wind speed only. The combinations of these assumptions may cause
underestimations of the actual design response in long-span bridges, exposing the need to revaluate the design
guidelines and to propose more reliable alternatives to the wind-resistant design of long-span bridges [19], [20].

1.1.2 Sulafjord

The financial progress of Norway has promoted the development of several infrastructure projects. Nevertheless,
the country has mountainous topography characterized by the presence of fjords, leaving important economic
regions such as the Norwegian western coast separated by these massive inlets of sea water. In an effort to
connect the main cities of the Norwegian western coast, the Norwegian Public Roads Administration (NPRA)
started the Coastal Highway Route E39. The project proposes the construction of a 1000 km ferry-free highway
from the cities of Kristiansand to Trondheim [21]. The project includes 8 major fjord crossings spanning from 1300
to 5000 m at water depths from 500 to 1250 m [22]. The development of such projects has stimulated a vast
research effort, including novel concepts such as submerged tunnels and floating bridges, as well as
improvements in the design techniques for cable-supported bridges.

From the crossings considered in E-39, the longest solution planned with a suspension bridge is the Sulafjord
crossing. The Sulafjord Bridge is projected to be a 3000 m main span suspension bridge standing across the villages
of Hareid in the west and Sula in the east in the vicinity of Alesund. Figure 1 shows the Sulafjord suspension bridge
adapted from illustrations by the NPRA [23]. This bridge will serve as a case study given its large scale, which
makes it extremely susceptible to wind loading effects. The project has driven an immense research effort,
including studies to enhance buffeting response calculations [24], [25], conceptual designs, wind tunnel testing,
and meteorological observations [26], [27]. To date, the greatest part of the research effort has been dedicated



to the wind monitoring campaign of Sulafjord. Since 2014, a set of meteorological masts have been erected in
strategic points along the Sulafjord channel, and the masts carry sensors to observe and register the wind
conditions. The campaign is planned to last 8 years with a possible extension to 12 years. The recordings from the
campaign are open to the public and have been carefully investigated in the content of this thesis to characterize
the wind conditions of the Sulafjord site and to propose more reliable alternatives to wind resistant design based
on the expected behaviour of wind at the site.

Figure 1: Illustration of the Sulafjord suspension bridge. (Image courtesy of NPRA)
1.2 Objectives and scope
1.2.1 Research objectives

This work aims to develop methods for wind field characterization and extreme response prediction of long-span
bridges that take into account the probability distribution of the wind field parameters and the extreme response.
There is a particular emphasis on developing a methodology that predicts response with enhanced accuracy but
with reasonable computational effort.

The following research objectives are defined to achieve this goal:

e Test the feasibility of using a probabilistic model of wind field parameters to characterize the wind
conditions at the Sulafjord Bridge site. The topography at the Sulafjord Bridge site strongly affects the
wind conditions. An accurate description of the wind variables, including their variability under extreme
conditions, is required to ensure a reliable design of the Sulafjord Bridge.

e Investigate the improvement in safety provided by including the variability of the wind turbulence in the
buffeting response calculations. The scatter in the measured buffeting response of long-span bridges
with respect to the analytical models is partially attributed to inaccurate assumptions in the current
guidelines, which disregard the variability of the wind field. Therefore, the stochastic behaviour of the
turbulence parameters is included in the modelling to investigate its effect on the design buffeting
response.

e Explore the validity of surrogate modelling techniques based on machine learning for buffeting response
estimations. Calculating the buffeting response involves computationally demanding procedures, which
can be challenging to handle when several analyses are needed. On the other hand, machine learning
models alleviate the computational demand by learning the underlying relation between wind variables
and the buffeting response. In this thesis, the accuracy of such methods is tested and compared with
data from full-scale measurement campaigns on long-span bridges.

e Compare the design buffeting response from full long-term and short-term analysis. Full long-term
analysis is the most accurate methodology to estimate extreme responses. However, the method is not
widespread in the design practice of wind engineering. Therefore, this study presents the buffeting
response of a long-span bridge in the design phase with full long-term analysis and simplified
methodologies, such as the environmental contour method and the short-term approach. The difference



in the response from the different methods is analysed to investigate the reliability of the simplified
methods.

e Develop an efficient, full long-term framework for estimating the design buffeting response of long-span
bridges. The required computational effort is a major weakness of the full long-term analysis. Despite
the literature offering approximations to reduce such demand, the approximate methods do not
converge to the exact solutions. Therefore, an alternative methodology based on importance sampling
is investigated to determine a more efficient way to carry out the full long-term analysis. The framework
was further enhanced by introducing a surrogate model of the buffeting response, reducing the time
required to estimate the short-term response statistics.

1.2.2  Scope of the thesis

The Sulafjord Bridge was used as a case study. The methodology could be easily extended to any other bridge site
given that monitoring data are available. Nevertheless, the results cannot be generalized without proper site-
specific investigations. Only data from the metallic mast stations of the measurement campaign were analysed in
this thesis. Additional measurement information from floating buoys and lidar was not included.

This study is focused only on wind buffeting effects, i.e., vibrations in the structure due to the turbulence of the
wind field. Other aerodynamic phenomena, such as instability due to galloping, flutter or vortex-induced
vibrations, are beyond the scope of this thesis. The wind conditions are averaged in short-term intervals of 10
minutes. The wind field is assumed to be stationary and Gaussian in each interval. The winds are assumed to
impact the bridge orthogonal to the longitudinal axis, and the variation in the angle of attack is not considered
significant (linear model). Buffeting response analysis is performed in the frequency domain. Therefore,
nonstationary and non-Gaussian wind loading and wind loading effects, skew winds and nonlinearities due to the
constitutive law of the material, geometric stiffness, instabilities or excessive angles of attack are considered
beyond the scope of the thesis. Admittance functions are taken as unity, and crosswind turbulence components
and the correlation between vertical turbulence and along-wind turbulence are disregarded due to their low
effect on the final buffeting response.

Regarding the proposed framework for long-term analysis, the following finding is valid. In surrogate modelling
with machine learning, the hyperparameters are optimized using the machine learning and statistics toolbox of
MATLAB. On the other hand, in the full long-term framework based on importance sampling, samples were
considered uniformly distributed. The methods for hyperparameter optimization and the effects of other
importance sampling distribution functions are considered beyond the scope of this thesis.

1.3 Workflow and structure of the thesis

The workflow of the analysis is presented as follows: First, the wind conditions are characterized by a probabilistic
modelling approach. Second, the buffeting response is computed for each wind condition with either the
multimode approach or a surrogate model based on machine learning. The extreme buffeting response is then
obtained with the short-term method, the environmental contour method, or the full long-term analysis. Figure
2 shows the workflow diagram of the thesis.
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Figure 2: Workflow of the thesis

The synopsis is organized to explain each step of the workflow. Section 2 shows the Sulafjord site and monitoring
campaign. Section 3 shows the wind turbulence considerations and the probabilistic modelling. Section 4 shows
the buffeting response calculations based on the multimodal approach and surrogate modelling. Section 5
provides the design buffeting response with the short-term method, environmental contour method, and full
long-term analysis. In addition, the collection of papers that compound this thesis can be grouped into the
following topics:

e Short-term statistics of the buffeting response with the multimodal approach and machine learning
surrogate models (Paper 1).

e Wind characterization and probabilistic model of the Sulafjord Bridge site (Paper 2).

e  Full long-term estimation of the design buffeting response (Paper 3 & 4).

e Enhanced full long-term analysis (Paper 4).



2 Sulafjord monitoring system
2.1 Local topography

Sulafjord is located on the western coast of Norway 10 km southwest of Alesund. The fjord is oriented from
southeast to northwest, is approximately 12 km long and 4 km wide and has a maximum water depth of 450 m.
The fjord is surrounded by steep mountains with an elevation between 500 and 700 m from both sides. Figure 3
shows the surroundings and topography of the fjord. The mountainous topography of the area directs the wind
flow through the fjord. Figure 4 shows a picture of the fjord surroundings from the bridge location towards the
north and south. Figure 4 a) also shows the island Godgya, which is located on the northern side of the fjord. The
island partly shields the fjord from the winds coming directly from the sea [6].
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Figure 3: Topogréphical map of the Sulafjo‘r'a ;te (adapted from https://norgeskart.no/- ®norgeskart Norwegian Mapping
Authority)

a) North view

b) South view
Figure 4: Bridge site. (Images courtesy of NPRA)



The principal environmental loading on the long-span suspension bridge across Sulafjord will be the wind action.
Therefore, a wind measurement campaign has been deployed in the area. The measurement campaign is
managed by the Norwegian Public Road Administration (NPRA) and operated by Kjeller Vindteknikk (KVT). The
observations from the campaign are open to the public through the Norwegian Meteorological Institute (MET
Norway). The campaign measurements are carried out at four strategic locations near both ends of the two
possible fjord crossings, Kvitneset to Traelbonset on the northern side and Langeneset to Karsteinen on the
southern side. Each location is composed of a metallic mast structure that holds anemometers at different
heights. Figure 3 shows the locations of the metrological stations. The elevation profiles of the two alternative
crossing tracks are shown in Figure 5. The figure highlights the steepness and height of the surrounding
mountains.
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Figure 5: Terrain profiles at possible fjord crossings

The shortest track for the Sulafjord Bridge is between the stations of Kvitneset and Traelboneset (Figure 3). Most
of the content of this thesis derived from observations made at these stations. Kvitneset is located northeast of
the island Hareidlandet. The mast is open to the Norwegian Sea in the west-northwest to north-northwest sector.
The immediate terrain leading to the station is relatively flat, but within a distance less than 1 km southwest, there
is a steep mountain with a height greater than 500 m. On the other side of the fjord, on a small cliff of the western
side of Sula, Traelbodneset is located. The island Godgya in the north blocks most of the winds coming from the
Norwegian Sea at this location. The terrain near the station is steep, with the abrupt presence of a 450 m tall
mountain towards the east immediately after the mast.

The other possible design alternative is to build the bridge from Langeneset to Karsteinen (Figure 3). This track is
closer to populated areas and spans the exiting ferry route. Langeneset is located inwards from Sulafjord many
kilometres south from Kvitneset. The mast is erected in an industrial area a few metres from the mountain side.
Karsteinen is located on a small cliff in the vicinity of a steep mountain with a height of approximately 660 m. The
mast is located near the opening of Sulafjorden into Vartdalsfjord. The principal directions of the wind at this
station are aligned with the axis of both fjords.

2.2 Monitoring system

Each mast is equipped with 3 to 4 wind sensors at different heights to capture the vertical wind profile. Table 1
reports the geographical coordinates of the stations, the initial date of recording, the number of sensors and their



height above sea level. Observations are still ongoing at the moment of writing this thesis. The sensors employed
are WindMaster Pro 3-Axis anemometers (Gill Instruments Limited), which can measure maximum wind gusts of
65 m/s. The speed resolution is 0.01 m/s, and the direction resolution is 0.1°, while the accuracy at 12 m/s is
reportedly <1.5% RMS and 2° for speed and direction, respectively. The sensors installed before October 2015
were affected by the software bug reported in [28]. To date, this error has accounted for all the measurements
of the dataset. The wind speed observations from the anemometers are divided into recordings of 10-minute
intervals. Subsequently, the statistical properties of these recordings are analysed to characterize the site-specific
wind conditions. The data availability of 10-min intervals from all stations is estimated to exceed 98.9% with
punctual losses due to instrument or logger failure. Reports of data availability by station are provided in [26].

Station name Latitude Longitude Initial date  Sensors Altitude (m)
of recording
Kvitneset 62°25'17.74"N  6°0'4.03"E 2016-11-24 3 925,715,445
Treelboneset  62°25'39.47"N  6°3'45.45"E  2018-01-03 3 76.8,48.3,27.3
Langeneset  62°23'10.68"N  6°1'52.72"E  2017-04-26 4 94.8, 75, 50, 27
Karsteinen 62°24'0.48"N 6°7'9.82"E 2017-12-04 3 62.8,40,13.4

Table 1: Sulafjord wind mast station coordinates

3 Wind turbulence model

The observations from the monitoring campaign reveal that Sulafjord Bridge will be exposed to strong European
windstorms. Therefore, the dynamic response of the bridge is expected to be governed by the action of wind
gusts, i.e., fluctuations in the wind speed. The usual approach to model the effect of gusts is to decompose the
wind velocity into the mean wind field (speed and direction) and the three orthogonal turbulent components—
the along-wind (aligned with the mean), crosswind (orthogonal to the mean) and vertical components. The
crosswind turbulent component is disregarded in the analysis because of its negligible contribution to the
buffeting response due to the relatively high axial stiffness of the bridge girder. The action of the turbulence in
the modelling is represented with its cross-spectral density (S, ) composed of the one-point autospectral
density (S,,,,) and normalized cross spectrum (Cy,, ). The cross-spectral densities are then arranged in matrix
format as follows (Sy):

S (X1, %2, @) Sy (X4, X2, @)

S et %z, 0) = [Suw (1, %2, @) Sy (1, X2, @)

Suuan (61, X, @) = Jsu,w (1, @)Siy (20 ©) Cogapny (AT, )

where xq,x, are the coordinates of two points separated by the distance Ax and w = 2xf is the circular
frequency.

The autospectral density shows how the energy of the wind turbulence is distributed along its frequency content.
The autospectral densities extracted directly from the wind recordings contain fluctuations. The usual engineering
approach is to approximate them with a smooth curve [29]. The literature offers a substantial number of models
to approximate such behaviour [30]-[40]; the reader is referred to Solari et al. for a more comprehensive



comparison of the models [41], [42]. Since the focus of this research is to improve the design guidelines of long-
span bridges, the spectral density fitting used in the Norwegian handbook for bridge design (N400) [18] will be
employed. The expression is derived from the Kaimal-type spectrum [43]:

Suwf _ Aywlzy, £, = Zpf Ouw
2 53]z =
(VIw) (14158,,7,)" 4

where V denotes the mean wind speed, I,,,, represent the along-wind and vertical turbulence intensities, A4, ,,
indicate the spectral parameters relative to the integral length scales and z, denotes the reference height.
Overlapping fitted and measured power spectra from a recording registered on 01.01.19 at Traelboneset station
from 14:40 to 14:50, which correspond to the annual highest mean speed, are shown in Figure 6.
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Figure 6: Two components of the one-point spectrum 'max 2019' Record 01.01.19 from 14:40 to 14:50. a) Su b) Sw

The normalized cross-spectrum gives the correlation between two points along the structure. The cross-spectrum
is a complex quantity whose imaginary part is usually disregarded for perpendicular winds [44]. The real part is
known as the normalized co-spectra; this quantity is influenced by the frequency and distance between the
analysed points. The correlation assumes values from -1 to 1, where 1 represents a perfect correlation. The
literature has several models to define this quantity [33], [40], [45]-[47]. Nevertheless, an exponentially decaying
curve based on the Davenport decay coefficients (K, K,,) is the simplest expression that matches the data
observations [48]. The cross term C,,, is disregarded in the analysis due to its low contribution to the measured

buffeting response of the bridges [49].

Cyuw(f, Ax) = exp (_Ku,w %) (3)



3.1 Probabilistic model

The parameters of the turbulence are often defined from deterministic relationships of the mean wind speed.
Nevertheless, experience from full-scaled measurements of the buffeting response on long-span bridges has
shown discrepancies between the observations and the analytical models. Such discrepancies are partially
attributed to the variability of the wind turbulence field, which is disregarded in the analytical models [50]-[57].
Therefore, the stochastic behaviour of the wind turbulence parameters was considered in the analysis. The
turbulence parameters included in modelling are the along-wind and vertical turbulence intensities (I, 1,,), the
spectral parameters (4,,A4,,) and decay coefficients (K, K,,). Probabilistic modelling of the wind field was
introduced to handle stochastic behaviour [20], [51]. Introducing W as the wind state vector collecting the wind
parameters, its joint cumulative distribution function (CDF) can be expressed as the product of the conditional
distributions:

FwW) = Fy(V) * Fp 1 avavg ki G T Ay Ay Koy K V) (4)

W = [V, L Ly, Ay, A, Ky K ]

Fenerci et al. (2018) showed that the joint distribution can be expressed as the product of the Weibull distribution
of the mean wind speed and a joint lognormal distribution of the turbulence parameters. The same distribution
types will be utilized for the Sulafjord Bridge in this thesis. The expressions for the Weibull and joint lognormal
distributions are presented as follows:

vV k
F,(V) =1—exp [(I) ] ; forV>0 (5)
. 1 —(Ln x-)?
fogn (11 6) = = exp (=525

0.2
i =exp <u + 7) , 6% = [exp(c?) — 1] exp 2u + 0?)

N
_ 1 Xi = Hx\ (Vi — Ky
p(x'Y)_N—lz( Oy ) oy
i=1

-l ")

where k and A are the shape parameter and scale parameter, respectively, of the Weibull distribution and
fiogn (x|fi, &) is the lognormal distribution of x. fI, & are the lognormal mean and standard deviation, p(x,y) is
the correlation coefficient of the variables x and y, and R,,, is the correlation matrix. The parameters of the
distributions were adapted from the site-specific data following the procedure explained in paper 2 of this thesis.



4  Buffeting response of long-span bridges
4.1 Theoretical estimation of the buffeting response using the Multimodal approach

Wind actions over long-span bridges can be critical if not considered properly [11], [16]. This study is focused on
wind buffeting effects, i.e., vibrations in the structure due to the turbulence of the wind field. Other aerodynamic
phenomena, such as instability due to galloping, flutter or vortex shedding, are beyond the scope of this thesis,
with a special notation over flutter stability limits, which are estimated only to avoid the simulation of wind states
outside the assumptions of the modelling.

The analysis of cable-supported bridges under the action of stochastic wind loading was introduced by Davenport
[10], [48], [58]. Davenport’s formulations proposed a spectral analysis in the frequency domain, which is exact
and therefore will be the approach used in this thesis. Approximated analysis in the time domain is beyond the
scope of this thesis. Since Davenport’s original formulation, several authors have contributed to improving the
modelling, and the discussion is still open in the literature. In this thesis, the buffeting response was computed in
the frequency domain following the multimodal approach based on finite element formulation. The modelling
contemplates the following assumptions: the bridge deck is idealized as a line-like structure; the wind field is
homogenous; wind turbulence is a Gaussian and stationary process; the mean wind is orthogonal to the bridge
longitudinal axis (no skew winds) and variations in the vertical angle of attack are not significant. Self-excited
forces are accounted for with aerodynamic derivatives [59]. Modal coupling is considered with the multimodal
approach [60]-[68]. The wind aerodynamic forces are applied to the structural elements following the
discretization of the bridge finite element model [1].

