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Abstract 

Economic development has gradually promoted an increase in the demand for and size of long-span bridges 
worldwide. A tangible example of such development is the Coastal Highway Route E39 led by the Norwegian 
Public Roads Administration (NPRA). The project proposes the construction of a 1000 km ferry-free highway from 
the cities of Kristiansand to Trondheim, including 8 major fjord crossings spanning from 1300 to 5000 m at water 
depths from 500 to 1250 m. The longest, single-span suspension bridge planned within the project is the 3000 m 
bridge across Sulafjord in the county of Møre og Romsdal in western Norway. The project has encouraged several 
research studies from which this thesis takes off. 

Structures such as the Sulafjord Bridge pose a major challenge to the existing technologies of bridge construction. 
As bridges become longer, they become more flexible and susceptible to wind loading. However, wind loading 
and its effects are often oversimplified in most of the current design guidelines. Some of these simplifications may 
be acceptable for designing regular structures but are unaccurate for long-span bridges. Recent experience based 
on full-scale measurements has shown discrepancies between the observations and available analytical 
formulations. Therefore, the need to revaluate the design guidelines is exposed. Existing research has pointed out 
the omission of the stochastic behaviour of the structural response and wind turbulence as the main reason for 
these discrepancies. Alternatively, full long-term analysis is recognized as the most accurate way to evaluate the 
stochastic behaviour of the structural response given the fluctuations of the environmental conditions during the 
lifetime of a structure. Nevertheless, the traditional full long-term analysis is based on numerical integration and 
requires the evaluation of the short-term response statistics from several environmental states. This requirement 
renders the approach unfeasible for practical engineering applications such as the Sulafjord Bridge. 

The objective of this thesis is to propose a reliable and computationally efficient, full long-term framework for the 
wind-resistant design of long-span bridges. The Sulafjord Bridge was selected as a case study. Although the results 
are site-specific, the framework can be easily extended to similar projects given that site-specific data are 
available, which is the case for most projects of this magnitude. The thesis is composed of a collection of papers, 
each of which accomplishes a portion of the general objective. The first paper shows surrogate modelling 
strategies to reduce the computational effort in the estimation of the short-term statistics of the wind responses 
given a wind state. Conversely, the paper applied the data of the Hardanger Bridge as the accuracy of the 
surrogate modelling was compared with full-scale, measured bridge responses (not available at Sulafjord). The 
second paper presents the wind characterization of the Sulafjord site with the environmental contour method 
and a probabilistic model of wind turbulence. The third paper presents a full long-term analysis of the extreme 
response and compares the results with the existing methods utilized in the design guidelines. In this paper, we 
also proposed a framework to reduce the computational effort of the full long-term analysis by replacing the 
traditional analysis based on numerical integration with importance sampling Monte Carlo (ISMC) simulations. 
The fourth and final paper combines the strategies of surrogate modelling and importance sampling Monte Carlo 
simulations to enhance the efficiency of full long-term analysis. 

The results of this thesis showed that environmental contours were the most efficient strategy for representing 
the characterization of the wind conditions at the Sulafjord Bridge site. The contours captured the variability 
measured wind turbulence and provided a more complete and yet intuitive description of the wind field compared 
with the current design methodology. Extreme responses from the environmental contours were on average 14% 
higher than the common practice based on the short-term method. The surrogate modelling strategy was a very 
accurate alternative for estimating the short-term statistics. The models evaluated in this thesis showed a 
complementary mean absolute percent error (1-MAPE) of 98% compared with analytical predictions of the 
buffeting response, and the full long-term framework based on the surrogate model required less than 1% of the 
computational effort of the traditional full long-term analysis. The most important finding of this thesis is that the 
extreme response from the full long-term analysis was on average more than 25% larger than the traditional 
short-term methodology.   
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1 Introduction 
1.1 Background and motivation 
1.1.1 Long-span bridges 

Infrastructure development is a key factor for economic growth. Continuous commercial expansion worldwide 
has promoted an unprecedented increase in the demand for long-span bridges (with a main span greater than 
150 m) [7]. Globally, the United States has the largest number of long-span bridges (245), followed by China, with 
98 long-span bridges and 23 long-span bridges, respectively, under construction. In the European scene, Norway 
leads with 51 long-span bridges [7]. The increase in number is followed by an increase in scale; since the 19th 
century, the main span of the world’s longest bridge has doubled approximately every 50 years [8]. Cable-
supported bridges are the most suitable bridge type to cover the long main spans, with the suspension bridge 
being the principal configuration of the longest-span bridges [9]. Currently, the longest single-span bridge is the 
Çanakkale 1915 Bridge in Turkey (2022), which is a suspension bridge with a 2023 m main span. The increase in 
the scale of long-span bridges constantly challenges the existing technologies of bridge construction. As these 
structures become slender and more flexible, they also become more susceptible to wind vibrations. 

The design of long-span bridges is governed by wind loading and wind loading effects. Long-span bridges are 
flexible structures with low structural damping and relatively light weight [9]. Therefore, the natural frequencies 
of their principal modes are very low, overlapping with the frequencies where the wind spectrum encloses most 
of its energy. The engineering community is well aware of bridge aerodynamics, and sophisticated models are 
well documented in the literature [10]–[16]. 

On the other hand, wind loading effects are often simplified in the design guidelines. Wind actions in bridges are 
considered with their characteristic values associated with a design return period. Most of the wind resistance 
design guidelines assume the return period of the characteristic response to be equivalent to the return period 
of the mean wind speed [17], [18]. Such an assumption may not be accurate because of the inherent stochastic 
behaviour of the structural responses due to wind fluctuations. In addition, the variation in the wind turbulence 
field is generally disregarded, as the common practice is to define the turbulence parameters from deterministic 
relationships based on the mean wind speed only. The combinations of these assumptions may cause 
underestimations of the actual design response in long-span bridges, exposing the need to revaluate the design 
guidelines and to propose more reliable alternatives to the wind-resistant design of long-span bridges [19], [20]. 

1.1.2 Sulafjord 

The financial progress of Norway has promoted the development of several infrastructure projects. Nevertheless, 
the country has mountainous topography characterized by the presence of fjords, leaving important economic 
regions such as the Norwegian western coast separated by these massive inlets of sea water. In an effort to 
connect the main cities of the Norwegian western coast, the Norwegian Public Roads Administration (NPRA) 
started the Coastal Highway Route E39. The project proposes the construction of a 1000 km ferry-free highway 
from the cities of Kristiansand to Trondheim [21]. The project includes 8 major fjord crossings spanning from 1300 
to 5000 m at water depths from 500 to 1250 m [22]. The development of such projects has stimulated a vast 
research effort, including novel concepts such as submerged tunnels and floating bridges, as well as 
improvements in the design techniques for cable-supported bridges. 

From the crossings considered in E-39, the longest solution planned with a suspension bridge is the Sulafjord 
crossing. The Sulafjord Bridge is projected to be a 3000 m main span suspension bridge standing across the villages 
of Hareid in the west and Sula in the east in the vicinity of Ålesund. Figure 1 shows the Sulafjord suspension bridge 
adapted from illustrations by the NPRA [23]. This bridge will serve as a case study given its large scale, which 
makes it extremely susceptible to wind loading effects. The project has driven an immense research effort, 
including studies to enhance buffeting response calculations [24], [25], conceptual designs, wind tunnel testing, 
and meteorological observations [26], [27]. To date, the greatest part of the research effort has been dedicated 
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to the wind monitoring campaign of Sulafjord. Since 2014, a set of meteorological masts have been erected in 
strategic points along the Sulafjord channel, and the masts carry sensors to observe and register the wind 
conditions. The campaign is planned to last 8 years with a possible extension to 12 years. The recordings from the 
campaign are open to the public and have been carefully investigated in the content of this thesis to characterize 
the wind conditions of the Sulafjord site and to propose more reliable alternatives to wind resistant design based 
on the expected behaviour of wind at the site. 

 

Figure 1: Illustration of the Sulafjord suspension bridge. (Image courtesy of NPRA) 

1.2 Objectives and scope 
1.2.1 Research objectives 

This work aims to develop methods for wind field characterization and extreme response prediction of long-span 
bridges that take into account the probability distribution of the wind field parameters and the extreme response. 
There is a particular emphasis on developing a methodology that predicts response with enhanced accuracy but 
with reasonable computational effort. 

The following research objectives are defined to achieve this goal: 

• Test the feasibility of using a probabilistic model of wind field parameters to characterize the wind 
conditions at the Sulafjord Bridge site. The topography at the Sulafjord Bridge site strongly affects the 
wind conditions. An accurate description of the wind variables, including their variability under extreme 
conditions, is required to ensure a reliable design of the Sulafjord Bridge. 
 

• Investigate the improvement in safety provided by including the variability of the wind turbulence in the 
buffeting response calculations. The scatter in the measured buffeting response of long-span bridges 
with respect to the analytical models is partially attributed to inaccurate assumptions in the current 
guidelines, which disregard the variability of the wind field. Therefore, the stochastic behaviour of the 
turbulence parameters is included in the modelling to investigate its effect on the design buffeting 
response. 
 

• Explore the validity of surrogate modelling techniques based on machine learning for buffeting response 
estimations. Calculating the buffeting response involves computationally demanding procedures, which 
can be challenging to handle when several analyses are needed. On the other hand, machine learning 
models alleviate the computational demand by learning the underlying relation between wind variables 
and the buffeting response. In this thesis, the accuracy of such methods is tested and compared with 
data from full-scale measurement campaigns on long-span bridges. 
 

• Compare the design buffeting response from full long-term and short-term analysis. Full long-term 
analysis is the most accurate methodology to estimate extreme responses. However, the method is not 
widespread in the design practice of wind engineering. Therefore, this study presents the buffeting 
response of a long-span bridge in the design phase with full long-term analysis and simplified 
methodologies, such as the environmental contour method and the short-term approach. The difference 
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in the response from the different methods is analysed to investigate the reliability of the simplified 
methods. 
 

• Develop an efficient, full long-term framework for estimating the design buffeting response of long-span 
bridges. The required computational effort is a major weakness of the full long-term analysis. Despite 
the literature offering approximations to reduce such demand, the approximate methods do not 
converge to the exact solutions. Therefore, an alternative methodology based on importance sampling 
is investigated to determine a more efficient way to carry out the full long-term analysis. The framework 
was further enhanced by introducing a surrogate model of the buffeting response, reducing the time 
required to estimate the short-term response statistics. 

1.2.2 Scope of the thesis 

The Sulafjord Bridge was used as a case study. The methodology could be easily extended to any other bridge site 
given that monitoring data are available. Nevertheless, the results cannot be generalized without proper site-
specific investigations. Only data from the metallic mast stations of the measurement campaign were analysed in 
this thesis. Additional measurement information from floating buoys and lidar was not included. 

This study is focused only on wind buffeting effects, i.e., vibrations in the structure due to the turbulence of the 
wind field. Other aerodynamic phenomena, such as instability due to galloping, flutter or vortex-induced 
vibrations, are beyond the scope of this thesis. The wind conditions are averaged in short-term intervals of 10 
minutes. The wind field is assumed to be stationary and Gaussian in each interval. The winds are assumed to 
impact the bridge orthogonal to the longitudinal axis, and the variation in the angle of attack is not considered 
significant (linear model). Buffeting response analysis is performed in the frequency domain. Therefore, 
nonstationary and non-Gaussian wind loading and wind loading effects, skew winds and nonlinearities due to the 
constitutive law of the material, geometric stiffness, instabilities or excessive angles of attack are considered 
beyond the scope of the thesis. Admittance functions are taken as unity, and crosswind turbulence components 
and the correlation between vertical turbulence and along-wind turbulence are disregarded due to their low 
effect on the final buffeting response. 

Regarding the proposed framework for long-term analysis, the following finding is valid. In surrogate modelling 
with machine learning, the hyperparameters are optimized using the machine learning and statistics toolbox of 
MATLAB. On the other hand, in the full long-term framework based on importance sampling, samples were 
considered uniformly distributed. The methods for hyperparameter optimization and the effects of other 
importance sampling distribution functions are considered beyond the scope of this thesis. 

 

1.3 Workflow and structure of the thesis 

The workflow of the analysis is presented as follows: First, the wind conditions are characterized by a probabilistic 
modelling approach. Second, the buffeting response is computed for each wind condition with either the 
multimode approach or a surrogate model based on machine learning. The extreme buffeting response is then 
obtained with the short-term method, the environmental contour method, or the full long-term analysis. Figure 
2 shows the workflow diagram of the thesis. 
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Figure 2: Workflow of the thesis 

The synopsis is organized to explain each step of the workflow. Section 2 shows the Sulafjord site and monitoring 
campaign. Section 3 shows the wind turbulence considerations and the probabilistic modelling. Section 4 shows 
the buffeting response calculations based on the multimodal approach and surrogate modelling. Section 5 
provides the design buffeting response with the short-term method, environmental contour method, and full 
long-term analysis. In addition, the collection of papers that compound this thesis can be grouped into the 
following topics: 

• Short-term statistics of the buffeting response with the multimodal approach and machine learning 
surrogate models (Paper 1). 

•  Wind characterization and probabilistic model of the Sulafjord Bridge site (Paper 2). 
• Full long-term estimation of the design buffeting response (Paper 3 & 4). 
• Enhanced full long-term analysis (Paper 4).  



5 
 

2 Sulafjord monitoring system 
2.1 Local topography 

Sulafjord is located on the western coast of Norway 10 km southwest of Ålesund. The fjord is oriented from 
southeast to northwest, is approximately 12 km long and 4 km wide and has a maximum water depth of 450 m. 
The fjord is surrounded by steep mountains with an elevation between 500 and 700 m from both sides. Figure 3 
shows the surroundings and topography of the fjord. The mountainous topography of the area directs the wind 
flow through the fjord. Figure 4 shows a picture of the fjord surroundings from the bridge location towards the 
north and south. Figure 4 a) also shows the island Godøya, which is located on the northern side of the fjord. The 
island partly shields the fjord from the winds coming directly from the sea [6]. 

 
Figure 3: Topographical map of the Sulafjord site (adapted from https://norgeskart.no/- ®norgeskart Norwegian Mapping 

Authority) 

 
a) North view 

 
b) South view 

Figure 4: Bridge site. (Images courtesy of NPRA) 
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The principal environmental loading on the long-span suspension bridge across Sulafjord will be the wind action. 
Therefore, a wind measurement campaign has been deployed in the area. The measurement campaign is 
managed by the Norwegian Public Road Administration (NPRA) and operated by Kjeller Vindteknikk (KVT). The 
observations from the campaign are open to the public through the Norwegian Meteorological Institute (MET 
Norway). The campaign measurements are carried out at four strategic locations near both ends of the two 
possible fjord crossings, Kvitneset to Trælbonset on the northern side and Langeneset to Kårsteinen on the 
southern side. Each location is composed of a metallic mast structure that holds anemometers at different 
heights. Figure 3 shows the locations of the metrological stations. The elevation profiles of the two alternative 
crossing tracks are shown in Figure 5. The figure highlights the steepness and height of the surrounding 
mountains. 

 
Figure 5: Terrain profiles at possible fjord crossings 

The shortest track for the Sulafjord Bridge is between the stations of Kvitneset and Trælboneset (Figure 3). Most 
of the content of this thesis derived from observations made at these stations. Kvitneset is located northeast of 
the island Hareidlandet. The mast is open to the Norwegian Sea in the west-northwest to north-northwest sector. 
The immediate terrain leading to the station is relatively flat, but within a distance less than 1 km southwest, there 
is a steep mountain with a height greater than 500 m. On the other side of the fjord, on a small cliff of the western 
side of Sula, Trælbodneset is located. The island Godøya in the north blocks most of the winds coming from the 
Norwegian Sea at this location. The terrain near the station is steep, with the abrupt presence of a 450 m tall 
mountain towards the east immediately after the mast. 

The other possible design alternative is to build the bridge from Langeneset to Kårsteinen (Figure 3). This track is 
closer to populated areas and spans the exiting ferry route. Langeneset is located inwards from Sulafjord many 
kilometres south from Kvitneset. The mast is erected in an industrial area a few metres from the mountain side. 
Kårsteinen is located on a small cliff in the vicinity of a steep mountain with a height of approximately 660 m. The 
mast is located near the opening of Sulafjorden into Vartdalsfjord. The principal directions of the wind at this 
station are aligned with the axis of both fjords. 

2.2 Monitoring system 

Each mast is equipped with 3 to 4 wind sensors at different heights to capture the vertical wind profile. Table 1 
reports the geographical coordinates of the stations, the initial date of recording, the number of sensors and their 
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height above sea level. Observations are still ongoing at the moment of writing this thesis. The sensors employed 
are WindMaster Pro 3-Axis anemometers (Gill Instruments Limited), which can measure maximum wind gusts of 
65 m/s. The speed resolution is 0.01 m/s, and the direction resolution is 0.1°, while the accuracy at 12 m/s is 
reportedly <1.5% RMS and 2° for speed and direction, respectively. The sensors installed before October 2015 
were affected by the software bug reported in [28]. To date, this error has accounted for all the measurements 
of the dataset. The wind speed observations from the anemometers are divided into recordings of 10-minute 
intervals. Subsequently, the statistical properties of these recordings are analysed to characterize the site-specific 
wind conditions. The data availability of 10-min intervals from all stations is estimated to exceed 98.9% with 
punctual losses due to instrument or logger failure. Reports of data availability by station are provided in [26]. 

Station name Latitude Longitude Initial date 
 of recording 

Sensors Altitude (m) 

Kvitneset 62°25'17.74"N 6° 0'4.03"E 2016-11-24 3 92.5, 71.5, 44.5 

Trælboneset 62°25'39.47"N 6° 3'45.45"E 2018-01-03 3 76.8, 48.3, 27.3 

Langeneset 62°23'10.68"N 6° 1'52.72"E 2017-04-26 4 94.8, 75, 50, 27 

Kårsteinen 62°24'0.48"N 6° 7'9.82"E 2017-12-04 3 62.8, 40, 13.4 

Table 1: Sulafjord wind mast station coordinates 

3 Wind turbulence model 

The observations from the monitoring campaign reveal that Sulafjord Bridge will be exposed to strong European 
windstorms. Therefore, the dynamic response of the bridge is expected to be governed by the action of wind 
gusts, i.e., fluctuations in the wind speed. The usual approach to model the effect of gusts is to decompose the 
wind velocity into the mean wind field (speed and direction) and the three orthogonal turbulent components—
the along-wind (aligned with the mean), crosswind (orthogonal to the mean) and vertical components. The 
crosswind turbulent component is disregarded in the analysis because of its negligible contribution to the 
buffeting response due to the relatively high axial stiffness of the bridge girder. The action of the turbulence in 
the modelling is represented with its cross-spectral density (𝑆𝑆𝑢𝑢𝑢𝑢,𝑤𝑤𝑤𝑤) composed of the one-point autospectral 
density (𝑆𝑆𝑢𝑢,𝑤𝑤) and normalized cross spectrum (𝐶𝐶𝑢𝑢𝑢𝑢,𝑤𝑤𝑤𝑤). The cross-spectral densities are then arranged in matrix 
format as follows (𝑆𝑆𝑉𝑉): 

𝑆𝑆𝑉𝑉(𝑥𝑥1, 𝑥𝑥2,𝜔𝜔) = �𝑆𝑆𝑢𝑢𝑢𝑢
(𝑥𝑥1, 𝑥𝑥2,𝜔𝜔) 𝑆𝑆𝑤𝑤𝑤𝑤(𝑥𝑥1, 𝑥𝑥2,𝜔𝜔)

𝑆𝑆𝑢𝑢𝑢𝑢(𝑥𝑥1, 𝑥𝑥2,𝜔𝜔) 𝑆𝑆𝑤𝑤𝑤𝑤(𝑥𝑥1, 𝑥𝑥2,𝜔𝜔)�  
(1) 

𝑆𝑆𝑢𝑢𝑢𝑢,𝑤𝑤𝑤𝑤(𝑥𝑥1, 𝑥𝑥2,𝜔𝜔) =  �𝑆𝑆𝑢𝑢,𝑤𝑤(𝑥𝑥1,𝜔𝜔)𝑆𝑆𝑢𝑢,𝑤𝑤(𝑥𝑥2,𝜔𝜔) 𝐶𝐶𝑢𝑢𝑢𝑢,𝑤𝑤𝑤𝑤(∆𝑥𝑥,𝜔𝜔)   

where 𝑥𝑥1, 𝑥𝑥2 are the coordinates of two points separated by the distance ∆𝑥𝑥 and 𝜔𝜔 = 2𝜋𝜋𝜋𝜋 is the circular 
frequency. 

The autospectral density shows how the energy of the wind turbulence is distributed along its frequency content. 
The autospectral densities extracted directly from the wind recordings contain fluctuations. The usual engineering 
approach is to approximate them with a smooth curve [29]. The literature offers a substantial number of models 
to approximate such behaviour [30]–[40]; the reader is referred to Solari et al. for a more comprehensive 
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comparison of the models [41], [42]. Since the focus of this research is to improve the design guidelines of long-
span bridges, the spectral density fitting used in the Norwegian handbook for bridge design (N400) [18] will be 
employed. The expression is derived from the Kaimal-type spectrum [43]: 

where 𝑉𝑉 denotes the mean wind speed, 𝐼𝐼𝑢𝑢,𝑤𝑤 represent the along-wind and vertical turbulence intensities,  𝐴𝐴𝑢𝑢,𝑤𝑤 
indicate the spectral parameters relative to the integral length scales and 𝑧𝑧ℎ denotes the reference height. 
Overlapping fitted and measured power spectra from a recording registered on 01.01.19 at Trælboneset station 
from 14:40 to 14:50, which correspond to the annual highest mean speed, are shown in Figure 6. 

 
 

a) Along-wind turbulence autospectra b) vertical turbulence autospectra 
Figure 6: Two components of the one-point spectrum 'max 2019' Record 01.01.19 from 14:40 to 14:50. a) Su b) Sw 

The normalized cross-spectrum gives the correlation between two points along the structure. The cross-spectrum 
is a complex quantity whose imaginary part is usually disregarded for perpendicular winds [44]. The real part is 
known as the normalized co-spectra; this quantity is influenced by the frequency and distance between the 
analysed points. The correlation assumes values from -1 to 1, where 1 represents a perfect correlation. The 
literature has several models to define this quantity [33], [40], [45]–[47]. Nevertheless, an exponentially decaying 
curve based on the Davenport decay coefficients (𝐾𝐾𝑢𝑢 ,𝐾𝐾𝑤𝑤) is the simplest expression that matches the data 
observations [48]. The cross term 𝐶𝐶𝑢𝑢𝑢𝑢 is disregarded in the analysis due to its low contribution to the measured 
buffeting response of the bridges [49]. 