Aerodynamic loading and loading effects are decomposed using the mode shapes of the finite element model as
generalized coordinates. Denoting the mode shapes with @ and the respective generalized coordinates with 7,
the global displacement vector due to buffeting actions r is:

r(x,t) = @()n(t) r(x,t) =[r,r,19]"
D(x) =[@1.. @i.. on]" n(t) = [Nq .. ;.. Mu]"
Qi =[0,0, 90"

where x is the coordinate of the nodes over the line-like deck; y,z and 8 are the lateral, vertical and torsional
displacement components; and N is the number of modes considered.

The equation of motion of the system in the frequency domain using the generalized coordinates is:

MO Gn(w) + (EO - Z.u.e) Gi]("-’) + (I?O - Rae)Gr](w) = GQbuff(w) (8)

where IVIO, Z‘O and IT(O are the generalized mass, damping and stiffness matrices, respectively, under still-air
conditions. These structural matrices are obtained from the finite element model of the bridge under mean wind
actions. Eae and I?ae are the generalized aeroelastic stiffness and damping matrices, respectively, from the self-
excited motion. Gﬁ, Gﬁand G,7 are the Fourier transforms of the generalized acceleration, velocity, and
displacement, respectively, and GQbuffiS the Fourier transform of the nodal buffeting forces.
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The aeroelastic damping C,, and stiffness K, in global coordinates are:

Py P: BPj

1 . . ©)
Coe == pwB?|Hs Hf BH,
BA: BA, B24;

1 P P;  BP; (10)

KanEP‘UZBZ Hg HZ BH;
BA. BA, B4

where P1, ¢ Hi, ¢and Al, ¢ denote the dimensionless aerodynamic derivatives, p is the density of the air
and B is the effective width of the bridge deck. The matrices in generalize coordinates are:

_ (11)
Cooe(V,0) = ftbﬂ(]ae(V,w)tDm dx
L

_ (12)
K,.(V,w) = J’(PEKaE(V,w)(Pm dx
L

4.1.1 Buffeting forces from beam finite element formulation

To apply the wind forces in the model, a beam finite element discretization approach was selected. A generic
structure can be discretized with beam finite elements with 12 degrees of freedom, as shown in Figure 7 (a).
Next, the wind action over a generic beam element is shown in Figure 7 (b). The three coordinate systems shown
in Figure 7 comprise the global coordinate system defined by its unit vector {E}, E;, E3}, the beam element local
coordinate system with unit vector {e;, e,, e3} and the wind field system with unit vector {ev,, ev,, evs}. The
transformation scheme from the wind reference system to the local reference system of the beam elements is
presented as follows:

a) b)
T T E3 E2
6 12 3 ot
/ZI }T: e3 e2 \ B2
3 ! 9 4 E1 / i
-» > —=» e K )
4 1 s ! A 4 el . 4
evl SSA
A
evl e'
el

Figure 7: Local coordinate system of the beam element: a) DOF of the beam element. b) Wind actions on the beam element

T
e (13)
— |or
Tezre = |€2

e3
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T
ev; (14)

_ T
TeaLw = |ev

evy

(15)
- T
Tiwzre = Tozre Toarw

The vector of nodal buffeting forces (QLebuff) is obtained from the principle of virtual work using the shape
functions N(x) and denoting the wind forces in the beam element by gy ¢ ¢ (x, £)

L
QLebuff(t) =f N(x)qbuff(X, t)dx
0

(16)
dvuss (x, t) = Bq ()T wzre Viw(x, 0)
where V,,, = [Vi V2 V3]T is the vector that contains the wind turbulence components in the wind reference
system. The matrix Tyy2e transforms the wind coordinates into the local element reference system. The
aerodynamic matrix B, contains the force coefficients that relate the turbulence components to the aerodynamic
forces:
0 0 0
L B (el
U 1 L3 (¢ et
Bq = E pB %4 D\ _ , (17)
0 2C, {(5) Cp+C'y
0 2BCy BC'y,

where D is the effective depth of the girder cross-section; Cp, C;, & C); are the mean values of the drag, lift and
moment steady-state force coefficients, respectively; and C'p,C’,, C'y, are their respective derivatives with
respect to the angle of attack.

The nodal buffeting forces from all the elements are assembled. The dependence of element buffeting forces
along the geometric coordinate x from Equation (16) is disregarded, assuming a uniform shape of the beam
elements and assuming that the length of the beam elements is small compared with the size of the eddies. The
global buffeting force is then:

N
_ (18)
Quurr(t) = Z Teas, ngLe,i Nqu,iTLWZLe,L' Viwi(t)
7

where T, is the assembly matrix from the local degrees of freedom of the beam element to the global degrees
of freedom of the structure and N; = fOL N(x)dx.

To express the quantities in the frequency domain, the cross-spectral density of the buffeting force is obtained as
the discrete Fourier transform of its cross-correlation function:

12



Ropupr (1) = E[Q@pusr () QTbuff(t +1)]

(19)
N N
T — T T =T T
SQbuff () = Z Z Tr2si Toase, Nqu,iTszLe,i Sy (&x, (U)TszLe,j Bq,j Nj TGZLe,jTEZS,j
i
where Sy (Ay, ) is the cross-spectral density of Equation (1).
The buffeting forces are transformed into generalized coordinates:
(20)

nguff (CU) = q)(x)SQbuff (a))d)T(x)
The buffeting response in the frequency domain is described by its cross-spectral density related to the transfer
function H:

Sk (@) = [H(@34q,,,, (@) |H' @)

(21)
H (w) = [_ MOUU2 + (Eo - Eae(Vr a)))ia) + (Ro - Rae(v' w))]_l 22)
where H* is the complex conjugate of .H.
The cross-spectral density of the response in the global coordinates is then obtained with modal shapes.
Sp (w) =P(x) [SR (w)](DT(x) 23)

The root mean square of a single response component —i can be obtained from the autospectral density as
follows:

+o0
Oriy(®) = f Srin (@Wdw

+00
UR(i,i)(x) :\/f wZSR(i,i) (w)dw
4.2 Approximate estimation of buffeting response with machine learning

The buffeting response through the multimodal approach may be computationally demanding because of the
assembly of the cross-spectral density of the buffeting force in Equation (19) and the inversion of the transfer
function H~1 of Equation (21). The computational efficiency has a major role in the extreme buffeting response
estimation through full long-term analysis since the buffeting response needs to be obtained for several wind
states. Alternatives such as surrogate modelling alleviate the computational effort in optimizing the number of
multimodal buffeting responses required in the analysis by approximating the underlying relationship between
the buffeting response and the wind variables [1]. Figure 8 shows an example of the surrogate modelling strategy
for two wind variables: the mean wind speed and the vertical turbulence intensity. The dots in the figure represent
wind states used for training the model, and the crosses represent multimodal buffeting responses computed for
testing the model. Model estimations are represented with a colormap.
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Figure 8: Surrogate modelling of the buffeting response

This study used surrogate model strategies based on machine learning. Three different strategies were utilized:
models based on the multilayer perceptron (MLP), models based on support vector regression (SVR) and models
based on Gaussian process regression (GPR). The concept of the surrogate modelling strategy is the same for all
approaches and will be introduced in the following section. From a wind engineering perspective, the important
aspects of the surrogate model strategy are listed as follows: which wind variables are utilized as the input, which
responses are used as the output, how to efficiently train the model, how to obtain an estimation, and how to
assess the accuracy of the estimations.

The objective of the surrogate model is to approximate the underlying function between the input variables and
the output response. The input variables in the analysis are intuitively collected in the vector of wind variables W
from Equation (4). The output responses of the analysis are the root mean square of any response component
and its time derivative ¥ = [ o o]. The target function in this case is the buffeting response estimation through
the multimodal approach.

Machine learning models are data-driven, meaning that the model’s parameters are calibrated from observed
data with known input—output relationships. The initial step is to simulate certain wind states and estimate their
buffeting response. The hyperparameters of the model are then optimized for the given data; this step is known
as training. In this study, training of the machine learning models was achieved with the statistics and machine
learning toolbox of MATLAB 2019b [69].

4.2.1 Surrogate modelling with a multilayered perceptron

An artificial neural network (ANN) is an algorithm that mimics the functioning of biological brains by assembling
layered neurons connected to each other. A neuron (also known as a unit or node) is an operational entity that
stores and distributes information [70]. The neurons are organized into sets referred to as layers, and the neurons
within one layer are connected to those in the subsequent layer. The layer connections transmit information
within the neurons and are mathematically the arrays that govern the transformation relationships. The value of
aneuroninan arbitrary layer is the scalar product between its transformation array and the output of the neurons
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in the previous layer; the neuron is then activated whenever its value surpasses a certain threshold. The type of
neural network applied in this study is the MLP [71], which is schematically shown in Figure 9.

Hidden Layers
Input Layer Output Layer

O

Layer k
nj

Al

-

slolicle
S5O &

Figure 9: Architecture of an ANN

where y}‘ is referred to as the output of the j-th node in the k-th arbitrary layer of an MLP and is related to an
activation bias z9jk and connection weights wl-’fj_l, where xl-k_1 is the value of the i-th node of the previous layer.
The nonlinear activation function g(x) is applied to the result [72]. The feedforward mapping process is then

obtained by assembling the abovementioned operations until the model's final M layer is reached:

N
vi= g D whtakt ok 25)
i=1j=j
vk = g{(w/)"+ X1 + 0¥} (26)

The model estimation of the output ¥ is then obtained:
Y= fIWMHT L g{WHT X} +6M) (27)

Introducing the "loss" function L( ﬁj,yj) as the difference between the known response and the models’
estimations, the mathematical objective of the learning process is to minimize the loss function. This minimization
is achieved by sending the estimation error through all the previous layers within the network; this operation
results in an iterative optimization procedure known as backpropagation [73]. Since the original input is fixed to
the dataset, the only parameters to be updated in each iteration are the weights and biases; the procedure yields:
(28)

fmd (WkE{l:M—l} & ng{l:M}) L( y]ly]) = min (L)

4.2.2 Surrogate modelling with support vector regression

Support vector regression (SVR) is an extension of the support vector approximation algorithm to a regression
problem [74]. Introducing an e-insensitive loss function, SVR approximates y; with a certain tolerance €. The
estimation can be obtained with a linear function as follows:

(29)

f)=x'w+9
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The e-insensitive loss function L(x) is equal to zero when the difference between the estimation f(x)and the
known response y is less than g, and a constraint is added to the problem:

0 ifly—fxw)<e (30)
ly = fx,w)l otherwise

Lo~ fGxw) = {

To make the solution feasible, the tolerance margin is softened by adding a set of slack variables §; and ¢;, as
shown in Figure 10.

A y=f(x,w)+£

y = Gw) =

»
>

Figure 10: Schematic representation of SVR with slack variables

The optimization problem becomes:
N
1
minimize 3 [lwll? + CZ &+ & (31)
i=1

yi—flxw) e+
with constraints: {f(x,w) —y; <e+ &
§,6i =0

where C is the box constraint, which is a positive-valued parameter that imposes a penalty on the estimations
outside the e-margin and thus helps to balance the accuracy of the model. Solving this optimization problem with
inequality constraints is equivalent to finding the saddle point in the Lagrange function. By introducing a,, and a,,
as Lagrange multipliers, the weights (w parameters) can be obtained as:

N
w= Z(a,— —a))x; (32)
i=1
The model estimation is computed by expanding the support vectors:
N
F6) =) (@ =)' 0 +9 (33)
i=1

The parameters 9 can be obtained by exploiting the Karush—Kun—Tucker (KKT) conditions [75], which state that
at the optimal solution, the product between the dual variables and the constraints vanishes.

To extend the formulation to nonlinear regression problems, the dot product (x;x) must be replaced with a
nonlinear mapping function, known as the kernel function K (x;x).
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(34)

£ = ) (@ = apKx/ x) +9

4.2.3 Surrogate modelling with Gaussian process regression
Gaussian process regression is a machine learning algorithm in which the responses are assumed to behave as
Gaussian processes GP = N (M, K), where ' is the multivariate normal distribution function with mean
function M and covariance function K.
y=fw) = NMw),K(w,w")
M(w) = E[f(w)] (35)
K(wi,w;) = E[{(f(w) — M(w)}{f (w;) — M(w;)}"T]

The training data will be identified with subscript t, while the estimation data will be denoted with subscript d.
The output of the GPR model in the training data is assumed to be contaminated with some standard normal
noise e~V (0,0?2), where the standard deviation of the noise g, is a hyperparameter of the model. GPR
establishes the joint distribution between the model estimations ¥, and the prior training data y, as:

oy ([MOw] KO W) £ i KO ) e
Mwo)l | Kwaw)  Kwawa)

The marginal probability distribution of the estimation can be written as:
pPalWeoye wa)~N (U3, 25,)
(37)
Uy, = Vo = M(wy) + K(wg, w)[K(w,, w,) + 2117 [y, — M(w,)]

Y5, = K(wg,wg) — K(wg, w)[K(we,w,) + 2117 K(w,, wg)”

The correlation between two estimation points is defined by the covariance, which is also known as the kernel
function K(w,—,w,-). The kernel function must be specified beforehand to train the GPR model. The literature
offers a variety of functions that can be used to model the kernel function. An overview of the kernel functions
used for full long-term analysis is provided in [76]. In this study, we employed the squared exponential function:

=
K(w;,w;) = cfexp [— # + a2 5

where oy is the standard deviation of the unscaled kernel and [ is the length scale. The kernel function was
isotropic, and normalization of the wind variables was performed with the Rosenblatt transform [77].

In addition, the mean function of the Gaussian process was chosen as a constant:
Mw) =w'p
(39)

where 8 is the constant hyperparameter of the modelling.

The model hyperparameters (ay, [, o, and ) were optimized from the training data using the machine learning
and statistics toolbox of MATLAB [69].
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5 Extreme response estimation

The procedures of chapter 4 offer different ways to estimate the short-term statistics of the buffeting response.
This chapter explains how to obtain the extreme buffeting response based on statistical inferences from these
short-term response estimations. The design guidelines assume that the return period of the buffeting response
directly corresponds to the return period of the mean speed. The short-term interval with a mean speed equal to
the extreme mean speed is sufficient for estimating the extreme buffeting response, and the method is referred
to as short-term. The short-term method is a fast and approximate analysis that may not be accurate for long-
span bridges, as it disregards the stochastic behaviour of the wind turbulence and the structural response. Section
5.1 explains the method in detail. The environmental contour method explained in Section 5.2 considers the
stochastic behaviour of the wind turbulence yielding a more accurate solution. The method proposed an empirical
way to handle the stochastic behaviour of the response with the inclusion of inflating factors. Such factors are
outside the scope of this thesis. In contrast, the full long-term analysis is the most accurate method for estimating
the extreme response since it considers the fluctuations in the weather conditions and their effect on the short-
term statistics. In this way, the stochastic behaviour of the response and wind turbulence is considered. The
analysis however is computationally demanding, and therefore, traditional application of the method results is
unfeasible for practical engineering purposes. Section 5.3 explains the analysis and the efforts of this study to
alleviate its computational demand.

5.1 Short-term method

The short-term method is a common approach to most of the current design guidelines for wind-resistant design
[17], [18]. The approach defines the design buffeting response based on the extreme mean wind speed with the
return period RP (equal to the structure’s lifetime) averaged from periods of short-term duration (Ty;). The
buffeting response is assumed to be a stationary, Gaussian and narrow-banded process during T, such that the
average upcrossing of a response threshold r, V7 (r), can be obtained from the Rice formulation:

where pg and oy are the mean and standard deviation, respectively, of the buffeting response from buffeting
theory, and x denotes the time derivative of x. The statistical moments of the response and its time derivative
process from the buffeting response are shown in Equation (24).

Let Rgr be the largest value of the response during Ts;. Assuming that the peaks in the response are independent
events, the number of upcrossings in the interval Ty, is Poisson-distributed, and the CDF of the largest peakFg,,.
is:

(41)
Prob{Rsr(Tsy) <7} = FRST(TST)(T|W) = exp{—Vg (r|w) Tsr}
Combining Equations (40) and (41):
1 oy 1 /1 — pg\? (42)
ot = -1 2o 4529
RRP(TST)(T|W) exp{ ST o EXP{ 2\ op
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R, is considered a stochastic variable of the peaks in R. A peak is defined as the maximum value of the response
process between two consecutive zero upcrossings. The probability of R, exceeding threshold r is equal to the
number of peaks above r divided by the number of peaks. As the process is narrow-banded, the number of peaks
is equal to the zero upcrossings, yielding the CDF of the peaks:

(43)
_ . VEM
Fro(rlw) =1 O
Inserting the expression of the upcrossing rate from Equation (40) in Equation (43):
1 /1 — pg\2 (44)
Fp,(rlw) =1—¢ ——(—)
Rp( [w) XP{ 2\ op

The expected value of Rgy is often applied as the design buffeting response and is conveniently formulated with
an approximate analytical solution based on the peak factor k [78], [79]. For further details on this procedure,
refer to [79]-[82].

(45)
E[Rsr] = ug + k o and

17.'2

= o, 2V ) T.,] {1 14 6tV
©= o 2V O Tl V14 S @y 7]~ BV ) T2 T (a6)

withy =~ 0.577,the Euler constant
5.2 Environmental contour method

The environmental contour method is a method for drawing isoprobability lines of the environmental variables.
Using the ECM, it is possible to outline the combination of wind variables with an equal joint probability of
occurrence, denominated as wind states (or conditions). For each wind condition along the contour line, the
extreme buffeting response is deterministically obtained with the short-term approach of 5.1. The design
buffeting response according to the ECM is the maximum extreme response from the wind conditions along the
contour. This method provides a more precise estimation of the buffeting response since the stochastic behaviour
of the wind turbulence is considered in the analysis. However, as the uncertainty in the response is omitted,
inflated contours based on the omission factor should be introduced in the modelling. These inflating factors
should be calibrated empirically from estimated extreme responses; thus, they are beyond the scope of this thesis.

Denoting the vector of wind variables with joint probability fy, from the probabilistic modelling as W and R as
an extreme response variable, the standard reliability problem yields:

pe= [ PIR> Rer | W =wlfy ) @)
alw
where p, is the exceedance probability of the extreme event R > Rgr.
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The reliability problem is usually solved with the first-order reliability method (FORM). In the method, the set of
W variables is transformed into a set of independent standard normal variables U [83]. Now, the response is a
function of the new set of standard normal variables, R = R(U), and the distribution fy, conveniently becomes
the normal distribution ¢(U). The integral of Equation (47) in the set of transformed variables can be solved for
a given Rgr as the minimum distance between the origin and the limit surface. Such distance is known as the
reliability index 8.

For reliability-based design, however, Rgr is the unknown, whereas f3 is fixed by a design code. In such cases, an
inverse FORM application can estimate the extreme response for a given reliability index [84]:

(48)
Given B: Find Rgr = max|R(U)|; subject to |U| = B
B is associated with RP through the probability of exceedance:
B = _‘:D_l(pe)
(49)

RP x 365.25 x24 x60717*
Pe = [ T.
st

where @ is the standard cumulative distribution function.

IFORM estimates that all combinations of U are located distance 8 from the origin, resulting in a hypersphere of
radius 8. The environmental variables W can be obtained from U with the Rosenblatt transform [77]; the result
is the surface enclosing all combinations of the wind variables with equal joint probability of occurrence, i.e.,
environmental contours. Subsequently, the extreme buffeting response will be the maximum short-term
response along the design points of the contour. Figure 11 shows a graphical interpretation of the environmental
contour for different return periods using two environmental variables. The figure on the left shows the contours
from the U variables, while the figure on the right shows the transformed contours in the wind variables.
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Figure 11: Graphical interpretation of IFORM
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5.2.1 Transforming the variables

Since the probabilistic modelling of the wind variables includes two different distributions for the mean wind
speed and turbulence parameter, two different transformation rules were applied to transform the wind variables
to the U variables. The Weibull distributed mean wind speed was transformed with the Rosenblatt transform [77],
while the correlated lognormal distributed turbulence parameters were transformed with a linear transform. In
the following part, the transformation rules will be explained.

The Rosenblatt transformation works by obtaining the joint CDF from the product of the marginals:

(50)
Frtxzn (X1, X, o Xn ) = Frg (1) Frp (02 ]%1) e Fn ([ —q - %_1)
Next, the variables are transformed by considering the conditional distributions individually. The mean wind speed
was chosen as the first variable, as it is considered the most important variable for the buffeting response of long-
span bridges [1]. The mean wind speed was transformed first.

F,(V)=ow) ©V= F\;l[q)(ul)] (51)

When the stochastic variables are correlated and normally distributed, the linear transformation rule can be
applied.

U=AX-M) oX=A"U+M, )

My = [fo; Hoyr ooer By ]
where A is a triangular matrix that can be constructed using the Cholesky decomposition of the covariance matrix
Cxx, which is Hermitian and positive definite:

Cyy= A1AT
(53)
with
2
Ox, P120x,0x, *** P1n0x,Ox,
2
CXX: P210x,0x, Ox, ©t P2an0x,0x,
: : ’ : (54)
2
Pn10x,0x, Pn20x,0x, Ox,

For the case in which stochastic variables are correlated and lognormally distributed, the same transformation
rule procedure applies, and the lognormal variables can be obtained as follows:

(55)
X =exp (A7U + My)

The full set of turbulence parameters conditional on the mean wind speed are transformed in a single operation
using the linear transformation rule for the case of lognormal distributed variables from Equation (55).

(56)
Flu.lu,IW,Au,A.,,Awlv (Iuv Ly, Ly, Ay, Ay, AW|V) = d)(uz: U3, Uy, Us, U, u7)
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5.3  Full long-term analysis

The full long-term analysis generalizes the short-term method considering the fluctuations in the weather
conditions and their effect on the buffeting response over the lifetime of the structure. Therefore, this
methodology provides a more accurate estimation of the extreme buffeting response. The long term is composed
of a sequence of N short-term periods of duration Ty, Ty = NTy., where N is a large number.

The analysis establishes the cumulative extreme value distribution of the long-term response:

Frpp i) () = Prob{Rpp(Typ) <7} (57)

where Rgp(Ty7) is the largest value that the buffeting response can assume during the long-term period.

If the long-term period is taken as 1 year, Equation (57) will give the extreme value distribution of yearly maxima.
For a given return period RP, the design buffeting response has a specified annual probability of exceedance p,.
The design buffeting response will be the value of r that satisfies the following condition:

(58)
FRRP(TLT)(r) =1-p,
Alternatively, the condition could be written in terms of the long-term CDF of the short-term extreme value:
1 Pe
FRRP(TST)(T) =(1-pIV=1-—=
N (59)

1
— -1
Rrp = Frpp(rip) (1 - ﬁ)

To establish the CDF of the long-term extreme response, the literature offers different approaches. The models
differ in the way they handle the short-term statistics. Models are divided into models based on all peak values,
models based on all short-term extremes, and models based on the upcrossing rate response [85]-[87]. The
methods have been proven to be equivalent [88].

5.3.1 Models based on short-term peak distribution

If all response peaks are assumed to be independent, the long-term extreme value distribution can be formulated
as:

- (60)
F
Frep(ry () = Frp (r)'E O)Tir

where Fg, is the long-term distribution of peaks and V7 (0) is the long-term average zero upcrossing obtained
from all the short-term wind conditions:

_ (61)
i) = f VEOIw) £, (w)dw
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Denoting the short-term peak distribution as Fg,w (r|w) given the wind condition from Equation (44), the long-
term peak distribution according to the Battjes formulation [89], [90] is:

1 +
o) =5 fva (OIW) Fiy (rlw) fiy (W)dw 62

5.3.2 Models based on all short-term extremes

If the short-term extreme values are assumed to be independent, the long-term extreme value distribution can
adopt the following shape:

Frpparyp (1) = Frep(rsr) (T)N (63)

where Fg,,rgpydenotes the long-term CDF of the short-term extreme value. This distribution is the ergodic
average of the short-term response CDF given the wind condition Fg, ¢ (r|w) from Equation (42):

Frpprsp) (1) = exp {[w(lnFRRP(TST) w) fw w) dW} (64)

5.3.3 Models based on the upcrossing rate

If the upcrossing of large values of the response threshold r are assumed to be independent, then the long-term
extreme value distribution can be obtained as the average upcrossing rate of r weighted by the probability of
occurrence of the short-term wind conditions:

Frppriny (M) = exp{—Vg (r|w) T;r} (65)

Fraprym () = €xp {—Tm f Vi rw) fir (w)dw}
w

The analytical solution of the full long-term methodology involves numerical integration and large computational
effort, regardless of the model selected. Hence, the motivation in the wind engineering and structural reliability
literature is to implement an alternative solution that can be both fast and accurate.

23



5.3.4 Long-term formulation based on ISMC

Monte Carlo simulations evaluate the short-term responses for simulated wind states and reformulate Equation
(65) as a statistical average that converges to the exact solution:

Nsim

Tir (©6)
- +
Frppryr(r) = exp ) = N Z V (rlwy)

sim 4
i=1

where N, is the number of simulations to be checked with the convergence criterion.

The crude Monte Carlo method converges slowly and hence motivates the implementation of an importance
sampling strategy [91]. The approach works by generating the wind states from the importance sampling
distribution function hy, which is chosen to generate wind states with significant contributions to the full long-
term analysis. hy is determined from engineering judgement. Equation (66) becomes:

Nsim

 fw W) 67)
FTRP(TLT)(r) =expy— iy z Vg (rlw hW( w)
Slm i=1

The simulation scheme was further simplified by generating the samples as independent standard normally
distributed variables, U, which are then transformed into the wind state variables through the Rosenblatt
transformation rule [77]:

Nsim

Frpprypy (1) = exp = ir Z Vi (rlu; }f”((u")) (68)

It is common practice to use a normal distribution as an importance sampling distribution function. This practice,
however, is not feasible in this case since it will render extremely high wind velocities, in which the buffeting
response model applied in this thesis will yield inaccurate results. Therefore, a uniform distribution was utilized
since this alternative is the simplest. The sampling function was chosen as an N — sized, multiple uncorrelated
uniform distribution:

(69)

ho@) = | [ txlan b
k=1

where k = {1,2, ..., N} is an index of the stochastic variables and U(a, b) is the uniform distribution with lower
and upper limits a, b:

,for x € [a, b]

0 ,else where

(70)

Ux) = {
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The distribution limits a, b are chosen such that the generated wind states are within the domain where the model
of response prediction is accurate.

5.3.5 Long-term formulation based on ISMC and Gaussian process regression

As shown in Equation (65), the contribution of each wind state to the long-term extreme response is the product
of its probability of occurrence and the upcrossing rate of its short-term buffeting response:

n(r,w) = V¢ (r|w) fyr (W) (72)

GPR can be trained to estimate any short-term response statistics. V5 can be obtained from the GPR estimations
of 6z and 6. The contribution to the long-term analysis from the surrogate model estimation is:

1@, w) = Vg (r|w) fw (W) (72)

7 is then normalized with its maximum value:

V;(T = Rstlw)fW(w)
max[V§ (r = Ry |w) fw(W)]

A(r = Ry, W) =
(73)

The set wy of wind states with relevant contributions to the extreme wind response can be obtained for a given
level of normalized contribution { as:

we €W {H >} (74)

Next, the limits of the sampling function of the ISMC framework are chosen such that all the generated samples
belong to the set wy.

The estimations from GPR are probability distributions with a direct measure of the estimation’s uncertainty. The
uncertainty in the estimation can be employed as a Bayesian updating approach. The surrogate model can decide
to perform a new multimodal buffeting response estimation at the wind state with higher estimation uncertainty.
The model will be sequentially updated until a convergence of the extreme response is achieved. The Bayesian
updating approach can be generalized with the concept of the learning function . A learning function will
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consider not only the GPR estimation’s uncertainty but also the contribution of any candidate wind state to the
analysis. For the case study, the learning function was adopted as the weighted product between the normalized
contribution to the buffeting response 7} and the norm of Z, which is a vector that contains the standard deviation
of 6z and G for each wind state, as shown in [92]. Next, the learning function for the i — th GPR model is:

o - s/2
QGP,—(W) = fgp,(r = Ry, w)'* |EGP,-(W)|

where GP;y = N(M(wt), K(wt,w})) is the initial model and 0 < s < 1is the weighting parameter. As s tends
to 0, more weight is given to the normalized contribution, s tends to 1, and more weight is given to the norm of
the standard deviation.

The Bayesian updating is restricted to the wind states within w, with relevant contributions to the analysis:

Whext = al'g max{ QGPi(wdlcpi)} (76)

The buffeting response with the multimodal approach will be computed for wy,.,¢, and the surrogate model will
be updated with the new observation:

GPi+1 = N(M([wt; wnext])rK([wt; wnext]' [Wt; wnext],)) (77)

The extreme buffeting response Rgp(GP;) from the GPR model will be obtained and compared with the previous
estimation Rgrp(GP;_1). The percent difference between the updated model estimation and the previous model
estimation will be obtained as:

_ IRp(GP) = Rep(GPi-y)|
‘ Rep(GPi-p)

The sequential updating procedure can be repeated until A is below a given tolerance level tol for n-consecutive
updates.
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6 Summary of the appended papers
6.1 Declaration of Authorship

In paper 1, all coauthors contributed to the planning of the paper. Dario Fernandez Castellon wrote the
manuscript, while Aksel Fenerci and Ole Andre @iseth provided feedback and contributed to improvements in the
manuscript. Dario Fernande Castellon carried out all the calculations included in the paper and developed all the
code for the machine learning algorithms. Professor Ole Andre @iseth provided the code for the buffeting
response with the multimodal approach.

In paper 2, all coauthors contributed to the planning of the paper. Dario Fernandez Castellon processed the data
from the Sulafjord Bridge site. He also implemented all necessary code and performed all numerical calculations.
Aksel Fenerci and Ole Andre @iseth contributed to discussions of the obtained results and suggestions for
improvements. Dario Fernandez Castellon wrote the manuscript, while Aksel Fenerci and Ole Andre @iseth
provided feedback and contributed to improving the manuscript.

In papers 3 and 4, Dario Fernandez Castellon planned the work with contributions from Aksel Fenerci, Ole Andre
@iseth and @yvind Wiig Petersen. Ole Andre @iseth provided a buffeting response code using the multimodal
approach. @yvind Wiig Petersen made the finite element model of the bridge. Dario Fernandez Castellon
developed the code for the long-term analysis and wrote the manuscript. All coauthors contributed to improving
the manuscript.

6.2 Paperl

A comparative study of wind-induced dynamic response models of long-span bridges using artificial neural
networks, support vector regression and buffeting theory

This paper tested the accuracy of machine learning surrogate models for buffeting response estimations. Two
different models were developed based on the multilayered perceptron and support vector regression. The paper
discussed different strategies to format the data and properly train the surrogate models. The model estimations
were compared with analytical models and full-scale measurements. The results showed remarkable accuracy for
the analytical model-based multimodal approach. Regarding the full-scale measurements, data from the
Hardanger Bridge were utilized. The models’ estimation showed large scatter as the observed data. The
estimations had good accuracy on the same order of magnitude as the other analytical models; however, the
surrogate model strategy consumed only a fraction of the execution time.

6.3 Paper2

Environmental contours for wind-resistant bridge design in complex terrain.

This paper provides the wind field characterization of the Sulafjord site in a probabilistic way. The study applies
the environmental contours method to draw curves of the isoprobability of the different wind variables. The paper
showed the probable wind conditions that can be expected at the Sulafjord site for different return periods in
contrast to the traditional approach, which shows only single values of mean wind speed and turbulence
parameters from deterministic relationships. In this way, using the same date typically available for the design of
long-span bridges, we showed a more complete yet intuitive representation of the wind field at Sulafjord.
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6.4 Paper3

Investigations of the long-term extreme buffeting response of long-span bridges using importance sampling
Monte Carlo simulations.

Owing to the probabilistic wind characterization of the Sulafjord site, it was possible to expand the traditional
deterministic response estimation method to a more reliable full long-term analysis. This paper reports the
investigations of three significant internal forces of the Sulafjord bridge model due to wind loading. In this paper,
different extreme response estimation methods were employed and compared. Since the main disadvantage of
the full long-term analysis is its high computational demand, in this paper, we also propose a framework based
on importance sampling Monte Carlo simulations that is designed to alleviate the long-term analysis procedure.
The results showed that the extreme responses from the full long-term analysis were 25% larger than the
responses from the short-term method employed in most of the current wind resistance design guidelines.

6.5 Paper4

Full long-term buffeting analysis of suspension bridges using Gaussian process surrogate modelling and
importance sampling Monte Carlo simulations.

After declaring the importance of full long-term analysis, a major challenge arose: making long-term analysis
feasible for the wind-resistant design of long-span bridges. Although the importance sampling framework of paper
3 alleviated the long-term analysis procedure, most of the computational demand is still on the time-consuming
evaluations of the buffeting response. The experience with surrogate modelling (paper 1) showed the potential
of this alternative for buffeting response estimations since remarkably fast and accurate response estimations
were obtained for several wind states. Nevertheless, optimizing the training procedure was a key factor
discovered in that initial study. Therefore, in paper 4, we proposed an efficient and reliable framework for full
long-term analysis that combines the strategies of paper 1 and paper 3. A machine learning surrogate model
(Gaussian process regression) was implemented to estimate the short-term buffeting responses, and the full long-
term analysis was performed with importance sampling Monte Carlo simulations. The framework showed
significant accuracy up to 99.6% compared with the traditional full long-term analysis, which uses less than 1% of
computational demand.
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7 Conclusions

The papers enclosed in this thesis propose a framework for full long-term analysis that is efficient and reliable for
the wind-resistant design of long-span bridges. The framework was successfully employed to estimate the
extreme buffeting response of the Sulafjord Bridge, and the following conclusions were drawn:

e Environmental contours are a more efficient strategy for characterising the wind field in long-span bridge
projects located in complex terrain than the traditional practice of reporting extreme wind speeds and
the corresponding turbulence parameters. The environmental contours provide a more complete yet
intuitive description of the wind field at the bridge site than the current design methodology. The
contours presented in this thesis reasonably captured the variability in the wind variables compared with
the site measurements.

e Including the stochastic behaviour of the wind turbulence in the analysis provided an increased degree
of reliability. The extreme response from the environmental contour method was on average 14% higher
than that of the common practice based on the short-term method.

e Surrogate models proved to be an accurate alternative to reducing the computational effort of the time-
consuming evaluations of the buffeting response (multimodal approach). The complement of the mean
absolute percent error (MAPE) exceeded 98% for the multilayer perceptron model and the supporting
vector regression model compared with the analytical buffeting responses of the Hardanger Bridge. The
Gaussian process regression model of the Sulafjord Bridge showed a good estimation accuracy as well,
with the additional feature of optimizing the number of simulations required for training.

e The extreme response from the full long-term analysis was higher than the response from the short-
term method. The difference between the two approaches was on average above 25% for the analysed
responses. This finding shows that using the full long-term analysis for long-span bridge design enhances
safety as wind loading effects increase.

e An efficient full long-term analysis framework for estimating the design buffeting response of long-span
bridges was successfully developed. The framework combined two major strategies: Gaussian process
regression to increase the computational efficiency of short-term response estimations and importance
sampling Monte Carlo to reduce the time of the full long-term analysis. The results show that the
proposed framework required less than 1% of the computational effort required by the traditional full
long-term analysis based on numerical integration.

8  Future research

Extend the modelling to other long-span bridge locations to determine if the findings of this thesis are
features of the Sulafjord site or if major trends exist that are worth publishing.

e Generalize the concept of the importance sampling distribution function defined by engineering
criterion. It should be possible to make an automated criterion for the sampling function that is not based
on project-specific observations.

e Expand the framework of the full long-term analysis with other reliability methods, such as subset
simulations and Markov chains.

e Explore enhanced surrogate model strategies, such as ensembles of neural networks that can also
estimate responses as probability distributions.

e Propose alternative analysis in the time domain to properly account for nonlinearities in the modelling,
as these could govern the design if the sensitivity of the deck to the angle of attack starts to have a major
role in the analysis.

e (Calculate the empirical inflating factors for the environmental contours and propose a dimensioning
criterion of these coefficients that can be utilized in other projects and integrated into design guidelines.
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ARTICLE INFO ABSTRACT
Keywords: Long-span cable-supported bridges are structures susceptible to high dynamic responses due to the buffeting
Long-span bridges phenomenon. The current state-of-the-art method for buffeting response estimation is the buffeting theory.