𝑆𝑆𝑢𝑢,𝑤𝑤𝑓𝑓

�𝑉𝑉 𝐼𝐼𝑢𝑢,𝑤𝑤�
2 =

A𝑢𝑢,𝑤𝑤𝑓𝑓𝑧𝑧ℎ
�1 + 1.5A𝑢𝑢,𝑤𝑤𝑓𝑓𝑧𝑧ℎ�

5/3 , 𝑓𝑓𝑧𝑧 =
𝑧𝑧ℎ𝑓𝑓
𝑉𝑉

, 𝐼𝐼𝑢𝑢 =
𝜎𝜎𝑢𝑢,𝑤𝑤

𝑉𝑉
 (2) 

𝐶𝐶𝑢𝑢,𝑤𝑤(𝑓𝑓,∆𝑥𝑥) = exp �−𝐾𝐾𝑢𝑢,𝑤𝑤
∆𝑥𝑥 𝑓𝑓
𝑉𝑉

� (3) 
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3.1 Probabilistic model  

The parameters of the turbulence are often defined from deterministic relationships of the mean wind speed. 
Nevertheless, experience from full-scaled measurements of the buffeting response on long-span bridges has 
shown discrepancies between the observations and the analytical models. Such discrepancies are partially 
attributed to the variability of the wind turbulence field, which is disregarded in the analytical models [50]–[57]. 
Therefore, the stochastic behaviour of the wind turbulence parameters was considered in the analysis. The 
turbulence parameters included in modelling are the along-wind and vertical turbulence intensities (𝐼𝐼𝑢𝑢 ,  𝐼𝐼𝑤𝑤), the 
spectral parameters (𝐴𝐴𝑢𝑢,𝐴𝐴𝑤𝑤) and decay coefficients (𝐾𝐾𝑢𝑢 ,𝐾𝐾𝑤𝑤). Probabilistic modelling of the wind field was 
introduced to handle stochastic behaviour [20], [51]. Introducing 𝑾𝑾 as the wind state vector collecting the wind 
parameters, its joint cumulative distribution function (CDF) can be expressed as the product of the conditional 
distributions: 

Fenerci et al. (2018) showed that the joint distribution can be expressed as the product of the Weibull distribution 
of the mean wind speed and a joint lognormal distribution of the turbulence parameters. The same distribution 
types will be utilized for the Sulafjord Bridge in this thesis. The expressions for the Weibull and joint lognormal 
distributions are presented as follows: 

𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥|𝜇𝜇�,𝜎𝜎�) = 1
𝑥𝑥𝜎𝜎�√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒 �−(𝐿𝐿𝐿𝐿 𝑥𝑥−𝜇𝜇�)2

2𝜎𝜎�2
�  

𝜇𝜇� = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝜇𝜇 +
𝜎𝜎2

2
�  ,  𝜎𝜎�2 = [𝑒𝑒𝑒𝑒𝑒𝑒(𝜎𝜎2) − 1] 𝑒𝑒𝑒𝑒𝑒𝑒 (2𝜇𝜇 + 𝜎𝜎2) 

𝜌𝜌(𝑥𝑥, 𝑦𝑦) =
1

𝑁𝑁 − 1
��

𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑥𝑥
𝜎𝜎𝑥𝑥

� �
𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑦𝑦
𝜎𝜎𝑦𝑦

�
𝑁𝑁

𝑖𝑖=1

 

𝑹𝑹𝑥𝑥𝑥𝑥 = � 1 𝜌𝜌(𝑥𝑥,𝑦𝑦)
𝜌𝜌(𝑦𝑦, 𝑥𝑥) 1 � 

  (6) 

where 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆 are the shape parameter and scale parameter, respectively, of the Weibull distribution and 
𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥|𝜇𝜇�,𝜎𝜎�) is the lognormal distribution of 𝑥𝑥. 𝜇𝜇�,𝜎𝜎� are the lognormal mean and standard deviation, 𝜌𝜌(𝑥𝑥,𝑦𝑦) is 
the correlation coefficient of the variables 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦, and 𝑹𝑹𝑥𝑥𝑥𝑥 is the correlation matrix. The parameters of the 
distributions were adapted from the site-specific data following the procedure explained in paper 2 of this thesis.   

𝐹𝐹𝑾𝑾(𝑊𝑊) = 𝐹𝐹𝑉𝑉(𝑉𝑉) ∗ 𝐹𝐹𝐼𝐼𝑢𝑢,𝐼𝐼𝑤𝑤,𝐴𝐴𝑢𝑢,𝐴𝐴𝑤𝑤,𝐾𝐾𝑢𝑢,𝐾𝐾𝑤𝑤|𝑉𝑉 (𝐼𝐼𝑢𝑢 , 𝐼𝐼𝑤𝑤 ,𝐴𝐴𝑢𝑢,𝐴𝐴𝑤𝑤 ,𝐾𝐾𝑢𝑢,𝐾𝐾𝑤𝑤|𝑉𝑉) (4) 

𝑾𝑾 = [ 𝑉𝑉, 𝐼𝐼𝑢𝑢 , 𝐼𝐼𝑤𝑤 ,𝐴𝐴𝑢𝑢,𝐴𝐴𝑤𝑤 ,𝐾𝐾𝑢𝑢,𝐾𝐾𝑤𝑤]  

𝐹𝐹𝑉𝑉(𝑉𝑉) = 1 − exp ��
𝑉𝑉
𝜆𝜆
�
𝑘𝑘

�   ;  𝑓𝑓𝑓𝑓𝑓𝑓 𝑉𝑉 > 0 (5) 
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4 Buffeting response of long-span bridges 
4.1 Theoretical estimation of the buffeting response using the Multimodal approach 

Wind actions over long-span bridges can be critical if not considered properly [11], [16]. This study is focused on 
wind buffeting effects, i.e., vibrations in the structure due to the turbulence of the wind field. Other aerodynamic 
phenomena, such as instability due to galloping, flutter or vortex shedding, are beyond the scope of this thesis, 
with a special notation over flutter stability limits, which are estimated only to avoid the simulation of wind states 
outside the assumptions of the modelling. 

The analysis of cable-supported bridges under the action of stochastic wind loading was introduced by Davenport 
[10], [48], [58]. Davenport’s formulations proposed a spectral analysis in the frequency domain, which is exact 
and therefore will be the approach used in this thesis. Approximated analysis in the time domain is beyond the 
scope of this thesis. Since Davenport’s original formulation, several authors have contributed to improving the 
modelling, and the discussion is still open in the literature. In this thesis, the buffeting response was computed in 
the frequency domain following the multimodal approach based on finite element formulation. The modelling 
contemplates the following assumptions: the bridge deck is idealized as a line-like structure; the wind field is 
homogenous; wind turbulence is a Gaussian and stationary process; the mean wind is orthogonal to the bridge 
longitudinal axis (no skew winds) and variations in the vertical angle of attack are not significant. Self-excited 
forces are accounted for with aerodynamic derivatives [59]. Modal coupling is considered with the multimodal 
approach [60]–[68]. The wind aerodynamic forces are applied to the structural elements following the 
discretization of the bridge finite element model [1]. 

Aerodynamic loading and loading effects are decomposed using the mode shapes of the finite element model as 
generalized coordinates. Denoting the mode shapes with 𝜱𝜱 and the respective generalized coordinates with  𝜼𝜼, 
the global displacement vector due to buffeting actions 𝒓𝒓 is: 

where 𝑥𝑥 is the coordinate of the nodes over the line-like deck; 𝑦𝑦, 𝑧𝑧 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 are the lateral, vertical and torsional 
displacement components; and  𝑁𝑁 is the number of modes considered. 

The equation of motion of the system in the frequency domain using the generalized coordinates is: 

where 𝑴𝑴� 0,𝑪𝑪�0 and 𝑲𝑲�0 are the generalized mass, damping and stiffness matrices, respectively, under still-air 
conditions. These structural matrices are obtained from the finite element model of the bridge under mean wind 
actions. 𝑪𝑪�𝑎𝑎𝑎𝑎 and 𝑲𝑲�𝑎𝑎𝑎𝑎 are the generalized aeroelastic stiffness and damping matrices, respectively, from the self-
excited motion. 𝐺𝐺𝜼̈𝜼,𝐺𝐺𝜼̇𝜼and 𝐺𝐺𝜼𝜼 are the Fourier transforms of the generalized acceleration, velocity, and 
displacement, respectively, and 𝐺𝐺𝑸𝑸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the Fourier transform of the nodal buffeting forces. 

𝒓𝒓(𝑥𝑥, 𝑡𝑡) =  𝜱𝜱(𝑥𝑥)𝜼𝜼(𝑡𝑡) 

𝜱𝜱(𝑥𝑥) = [ 𝝋𝝋𝟏𝟏 … 𝝋𝝋𝒊𝒊 … 𝝋𝝋𝑵𝑵]𝑇𝑇 

 

𝒓𝒓(𝑥𝑥, 𝑡𝑡) = [ 𝒓𝒓𝒚𝒚 𝒓𝒓𝒛𝒛 𝒓𝒓𝜽𝜽]𝑇𝑇 

𝜼𝜼(𝑡𝑡) = [ 𝜼𝜼𝟏𝟏 … 𝜼𝜼𝒊𝒊 … 𝜼𝜼𝑵𝑵]𝑇𝑇 

𝝋𝝋𝒊𝒊 = [ 𝝋𝝋𝒚𝒚 𝝋𝝋𝒛𝒛 𝝋𝝋𝜽𝜽]𝑇𝑇 

(7) 

𝑴𝑴�0 𝐺𝐺𝜼̈𝜼(𝜔𝜔) + (𝑪𝑪�0 − 𝑪𝑪�𝑎𝑎𝑎𝑎) 𝐺𝐺𝜼̇𝜼(𝜔𝜔) + (𝑲𝑲�0 − 𝑲𝑲�𝑎𝑎𝑎𝑎)𝐺𝐺𝜼𝜼(𝜔𝜔) = 𝐺𝐺𝑸𝑸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝜔𝜔) 

 

 

(8) 
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The aeroelastic damping 𝐶𝐶𝑎𝑎𝑎𝑎 and stiffness 𝐾𝐾𝑎𝑎𝑎𝑎  in global coordinates are: 

𝐶𝐶𝑎𝑎𝑎𝑎 =
1
2

 𝜌𝜌 𝜔𝜔𝐵𝐵2 �
𝑃𝑃1∗ 𝑃𝑃5∗ 𝐵𝐵𝐵𝐵2∗
𝐻𝐻5∗ 𝐻𝐻1∗ 𝐵𝐵𝐵𝐵2∗

𝐵𝐵𝐵𝐵5∗ 𝐵𝐵𝐵𝐵1∗ 𝐵𝐵2𝐴𝐴2∗
� 

(9) 

𝐾𝐾𝑎𝑎𝑎𝑎 =
1
2

 𝜌𝜌 𝜔𝜔2𝐵𝐵2 �
𝑃𝑃4∗ 𝑃𝑃6∗ 𝐵𝐵𝐵𝐵3∗
𝐻𝐻6∗ 𝐻𝐻4∗ 𝐵𝐵𝐵𝐵3∗

𝐵𝐵𝐵𝐵6∗ 𝐵𝐵𝐵𝐵4∗ 𝐵𝐵2𝐴𝐴3∗
� 

(10) 

where 𝑃𝑃1,2…,6
∗  𝐻𝐻1,2…,6

∗  𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴1,2…,6
∗  denote the dimensionless aerodynamic derivatives, 𝜌𝜌 is the density of the air 

and 𝐵𝐵 is the effective width of the bridge deck. The matrices in generalize coordinates are: 

𝑪𝑪�𝑎𝑎𝑎𝑎(𝑉𝑉,𝜔𝜔) = �𝜱𝜱𝑛𝑛
𝑇𝑇𝐶𝐶𝑎𝑎𝑎𝑎(𝑉𝑉,𝜔𝜔)𝜱𝜱𝑚𝑚

 

𝐿𝐿
 𝑑𝑑𝑑𝑑 

(11) 

𝑲𝑲�𝑎𝑎𝑎𝑎(𝑉𝑉,𝜔𝜔) = �𝜱𝜱𝑛𝑛
𝑇𝑇𝐾𝐾𝑎𝑎𝑎𝑎(𝑉𝑉,𝜔𝜔)𝜱𝜱𝑚𝑚

 

𝐿𝐿
 𝑑𝑑𝑑𝑑 

(12) 

4.1.1 Buffeting forces from beam finite element formulation 

To apply the wind forces in the model, a beam finite element discretization approach was selected. A generic 
structure can be discretized with beam finite elements with 12 degrees of freedom, as shown in  Figure 7 (a). 
Next, the wind action over a generic beam element is shown in  Figure 7 (b). The three coordinate systems shown 
in Figure 7 comprise the global coordinate system defined by its unit vector {𝐸𝐸1,𝐸𝐸2,𝐸𝐸3}, the beam element local 
coordinate system with unit vector {𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3} and the wind field system with unit vector {𝑒𝑒𝑒𝑒1, 𝑒𝑒𝑒𝑒2 , 𝑒𝑒𝑒𝑒3}. The 
transformation scheme from the wind reference system to the local reference system of the beam elements is 
presented as follows: 

a)

 

b)

  

 Figure 7: Local coordinate system of the beam element: a) DOF of the beam element. b) Wind actions on the beam element 

𝑇𝑇𝐺𝐺2𝐿𝐿𝐿𝐿 =  �
𝑒𝑒1𝑇𝑇

𝑒𝑒2𝑇𝑇

𝑒𝑒3𝑇𝑇
� 

(13) 
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The vector of nodal buffeting forces (𝑸𝑸𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) is obtained from the principle of virtual work using the shape 
functions 𝑁𝑁(𝑥𝑥) and denoting the wind forces in the beam element by 𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥, 𝑡𝑡) 

𝑸𝑸𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = � 𝑵𝑵(𝑥𝑥)𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥
𝐿𝐿

0
 

𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥, 𝑡𝑡) = 𝑩𝑩𝑞𝑞(𝑥𝑥)𝑻𝑻𝐿𝐿𝐿𝐿2𝐿𝐿𝐿𝐿 𝑽𝑽𝐿𝐿𝐿𝐿(𝑥𝑥, 𝑡𝑡) 

  (16) 

where 𝑽𝑽𝐿𝐿𝐿𝐿 = [𝑣𝑣1 𝑣𝑣2 𝑣𝑣3]𝑇𝑇 is the vector that contains the wind turbulence components in the wind reference 
system. The matrix 𝑇𝑇𝐿𝐿𝐿𝐿2𝐿𝐿𝐿𝐿  transforms the wind coordinates into the local element reference system. The 
aerodynamic matrix 𝐵𝐵𝑞𝑞   contains the force coefficients that relate the turbulence components to the aerodynamic 
forces: 

𝑩𝑩𝑞𝑞  =
1
2

 𝜌𝜌𝜌𝜌 𝑉𝑉

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0

0 2 �
𝐷𝐷
𝐵𝐵
�𝐶𝐶𝐷̅𝐷 ��

𝐷𝐷
𝐵𝐵
�𝐶𝐶′𝐷𝐷 − 𝐶𝐶𝐿̅𝐿�

0 2𝐶𝐶𝐿̅𝐿 ��
𝐷𝐷
𝐵𝐵
�𝐶𝐶𝐷̅𝐷 + 𝐶𝐶′𝐿𝐿�

0 2𝐵𝐵𝐶𝐶𝑀̅𝑀 𝐵𝐵𝐶𝐶′𝑀𝑀 ⎦
⎥
⎥
⎥
⎥
⎤

 (17) 

where 𝐷𝐷 is the effective depth of the girder cross-section; 𝐶𝐶𝐷̅𝐷,𝐶𝐶𝐿̅𝐿 & 𝐶𝐶𝑀̅𝑀 are the mean values of the drag, lift and 
moment steady-state force coefficients, respectively; and 𝐶𝐶′𝐷𝐷 ,𝐶𝐶′𝐿𝐿 ,𝐶𝐶′𝑀𝑀 are their respective derivatives with 
respect to the angle of attack. 

The nodal buffeting forces from all the elements are assembled. The dependence of element buffeting forces 
along the geometric coordinate 𝑥𝑥 from Equation   (16) is disregarded, assuming a uniform shape of the beam 
elements and assuming that the length of the beam elements is small compared with the size of the eddies. The 
global buffeting force is then: 

𝑸𝑸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = �𝑻𝑻𝐸𝐸2𝑆𝑆,𝑖𝑖  𝑻𝑻𝐺𝐺2𝐿𝐿𝐿𝐿,𝑖𝑖
𝑻𝑻

𝑁𝑁

𝑖𝑖

𝑁𝑁�𝑖𝑖𝑩𝑩𝑞𝑞,𝑖𝑖𝑻𝑻𝐿𝐿𝐿𝐿2𝐿𝐿𝐿𝐿,𝑖𝑖 𝑽𝑽𝐿𝐿𝐿𝐿,𝑖𝑖(𝑡𝑡) 
(18) 

where 𝑻𝑻𝐸𝐸2𝑆𝑆 is the assembly matrix from the local degrees of freedom of the beam element to the global degrees 
of freedom of the structure and 𝑁𝑁�𝑖𝑖 =  ∫ 𝑵𝑵(𝑥𝑥)𝑑𝑑𝑥𝑥𝐿𝐿

0 . 

To express the quantities in the frequency domain, the cross-spectral density of the buffeting force is obtained as 
the discrete Fourier transform of its cross-correlation function: 

𝑇𝑇𝐺𝐺2𝐿𝐿𝐿𝐿 =  �
𝑒𝑒𝑒𝑒1𝑇𝑇

𝑒𝑒𝑒𝑒2𝑇𝑇

𝑒𝑒𝑒𝑒3𝑇𝑇
� 

(14) 

𝑇𝑇𝐿𝐿𝐿𝐿2𝐿𝐿𝐿𝐿 = 𝑇𝑇𝐺𝐺2𝐿𝐿𝐿𝐿  𝑇𝑇𝐺𝐺2𝐿𝐿𝐿𝐿𝑇𝑇  
(15) 
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𝑅𝑅𝑸𝑸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  (𝜏𝜏) = 𝐸𝐸[𝑸𝑸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) 𝑸𝑸𝑻𝑻
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡 + 𝜏𝜏)] 

𝑺𝑺𝑸𝑸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  (𝜔𝜔) = ��𝑻𝑻𝐸𝐸2𝑆𝑆,𝑖𝑖  𝑻𝑻𝐺𝐺2𝐿𝐿𝐿𝐿,𝑖𝑖
𝑻𝑻

𝑁𝑁

𝑗𝑗

𝑁𝑁�𝑖𝑖𝑩𝑩𝑞𝑞,𝑖𝑖𝑻𝑻𝐿𝐿𝐿𝐿2𝐿𝐿𝐿𝐿,𝑖𝑖 𝑺𝑺𝑉𝑉 (∆𝑥𝑥,𝜔𝜔)𝑻𝑻𝐿𝐿𝐿𝐿2𝐿𝐿𝐿𝐿,𝑗𝑗
𝑻𝑻  

𝑁𝑁

𝑖𝑖

𝑩𝑩𝑞𝑞,𝑗𝑗
𝑻𝑻  𝑁𝑁�𝑗𝑗𝑻𝑻𝑻𝑻𝐺𝐺2𝐿𝐿𝑒𝑒,𝑗𝑗𝑻𝑻𝐸𝐸2𝑆𝑆,𝑗𝑗

𝑻𝑻  

(19) 

where 𝑺𝑺𝑉𝑉(∆𝜒𝜒,𝜔𝜔) is the cross-spectral density of Equation (1). 

The buffeting forces are transformed into generalized coordinates: 

𝑺𝑺�𝑸𝑸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  (𝜔𝜔) = 𝜱𝜱(𝑥𝑥)𝑺𝑺𝑸𝑸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  (𝜔𝜔)𝜱𝜱𝑻𝑻(𝑥𝑥) 
(20) 

The buffeting response in the frequency domain is described by its cross-spectral density related to the transfer 
function 𝐻𝐻: 

𝑺𝑺�𝑅𝑅  (𝜔𝜔)  = �𝐻𝐻(𝜔𝜔)𝑺𝑺�𝑸𝑸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  (𝜔𝜔)  � 𝐻𝐻∗(𝜔𝜔) 
(21) 

𝐻𝐻  (𝜔𝜔)  = �− 𝑴𝑴� 0𝜔𝜔2 + (𝑪𝑪�0 − 𝑪𝑪�𝑎𝑎𝑎𝑎(𝑉𝑉,𝜔𝜔)�𝑖𝑖𝑖𝑖 + (𝑲𝑲�0 − 𝑲𝑲�𝑎𝑎𝑎𝑎(𝑉𝑉,𝜔𝜔))]−1   
(22) 

where 𝐻𝐻∗ is the complex conjugate of.𝐻𝐻. 

The cross-spectral density of the response in the global coordinates is then obtained with modal shapes. 

𝑺𝑺𝑅𝑅   (𝜔𝜔)  = 𝜱𝜱(𝑥𝑥)�𝑺𝑺�𝑅𝑅  (𝜔𝜔)�𝜱𝜱𝑻𝑻(𝑥𝑥) 
(23) 

The root mean square of a single response component −𝑖𝑖 can be obtained from the autospectral density as 
follows: 

𝜎𝜎𝑅𝑅(𝑖𝑖,𝑖𝑖)(𝑥𝑥)  = �� 𝑺𝑺𝑅𝑅(𝑖𝑖,𝑖𝑖)  (𝜔𝜔)𝑑𝑑𝑑𝑑
+∞

−∞
 

𝜎𝜎𝑅̇𝑅(𝑖𝑖,𝑖𝑖)(𝑥𝑥)  = �� 𝜔𝜔2𝑺𝑺𝑅𝑅(𝑖𝑖,𝑖𝑖)  (𝜔𝜔)𝑑𝑑𝑑𝑑
+∞

−∞
 

(24) 

4.2 Approximate estimation of buffeting response with machine learning 

The buffeting response through the multimodal approach may be computationally demanding because of the 
assembly of the cross-spectral density of the buffeting force in Equation (19) and the inversion of the transfer 
function 𝐻𝐻−1 of Equation (21). The computational efficiency has a major role in the extreme buffeting response 
estimation through full long-term analysis since the buffeting response needs to be obtained for several wind 
states. Alternatives such as surrogate modelling alleviate the computational effort in optimizing the number of 
multimodal buffeting responses required in the analysis by approximating the underlying relationship between 
the buffeting response and the wind variables [1]. Figure 8 shows an example of the surrogate modelling strategy 
for two wind variables: the mean wind speed and the vertical turbulence intensity. The dots in the figure represent 
wind states used for training the model, and the crosses represent multimodal buffeting responses computed for 
testing the model. Model estimations are represented with a colormap. 
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 Figure 8: Surrogate modelling of the buffeting response 

This study used surrogate model strategies based on machine learning. Three different strategies were utilized: 
models based on the multilayer perceptron (MLP), models based on support vector regression (SVR) and models 
based on Gaussian process regression (GPR). The concept of the surrogate modelling strategy is the same for all 
approaches and will be introduced in the following section. From a wind engineering perspective, the important 
aspects of the surrogate model strategy are listed as follows: which wind variables are utilized as the input, which 
responses are used as the output, how to efficiently train the model, how to obtain an estimation, and how to 
assess the accuracy of the estimations. 

The objective of the surrogate model is to approximate the underlying function between the input variables and 
the output response. The input variables in the analysis are intuitively collected in the vector of wind variables 𝑾𝑾 
from Equation (4). The output responses of the analysis are the root mean square of any response component 
and its time derivative 𝒀𝒀 = [ 𝜎𝜎𝑅𝑅  𝜎𝜎𝑅̇𝑅].  The target function in this case is the buffeting response estimation through 
the multimodal approach. 

Machine learning models are data-driven, meaning that the model’s parameters are calibrated from observed 
data with known input–output relationships. The initial step is to simulate certain wind states and estimate their 
buffeting response. The hyperparameters of the model are then optimized for the given data; this step is known 
as training. In this study, training of the machine learning models was achieved with the statistics and machine 
learning toolbox of MATLAB 2019b [69]. 

4.2.1 Surrogate modelling with a multilayered perceptron 

An artificial neural network (ANN) is an algorithm that mimics the functioning of biological brains by assembling 
layered neurons connected to each other. A neuron (also known as a unit or node) is an operational entity that 
stores and distributes information [70]. The neurons are organized into sets referred to as layers, and the neurons 
within one layer are connected to those in the subsequent layer. The layer connections transmit information 
within the neurons and are mathematically the arrays that govern the transformation relationships. The value of 
a neuron in an arbitrary layer is the scalar product between its transformation array and the output of the neurons 
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in the previous layer; the neuron is then activated whenever its value surpasses a certain threshold. The type of 
neural network applied in this study is the MLP [71], which is schematically shown in Figure 9. 