Full-scaled measurements
Buffeting response
Multilayer perceptron
Supporting vector regression

However, previous research has shown discrepancies between buffeting theory estimates and full-scale measured
response, revealing a weakness in the theoretical models. In cases where wind and structural health monitoring
data are available, machine learning algorithms may enhance the buffeting response estimation speed with less
computational effort by bypassing the analytical model’s assumptions. In this paper, multilayer perceptron and
support vector regression models were trained with synthetic and full-scale measured data from the Hardanger
Bridge. The analytical response was also computed from buffeting theory applied to a finite element model of the
bridge, and the estimates are compared. The prediction accuracy was evaluated with the normalized root mean
square error, the mean absolute percent error and the coefficient of determination (R2). The machine learning
models trained with synthetic datasets achieved very high accuracy with normalized root mean square errors
ranging from 1.46E-04 to 7.21E-03 and are therefore suitable for efficient surrogate modeling. Further, the
support vector regression model trained with the full-scale measured dataset achieved the best accuracy compared
with the other methods.

Qiseth, 2017). Such discrepancies expose the weakness of analytical
modeling of the complex phenomenon, presumably due to several as-
sumptions inherent to buffeting theory.

In cases where monitoring data are present, an alternative solution
may be found in using data-driven models based on machine learning.
Machine learning is the scientific discipline of developing algorithms that
can learn from data, which allows prediction based on existing trends
within datasets. Therefore, such algorithms offer an approximation of a
process by bypassing the complexity of its physics (Bishop C. M., 2006)
(Alpaydin, 2020). The potential of machine learning algorithms in civil
engineering applications has been recognized by many researchers, and
their use is becoming increasingly common as more user-friendly soft-
ware is becoming available. For instance, machine learning algorithms
can be trained to replace the analytical load-response relationships by
means of surrogate models. Such a strategy saves significant computa-
tional effort when many simulations are needed. Recently, such suc-
cessful efforts have also been presented in the wind engineering
community, (Fang et al., 2020) compared the capabilities of three ma-
chine learning surrogate models trained with a simulated dataset of

1. Introduction

The current state-of-the-art method for buffeting response prediction
of long-span bridges is to use buffeting theory, which was first introduced
by (Davenport A., 1962). Since Davenport’s early works, the theory has
been further developed by many researchers. Current advanced models
are based on finite element formulations, which can account for unsteady
self-excited forces (Scanlan and Tomko, 1971) (Davenport A., 1962)
(Jain et al., 1996), nonlinearities (Diana et al., 2008) (Diana et al., 2005)
(Chen and Kareem, 2003), skew winds (Zhu and Xu, 2005) and
non-stationary winds (Hu, Xu, & Huang, Typhoon-induced non-sta-
tionary buffeting response of long-span bridges in complex terrain, 2013)
(Hu et al., 2017). However, owing to the recent emergence of a large
number of structural health monitoring (SHM) projects on prominent
suspension bridges around the world, researchers have reported dis-
crepancies in dynamic responses between their analytical predictions
based on buffeting theory and the SHM data (Bietry et al., 1995) (Mac-
donald, 2003) (Xu and Zhu, 2005) (Cheynet et al., 2016) (Fenerci and
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Nomenclature

Y Machine learning output dataset

X Machine learning Input dataset

y;‘ Output of a generic node

xk Input of a generic node

19]’.‘ Bias of a generic node

3 SVR tolerance margin

Cc Box constraint

a,af Lagrange multipliers

wl.‘_j Weight of a generic connection between two nodes
&,& Slack variables

r Displacement vector in Cartesian coordinates
D¢, Vibration modes

n Generalized coordinates

M, C, K Mass, damping and stiffness matrices, respectively
0, Wind load vector

E1E;E;  Unit vector of the global coordinates

ejexes Unit vector of the local beam element
evievoevs Unit vector of the wind element coordinates
TGore Transformation from global to local beam element

TGotw Transformation from global to local wind element

Trwore Transformation from a local wind element to a local beam
element

TE2s Assembly matrix from local DOF to global DOF

q Element wind load vector

By Buffeting load coefficient matrix

Viw Local wind velocity vector

D, B Height and width of the girder
Cp C, Cy Force coefficients

R Autocorrelation function

S Auto or cross-spectral density matrix
Coh Square root of the coherence function
p Air density

A, Spectral quantities

z Height above the ground

H Frequency response matrix

oy 6; 69 RMS of the structural response

XAy Span-wise coordinate

v Mean wind speed

I, Turbulence intensity

K, Decay coefficient

a Vertical angle of attack

O, Rayleigh coefficients

o.f Circular and ordinary frequency

Subscripts

ae Aerodynamic

Buff Buffeting

Le Local beam element

Se Self-excited

Tot Total

0 Still-air

uw Wind direction

r response

k Generic layer

ij Generic neuron or data sample index
¥.2,0 Horizontal, vertical and torsional responses
Superscripts

i Model estimation

[ ] Constant value, mean or specific for the case
] Modal property

] Derivative with respect to time

"} Derivative

n Complex conjugate

' Matrix inverse

m Matrix transpose

Functions

g(m) Activation function
f(m governing function
L(W) Loss or cost function

K(m) Kernel function

Nl Shape function
Abbreviations

SVR Supporting vector regression
ANN Artificial neural network

MLP Multilayer perceptron
wIv Wind induced vibration

R2 Coefficient of determination
MAPE Mean average percentual error
RMS Root mean square

RMSE Root mean square error

NRMSE Normalized Root mean squared error
BFT Buffeting theory

CFD Computational fluid dynamics

KKT Karush-Kun-Tucker conditions

CLHS Correlated latin hypercube sampling
SD Standard Deviation

non-stationary wave and wind loads of a cable-stayed bridge to improve
the efficiency of the response estimation. (Bernardini et al., 2015) pro-
posed an alternative to wind tunnel testing based on surrogate models for
computational fluid dynamics (CFD)-based aerodynamic shape optimi-
zation of bidimensional profiles using an evolutionary algorithm to up-
date ordinary kriging surrogates. Furthermore (Wu and Kareem, 2011),
showed how machine learning can be used to simulate complex non-
linearities in aerodynamic behavior by developing an approach to model
aerodynamic nonlinearities in the time domain utilizing an artificial
neural network (ANN) framework with embedded cellular automata
(CA) applied to the hysteretic nonlinear behavior of aerodynamic sys-
tems, (Wang and Wu, 2020) proposed a knowledge-enhanced deep
learning (KEDL) algorithm to simulate wind-induced linear/nonlinear
structural dynamic responses in simulated dynamic systems. (Le and
Caracoglia, 2020) used simulated datasets of a tornado-like wind field to
develop an ANN-based surrogate model to approximate the structural

fragilities of vertical structures subjected to tornadic wind loads. Surro-
gate models of flutter derivatives with ANN models trained with wind
tunnel test data have been reported by (Chen et al., 2008) and (Rizzo and
Caracoglia, 2020), while (Cid Montoya et al., 2018) developed a kriging
surrogate model from CFD-based aeroelastic characterization of a bridge
cross section and validated it with wind tunnel test measurements. (Nieto
et al., 2020) extended the CFD-based kriging surrogate modeling
approach proposed by (Cid Montoya et al., 2018) to assess the flutter
response of bridges with twin-deck cross-sections. Additionally, the po-
tential of machine learning to enhance automated response prediction
tools from SHM systems is promising. Full-scale measurements of wind
responses in bridges have recently been used for training machine
learning algorithms, (Li et al., 2018) estimated vortex-induced vibrations
on full-scale measured data of a cable-stayed bridge with machine
learning, while (Wang et al., 2020) trained an ensemble model
comprising a random forest (RF), long-short term memory (LSTM), and
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Gaussian process regression (GPR) with measured wind data from the
cable-stayed Sutong Yangtze River Bridge in China to forecast wind gusts
affecting traffic operations. However, neither of these directly addressed
the effect of buffeting responses. Therefore, many uncertainties must be
explored as there are no relevant studies based on full-scale measure-
ments for buffeting response estimation in long-span bridges. The
deployment and operativity of machine learning algorithms in this field
are among the primary challenges to assess. Nonetheless, the effective-
ness of machine learning tools shall be explored in terms of which type of
algorithm yields better estimates and whether it can provide any
improvement with respect to the existing analytical models.

Therefore, this study intends to provide further insight toward un-
derstanding the buffeting phenomena of long-span bridges by imple-
menting machine learning algorithms trained with full-scale monitoring
data. To address this aim, long-term wind and acceleration monitoring
data from the Hardanger Bridge in Norway are used. Two different ma-
chine learning techniques, namely, support vector regression (SVR) and
multilayer perceptron (MLP) models, are used to model the wind-
response relationship. First, the models are trained using analytical
predictions to test their capabilities. The remarkable accuracy of these
models in predicting the analytical response suggests surrogate modeling
based on machine learning is certainly a viable option in cases where
many simulations are needed. Owing to the confidence gained from
synthetic data, the models are then trained using full-scale monitoring
data. The results show that reasonably accurate predictions of the dy-
namic response can be reached by using only wind characteristics data.
Finally, the predictions based on machine learning algorithms are

Journal of Wind Engineering & Industrial Aerodynamics 209 (2021) 104484

compared to the analytical results based on buffeting theory.

2. Machine learning methods for buffeting response prediction
2.1. Modeling the wind-response relationship

The buffeting responses of long-span suspension bridges can be pre-
dicted analytically using buffeting theory. In the frequency domain, the
wind field is modeled by a cross-spectral density matrix defined by the
time-averaged wind speed and several turbulence-related parameters.
Then, by means of buffeting theory, the root mean square (RMS) of the
dynamic response components are obtained.

Here, an alternative data-driven approach using machine learning
algorithms will be used to estimate the dynamic response of a long-span
suspension bridge. The objective of machine learning is to find patterns
within a dataset to then make predictions based on the discovered pat-
terns. Applied to buffeting response estimation, machine learning can
approximate the unknown function, f(X), between the wind parameters
of the cross-spectral density function and the RMS of the bridge’s dy-
namic responses, defined as the input tensor (X) and the target tensor
(Y), respectively. Machine learning algorithms fit f(X) over a large
amount of data samples in the three different stages of the so-called
learning procedure: training, validation, and testing. Hence, the dataset
is divided into training, validation, and testing sets. The training dataset
comprises the samples used for fitting the model parameters (Ripley,
1996). The validation dataset comprises samples that are used to eval-
uate the performance of the fitted trained model (James et al., 2013) and
subsequently adjust the model hyperparameters (Ripley, 1996). Finally,
the test dataset comprises the samples that follows the same probabilistic
distribution of the training dataset but has not been fed into the model,
therefore evaluating the generalization ability of the model (Ripley,
1996).

Equation (1) shows the machine learning process for the wind-
response relationship.

Given X; and ¥; Find f(X) . Y =f(X) ¥; = f(X)) m

The indexes iandj represent the training and testing datasets,
respectively.

Two different machine learning models were implemented. The first
model is an ANN called an MLP, which was use because of its simplicity
and common use in the literature. The second was SVR, which was used
because of its remarkable generalization ability and performance (Awad
and Khanna, 2015). Further details will be given in this section.

2.2. Artificial neural networks (ANN) — multilayer perceptron (MLP)
model

An ANN is an algorithm that mimics the functioning of biological
brains by assembling layered neurons connected to each other. A neuron
(also known as a unit or node) is an operational entity that stores and
distributes information (Rosenblatt, 1958). The neurons are organized in
sets called layers, and the neurons within one layer are connected to
those in the subsequent layer. The layer connections transmit informa-
tion within the neurons and, mathematically, are the arrays governing
the transformation relationships. The value of a neuron in an arbitrary
layer is the scalar product between its transformation array and the
output of the neurons in the previous layer; then, the neuron is activated
whenever its value surpasses a certain threshold (Rosenblatt, 1958). The
type of neural network used in this study is the so-called MLP (Rose-
nblatt, 1961), which is schematically shown in Fig. 1.

In Equation (2), y]l‘ is the output of the j -th node in the k -th arbitrary

layer of an MLP and is related to an activation bias 19}‘ and connection
weights w{-fjfl, where x5! is the value of the i-th node of the previous
layer. Then, a nonlinear activation function, g(x), is applied to the result
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(Bishop C. M., 1994). The subsequent operations in matrix notation are
presented in Equation (3). The feedforward mapping process (Equation
(4)) is then obtained by assembling the abovementioned operations until

Table 1
Range and intervals for the uniform grid simulated training dataset.

Wind Feature Minimum Maximum Number of Intervals the model’s final M layer is reached and by computing the model esti-
v 4 35 10 mation of the output ¥, where f(X) is the process-governing function.
oy 0.2 5.2 10
ow 0.1 2 10 N
K, 25 15 5 A :g( > owhit! +8j) (@)
Kw 1.5 25 5 =1~
~INT . —
=g (W) X o) @
Table 2
Synthetic datasets features summary. r N
v_ M—1 1 1
Dataset Simulation strategy Distribution Size Y 7f{ (W' ) o g{ (W‘ ) X } + QM} Q)
Training uniform Uniform grid Uniform 25,000 The actual output of the process or target is known in the training
Training CLHS CLHAS Observed 3500 stage. Thus, the ANN performance is obtained by comparing the target
Testing CLHS CLHS observed 500

with the model estimation with a “loss” function L(?j7 Yi)-

AVAVAVAVAVAVAVAVAVAY

3250 mm

18300 mm

Fig. 4. Cross section of the Hardanger bridge.
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Table 3
Natural frequencies of the still-air mode.
Mode  Frequency Circular Damping Characteristic
Hz Frequency Ratio

1 0.050 0.315 0.32% Symmetric lateral vibration
of the deck

2 0.098 0.616 0.41% Asymmetric lateral
vibration of the deck

3 0.110 0.694 0.45% Asymmetric vertical
vibration of the deck

4 0.141 0.884 0.54% Symmetric vertical
vibration of the deck

5 0.169 1.062 0.63% Symmetric lateral vibration
of the deck

6 0.197 1.239 0.72% Symmetric vertical
vibration of the deck

7 0.211 1.326 0.76% Asymmetric vertical
vibration of the deck

8 0.225 1.414 0.81% Symmetric lateral vibration
of the cables

9 0.233 1.461 0.84% Asymmetric lateral
vibration of the cables

10 0.234 1.468 0.84% Asymmetric lateral
vibration of the deck and
the cables

11 0.244 1.533 0.87% Symmetric lateral vibration
of the deck and the cables

12 0.272 1.709 0.97% Symmetric vertical
vibration of the deck

13 0.293 1.841 1.04% Asymmetric lateral
vibration of the deck

14 0.33 2.073 1.16% Asymmetric vertical
vibration of the deck

15 0.36 2.262 1.27% Symmetric torsional

vibration of the deck

Table 4

Load coefficients from wind tunnel testing
Load Coefficients Cp c, C C, Cu Cy
Value 1.05 0.00 —0.363 2.2 —-0.017 0.786

The mathematical objective of the learning process is to minimize the
loss function. This minimization is achieved by sending the estimation
error of Equation (4) through all the previous layers within the network;
this operation results in an iterative optimization procedure known as
backpropagation (Rumelhart et al., 1986). It is worth noting that the
backpropagation procedure refers to only the error feeding step and is
independent of the optimization algorithm used.

The original input signals are fixed to the dataset; therefore, the only
parameters to be updated in each iteration are the network weights and
biases. Thus, the optimization problem can be written as Equation (5).

find (W M1 & 9"6““‘):.1‘(@, y,> =min(L) (5)

2.3. Supporting vector regression (SVR) model

SVR is the application of the support vector approximation to a
regression problem using an e-insensitive loss function (Vapnik, 1995).
The objective of the tool is to find a function f(x) that, from a given
dataset of input and output features {x;.y;|...|Xn.yn }, approximates y; with
a certain tolerance ¢. The regression estimation can be obtained with the
linear function shown in Equation (6).

flx)= Xw+ 9 6)

Introducing the e-insensitive loss function L equal to zero when the
difference between the estimation f(x) and the target is less than ¢, a
constraint shown in Equation (7) is added to the problem.
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ifly—flx,w) <e @

otherwise

Ly —f(x,w)) = { ‘0, — fx,w)|

To make the solution more feasible, the tolerance margin is softened
by adding a set of slack variables & and ¢&;, as shown in Fig. 2.

The optimization problem becomes Equation (8), where C is the so-
called box constraint, which is a positive-valued parameter that im-
poses a penalty on the estimations outside the e-margin and thus helps to
balance the accuracy of the model.

minimize

1, = .
EW +C‘Zl:§,-+§,

W flxw) Se+g ®

with constraints : flew)—y <e+ 5:

£,8 >0

Solving this optimization problem with inequality constraints is
equivalent to finding the saddle point in the Lagrange function. By
introducing a, and a;, as Lagrange multipliers, the weights (w parame-
ters) can be found by Equation (9), and the model estimation is computed
by expanding the so-called support vectors in Equation (10).

N
w=Y(a—a))x 9

N
F@=3 (a—a)(x'x) +9 (10)
i=1

The parameters 9 can be obtained by exploiting the Kar-
ush-Kun-Tucker (KKT) conditions (William, 1939) (Kuhn and Tuker,
1951), which state that at the optimal solution, the product between the
dual variables and constraints vanishes. Then the constraints of Equation
(11) are added to the optimization problem.

ae+E—yi+x wt9) =0
a(e+& +y—xlw-9)=0
E(C—a)=0
&(C-a)=0

an

To extend the formulation to nonlinear regression problems, the dot
product (x,x) must be replaced with a nonlinear mapping function,
known as the kernel function K(x;x).

N

F@) = (a—a)K(x'x)+9 12)

i=1
3. Training data
3.1. Synthetic data: analytical predictions

Before extending the model to full-scale measurements, it was tested
on an ideal case of simulated datasets. The datasets were obtained by
simulating random wind fields and calculating the corresponding RMS
dynamic response of the bridge using multimode buffeting theory in the
frequency domain.

3.1.1. Multimode buffeting theory in the frequency domain

The buffeting response of the bridge was computed in the frequency
domain following classical multimode theory (Chen et al., 2000) (Jain
et al., 1996) (Katsuchi et al., 1998). The theory requires the following
assumptions: The bridge is idealized as a line-like structure, the wind
field is approximated as homogenous and stationary, and the wind action
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Fig. 7. Uniform grid training dataset (simulated data).

and displacements are referred to as the shear center of the bridge girder
and can be separated into a time-invariant mean and a randomly fluc-
tuating part. For surrogate model trained with the synthetic datasets, the
aeroelastic forces were computed with the quasi-steady theory. In
contrast, aerodynamic derivatives were included in the formulation for
the case of comparison with full-scaled measurements. In both cases the
experimental data came from the wind tunnel test reported by (Siedziako

.6 = DU D)= b1 br.. o) 1.0 = [ry o] 9O =11 W iy) o=y b, o]

et al., 2017).

Multimodal theory represents the structural quantities using the
mode shapes as generalized coordinates. Then, the structural displace-
ments due to buffeting, r, in a Cartesian coordinate system are repre-
sented by the sum of the products of the selected natural mode shapes, @,
and the respective generalized coordinatesy, as in Equation (13).

13)
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Then, the system’s generalized equation of motion is as shown in
Equation (14).

Moio) + ( Co )i + (Ko n(e) = @i (1)
0r(1) = s (0 + 0.0

Here, M,,C, and K, represent the structural still-air generalized
mass, damping and stiffness matrices, respectively, which are diagonal
matrices. These structural matrices are obtained from a finite element
model of the Hardanger Bridge. Finally, the term Q.,, stands for the total
generalized wind load including the buffeting and the self-excited forces.

as

3.1.2. Buffeting force using finite element discretization
Multimodal theory assumes that the structures are line-like. However,
suspension bridges have complex shapes; therefore, here, the use of a

beam finite element discretization approach is proposed to apply the
wind forces in Equation (14). Furthermore, the beam element forces can
be transformed into generalized coordinates using the multimodal
approach.

A generic structure can be discretized with beam finite elements with
12 degrees of freedom, as shown in Fig. 3 (a). Then, the wind action over
a generic beam element is shown in Fig. 3 (b). The three coordinate
systems shown in Fig. 3 are the global coordinate system defined by its
unit vector {Ej, Eo, Es}, the beam element local coordinate system with
unit vector {e;, ez, e3} and the wind field system with unit vector {ev; ,ev,,
evs}. The transformation scheme from the global coordinate system to
the local coordinate system of the beam element is shown in Equation
(15) and to the wind field local coordinate system is shown in Equation
(16). Hence, Equation (17) shows the transformation from the wind
system to the local coordinate system of the beam element.

The vector of nodal buffeting forces is obtained from the principle of
virtual work using the shape functions N(y) and denoting the wind forces
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Fig. 10. Hardanger Bridge sensor layout.

in the beam element by gy (. t) (Equation (18)).

Ouo ()= / Ny 0008 G (1) =By (0 Tisose Vi) (18)

Viw=[v1 V2 V3 ]T is the vector containing the wind turbulence
component in the wind coordinate system, and thus, it shall be trans-
formed into the local coordinate system of the beam. Furthermore, ma-

trix Bycan be obtained from Equation (19).
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where p the density of the air, @ the circular frequency, D and B the
effective depth and width of the girder cross section, respectively. V is the
mean wind speed. Cp, C;, & Cy are the drag, lift and moment coefficients
at the linearization position from the wind tunnel test and C’p,C’,C’ pare
their respective derivates with respect to the angle of attack, these co-
efficients are given in Table 4 from experimental data and the quantity%
is introduced as a normalization term.

To assemble the complete vector of nodal buffeting forces, the
contribution of all the beam element local forces are transformed into the
global coordinate system and summed (Equation (20)). Furthermore, the
dependence of B, and Vy, on the integration variable x is ignored by
assuming a uniform shape of the beam elements and that their length is
small compared to the spatial variations in the wind field.

N
Qg (1) =" Trssi Ty ;GiByiTranres Viswi(t) (20)

where T'gs is the assembly matrix from the local degrees of freedom of
beam element to the global degrees of freedom of the structure and G;
Js NG)dy.
To express the quantities in the frequency domain, the cross-spectral
density of the buffeting force is obtained as the discrete Fourier transform
of its cross-correlation function

Ry, (7) :E[Qbu[/ (1) QTbu/f(’ +7)} S0, (@)= Z

i

N
T T T AT T
X Z Teasi Tgpp, GiByiTrworei Sv (Ax, w)TLWZI_e,/ Bq,, G/ TGZLe.jTEZS,/

i

@1

where Sy(Ay,w) represents the cross-power spectral density (CPSD)
matrix of the wind field. Then, the cross-spectral density of the buffeting
force can be transformed into the generalized coordinate system:
Souy (D =@(1)Sg,, (@) () (22)

Applying a similar approach to the self-excited forces, Equation (23)

10

Journal of Wind Engineering & Industrial Aerodynamics 209 (2021) 104484

shows the nodal vector of self-excited forces and the wind forces g (x, t)
in the beam element.

0r ()= / NGOG 00 g = Cacf (o) + Kaer,1) @3)

where Cq and K, are the aeroelastic damping and stiffness matrices,
respectively, and are given in Equations (24) and (25). Equations (26)
and (27) present the matrices in the generalized coordinate system.

. P, P, BP,
C“*:E/’“’BZ H; H, BH, 24

e o

BA, BA, BA)

. P, P, BP
Km:ipszz H, H, BH, (25)

BA; BA, BA,
Cuu= [1Culw b x (26)

L

27

[ / BT Ko )b, dy
L

derivatives.
Finally, the cross-spectral density of the response in the global Car-
tesian coordinate system is:

S, (w,y,) =®(x,) { {H((;})SQM (a))] H' (0) } ' (y,) (28)
with the following transfer function:
H(0) = [— Mow* + <C‘g - CM> io+ (f(o - I~(M,>] (29)

By extracting the response spectrum at midspan and integrating over
the frequency, it is possible to obtain the standard deviation of the re-
sponses and thus the target output features:

Yi=[o,0.00], =0, =

/ S (@, Xy mipan) 40 (30)

3.1.3. Wind field modeling

3.1.3.1. Cross spectral density function. The cross-spectral density func-
tion of the wind turbulent field, Sy(Ay, w), required in Equation (21) is
defined as:

Suu (A, @) Suu(Dy, @)

SO =S (ag.0) S (87.0) @y
Sun(AY; @) = Cohyy (DY, @)\/Su(f) S (f) (32)

The terms S,, ne {u,w} and S,, m e {u, wjrepresent the auto-
spectral density function of the turbulence components at an element
location x;. The normalized cospectrum is represented by Cohyy.
Furthermore, S,,n,m € {u,w} represents the cross-spectral density
function of the beam elements separated by a distance Ay.

The variability of Sy is considered in the wind model parameters.
Applied to buffeting response estimation with machine learning, the
chosen input features (X) are the incoming mean wind speed (V), the
along-wind and vertical turbulence standard deviation (o, 0,) and the
decay coefficients (K, Ky). Furthermore, the auto-spectral density is
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Fig. 12. Matrix plot of the histogram and correlations from the A6 midspan anemometer for the easterly winds dataset.

modeled as a Kaimal-type spectrum (Kaimal et al., 1972) Equation (33),
while the normalized co-spectrum is modeled as a Davenport-type
(Davenport A. G., 1961) (Equation (34)).

Sf AL o
(VL) (1+15A%) !

(33)

3
o= b=

Cohy(Ay, w) = exp( - KHALVf> (34)

where the subscripts n,m € {u,w} indicate the along-wind and vertical
turbulence components, z is the reference height, f is the frequency and
A, is the set of spectral peak parameters. For the Hardanger Bridge,
(Fenerci, 2018) determined that an A, of 30, an A,, of 3 and a z of 60 m are
acceptable spectral quantities. I, represents the turbulence intensities.
Furthermore, the cross-coherence and cross-spectral terms associated

11

with Cohpy, and S, when n # m are ignored, and thus, only the spatial
coherence was considered.

3.2. Synthetic datasets

The corresponding target output (Y) was chosen as the RMS of the
lateral, vertical and torsional response components (6y, 0z, 6p). Thus, a
sample point i in the dataset i represented by the pair X;, Y;, as shown in
Equation (35).

X;=[Vo,0,K, K, andY; = [0, 0, 65 (35)

i

To create the synthetic data using analytical predictions, two training
datasets and one testing dataset were created. Each input sample
X;contains the wind features applied homogenously to all the wind ele-
ments. Furthermore, two different strategies were implemented to
simulate the input.



D.F. Castellon et al.

100

50

0
10152025
Vel m/s

Journal of Wind Engineering & Industrial Aerodynamics 209 (2021) 104484

0
10152025
Vel m/s

0
10152025
Vel m/s

10152025
Vel m/s

Vel m/s | |

o8
10152025
Vel m/s

200

20 40

Fig. 13. Matrix plot of histogram and correlations from the A6 midspan anemometer for the westerly winds dataset.

The first strategy is to use a uniform grid of the wind parameters to
ensure complete coverage inside the range of the full-scale measure-
ments. Therefore, from the dataset collected by (Fenerci and @iseth,
2018), the maximum and minimum values bounding each of the wind
model parameters were extracted. The resulting discretization range and
number of intervals for each variable are reported in Table 1, and with
the reported discretization, 25,000 sample points were simulated.

The input from the uniform grid dataset from Table 1 covers the
parameter space in a regular manner, which is not the case in the full-
scale measurements, where the data are concentrated in certain regions
of the parameter space. Therefore, to mimic the real dataset and to
investigate how the machine learning algorithms handle such clustering
of data points, a second input dataset is generated. This set was created
using the extension of the standard Latin hypercube sampling approach
(McKay et al., 1979) to correlated variables, correlated Latin hypercube
sampling (CLHS) (Olsson et al., 2003). The average size of the directional

12

training datasets to be introduced in the following section is 3500 sam-
ples. Therefore, for this dataset, the same number of samples was
generated using the CLHS approach following the probability distribu-
tion functions and correlation coefficients from the full-scale measure-
ments reported by (Fenerci and @iseth, 2018).

Finally, following the CLHS generation scheme, a third dataset was
generated to test the models. This set allows the validation of the models’
generalization ability by examining their performance for the same task.
Five hundred samples were generated for this dataset. A summary of the
synthetic datasets features is reported in Table 2.

3.2.1. Analytical prediction of the dynamic response of the Hardanger Bridge

A schematic technical drawing of the Hardanger bridge’s cross sec-
tion is as shown in Fig. 4. Additionally, the eigenvalue analysis was
performed to obtain the still-air modes using a finite element model of
the Hardanger Bridge supplied by the Norwegian Public Roads
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Administration reported in (Fenerci et al., 2017). Both the girder and height D of the Hardanger Bridge section are 18.3 and 3.2 m,

cable modal displacements were extracted for this analysis. The first 100
modes were considered in the analysis. The natural frequencies of the
first 15 modes are reported in Table 3, the reader is referred to (Fenerci
etal., 2017) (Lystad et al., 2020) (Petersen et al., 2017) further details of
the bridge’s modal behavior. Structural damping was modeled with the
Rayleigh damping approach (Chopra, 2000) using the parameters a,
0.0009 and g, 0.01102. Furthermore, the effective width B and

13

respectively.

The load coefficients used in the analysis were those reported by
(Fenerci and @iseth, 2018) from wind tunnel testing set up of (Siedziako
et al.,, 2017) and are shown in Table 4. The test was performed with
Reynolds number of 2.01x10°. The scaled cross section of the model was
equipped with handrails and the pedestrian path was located upstream.

Additionally (Siedziako et al., 2017), reported the aerodynamic



D.F. Castellon et al.

Journal of Wind Engineering & Industrial Aerodynamics 209 (2021) 104484

Start

pd

Dat

A

Divide Dataset

75%

25%

h 4

Training and
Validation sets

v

X

Testing set
Input|Target

—/

A 4

Training & Validating

Trained model

NRMSE
MAPE
R2
Response
Estimation —

Generalization &

accuracy check

End

Fig. 16. Flowchart of the model training and comparison steps.

Table 5
ANN settings.

Setting MLP

Activation function
Cost function

Rectified linear unit
Mean squared error

Optimization Bayesian-adaptative moment
Number of hidden layers 2
Sizes 8-8
Batch size 10% of the dataset
Learning rate Min = 1E-7
Number of epochs 1000
Table 6
Grid settings for the SVR hyperparameters.
Setting Minimum Maximum Number of Intervals
Box constraint 1E-5 100 10E14
€ le e le’e 10E14
Polynomial degree 3 6 3

derivatives of the bridge cross section from the wind tunnel test. Fig. 5
and Fig. 6 show the experimental results of the 18 aerodynamic

14

derivatives fitted a polynomial function that tends constant values
outside the experimental data range. In the figures the reduced frequency
K= % is introduced in the notation to enhance the presentation of the
aerodynamic derivatives. Nonetheless, for the purposes of the surrogate
modelling with synthetic datasets the use of the quasi steady theory
showed to be sufficient. Therefore, the aerodynamic derivatives formu-
lation was used just for the full-scaled measurements.

Finally, using the three simulated wind inputs described in the pre-
vious section (two inputs are used for training, one input is used for
testing), the dynamic response of the Hardanger Bridge, namely, the RMS
of the lateral, vertical and torsional components, was obtained using
multimodal buffeting theory. The scatter plots showing the resulting
input-output relationships are shown in Figs. 7-9 for the training uni-
form, training CLHS and testing CLHS datasets, respectevely.

3.3. Full-scale measurement data from the Hardanger Bridge

3.3.1. Overview of the measurements

The buffeting responses of the Hardanger Bridge were measured with
an extensive measurement system composed of 9 ultrasonic anemome-
ters that measure the wind speed in the range from 0 to 65 m/s with a
0.001 m/s resolution at a 32 Hz sampling frequency and 20 triaxial
accelerographs that measure accelerations on the interval of +4g at a
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200 Hz sampling frequency. More details on the Hardanger Bridge
measurement system and dataset management procedure are given in
(Fenerci, 2018), the dataset is available in open access (https://doi.or
g/10.21400/5ng8980s) (Fenerci et al., 2018). The installed anemome-
ters record the incoming wind velocity in polar coordinates, while the
coupled arrangement of the accelerometers register the triaxial bridge
response (Fenerci et al., 2017).

3.3.2. Wind field modeling and turbulence parameters

The wind parameters were extracted from the measurement system at
the A6 anemometer location (Fig. 10). Previous research campaigns at
the site (Fenerci and @iseth, 2018) (Fenerci et al., 2017) (Lystad et al.,

15

2018) reported two data clusters in the mean wind direction histogram
(Fig. 11). This phenomenon poses a challenge to the analysis due to the
topography-related difference between the wind features depending on
the incoming wind direction (Fenerci et al., 2017). Thus, in a similar
manner as the previous campaigns, the WIVs from both clusters were
studied separately.

Fig. 12 and Fig. 13 show the wind parameter matrix plots for the
easterly and westerly wind datasets; the subfigures on the diagonal
contain each input variable histogram, and the figures on the off-diagonal
show the scatter plots between the parameters. Furthermore, the angle of
attack, o, is introduced as an input parameter for this case, unlike the
synthetic data.
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3.3.3. Root mean square (RMS) of the responses at the midspan

The response of the Hardanger Bridge was measured at the same
location as the wind input using the accelerometer coupled sensors H5
shown in Fig. 10. The lateral and vertical components of the acceleration
were obtained as the average from the sensors at both sides of the girder,
while the torsional component was computed by dividing the difference
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between the two vertical signals by their distance (13 m). Fig. 14 shows
the panel plots of the training datasets for the westerly and easterly
winds. These plots contain the structural responses at the midspan of
Hardanger Bridge from the accelerometer coupled sensors H5 as
described in (Fenerci et al., 2017). The figures show quadratic trends
between the velocities and the responses, as expected. Fig. 15, on the
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Table 7
Comparison of the evaluation metrics on the simulated datasets.
Model NRMSE MAPE R2
oy oy oy oy oy oy oy [ oy
Uniform grid MLP 1.02E-03 5.87E-03 7.21E-03 0.4751 1.7468 1.936 1.00 0.99 0.99
Uniform grid SVR 5.14E-04 1.66E-03 7.70E-04 0.1853 0.5748 0.303 1.00 1.00 1.00
Random CLHS MLP 1.46E-04 3.51E-04 1.76E-03 0.0092 0.0120 0.036 1.00 1.00 1.00
Random CLHS SVR 4.97E-04 8.90E-04 6.62E-04 0.1465 0.1233 0.115 1.00 1.00 1.00
0006
0.004 8 oy,
w o g,
5 £ ox 8 %
& z
0002
001
00002
Uniform grid Random CLHS Uniform grid Random CLHS
(a) NRMSEs for the different SVR models (b) NRMSEs for the different SVR models (outliers
only)
Fig. 19. (a) NRMSEs for the different SVR models (b) NRMSEs for the different SVR models (outliers only).
other hand, shows the variation in the structural responses as a function . .
Lo . _ interquartile {range(y)}
of the complementary wind input parameters for the velocity range from o i Mt 2N (37)

15 to 16 m/s of the a) easterly and b) westerly winds. This figure shows
linear trends between the responses and the turbulence intensities, and
no apparent trend can be observed for the other parameters.

4. Training, validation and testing datasets

The training datasets correspond to the division of the data that will
be fed into the machine learning models; for this type of application, it is
deemed appropriate to take 65% of the dataset for training. Furthermore,
10% of the dataset was used as a validation dataset for tuning the model
hyperparameters and optimizing the global performance. Thus, an
additional 25% remained for the testing data. The schematic flowchart of
the analysis is shown in Fig. 16.

4.1. Model hyperparameters and settings

In ANN models, the network architecture, function selection and
optimization scheme affect the results. Thus, Equation (5) minimizes the
loss function for a given network setting. With the aim of avoiding
overtraining, the MLP model was trained using the batch training strat-
egy; i.e., every optimization cycle was performed on a different division
of the dataset. The configuration found to be appropriate for training the
MLP models is reported in Table 5.

Analogously, for the SVR model, Equation (12) will give rise to
different estimation functions if changes are made to the kernel function,
box constraint C, and slack parameters £ among other settings. For this
application, experience suggests the use of a polynomial function as the
kernel function, as given in Equation (36), and half the width of the
e-insensitive band, €, is computed by Equation (37). Then, a built-in grid
search optimization algorithm is used to find the configuration that
minimizes the loss functions with the grid setting reported in Table 6.
Further studies on hyperparameter optimization for buffeting response
modeling are beyond the scope of this paper but may be the objective of
future research.

K(x/x)= (1+ x,/x/)d (36)
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13.49
5. Performance assessment and comparison
5.1. Performance metrics

Three metrics were used to compare the estimates and targets: the
normalized root mean square error (NRMSE, Equation (38)) (Amstrong
and Collopy, 1992), the mean absolute percent error (MAPE, Equation
(39)) and the coefficient of determination (R2, Equation (40)). The
NRMSE (Amstrong and Collopy, 1992) becomes representative of the
modeling since it is the normalized version of the square root of the mean
squared error (MSE), which is used as the loss function for the MLP. On
the other hand, the MAPE results are more intuitive since they present
the deviation as a percent. Finally, R2 allows the weight of the deviation
of the estimates according to their variance.