 

Figure 9: Architecture of an ANN 

where 𝑦𝑦𝑗𝑗𝑘𝑘 is referred to as the output of the 𝑗𝑗-th node in the 𝑘𝑘-th arbitrary layer of an MLP and is related to an 
activation bias 𝜗𝜗𝑗𝑗𝑘𝑘 and connection weights 𝑤𝑤𝑖𝑖,𝑗𝑗𝑘𝑘−1, where 𝑥𝑥𝑖𝑖𝑘𝑘−1 is the value of the 𝑖𝑖-th node of the previous layer. 
The nonlinear activation function 𝑔𝑔(𝑥𝑥) is applied to the result [72]. The feedforward mapping process is then 
obtained by assembling the abovementioned operations until the model's final 𝑀𝑀 layer is reached: 

𝑦𝑦𝑗𝑗𝑘𝑘 =  𝑔𝑔� � 𝑤𝑤𝑖𝑖,𝑗𝑗𝑘𝑘−1 𝑥𝑥𝑖𝑖𝑘𝑘−1
𝑁𝑁

𝑖𝑖=1,𝑗𝑗=𝑗𝑗

+ 𝜗𝜗𝑗𝑗𝑘𝑘� (25) 

𝑌𝑌𝑘𝑘 =  𝑔𝑔 ��𝑊𝑊𝑖𝑖
𝑘𝑘−1�𝑇𝑇 ∗  𝑋𝑋𝑘𝑘−1 + 𝜃𝜃𝑘𝑘� (26) 

The model estimation of the output 𝑌𝑌�  is then obtained: 

𝑌𝑌� =  𝑓𝑓{(𝑊𝑊𝑖𝑖
𝑀𝑀−1)𝑇𝑇 …𝑔𝑔{(𝑊𝑊𝑖𝑖

1)𝑇𝑇 𝑋𝑋1} + 𝜃𝜃𝑀𝑀} (27) 

Introducing the "loss" function 𝐿𝐿� 𝑦𝑦�𝑗𝑗,𝑦𝑦𝑗𝑗� as the difference between the known response and the models’ 
estimations, the mathematical objective of the learning process is to minimize the loss function. This minimization 
is achieved by sending the estimation error through all the previous layers within the network; this operation 
results in an iterative optimization procedure known as backpropagation [73]. Since the original input is fixed to 
the dataset, the only parameters to be updated in each iteration are the weights and biases; the procedure yields: 

4.2.2 Surrogate modelling with support vector regression 

Support vector regression (SVR) is an extension of the support vector approximation algorithm to a regression 
problem [74]. Introducing an ε-insensitive loss function, SVR approximates 𝑦𝑦𝑖𝑖  with a certain tolerance ε. The 
estimation can be obtained with a linear function as follows: 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥′𝑤𝑤 + 𝜗𝜗 

(29) 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �𝑊𝑊𝑘𝑘∈{1∶𝑀𝑀−1} & 𝜃𝜃𝑘𝑘∈{1:𝑀𝑀}� ∴ 𝐿𝐿� 𝑦𝑦�𝑗𝑗,𝑦𝑦𝑗𝑗� = min (𝐿𝐿) 

(28) 
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The ε-insensitive loss function 𝐿𝐿(𝑥𝑥) is equal to zero when the difference between the estimation 𝑓𝑓(𝑥𝑥)and the 
known response 𝑦𝑦 is less than ε, and a constraint is added to the problem: 

𝐿𝐿(𝑦𝑦 − 𝑓𝑓(𝑥𝑥,𝑤𝑤)) = � 0 𝑖𝑖𝑖𝑖|𝑦𝑦 − 𝑓𝑓(𝑥𝑥,𝑤𝑤)| ≤ ε 
|𝑦𝑦 − 𝑓𝑓(𝑥𝑥,𝑤𝑤)| 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

(30) 

To make the solution feasible, the tolerance margin is softened by adding a set of slack variables 𝜉𝜉𝑖𝑖  and 𝜉𝜉𝑖𝑖∗, as 
shown in Figure 10. 

 
Figure 10: Schematic representation of SVR with slack variables 

The optimization problem becomes: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
1
2
‖𝑤𝑤‖2 + 𝐶𝐶�𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖∗

𝑁𝑁

𝑖𝑖=1

𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: �
𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥,𝑤𝑤) ≤ ε + 𝜉𝜉𝑖𝑖
𝑓𝑓(𝑥𝑥,𝑤𝑤) − 𝑦𝑦𝑖𝑖 ≤ ε + 𝜉𝜉𝑖𝑖∗

𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖∗ ≥ 0

 

 
(31) 

where C is the box constraint, which is a positive-valued parameter that imposes a penalty on the estimations 
outside the ε-margin and thus helps to balance the accuracy of the model. Solving this optimization problem with 
inequality constraints is equivalent to finding the saddle point in the Lagrange function. By introducing 𝛼𝛼𝑛𝑛 and 𝛼𝛼𝑛𝑛∗  
as Lagrange multipliers, the weights (𝑤𝑤 parameters) can be obtained as: 

𝑤𝑤 = �(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (32) 

The model estimation is computed by expanding the support vectors: 

𝑓𝑓(𝑥𝑥) = �(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)(𝑥𝑥𝑖𝑖′
𝑁𝑁

𝑖𝑖=1

𝑥𝑥) + 𝜗𝜗 (33) 

The parameters 𝜗𝜗 can be obtained by exploiting the Karush–Kun–Tucker (KKT) conditions [75], which state that 
at the optimal solution, the product between the dual variables and the constraints vanishes. 

To extend the formulation to nonlinear regression problems, the dot product (𝑥𝑥𝑖𝑖′𝑥𝑥) must be replaced with a 
nonlinear mapping function, known as the kernel function 𝐾𝐾(𝑥𝑥𝑖𝑖′𝑥𝑥). 



17 
 

𝑓𝑓(𝑥𝑥) = �(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝐾𝐾(𝑥𝑥𝑖𝑖′
𝑁𝑁

𝑖𝑖=1

𝑥𝑥) + 𝜗𝜗 
(34) 

4.2.3 Surrogate modelling with Gaussian process regression 
Gaussian process regression is a machine learning algorithm in which the responses are assumed to behave as 
Gaussian processes 𝐺𝐺𝐺𝐺 = 𝒩𝒩(𝑴𝑴,𝑲𝑲), where 𝒩𝒩 is the multivariate normal distribution function with mean 
function 𝑴𝑴 and covariance function 𝑲𝑲. 

𝑦𝑦 = 𝑓𝑓(𝒘𝒘) ≈ 𝒩𝒩(𝑀𝑀(𝒘𝒘),𝐾𝐾(𝒘𝒘,𝒘𝒘′)) 
𝑀𝑀(𝒘𝒘) = 𝐸𝐸[𝑓𝑓(𝒘𝒘)] 

𝐾𝐾�𝒘𝒘𝑖𝑖 ,𝒘𝒘𝑗𝑗� = 𝐸𝐸�{𝑓𝑓(𝒘𝒘𝑖𝑖) −𝑀𝑀(𝒘𝒘𝑖𝑖)} �𝑓𝑓�𝒘𝒘𝑗𝑗� − 𝑀𝑀�𝒘𝒘𝑗𝑗��^𝑇𝑇� 

 
(35) 

The training data will be identified with subscript 𝑡𝑡, while the estimation data will be denoted with subscript 𝑑𝑑. 
The output of the GPR model in the training data is assumed to be contaminated with some standard normal 
noise 𝜀𝜀~𝒩𝒩(0,𝜎𝜎𝑛𝑛2), where the standard deviation of the noise 𝜎𝜎𝑛𝑛 is a hyperparameter of the model. GPR 
establishes the joint distribution between the model estimations 𝒚𝒚�𝑑𝑑 and the prior training data 𝒚𝒚𝑡𝑡 as: 

�
𝒚𝒚𝑡𝑡
𝒚𝒚�𝑑𝑑
� = 𝒩𝒩��𝑴𝑴

(𝒘𝒘𝑡𝑡)
𝑴𝑴(𝒘𝒘𝑑𝑑)� , �𝑲𝑲(𝒘𝒘𝑡𝑡 ,𝒘𝒘𝑡𝑡) + 𝜎𝜎𝑛𝑛2𝑰𝑰 𝑲𝑲(𝒘𝒘𝑡𝑡 ,𝒘𝒘𝒅𝒅)

𝑲𝑲(𝒘𝒘𝒅𝒅,𝒘𝒘𝑡𝑡) 𝑲𝑲(𝒘𝒘𝒅𝒅,𝒘𝒘𝒅𝒅)�� 
(36) 

The marginal probability distribution of the estimation can be written as: 
𝑝𝑝(𝒚𝒚�𝑑𝑑|𝑾𝑾𝑡𝑡 ,𝒚𝒚𝑡𝑡 ,𝒘𝒘𝒅𝒅)~𝒩𝒩(𝜇𝜇𝒚𝒚�𝑑𝑑 , Σ𝒚𝒚�𝑑𝑑) 

𝜇𝜇𝒚𝒚�𝑑𝑑 = 𝒚𝒚�𝑑𝑑 = 𝑴𝑴(𝒘𝒘𝒅𝒅) + 𝑲𝑲(𝒘𝒘𝒅𝒅,𝒘𝒘𝑡𝑡)[𝑲𝑲(𝒘𝒘𝑡𝑡 ,𝒘𝒘𝑡𝑡) + 𝜎𝜎𝑛𝑛2𝑰𝑰]−1[𝒚𝒚𝑡𝑡 − 𝑴𝑴(𝒘𝒘𝑡𝑡)] 

Σ𝒚𝒚�𝑑𝑑 = 𝑲𝑲(𝒘𝒘𝒅𝒅,𝒘𝒘𝒅𝒅) −𝑲𝑲(𝒘𝒘𝒅𝒅,𝒘𝒘𝑡𝑡)[𝑲𝑲(𝒘𝒘𝑡𝑡 ,𝒘𝒘𝑡𝑡) + 𝜎𝜎𝑛𝑛2𝑰𝑰]−1𝑲𝑲(𝒘𝒘𝑡𝑡 ,𝒘𝒘𝒅𝒅)𝑇𝑇 

(37) 

The correlation between two estimation points is defined by the covariance, which is also known as the kernel 
function 𝐾𝐾�𝒘𝒘𝑖𝑖 ,𝒘𝒘𝑗𝑗�. The kernel function must be specified beforehand to train the GPR model. The literature 
offers a variety of functions that can be used to model the kernel function. An overview of the kernel functions 
used for full long-term analysis is provided in [76]. In this study, we employed the squared exponential function: 

𝐾𝐾�𝒘𝒘𝑖𝑖 ,𝒘𝒘𝑗𝑗� = 𝜎𝜎𝑓𝑓2 exp �−
�𝒘𝒘𝑖𝑖 − 𝒘𝒘𝑗𝑗�

2

2𝑙𝑙2
� + 𝜎𝜎𝑛𝑛2 

(38) 

where 𝜎𝜎𝑓𝑓 is the standard deviation of the unscaled kernel and 𝑙𝑙 is the length scale. The kernel function was 
isotropic, and normalization of the wind variables was performed with the Rosenblatt transform [77]. 

In addition, the mean function of the Gaussian process was chosen as a constant: 

𝑀𝑀(𝒘𝒘) = 𝒘𝒘𝑇𝑇𝛽𝛽 
(39) 

where 𝛽𝛽 is the constant hyperparameter of the modelling. 

The model hyperparameters (𝜎𝜎𝑓𝑓, 𝑙𝑙, 𝜎𝜎𝑛𝑛 and 𝛽𝛽) were optimized from the training data using the machine learning 
and statistics toolbox of MATLAB [69].  
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5 Extreme response estimation 

The procedures of chapter 4 offer different ways to estimate the short-term statistics of the buffeting response. 
This chapter explains how to obtain the extreme buffeting response based on statistical inferences from these 
short-term response estimations. The design guidelines assume that the return period of the buffeting response 
directly corresponds to the return period of the mean speed. The short-term interval with a mean speed equal to 
the extreme mean speed is sufficient for estimating the extreme buffeting response, and the method is referred 
to as short-term. The short-term method is a fast and approximate analysis that may not be accurate for long-
span bridges, as it disregards the stochastic behaviour of the wind turbulence and the structural response. Section 
5.1 explains the method in detail. The environmental contour method explained in Section 5.2 considers the 
stochastic behaviour of the wind turbulence yielding a more accurate solution. The method proposed an empirical 
way to handle the stochastic behaviour of the response with the inclusion of inflating factors. Such factors are 
outside the scope of this thesis. In contrast, the full long-term analysis is the most accurate method for estimating 
the extreme response since it considers the fluctuations in the weather conditions and their effect on the short-
term statistics. In this way, the stochastic behaviour of the response and wind turbulence is considered. The 
analysis however is computationally demanding, and therefore, traditional application of the method results is 
unfeasible for practical engineering purposes. Section 5.3 explains the analysis and the efforts of this study to 
alleviate its computational demand. 

5.1 Short-term method 

The short-term method is a common approach to most of the current design guidelines for wind-resistant design 
[17], [18]. The approach defines the design buffeting response based on the extreme mean wind speed with the 
return period 𝑅𝑅𝑅𝑅 (equal to the structure’s lifetime) averaged from periods of short-term duration (𝑇𝑇𝑠𝑠𝑠𝑠). The 
buffeting response is assumed to be a stationary, Gaussian and narrow-banded process during 𝑇𝑇𝑠𝑠𝑠𝑠 , such that the 
average upcrossing of a response threshold 𝑟𝑟, 𝑉𝑉𝑅𝑅+(𝑟𝑟), can be obtained from the Rice formulation: 

𝑉𝑉𝑅𝑅+(𝑟𝑟|𝒘𝒘) =
1

2𝜋𝜋
𝜎𝜎𝑅̇𝑅
𝜎𝜎𝑅𝑅

exp �−
1
2
�
𝑟𝑟 − 𝜇𝜇𝑅𝑅
𝜎𝜎𝑅𝑅

�
2
� (40) 

where  𝜇𝜇𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑅𝑅  are the mean and standard deviation, respectively, of the buffeting response from buffeting 
theory, and 𝑥̇𝑥 denotes the time derivative of 𝑥𝑥. The statistical moments of the response and its time derivative 
process from the buffeting response are shown in Equation (24). 

Let 𝑅𝑅𝑆𝑆𝑆𝑆 be the largest value of the response during 𝑇𝑇𝑠𝑠𝑠𝑠 . Assuming that the peaks in the response are independent 
events, the number of upcrossings in the interval 𝑇𝑇𝑠𝑠𝑠𝑠  is Poisson-distributed, and the CDF of the largest peak𝐹𝐹𝑅𝑅𝑆𝑆𝑆𝑆  
is: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝑅𝑅𝑆𝑆𝑆𝑆(𝑇𝑇𝑆𝑆𝑆𝑆) ≤ 𝑟𝑟 } = 𝐹𝐹𝑅𝑅𝑆𝑆𝑆𝑆(𝑇𝑇𝑆𝑆𝑆𝑆)(𝑟𝑟|𝒘𝒘) = exp{−𝑉𝑉𝑅𝑅+(𝑟𝑟|𝒘𝒘) 𝑇𝑇𝑆𝑆𝑆𝑆} 
(41) 

Combining Equations (40) and (41): 

𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝑆𝑆𝑆𝑆)(𝑟𝑟|𝒘𝒘) = exp �− 𝑇𝑇𝑆𝑆𝑆𝑆
1

2𝜋𝜋
𝜎𝜎𝑅̇𝑅
𝜎𝜎𝑅𝑅

exp �−
1
2
�
𝑟𝑟 − 𝜇𝜇𝑅𝑅
𝜎𝜎𝑅𝑅

�
2
�� 

(42) 
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𝑅𝑅𝑝𝑝 is considered a stochastic variable of the peaks in 𝑅𝑅. A peak is defined as the maximum value of the response 
process between two consecutive zero upcrossings. The probability of 𝑅𝑅𝑝𝑝 exceeding threshold 𝑟𝑟 is equal to the 
number of peaks above r divided by the number of peaks. As the process is narrow-banded, the number of peaks 
is equal to the zero upcrossings, yielding the CDF of the peaks: 

 𝐹𝐹𝑅𝑅𝑃𝑃(𝑟𝑟|𝒘𝒘) = 1 − 𝑉𝑉𝑅𝑅
+(𝑟𝑟)

𝑉𝑉𝑅𝑅
+(0)

 
(43) 

Inserting the expression of the upcrossing rate from Equation (40) in Equation (43): 

𝐹𝐹𝑅𝑅𝑃𝑃(𝑟𝑟|𝒘𝒘) = 1 − exp �−
1
2
�
𝑟𝑟 − 𝜇𝜇𝑅𝑅
𝜎𝜎𝑅𝑅

�
2
� 

(44) 

The expected value of 𝑅𝑅𝑆𝑆𝑆𝑆 is often applied as the design buffeting response and is conveniently formulated with 
an approximate analytical solution based on the peak factor 𝜅𝜅 [78], [79]. For further details on this procedure, 
refer to [79]–[82]. 

𝐸𝐸[𝑅𝑅𝑆𝑆𝑆𝑆]  = 𝜇𝜇𝑅𝑅 + 𝜅𝜅 𝜎𝜎𝑅𝑅   and 
(45) 

𝜅𝜅 =  𝜎𝜎𝑅𝑅  �2 ln[𝑉𝑉𝑅𝑅+(0) 𝑇𝑇𝑠𝑠𝑠𝑠] �1 +
𝛾𝛾

2 ln[𝑉𝑉𝑅𝑅+(0) 𝑇𝑇𝑠𝑠𝑠𝑠] −
𝜋𝜋2
6 + 𝛾𝛾2

8(ln[𝑉𝑉𝑅𝑅+(0) 𝑇𝑇𝑠𝑠𝑠𝑠])2 + ⋯�  

 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝛾𝛾 ≈ 0.577, 𝑡𝑡ℎ𝑒𝑒 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

(46) 

5.2 Environmental contour method 

The environmental contour method is a method for drawing isoprobability lines of the environmental variables. 
Using the ECM, it is possible to outline the combination of wind variables with an equal joint probability of 
occurrence, denominated as wind states (or conditions). For each wind condition along the contour line, the 
extreme buffeting response is deterministically obtained with the short-term approach of 5.1. The design 
buffeting response according to the ECM is the maximum extreme response from the wind conditions along the 
contour. This method provides a more precise estimation of the buffeting response since the stochastic behaviour 
of the wind turbulence is considered in the analysis. However, as the uncertainty in the response is omitted, 
inflated contours based on the omission factor should be introduced in the modelling. These inflating factors 
should be calibrated empirically from estimated extreme responses; thus, they are beyond the scope of this thesis. 

Denoting the vector of wind variables with joint probability 𝑓𝑓𝑾𝑾  from the probabilistic modelling as 𝑾𝑾  and 𝑅𝑅 as 
an extreme response variable, the standard reliability problem yields: 

where 𝑝𝑝𝑒𝑒 is the exceedance probability of the extreme event 𝑅𝑅 > 𝑅𝑅𝑆𝑆𝑆𝑆. 

𝑝𝑝𝑒𝑒 = � 𝑃𝑃[𝑅𝑅 > 𝑅𝑅𝑆𝑆𝑆𝑆 | 𝑾𝑾 = 𝒘𝒘]𝑓𝑓𝑾𝑾(𝑤𝑤)𝑑𝑑𝑑𝑑
 

a𝑙𝑙𝑙𝑙 𝑾𝑾
 (47) 
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The reliability problem is usually solved with the first-order reliability method (FORM). In the method, the set of 
𝑾𝑾 variables is transformed into a set of independent standard normal variables 𝑼𝑼 [83]. Now, the response is a 
function of the new set of standard normal variables, 𝑅𝑅 = 𝑅𝑅(𝑼𝑼), and the distribution 𝑓𝑓𝑾𝑾 conveniently becomes 
the normal distribution 𝜙𝜙(𝑼𝑼). The integral of Equation (47) in the set of transformed variables can be solved for 
a given 𝑅𝑅𝑆𝑆𝑆𝑆 as the minimum distance between the origin and the limit surface. Such distance is known as the 
reliability index 𝛽𝛽. 

For reliability-based design, however, 𝑅𝑅𝑆𝑆𝑆𝑆 is the unknown, whereas 𝛽𝛽 is fixed by a design code. In such cases, an 
inverse FORM application can estimate the extreme response for a given reliability index [84]: 

𝛽𝛽 is associated with 𝑅𝑅𝑅𝑅 through the probability of exceedance: 

where Φ is the standard cumulative distribution function. 

IFORM estimates that all combinations of 𝑼𝑼 are located distance 𝛽𝛽 from the origin, resulting in a hypersphere of 
radius 𝛽𝛽. The environmental variables 𝑾𝑾 can be obtained from 𝑼𝑼 with the Rosenblatt transform [77]; the result 
is the surface enclosing all combinations of the wind variables with equal joint probability of occurrence, i.e., 
environmental contours. Subsequently, the extreme buffeting response will be the maximum short-term 
response along the design points of the contour. Figure 11 shows a graphical interpretation of the environmental 
contour for different return periods using two environmental variables. The figure on the left shows the contours 
from the 𝑼𝑼 variables, while the figure on the right shows the transformed contours in the wind variables. 

 

Figure 11: Graphical interpretation of IFORM 

 

Given 𝛽𝛽: Find 𝑅𝑅𝑆𝑆𝑆𝑆 = 𝑚𝑚𝑚𝑚𝑚𝑚|𝑅𝑅(𝑼𝑼)|; 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 |𝑼𝑼| = 𝛽𝛽 
(48) 

𝛽𝛽 = −Φ−1(𝑝𝑝𝑒𝑒) 

𝑝𝑝𝑒𝑒 = � 
𝑅𝑅𝑅𝑅 x 365.25 x24 x60

𝑇𝑇𝑠𝑠𝑠𝑠
�
−1

 

(49) 
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5.2.1 Transforming the variables 

Since the probabilistic modelling of the wind variables includes two different distributions for the mean wind 
speed and turbulence parameter, two different transformation rules were applied to transform the wind variables 
to the 𝑼𝑼 variables. The Weibull distributed mean wind speed was transformed with the Rosenblatt transform [77], 
while the correlated lognormal distributed turbulence parameters were transformed with a linear transform. In 
the following part, the transformation rules will be explained. 

The Rosenblatt transformation works by obtaining the joint CDF from the product of the marginals: 

Next, the variables are transformed by considering the conditional distributions individually. The mean wind speed 
was chosen as the first variable, as it is considered the most important variable for the buffeting response of long-
span bridges [1]. The mean wind speed was transformed first. 

When the stochastic variables are correlated and normally distributed, the linear transformation rule can be 
applied. 

where 𝐴𝐴 is a triangular matrix that can be constructed using the Cholesky decomposition of the covariance matrix 
𝐶𝐶𝑋𝑋𝑋𝑋, which is Hermitian and positive definite: 

with 

For the case in which stochastic variables are correlated and lognormally distributed, the same transformation 
rule procedure applies, and the lognormal variables can be obtained as follows: 

The full set of turbulence parameters conditional on the mean wind speed are transformed in a single operation 
using the linear transformation rule for the case of lognormal distributed variables from Equation (55). 

𝐹𝐹𝑥𝑥1𝑥𝑥2..𝑥𝑥𝑥𝑥(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ) =  𝐹𝐹𝑥𝑥1(𝑥𝑥1) 𝐹𝐹𝑥𝑥2(𝑥𝑥2|𝑥𝑥1) …𝐹𝐹𝑥𝑥𝑥𝑥(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1 … . 𝑥𝑥_1)  
(50) 

𝐹𝐹𝑉𝑉(𝑉𝑉) = Φ(𝑢𝑢1)  ↔ V = 𝐹𝐹V−1[Φ(𝑢𝑢1)]  
(51) 

𝑼𝑼 = 𝑨𝑨(𝑿𝑿 −𝑴𝑴𝑋𝑋) ↔ 𝑿𝑿 = 𝑨𝑨−1𝑼𝑼 + 𝑴𝑴𝑋𝑋 

𝑴𝑴𝑋𝑋 = [𝜇𝜇𝑥𝑥1  𝜇𝜇𝑥𝑥2 , … , 𝜇𝜇𝑥𝑥𝑛𝑛  ] 

(52) 

𝑪𝑪𝑋𝑋𝑋𝑋 =  𝑨𝑨−1 𝑨𝑨−𝑇𝑇 
(53) 

𝑪𝑪𝑋𝑋𝑋𝑋 =

⎣
⎢
⎢
⎢
⎡ 𝜎𝜎𝑥𝑥1

2 𝜌𝜌12𝜎𝜎𝑥𝑥1𝜎𝜎𝑥𝑥2 ⋯ 𝜌𝜌1𝑛𝑛𝜎𝜎𝑥𝑥1𝜎𝜎𝑥𝑥𝑛𝑛
𝜌𝜌21𝜎𝜎𝑥𝑥1𝜎𝜎𝑥𝑥2 𝜎𝜎𝑥𝑥2

2 ⋯ 𝜌𝜌2𝑛𝑛𝜎𝜎𝑥𝑥2𝜎𝜎𝑥𝑥𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝜌𝜌𝑛𝑛1𝜎𝜎𝑥𝑥1𝜎𝜎𝑥𝑥𝑛𝑛 𝜌𝜌𝑛𝑛2𝜎𝜎𝑥𝑥2𝜎𝜎𝑥𝑥𝑛𝑛 ⋯ 𝜎𝜎𝑥𝑥𝑛𝑛
2 ⎦

⎥
⎥
⎥
⎤
 

(54) 

𝑿𝑿 = exp (𝑨𝑨−1𝑼𝑼 + 𝑴𝑴𝑋𝑋) 
(55) 

𝐹𝐹𝐼𝐼𝑢𝑢,𝐼𝐼𝑣𝑣,𝐼𝐼𝑤𝑤,𝐴𝐴𝑢𝑢,𝐴𝐴𝑣𝑣,𝐴𝐴𝑤𝑤|𝑉𝑉 (𝐼𝐼𝑢𝑢 , 𝐼𝐼𝑣𝑣 , 𝐼𝐼𝑤𝑤 ,𝐴𝐴𝑢𝑢,𝐴𝐴𝑣𝑣,𝐴𝐴𝑤𝑤|𝑉𝑉) = Φ(𝑢𝑢2,𝑢𝑢3,𝑢𝑢4,𝑢𝑢5,𝑢𝑢6,𝑢𝑢7)  
(56) 
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5.3 Full long-term analysis 

The full long-term analysis generalizes the short-term method considering the fluctuations in the weather 
conditions and their effect on the buffeting response over the lifetime of the structure. Therefore, this 
methodology provides a more accurate estimation of the extreme buffeting response. The long term is composed 
of a sequence of 𝑁𝑁� short-term periods of duration 𝑇𝑇𝑠𝑠𝑠𝑠 , 𝑇𝑇𝐿𝐿𝐿𝐿 = 𝑁𝑁�𝑇𝑇𝑠𝑠𝑠𝑠, where 𝑁𝑁� is a large number. 

The analysis establishes the cumulative extreme value distribution of the long-term response: 

𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝐿𝐿𝐿𝐿)(𝑟𝑟) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃{𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝐿𝐿𝐿𝐿) ≤ 𝑟𝑟 } (57) 

where 𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝐿𝐿𝐿𝐿) is the largest value that the buffeting response can assume during the long-term period. 

If the long-term period is taken as 1 year, Equation (57) will give the extreme value distribution of yearly maxima. 
For a given return period 𝑅𝑅𝑅𝑅, the design buffeting response has a specified annual probability of exceedance 𝑝𝑝𝑒𝑒. 
The design buffeting response will be the value of 𝑟𝑟 that satisfies the following condition: 

𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝐿𝐿𝐿𝐿)(𝑟𝑟) = 1 − 𝑝𝑝𝑒𝑒 
(58) 

Alternatively, the condition could be written in terms of the long-term CDF of the short-term extreme value: 

𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝑆𝑆𝑆𝑆)(𝑟𝑟) = (1 − 𝑝𝑝𝑒𝑒)
1
𝑁𝑁� = 1 −

𝑝𝑝𝑒𝑒
𝑁𝑁�

 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝐿𝐿𝐿𝐿)
−1

 
�1 −

1
𝑅𝑅𝑅𝑅

� 

(59) 

To establish the CDF of the long-term extreme response, the literature offers different approaches. The models 
differ in the way they handle the short-term statistics. Models are divided into models based on all peak values, 
models based on all short-term extremes, and models based on the upcrossing rate response [85]–[87]. The 
methods have been proven to be equivalent [88]. 

5.3.1 Models based on short-term peak distribution 

If all response peaks are assumed to be independent, the long-term extreme value distribution can be formulated 
as: 

𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝐿𝐿𝐿𝐿)(𝑟𝑟) = 𝐹𝐹𝑅𝑅𝑃𝑃(𝑟𝑟)𝑉𝑉𝑅𝑅+(0)���������𝑇𝑇𝐿𝐿𝐿𝐿  
(60) 

where 𝐹𝐹𝑅𝑅𝑃𝑃  is the long-term distribution of peaks and 𝑉𝑉𝑅𝑅+(0)�������� is the long-term average zero upcrossing obtained 
from all the short-term wind conditions: 

𝑉𝑉𝑅𝑅
+(0)�������  = � 𝑉𝑉𝑅𝑅

+(0|𝒘𝒘) 𝑓𝑓𝑾𝑾
 

𝑾𝑾
(𝒘𝒘)𝑑𝑑𝑑𝑑 

(61) 
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Denoting the short-term peak distribution as 𝐹𝐹𝑅𝑅𝑃𝑃|𝑾𝑾(𝑟𝑟|𝒘𝒘) given the wind condition from Equation (44), the long-
term peak distribution according to the Battjes formulation [89], [90] is: 

𝐹𝐹𝑅𝑅𝑃𝑃(𝑟𝑟) =
1

𝑉𝑉𝑅𝑅+(0)�������� 
 � 𝑉𝑉𝑅𝑅+(0|𝒘𝒘) 𝐹𝐹𝑅𝑅𝑃𝑃|𝑾𝑾(𝑟𝑟|𝒘𝒘) 𝑓𝑓𝑾𝑾

 

𝑾𝑾
(𝒘𝒘)𝑑𝑑𝑑𝑑 (62) 

5.3.2 Models based on all short-term extremes 

If the short-term extreme values are assumed to be independent, the long-term extreme value distribution can 
adopt the following shape: 

𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝐿𝐿𝐿𝐿)(𝑟𝑟) = 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝑆𝑆𝑆𝑆)(𝑟𝑟)𝑁𝑁� (63) 

where 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝑆𝑆𝑆𝑆)denotes the long-term CDF of the short-term extreme value. This distribution is the ergodic 
average of the short-term response CDF given the wind condition 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝑆𝑆𝑆𝑆)(𝑟𝑟|𝑤𝑤) from Equation (42): 

𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝑆𝑆𝑆𝑆)(𝑟𝑟)  = exp �� (𝑙𝑙𝑙𝑙𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝑆𝑆𝑆𝑆)(𝑟𝑟|𝒘𝒘)) 𝑓𝑓𝑾𝑾
 

𝑾𝑾
(𝒘𝒘)𝑑𝑑𝑑𝑑� (64) 

5.3.3 Models based on the upcrossing rate 

If the upcrossing of large values of the response threshold 𝑟𝑟 are assumed to be independent, then the long-term 
extreme value distribution can be obtained as the average upcrossing rate of 𝑟𝑟 weighted by the probability of 
occurrence of the short-term wind conditions: 

𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝐿𝐿𝐿𝐿)(𝑟𝑟) = exp{−𝑉𝑉𝑅𝑅+(𝑟𝑟|𝒘𝒘) 𝑇𝑇𝐿𝐿𝐿𝐿} (65) 

𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝐿𝐿𝐿𝐿)(𝑟𝑟) =  exp �−𝑇𝑇𝐿𝐿𝐿𝐿 � 𝑉𝑉𝑅𝑅+(𝑟𝑟|𝒘𝒘) 𝑓𝑓𝑾𝑾
 

𝑾𝑾
(𝑤𝑤)𝑑𝑑𝑑𝑑 �  

The analytical solution of the full long-term methodology involves numerical integration and large computational 
effort, regardless of the model selected. Hence, the motivation in the wind engineering and structural reliability 
literature is to implement an alternative solution that can be both fast and accurate. 
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5.3.4 Long-term formulation based on ISMC 

Monte Carlo simulations evaluate the short-term responses for simulated wind states and reformulate Equation 
(65) as a statistical average that converges to the exact solution: 

𝐹𝐹𝑟𝑟𝑅𝑅𝑅𝑅(𝑇𝑇𝐿𝐿𝐿𝐿)(𝑟𝑟) = exp �−
𝑇𝑇𝐿𝐿𝐿𝐿
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

� 𝑉𝑉𝑅𝑅+(𝑟𝑟|𝒘𝒘𝑖𝑖) 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

 � 
(66) 

where 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠  is the number of simulations to be checked with the convergence criterion. 

The crude Monte Carlo method converges slowly and hence motivates the implementation of an importance 
sampling strategy [91]. The approach works by generating the wind states from the importance sampling 
distribution function  ℎ𝑾𝑾, which is chosen to generate wind states with significant contributions to the full long-
term analysis.  ℎ𝑾𝑾 is determined from engineering judgement. Equation (66) becomes: 

𝐹𝐹𝑟𝑟𝑅𝑅𝑅𝑅(𝑇𝑇𝐿𝐿𝐿𝐿)(𝑟𝑟) = exp �−
𝑇𝑇𝐿𝐿𝐿𝐿
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

� 𝑉𝑉𝑅𝑅+(𝑟𝑟|𝒘𝒘𝑖𝑖)
𝑓𝑓𝑾𝑾(𝒘𝒘𝑖𝑖)
ℎ𝑾𝑾(𝒘𝒘𝑖𝑖)

 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

 � 
(67) 

The simulation scheme was further simplified by generating the samples as independent standard normally 
distributed variables, 𝑼𝑼, which are then transformed into the wind state variables through the Rosenblatt 
transformation rule [77]: 

𝐹𝐹𝑟𝑟𝑅𝑅𝑅𝑅(𝑇𝑇𝐿𝐿𝐿𝐿)(𝑟𝑟) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑇𝑇𝐿𝐿𝐿𝐿
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

� 𝑉𝑉𝑅𝑅+(𝑟𝑟|𝒖𝒖𝑖𝑖)
𝑓𝑓𝑼𝑼(𝒖𝒖𝑖𝑖)
ℎ𝑼𝑼(𝒖𝒖𝑖𝑖)

 
𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

 � (68) 

It is common practice to use a normal distribution as an importance sampling distribution function. This practice, 
however, is not feasible in this case since it will render extremely high wind velocities, in which the buffeting 
response model applied in this thesis will yield inaccurate results. Therefore, a uniform distribution was utilized 
since this alternative is the simplest. The sampling function was chosen as an 𝑁𝑁 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, multiple uncorrelated 
uniform distribution: 

 ℎ𝑼𝑼(𝒖𝒖) = �𝒰𝒰𝑘𝑘(𝑥𝑥|𝑎𝑎𝑘𝑘 , 𝑏𝑏𝑘𝑘)
𝑁𝑁

𝑘𝑘=1

 
(69) 

where 𝑘𝑘 = {1,2, … ,𝑁𝑁} is an index of the stochastic variables and 𝒰𝒰(𝑎𝑎, 𝑏𝑏) is the uniform distribution with lower 
and upper limits a, 𝑏𝑏: 

𝒰𝒰(𝑥𝑥) = �
1

𝑏𝑏 − 𝑎𝑎
, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏] 

0 , 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒
 (70) 
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The distribution limits a, 𝑏𝑏 are chosen such that the generated wind states are within the domain where the model 
of response prediction is accurate. 

5.3.5 Long-term formulation based on ISMC and Gaussian process regression 

As shown in Equation (65), the contribution of each wind state to the long-term extreme response is the product 
of its probability of occurrence and the upcrossing rate of its short-term buffeting response: 

𝜂𝜂(𝑟𝑟,𝒘𝒘) = 𝑉𝑉𝑅𝑅+(𝑟𝑟|𝒘𝒘)𝑓𝑓𝑾𝑾(𝒘𝒘) (71) 

GPR can be trained to estimate any short-term response statistics. 𝑉𝑉�𝑅𝑅+ can be obtained from the GPR estimations 
of 𝜎𝜎�𝑅𝑅  𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎�𝑅̇𝑅. The contribution to the long-term analysis from the surrogate model estimation is: 

𝜂̂𝜂(𝑟𝑟,𝒘𝒘) = 𝑉𝑉�𝑅𝑅+(𝑟𝑟|𝒘𝒘)𝑓𝑓𝑾𝑾(𝒘𝒘) (72) 

𝜂̂𝜂 is then normalized with its maximum value: 

𝜂̂𝜂(𝑟𝑟 = 𝑅𝑅𝑠𝑠𝑠𝑠 ,𝒘𝒘) =
𝑉𝑉�𝑅𝑅+(𝑟𝑟 = 𝑅𝑅𝑠𝑠𝑠𝑠|𝒘𝒘)𝑓𝑓𝑾𝑾(𝒘𝒘)

max�𝑉𝑉�𝑅𝑅+(𝑟𝑟 = 𝑅𝑅𝑠𝑠𝑠𝑠|𝒘𝒘)𝑓𝑓𝑾𝑾(𝒘𝒘)�
 

 

(73) 

The set 𝒘𝒘𝑑𝑑  of wind states with relevant contributions to the extreme wind response can be obtained for a given 
level of normalized contribution 𝜁𝜁 as: 

 𝒘𝒘𝑑𝑑 ∈ 𝑾𝑾 {𝜂̂𝜂 ≥ 𝜁𝜁} (74) 

Next, the limits of the sampling function of the ISMC framework are chosen such that all the generated samples 
belong to the set 𝒘𝒘𝑑𝑑.  

The estimations from GPR are probability distributions with a direct measure of the estimation’s uncertainty. The 
uncertainty in the estimation can be employed as a Bayesian updating approach. The surrogate model can decide 
to perform a new multimodal buffeting response estimation at the wind state with higher estimation uncertainty. 
The model will be sequentially updated until a convergence of the extreme response is achieved. The Bayesian 
updating approach can be generalized with the concept of the learning function Ω. A learning function will 
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consider not only the GPR estimation’s uncertainty but also the contribution of any candidate wind state to the 
analysis. For the case study, the learning function was adopted as the weighted product between the normalized 
contribution to the buffeting response 𝜂̂𝜂 and the norm of 𝜮𝜮, which is a vector that contains the standard deviation 
of 𝜎𝜎�𝑅𝑅  𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎�𝑅̇𝑅 for each wind state, as shown in [92]. Next, the learning function for the 𝑖𝑖 − 𝑡𝑡ℎ GPR model is: 

Ω𝐺𝐺𝑃𝑃𝑖𝑖(𝒘𝒘) =  𝜂̂𝜂𝐺𝐺𝑃𝑃𝑖𝑖(𝑟𝑟 = 𝑅𝑅𝑠𝑠𝑠𝑠 ,𝒘𝒘)1−𝑠𝑠  �𝜮𝜮𝐺𝐺𝑃𝑃𝑖𝑖(𝒘𝒘)�𝑠𝑠/2
 (75) 

where 𝐺𝐺𝑃𝑃𝑖𝑖=1  =  𝒩𝒩�𝑀𝑀(𝒘𝒘𝑡𝑡),𝐾𝐾(𝒘𝒘𝑡𝑡 ,𝒘𝒘𝑡𝑡
′ )� is the initial model and 0 ≤ 𝑠𝑠 ≤ 1 is the weighting parameter. As 𝑠𝑠 tends 

to 0, more weight is given to the normalized contribution, 𝑠𝑠 tends to 1, and more weight is given to the norm of 
the standard deviation. 

The Bayesian updating is restricted to the wind states within 𝒘𝒘𝑑𝑑  with relevant contributions to the analysis: 

𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = arg max� Ω𝐺𝐺𝑃𝑃𝑖𝑖(𝒘𝒘𝒅𝒅|𝐺𝐺𝑃𝑃𝑖𝑖)� (76) 

The buffeting response with the multimodal approach will be computed for 𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , and the surrogate model will 
be updated with the new observation: 

𝐺𝐺𝑃𝑃𝑖𝑖+1 =  𝒩𝒩(𝑀𝑀([𝒘𝒘𝑡𝑡;  𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]),𝐾𝐾([𝒘𝒘𝑡𝑡;  𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛], [𝒘𝒘𝑡𝑡;  𝒘𝒘𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]′))  (77) 

 

The extreme buffeting response 𝑅𝑅𝑅𝑅𝑅𝑅(𝐺𝐺𝑃𝑃𝑖𝑖) from the GPR model will be obtained and compared with the previous 
estimation 𝑅𝑅𝑅𝑅𝑅𝑅(𝐺𝐺𝑃𝑃𝑖𝑖−1). The percent difference between the updated model estimation and the previous model 
estimation will be obtained as: 

Δ𝑖𝑖 =
|𝑅𝑅𝑅𝑅𝑅𝑅(𝐺𝐺𝑃𝑃𝑖𝑖) −  𝑅𝑅𝑅𝑅𝑅𝑅(𝐺𝐺𝑃𝑃𝑖𝑖−1)| 

𝑅𝑅𝑅𝑅𝑅𝑅(𝐺𝐺𝑃𝑃𝑖𝑖−1)
 (78) 

The sequential updating procedure can be repeated until Δ is below a given tolerance level 𝑡𝑡𝑡𝑡𝑡𝑡 for 𝑛𝑛-consecutive 
updates. 
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6 Summary of the appended papers 
6.1 Declaration of Authorship 

In paper 1, all coauthors contributed to the planning of the paper. Dario Fernandez Castellon wrote the 
manuscript, while Aksel Fenerci and Ole Andre Øiseth provided feedback and contributed to improvements in the 
manuscript. Dario Fernande Castellon carried out all the calculations included in the paper and developed all the 
code for the machine learning algorithms. Professor Ole Andre Øiseth provided the code for the buffeting 
response with the multimodal approach. 

In paper 2, all coauthors contributed to the planning of the paper. Dario Fernandez Castellon processed the data 
from the Sulafjord Bridge site. He also implemented all necessary code and performed all numerical calculations. 
Aksel Fenerci and Ole Andre Øiseth contributed to discussions of the obtained results and suggestions for 
improvements. Dario Fernandez Castellon wrote the manuscript, while Aksel Fenerci and Ole Andre Øiseth 
provided feedback and contributed to improving the manuscript. 

In papers 3 and 4, Dario Fernandez Castellon planned the work with contributions from Aksel Fenerci, Ole Andre 
Øiseth and Øyvind Wiig Petersen. Ole Andre Øiseth provided a buffeting response code using the multimodal 
approach. Øyvind Wiig Petersen made the finite element model of the bridge. Dario Fernandez Castellon 
developed the code for the long-term analysis and wrote the manuscript. All coauthors contributed to improving 
the manuscript. 

6.2 Paper 1 

A comparative study of wind-induced dynamic response models of long-span bridges using artificial neural 
networks, support vector regression and buffeting theory 

This paper tested the accuracy of machine learning surrogate models for buffeting response estimations. Two 
different models were developed based on the multilayered perceptron and support vector regression. The paper 
discussed different strategies to format the data and properly train the surrogate models. The model estimations 
were compared with analytical models and full-scale measurements. The results showed remarkable accuracy for 
the analytical model-based multimodal approach. Regarding the full-scale measurements, data from the 
Hardanger Bridge were utilized. The models’ estimation showed large scatter as the observed data. The 
estimations had good accuracy on the same order of magnitude as the other analytical models; however, the 
surrogate model strategy consumed only a fraction of the execution time. 

6.3 Paper 2 

Environmental contours for wind-resistant bridge design in complex terrain. 

This paper provides the wind field characterization of the Sulafjord site in a probabilistic way. The study applies 
the environmental contours method to draw curves of the isoprobability of the different wind variables. The paper 
showed the probable wind conditions that can be expected at the Sulafjord site for different return periods in 
contrast to the traditional approach, which shows only single values of mean wind speed and turbulence 
parameters from deterministic relationships. In this way, using the same date typically available for the design of 
long-span bridges, we showed a more complete yet intuitive representation of the wind field at Sulafjord. 
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6.4 Paper 3 

Investigations of the long-term extreme buffeting response of long-span bridges using importance sampling 
Monte Carlo simulations. 

Owing to the probabilistic wind characterization of the Sulafjord site, it was possible to expand the traditional 
deterministic response estimation method to a more reliable full long-term analysis. This paper reports the 
investigations of three significant internal forces of the Sulafjord bridge model due to wind loading. In this paper, 
different extreme response estimation methods were employed and compared. Since the main disadvantage of 
the full long-term analysis is its high computational demand, in this paper, we also propose a framework based 
on importance sampling Monte Carlo simulations that is designed to alleviate the long-term analysis procedure. 
The results showed that the extreme responses from the full long-term analysis were 25% larger than the 
responses from the short-term method employed in most of the current wind resistance design guidelines. 

6.5 Paper 4 

Full long-term buffeting analysis of suspension bridges using Gaussian process surrogate modelling and 
importance sampling Monte Carlo simulations. 

After declaring the importance of full long-term analysis, a major challenge arose: making long-term analysis 
feasible for the wind-resistant design of long-span bridges. Although the importance sampling framework of paper 
3 alleviated the long-term analysis procedure, most of the computational demand is still on the time-consuming 
evaluations of the buffeting response. The experience with surrogate modelling (paper 1) showed the potential 
of this alternative for buffeting response estimations since remarkably fast and accurate response estimations 
were obtained for several wind states. Nevertheless, optimizing the training procedure was a key factor 
discovered in that initial study. Therefore, in paper 4, we proposed an efficient and reliable framework for full 
long-term analysis that combines the strategies of paper 1 and paper 3. A machine learning surrogate model 
(Gaussian process regression) was implemented to estimate the short-term buffeting responses, and the full long-
term analysis was performed with importance sampling Monte Carlo simulations. The framework showed 
significant accuracy up to 99.6% compared with the traditional full long-term analysis, which uses less than 1% of 
computational demand. 
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7 Conclusions 

The papers enclosed in this thesis propose a framework for full long-term analysis that is efficient and reliable for 
the wind-resistant design of long-span bridges. The framework was successfully employed to estimate the 
extreme buffeting response of the Sulafjord Bridge, and the following conclusions were drawn: 

• Environmental contours are a more efficient strategy for characterising the wind field in long-span bridge 
projects located in complex terrain than the traditional practice of reporting extreme wind speeds and 
the corresponding turbulence parameters. The environmental contours provide a more complete yet 
intuitive description of the wind field at the bridge site than the current design methodology. The 
contours presented in this thesis reasonably captured the variability in the wind variables compared with 
the site measurements. 
 

• Including the stochastic behaviour of the wind turbulence in the analysis provided an increased degree 
of reliability. The extreme response from the environmental contour method was on average 14% higher 
than that of the common practice based on the short-term method. 
 

• Surrogate models proved to be an accurate alternative to reducing the computational effort of the time-
consuming evaluations of the buffeting response (multimodal approach). The complement of the mean 
absolute percent error (MAPE) exceeded 98% for the multilayer perceptron model and the supporting 
vector regression model compared with the analytical buffeting responses of the Hardanger Bridge. The 
Gaussian process regression model of the Sulafjord Bridge showed a good estimation accuracy as well, 
with the additional feature of optimizing the number of simulations required for training. 
 

• The extreme response from the full long-term analysis was higher than the response from the short-
term method. The difference between the two approaches was on average above 25% for the analysed 
responses. This finding shows that using the full long-term analysis for long-span bridge design enhances 
safety as wind loading effects increase. 

• An efficient full long-term analysis framework for estimating the design buffeting response of long-span 
bridges was successfully developed. The framework combined two major strategies: Gaussian process 
regression to increase the computational efficiency of short-term response estimations and importance 
sampling Monte Carlo to reduce the time of the full long-term analysis. The results show that the 
proposed framework required less than 1% of the computational effort required by the traditional full 
long-term analysis based on numerical integration. 

8 Future research 

Extend the modelling to other long-span bridge locations to determine if the findings of this thesis are 
features of the Sulafjord site or if major trends exist that are worth publishing. 

• Generalize the concept of the importance sampling distribution function defined by engineering 
criterion. It should be possible to make an automated criterion for the sampling function that is not based 
on project-specific observations. 

• Expand the framework of the full long-term analysis with other reliability methods, such as subset 
simulations and Markov chains. 

• Explore enhanced surrogate model strategies, such as ensembles of neural networks that can also 
estimate responses as probability distributions. 

• Propose alternative analysis in the time domain to properly account for nonlinearities in the modelling, 
as these could govern the design if the sensitivity of the deck to the angle of attack starts to have a major 
role in the analysis. 

• Calculate the empirical inflating factors for the environmental contours and propose a dimensioning 
criterion of these coefficients that can be utilized in other projects and integrated into design guidelines. 
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Long-span cable-supported bridges are structures susceptible to high dynamic responses due to the buffeting
phenomenon. The current state-of-the-art method for buffeting response estimation is the buffeting theory.
However, previous research has shown discrepancies between buffeting theory estimates and full-scale measured
response, revealing a weakness in the theoretical models. In cases where wind and structural health monitoring
data are available, machine learning algorithms may enhance the buffeting response estimation speed with less
computational effort by bypassing the analytical model’s assumptions. In this paper, multilayer perceptron and
support vector regression models were trained with synthetic and full-scale measured data from the Hardanger
Bridge. The analytical response was also computed from buffeting theory applied to a finite element model of the
bridge, and the estimates are compared. The prediction accuracy was evaluated with the normalized root mean
square error, the mean absolute percent error and the coefficient of determination (R2). The machine learning
models trained with synthetic datasets achieved very high accuracy with normalized root mean square errors
ranging from 1.46E-04 to 7.21E-03 and are therefore suitable for efficient surrogate modeling. Further, the
support vector regression model trained with the full-scale measured dataset achieved the best accuracy compared
with the other methods.

Øiseth, 2017). Such discrepancies expose the weakness of analytical
modeling of the complex phenomenon, presumably due to several as-
1. Introduction
sumptions inherent to buffeting theory.