N 2
NRMSE = %Z (y-j 7):,> / {max(¥) — min(¥)} (38)
Jj=1
15—l
mapE=L 3 (39)
N ; Vi
N 2
R2=1-— ; (y, - y‘j) /(),j _5) (40)

5.2. Synthetic data

5.2.1. Uniform grid training dataset

The panels in Fig. 17 show the comparison between the targets from
the testing dataset and estimates for the machine learning models trained
with the linearly spaced dataset for the SVR response models and for the
MLP. In the figure, the X-axis is the velocity, and the Y-axis is the RMS of
the response component. The figures show a complete matching of the
estimation and target over the entire wind speed range. The satisfactory
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performance of the machine learning models on the simulated dataset
shows the effectiveness of the method in modeling the buffeting phe-
nomenon and encourages its application to the full-scale data.

5.2.2. Random training dataset

Analogously, the comparison of the scatter plots between the
randomly generated dataset target from the testing dataset and its cor-
responding machine learning estimates is shown in Fig. 18. Despite the
clustering of the data points around the moderate wind speeds, the al-
gorithm is successful in predicting the response in the entire wind speed
range.

Table 7 extends the graphical overview and reports the evaluation
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metrics of the three response components (i.e., oy, 6, and a,) for the two
machine learning models (i.e., the MLP and SVR models) on the two
different datasets (i.e., the uniform grid and random CLHS datasets).
With the given evaluation metrics, the SVR models perform better than
MLP models in the uniform grid dataset, whereas the opposite occurs in
the random CLHS dataset. Nevertheless, the order of magnitude of the
NRMSE is approximately 10E-4, stating an appreciably good general
performance level, with the lowest error of 1.46E-04 for the MLP/CLHS/
oy response and the highest of 7.21E-03 in MLP/uniform grid/cy.
Moreover, the highest and lowest MAPE values of 1.936% and 0.0092%
agree with the NRMSE results.

Estimation of extreme responses is especially important for long-span
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Fig. 21. Response comparisons MLP models (a) Easterly o, (b) Westerly o, (c) Easterly 6, (d) Westerly o (e) Easterly 6, (f) Westerly.oy

bridge buffeting response modeling. Thus, a comparison limited to the because the CLHS dataset concentrates the data points in the central
maximum values given by oy > 0.3, 0, > 0.1 and gy > 0.018 is pre- region, leaving fewer data points in the maximum value region, resulting
sented. To highlight the difference in the performance, Fig. 19 (a) reports in better predictions for moderate wind speeds and compromising the
the NRMSE of the SVR models in the general case and (b) reports the accuracy of the extreme values. On the other hand, the uniform grid
maximum values. Overall, the models trained with the random CLHS dataset presents a better accuracy in the region of the outliers. It should
dataset showed less error compared to their uniform grid counterparts. be noted that both methods provide reasonably accurate results.

However, for the outliers, the uniform grid models performed better
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Table 8
Evaluation metrics for the directional models on real datasets.
Model NRMSE MAPE R2
oy 0y oy oy 0y oy oy A oy
West MLP 6.87E-02 5.39E-02 3.79E-02 26.8 10.7 19.5 0.89 0.95 0.92
West SVR 5.14E-02 3.06E-02 3.28E-02 21.6 14.1 22.2 0.84 0.94 0.92
East MLP 8.87E-02 1.06E-01 5.74E-02 42.0 36.4 29.1 0.44 0.59 0.72
East SVR 5.98E-02 5.65E-02 4.87E-02 22.9 13.9 19.4 0.69 0.84 0.80
Additionally, Table 8 shows the evaluation of the three response com-
Table 9 ) o ) ponents (6y, 6, and o) for the two machine learning models (MLP and
Constant input values for the directional model comparisons. SVR) in the two different datasets (westerly and easterly winds).
Wind feature Symbol Constant value The easterly and westerly wind model estimates were compared. The
Along-turbulence SD o 0.1*V input was varying mean wind speeds, with linearly dependent 6, 6, (to
Vertical turbulence SD ow 0.06*V retain the observed trend in the real data), and the other parameters were
Angle of attack « 2.9 held constant. Table 9 reports the input parameter settings. Fig. 22 shows
Along-wind decay coefficient Ky 8.6 . o . . .
Vertical decay coefficient K 107 the plots comparing the predictions of both directional models for the

5.3. Full-scale measurement data

The techniques verified with the synthetic data case were extended to
full-scale measurements. For this aim, the scatter plots the response
comparisons from the different models are shown in Figs. 20 and 21.

three response components 6y, o, and oy from the SVR algorithm, while
Fig. 23 reports a similar comparison for the MLP model.

Both figures show that the model trained with the easterly wind
dataset yields a higher response estimation for the same input conditions.
This is consistent with the behavior observed in the full-scale measure-
ments reported in Fig. 14.
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Fig. 22. Prediction comparison for the directional SVR models on common input: (a) 6y, (b) o; and (c).64
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Table 10
Evaluation metrics for the estimates from buffeting theory.
Model NRMSE MAPE R2
oy [ oy oy 0y oy oy 0y oy
West BFT 7.65E-02 6.27E-02 5.47E-02 38.68 19.13 34.17 0.82 0.85 0.83

East BFT 7.62E-02 1.12E-01 5.97E-02 33.58 35.41 24.81 0.54 0.73 0.72
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5.4. Machine learning vs. buffeting theory

Finally, the response of the Hardanger Bridge was estimated analyt-
ically using buffeting theory and the wind input from the full-scale
measurements. The response comparison between the measured
response and the buffeting theory estimation is shown in Fig. 24, and the
corresponding evaluation metrics are reported in Table 10. A graphical
comparison in terms of the MAPE between the estimates obtained with
machine learning reported in Table 8 and the estimates obtained with
buffeting theory is shown in Fig. 25.

The SVR estimates yield more accurate results than the MLP and
buffeting theory on both directional datasets. Moreover, for the westerly
winds dataset, both machine learning models predicted more accurate
estimate than buffeting theory. Using the MAPE, the greater difference
between buffeting theory and the SVR model was 17% for o, and the
lowest difference was approximately 5% for o, on the easterly winds’
dataset. In general, the estimates of the full-scale observations show a
slight decrease in the performance compared with the ideal case, mainly
because uncertainties in the dynamic behavior, such as the in-
homogeneities and non-stationarity of the wind field, traffic and tem-
perature effects are not completely captured by analytical models.

A difference in the error metrics between easterly and westerly wind
related responses is exposed for both cases, estimations with machine
learning (Table 8) and buffeting theory estimation (Table 10). For
example, R2 metrics for the o, responses in Table 8 vary from 0.44
(easterly) to 0.89 (westerly) for MLP and 0.69 (easterly) to 0.84 (west-
erly) for SVR whereas Table 10 shows a variation from 0.54 (easterly) to
0.82 (westerly) for the same response component. The main reason for
this behavior is that the aerodynamic properties of the bridge, namely the
steady-state force coefficients (Table 4) and the aerodynamic derivatives
(Figs. 5-6) were obtained for the case of winds approaching from the
west, which are the strongest. This partly explains the poor performance
of the analytical predictions for the easterly winds. Further, the easterly
winds are more affected by the more complex topography, which typi-
cally causes higher angles of attack. Such issues are handled implicitly by
the machine learning models, where the buffeting theory is more
challenging.

6. Conclusion

In this paper, accurate buffeting response estimations were computed
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from analytical and machine learning models. The wind input dataset
was obtained from full-scale measurements and simulated data following
the probabilistic model of the observed wind turbulence field. Then, the
quality of the estimates was evaluated, leading to the following
conclusions:

e Estimations from machine learning models (i.e., the SVR and MLP
models) on the synthetic datasets were reasonably accurate. There-
fore, the good quality of the estimates makes the technique suitable
for surrogate model development such as those required in reliability
analyses.

The models trained with the full-scale datasets were less accurate
than the models trained with the synthetic datasets. The main reasons
for this are the various uncertainties in the dynamic behavior that are
not captured by the monitoring system, such as the inhomogeneities
and non-stationarity of the wind field, traffic and temperature effects.
However, as data-driven models bypass some of the limitations of
buffeting theory, machine learning-based estimates were more ac-
curate than the analytical predictions.

Considering the slightly different behavior observed under easterly
and westerly winds, two different machine learning models were
trained for the two directions. The models trained on the easterly
winds predicted higher responses under the same wind input,
capturing the observed behavior.

The SVR model yielded better response predictions than the MLP
model on both the simulated and full-scale measurements. Further-
more, the method was more accurate that the analytical response
estimates with the multimodal approach.
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ABSTRACT

Accurate estimation of the extreme wind fields is crucial for long-span bridge design. The current practice is focused on estimating the extreme mean wind speed,
neglecting the inherent uncertainty in the turbulence model parameters. However, full-scale measurements on bridges show that such uncertainties are significant
and should be considered in design. Here, the environmental contour method (ECM) is used to obtain long-term extreme wind fields considering uncertainties from
the mean wind speed, turbulence intensities and spectral parameters measured at the Sulafjord Bridge site. Design contours of combinations of wind field parameters
are obtained for target return periods of 4, 50 and 100 years. The contours are based on a proposed probabilistic modeling strategy that combines hindcast mesoscale
simulations and field measurements. The contour estimates are also compared with state-of-the-art design values from the design recommendations. It is concluded
that the environmental contours provide a more complete and yet intuitive description of the wind field at the bridge site compared to the current design meth-
odology. The ECM is found suitable for obtaining design wind fields at new long-span bridge sites as it makes use of the limited site data more efficiently and it is still

easy-to-use for the practicing engineer.

1. Introduction

General practice in bridge design establishes the structural response
based on extreme values of wind speeds for long-term return periods
(CEN, 2004). In the current design practice, the corresponding design
wind loads are estimated using the mean wind speed as the sole sto-
chastic variable, whereas other turbulence-related parameters are
treated deterministically, usually dependent on the mean wind speed.
However, monitoring campaigns in complex terrain showed that most of
the scatter in measured structural response is strongly related to
randomness in turbulence-related parameters (Fenerci et al., 2017). The
observations show that the extreme structural response does not
necessarily occur at the extreme value of mean wind speed but at rela-
tively lower wind speeds with more severe turbulence parameters, such
as turbulence intensity. Site measurements of wind and bridge response
expose the necessity of design methodologies that consider the sto-
chastic variability in wind variables, such as turbulence intensities,
spectral parameters, spatial correlation of turbulence, and incoming
wind direction together with the usual mean wind speed (Wang et al.,
2013), (Li et al., 2021).

Relevant studies on wind characterization with probabilistic turbu-
lence modeling are not abundant (Fenerci and @Qiseth, 2018), (Solari and
Piccardo, 2001). On the other hand, there are many studies in the
literature about the assessment of structural wind-induced effects using

probabilistic frameworks; however, the randomness is usually limited to
the structural or aerodynamic parameters and the mean wind speed
(Davenport, 1983; Solari, 1997; Pagnini and Solari, 2002; Pagnini,
2010; Seo and Caracoglia, 2012, 2013; Kareem, 1987; Ciampoli et al.,
2011). Uncertainty in turbulence itself has been overlooked except for a
few studies (Solari and Piccardo, 2001), (Lystad et al., 2018). In that
regard, Lystad et al. used the environmental contour method (ECM) to
estimate extreme wind fields for the Hardanger Bridge site (Lystad et al.,
2020). The ECM obtains combinations of environmental parameters
with a selected return period from their joint distribution (Winterstein
etal., 1993), (Haver and Winterstein, 2009). Contours may be obtained
using different methods, such as the inverse first-order reliability
method (IFORM), the inverse second-order reliability method (ISORM),
the highest density contour method (HDC) or Monte Carlo simulations
(Winterstein et al., 1993), (Chai and Leira, 2018; Haselsteiner et al.,
2017; Bang Huseby et al., 2013). Applications of the ECM have been
extensively covered in the marine technology and wind energy in-
dustries, where researchers have used the method to determine the
design loads of offshore platforms within a probabilistic framework
(Naess and Moan, 2012; Moan et al., 2005; Saranyasoontorn and Man-
uel, 2004, 2006; van de Lindt and Niedzwecki, 1997; Niedzwecki et al.,
1998; Vanem, 2019; Montes-Iturrizaga and Heredia-Zavoni, 2015;
Heredia-Zavoni and Montes-Iturrizaga, 2019; Moriarty et al., 2002;
Fitzwater et al., 2003; Raed et al., 2020; Karmakar et al., 2016; Velarde

Abbreviations: ECM, Environmental Contour Method; IFORM, Inverse First Order Reliability Method; CDF, Cumulative Distribution Function.

* Corresponding author.

E-mail addresses: dario.r.f.castellon@ntnu.no (D.F. Castellon), aksel.fenerci@ntnu.no (A. Fenerci), ole.oiseth@ntnu.no (O. @iseth).

https://doi.org/10.1016/j.jweia.2022.104943

Received 23 June 2021; Received in revised form 25 January 2022; Accepted 16 February 2022


mailto:dario.r.f.castellon@ntnu.no
mailto:aksel.fenerci@ntnu.no
mailto:ole.oiseth@ntnu.no
www.sciencedirect.com/science/journal/01676105
https://www.elsevier.com/locate/jweia
https://doi.org/10.1016/j.jweia.2022.104943
https://doi.org/10.1016/j.jweia.2022.104943

D.F. Castellon et al.

et al., 2019). Environmental contours have also been used to charac-
terize the seismic hazard and derive the seismic design response spectra
(Bazzurro et al., 1996; Van De Lindt and Niedzwecki, 2000; Loth and
Baker, 2015). However, in design against wind actions on long-span
bridges, the method remains largely unexplored despite the remark-
able potential advantages.

Recently, Lystad et al. (2020) showed environmental contours for the
Hardanger Bridge site based on a probabilistic wind field model from
Fenerci and @iseth (2018a) which was based on wind measurements on
an existing bridge (Lystad et al., 2018). The results obtained for the
Hardanger Bridge showed weaknesses in the current design methodol-
ogy and motivated extension of the ECM to the structural design of new
bridge sites. However, an obvious challenge that arises in the design of
new bridges is obtaining data that are representative of extreme wind
conditions because extreme wind conditions are inferred from mea-
surement campaigns of relatively short duration. Additionally, wind
measurements for new bridges are performed at meteorological stations
in the vicinity of the site, instead of the midspan of the bridge, where the
conditions are most relevant for bridge design. Here, we will attempt to
extend the methodology to a new bridge site in complex terrain.

This paper presents environmental contours for the Sulafjord Bridge
site to investigate the potential application of the ECM in the design of
long-span bridges. Contours were obtained from the joint probability
distribution of the mean wind speed, turbulence intensities and turbu-
lence spectral parameters for each incoming wind direction. The joint
turbulence model was established with a novel strategy where data from
the 4-year mast measurement campaign (Furevik et al., 2020) and
10-year hindcast mesoscale simulations are combined, exploiting the
advantages of both datasets. The contours represent the extreme wind
fields for 4-, 50- and 100-year return periods.

This paper is outlined as follows. Section 2 presents the bridge site,
measurement campaign, and hindcast data, including histograms of
wind speed and direction, as well as the wind roses. This section expands
the findings of the Sulafjord measurement campaign reported by Cas-
tellon et al. (Castellon, 2019) and Midjiyawa et al. (2021) and discusses
how the dataset can be used to obtain the best possible wind field model
for bridge design. Section 3 presents the proposed probabilistic
modeling strategy, which is essentially a joint probability distribution of
all the wind field parameters. The model is based on the joint lognormal

parameters that are dependent on the mean wind speed and direction. A
Weibull distribution is used for the mean wind speed, and a discrete
division for the mean wind direction is assumed. Section 4 presents the
environmental contour lines for 4-, 50- and 100-year return periods and
contour surfaces for a 100-year return period. The contour lines give
combinations of two environmental parameters, while the surfaces
correspond to combinations of three parameters. The four-year return
period corresponds to the duration of the measurement period, whereas
the results for 50- and 100-year return periods can be applied in bridge
design. Section 5 presents the results and discusses the methodology’s
applicability to bridge design, including a comparison with reference
values from the current design practice. Section 5 also contains
modeling limitations and provides recommendations for future imple-
mentation of the ECM.

2. Wind conditions at the Sulafjord Bridge site
2.1. Bridge site

The Sulafjord is a Norwegian fjord located 10 km southwest of the
city Alesund on the western coast of Norway. The fjord is oriented from
southeast to northwest, and it is approximately 12 km long, 4 km wide,
and has a maximum water depth of 450 m. Fig. 1 shows the surroundings
and the topography of the fjord, which is largely characterized by
mountainous terrain with elevations of approximately 500 m on both
sides, directing the wind flow through the fjord. Fig. 2 shows a picture of
the fjord surroundings from the bridge location towards the north and
south. Fig. 2 a) also shows the island Godgya, which is located on the
northern side of the fjord. The island partly shields the fjord from the
winds coming directly from the sea (Castellon, 2019). Fig. 3 shows an
illustration of the Sulafjord suspension bridge adapted from illustrations
by the Norwegian Public Roads Administration (NPRA) (Vegvesen,
2016).

2.2. Measurement campaign

Beginning in 2014, a wind measurement campaign led by the NPRA
was deployed. This campaign aims to characterize the wind conditions

distribution for turbulence intensities and turbulence spectral in the Sula, Halsa and Vartdal fjords (Furevik et al., 2020). The data are
handled by the Norwegian Meteorological Institute and are openly
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Fig. 1. Topographical map of the Sulafjord site (adapted from https://norgeskart.no/- ®norgeskart Norwegian Mapping Authority).
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a)

b)

South view

North view

Fig. 2. The bridge site. (Images courtesy of NPRA).

Fig. 3. Illustration of the Sulafjord suspension bridge. (Image courtesy of NPRA).

available (Norwegian Meteorological Institute, 2020). Four stations
from the campaign are located at the Sulafjord site (cross symbols in
Fig. 1), and Table 1 shows their geographical coordinates.

Each station is composed of a meteorological mast. The masts are
equipped with wind sensors at different heights, to capture the vertical
wind profile. The WindMaster Pro 3-Axis anemometers (Gill Instruments
Limited) were used which can measure wind gusts up to 65 m/s. The
speed resolution is 0.01 m/s, and the direction resolution is 0.1°, while
the accuracy at 12 m/s is reportedly <1.5% RMS and 2° for speed and
direction, respectively. Table 1 also shows the number of sensors and
their altitude with respect to the sea level for each station.

2.3. Wind data from meteorological masts
The measurement data were analyzed to develop a statistical model

Table 1
Sulafjord wind mast station coordinates.