In cases where monitoring data are present, an alternative solution
pted

ess a
The current state-of-the-art method for buffeting response prediction
of long-span bridges is to use buffeting theory, which was first introduced
by (Davenport A., 1962). Since Davenport’s early works, the theory has
been further developed by many researchers. Current advanced models
are based on finite element formulations, which can account for unsteady
self-excited forces (Scanlan and Tomko, 1971) (Davenport A., 1962)
(Jain et al., 1996), nonlinearities (Diana et al., 2008) (Diana et al., 2005)
(Chen and Kareem, 2003), skew winds (Zhu and Xu, 2005) and
non-stationary winds (Hu, Xu, & Huang, Typhoon-induced non-sta-
tionary buffeting response of long-span bridges in complex terrain, 2013)
(Hu et al., 2017). However, owing to the recent emergence of a large
number of structural health monitoring (SHM) projects on prominent
suspension bridges around the world, researchers have reported dis-
crepancies in dynamic responses between their analytical predictions
based on buffeting theory and the SHM data (Bietry et al., 1995) (Mac-
donald, 2003) (Xu and Zhu, 2005) (Cheynet et al., 2016) (Fenerci and
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may be found in using data-driven models based on machine learning.
Machine learning is the scientific discipline of developing algorithms that
can learn from data, which allows prediction based on existing trends
within datasets. Therefore, such algorithms offer an approximation of a
process by bypassing the complexity of its physics (Bishop C. M., 2006)
(Alpaydin, 2020). The potential of machine learning algorithms in civil
engineering applications has been recognized by many researchers, and
their use is becoming increasingly common as more user-friendly soft-
ware is becoming available. For instance, machine learning algorithms
can be trained to replace the analytical load-response relationships by
means of surrogate models. Such a strategy saves significant computa-
tional effort when many simulations are needed. Recently, such suc-
cessful efforts have also been presented in the wind engineering
community, (Fang et al., 2020) compared the capabilities of three ma-
chine learning surrogate models trained with a simulated dataset of
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non-stationary wave and wind loads of a cable-stayed bridge to improve
the efficiency of the response estimation. (Bernardini et al., 2015) pro-
posed an alternative to wind tunnel testing based on surrogate models for
computational fluid dynamics (CFD)-based aerodynamic shape optimi-
zation of bidimensional profiles using an evolutionary algorithm to up-
date ordinary kriging surrogates. Furthermore (Wu and Kareem, 2011),

fragilities of vertical structures subjected to tornadic wind loads. Surro-
gate models of flutter derivatives with ANN models trained with wind
tunnel test data have been reported by (Chen et al., 2008) and (Rizzo and
Caracoglia, 2020), while (Cid Montoya et al., 2018) developed a kriging
surrogate model from CFD-based aeroelastic characterization of a bridge
cross section and validated it with wind tunnel test measurements. (Nieto

Nomenclature

Y Machine learning output dataset
X Machine learning Input dataset
ykj Output of a generic node

xki Input of a generic node
ϑkj Bias of a generic node
ε SVR tolerance margin
C Box constraint
αi;α*i Lagrange multipliers
wk
i;j Weight of a generic connection between two nodes

ξi; ξ
*
i Slack variables

r Displacement vector in Cartesian coordinates
Φ;ϕn Vibration modes
η Generalized coordinates
M; C; K Mass, damping and stiffness matrices, respectively
Qn Wind load vector
E1E2E3 Unit vector of the global coordinates
e1e2e3 Unit vector of the local beam element
ev1ev2ev3 Unit vector of the wind element coordinates
TG2Le Transformation from global to local beam element
TG2Lw Transformation from global to local wind element
TLw2Le Transformation from a local wind element to a local beam

element
TE2S Assembly matrix from local DOF to global DOF
q Element wind load vector
Bq Buffeting load coefficient matrix
VLw Local wind velocity vector
D; B Height and width of the girder
CD CL CM Force coefficients
R Autocorrelation function
S Auto or cross-spectral density matrix
Coh Square root of the coherence function
ρ Air density
An Spectral quantities
z Height above the ground
H Frequency response matrix
σy σz σθ RMS of the structural response
χ;Δχ Span-wise coordinate
V Mean wind speed
In Turbulence intensity
Kn Decay coefficient
α Vertical angle of attack
αr;βr Rayleigh coefficients
ω; f Circular and ordinary frequency

Subscripts
ae Aerodynamic
Buff Buffeting
Le Local beam element
Se Self-excited
Tot Total
0 Still-air
u; w Wind direction
r response
k Generic layer
i; j Generic neuron or data sample index
y;z;θ Horizontal, vertical and torsional responses

Superscriptsc■ Model estimation
■ Constant value, mean or specific for the case
~■ Modal property
_■ Derivative with respect to time
■

0
Derivative

■* Complex conjugate
■�1 Matrix inverse
■T Matrix transpose

Functions
gð■Þ Activation function
f ð■Þ governing function
Lð■Þ Loss or cost function
Kð■Þ Kernel function
Nð■Þ Shape function

Abbreviations
SVR Supporting vector regression
ANN Artificial neural network
MLP Multilayer perceptron
WIV Wind induced vibration
R2 Coefficient of determination
MAPE Mean average percentual error
RMS Root mean square
RMSE Root mean square error
NRMSE Normalized Root mean squared error
BFT Buffeting theory
CFD Computational fluid dynamics
KKT Karush–Kun–Tucker conditions
CLHS Correlated latin hypercube sampling
SD Standard Deviation
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showed how machine learning can be used to simulate complex non-
linearities in aerodynamic behavior by developing an approach to model
aerodynamic nonlinearities in the time domain utilizing an artificial
neural network (ANN) framework with embedded cellular automata
(CA) applied to the hysteretic nonlinear behavior of aerodynamic sys-
tems, (Wang and Wu, 2020) proposed a knowledge-enhanced deep
learning (KEDL) algorithm to simulate wind-induced linear/nonlinear
structural dynamic responses in simulated dynamic systems. (Le and
Caracoglia, 2020) used simulated datasets of a tornado-like wind field to
develop an ANN-based surrogate model to approximate the structural
et al., 2020) extended the CFD-based kriging surrogate modeling
approach proposed by (Cid Montoya et al., 2018) to assess the flutter
response of bridges with twin-deck cross-sections. Additionally, the po-
tential of machine learning to enhance automated response prediction
tools from SHM systems is promising. Full-scale measurements of wind
responses in bridges have recently been used for training machine
learning algorithms, (Li et al., 2018) estimated vortex-induced vibrations
on full-scale measured data of a cable-stayed bridge with machine
learning, while (Wang et al., 2020) trained an ensemble model
comprising a random forest (RF), long-short term memory (LSTM), and



Gaussian process regression (GPR) with measured wind data from the
cable-stayed Sutong Yangtze River Bridge in China to forecast wind gusts
affecting traffic operations. However, neither of these directly addressed

An ANN is an algorithm that mimics the functioning of biological
brains by assembling layered neurons connected to each other. A neuron

Fig. 1. Architecture of an ANN

Fig. 2. Schematic representation of SVR with slack variables.
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the effect of buffeting responses. Therefore, many uncertainties must be
explored as there are no relevant studies based on full-scale measure-
ments for buffeting response estimation in long-span bridges. The
deployment and operativity of machine learning algorithms in this field
are among the primary challenges to assess. Nonetheless, the effective-
ness of machine learning tools shall be explored in terms of which type of
algorithm yields better estimates and whether it can provide any
improvement with respect to the existing analytical models.

Therefore, this study intends to provide further insight toward un-
derstanding the buffeting phenomena of long-span bridges by imple-
menting machine learning algorithms trained with full-scale monitoring
data. To address this aim, long-term wind and acceleration monitoring
data from the Hardanger Bridge in Norway are used. Two different ma-
chine learning techniques, namely, support vector regression (SVR) and
multilayer perceptron (MLP) models, are used to model the wind-
response relationship. First, the models are trained using analytical
predictions to test their capabilities. The remarkable accuracy of these
models in predicting the analytical response suggests surrogate modeling
based on machine learning is certainly a viable option in cases where
many simulations are needed. Owing to the confidence gained from
synthetic data, the models are then trained using full-scale monitoring
data. The results show that reasonably accurate predictions of the dy-
namic response can be reached by using only wind characteristics data.
Finally, the predictions based on machine learning algorithms are
compared to the analytical results based on buffeting theory.

2. Machine learning methods for buffeting response prediction

2.1. Modeling the wind-response relationship

The buffeting responses of long-span suspension bridges can be pre-
dicted analytically using buffeting theory. In the frequency domain, the
wind field is modeled by a cross-spectral density matrix defined by the
time-averaged wind speed and several turbulence-related parameters.
Then, by means of buffeting theory, the root mean square (RMS) of the
dynamic response components are obtained.

Here, an alternative data-driven approach using machine learning
algorithms will be used to estimate the dynamic response of a long-span
suspension bridge. The objective of machine learning is to find patterns
within a dataset to then make predictions based on the discovered pat-
terns. Applied to buffeting response estimation, machine learning can
approximate the unknown function, f ðXÞ, between the wind parameters
of the cross-spectral density function and the RMS of the bridge’s dy-
namic responses, defined as the input tensor (X) and the target tensor
(Y), respectively. Machine learning algorithms fit f ðXÞ over a large
amount of data samples in the three different stages of the so-called
learning procedure: training, validation, and testing. Hence, the dataset
is divided into training, validation, and testing sets. The training dataset
comprises the samples used for fitting the model parameters (Ripley,
1996). The validation dataset comprises samples that are used to eval-
uate the performance of the fitted trained model (James et al., 2013) and
subsequently adjust the model hyperparameters (Ripley, 1996). Finally,
the test dataset comprises the samples that follows the same probabilistic
distribution of the training dataset but has not been fed into the model,
therefore evaluating the generalization ability of the model (Ripley,
1996).

Equation (1) shows the machine learning process for the wind-
response relationship.

Given Xi and Yi Find f ðXÞ ∴ Y ffi f ðXÞ bY j ¼ f
�
Xj

�
(1)

The indexes i and j represent the training and testing datasets,
respectively.

Two different machine learning models were implemented. The first
model is an ANN called an MLP, which was use because of its simplicity
and common use in the literature. The second was SVR, which was used
because of its remarkable generalization ability and performance (Awad
and Khanna, 2015). Further details will be given in this section.

2.2. Artificial neural networks (ANN) – multilayer perceptron (MLP)
model
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(also known as a unit or node) is an operational entity that stores and
distributes information (Rosenblatt, 1958). The neurons are organized in
sets called layers, and the neurons within one layer are connected to
those in the subsequent layer. The layer connections transmit informa-
tion within the neurons and, mathematically, are the arrays governing
the transformation relationships. The value of a neuron in an arbitrary
layer is the scalar product between its transformation array and the
output of the neurons in the previous layer; then, the neuron is activated
whenever its value surpasses a certain threshold (Rosenblatt, 1958). The
type of neural network used in this study is the so-called MLP (Rose-
nblatt, 1961), which is schematically shown in Fig. 1.

In Equation (2), ykj is the output of the j -th node in the k -th arbitrary

layer of an MLP and is related to an activation bias ϑkj and connection

weights wk�1
i;j , where xk�1

i is the value of the i-th node of the previous
layer. Then, a nonlinear activation function, gðxÞ, is applied to the result



(Bishop C. M., 1994). The subsequent operations in matrix notation are
presented in Equation (3). The feedforward mapping process (Equation

Fig. 3. Local coordinate system of the beam element: (a) DOF of the beam element. (b) Wind actions on the beam element.

TG2Le ¼

2664 eT1
eT2
eT3

3775 (15)

TG2Lw ¼

2664 evT1
evT2
evT3

3775 (16)

TLw2Le ¼TG2LeTT
G2Lw (17)

Table 1
Range and intervals for the uniform grid simulated training dataset.

Wind Feature Minimum Maximum Number of Intervals

V 4 35 10
σu 0.2 5.2 10
σw 0.1 2 10
Ku 2.5 15 5
Kw 1.5 25 5

Table 2
Synthetic datasets features summary.

Dataset Simulation strategy Distribution Size

Training uniform Uniform grid Uniform 25,000
Training CLHS CLHS Observed 3500
Testing CLHS CLHS observed 500

Fig. 4. Cross section of th
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(4)) is then obtained by assembling the abovementioned operations until
the model’s final M layer is reached and by computing the model esti-
mation of the output bY , where f ðXÞ is the process-governing function.

ykj ¼ g
� XN

i¼1;j¼j

wk�1
i;j xk�1

i þϑk
j

�
(2)

Yk ¼ g
n�

Wk�1
i

�T* Xk�1 þ θk
o

(3)

bY ¼ f
n�

WM�1
i

�T
…g

n�
W1

i

�T
X1

o
þ θM

o
(4)

The actual output of the process or target is known in the training
stage. Thus, the ANN performance is obtained by comparing the target
with the model estimation with a “loss” function Lðbyj;yjÞ.
e Hardanger bridge.



The mathematical objective of the learning process is to minimize the
loss function. This minimization is achieved by sending the estimation
error of Equation (4) through all the previous layers within the network;

Table 3
Natural frequencies of the still-air mode.

Mode Frequency
Hz

Circular
Frequency

Damping
Ratio

Characteristic

1 0.050 0.315 0.32% Symmetric lateral vibration
of the deck

2 0.098 0.616 0.41% Asymmetric lateral
vibration of the deck

3 0.110 0.694 0.45% Asymmetric vertical
vibration of the deck

4 0.141 0.884 0.54% Symmetric vertical
vibration of the deck

5 0.169 1.062 0.63% Symmetric lateral vibration
of the deck

6 0.197 1.239 0.72% Symmetric vertical
vibration of the deck

7 0.211 1.326 0.76% Asymmetric vertical
vibration of the deck

8 0.225 1.414 0.81% Symmetric lateral vibration
of the cables

9 0.233 1.461 0.84% Asymmetric lateral
vibration of the cables

10 0.234 1.468 0.84% Asymmetric lateral
vibration of the deck and
the cables

11 0.244 1.533 0.87% Symmetric lateral vibration
of the deck and the cables

12 0.272 1.709 0.97% Symmetric vertical
vibration of the deck

13 0.293 1.841 1.04% Asymmetric lateral
vibration of the deck

14 0.33 2.073 1.16% Asymmetric vertical
vibration of the deck

15 0.36 2.262 1.27% Symmetric torsional
vibration of the deck

Table 4
Load coefficients from wind tunnel testing

Load Coefficients CD C
0
D CL C

0
L CM C

0
M

Value 1.05 0.00 �0.363 2.2 �0.017 0.786

D.F. Castellon et al.
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this operation results in an iterative optimization procedure known as
backpropagation (Rumelhart et al., 1986). It is worth noting that the
backpropagation procedure refers to only the error feeding step and is
independent of the optimization algorithm used.

The original input signals are fixed to the dataset; therefore, the only
parameters to be updated in each iteration are the network weights and
biases. Thus, the optimization problem can be written as Equation (5).

find
�
Wk2f1 :M�1g & θk2f1:Mg�∴L�byj; yj�¼minðLÞ (5)

2.3. Supporting vector regression (SVR) model

SVR is the application of the support vector approximation to a
regression problem using an ε-insensitive loss function (Vapnik, 1995).
The objective of the tool is to find a function f ðxÞ that, from a given
dataset of input and output features fxi;yij…jxn;yng, approximates yi with
a certain tolerance ε. The regression estimation can be obtained with the
linear function shown in Equation (6).

f ðxÞ¼ x
0
wþ ϑ (6)

Introducing the ε-insensitive loss function L equal to zero when the
difference between the estimation f ðxÞ and the target is less than ε, a
constraint shown in Equation (7) is added to the problem.
Lðy� f ðx;wÞÞ¼
�
0 if jy� f ðx;wÞj � ε
jy� f ðx;wÞj otherwise

(7)

To make the solution more feasible, the tolerance margin is softened
by adding a set of slack variables ξi and ξ*i , as shown in Fig. 2.

The optimization problem becomes Equation (8), where C is the so-
called box constraint, which is a positive-valued parameter that im-
poses a penalty on the estimations outside the ε-margin and thus helps to
balance the accuracy of the model.

minimize
1
2
w2 þ C

XN
i¼1

ξi þ ξ*i

with constraints :

8>>>>>><>>>>>>:

yi � f ðx;wÞ � εþ ξi

f ðx;wÞ � yi � εþ ξ*i

ξi; ξ
*
i � 0

(8)

Solving this optimization problem with inequality constraints is
equivalent to finding the saddle point in the Lagrange function. By
introducing αn and α*

n as Lagrange multipliers, the weights (w parame-
ters) can be found by Equation (9), and the model estimation is computed
by expanding the so-called support vectors in Equation (10).

w¼
XN
i¼1

�
αi � α*

i

�
xi (9)

f ðxÞ¼
XN
i¼1

�
αi �α*

i

�ðxi 0xÞ þ ϑ (10)

The parameters ϑ can be obtained by exploiting the Kar-
ush–Kun–Tucker (KKT) conditions (William, 1939) (Kuhn and Tuker,
1951), which state that at the optimal solution, the product between the
dual variables and constraints vanishes. Then the constraints of Equation
(11) are added to the optimization problem.

αi

�
εþ ξi � yi þ xTi wþ ϑ

� ¼ 0

α*
i

�
εþ ξ*i þ yi � xTi w� ϑ

� ¼ 0

ξiðC� αiÞ ¼ 0

ξ*i
�
C� α*

i

� ¼ 0

(11)

To extend the formulation to nonlinear regression problems, the dot
product ðx0

i xÞ must be replaced with a nonlinear mapping function,
known as the kernel function Kðx0

i xÞ.

f ðxÞ¼
XN
i¼1

�
αi �α*

i

�
Kðxi 0xÞ þ ϑ (12)

3. Training data

3.1. Synthetic data: analytical predictions

Before extending the model to full-scale measurements, it was tested
on an ideal case of simulated datasets. The datasets were obtained by
simulating random wind fields and calculating the corresponding RMS
dynamic response of the bridge using multimode buffeting theory in the
frequency domain.

3.1.1. Multimode buffeting theory in the frequency domain
The buffeting response of the bridge was computed in the frequency

domain following classical multimode theory (Chen et al., 2000) (Jain
et al., 1996) (Katsuchi et al., 1998). The theory requires the following
assumptions: The bridge is idealized as a line-like structure, the wind
field is approximated as homogenous and stationary, and the wind action

Journal of Wind Engineering & Industrial Aerodynamics 209 (2021) 104484



Fig. 5. Dimensionless aerodynamic derivatives related to aeroelastic stiffness as function of reduced frequency. Points are experimental data, continuous line
fitted function.

Fig. 6. Dimensionless aerodynamic derivatives related to aeroelastic damping as function of reduced frequency. Points are experimental data, continuous line
fitted function.
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and displacements are referred to as the shear center of the bridge girder
and can be separated into a time-invariant mean and a randomly fluc-
tuating part. For surrogate model trained with the synthetic datasets, the
aeroelastic forces were computed with the quasi-steady theory. In
contrast, aerodynamic derivatives were included in the formulation for
the case of comparison with full-scaled measurements. In both cases the

et al., 2017).
Multimodal theory represents the structural quantities using the

mode shapes as generalized coordinates. Then, the structural displace-
ments due to buffeting, r, in a Cartesian coordinate system are repre-
sented by the sum of the products of the selected natural mode shapes,Φ,
and the respective generalized coordinatesη, as in Equation (13).

Fig. 7. Uniform grid training dataset (simulated data).

… η
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experimental data came from the wind tunnel test reported by (Siedziako

rðχ ; tÞ¼ Φðχ ÞηðtÞ Φðχ Þ¼ ½ ϕ1… ϕi… ϕN �T rðχ ; tÞ¼ 	
ry rz rθ


T
ηðtÞ¼ ½ η1… ηi
7

N �T ϕi ¼ :
	
ϕy ϕz ϕθ


T (13)



Then, the system’s generalized equation of motion is as shown in
Equation (14).

~M0 €ηðtÞ þ
�
~C0

�
_ηðtÞ þ

�
~K0

�
ηðtÞ ¼ ~QTotðtÞ (14)

beam finite element discretization approach is proposed to apply the
wind forces in Equation (14). Furthermore, the beam element forces can
be transformed into generalized coordinates using the multimodal
approach.

A generic structure can be discretized with beam finite elements with

Fig. 8. Random CLHS training dataset (simulated data).
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QTotðtÞ ¼ Qbuff ðtÞ þ QseðtÞ

Here, ~M0; ~C0 and ~K0 represent the structural still-air generalized
mass, damping and stiffness matrices, respectively, which are diagonal
matrices. These structural matrices are obtained from a finite element
model of the Hardanger Bridge. Finally, the term ~QTot stands for the total
generalized wind load including the buffeting and the self-excited forces.

3.1.2. Buffeting force using finite element discretization
Multimodal theory assumes that the structures are line-like. However,

suspension bridges have complex shapes; therefore, here, the use of a
12 degrees of freedom, as shown in Fig. 3 (a). Then, the wind action over
a generic beam element is shown in Fig. 3 (b). The three coordinate
systems shown in Fig. 3 are the global coordinate system defined by its
unit vector fE1;E2;E3g, the beam element local coordinate system with
unit vector fe1; e2; e3g and the wind field systemwith unit vector fev1;ev2;
ev3g. The transformation scheme from the global coordinate system to
the local coordinate system of the beam element is shown in Equation
(15) and to the wind field local coordinate system is shown in Equation
(16). Hence, Equation (17) shows the transformation from the wind
system to the local coordinate system of the beam element.

The vector of nodal buffeting forces is obtained from the principle of
virtual work using the shape functions NðχÞ and denoting the wind forces



in the beam element by qbuff ðχ; tÞ (Equation (18)).

QLe buff ðtÞ¼
Z L

0
Nðχ Þqbuff ðχ ; tÞdχ qbuff ðχ; tÞ¼BqðχÞTLw2Le VLwðχ; tÞ (18)

VLw ¼ ½ v1 v2 v3 �T is the vector containing the wind turbulence
component in the wind coordinate system, and thus, it shall be trans-
formed into the local coordinate system of the beam. Furthermore, ma-
trix Bqcan be obtained from Equation (19).

Fig. 9. Testing dataset (simulated data).

Fig. 10. Hardanger Bridge sensor layout.
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Fig. 11. Histogram of the incoming wind directions from the A6 midspan
anemometer of the Hardanger Bridge.
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BqðωÞ ¼ 1
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��
D
B

�
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0
L

�
0 2BCM BC

0
M

77777775
(19)

where ρ the density of the air, ω the circular frequency, D and B the
effective depth andwidth of the girder cross section, respectively. V is the
mean wind speed. CD;CL & CM are the drag, lift and moment coefficients
at the linearization position from the wind tunnel test and C’D;C’L;C’Mare
their respective derivates with respect to the angle of attack, these co-
efficients are given in Table 4 from experimental data and the quantity D

B
is introduced as a normalization term.

To assemble the complete vector of nodal buffeting forces, the
contribution of all the beam element local forces are transformed into the
global coordinate system and summed (Equation (20)). Furthermore, the
dependence of Bq and VLw on the integration variable x is ignored by
assuming a uniform shape of the beam elements and that their length is
small compared to the spatial variations in the wind field.

Qbuff ðtÞ¼
XN
i

TE2S;i TT
G2Le;iGiBq;iTLw2Le;i VLw;iðtÞ (20)

where TE2S is the assembly matrix from the local degrees of freedom of
beam element to the global degrees of freedom of the structure and Gi ¼R L

0 NðχÞdχ.
To express the quantities in the frequency domain, the cross-spectral

density of the buffeting force is obtained as the discrete Fourier transform
of its cross-correlation function

RQbuff
ðτÞ¼E

	
Qbuff ðtÞ QT

buff ðtþ τÞ
 SQbuff
ðωÞ¼

XN
i

�
XN
j

TE2S;i TT
G2Le;iGiBq;iTLw2Le;i SV ðΔx;ωÞTT

Lw2Le;j B
T
q;j G

T
j TG2Le;jTT

E2S;j

(21)

where SV ðΔχ;ωÞ represents the cross-power spectral density (CPSD)
matrix of the wind field. Then, the cross-spectral density of the buffeting
force can be transformed into the generalized coordinate system:

~SQbuff
ðτÞ¼ΦðχÞSQbuff

ðωÞΦTðχÞ (22)

Applying a similar approach to the self-excited forces, Equation (23)
shows the nodal vector of self-excited forces and the wind forces qseðx; tÞ
in the beam element.

QLe seðtÞ¼
Z L

0
Nðχ Þqseðχ ; tÞdχ qse ¼ Cae _rðχ; tÞ þ Kaerðχ; tÞ (23)

where Cae and Kae are the aeroelastic damping and stiffness matrices,
respectively, and are given in Equations (24) and (25). Equations (26)
and (27) present the matrices in the generalized coordinate system.

Cae ¼ 1
2
ρ ωB2

2664P*
1 P*

5 BP*
2

H*
5 H*

1 BH*
2

BA*
5 BA*

1 B2A*
2

3775 (24)

Kae ¼ 1
2
ρ ω2B2

2664P*
4 P*

6 BP*
3

H*
6 H*

4 BH*
3

BA*
6 BA*

4 B2A*
3

3775 (25)

~Cae ¼
Z
L

ϕT
nCaeðω*Þϕm dχ (26)

~Kae ¼
Z
L

ϕT
n Kaeðω*Þϕm dχ (27)

Were P*
1;2…;6H

*
1;2…;6andA

*
1;2…;6 Denote the dimensionless aerodynamic

derivatives.
Finally, the cross-spectral density of the response in the global Car-

tesian coordinate system is:

Sr ðω; χrÞ ¼ΦðχrÞ
nh

HðωÞS~Qbuff
ðωÞ

i
H*ðωÞ

o
ΦTðχrÞ (28)

with the following transfer function:

H ðωÞ ¼
�
� ~M0ω2 þ

�
~C0 � ~Cae

�
iωþ

�
~K0 � ~Kae

�

(29)

By extracting the response spectrum at midspan and integrating over
the frequency, it is possible to obtain the standard deviation of the re-
sponses and thus the target output features:

Yi ¼
	
σy σz σθ



i
¼ σr ¼

Z ∞

�∞
Sr

�
ω; χrmidspan

�
dω (30)

3.1.3. Wind field modeling

3.1.3.1. Cross spectral density function. The cross-spectral density func-
tion of the wind turbulent field, SV ðΔχ;ωÞ, required in Equation (21) is
defined as:

SVðΔχ ;ωÞ¼
�
SuuðΔχ ;ωÞ SwuðΔχ ;ωÞ
SuwðΔχ ;ωÞ SwwðΔχ ;ωÞ



(31)

SnmðΔχ;ωÞ¼CohnmðΔχ;ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Snðf ÞSmðf Þ

p
(32)

The terms Sn; n 2 fu;wg and Sm; m 2 fu; wgrepresent the auto-
spectral density function of the turbulence components at an element
location xi. The normalized cospectrum is represented by Cohnm.
Furthermore, Snm n;m 2 fu;wg represents the cross-spectral density
function of the beam elements separated by a distance Δχ.

The variability of SV is considered in the wind model parameters.
Applied to buffeting response estimation with machine learning, the
chosen input features (X) are the incoming mean wind speed ðVÞ, the
along-wind and vertical turbulence standard deviation (σu; σw) and the
decay coefficients (Ku;Kw). Furthermore, the auto-spectral density is

Journal of Wind Engineering & Industrial Aerodynamics 209 (2021) 104484



modeled as a Kaimal-type spectrum (Kaimal et al., 1972) Equation (33),
while the normalized co-spectrum is modeled as a Davenport-type
(Davenport A. G., 1961) (Equation (34)).

Snf

ðV InÞ2
¼ Anfz�

1þ 1:5Anfz
�5=3; fz ¼ zf

V
; In ¼ σn

V
(33)

with Cohnm and Snm when n 6¼ m are ignored, and thus, only the spatial
coherence was considered.

3.2. Synthetic datasets

Fig. 12. Matrix plot of the histogram and correlations from the A6 midspan anemometer for the easterly winds dataset.
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CohnmðΔχ;ωÞ¼ exp
�
� Kn

Δχ f
V

�
(34)

where the subscripts n;m 2 fu;wg indicate the along-wind and vertical
turbulence components, z is the reference height, f is the frequency and
An is the set of spectral peak parameters. For the Hardanger Bridge,
(Fenerci, 2018) determined that anAuof 30, anAw of 3 and a z of 60m are
acceptable spectral quantities. In represents the turbulence intensities.
Furthermore, the cross-coherence and cross-spectral terms associated
The corresponding target output (Y) was chosen as the RMS of the
lateral, vertical and torsional response components ðσy ; σz; σθÞ. Thus, a
sample point i in the dataset i represented by the pair Xi;Yi, as shown in
Equation (35).

Xi ¼ ½V σu σw Ku Kw�i and Yi ¼
	
σy σz σθ



i

(35)

To create the synthetic data using analytical predictions, two training
datasets and one testing dataset were created. Each input sample
Xicontains the wind features applied homogenously to all the wind ele-
ments. Furthermore, two different strategies were implemented to
simulate the input.



The first strategy is to use a uniform grid of the wind parameters to
ensure complete coverage inside the range of the full-scale measure-
ments. Therefore, from the dataset collected by (Fenerci and Øiseth,
2018), the maximum and minimum values bounding each of the wind
model parameters were extracted. The resulting discretization range and
number of intervals for each variable are reported in Table 1, and with

training datasets to be introduced in the following section is 3500 sam-
ples. Therefore, for this dataset, the same number of samples was
generated using the CLHS approach following the probability distribu-
tion functions and correlation coefficients from the full-scale measure-
ments reported by (Fenerci and Øiseth, 2018).

Finally, following the CLHS generation scheme, a third dataset was

Fig. 13. Matrix plot of histogram and correlations from the A6 midspan anemometer for the westerly winds dataset.
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the reported discretization, 25,000 sample points were simulated.
The input from the uniform grid dataset from Table 1 covers the

parameter space in a regular manner, which is not the case in the full-
scale measurements, where the data are concentrated in certain regions
of the parameter space. Therefore, to mimic the real dataset and to
investigate how the machine learning algorithms handle such clustering
of data points, a second input dataset is generated. This set was created
using the extension of the standard Latin hypercube sampling approach
(McKay et al., 1979) to correlated variables, correlated Latin hypercube
sampling (CLHS) (Olsson et al., 2003). The average size of the directional
generated to test the models. This set allows the validation of the models’
generalization ability by examining their performance for the same task.
Five hundred samples were generated for this dataset. A summary of the
synthetic datasets features is reported in Table 2.

3.2.1. Analytical prediction of the dynamic response of the Hardanger Bridge
A schematic technical drawing of the Hardanger bridge’s cross sec-

tion is as shown in Fig. 4. Additionally, the eigenvalue analysis was
performed to obtain the still-air modes using a finite element model of
the Hardanger Bridge supplied by the Norwegian Public Roads



Administration reported in (Fenerci et al., 2017). Both the girder and
cable modal displacements were extracted for this analysis. The first 100
modes were considered in the analysis. The natural frequencies of the
first 15 modes are reported in Table 3, the reader is referred to (Fenerci
et al., 2017) (Lystad et al., 2020) (Petersen et al., 2017) further details of
the bridge’s modal behavior. Structural damping was modeled with the
Rayleigh damping approach (Chopra, 2000) using the parameters αr ¼

height D of the Hardanger Bridge section are 18.3 and 3.2 m,
respectively.

The load coefficients used in the analysis were those reported by
(Fenerci and Øiseth, 2018) from wind tunnel testing set up of (Siedziako
et al., 2017) and are shown in Table 4. The test was performed with
Reynolds number of 2:01x105. The scaled cross section of the model was
equipped with handrails and the pedestrian path was located upstream.

Fig. 14. Training datasets.

Fig. 15. Training dataset from 15 to 16 m/s a) easterly b) westerly winds.
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0:0009 and βr ¼ 0:01102. Furthermore, the effective width B and
 Additionally (Siedziako et al., 2017), reported the aerodynamic



derivatives of the bridge cross section from the wind tunnel test. Fig. 5
and Fig. 6 show the experimental results of the 18 aerodynamic

derivatives fitted a polynomial function that tends constant values
outside the experimental data range. In the figures the reduced frequency
K ¼ ω B

V is introduced in the notation to enhance the presentation of the
aerodynamic derivatives. Nonetheless, for the purposes of the surrogate

Fig. 16. Flowchart of the model training and comparison steps.

Table 5
ANN settings.

Setting MLP

Activation function Rectified linear unit
Cost function Mean squared error
Optimization Bayesian-adaptative moment
Number of hidden layers 2
Sizes 8–8
Batch size 10% of the dataset
Learning rate Min ¼ 1E-7
Number of epochs 1000

Table 6
Grid settings for the SVR hyperparameters.

Setting Minimum Maximum Number of Intervals

Box constraint 1E-5 100 10E14
ε 1e�4ε 1e2ε 10E14
Polynomial degree 3 6 3
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modelling with synthetic datasets the use of the quasi steady theory
showed to be sufficient. Therefore, the aerodynamic derivatives formu-
lation was used just for the full-scaled measurements.

Finally, using the three simulated wind inputs described in the pre-
vious section (two inputs are used for training, one input is used for
testing), the dynamic response of the Hardanger Bridge, namely, the RMS
of the lateral, vertical and torsional components, was obtained using
multimodal buffeting theory. The scatter plots showing the resulting
input-output relationships are shown in Figs. 7-9 for the training uni-
form, training CLHS and testing CLHS datasets, respectevely.

3.3. Full-scale measurement data from the Hardanger Bridge

3.3.1. Overview of the measurements
The buffeting responses of the Hardanger Bridge were measured with

an extensive measurement system composed of 9 ultrasonic anemome-
ters that measure the wind speed in the range from 0 to 65 m/s with a
0.001 m/s resolution at a 32 Hz sampling frequency and 20 triaxial
accelerographs that measure accelerations on the interval of �4g at a



200 Hz sampling frequency. More details on the Hardanger Bridge
measurement system and dataset management procedure are given in
(Fenerci, 2018), the dataset is available in open access (https://doi.or
g/10.21400/5ng8980s) (Fenerci et al., 2018). The installed anemome-
ters record the incoming wind velocity in polar coordinates, while the
coupled arrangement of the accelerometers register the triaxial bridge

2018) reported two data clusters in the mean wind direction histogram
(Fig. 11). This phenomenon poses a challenge to the analysis due to the
topography-related difference between the wind features depending on
the incoming wind direction (Fenerci et al., 2017). Thus, in a similar
manner as the previous campaigns, the WIVs from both clusters were
studied separately.

Fig. 17. Response panel plot for models trained with a uniform grid dataset for the (a) SVR σy (b) MLP σy (c) SVR σz (d) MLP σz (e) SVR σϑ (f) MLP σϑmodels.
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response (Fenerci et al., 2017).

3.3.2. Wind field modeling and turbulence parameters
The wind parameters were extracted from the measurement system at

the A6 anemometer location (Fig. 10). Previous research campaigns at
the site (Fenerci and Øiseth, 2018) (Fenerci et al., 2017) (Lystad et al.,
Fig. 12 and Fig. 13 show the wind parameter matrix plots for the
easterly and westerly wind datasets; the subfigures on the diagonal
contain each input variable histogram, and the figures on the off-diagonal
show the scatter plots between the parameters. Furthermore, the angle of
attack, α, is introduced as an input parameter for this case, unlike the
synthetic data.

https://doi.org/10.21400/5ng8980s
https://doi.org/10.21400/5ng8980s


3.3.3. Root mean square (RMS) of the responses at the midspan
The response of the Hardanger Bridge was measured at the same

location as the wind input using the accelerometer coupled sensors H5
shown in Fig. 10. The lateral and vertical components of the acceleration
were obtained as the average from the sensors at both sides of the girder,
while the torsional component was computed by dividing the difference

between the two vertical signals by their distance (13 m). Fig. 14 shows
the panel plots of the training datasets for the westerly and easterly
winds. These plots contain the structural responses at the midspan of
Hardanger Bridge from the accelerometer coupled sensors H5 as
described in (Fenerci et al., 2017). The figures show quadratic trends
between the velocities and the responses, as expected. Fig. 15, on the

Fig. 18. Response scatter plot comparison for the models trained with the CLHS dataset for the (a) SVR σy (b) MLP σy (c) SVR σz (d) MLP σz (e) SVR σϑ (f)
MLP σϑmodels.
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other hand, shows the variation in the structural responses as a function

Table 7
Comparison of the evaluation metrics on the simulated datasets.

Model NRMSE MAPE R2

σy σz σϑ σy σz σϑ σy σz σϑ

Uniform grid MLP 1.02E-03 5.87E-03 7.21E-03 0.4751 1.7468 1.936 1.00 0.99 0.99
Uniform grid SVR 5.14E-04 1.66E-03 7.70E-04 0.1853 0.5748 0.303 1.00 1.00 1.00
Random CLHS MLP 1.46E-04 3.51E-04 1.76E-03 0.0092 0.0120 0.036 1.00 1.00 1.00
Random CLHS SVR 4.97E-04 8.90E-04 6.62E-04 0.1465 0.1233 0.115 1.00 1.00 1.00

Fig. 19. (a) NRMSEs for the different SVR models (b) NRMSEs for the different SVR models (outliers only).
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of the complementary wind input parameters for the velocity range from
15 to 16 m/s of the a) easterly and b) westerly winds. This figure shows
linear trends between the responses and the turbulence intensities, and
no apparent trend can be observed for the other parameters.

4. Training, validation and testing datasets

The training datasets correspond to the division of the data that will
be fed into the machine learning models; for this type of application, it is
deemed appropriate to take 65% of the dataset for training. Furthermore,
10% of the dataset was used as a validation dataset for tuning the model
hyperparameters and optimizing the global performance. Thus, an
additional 25% remained for the testing data. The schematic flowchart of
the analysis is shown in Fig. 16.

4.1. Model hyperparameters and settings

In ANN models, the network architecture, function selection and
optimization scheme affect the results. Thus, Equation (5) minimizes the
loss function for a given network setting. With the aim of avoiding
overtraining, the MLP model was trained using the batch training strat-
egy; i.e., every optimization cycle was performed on a different division
of the dataset. The configuration found to be appropriate for training the
MLP models is reported in Table 5.

Analogously, for the SVR model, Equation (12) will give rise to
different estimation functions if changes are made to the kernel function,
box constraint C, and slack parameters ξ, among other settings. For this
application, experience suggests the use of a polynomial function as the
kernel function, as given in Equation (36), and half the width of the
ε-insensitive band, ε, is computed by Equation (37). Then, a built-in grid
search optimization algorithm is used to find the configuration that
minimizes the loss functions with the grid setting reported in Table 6.
Further studies on hyperparameter optimization for buffeting response
modeling are beyond the scope of this paper but may be the objective of
future research.

Kðxi 0xÞ¼
�
1þ xi

0
xj
�d (36)
ε¼ interquartile frangeðyÞg
13:49

(37)

5. Performance assessment and comparison

5.1. Performance metrics

Three metrics were used to compare the estimates and targets: the
normalized root mean square error (NRMSE, Equation (38)) (Amstrong
and Collopy, 1992), the mean absolute percent error (MAPE, Equation
(39)) and the coefficient of determination (R2, Equation (40)). The
NRMSE (Amstrong and Collopy, 1992) becomes representative of the
modeling since it is the normalized version of the square root of the mean
squared error (MSE), which is used as the loss function for the MLP. On
the other hand, the MAPE results are more intuitive since they present
the deviation as a percent. Finally, R2 allows the weight of the deviation
of the estimates according to their variance.

NRMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

�byj � yj

�2
vuut ,

fmaxðYÞ�minðYÞg (38)

MAPE¼ 1
N

XN
j¼1

��byj � yj
��

yj
(39)

R2¼ 1�
XN
j¼1

�byj � yj

�2��
yj � y

�2 (40)

5.2. Synthetic data

5.2.1. Uniform grid training dataset
The panels in Fig. 17 show the comparison between the targets from

the testing dataset and estimates for the machine learning models trained
with the linearly spaced dataset for the SVR response models and for the
MLP. In the figure, the X-axis is the velocity, and the Y-axis is the RMS of
the response component. The figures show a complete matching of the
estimation and target over the entire wind speed range. The satisfactory



performance of the machine learning models on the simulated dataset
shows the effectiveness of the method in modeling the buffeting phe-
nomenon and encourages its application to the full-scale data.

5.2.2. Random training dataset
Analogously, the comparison of the scatter plots between the

metrics of the three response components (i.e., σy , σz and σϑ) for the two
machine learning models (i.e., the MLP and SVR models) on the two
different datasets (i.e., the uniform grid and random CLHS datasets).
With the given evaluation metrics, the SVR models perform better than
MLP models in the uniform grid dataset, whereas the opposite occurs in
the random CLHS dataset. Nevertheless, the order of magnitude of the

Fig. 20. Response comparisons SVR models (a) Easterly σy (b) Westerly σy (c) Easterly σz (d) Westerly σz (e) Easterly σϑ (f) Westerly.σϑ
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randomly generated dataset target from the testing dataset and its cor-
responding machine learning estimates is shown in Fig. 18. Despite the
clustering of the data points around the moderate wind speeds, the al-
gorithm is successful in predicting the response in the entire wind speed
range.

Table 7 extends the graphical overview and reports the evaluation
NRMSE is approximately 10E-4, stating an appreciably good general
performance level, with the lowest error of 1.46E-04 for the MLP/CLHS/
σy response and the highest of 7.21E-03 in MLP/uniform grid=σϑ.
Moreover, the highest and lowest MAPE values of 1.936% and 0.0092%
agree with the NRMSE results.

Estimation of extreme responses is especially important for long-span



bridge buffeting response modeling. Thus, a comparison limited to the
maximum values given by σy > 0:3, σz > 0:1 and σϑ > 0:018 is pre-
sented. To highlight the difference in the performance, Fig. 19 (a) reports
the NRMSE of the SVR models in the general case and (b) reports the
maximum values. Overall, the models trained with the random CLHS
dataset showed less error compared to their uniform grid counterparts.
However, for the outliers, the uniform grid models performed better

because the CLHS dataset concentrates the data points in the central
region, leaving fewer data points in the maximum value region, resulting
in better predictions for moderate wind speeds and compromising the
accuracy of the extreme values. On the other hand, the uniform grid
dataset presents a better accuracy in the region of the outliers. It should
be noted that both methods provide reasonably accurate results.

Fig. 21. Response comparisons MLP models (a) Easterly σy (b) Westerly σy (c) Easterly σz (d) Westerly σz (e) Easterly σϑ (f) Westerly.σϑ
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Table 8
Evaluation metrics for the directional models on real datasets.

Model NRMSE MAPE R2

σy σz σϑ σy σz σϑ σy σz σϑ

West MLP 6.87E-02 5.39E-02 3.79E-02 26.8 10.7 19.5 0.89 0.95 0.92
West SVR 5.14E-02 3.06E-02 3.28E-02 21.6 14.1 22.2 0.84 0.94 0.92
East MLP 8.87E-02 1.06E-01 5.74E-02 42.0 36.4 29.1 0.44 0.59 0.72
East SVR 5.98E-02 5.65E-02 4.87E-02 22.9

Table 9
Constant input values for the directional model comparisons.

Wind feature Symbol Constant value

Along-turbulence SD σu 0.1*V
Vertical turbulence SD σw 0.06*V
Angle of attack α 2.9
Along-wind decay coefficient Ku 8.6
Vertical decay coefficient Kw 10.7

D.F. Castellon et al. Journal of Wind Engineering & Industrial Aerodynamics 209 (2021) 104484
5.3. Full-scale measurement data

The techniques verified with the synthetic data case were extended to
full-scale measurements. For this aim, the scatter plots the response
comparisons from the different models are shown in Figs. 20 and 21.
Fig. 22. Prediction comparison for the directional SVR

Fig. 23. Prediction comparison for the directional MLP

20
Additionally, Table 8 shows the evaluation of the three response com-
ponents (σy , σz and σϑ) for the two machine learning models (MLP and
SVR) in the two different datasets (westerly and easterly winds).

The easterly and westerly wind model estimates were compared. The
input was varying mean wind speeds, with linearly dependent σu;σw (to
retain the observed trend in the real data), and the other parameters were
held constant. Table 9 reports the input parameter settings. Fig. 22 shows
the plots comparing the predictions of both directional models for the
three response components σy , σz and σϑ from the SVR algorithm, while
Fig. 23 reports a similar comparison for the MLP model.

Both figures show that the model trained with the easterly wind
dataset yields a higher response estimation for the same input conditions.
This is consistent with the behavior observed in the full-scale measure-
ments reported in Fig. 14.

13.9 19.4 0.69 0.84 0.80
models on common input: (a) σy, (b) σz and (c).σϑ

models on common input: (a) σy, (b) σz and (c).σϑ



Fig. 24. Response comparison computed with buffeting theory (a) Easterly σy (b) Westerly σy (c) Easterly σz (d) Westerly σz (e) Easterly σϑ (f) Westerly.σϑ

Table 10
Evaluation metrics for the estimates from buffeting theory.

Model NRMSE MAPE R2

σy σz σϑ σy σz σϑ σy σz σϑ

West BFT 7.65E-02 6.27E-02 5.47E-02 38.68 19.13 34.17 0.82 0.85 0.83
East BFT 7.62E-02 1.12E-01 5.97E-02 33.58 35.41 24.81 0.54 0.73 0.72
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Fig. 25. MAPEs computed with buffeting theory and machine learning.
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5.4. Machine learning vs. buffeting theory

Finally, the response of the Hardanger Bridge was estimated analyt-
ically using buffeting theory and the wind input from the full-scale
measurements. The response comparison between the measured
response and the buffeting theory estimation is shown in Fig. 24, and the
corresponding evaluation metrics are reported in Table 10. A graphical
comparison in terms of the MAPE between the estimates obtained with
machine learning reported in Table 8 and the estimates obtained with
buffeting theory is shown in Fig. 25.

The SVR estimates yield more accurate results than the MLP and
buffeting theory on both directional datasets. Moreover, for the westerly
winds dataset, both machine learning models predicted more accurate
estimate than buffeting theory. Using the MAPE, the greater difference
between buffeting theory and the SVR model was 17% for σy and the
lowest difference was approximately 5% for σz on the easterly winds’
dataset. In general, the estimates of the full-scale observations show a
slight decrease in the performance compared with the ideal case, mainly
because uncertainties in the dynamic behavior, such as the in-
homogeneities and non-stationarity of the wind field, traffic and tem-
perature effects are not completely captured by analytical models.

A difference in the error metrics between easterly and westerly wind
related responses is exposed for both cases, estimations with machine
learning (Table 8) and buffeting theory estimation (Table 10). For
example, R2 metrics for the σy responses in Table 8 vary from 0.44
(easterly) to 0.89 (westerly) for MLP and 0.69 (easterly) to 0.84 (west-
erly) for SVR whereas Table 10 shows a variation from 0.54 (easterly) to
0.82 (westerly) for the same response component. The main reason for
this behavior is that the aerodynamic properties of the bridge, namely the
steady-state force coefficients (Table 4) and the aerodynamic derivatives
(Figs. 5–6) were obtained for the case of winds approaching from the
west, which are the strongest. This partly explains the poor performance
of the analytical predictions for the easterly winds. Further, the easterly
winds are more affected by the more complex topography, which typi-
cally causes higher angles of attack. Such issues are handled implicitly by
the machine learning models, where the buffeting theory is more
challenging.

6. Conclusion

In this paper, accurate buffeting response estimations were computed
from analytical and machine learning models. The wind input dataset
was obtained from full-scale measurements and simulated data following
the probabilistic model of the observed wind turbulence field. Then, the
quality of the estimates was evaluated, leading to the following
conclusions:

	 Estimations from machine learning models (i.e., the SVR and MLP
models) on the synthetic datasets were reasonably accurate. There-
fore, the good quality of the estimates makes the technique suitable
for surrogate model development such as those required in reliability
analyses.

	 The models trained with the full-scale datasets were less accurate
than the models trained with the synthetic datasets. The main reasons
for this are the various uncertainties in the dynamic behavior that are
not captured by the monitoring system, such as the inhomogeneities
and non-stationarity of the wind field, traffic and temperature effects.
However, as data-driven models bypass some of the limitations of
buffeting theory, machine learning-based estimates were more ac-
curate than the analytical predictions.

	 Considering the slightly different behavior observed under easterly
and westerly winds, two different machine learning models were
trained for the two directions. The models trained on the easterly
winds predicted higher responses under the same wind input,
capturing the observed behavior.

	 The SVR model yielded better response predictions than the MLP
model on both the simulated and full-scale measurements. Further-
more, the method was more accurate that the analytical response
estimates with the multimodal approach.
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A B S T R A C T   

Accurate estimation of the extreme wind fields is crucial for long-span bridge design. The current practice is focused on estimating the extreme mean wind speed, 
neglecting the inherent uncertainty in the turbulence model parameters. However, full-scale measurements on bridges show that such uncertainties are significant 
and should be considered in design. Here, the environmental contour method (ECM) is used to obtain long-term extreme wind fields considering uncertainties from 
the mean wind speed, turbulence intensities and spectral parameters measured at the Sulafjord Bridge site. Design contours of combinations of wind field parameters 
are obtained for target return periods of 4, 50 and 100 years. The contours are based on a proposed probabilistic modeling strategy that combines hindcast mesoscale 
simulations and field measurements. The contour estimates are also compared with state-of-the-art design values from the design recommendations. It is concluded 
that the environmental contours provide a more complete and yet intuitive description of the wind field at the bridge site compared to the current design meth
odology. The ECM is found suitable for obtaining design wind fields at new long-span bridge sites as it makes use of the limited site data more efficiently and it is still 
easy-to-use for the practicing engineer.   