Station name Latitude Longitude Sensors Altitude (m)
Kvitneset 62°25'17.74'N 6° 0'4.03'E 3 92.5-71.5-44.5
Tralboneset 62°25'39.47"N 6° 3'45.45'E 3 76.8-48.3-27.3
Langeneset 62°23'10.68"N 6° 1'52.72"E 4 94.8-75-50-27
Karsteinen 62°24'0.48'N 6° 7'9.82'E 3 62.8-40-13.4

of the wind conditions at the site. In total, 151,505 10-min intervals
from sensors at approximately 50 m above sea level were analyzed. This
elevation corresponds to the lowest sensor at Kvitneset and the second
lowest at the other stations and most representative of the bridge height.
Recordings with anomalies such as system log-out or missing data,
within the averaging period of 10-min, are disregarded from the analysis
as they cause irregularities in the power spectrum estimation. Further
details of data processing are explained in section 2.3.3.

The wind data are given in polar coordinates and need to be trans-
formed to a Cartesian coordinate system aligned with the 10-min mean
wind direction.

V+ u(t) = V,(t)cos{o(t) — 9}
(1) = V,(0)sin{a(1) ~ 9} m
w(t) =W() - W

Equation (1) shows the transformation of the wind velocity in polar
coordinates with the magnitude V,(t) and direction ¢(t) into mean wind
speed V and mean wind direction ¢ and the wind turbulence decom-
position into along-wind u(t), cross-wind v(t) and vertical w(t) compo-
nents. Recordings with a mean speed below 5 m/s were discarded from
the analyses as such records tend to be severely nonstationary due to
rapid changes in temperature and wind direction. Such data can how-
ever be disregarded as they won’t cause significant structural responses
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and therefore not relevant for the application here, which is focused on
extreme wind fields. Fig. 4 shows the histograms of the mean wind di-
rection, @, from the mast-measurements where the north is aligned with
zero. The histograms show clusters of samples at specific directions
which are mainly governed by the terrain’s topography. The cutoff-
directions of the clusters were chosen corresponding to the peaks of
the histograms. The figures show that there are two main directions at
Tralboneset, Langeneset and Kéresteinen, while there are three di-
rections at Kvitneset. The main directions were divided into these sec-
tors such that wind recordings from different topographical conditions
could be studied separately. The main directions are shown by dashed
lines in the histograms and Table 2 reports their directional intervals.
Treelboneset station shows the dominant cluster in the incoming direc-
tion interval 100°-230°. Further details about the topographic influence
over the mentioned behavior was explored with the wind rose diagrams
that will be presented in next section.

2.3.1. Wind roses

Fig. 5 shows wind roses of the stations’ mean wind speeds on top of
the topographical map. The map clearly illustrates that there are tall
mountains close to the masts and that the terrain by the masts will in-
fluence the wind recordings severely for some directions. It is therefore
not straightforward to compare the wind roses at the four masts. The
wind roses at Tralbonset and Kvitneset shows that the main incoming
wind direction is from south in both locations. This behavior can be
explained by the island Godgya (Fig. 1), which partially shields the two
locations from winds coming from the open sea. A similar pattern would
normally be expected at Kéresteinen and Langeneset due to their close
location. Nonetheless, their wind roses are significantly different. The
mast at Langeneset is partly shielded from winds approaching from
southwest by the tall mountain close by. Similarly, the winds coming
from south are severely obstructed by the tall mountain behind the mast
at Karesteinen. This illustrates that the measurements gathered at Lan-
geneset and Kdresteinen are not entirely representative for the southerly
winds at a potential bridge crossing between Kvitneset and Trealboneset.
The wind roses also illustrate that the wind field is shaped by the
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Table 2

Main directional sectors.
Location Sector 1 Sector 2 Sector 3
Kvitneset 100°-230° 260°-360° 370°-410°
Tralboneset 120°-230° 280°-400° -
Kérsteinen 90°-150° 220°-340° -
Langeneset 80°-240° 290°-360° -

mountains along the fjord since the main wind directions tend to be
aligned with the tall mountain sides for some of the wind directions. It
should also be noted that the shape of the wind roses strongly depends
on how many sectors that are used.

According to the feasibility studies by the NPRA (Vegvesen, 2016),
the most convenient track for a suspension bridge crossing the fjord will
be near the Kvitneset and Tralboneset stations (thick line in Fig. 1).
Fig. 6 and Fig. 7 show the histograms of the mean wind speed at both
locations considering the directional division. Fig. 6 from Kvitneset
shows sector 2 (250°-320°) as the dominant sector with the highest
recorded mean wind speed and sector 1 (120°-210°) as the most
populated sector with largest number of samples. Fig. 7 shows Treelbo-
neset sector 1 as both dominant and most populated. The histograms and
wind roses show that the winds coming from the seaside have lower
mean wind speeds at Tralboneset station compared to other stations.
The main reason for this behavior is the effect of the Godgya island
which protects the Tralboneset-side of the track from the open sea
winds while the Kvitneset-side is partially uncovered from northwestern
sea winds. Evidence of this is clearly found from the Kvitneset recordings
in which the maximum mean wind speed of 25.7 m/s was observed in
the sector not protected by Godgya. The shielding effect also implies that
the most critical wind conditions on the Sulafjord bridge are expected to
come from the southern direction approaching nearly perpendicular to
the bridge deck. The measurements gathered at Treelboneset are clearly
most representative for the southerly winds approaching the bridge
crossing since the southerly winds approaching Kvitneset has passed
over a mountain close by. The data from Tralboneset is therefore used to
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Fig. 4. Direction histogram station: a) Kvitneset b) Tralbodneset ¢) Karsteinen d) Langeneset.
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Fig. 6. Mean wind speed histograms for the Kvitneset station from measured
data at a) Sector 1 b) Sector 2.
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Fig. 7. Mean wind speed histograms for the Tralboneset station from measured
data at a) Sector 1 b) Sector 2.

obtain the results presented in this paper.

2.3.2. Data processing

The recordings were resampled at 2 Hz to remove high-frequency
content associated with possible vibration of the mast. The resampling
does not introduce any significant inaccuracies since the wind charac-
teristics will be applied in the design of a long-span bridge. In these types
of projects the responses and associated load effects are dominated by
vibration modes with natural frequencies much lower than 1 Hz. In
addition, high-pass filtering was used to subtract nonstationary trends,
as this technique better removes the variances in ramp-like events in the
recordings (Hannesdottir et al., 2019) than detrending each 10 min
segment. The filter was a minimum-order, linear-phase, finite impulse
response (FIR) with pass frequency fyess = 1/300 hz, steepness s = 0.85
and transition width W = 5x10 — 4, following the recommendations in
(Hannesdottir et al., 2019).

2.3.3. One-point turbulence spectrum

The turbulence was modeled from its one-point Kaimal-type power
spectrum S,, Equation (2) (Kaimal et al., 1972). Model uncertainties
were introduced by assuming the mean wind speed (V), the along-wind,
cross-wind and vertical turbulence intensities (I,I,, L), and the spectral
parameters (A, A,,Ay,) as stochastic variables. Despite the Kaimal-type
power spectrum don’t consider turbulence length scales in its formula-
tion, the spectral parameters (A, A,,A,,) are proportional and analogous
to these quantities (Fenerci et al., 2017), (Fenerci and Qiseth, 2017).
Parameters such the spatial coherence and the wind angle of attack are
outside the capabilities of the measurement system because of the long
distance between stations and the absence of an appropriate structural
reference frame crossing the fjord site. In a design situation, un-
certainties in those parameters can be modeled after measurements at
similar sites, in the case of absence of such data.

Sf A,
(VLY (14 15A%,)

af o,
5/31/'2:77 In:V (2)

The subscripts n € {u,v,w} indicate the along-wind and vertical
turbulence components, 2; is the reference height, f is the frequency and
o, represents the standard deviations.

For the estimation of the spectral parameters (A, A,,Ay), the power
spectral density function (PSD) of the turbulence components was ob-
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tained by applying the Welch method, taking the average of 8 segments
with a 50% overlapping and Hamming window. Then, the power spectra
S, from Equation (2) were fitted to the spectral parameters (A, A,,Ay) in
the least square sense. As an illustration, overlapping fitted and
measured power spectra from a recording registered on 01.01.19 at
Treelboneset station from 14:40 to 14:50 corresponding to the annual
highest mean speed are shown in Fig. 8. Scatter in the measured PSD
comes from the spectral estimation. The spectra have been estimated
using the Welch method. Smoother estimates can be obtained using
shorter windows, but this comes at the price of lower resolution and
higher bias. The presented estimates provide a balance between scatter
(variance) and bias & resolution of the estimate. The distributions of the
(A, Ay, Ay) coefficients are not very sensitive to the applied settings in
the spectral estimate when least squares are used to fit the model. Along
with the spectral fittings of Figs. 8 and 9 shows the time-histories of the
turbulence components on the same interval. The time-histories show a
stationary behavior. The figure also includes the time-history of the
vertical angle of attack (B), which is a parameter of paramount impor-
tance for the bridge’s non-linear aerodynamic behavior. The time-series
of the angle of attack show that this value oscillates between —15 and
20°, this range is slightly higher than that reported on the Hardanger
bridge (Barni et al., 2021). In contrast, the mean values of the vertical
angle of attack shown in Fig. 10 respect to the mean wind speed
correspond to observations of the Hardanger bridge (Fenerci and (iseth,
2017). Thus, suggesting that the angle of attack at the Sulafjord bridge
may have higher variation than at the latter location. To determine the
actual effect of this parameter over the Sulafjord bridge, a complete
study of the aerodynamic derivatives is required, however, such study is
outside the scope of this paper. Nonetheless, with the probabilistic
modeling provided here, it is possible to reproduce the vertical angle of
attack for practical engineering applications, since for such cases, the
vertical angle of attack is handled with simulated time-series depending
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0.2
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0.1
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on the spectral densities and the mean wind conditions.

2.4. Hindcast wind data

In addition to the mast measurement data, hindcast simulations were
performed by Kjeller Vindteknikk (Vindteknikk and og Vartdalsfjorden,
2018). Simulated mean wind velocities were obtained using the
state-of-the-art mesoscale numerical weather prediction system, the
Weather Research and Forecast model (WRF) work version 3.2.1 (UCAR
and, 2013), (Skamarocket al., 2008). The modeling structure, physical
packages, numerical routines and other details are given in (Klemp et al.,
2007), (Michalakeset al., 2001). The geographical input data in the
model were adapted from the National Oceanic and Atmospheric
Administration (NOAA) for the entire domain except for Norway and
Sweden, where N50 land data from the Norwegian Map Authority and
map data from the Geografiska Severgedata (GSD)-Land Cover were
used. The meteorological input data were adapted from the European
Center for Medium-range Weather Forecasting (ECMWF) using a reso-
lution of approximate 0.7° and 6 h interval data as boundary of the
model. The hindcast data are fitted to meteorological observations in the
area using an assimilation model that incorporates all available obser-
vation globally into a numerical weather prediction model that creates a
description of the state of the atmosphere on a uniform horizontal grid
four times a day. The assimilation model incorporates data from several
thousand ground based observation stations, vertical profiles from ra-
diosondes, aircrafts, and satellites and are therefore reasonably accurate
(Deeet al., 2011), (Berrisfordet al., 2009). The model was set up with 4
nested domains from which the inner domain has a resolution of 500 x
500 m (Fig. 11). This is the highest resolution possible as the simulations
are limited to meso-scale and not to local topographical effects. The
simulation model has 51 layers in the vertical with eight layers in the
lower 200 m. The WRF-model computes the variation in the wind
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Fig. 8. Three components of the one-point spectrum ‘max 2019’ Record 01.01.19 from 14:40 to 14:50. a) Su b) Sv ¢) Sw.
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Fig. 10. Vertical angle of attack respect to mean wind speed.

conditions for a time step from 1 to 108 s in the different domains
increasing the time step with decrease in the resolution, achieving then a
more realistic temporal development of the wind conditions. Data is
stores every 1 h of simulation. More information about the hindcast data
set may be found in (Vindteknikk and og Vartdalsfjorden, 2018).

The simulated dataset is 10 years long starting from January 2007.
The dataset contains the mean wind speed and direction for 1-h intervals
in the locations of the four mast stations in addition to the Sulafjord
center (62°25'19.68"N, 6°01'52.68"E) (circle in Fig. 1). The simulations
were carried out at 10, 50, 70 and 100 m above the ground or water
level. Histograms of the 1-h direction distribution for the different sites
are presented in Fig. 12, while the principal sectors are reported in

500x500m

1.5x1.5km

4.5x4.5km
22.5x22.5km

Fig. 11. Nested domains of hindcast dataset simulations (adapted from htt
ps://norgeskart.no/- ®norgeskart Norwegian Mapping Authority).

Table 3. The figure shows a similar trend in the distribution peaks as the
site measurements. However, an increased scatter of samples towards
the distribution valleys may be observed, with the most severe situation
for the Karsteinen station in which the peaks can barely be differentiated
from the valleys. Validation of the hindcast data is presented in (Vind-
teknikk and og Vartdalsfjorden, 2018).

Similar to the recorded data, the wind rose of the mean wind speed
for the simulation sites is shown in Fig. 13. The analyzed data corre-
spond to the simulations at a 50-m height since it represents the bridge
height. Simulated samples below 5 m/s were disregarded from the plots.
It is not expected that wind roses from Figs. 5 and 13 coincide exactly
since the wind flow is affected by the local topographical effects not
included in meso-scale simulations. Then, the differences between the
wind roses of Karsteinen and Langeneset are plausible, and hence the
erection of several mast stations in the area. On the other hand, local
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Table 3
Main directional sectors.
Location Sector 1 Sector 2 Sector 3
Kvitneset 100°-230° 260°-360° 370°-410°
Tralboneset 120°-230° 280°-400° -
Kérsteinen 90°-150° 220°-340° -
Langeneset 80°-240° 290°-360° -
Sulafjord center 100°-250 340°-400° 270°-330°
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Fig. 13. Wind rose plot mean wind speed hindcast data.

topographical effects don’t present a major complication at the Sulafjord
center location, which is the most representative for the bridge and
meso-scale simulations are still the best option for extreme mean wind
velocity estimations because of their longer observation period.

2.4.1. Wind speed histograms

In a similar way as Figs. 6 and 7, Fig. 14 contains the histograms of
the mean wind speed from Sulafjord center location but using the
hindcast data. In this case the sector from 100° to 250° is both the
dominant and most populated sector.

3. A probabilistic model of the wind field

A probabilistic model of the wind field is defined by a joint distri-
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3500 3500

3000 3000
Max V=36.83

2500 2500

2000 £ 2000

1500 1500

1000 1000

500

0 10 20 30
V (m/s)

Fig. 14.

40

hindcast data at a) Sector 1 b) Sector 2.

500

Max V=26.7

10 20 30
V (m/s)

Mean wind speed histograms of the Sulafjord center station from
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bution of the turbulence parameters (Fenerci and @iseth, 2018), (Lystad
et al., 2020). Introducing W as the wind state variable collecting the
wind parameters, its joint distribution can be expressed as the product of
the conditional distributions:

Fy(W) = Fy(V)*Fp, 1.0, a8, 40v (Lo 1 Lo, A, Ay A V)

W=V, L dy, Ly A A, A )

Fenerci et al. (2018) showed that the joint distribution can be
expressed as the product of Weibull distribution of the mean wind speed
and a joint lognormal distribution of the turbulence parameters. This is
highly advantageous because the relation between the turbulence pa-
rameters can be determined by the correlation of parameters only.
Fenerci et al. (2018) showed that the joint lognormal distribution fits the
turbulence data of the Hardanger bridge. Whereas Lystad et al. (2020)
showed that the Weibull fits the mean wind speed data for the same
project. Using a similar approach, in this chapter the parameters Equa-
tion (3) will be derived for the Sulafjord site. Chapter 3.1 is devoted to
the Weibull distribution of the mean wind speed and chapter 3.2 to the
joint lognormal distribution of the turbulence.

Measured data was not available at the fjord center and meso-scale
simulations don’t include turbulence effects. Therefore, a strategy
combing both sources was implemented. The Weibull distribution of the
mean wind speed was obtained using the meso-scale data as it covers a
more extended period than the site measurements and it is possible to
obtain the data at the desired midspan location. Subsequently, the joint
lognormal distribution of turbulence parameters was obtained from the
site anemometry measurements as the turbulence characteristics cannot
be obtained from meso-scale simulations. However, as site measure-
ments are not available at the fjord midspan, the turbulence parameters
were assumed to be reasonably well represented by the measurements at
the Treelboneset station. This follows both from simple considerations of
the site topography (local effects are less expected) and the fact that the
wind direction of the station matches the mesoscale simulations with
good accuracy. Complementary arguments to the selection of Tralbo-
neset station are discussed in section 3.2.

3.1. Mean wind speed distribution

The wind roses and wind histogram analysis showed that local
topographical effects strongly influence the environmental variables. As
discussed earlier, the dataset was split into sectors, where the dominant
sector includes the recordings with the highest mean wind speeds. This
information was further included in the probabilistic model by estab-
lishing the mean wind speed distribution from the dominant sectors at
the Sulafjord center, V = V|@ominane- The distribution for the mean wind
speed Fy on Equation (3) is Weibull type with the following cumulative
distribution function (CDF):

k
Fy(V)=1 7exp[(%> } s forV>0 4

With k and 4 as the shape and scale parameters, respectively. The pa-
rameters were adapted from the hindcast data as it covers a more
extended period than the site measurements and it is possible to obtain
the data at the desired midspan location.

3.1.1. Extreme value distribution from hindcast data

Directly fitting the Weibull distribution from Equation (4) to the
available data yields a good match with the central behavior of the
distribution. However, the accuracy is lost in the tail where the largest
wind loading conditions are expected. Thus, the parent distribution was
established in correspondence to a type 1 generalized extreme value

distribution (Gumbel) from the annual largest mean wind speeds, Fz,
reported in the hindcast data. In this way, most of the weight was given
to fit the tail of the parent distribution.

- z—a
F(z)=1-¢ U”V:Tz

5)
Here, o; and a, are the location and scale parameters of the distri-
bution, respectively, y is the reduced variate, and z is a variable relative
to the mean wind speed. A linear variation was assumed between y and
the wind speeds following the best linear unbiased estimator (BLUE)
method (Lieblein, 1974). Then, F, was established from the annual
largest recordings ranked in ascending order, such that the lowest
maximum has the rank of m =1, and the highest rank is m = n, as
follows:
m
F.(z)= [—] 6
2(2) P} (6)
The distribution parameters a; and a,, and thus F,, are obtained by a
least-squares fit from the reduced variate, which was directly adapted
from the hindcast data.