1. Introduction 

General practice in bridge design establishes the structural response 
based on extreme values of wind speeds for long-term return periods 
(CEN, 2004). In the current design practice, the corresponding design 
wind loads are estimated using the mean wind speed as the sole sto
chastic variable, whereas other turbulence-related parameters are 
treated deterministically, usually dependent on the mean wind speed. 
However, monitoring campaigns in complex terrain showed that most of 
the scatter in measured structural response is strongly related to 
randomness in turbulence-related parameters (Fenerci et al., 2017). The 
observations show that the extreme structural response does not 
necessarily occur at the extreme value of mean wind speed but at rela
tively lower wind speeds with more severe turbulence parameters, such 
as turbulence intensity. Site measurements of wind and bridge response 
expose the necessity of design methodologies that consider the sto
chastic variability in wind variables, such as turbulence intensities, 
spectral parameters, spatial correlation of turbulence, and incoming 
wind direction together with the usual mean wind speed (Wang et al., 
2013), (Li et al., 2021). 

Relevant studies on wind characterization with probabilistic turbu
lence modeling are not abundant (Fenerci and Øiseth, 2018), (Solari and 
Piccardo, 2001). On the other hand, there are many studies in the 
literature about the assessment of structural wind-induced effects using 

probabilistic frameworks; however, the randomness is usually limited to 
the structural or aerodynamic parameters and the mean wind speed 
(Davenport, 1983; Solari, 1997; Pagnini and Solari, 2002; Pagnini, 
2010; Seo and Caracoglia, 2012, 2013; Kareem, 1987; Ciampoli et al., 
2011). Uncertainty in turbulence itself has been overlooked except for a 
few studies (Solari and Piccardo, 2001), (Lystad et al., 2018). In that 
regard, Lystad et al. used the environmental contour method (ECM) to 
estimate extreme wind fields for the Hardanger Bridge site (Lystad et al., 
2020). The ECM obtains combinations of environmental parameters 
with a selected return period from their joint distribution (Winterstein 
et al., 1993), (Haver and Winterstein, 2009). Contours may be obtained 
using different methods, such as the inverse first-order reliability 
method (IFORM), the inverse second-order reliability method (ISORM), 
the highest density contour method (HDC) or Monte Carlo simulations 
(Winterstein et al., 1993), (Chai and Leira, 2018; Haselsteiner et al., 
2017; Bang Huseby et al., 2013). Applications of the ECM have been 
extensively covered in the marine technology and wind energy in
dustries, where researchers have used the method to determine the 
design loads of offshore platforms within a probabilistic framework 
(Naess and Moan, 2012; Moan et al., 2005; Saranyasoontorn and Man
uel, 2004, 2006; van de Lindt and Niedzwecki, 1997; Niedzwecki et al., 
1998; Vanem, 2019; Montes-Iturrizaga and Heredia-Zavoni, 2015; 
Heredia-Zavoni and Montes-Iturrizaga, 2019; Moriarty et al., 2002; 
Fitzwater et al., 2003; Raed et al., 2020; Karmakar et al., 2016; Velarde 

Abbreviations: ECM, Environmental Contour Method; IFORM, Inverse First Order Reliability Method; CDF, Cumulative Distribution Function. 
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et al., 2019). Environmental contours have also been used to charac
terize the seismic hazard and derive the seismic design response spectra 
(Bazzurro et al., 1996; Van De Lindt and Niedzwecki, 2000; Loth and 
Baker, 2015). However, in design against wind actions on long-span 
bridges, the method remains largely unexplored despite the remark
able potential advantages. 

Recently, Lystad et al. (2020) showed environmental contours for the 
Hardanger Bridge site based on a probabilistic wind field model from 
Fenerci and Øiseth (2018a) which was based on wind measurements on 
an existing bridge (Lystad et al., 2018). The results obtained for the 
Hardanger Bridge showed weaknesses in the current design methodol
ogy and motivated extension of the ECM to the structural design of new 
bridge sites. However, an obvious challenge that arises in the design of 
new bridges is obtaining data that are representative of extreme wind 
conditions because extreme wind conditions are inferred from mea
surement campaigns of relatively short duration. Additionally, wind 
measurements for new bridges are performed at meteorological stations 
in the vicinity of the site, instead of the midspan of the bridge, where the 
conditions are most relevant for bridge design. Here, we will attempt to 
extend the methodology to a new bridge site in complex terrain. 

This paper presents environmental contours for the Sulafjord Bridge 
site to investigate the potential application of the ECM in the design of 
long-span bridges. Contours were obtained from the joint probability 
distribution of the mean wind speed, turbulence intensities and turbu
lence spectral parameters for each incoming wind direction. The joint 
turbulence model was established with a novel strategy where data from 
the 4-year mast measurement campaign (Furevik et al., 2020) and 
10-year hindcast mesoscale simulations are combined, exploiting the 
advantages of both datasets. The contours represent the extreme wind 
fields for 4-, 50- and 100-year return periods. 

This paper is outlined as follows. Section 2 presents the bridge site, 
measurement campaign, and hindcast data, including histograms of 
wind speed and direction, as well as the wind roses. This section expands 
the findings of the Sulafjord measurement campaign reported by Cas
tellon et al. (Castellon, 2019) and Midjiyawa et al. (2021) and discusses 
how the dataset can be used to obtain the best possible wind field model 
for bridge design. Section 3 presents the proposed probabilistic 
modeling strategy, which is essentially a joint probability distribution of 
all the wind field parameters. The model is based on the joint lognormal 
distribution for turbulence intensities and turbulence spectral 

parameters that are dependent on the mean wind speed and direction. A 
Weibull distribution is used for the mean wind speed, and a discrete 
division for the mean wind direction is assumed. Section 4 presents the 
environmental contour lines for 4-, 50- and 100-year return periods and 
contour surfaces for a 100-year return period. The contour lines give 
combinations of two environmental parameters, while the surfaces 
correspond to combinations of three parameters. The four-year return 
period corresponds to the duration of the measurement period, whereas 
the results for 50- and 100-year return periods can be applied in bridge 
design. Section 5 presents the results and discusses the methodology’s 
applicability to bridge design, including a comparison with reference 
values from the current design practice. Section 5 also contains 
modeling limitations and provides recommendations for future imple
mentation of the ECM. 

2. Wind conditions at the Sulafjord Bridge site 

2.1. Bridge site 

The Sulafjord is a Norwegian fjord located 10 km southwest of the 
city Ålesund on the western coast of Norway. The fjord is oriented from 
southeast to northwest, and it is approximately 12 km long, 4 km wide, 
and has a maximum water depth of 450 m. Fig. 1 shows the surroundings 
and the topography of the fjord, which is largely characterized by 
mountainous terrain with elevations of approximately 500 m on both 
sides, directing the wind flow through the fjord. Fig. 2 shows a picture of 
the fjord surroundings from the bridge location towards the north and 
south. Fig. 2 a) also shows the island Godøya, which is located on the 
northern side of the fjord. The island partly shields the fjord from the 
winds coming directly from the sea (Castellon, 2019). Fig. 3 shows an 
illustration of the Sulafjord suspension bridge adapted from illustrations 
by the Norwegian Public Roads Administration (NPRA) (Vegvesen, 
2016). 

2.2. Measurement campaign 

Beginning in 2014, a wind measurement campaign led by the NPRA 
was deployed. This campaign aims to characterize the wind conditions 
in the Sula, Halsa and Vartdal fjords (Furevik et al., 2020). The data are 
handled by the Norwegian Meteorological Institute and are openly 

Fig. 1. Topographical map of the Sulafjord site (adapted from https://norgeskart.no/- ®norgeskart Norwegian Mapping Authority).  

D.F. Castellon et al.                                                                                                                                                                                                                            
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available (Norwegian Meteorological Institute, 2020). Four stations 
from the campaign are located at the Sulafjord site (cross symbols in 
Fig. 1), and Table 1 shows their geographical coordinates. 

Each station is composed of a meteorological mast. The masts are 
equipped with wind sensors at different heights, to capture the vertical 
wind profile. The WindMaster Pro 3-Axis anemometers (Gill Instruments 
Limited) were used which can measure wind gusts up to 65 m/s. The 
speed resolution is 0.01 m/s, and the direction resolution is 0.1◦, while 
the accuracy at 12 m/s is reportedly <1.5% RMS and 2◦ for speed and 
direction, respectively. Table 1 also shows the number of sensors and 
their altitude with respect to the sea level for each station. 

2.3. Wind data from meteorological masts 

The measurement data were analyzed to develop a statistical model 

of the wind conditions at the site. In total, 151,505 10-min intervals 
from sensors at approximately 50 m above sea level were analyzed. This 
elevation corresponds to the lowest sensor at Kvitneset and the second 
lowest at the other stations and most representative of the bridge height. 
Recordings with anomalies such as system log-out or missing data, 
within the averaging period of 10-min, are disregarded from the analysis 
as they cause irregularities in the power spectrum estimation. Further 
details of data processing are explained in section 2.3.3. 

The wind data are given in polar coordinates and need to be trans
formed to a Cartesian coordinate system aligned with the 10-min mean 
wind direction. 

V + u(t) = Vp(t)cos{φ(t) − φ}
v(t) = Vp(t)sin{φ(t) − φ}
w(t) = W(t) − W

(1) 

Equation (1) shows the transformation of the wind velocity in polar 
coordinates with the magnitude Vp(t) and direction φ(t) into mean wind 
speed V and mean wind direction φ and the wind turbulence decom
position into along-wind u(t), cross-wind v(t) and vertical w(t) compo
nents. Recordings with a mean speed below 5 m/s were discarded from 
the analyses as such records tend to be severely nonstationary due to 
rapid changes in temperature and wind direction. Such data can how
ever be disregarded as they won’t cause significant structural responses 

Fig. 2. The bridge site. (Images courtesy of NPRA).  

Fig. 3. Illustration of the Sulafjord suspension bridge. (Image courtesy of NPRA).  

Table 1 
Sulafjord wind mast station coordinates.  

Station name Latitude Longitude Sensors Altitude (m) 

Kvitneset 62◦25′17.74"N 6◦ 0′4.03"E 3 92.5-71.5-44.5 
Trælboneset 62◦25′39.47"N 6◦ 3′45.45"E 3 76.8-48.3-27.3 
Langeneset 62◦23′10.68"N 6◦ 1′52.72"E 4 94.8-75-50-27 
Kårsteinen 62◦24′0.48"N 6◦ 7′9.82"E 3 62.8-40-13.4  
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and therefore not relevant for the application here, which is focused on 
extreme wind fields. Fig. 4 shows the histograms of the mean wind di
rection, φ, from the mast-measurements where the north is aligned with 
zero. The histograms show clusters of samples at specific directions 
which are mainly governed by the terrain’s topography. The cutoff- 
directions of the clusters were chosen corresponding to the peaks of 
the histograms. The figures show that there are two main directions at 
Trælboneset, Langeneset and Kåresteinen, while there are three di
rections at Kvitneset. The main directions were divided into these sec
tors such that wind recordings from different topographical conditions 
could be studied separately. The main directions are shown by dashed 
lines in the histograms and Table 2 reports their directional intervals. 
Trælboneset station shows the dominant cluster in the incoming direc
tion interval 100◦–230◦. Further details about the topographic influence 
over the mentioned behavior was explored with the wind rose diagrams 
that will be presented in next section. 

2.3.1. Wind roses 
Fig. 5 shows wind roses of the stations’ mean wind speeds on top of 

the topographical map. The map clearly illustrates that there are tall 
mountains close to the masts and that the terrain by the masts will in
fluence the wind recordings severely for some directions. It is therefore 
not straightforward to compare the wind roses at the four masts. The 
wind roses at Trælbonset and Kvitneset shows that the main incoming 
wind direction is from south in both locations. This behavior can be 
explained by the island Godøya (Fig. 1), which partially shields the two 
locations from winds coming from the open sea. A similar pattern would 
normally be expected at Kåresteinen and Langeneset due to their close 
location. Nonetheless, their wind roses are significantly different. The 
mast at Langeneset is partly shielded from winds approaching from 
southwest by the tall mountain close by. Similarly, the winds coming 
from south are severely obstructed by the tall mountain behind the mast 
at Kåresteinen. This illustrates that the measurements gathered at Lan
geneset and Kåresteinen are not entirely representative for the southerly 
winds at a potential bridge crossing between Kvitneset and Trælboneset. 
The wind roses also illustrate that the wind field is shaped by the 

mountains along the fjord since the main wind directions tend to be 
aligned with the tall mountain sides for some of the wind directions. It 
should also be noted that the shape of the wind roses strongly depends 
on how many sectors that are used. 

According to the feasibility studies by the NPRA (Vegvesen, 2016), 
the most convenient track for a suspension bridge crossing the fjord will 
be near the Kvitneset and Trælboneset stations (thick line in Fig. 1). 
Fig. 6 and Fig. 7 show the histograms of the mean wind speed at both 
locations considering the directional division. Fig. 6 from Kvitneset 
shows sector 2 (250◦–320◦) as the dominant sector with the highest 
recorded mean wind speed and sector 1 (120◦–210◦) as the most 
populated sector with largest number of samples. Fig. 7 shows Trælbo
neset sector 1 as both dominant and most populated. The histograms and 
wind roses show that the winds coming from the seaside have lower 
mean wind speeds at Trælboneset station compared to other stations. 
The main reason for this behavior is the effect of the Godøya island 
which protects the Trælboneset-side of the track from the open sea 
winds while the Kvitneset-side is partially uncovered from northwestern 
sea winds. Evidence of this is clearly found from the Kvitneset recordings 
in which the maximum mean wind speed of 25.7 m/s was observed in 
the sector not protected by Godøya. The shielding effect also implies that 
the most critical wind conditions on the Sulafjord bridge are expected to 
come from the southern direction approaching nearly perpendicular to 
the bridge deck. The measurements gathered at Trælboneset are clearly 
most representative for the southerly winds approaching the bridge 
crossing since the southerly winds approaching Kvitneset has passed 
over a mountain close by. The data from Trælboneset is therefore used to 

Fig. 4. Direction histogram station: a) Kvitneset b) Trælbodneset c) Kårsteinen d) Langeneset.  

Table 2 
Main directional sectors.  

Location Sector 1 Sector 2 Sector 3 

Kvitneset 100◦–230◦ 260◦–360◦ 370◦–410◦

Trælboneset 120◦–230◦ 280◦–400◦ – 
Kårsteinen 90◦–150◦ 220◦–340◦ – 
Langeneset 80◦–240◦ 290◦–360◦ –  
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obtain the results presented in this paper. 

2.3.2. Data processing 
The recordings were resampled at 2 Hz to remove high-frequency 

content associated with possible vibration of the mast. The resampling 
does not introduce any significant inaccuracies since the wind charac
teristics will be applied in the design of a long-span bridge. In these types 
of projects the responses and associated load effects are dominated by 
vibration modes with natural frequencies much lower than 1 Hz. In 
addition, high-pass filtering was used to subtract nonstationary trends, 
as this technique better removes the variances in ramp-like events in the 
recordings (Hannesdóttir et al., 2019) than detrending each 10 min 
segment. The filter was a minimum-order, linear-phase, finite impulse 
response (FIR) with pass frequency fpass = 1/300 hz, steepness s = 0.85 
and transition width W = 5x10 − 4 , following the recommendations in 
(Hannesdóttir et al., 2019). 

2.3.3. One-point turbulence spectrum 
The turbulence was modeled from its one-point Kaimal-type power 

spectrum Sn, Equation (2) (Kaimal et al., 1972). Model uncertainties 
were introduced by assuming the mean wind speed (V), the along-wind, 
cross-wind and vertical turbulence intensities (Iu,Iv, Iw), and the spectral 
parameters (Au,Av,Aw) as stochastic variables. Despite the Kaimal-type 
power spectrum don’t consider turbulence length scales in its formula
tion, the spectral parameters (Au,Av,Aw) are proportional and analogous 
to these quantities (Fenerci et al., 2017), (Fenerci and Øiseth, 2017). 
Parameters such the spatial coherence and the wind angle of attack are 
outside the capabilities of the measurement system because of the long 
distance between stations and the absence of an appropriate structural 
reference frame crossing the fjord site. In a design situation, un
certainties in those parameters can be modeled after measurements at 
similar sites, in the case of absence of such data. 

Snf
(V In)

2 =
Anfzh

(
1 + 1.5Anfzh

)5/3, fz =
zhf
V
, In =

σn

V
(2) 

The subscripts n ∈ {u, v,w} indicate the along-wind and vertical 
turbulence components, zh is the reference height, f is the frequency and 
σn represents the standard deviations. 

For the estimation of the spectral parameters (Au,Av,Aw), the power 
spectral density function (PSD) of the turbulence components was ob

Fig. 5. Wind rose plot mean speed.  

Fig. 6. Mean wind speed histograms for the Kvitneset station from measured 
data at a) Sector 1 b) Sector 2. 

Fig. 7. Mean wind speed histograms for the Trælboneset station from measured 
data at a) Sector 1 b) Sector 2. 
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tained by applying the Welch method, taking the average of 8 segments 
with a 50% overlapping and Hamming window. Then, the power spectra 
Sn from Equation (2) were fitted to the spectral parameters (Au,Av,Aw) in 
the least square sense. As an illustration, overlapping fitted and 
measured power spectra from a recording registered on 01.01.19 at 
Trælboneset station from 14:40 to 14:50 corresponding to the annual 
highest mean speed are shown in Fig. 8. Scatter in the measured PSD 
comes from the spectral estimation. The spectra have been estimated 
using the Welch method. Smoother estimates can be obtained using 
shorter windows, but this comes at the price of lower resolution and 
higher bias. The presented estimates provide a balance between scatter 
(variance) and bias & resolution of the estimate. The distributions of the 
(Au,Av,Aw) coefficients are not very sensitive to the applied settings in 
the spectral estimate when least squares are used to fit the model. Along 
with the spectral fittings of Figs. 8 and 9 shows the time-histories of the 
turbulence components on the same interval. The time-histories show a 
stationary behavior. The figure also includes the time-history of the 
vertical angle of attack (β), which is a parameter of paramount impor
tance for the bridge’s non-linear aerodynamic behavior. The time-series 
of the angle of attack show that this value oscillates between − 15 and 
20◦, this range is slightly higher than that reported on the Hardanger 
bridge (Barni et al., 2021). In contrast, the mean values of the vertical 
angle of attack shown in Fig. 10 respect to the mean wind speed 
correspond to observations of the Hardanger bridge (Fenerci and Øiseth, 
2017). Thus, suggesting that the angle of attack at the Sulafjord bridge 
may have higher variation than at the latter location. To determine the 
actual effect of this parameter over the Sulafjord bridge, a complete 
study of the aerodynamic derivatives is required, however, such study is 
outside the scope of this paper. Nonetheless, with the probabilistic 
modeling provided here, it is possible to reproduce the vertical angle of 
attack for practical engineering applications, since for such cases, the 
vertical angle of attack is handled with simulated time-series depending 

on the spectral densities and the mean wind conditions. 

2.4. Hindcast wind data 

In addition to the mast measurement data, hindcast simulations were 
performed by Kjeller Vindteknikk (Vindteknikk and og Vartdalsfjorden, 
2018). Simulated mean wind velocities were obtained using the 
state-of-the-art mesoscale numerical weather prediction system, the 
Weather Research and Forecast model (WRF) work version 3.2.1 (UCAR 
and, 2013), (Skamarocket al., 2008). The modeling structure, physical 
packages, numerical routines and other details are given in (Klemp et al., 
2007), (Michalakeset al., 2001). The geographical input data in the 
model were adapted from the National Oceanic and Atmospheric 
Administration (NOAA) for the entire domain except for Norway and 
Sweden, where N50 land data from the Norwegian Map Authority and 
map data from the Geografiska Severgedata (GSD)-Land Cover were 
used. The meteorological input data were adapted from the European 
Center for Medium-range Weather Forecasting (ECMWF) using a reso
lution of approximate 0.7◦ and 6 h interval data as boundary of the 
model. The hindcast data are fitted to meteorological observations in the 
area using an assimilation model that incorporates all available obser
vation globally into a numerical weather prediction model that creates a 
description of the state of the atmosphere on a uniform horizontal grid 
four times a day. The assimilation model incorporates data from several 
thousand ground based observation stations, vertical profiles from ra
diosondes, aircrafts, and satellites and are therefore reasonably accurate 
(Deeet al., 2011), (Berrisfordet al., 2009). The model was set up with 4 
nested domains from which the inner domain has a resolution of 500 ×
500 m (Fig. 11). This is the highest resolution possible as the simulations 
are limited to meso-scale and not to local topographical effects. The 
simulation model has 51 layers in the vertical with eight layers in the 
lower 200 m. The WRF-model computes the variation in the wind 

Fig. 8. Three components of the one-point spectrum ‘max 2019′ Record 01.01.19 from 14:40 to 14:50. a) Su b) Sv c) Sw.  
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conditions for a time step from 1 to 108 s in the different domains 
increasing the time step with decrease in the resolution, achieving then a 
more realistic temporal development of the wind conditions. Data is 
stores every 1 h of simulation. More information about the hindcast data 
set may be found in (Vindteknikk and og Vartdalsfjorden, 2018). 

The simulated dataset is 10 years long starting from January 2007. 
The dataset contains the mean wind speed and direction for 1-h intervals 
in the locations of the four mast stations in addition to the Sulafjord 
center (62◦25′19.68"N, 6◦01′52.68"E) (circle in Fig. 1). The simulations 
were carried out at 10, 50, 70 and 100 m above the ground or water 
level. Histograms of the 1-h direction distribution for the different sites 
are presented in Fig. 12, while the principal sectors are reported in 

Table 3. The figure shows a similar trend in the distribution peaks as the 
site measurements. However, an increased scatter of samples towards 
the distribution valleys may be observed, with the most severe situation 
for the Kårsteinen station in which the peaks can barely be differentiated 
from the valleys. Validation of the hindcast data is presented in (Vind
teknikk and og Vartdalsfjorden, 2018). 

Similar to the recorded data, the wind rose of the mean wind speed 
for the simulation sites is shown in Fig. 13. The analyzed data corre
spond to the simulations at a 50-m height since it represents the bridge 
height. Simulated samples below 5 m/s were disregarded from the plots. 
It is not expected that wind roses from Figs. 5 and 13 coincide exactly 
since the wind flow is affected by the local topographical effects not 
included in meso-scale simulations. Then, the differences between the 
wind roses of Kårsteinen and Langeneset are plausible, and hence the 
erection of several mast stations in the area. On the other hand, local 

Fig. 9. Time-histories of the three components ‘max 2019′ Record 01.01.19 from 14:40 to 14:50. a) u b) v c) w d) angle of attack.  

Fig. 10. Vertical angle of attack respect to mean wind speed.  

Fig. 11. Nested domains of hindcast dataset simulations (adapted from htt 
ps://norgeskart.no/- ®norgeskart Norwegian Mapping Authority). 
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topographical effects don’t present a major complication at the Sulafjord 
center location, which is the most representative for the bridge and 
meso-scale simulations are still the best option for extreme mean wind 
velocity estimations because of their longer observation period. 

2.4.1. Wind speed histograms 
In a similar way as Figs. 6 and 7, Fig. 14 contains the histograms of 

the mean wind speed from Sulafjord center location but using the 
hindcast data. In this case the sector from 100◦ to 250◦ is both the 
dominant and most populated sector. 

3. A probabilistic model of the wind field 

A probabilistic model of the wind field is defined by a joint distri

Fig. 12. Direction histogram from hindcast data locations: a) Kvitneset b) Trælbodneset c) Kårsteinen d) Langeneset e) Sulafjord center.  

Table 3 
Main directional sectors.  

Location Sector 1 Sector 2 Sector 3 

Kvitneset 100◦–230◦ 260◦–360◦ 370◦–410◦

Trælboneset 120◦–230◦ 280◦–400◦ – 
Kårsteinen 90◦–150◦ 220◦–340◦ – 
Langeneset 80◦–240◦ 290◦–360◦ – 
Sulafjord center 100◦-250 340◦–400◦ 270◦–330◦

Fig. 13. Wind rose plot mean wind speed hindcast data.  