¥(2) = = In[—In(Fz(2))] @]

Subsequently, Fy is established from F; utilizing the asymptotic
theorem (Gumbel, 1958), i.e., Fy asymptotically approaches F; given
that the number of short-term recordings in the one-year period, N, is
sufficiently large and the statistical parameters of the individual re-
cordings are independent. For the 1-h averaging period of the hindcast
data, N = 8760 is sufficiently large to fulfil the requirement, and the
parent distribution for the 1-h averaging period, Fy,,,, can be found as
follows:
Fy(V)=[Fy

3600

)™ o Fypy (V) = [F2 (V)] /¥ ®

A 10-min averaging period is typically used for structural design
purposes, however the standard in meteorological forecast is 1-h in-
tervals. Thus, a transformation between the averaging periods is
required to proceed with the structural design. Direct conversion of
averaging periods of mean wind speed records is not possible (Harper
et al., 2009). Then, transformations must be completed on their esti-
mates. In this work, the adjacent short-term 10-min intervals in the 1-h
periods were assumed to be independent events allowing to estimate the
parent distribution of the 10-min mean wind speed, Fy,,, as shown in
Equation (9). This assumption doesn’t involve a loss in accuracy given
that the number of cycles of interest (10-min intervals in one year) is
larger than the cut-off step-memory of stationary dependance (number
of cycles in which the maximum events are no longer related), thus, the
dependance between adjacent cycles is effectively negligible (Naess
et al., 2013).
|:FV)(>UI)(V):|NR76“ = |:FV(YUU (V):| e < Fv

600

(V) 2 [Fy(V))/ N0 ©

Fig. 15 a) shows the reduced variate for the recordings of the
dominant wind direction (100°-250°) at the Sulafjord center, while
Fig. 15 b) shows the associated annual Gumbel probability distribution.
In both cases, the annual largest wind speeds are represented with cir-
cles. The velocities in the range of 25-35 are emphasized, as the design
conditions are expected in the distribution’s tail. Thus, the Weibull
parent distribution establishment is focused on velocities from 25 to 35
m/s. Fig. 15 ¢) shows the scaled Gumbel CDF [FZ(V)]”N”““ in the
continuous line and the fitted 10-min short-term Weibull CDF in the
discontinuous line, Fy,, .

The parameters from the 10-min Weibull type parent distributions
are shown in Table 4.
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Table 4
Parameters of the parent distributions from hindcast data for Eq. 3

Location Sector A k

Sulafjord center 100°-250° 1.52 0.82

3.2. Statistical properties of the turbulence parameters

Section 3.1 explained how to obtain the distribution for the mean
wind speed. To complete the probabilistic model of Equation (3), This
section explains how to obtain the joint distribution of the turbulence
intensities (I,,I,, I,) and spectral parameters (A, Ay,Ay), conditional to
mean wind speed, Fy, 1, 1,4,4,4,|v- Turbulence parameters are adapted
from mast measurements according to the following procedure:

First, the data was divided in directional sectors from Table 2. Then,
recordings with mean wind speeds below 11 m/s were disregarded from
the analysis as attention is paid to the tail of the mean wind speed dis-
tribution. Subsequently, the data was divided depending on the mean
wind speed in segments of 2 m/s, in this way trends of the joint distri-
bution parameters respect to mean wind speed can be highlighted. On
each segment of data, the parameters of the lognormal distribution and
the correlation coefficients were fitted using the method of moments.
Finally, the trends in the distribution and correlation parameters respect
to the mean wind speed were fitted using least squares.

The size of the segments was chosen by engineering criterion. Small
segments would leave few samples for distribution fitting whereas large
segments would leave few points for trend fitting respect to mean wind
speed. 2 m/s balanced the accuracy in both type of fittings given the
number of recordings available.

The result is a joint lognormal distribution whose parameters are
dependent of the mean wind speed. Parameters of a marginal lognormal
distribution and correlation coefficients are described as follows:

oo 8[fi 3) = 1 ex —(Lnx —7i)?
logn (XM _xiE\/Z’r? Py — 27

= exp(;ﬂrf) , & = [exp(0®) — 1] exp(2u + 0?)

2
LW 10
N Xi— p\ (Vi — Hy
o= 205 (050
1 /J(m*)]
R, =
plv,x) 1

With, fioen(x|fi, ) the lognormal distribution a variable x and i, the
lognormal mean and standard deviation (parameters of the distribu-
tion). p(x,y), the correlation coefficient of the variables x and y, and Ry,
the correlation matrix.

At middle of fjord there is not wind turbulence data. Therefore,
turbulence conditions were adapted from the mast station that provided
the most representative data. The wind roses from Figs. 5 and 13 show
that most frequent and stronger winds for the fjord center come from the
south and southwest and that this situation is also observed at Treelbo-
neset. In addition, winds from south and southwest arrive mostly un-
distributed to Trelboneset making is suitable to represent the
topographic conditions of the fjord center in these directions. Thus, the
turbulence conditions at Treelbonset were used as the design conditions
for the Sulafjord center.

Table 5
Number of samples at the interval division from measured data from the
dominant sector at Traelboneset.

Speed interval 11-13 13-15 15-17 17-max

Samples 2681 1755 758 520




D.F. Castellon et al.

300 i i i

[ N
(=2 a
o o

Recordings
g

100
50
0
0.05 0.1 0.15 0.2 0.25
lu
300 : ‘ ‘ :
250

200 -

Recordings
S o
o o

(€2
o

0.05 0.1 0.15 0.2 0.25

150 ¢
%100 -
£
2
Q
(8]
Q
T 5.
0
0.05 0.1 0.15 0.2
lu

150

o
o

Recordings

a
o

0.05 0.1 0.15 0.2
lu

Fig. 16. Lognormal distributions for turbulence parameter I, from the dominant sector at Tralboneset fitted at V = a) 11-13 m/s b) 13-15 m/s ¢) 15-17 m/s d) 17

m/s-max.
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Fig. 17. Statistical parameter fit for the turbulence intensity: Lognormal parameter i;, Lognormal parameter o;, Correlation coefficient p;;, Correla-

tion coefficient.p; ;.

The number of samples in each discretization segment for the
Treaelboneset dominant sector (120°-230°) is reported in Table 5. As an
example, Fig. 16 shows the lognormal distribution fittings for the I,
parameter for different mean wind speed segments on top of the histo-
gram of the data.

Fig. 17 shows the variation in the lognormal distribution parameters
of the spectral parameters ji,, and 64, with respect to the mean wind

speed from Traelboneset dominant sector. Fig. 18 shows a similar plot for
the turbulence intensity parameters ji; and 6y,. fis,, 64, and the correla-
tion coefficients are constant with respect to the mean wind speed,
whereas Ji;, shows a linear variation. The variation of ¢;,, was adapted as
constant despite it show a higher order trend. The reason behind this is
that as less sampling points are present in the high mean wind speed
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Table 6
Statistical parameters of the turbulence model.
n G

I, — 2.381 - 0.003V 0.206
I, — 2.307 — 0.005V 0.216
L, — 2.588 - 0.015V 0.208
Ay 2.054 0.855
A, 3.184 0.584
Ay 1.314 0.800

Table 7
Correlation coefficient fit matrix of the turbulence model.
I, I Iy Ay Ay Ay
I, 1.00
I, 0.71 1.00 Symmetric
I, 0.67 0.70 1.00
Ay 0.00 0.00 0.00 1.00
A, 0.16 0.56 0.18 0.00 1.00
Ay 0.00 0.00 0.47 0.00 0.19 1.00

range; this may lead to inaccuracies in the dispersion of the sample
affecting the lognormal standard deviation. This effect is however more
pronounced in the lognormal normal standard deviation than the
lognormal mean, therefore, values of ji;, are still acceptable. This follows
the recommendations found the literature (Fenerci and @iseth, 2018),
(Hannesdottir et al., 2019). The values of the fitted parameters are re-
ported in Table 6, while the correlation coefficient matrix is in Table 7.
To simplify the modeling, correlation coefficients between —0.15 and
0.15 which are negligible for the calculations were not reported in the
table.

4. Environmental contours
4.1. Environmental contour method
The established probabilistic model expresses the joint distribution

of the correlated stochastic wind variables and provides the basis for
obtaining the environmental contours. The ECM allows for the assess-

ment of the model uncertainties considering multiple correlated sto-
chastic variables. The method approximates the reliability integral
based on an inverse application of the first-order reliability method
(FORM) (Hasofer and Lind, 1974) (Winterstein et al., 1993):

pe=P[g(X)>0]= / Sfx(x)dx an

2(X)>0

where p, is the exceedance probability of an extreme event, X (@, V1,1,
Iy, Ay Ay, Ay) is the set of stochastic variables and g(X) is the limit
function, which represents the difference between a generic wind con-
dition W(X) and the extreme wind condition Wgp, which is associated
with the long-term extreme value of X with a return period RP in years.
8(X) = W(X) — Wep.

For design applications, the probability of exceedance is fixed to a
design practice (or construction code) through the long-term return
period RP in years. Thus, this value can be computed for the given return
period in terms of short-term processes with Ty duration in minutes.

_[RP x 36525 x24 x60] "'

Ty a2

Pe

The set of stochastic variables X is transformed into a set of inde-
pendent normally distributed variables, U(uy, us,..., U, ), given that the
proper transformation rule is reversible. A detailed explanation of the
method and its advantages may be found in (Winterstein et al., 1993). In
the transformed space, the shortest distance between the boundary of
the limit function (g(U) = 0) and the origin is known as the reliability
index, f. This parameter is fixed in correspondence to the exceedance
probability and is computed by exploiting the symmetry of the joint
standard normal cumulative distribution function, ®(x):

pe = ®(p)
ﬂ e l(pt')

Although the boundary of the limit function can adopt complex
shapes, it can reportedly be approximated by its first-order Taylor
expansion (Hasofer and Lind, 1974). Then, an optimization procedure is
applied as follows:

13)

Given f: find Wgp = max|W(U)|; subjectto|U| = a4

The result is a hypersphere of radius f in the standard normal space
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that shall be transformed back to the space of the original variables.
Herein, two reversible transformation rules were applied because the
mean wind speed and the turbulence structure follow different distri-
bution types. The Weibull distributed mean wind speed was transformed
with the Rosenblatt transform (Rosenblatt, 1952), while the correlated
lognormal distributed turbulence parameters were transformed with a
linear transform.

The Rosenblatt transformation works by obtaining the joint CDF
from the product of the marginals:

Foa (X1, %25 o0y %) = Fu (x1)Fra (x2]21) . Fo (3 [ X 1) (15)

Then, the variables are transformed by considering the conditional
distributions individually. The mean wind speed was chosen as the first
variable, as it is considered the most important variable for the buffeting
response of long-span bridges (Castellon et al., 2021). Then, the mean
wind speed was transformed first.

Fy(V)=0(u) =V = F,'[@(u)) (16)
When the stochastic variables are correlated and normally distrib-
uted, the linear transformation rule can be applied.

U=AX-My)=X=A"U+My

17)
My = [t oo ]
where A is a triangular matrix that can be found using the Cholesky
decomposition of the covariance matrix Cxyx, which is Hermitian and
positive definite:

ComATAT as
with
2
oy P1204, 0y, P1n0x, O,
2
Cor— /.zz,m.mz (.fh /.)21:6)(20-)(" (19)
Pui0xOx  Ppa0x0y = Oy

Then, for the case in which stochastic variables are correlated and
lognormally distributed, the same transformation rule procedure ap-
plies, and the lognormal variables can be found as follows:

X=exp(A~'U+My) (20)

The full set of turbulence parameters conditional on the mean wind
speed are transformed in a single operation using the linear trans-
formation rule for the case of lognormal distributed variables from
Equation (20).

Fronnyawasanv Qs Loy Ly A Ay A V) = @, i3, g, s, e, U7) (21)

4.2. Sulafjord contours

4.2.1. Reference values from standard methodologies

The general practice in bridge design is to estimate the mean wind
speed from an extreme value analysis and the turbulence variables from
code values or measurements, usually dependent on the mean wind
speed and the reference height. Reference values of the wind variables
required for the Sulafjord bridge following the standard design meth-
odology are reported in Table 8. The table presents mean wind speeds
with 50- and 100-year return periods. Additionally, the table provides
turbulence intensities (I, I,, I,) and spectral parameters (A, Ay, Ay)

corresponding to their mean values for recordings above 15 m/s from
the dominant incoming direction. Reference values of turbulence in-
tensities and spectral parameters at the Sulafjord center were adopted
from Traelbonset since site measurements are not available at the fjord
center.

4.2.2. Design contours

The environmental contour lines for the Sulafjord bridge design for
return periods of 4, 50 and 100 years are shown in Fig. 19. Site mea-
surement data are also plotted along with the contour lines. The x-axis of
the subfigures represents the mean wind speed, and the y-axis represents
each of the remaining turbulence parameters. The 4-year contours
represent the measurement campaign period and envelope the measured
data well. Additionally, the 50- and 100-year return period contours
represent extreme wind conditions. Reference values are reported in
Table 8. Finally, contour surfaces for the 100-year return period of the
turbulence intensity parameters are shown in Fig. 20.

5. Discussion

The results show that environmental contours successfully capture
the variability in the site data. In general, the 4-year contours covered
the measured data well. Furthermore, 50- and 100-year contours pro-
duce reasonable estimates of the extreme wind fields that follow the site
data. Compared with the current design methodology, the contours
represent a more complete description of the extreme wind fields, as
they also include turbulence measurements. Therefore, presenting the
extreme wind conditions of the Sulafjord Bridge site with environmental
contours shows a significant advantage to the traditional wind speed
method using the same resources typically available in the design of
long-span bridges. Then, a designer will use the contours to identify
combinations of environmental parameters that provide the largest
response by checking points along the contour lines. The procedure is
explained in (Lystad et al., 2020), (Lystad et al., 2021).

5.1. Model recommendations

Several challenges arise when developing contours based on proba-
bilistic modeling with the proposed strategy for long-span bridge design.
First, hindcast simulations are limited to the mesoscale, and site mea-
surement campaigns have relatively short periods. Thus, the mean wind
speed and turbulence parameters of probabilistic modeling should be
established separately. Furthermore, locations with higher wind loads
are often in the middle of the bridge’s span, where site measurements
from mast stations are rarely available. Additionally, establishing the
joint distribution of the turbulence parameters requires approximations
that are applicable beyond the range of available data. In the following
section, the modeling limitations are discussed together with the stra-
tegies implemented to overcome these limitations.

First, there are discrepancies between the averaging period of the
hindcast data and the site measurements. The hindcast data were
simulated using a 1-h averaging period, whereas the site measurements
used 10 min. It is recommended that the discrepancies between the
averaging periods for the mean wind speed be resolved by considering
the adjacent short-term 10-min intervals in 1 h as independent. This
assumption yields conservative estimations of the mean speed values.
The benefit from using data from the meso-scale model is that longer
time series of mean wind speed are available and that data for mean
wind speed is available at the middle of the fjord. Mast measurements is
clearly the best alternative if many years of data in a representative

Table 8

Reference values from mean wind speed and turbulence parameters.
Parameter Vso Vioo I, I, Ly Ay Ay Aw
Sulafjord Center 39.83 42.1 0.089 0.091 0.057 12.08 29.37 5.33
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location at the bridge site is available. This is however rarely the case
making meso-scale simulation an attractive alternative to cover longer
time periods.

Additionally, site measurement data are not available at the center of
Sulafjord, making it necessary to infer its turbulence properties from
other available locations. Kérsteinen and Langeneset were not consid-
ered in the analysis because of their distant locations from the bridge
track. The Kvitneset station could also be considered as a viable alter-
native, but it is seen that the winds at the midspan of the fjord does not
follow the same direction as the winds at Kvitneset. The local topog-
raphy around the station also suggests that local effects are likely to
dominate the turbulence characteristics. On the other hand, Tralboneset
station has almost twice the amount of strong wind records (above 17
m/s). Thus, it was decided to derive the turbulence model after Treal-
boneset records as it also contains a good number of records to ensure a
good distribution fitting in the mean wind speed range above 10 m/s.

Finally, Figs. 17 and 18 show the variation in the joint distribution
parameters with respect to the mean wind speed. All the correlation
coefficients p; and the lognormal mean parameter of the turbulence
intensity i, agree with their adopted functions. Significant deviations
can be observed between with the lognormal standard deviation
parameter ¢y, and its adopted constant value. The number of recordings
decrease for higher mean wind speeds affecting the uncertainty in the
distribution fittings with a stronger effect on the ¢;, parameter compared
to the Ji;, parameter. Then, trends of sigma may be attributed to lack of
data, because using linear or higher order functions produce unrealistic
estimates of the turbulence in the extrapolated region. Therefore, the
constant vale of 6;, was chosen as it produced stable estimates. Similar
approach may be found the literature (Fenerci and Qiseth, 2018),
(Hannesdottir et al., 2019).

6. Conclusion

In this paper, the wind conditions and wind characterization at the
Sulafjord Bridge site from the 4-year mast measurement campaign and
the 10-year hindcast simulation data are presented. A probabilistic
model of the environmental variables was established using a novel and
practical strategy in which hindcast simulations are combined with filed
measurements. Efficient techniques for combining these datasets are an
open matter of discussion and therefore were addressed in this study.
The probabilistic model expresses the joint probability distributions of
the turbulence intensities (I, I, I,,) and spectral parameters (A, A,,Ay)
conditional on the mean wind speed (V) and mean wind direction. The
mean wind speed was modeled using a Weibull distribution transformed
from the extreme value distribution of the hindcast data, where the
mean wind direction was modeled as a discrete variable since the fjord
distributes the flow in discrete directions. The joint distribution of the
remaining wind variables (turbulence intensities and spectral parame-
ters) were established from the site measurement data as a joint
lognormal distribution with correlation coefficients.

Environmental contours were obtained for 4-, 50- and 100-year re-
turn periods based on the probabilistic turbulence model. The contours
reasonably captured the variability in the wind conditions at the fjord
site when compared with the site measurements. The contours present
combinations of wind field parameters for the given return periods. As
such, for instance wind conditions with higher turbulence intensities
occurring at lower mean wind speeds can also be obtained and checked
for design purposes. Therefore, designing the Sulafjord Bridge with the
ECM will increase the accuracy in the extreme response predictions as
opposed to the current practice. It is also concluded that the ECM uses
the available data in a more efficient manner.

In conclusion, it is recommended to use the ECM to characterize the
wind conditions at a bridge site using data typically available at the
design stage of long-span bridges.
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