Fig. 14. Mean wind speed histograms of the Sulafjord center station from 
hindcast data at a) Sector 1 b) Sector 2. 
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bution of the turbulence parameters (Fenerci and Øiseth, 2018), (Lystad 
et al., 2020). Introducing W as the wind state variable collecting the 
wind parameters, its joint distribution can be expressed as the product of 
the conditional distributions: 

FW(W) = FV(V)*FIu ,Iv ,Iw ,Au ,Av ,Aw |V (Iu, Iv, Iw,Au,Av,Aw|V)

W = [ V, Iu, Iv, Iw,Au,Av,Aw]
(3) 

Fenerci et al. (2018) showed that the joint distribution can be 
expressed as the product of Weibull distribution of the mean wind speed 
and a joint lognormal distribution of the turbulence parameters. This is 
highly advantageous because the relation between the turbulence pa
rameters can be determined by the correlation of parameters only. 
Fenerci et al. (2018) showed that the joint lognormal distribution fits the 
turbulence data of the Hardanger bridge. Whereas Lystad et al. (2020) 
showed that the Weibull fits the mean wind speed data for the same 
project. Using a similar approach, in this chapter the parameters Equa
tion (3) will be derived for the Sulafjord site. Chapter 3.1 is devoted to 
the Weibull distribution of the mean wind speed and chapter 3.2 to the 
joint lognormal distribution of the turbulence. 

Measured data was not available at the fjord center and meso-scale 
simulations don’t include turbulence effects. Therefore, a strategy 
combing both sources was implemented. The Weibull distribution of the 
mean wind speed was obtained using the meso-scale data as it covers a 
more extended period than the site measurements and it is possible to 
obtain the data at the desired midspan location. Subsequently, the joint 
lognormal distribution of turbulence parameters was obtained from the 
site anemometry measurements as the turbulence characteristics cannot 
be obtained from meso-scale simulations. However, as site measure
ments are not available at the fjord midspan, the turbulence parameters 
were assumed to be reasonably well represented by the measurements at 
the Trælboneset station. This follows both from simple considerations of 
the site topography (local effects are less expected) and the fact that the 
wind direction of the station matches the mesoscale simulations with 
good accuracy. Complementary arguments to the selection of Trælbo
neset station are discussed in section 3.2. 

3.1. Mean wind speed distribution 

The wind roses and wind histogram analysis showed that local 
topographical effects strongly influence the environmental variables. As 
discussed earlier, the dataset was split into sectors, where the dominant 
sector includes the recordings with the highest mean wind speeds. This 
information was further included in the probabilistic model by estab
lishing the mean wind speed distribution from the dominant sectors at 
the Sulafjord center, V = V|φdominant . The distribution for the mean wind 
speed FV on Equation (3) is Weibull type with the following cumulative 
distribution function (CDF): 

FV(V)= 1 − exp

[(
V
λ

)k
]

; for V > 0 (4)  

With k and λ as the shape and scale parameters, respectively. The pa
rameters were adapted from the hindcast data as it covers a more 
extended period than the site measurements and it is possible to obtain 
the data at the desired midspan location. 

3.1.1. Extreme value distribution from hindcast data 
Directly fitting the Weibull distribution from Equation (4) to the 

available data yields a good match with the central behavior of the 
distribution. However, the accuracy is lost in the tail where the largest 
wind loading conditions are expected. Thus, the parent distribution was 
established in correspondence to a type 1 generalized extreme value 

distribution (Gumbel) from the annual largest mean wind speeds, FZ, 
reported in the hindcast data. In this way, most of the weight was given 
to fit the tail of the parent distribution. 

FZ(z)= 1 − e− e− y
, y =

z − α1

α2
(5) 

Here, α1 and α2 are the location and scale parameters of the distri
bution, respectively, y is the reduced variate, and z is a variable relative 
to the mean wind speed. A linear variation was assumed between y and 
the wind speeds following the best linear unbiased estimator (BLUE) 
method (Lieblein, 1974). Then, FZ was established from the annual 
largest recordings ranked in ascending order, such that the lowest 
maximum has the rank of m = 1, and the highest rank is m = n, as 
follows: 

Fz(z)=
[ m
n + 1

]
(6) 

The distribution parameters α1 and α2, and thus Fz, are obtained by a 
least-squares fit from the reduced variate, which was directly adapted 
from the hindcast data. 

y(z)= − ln[ − ln(FZ(z))] (7) 

Subsequently, FV is established from FZ utilizing the asymptotic 
theorem (Gumbel, 1958), i.e., FV asymptotically approaches FZ given 
that the number of short-term recordings in the one-year period, N, is 
sufficiently large and the statistical parameters of the individual re
cordings are independent. For the 1-h averaging period of the hindcast 
data, N = 8760 is sufficiently large to fulfil the requirement, and the 
parent distribution for the 1-h averaging period, FV3600 , can be found as 
follows: 

FZ(V)=
[
FV3600 (V)

]N8760 ↔ FV3600 (V)= [FZ(V)]1/N8760 (8) 

A 10-min averaging period is typically used for structural design 
purposes, however the standard in meteorological forecast is 1-h in
tervals. Thus, a transformation between the averaging periods is 
required to proceed with the structural design. Direct conversion of 
averaging periods of mean wind speed records is not possible (Harper 
et al., 2009). Then, transformations must be completed on their esti
mates. In this work, the adjacent short-term 10-min intervals in the 1-h 
periods were assumed to be independent events allowing to estimate the 
parent distribution of the 10-min mean wind speed, FV600 , as shown in 
Equation (9). This assumption doesn’t involve a loss in accuracy given 
that the number of cycles of interest (10-min intervals in one year) is 
larger than the cut-off step-memory of stationary dependance (number 
of cycles in which the maximum events are no longer related), thus, the 
dependance between adjacent cycles is effectively negligible (Naess 
et al., 2013). 
[
FV3600 (V)

]N8760
≅

[
FV600 (V)

]6*N8760 ↔ FV600 (V) ≅ [FZ(V)]1/N52560 (9) 

Fig. 15 a) shows the reduced variate for the recordings of the 
dominant wind direction (100◦–250◦) at the Sulafjord center, while 
Fig. 15 b) shows the associated annual Gumbel probability distribution. 
In both cases, the annual largest wind speeds are represented with cir
cles. The velocities in the range of 25–35 are emphasized, as the design 
conditions are expected in the distribution’s tail. Thus, the Weibull 
parent distribution establishment is focused on velocities from 25 to 35 
m/s. Fig. 15 c) shows the scaled Gumbel CDF [FZ(V)]1/N52560 in the 
continuous line and the fitted 10-min short-term Weibull CDF in the 
discontinuous line,FV600 . 

The parameters from the 10-min Weibull type parent distributions 
are shown in Table 4. 
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3.2. Statistical properties of the turbulence parameters 

Section 3.1 explained how to obtain the distribution for the mean 
wind speed. To complete the probabilistic model of Equation (3), This 
section explains how to obtain the joint distribution of the turbulence 
intensities (Iu, Iv, Iw) and spectral parameters (Au,Av,Aw), conditional to 
mean wind speed, FIu ,Iv ,Iw ,Au ,Av ,Aw |V . Turbulence parameters are adapted 
from mast measurements according to the following procedure: 

First, the data was divided in directional sectors from Table 2. Then, 
recordings with mean wind speeds below 11 m/s were disregarded from 
the analysis as attention is paid to the tail of the mean wind speed dis
tribution. Subsequently, the data was divided depending on the mean 
wind speed in segments of 2 m/s, in this way trends of the joint distri
bution parameters respect to mean wind speed can be highlighted. On 
each segment of data, the parameters of the lognormal distribution and 
the correlation coefficients were fitted using the method of moments. 
Finally, the trends in the distribution and correlation parameters respect 
to the mean wind speed were fitted using least squares. 

The size of the segments was chosen by engineering criterion. Small 
segments would leave few samples for distribution fitting whereas large 
segments would leave few points for trend fitting respect to mean wind 
speed. 2 m/s balanced the accuracy in both type of fittings given the 
number of recordings available. 

The result is a joint lognormal distribution whose parameters are 
dependent of the mean wind speed. Parameters of a marginal lognormal 
distribution and correlation coefficients are described as follows: 

flogn(x|μ̃, σ̃) =
1

xσ̃
̅̅̅̅̅
2π

√ exp

{
− (Ln x − μ̃)2

2σ̃2

}

μ̃ = exp
(

μ +
σ2

2

)

, σ̃2
=

[
exp

(
σ2) − 1

]
exp

(
2μ + σ2)

ρ(x, y) =
1

N − 1
∑N

i=1

(
xi − μx

σx

)(yi − μy

σy

)

Rxy =

[
1 ρ(x, y)

ρ(y, x) 1

]

(10)  

With, flogn(x|μ̃, σ̃) the lognormal distribution a variable x and μ̃, σ̃ the 
lognormal mean and standard deviation (parameters of the distribu
tion). ρ(x,y), the correlation coefficient of the variables x and y, and Rxy 

the correlation matrix. 
At middle of fjord there is not wind turbulence data. Therefore, 

turbulence conditions were adapted from the mast station that provided 
the most representative data. The wind roses from Figs. 5 and 13 show 
that most frequent and stronger winds for the fjord center come from the 
south and southwest and that this situation is also observed at Trælbo
neset. In addition, winds from south and southwest arrive mostly un
distributed to Trælboneset making is suitable to represent the 
topographic conditions of the fjord center in these directions. Thus, the 
turbulence conditions at Trælbonset were used as the design conditions 
for the Sulafjord center. 

Fig. 15. Extreme distribution fit of the Sulafjord center from the hindcast data dominant sector a) Reduced variate b) Annual CDF c) 10-min CDF fitting.  

Table 4 
Parameters of the parent distributions from hindcast data for Eq. 3  

Location Sector λ k 

Sulafjord center 100◦–250◦ 1.52 0.82  

Table 5 
Number of samples at the interval division from measured data from the 
dominant sector at Trælboneset.  

Speed interval 11–13 13–15 15–17 17-max 

Samples 2681 1755 758 520  

D.F. Castellon et al.                                                                                                                                                                                                                            



The number of samples in each discretization segment for the 
Trælboneset dominant sector (120◦–230◦) is reported in Table 5. As an 
example, Fig. 16 shows the lognormal distribution fittings for the Iu 
parameter for different mean wind speed segments on top of the histo
gram of the data. 

Fig. 17 shows the variation in the lognormal distribution parameters 
of the spectral parameters μ̃Ai 

and σ̃Ai with respect to the mean wind 

speed from Trælboneset dominant sector. Fig. 18 shows a similar plot for 
the turbulence intensity parameters μ̃Ii and σ̃Ii . μ̃Ai

, σ̃Ai and the correla
tion coefficients are constant with respect to the mean wind speed, 
whereas ̃μIi shows a linear variation. The variation of ̃σIi , was adapted as 
constant despite it show a higher order trend. The reason behind this is 
that as less sampling points are present in the high mean wind speed 

Fig. 16. Lognormal distributions for turbulence parameter Iu from the dominant sector at Trælboneset fitted at V = a) 11–13 m/s b) 13–15 m/s c) 15–17 m/s d) 17 
m/s-max. 

Fig. 17. Statistical parameter fit for the turbulence intensity: Lognormal parameter μ̃I , Lognormal parameter σ̃I , Correlation coefficient ρIu Iv , Correla
tion coefficient.ρIuIw 
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range; this may lead to inaccuracies in the dispersion of the sample 
affecting the lognormal standard deviation. This effect is however more 
pronounced in the lognormal normal standard deviation than the 
lognormal mean, therefore, values of ̃μIi are still acceptable. This follows 
the recommendations found the literature (Fenerci and Øiseth, 2018), 
(Hannesdóttir et al., 2019). The values of the fitted parameters are re
ported in Table 6, while the correlation coefficient matrix is in Table 7. 
To simplify the modeling, correlation coefficients between − 0.15 and 
0.15 which are negligible for the calculations were not reported in the 
table. 

4. Environmental contours 

4.1. Environmental contour method 

The established probabilistic model expresses the joint distribution 
of the correlated stochastic wind variables and provides the basis for 
obtaining the environmental contours. The ECM allows for the assess

ment of the model uncertainties considering multiple correlated sto
chastic variables. The method approximates the reliability integral 
based on an inverse application of the first-order reliability method 
(FORM) (Hasofer and Lind, 1974) (Winterstein et al., 1993): 

pe =P[g(X)> 0] =
∫

g(X)>0

fX(x)dx (11)  

where pe is the exceedance probability of an extreme event, X (φ,V,Iu,Iv,
Iw, Au,Av, Aw) is the set of stochastic variables and g(X) is the limit 
function, which represents the difference between a generic wind con
dition W(X) and the extreme wind condition WRP, which is associated 
with the long-term extreme value of X with a return period RP in years. 
g(X) = W(X) − WRP. 

For design applications, the probability of exceedance is fixed to a 
design practice (or construction code) through the long-term return 
period RP in years. Thus, this value can be computed for the given return 
period in terms of short-term processes with Tst duration in minutes. 

pe =

[
RP ​ x ​ 365.25 ​ x24 ​ x60

Tst

]− 1

(12) 

The set of stochastic variables X is transformed into a set of inde
pendent normally distributed variables, U(u1, u2,…, un ), given that the 
proper transformation rule is reversible. A detailed explanation of the 
method and its advantages may be found in (Winterstein et al., 1993). In 
the transformed space, the shortest distance between the boundary of 
the limit function (g̃(U)= 0) and the origin is known as the reliability 
index, β. This parameter is fixed in correspondence to the exceedance 
probability and is computed by exploiting the symmetry of the joint 
standard normal cumulative distribution function, Φ(x): 

pe ≅ Φ(β)
β ≅ − Φ− 1(pe)

(13) 

Although the boundary of the limit function can adopt complex 
shapes, it can reportedly be approximated by its first-order Taylor 
expansion (Hasofer and Lind, 1974). Then, an optimization procedure is 
applied as follows: 

Given ​ β : find WRP =max|W(U)|; subjectto|U| = β (14) 

The result is a hypersphere of radius β in the standard normal space 

Fig. 18. Statistical parameters fit for the spectral quantities: Lognormal distribution parameter μ̃A, Lognormal distribution parameter σ̃A, Correlation coefficient 
ρAuAv

, Correlation coefficient.ρAuAw 

Table 6 
Statistical parameters of the turbulence model.   

μ̃ σ̃ 

Iu − 2.381 − 0.003V 0.206 
Iv − 2.307 − 0.005V 0.216 
Iw − 2.588 − 0.015V 0.208 
Au 2.054 0.855 
Av 3.184 0.584 
Aw 1.314 0.800  

Table 7 
Correlation coefficient fit matrix of the turbulence model.   

Iu Iv Iw Au Av Aw 

Iu 1.00      
Iv 0.71 1.00  Symmetric 
Iw 0.67 0.70 1.00    
Au 0.00 0.00 0.00 1.00   
Av 0.16 0.56 0.18 0.00 1.00  
Aw 0.00 0.00 0.47 0.00 0.19 1.00  
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that shall be transformed back to the space of the original variables. 
Herein, two reversible transformation rules were applied because the 
mean wind speed and the turbulence structure follow different distri
bution types. The Weibull distributed mean wind speed was transformed 
with the Rosenblatt transform (Rosenblatt, 1952), while the correlated 
lognormal distributed turbulence parameters were transformed with a 
linear transform. 

The Rosenblatt transformation works by obtaining the joint CDF 
from the product of the marginals: 

Fx1x2..xn(x1, x2,…, xn)=Fx1(x1)Fx2(x2|x1)…Fxn(xn|xn− 1….x 1) (15) 

Then, the variables are transformed by considering the conditional 
distributions individually. The mean wind speed was chosen as the first 
variable, as it is considered the most important variable for the buffeting 
response of long-span bridges (Castellon et al., 2021). Then, the mean 
wind speed was transformed first. 

FV(V)=Φ(u1)↔ V = F− 1
V [Φ(u1)] (16) 

When the stochastic variables are correlated and normally distrib
uted, the linear transformation rule can be applied. 

U = A(X − MX)↔ X = A− 1U + MX
MX =

[
μx1

μx2
,…, μxn

] (17)  

where A is a triangular matrix that can be found using the Cholesky 
decomposition of the covariance matrix CXX, which is Hermitian and 
positive definite: 

CXX = A− 1 A− T (18)  

with 

CXX =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
x1

ρ12σx1 σx2 ⋯ ρ1nσx1 σxn

ρ21σx1 σx2 σ2
x2

⋯ ρ2nσx2 σxn

⋮ ⋮ ⋱ ⋮
ρn1σx1 σxn ρn2σx2 σxn ⋯ σ2

xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19) 

Then, for the case in which stochastic variables are correlated and 
lognormally distributed, the same transformation rule procedure ap
plies, and the lognormal variables can be found as follows: 

X = exp
(
A− 1U +MX

)
(20) 

The full set of turbulence parameters conditional on the mean wind 
speed are transformed in a single operation using the linear trans
formation rule for the case of lognormal distributed variables from 
Equation (20). 

FIu ,Iv ,Iw ,Au ,Av ,Aw |V (Iu, Iv, Iw,Au,Av,Aw|V)=Φ(u2, u3, u4, u5, u6, u7) (21)  

4.2. Sulafjord contours 

4.2.1. Reference values from standard methodologies 
The general practice in bridge design is to estimate the mean wind 

speed from an extreme value analysis and the turbulence variables from 
code values or measurements, usually dependent on the mean wind 
speed and the reference height. Reference values of the wind variables 
required for the Sulafjord bridge following the standard design meth
odology are reported in Table 8. The table presents mean wind speeds 
with 50- and 100-year return periods. Additionally, the table provides 
turbulence intensities (Iu, Iv, Iw) and spectral parameters (Au,Av, Aw) 

corresponding to their mean values for recordings above 15 m/s from 
the dominant incoming direction. Reference values of turbulence in
tensities and spectral parameters at the Sulafjord center were adopted 
from Trælbonset since site measurements are not available at the fjord 
center. 

4.2.2. Design contours 
The environmental contour lines for the Sulafjord bridge design for 

return periods of 4, 50 and 100 years are shown in Fig. 19. Site mea
surement data are also plotted along with the contour lines. The x-axis of 
the subfigures represents the mean wind speed, and the y-axis represents 
each of the remaining turbulence parameters. The 4-year contours 
represent the measurement campaign period and envelope the measured 
data well. Additionally, the 50- and 100-year return period contours 
represent extreme wind conditions. Reference values are reported in 
Table 8. Finally, contour surfaces for the 100-year return period of the 
turbulence intensity parameters are shown in Fig. 20. 

5. Discussion 

The results show that environmental contours successfully capture 
the variability in the site data. In general, the 4-year contours covered 
the measured data well. Furthermore, 50- and 100-year contours pro
duce reasonable estimates of the extreme wind fields that follow the site 
data. Compared with the current design methodology, the contours 
represent a more complete description of the extreme wind fields, as 
they also include turbulence measurements. Therefore, presenting the 
extreme wind conditions of the Sulafjord Bridge site with environmental 
contours shows a significant advantage to the traditional wind speed 
method using the same resources typically available in the design of 
long-span bridges. Then, a designer will use the contours to identify 
combinations of environmental parameters that provide the largest 
response by checking points along the contour lines. The procedure is 
explained in (Lystad et al., 2020), (Lystad et al., 2021). 

5.1. Model recommendations 

Several challenges arise when developing contours based on proba
bilistic modeling with the proposed strategy for long-span bridge design. 
First, hindcast simulations are limited to the mesoscale, and site mea
surement campaigns have relatively short periods. Thus, the mean wind 
speed and turbulence parameters of probabilistic modeling should be 
established separately. Furthermore, locations with higher wind loads 
are often in the middle of the bridge’s span, where site measurements 
from mast stations are rarely available. Additionally, establishing the 
joint distribution of the turbulence parameters requires approximations 
that are applicable beyond the range of available data. In the following 
section, the modeling limitations are discussed together with the stra
tegies implemented to overcome these limitations. 

First, there are discrepancies between the averaging period of the 
hindcast data and the site measurements. The hindcast data were 
simulated using a 1-h averaging period, whereas the site measurements 
used 10 min. It is recommended that the discrepancies between the 
averaging periods for the mean wind speed be resolved by considering 
the adjacent short-term 10-min intervals in 1 h as independent. This 
assumption yields conservative estimations of the mean speed values. 
The benefit from using data from the meso-scale model is that longer 
time series of mean wind speed are available and that data for mean 
wind speed is available at the middle of the fjord. Mast measurements is 
clearly the best alternative if many years of data in a representative 

Table 8 
Reference values from mean wind speed and turbulence parameters.  

Parameter V50 V100 Iu Iv Iw Au Av Aw 

Sulafjord Center 39.83 42.1 0.089 0.091 0.057 12.08 29.37 5.33  
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Fig. 19. Environmental contours of Sulafjord bridge design.  

Fig. 20. Surface contours of the 100-year return period for Sulafjord bridge design: a) Iu − Iv b). Iu − Iw  
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location at the bridge site is available. This is however rarely the case 
making meso-scale simulation an attractive alternative to cover longer 
time periods. 

Additionally, site measurement data are not available at the center of 
Sulafjord, making it necessary to infer its turbulence properties from 
other available locations. Kårsteinen and Langeneset were not consid
ered in the analysis because of their distant locations from the bridge 
track. The Kvitneset station could also be considered as a viable alter
native, but it is seen that the winds at the midspan of the fjord does not 
follow the same direction as the winds at Kvitneset. The local topog
raphy around the station also suggests that local effects are likely to 
dominate the turbulence characteristics. On the other hand, Trælboneset 
station has almost twice the amount of strong wind records (above 17 
m/s). Thus, it was decided to derive the turbulence model after Træl
boneset records as it also contains a good number of records to ensure a 
good distribution fitting in the mean wind speed range above 10 m/s. 

Finally, Figs. 17 and 18 show the variation in the joint distribution 
parameters with respect to the mean wind speed. All the correlation 
coefficients ρii and the lognormal mean parameter of the turbulence 
intensity μ̃Ii agree with their adopted functions. Significant deviations 
can be observed between with the lognormal standard deviation 
parameter σ̃Ii and its adopted constant value. The number of recordings 
decrease for higher mean wind speeds affecting the uncertainty in the 
distribution fittings with a stronger effect on the ̃σIi parameter compared 
to the μ̃Ii parameter. Then, trends of sigma may be attributed to lack of 
data, because using linear or higher order functions produce unrealistic 
estimates of the turbulence in the extrapolated region. Therefore, the 
constant vale of σ̃Ii was chosen as it produced stable estimates. Similar 
approach may be found the literature (Fenerci and Øiseth, 2018), 
(Hannesdóttir et al., 2019). 

6. Conclusion 

In this paper, the wind conditions and wind characterization at the 
Sulafjord Bridge site from the 4-year mast measurement campaign and 
the 10-year hindcast simulation data are presented. A probabilistic 
model of the environmental variables was established using a novel and 
practical strategy in which hindcast simulations are combined with filed 
measurements. Efficient techniques for combining these datasets are an 
open matter of discussion and therefore were addressed in this study. 
The probabilistic model expresses the joint probability distributions of 
the turbulence intensities (Iu, Iv, Iw) and spectral parameters (Au,Av,Aw) 
conditional on the mean wind speed (V) and mean wind direction. The 
mean wind speed was modeled using a Weibull distribution transformed 
from the extreme value distribution of the hindcast data, where the 
mean wind direction was modeled as a discrete variable since the fjord 
distributes the flow in discrete directions. The joint distribution of the 
remaining wind variables (turbulence intensities and spectral parame
ters) were established from the site measurement data as a joint 
lognormal distribution with correlation coefficients. 

Environmental contours were obtained for 4-, 50- and 100-year re
turn periods based on the probabilistic turbulence model. The contours 
reasonably captured the variability in the wind conditions at the fjord 
site when compared with the site measurements. The contours present 
combinations of wind field parameters for the given return periods. As 
such, for instance wind conditions with higher turbulence intensities 
occurring at lower mean wind speeds can also be obtained and checked 
for design purposes. Therefore, designing the Sulafjord Bridge with the 
ECM will increase the accuracy in the extreme response predictions as 
opposed to the current practice. It is also concluded that the ECM uses 
the available data in a more efficient manner. 

In conclusion, it is recommended to use the ECM to characterize the 
wind conditions at a bridge site using data typically available at the 
design stage of long-span bridges. 
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